EEE2035F: Signals and Systems I
 Class Test 1
 19 March 2012

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 25 marks.
- Answer all the questions.
- You have 45 minutes.

1. (10 marks) Suppose $x(t)=e^{-t} u(t)$. Sketch the following:
(a) $y_{1}(t)=x(t)$
(b) $y_{2}(t)=x(-t+1)$
(c) $y_{3}(t)=x(-t+1) u(t)$
(d) $y_{4}(\lambda)=x(t-\lambda)$
(e) $y_{5}(t)=x(t) \delta(t-1)$
(f) $y_{6}(t)=\frac{d}{d t} x(t)$

2. (5 marks) Suppose the output $y(t)$ of a system is related to the input $x(t)$ via the relationship

$$
y(t)=x(t)+1
$$

(a) Is the system linear?
(b) Is the system time invariant?
(a) We can show by counterexample that the system is not homogeneous, and is therefore not linear. Consider the input $x_{1}(t)=u(t)$. The following is a valid input-output pair:

$$
x_{1}(t) \longrightarrow y_{1}(t)=\left\{x_{1}(t)\right\}+1=u(t)+1 .
$$

However, using the input $x_{2}(t)=2 u(t)$ we get the following valid input-output pair:

$$
x_{2}(t) \longrightarrow y_{2}(t)=\left\{x_{2}(t)\right\}+1=2 u(t)+1 .
$$

Clearly for the inputs we have $x_{2}(t)=2 x_{1}(t)$, by for the outputs we don't have $y_{2}(t)=2 y_{1}(t)$. Therefore the system is not homogeneous, and is not linear.
(b) Assuming that the input is $x_{1}(t)$, the output will be $y_{1}(t)=x_{1}(t)+1$. The following input-output pair is therefore valid:

$$
x_{1}(t) \longrightarrow y_{1}(t)=x_{1}(t)+1 .
$$

Suppose now that we consider the shifted input $x(t)=x_{1}(t-\lambda)$ for some λ. The output will be

$$
y(t)=x(t)+1=\left\{x_{1}(t-\lambda)\right\}+1=x_{1}(t-\lambda)+1=y_{1}(t-\lambda) .
$$

A shift in the input therefore always causes a corresponding shift in the output, so the system is time invariant.
3. (5 marks) Suppose you're given the signals

(a) Use the method of your choice to find $w(t)=x(t) * y(t)$.
(b) Use the result from the previous question to find $f(t)=y(t) * v(t)$ for these signals:

(a) The derivative property implies that $\dot{w}(t)=\dot{x}(t) * y(t)$. However, $\dot{x}(t)=\delta(t)-\delta(t-1)$, so using the properties of convolution with the delta function we get

$$
\dot{w}(t)=[\delta(t)-\delta(t-1)] * y(t)=y(t)-y(t-1)
$$

The signal $w(t)$ can then be found by indefinite integration: $w(t)=\int_{-\infty}^{t} \dot{w}(\lambda) d \lambda$. The signals of interest are shown below:

(b) Evidently $v(t)=x(t)+\delta(t-2)$, so the required signal is

$$
\begin{aligned}
f(t) & =y(t) * v(t)=y(t) *[x(t)+\delta(t-2)] \\
& =y(t) * x(t)+y(t-2)=w(t)+y(t-2),
\end{aligned}
$$

where $w(t)$ was found in the previous part. Thus $f(t)$ is given below:

4. (5 marks) A unit step input is applied to a LTI system, and results in the following response:

$$
y(t)=\frac{1}{2} t u(t)-\frac{1}{20}\left(1-e^{-10 t}\right) u(t) .
$$

(a) Find and plot $\frac{d}{d t} y(t)$.
(b) Use the derivative property of convolution to find the impulse response of the system.
(a) We can rewrite $y(t)$ as follows:

$$
y(t)= \begin{cases}\frac{1}{2} t-\frac{1}{20}\left(1-e^{-10 t}\right) & t \geq 0 \\ 0 & t<0\end{cases}
$$

Note that there is no discontinuity at $t=0$ since

$$
\lim _{t \rightarrow 0}\left(\frac{1}{2} t-\frac{1}{20}\left(1-e^{-10 t}\right)\right)=0
$$

For $t<0$ we have $\frac{d}{d t} y(t)=0$ and for $t \geq 0$ we have

$$
\frac{d}{d t} y(t)=\frac{d}{d t}\left(\frac{1}{2} t-\frac{1}{20}+\frac{1}{20} e^{-10 t}\right)=\frac{1}{2}+\frac{1}{20}(-10) e^{-10 t}=\frac{1}{2}\left(1-e^{-10 t}\right),
$$

which looks like

(b) If $u(t) \longrightarrow y(t)$ is a valid input-output pair for a LTI system, then from the derivative property we know that

$$
\frac{d}{d t} u(t) \longrightarrow \frac{d}{d t} y(t)
$$

is also valid. However, since $\frac{d}{d t} u(t)=\delta(t)$ we have $\delta(t) \longrightarrow \frac{d}{d t} y(t)$, so by definition the impulse response is

$$
h(t)=\frac{d}{d t} y(t)
$$

which was plotted in the previous part.

