EEE235F Class Test
 15 April 2005

Name:

Student number:

Information

- The test is closed-book.
- This test has five questions, totalling 50 marks.
- Answer all the questions.
- You have 45 minutes.

1. (10 marks) Are the following signals periodic? If so, what is the fundamental period and frequency?
(a) $x(t)=\cos \left(\frac{\pi}{3} t\right)+3 \sin \left(\frac{\pi}{4} t\right)$
(b) $x(t)=e^{j\left(\frac{\pi}{2} t-1\right)}$.
(a) Find smallest T such that $x(t)=x(t+T)$, or

$$
\begin{aligned}
\cos \left(\frac{\pi}{3} t\right)+3 \sin \left(\frac{\pi}{4} t\right) & =\cos \left(\frac{\pi}{3}(t+T)+3 \sin \left(\frac{\pi}{4}(t+T)\right)\right. \\
& =\cos \left(\frac{\pi}{3} t+\frac{\pi}{3} T\right)+3 \sin \left(\frac{\pi}{4} t+\frac{\pi}{4} T\right)
\end{aligned}
$$

The condition above is satisfied for $\frac{\pi}{3} T=2 k \pi$ and $\frac{\pi}{4} T=2 m \pi$, for k and m integers. Thus if we can find integers k and m such that $T=6 k$ and $T=8 m$, then the signal is periodic. The smallest integers satisfying $T=6 k=8 m$ are $k=4$ and $m=3$, so the signal is periodic with fundamental period $T=6(4)=8(3)=24$. The fundamental frequency is therefore $f=1 / T=1 / 24 \mathrm{~Hz}$.
(b) Find smallest T such that

$$
e^{j\left(\frac{\pi}{2} t-1\right)}=e^{j\left(\frac{\pi}{2}(t+T)-1\right)}=e^{j\left(\frac{\pi}{2} t+\frac{\pi}{2} T-1\right)}=e^{j\left(\frac{\pi}{2} t-1\right)} e^{j \frac{\pi}{2} T} .
$$

The smallest value of T such that this is true is $T=4$.
2. (10 marks) Suppose $y_{1}(t), y_{2}(t)$ and $y_{3}(t)$ are as shown below:
$\frac{{ }^{(1)} \uparrow}{} \begin{aligned} & y_{1}(t) \\ & 0\end{aligned}$

If $x(t)$ and $y(t)$ are

then sketch
(a) $x(t) * y_{1}(t)$
(b) $x(t) * y_{2}(t)$
(c) $x(t) * y_{3}(t)$
(d) $y(t) * y_{1}(t)$
(e) $y(t) * y_{2}(t)$
(f) $y(t) * y_{3}(t)$.

The solutions are as follows - see next page for sketches.
(a) $x(t) * y_{1}(t)=x(t) * \delta(t)=x(t)$, since $\delta(t)$ is the identity element of convolution.
(b) $x(t) * y_{2}(t)=x(t) * \delta(t-2)=x(t-2)$, since shifting one signal by 2 shifts the resulting convolution by 2 .
(c) $x(t) * y_{3}(t)=x(t) *-1 \delta(t-2)=-1(x(t) * \delta(t-2))=-x(t-2)$, since the convolution operator is linear.
(d) $y(t) * y_{1}(t)=y(t) * \delta(t)=y(t)$.
(e) $y(t) * y_{2}(t)=y(t) * \delta(t-2)=y(t-2)$.
(f) $y(t) * y_{3}(t)=y(t) *-1 \delta(t-2)=-1(y(t) * \delta(t-2))=-y(t-2)$.

Sketches are as follows:

- Questions (a), (b), and (c)

$$
x(t) *-\delta(t-2)
$$

- Questions (d), (e), and (f)

3. (10 marks) Use the derivative property of convolution to find $w(t)=x(t) * y(t)$, where

If $w(t)=x(t) * y(t)$, then the derivative property of convolution states that $\dot{w}(t)=x(t) * \dot{y}(t)$. However, $\dot{y}(t)=\delta(t)-\delta(t-2)$ (generalised derivative of $y(t)$), so
$\dot{w}(t)=x(t) * \dot{y}(t)=x(t) *(\delta(t)-\delta(t-2))=[x(t) * \delta(t)]+[x(t) *-\delta(t-2))]$
From the results of the previous section (or otherwise) we know that this equals

$$
\dot{w}(t)=x(t)-x(t-2),
$$

so $\dot{w}(t)$ looks like

Integrating once gives the required answer:

4. (10 marks) Consider a continuous-time LTI system described by

$$
y(t)=T\{x(t)\}=\frac{1}{T} \int_{t-T / 2}^{t+T / 2} x(\tau) d \tau
$$

(a) Find and sketch the impulse response $h(t)$ of the system.
(b) Is the system causal?
(a) Impulse response is the output of the system when the input is the impulse: $x(t)=\delta(t)$. Thus the impulse response $h(t)$ is

$$
h(t)=T\{\delta(t)\}=\frac{1}{T} \int_{t-T / 2}^{t+T / 2} \delta(\tau) d \tau= \begin{cases}\frac{1}{T} & -\frac{T}{2}<t<\frac{T}{2} \\ 0 & \text { otherwise }\end{cases}
$$

(b) The system is not causal, since the impulse response is nonzero for some values of t.
5. (10 marks) Suppose a LTI system has impulse response

(a) What is the response of the system to the complex signal

$$
x_{1}(t)=e^{j \omega t}
$$

for some fixed ω ?
(b) Hence, by writing $\cos (x)$ in terms of complex exponentials, find the response of the system to

$$
x_{2}(t)=\cos (\omega t)
$$

Note that in this case the result should be real valued, so some simplification may be necessary.
(a) Direct convolution gives the result:

$$
\begin{aligned}
y_{2}(t) & =\int_{-\infty}^{\infty} h(\tau) x_{1}(t-\tau) d \tau=\int_{0}^{2} e^{j \omega(t-\tau)} d \tau=e^{j \omega t} \int_{0}^{2} e^{-j \omega \tau} d \tau \\
& =e^{j \omega t}\left[\frac{1}{-j \omega} e^{-j \omega \tau}\right]_{\tau=0}^{\tau=2}=-\frac{1}{j \omega} e^{j \omega t}\left(e^{-j \omega 2}-1\right)=\frac{1-e^{-j \omega 2}}{j \omega}
\end{aligned}
$$

(b) The signal $x_{2}(t)=\cos (\omega t)$ can be written as

$$
x_{2}(t)=\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right)=\frac{1}{2} e^{j \omega t}+\frac{1}{2} e^{-j \omega t}
$$

Because the system is linear, the response to $x_{2}(t)$ will be the sum of the responses to each of the terms above. Now from part (a) the response of the system to input $e^{j \omega t}$ is $e^{j \omega t}\left(1-e^{-j \omega 2}\right) /(j \omega)$ so the response to $1 / 2 e^{j \omega t}$ will be $e^{j \omega t}\left(1-e^{-j \omega 2}\right) /(j 2 \omega)$. Similarly, the response to
$1 / 2 e^{j(-\omega) t}$ will be $e^{j \omega t}\left(1-e^{-j(-\omega) 2}\right) /(j 2(-\omega))$. Thus the output will be

$$
\begin{aligned}
y(t) & =e^{j \omega t}\left(1-e^{-j \omega 2}\right) /(j 2 \omega)+e^{j(-\omega) t}\left(1-e^{-j(-\omega) 2}\right) /(j 2(-\omega)) \\
& =\frac{1}{j 2 \omega}\left(e^{j \omega t}-e^{j \omega(t-2)}-e^{-j \omega t}+e^{-j \omega(t-2)}\right) \\
& =\frac{-1}{j 2 \omega}\left(\left[e^{j \omega(t-2)}-e^{-j \omega(t-2)}\right]-\left[e^{j \omega t}-e^{-j \omega t}\right]\right) \\
& =-\frac{1}{\omega}(\sin (\omega(t-2))-\sin (\omega t))
\end{aligned}
$$

