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Abstract This research presents a novel approach to the automatic rendering of 3D 

stereoscopic disparity image pairs from single 2D low depth-of-field (LDOF) images. Initially a 

depth map is produced through the assignment of depth to every delineated object and region in 

the image. Subsequently the left and right disparity images are produced through depth image-

based rendering (DIBR). The objects and regions in the image are initially assigned to one of six 

proposed groups or labels. Labelling is performed in two stages.  The first involves the delineation 

of the dominant object-of-interest (OOI). The second involves the global object and region 

grouping of the non-OOI regions. The matting of the OOI is also performed in two stages. Initially 

the in focus foreground or region-of-interest (ROI) is separated from the out of focus background. 

This is achieved through the correlation of edge, gradient and higher-order statistics (HOS) 

saliencies. Refinement of the ROI is performed using k-means segmentation and CIEDE2000 

colour-difference matching. Subsequently the OOI is extracted from within the ROI through 

analysis of the dominant gradients and edge saliencies together with k-means segmentation. Depth 

is assigned to each of the six labels by correlating Gestalt-based principles with vanishing point 

estimation, gradient plane approximation and depth from defocus (DfD). To minimise some of the 

dis-occlusions that are generated through the 3D warping sub-process within the DIBR process 

the depth map is pre-smoothed using an asymmetric bilateral filter. Hole-filling of the remaining 

dis-occlusions is performed through nearest-neighbour horizontal interpolation, which 

incorporates depth as well as direction of warp. To minimising the effects of the lateral striations, 

specific directional Gaussian and circular averaging smoothing is applied independently to each 

view, with additional average filtering applied to the border transitions. Each stage of the 

proposed model is benchmarked against data from several significant publications. Novel 

contributions are made in the sub-speciality fields of ROI estimation, OOI matting, LDOF image 

classification, Gestalt-based region categorisation, vanishing point detection, relative depth 

assignment and hole-filling or inpainting. An important contribution is made towards the overall 

knowledge base of automatic 2D-to-3D conversion techniques, through the collation of existing 

information, expansion of existing methods and development of newer concepts.  
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I. INTRODUCTION 

This chapter provides a brief overview of the underlying concepts and techniques employed 
in 2D-to-3D conversion and motivates the need for improved and augmented methodologies in 
this field. The challenges of the research are highlighted and a summary of the proposed method 
as well as the novel contributions made in this research are presented. An outline of the thesis 
concludes this chapter. This research proposes a novel method for the automatic generation of 
disparity image pairs from single 2D low depth-of-field (LDOF) images. 

 
A. Preamble 

One of the popular applications of 2D-to-3D conversion is its use in 3D cinema and 3D 
television (3DTV). Even with the surge in these arenas over the past decade, virtually the entire 
corpus of previous and current cinema and television has been and is still being shot using standard 
monocular 2D cinematography. Furthermore, movies and programmes destined for 3D platforms1 
currently require significant portions to be filmed using monoscopic cameras, owing mainly to the 
technical complexity and limitations of filming with stereoscopic cameras [2]. As a consequence 
there is a significant demand for highly accurate and efficient 2D-to-3D conversion techniques to 
firstly, help in ameliorating the present shortage of high-quality 3D content by converting some 
of the vast amount of existing content and secondly, assist in overcoming some of the 
complications associated with stereoscopic filming and the creation of modern 3D cinema. 

3D cinema and 3DTV is by no means an absolute necessity for cinema or television. However, 
for many, it is seen as providing a more compelling, emotional, psychological and realistic 
experience, owing primarily to having a sense of perceived immersion into a dynamic image 
environment and the ability to engage and discern tangible solid objects in the three spatial 
dimensions, all with the awareness of the fourth dimension, time. Nevertheless, it must be 
emphasised that an artistically or technically bad 2D film or programme may not, in any way, be 
transformed into a good product by converting it into 3D. On the other hand, a good 2D film or 
programme may be transformed into a bad quality product if inaccurate or inadequate 3D 
conversion techniques are employed. 

Stereoscopic or 3D cinema had a brief appearance in the early1920s, late 1930s and again in 
the early 1950s [3] and even though sporadic attempts at resurrection were made in every 

                                                 

1 A 3D display system or platform, as defined in this research, is one which provides additional information to 

an observer as a consequence of the observer being endowed with two eyes and stereoscopic vision (in the very small 

minority, the former does not necessarily imply the latter) [1]. 
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subsequent decade it went largely unnoticed for over half a century. However, this changed   
around 2005 [4] where, owing mainly to the divergence of technologies and products with 
consumers and content, a resurgence began and what ensued, year on year, since then is observed 
to have followed a “Moore’s law”-type trend for both the cinematic and home entertainment 3D 
markets [5]. 

Two prominent films of recent, Titanic and Jurassic Park, have been transformed, with a 
relatively high degree of success, from 2D into 3D [6, 7]. However, these exercises proved to be 
extremely manually intensive, requiring a colossal army of 3D modellers, rendering artists, 
stereoscopic specialists and video engineers and all at a phenomenally exorbitant cost.2 

The fundamental problem in 2D-to-3D conversion is that given only limited information in 
two dimensions, a third dimension, depth, has to be extrapolated. Simians, including humans, 
observe or rather experience the world in three dimensions. This visual experience is principally 
a consequence of stereoscopy or stereopsis i.e. the propensity to perceive and appreciate depth by 
being able to differentiate relative distances to objects as well as distinguish the position of 
individual objects in relation to other objects in a scene. This stereopsis, as it relates to primates, 
is possible owing largely to the disparity between the right and left retinas, whose photoreceptors 
simultaneously capture two separate 2D images of the same scene from slightly different 
viewpoints or angles. These images are then processed, merged and interpreted by the brain as a 
single 3D scene [8, 9]. 

 
Fig. 1 Stereopsis [10]. (a) Retinal disparity. Overlaid left and right retinal images; (b) Focus on cactus in 
front. Positive parallax. Horse and mesas will appear blurry; (c) Focus on flag in distance. Negative parallax. 
Thumbs will appear blurry. In the case of (b) and (c), should focus be maintained and only one eye kept 
open, the parallax will be negated; however, the defocus will remain. 

  
Euclid, the father of modern geometry and the architect behind the foundations of 

“stereoscopic art”, said nearly 2000 years ago, “To see in relief is to receive by means of each eye 

                                                 

2 The conversion of Titanic into 3D took 14 months to complete and required a team of around 450 contributors 

and at a cost of $18 million [6]. The conversion of Jurassic Park into 3D took 10 months to complete and required a 

team of around 700 contributors and at a cost of $10 million [7]. 
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the simultaneous impression of two dissimilar images of the same object [11].” Our own 
awareness of spatial relations is based on the innate ability of the human visual system (HVS) to 
capture, process and understand the Euclidean structure of our 3D environment [12-14]. This is 
owing, in the main, to a number of reliable and cooperative visual monoscopic and stereoscopic 
heuristics or depth cues [15]. 

Even though respected mathematicians like Euclid, Da Vinci and Kepler understood we see 
different images of our environment through each eye, it was only given credibility in 1838 when 
Wheatstone described this phenomenon as being stereopsis: the stereoscopic receiving of 
information, owing to retinal disparity and the subsequent perception of three dimensions [10, 16]. 
This is illustrated in Fig. 1(a). 

In addition to retinal disparity, another physiological cue present in stereoscopy is vergence. 
The former is the positional difference between the two retinal images of a scene point. This is 
owing to the distance between the two eyes (average approximation of 64 mm in humans). The 
latter is the angle between the line-of-sight of both eyes [17]. 

A crucial component to 3D perception is having access to data acquired simultaneously from 
both eyes. This allows for the brain to differentiate relative distances to objects as well as 
distinguish the position of individual objects in relation to other objects within a scene. Although 
visual information is received simultaneously by each eye, the information is different for each 
eye, owing to the angular disparity (vergence) between the eyes. The brain extrapolates the third 
dimension, depth, through triangulation of this discrepancy in the relative 2D positions of the 
points in the two disparity images; a consequence being depth perception [18]. 
 

Fig. 2 Monoscopic depth cues [17]. 
 

In the absence of stereoscopic or binocular depth cues the brain is nevertheless capable              
of perceiving depth through the inference of monoscopic or monocular depth cues. There are      
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nine individual basic monoscopic depth cues [10, 15, 17, 19]; these include (i) motion parallax, 
(ii) depth-of-field (focus and defocus), (iii) linear perspective, (iv) interposition or occlusion,          
(v) relative height, (vi) light and shade (shading), (vii) relative or known size, (viii) atmospheric 
scattering or aerial perspective and (ix) textural gradient. Fig. 2 provides an illustration for six of 
these cues. 

Motion parallax refers to the relative motion of objects across the retina. The depth value of 
an object is assumed to be proportional to the motion vector, whereby the faster the object moves, 
the closer it is to the observer and vice-versa, for slower moving objects [20]. 

Focus and defocus cues refer to the ability to infer depth based on the focus-defocus 
phenomena whereby objects will exhibit a certain amount of blur (out of focus) relative to their 
position very near to, or very far from, the object in focus – this is known as depth-of-field (DOF)3.  

Linear perspective is the appearance of depth on a 2D plane through the convergence of 
imaginary straight lines, whereby the more the number of lines converge, the more it will have the 
appearance of being further away [21-23]. The lines may be inferred from objects and artefacts 
such as buildings, walls, roads, street markings and railway tracks. 

Occlusion or interposition refers to the simple observation that when an object is fully or 
partially hidden the occluded (hidden) object is considered to be further away than the occluding 
object that is blocking or covering it. 

Relative height refers to the distance from the top or the bottom of the border of the actual 
image and not as a size dimension. It may be observed that objects towards the top of an image 
are deemed to be further away than objects closer to the bottom of the image. This may be 
associated with Gestalt principles [24]. 

Light and shade cues are commonly called shape-from-shading (SFS) and refers to the 
inferring of 3D structure based on the brightness and gradual variation of the shading of objects 
in a scene [25-28]. 

Relative or known size is based again on observation whereby objects appear smaller when 
they are farther away and larger when they are closer. Knowledge is necessary to make a judgment 
about the distance of familiar objects. For example, a car seen at a great distance is interpreted to 
be far away and not necessarily small. 

Atmospheric scattering (haze) or aerial perspective refers to the observation that scattering 
of red light by the turbid medium in the atmosphere produces a partially polarised bluish haze or 
tint that results in objects in the distant appearing less contrasted than nearer objects [29]. The 

                                                 

3 In the HVS the accommodation of the eye is to focus on a given OOI and the brain subsequently stimulates    

the 3D emersion effect through the inference of the relative depths of the surrounding regions depending on the 

degrees of defocus. In the case of a LDOF image captured by a camera the effect of the focus and defocus is associated 

with the setup of the optical system of the capture device. 
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same holds true for the observation of objects in fog, mist and smoke. Although each medium 
differs in size, shape, material and concentration of atmospheric particles the effect is collectively 
referred to as haze. 

Textural gradient refers to the observation that the texture of the surfaces of certain objects 
appear distorted in a way that actually reflects both the direction as well as the inclination of the 
surface [30, 31]. 

These monoscopic depth cues are the reason why it is possible, with reasonable accuracy, to 
gauge depth using just one eye. Therefore, it may be possible to estimate the depth of objects from 
the camera, as well as the distance relationship every object has relative to each other, with a 
combination of these monoscopic artefacts. 

3D perception and emersion, as experienced by the “mind’s eye”, is a consequence of the 
simultaneous coalescing and interpretation by the HVS of all these monoscopic and stereoscopic 
artefacts and phenomena. It is nevertheless possible, with reasonable accuracy, to gauge depth 
using just one eye i.e. absent of stereoscopic disparity. A monocular 2D image or video sequence 
is in principle equivalent to viewing a scene through only one eye. Based on this understanding it 
may therefore be possible for a for a machine to extract a reasonable amount of depth, shape and 
relative distance information from 2D images and sequential video through the mathematical 
translation of these monoscopic artefacts. All of these monocular depth cues may in some way 
contribute towards estimating a scene’s 3D structure. However, owing to the variety of scenes in 
random images, all of these depth cues are individually imperfect and in some scenarios may be 
non-existent or provide an inadequate amount of information to allow for depth computation. 

Moreover, when considering the automatic conversion of single 2D images into 3D it is 
understood that no motion or a priori information exists. As a consequence, some of the 
abovementioned depth cues become more difficult to extrapolate than others. Relative size, for 
example, may only be applied based on the identification or description of objects, together with 
information on the normal sizes of those respective objects. Also, occlusion may only really 
provide information on which objects are in front of other objects. However, absent of motion, no 
information pertaining the actual depth of those objects from the camera or the relative distances 
between each object may be extracted. Textural gradient is also limited to only specific kinds of 
images and as with relative size, requires a priori knowledge to be applicable. 

Although relative depth may be gauged when viewing monocular images and video, the actual 
experience of depth in these scenarios is attenuated. This is owing to the absence of information 
one acquires from the matching left or right disparity image, which is present in stereoscopy. It is 
nevertheless possible to create this perception of depth by simultaneously presenting a matching 
disparity image to the HVS, as is experienced for example in 3D cinema or TV. 

There are currently four types of 3D display formats. These include anaglyph, polarised, 
active shutter and autostereoscopic. Irrespective of which display format is used the images have 
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to nevertheless be separated by either specialised glasses or screens into their individual disparity 
images and then independently but simultaneously presented to each eye. Based on this 
understanding, 2D-to-3D conversion may then be described as the extrapolation of the third 
dimension, depth, from a single 2D image or sequence of monocular video frames and the 
subsequent rendering of a disparity (separate laterally shifted left and right eye) image pair. 

There are three approaches to 2D-to-3D conversion [32]. These include manual, semi-
automatic (human-assisted) and automatic (unsupervised). A comparison between each of these 
methods together with their trade-offs are provided in Fig. 3. 

 
 

Fig. 3 Overview of the 2D-to-3D conversion approaches with comparison of trade-offs [32]. 

 
The manual conversion techniques are mostly utilised for cinematic productions. This is 

owing, in the main, to quality concerns and significant attached costs. The semi-automatic model 
is whereby a part of the 3D conversion process is done automatically, followed by “manual” 
corrections done by hand. Even though this scheme may significantly reduce the overall time 
consumption, when compared to the fully manual conversion scheme, a significant amount of 
human interaction is nevertheless necessary for the completion of the 3D conversion. To 
economically convert the vast amounts of available 2D material into 3D a fully-automatic 
conversion system is desired [19]. 

There two approaches to automatic or unsupervised 2D-to-3D conversion viz. real-time and 
non-real-time (off-line). The real-time automatic techniques are largely employed in the 3DTV 
market which, owing to a surge in consumer interest, has warranted a significant escalation in new 
research and products. Although the market trend shows an increase in demand for these real-time 
products there are nevertheless several inherent problems, including cost, poor quality and viewer 
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discomfort. On the other hand, the off-line automatic 2D-to-3D conversion models are seen as the 
compromise between speed and quality. 

 
 

B. Research Challenges 
 

Over the past two decades there have been numerous approaches to autonomous 2D-to-3D 
image and video conversion [19]. These methods may be broadly divided into two categories. The 
first category involves the direct synthesis of disparity stereo image pairs based on the exploitation 
of the motion parallax (MP) by estimating planar transformations in sequential monocular        
video [33-35]. 

The second category involves the recovery of depth information from monocular images      
and sequential video and the subsequent synthesis of the disparity stereo image pairs from this 
knowledge of depth. These are referred to as depth image-based rendering (DIBR)              
techniques [36]. 

The MP methods are only applicable to specific modes of 2D monocular video capture and 
are incompatible with single 2D images. The DIBR methods, on the other hand, provide a more 
generic approach to 2D-to-3D conversion and may be applied to single 2D images. An overview 
of a standard depth-based 2D-to-3D conversion system is illustrated in Fig. 4. 

 

Fig. 4 Overview of the 2D-to-3D Conversion Process [37]. 

  
An automatic depth-based 2D-to-3D conversion system must be able to firstly, extract 

information from an inputted 2D image or sequential video frames absent of any a priori 
knowledge of objects and relative depths of objects in the scene and secondly, directly compute 
the depth dimension [38, 39]. Challenges to these types of autonomous 2D-to-3D conversion 
models exist on several levels. 
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Fig. 5 An input image and its estimated depth map [40]. In this case the higher the intensity of the pixel 
(whiter) implies a closer relative depth to the camera.  

 
The association of a depth value to every pixel in an image is termed a depth map and is 

commonly represented in the form of a grey-level intensity array. This is illustrated in Fig. 5. For 
the assignment of depth to be effective it is necessary to account for the multiple objects and sub-
regions present within a scene; all of which have to be meticulously delineated and categorised. 
In addition to accurately delineating these objects and regions, objects effectively occluding (in 
front of and partially blocking) other objects need to be identified. This is essential, since every 
pixel has to be grouped and assigned an appropriate and relative depth value. 

 

 
Fig. 6 Region-of-interest [41, 42]. (a) OOI; (b) OOI is a subcomponent of a larger ROI. 

 
The emphasis of this research is on the automatic 2D-to-3D conversion of single 2D low   

depth-of-field images. Image or video capture is broadly categorised into two depth-of-               
field (DOF) techniques. These include high DOF and low DOF (LDOF). The term DOF in 
photography or cinematography refers to amount of focus (sharpness) or defocus (blurriness) 
present in an image. Two examples are illustrated in Fig. 6. The sharp regions are usually 
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associated with the foreground (FG) region while the blurred regions are typically associated with 
the background (BG) regions. 

One of the key purposes of LDOF image capture is to highlight specific regions in an image 
where the viewer is expected to pay more attention to. In addition to FG emphasis, objects in the 
scene of a LDOF image will exhibit a certain amount of blur relative to their position very near 
to, or very far from, the object or region in focus. This understanding may allow for the possible 
extrapolation of depth through relative blur comparison. 

The FG is commonly referred as the region-of-interest (ROI). Within a ROI there may also 
exist an object-of-interest (OOI). There are two types OOI scenarios in LDOF images. The first is 
where the OOI constitutes the entire ROI and the second is where the OOI is a subcomponent of 
the ROI. These are illustrated in Fig. 6(a) and (b), respectively.  

In the case of Fig. 6(b) it can be seen that the boy, ball and part of the ground form the ROI. 
However, the OOI should only be the boy and possibly the ball. For simple ROI extraction this 
delineation is not considered to be important. However, for the assignment of relative depth it 
becomes significant, since the FG ground region forms part of a larger ground region and the depth 
of the ground incrementally increases away from the camera towards the tree or horizon line while 
the depth of the boy and the ball as a collective will be at a relatively constant distance away from 
the camera. 

The recognition and visual delineation of the ROI and OOI play a vital role in both multimedia 
entertainment as well as machine vision. There are no optimal solutions for the unsupervised 
extraction of the ROI or matting of the OOI. Motion represents one type of depth cue and may 
provide a means of reasonably estimating the location of an OOI in an image as well as allow for 
the possible extrapolation of relative depth based on motion estimation. In the absence of motion, 
as in the case of single 2D LDOF images, segmentation and relative depth estimation will need to 
rely solely on other monoscopic depth cues. 

In 2D-to-3D conversion the segmentation or categorisation of the regions in an image is 
referred to as labelling [43]. Some of the most common regions include the OOI, ground region, 
background and skyline. Emphasis in an image is usually placed on the OOI and the accurate 
delineation of this region is a crucial component in the efficacy of the final 3D product. The 
process of extracting or differentiating the OOI from the rest of the image is referred to as image          
matting [44, 45]. 

Although an accurate depth map is crucial, it is nevertheless only the first step in a three-step 
process required for an end-product stereo image. Step two, which is commonly referred to as 
depth image-based rendering (DIBR) [46-48], is the process whereby one or more disparity images 
are generated using the original image and its associated depth map. In the case of 3D, DIBR refers 
to the synthesising of two simulated stereoscopic partner images that represents the view of the 
same image or scene from slightly different angles [49]. 
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To create this so called “second view” or “second eye” the pixels representing objects closer 
to the camera, as determined by the depth map of the image, need to be moved either left or right, 
in front of the background pixels. This pixel location reassignment process is commonly referred 
to as 3D warping. A consequence of warping is that some pixels will become occluded and other 
pixels will be revealed, resulting in missing pixels or “gaps” appearing in the background. This is 
illustrated in Fig. 7. 

 

 
Fig. 7 DIBR Image Warping. (a) Original image; (b) Left warped; (c) Right warped. 

 
From the several associated complexities within the DIBR process, an immediate and 

significant concern is on how to deal with the newly exposed "dis-occluded" regions appearing in 
the rendered images. This sub-step of the DIBR process, which involves the predicting and 
subsequent filling of these missing pixels, is referred to as hole-filling. 

The problem with these dis-occlusions is that even with a highly accurate depth map there is 
no precise means of determining the values of the revealed pixels, since the depth map only 
provides depth information and not intensity nor lateral nor angular information of the occluded 
regions. In most cases, specifically single images and static video frames, these values may only 
ever be predicted within a certain probability, since they never actually exist. 

These newly created holes need to be resolved effectively so as not to significantly distort the 
quality of the synthesised disparity images. This is a crucial issue, as it has direct bearing on the 
overall accuracy and experience of the final product and is, therefore, among the most difficult 
and challenging tasks present in 2D-to-3D conversion [47]. 

The rendering of a disparity image pair in effect concludes the 2D-to-3D conversion process. 
However, for the 3D effect to be experienced it is necessary to for these stereo images to be 
exhibited in a relevant display format. In other words, once the aforementioned matching left and 
right disparity images are extrapolated then, based on the prescribed display format, both these 
images need to somehow be presented simultaneously to each eye of the observer. This is usually 
achieved through means of either filtered glasses or filtered display screens that allow for the 
disparity image pairs to be simultaneously projected, separated and directed into each retina of the 
observer. 
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There are currently four popular modes employed for the presentation of 3D images and 
video. These include anaglyph, polarised, shutter and autostereoscopic, with anaglyph being the 
simplest and most economical method [50]. A sample anaglyph image is illustrated in Fig. 8. 

 

 
Fig. 8 Anaglyph (red-cyan) image of a scene from The Lord of the Rings (Courtesy of New Line Cinema). 

 
Anaglyph images are produced by superimposing two individually coloured (typically red 

and cyan) disparity images into a single image. For the 3D effect, this image may then be viewed 
through glasses having similar coloured filters. Although anaglyph provides a relatively 
uncomplicated means of achieving the 3D visual experience, there nevertheless exist several 
deficiencies, the most prominent being colour distortions, retinal rivalry and ghosting. For a 
consistent and comfortable 3D visual experience these inherent problems need to be minimised in 
the final product. 

From the above discussion it is evident that several difficulties exist at different stages of           
a 2D-to-3D conversion process. Moreover, the complexities increase when firstly, the model is 
required to function automatically (unsupervised) with no a priori knowledge and secondly, when 
single 2D images are concerned. 

 
C. Summary of the Proposed Approach 

A 2D-to-3D conversion system is broadly described as having three processes. This includes 
depth map generation, depth image-based rendering (DIBR) and stereo image presentation. 

A 2D image represents a scene captured from a single viewpoint and the 2D-to-3D conversion 
of this image therefore involves the rendering of two images representing the respective scene 
being observed from two slightly different lateral viewpoints. In the proposed model the 
generation of these left and right disparity images is achieved through the use of DIBR. The 
stereoscopic image pair is rendered through the warping of the original 2D LDOF source image 
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using an extrapolated depth map of the image. The depth map is autonomously produced by firstly, 
accurately delineating and segmenting every object and region in the image and secondly, 
extrapolating the depth (the third dimension) for every pixel in the image using only the available 
two-dimensional pixel information. 

The generation of the depth map is only the first part of the automatic 2D-to-3D conversion 
system. The actual 3D conversion occurs when the stereoscopic disparity images are produced 
through the DIBR process. The initial disparity is created through the warping (lateral shifting) of 
the objects and regions in the image according to their associated relative depth values in the 
extrapolated depth map. A notable effect of the warping process is the appearance of several dis-
occlusions in both the left and right disparity images. This is owing to some of the shallower depth 
objects and regions shifting and occluding some of the deeper depth objects and regions and in the 
process revealing non-existent pixel gaps in the BG. The techniques employed to resolve these 
dis-occlusions is termed hole-filling or image inpainting. 

From this discussion, the efficacy of the final rendered stereoscopic image pair is dependent 
on both the accuracy of the warping, which is inherently dependent on the accuracy of the depth 
map, as well as the eradication or minimisation of the discontinuities associated with the warping 
sub-process. 

The following breakdown provides a high-level overview of the proposed automatic              
2D-to-3D conversion system for single 2D LDOF images: 
 

Stage 1: ROI extraction;  
Stage 2: Low depth-of-field image classification; 
Stage 3: OOI matting; 
Stage 4:  Global segmentation and labelling based on Gestalt principles  
Stage 5a:  Assignment of relative depths using Gaussian re-blur analysis; 
Stage 5b:  Assignment of relative depths using a gradient-plane; 
Stage 6:  Stereoscopic image synthesis using DIBR; and 
Stage 7:  Anaglyph image presentation. 

 

Stage 1 of the proposed model involves the extraction of the region-of-interest (ROI) from 
the LDOF image. Although there exist several objects and regions within a LDOF image, at this 
stage the emphasis is placed on the delineation of the foreground (FG) or the so-called ROI from 
the background (BG) regions. This is achieved by correlating the edge, gradient and higher-order 
statistics (HOS) saliencies in the image. The edge locations are estimated by combining both RGB 
edges with the lightness layer edges of the CIEL*a*b* colour space using the Sobel and Canny 
methods. This edge combination is shown to be the most robust for LDOF images. The gradients 
are estimated using the Sobel method and for the HOS analysis, the 4th-order moment is 
considered. The ROI is produced by initially thresholding the gradient and HOS saliency maps 
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and subsequently correlating and refining the region using edges saliencies together with k-means 
cluster segmentation and CIEDE2000 colour-difference analysis. 

Stage 2 of the proposed model involves the classification of the LDOF image. Every LDOF 
image contains either two or three distinct regions. The two primary regions are the FG or the ROI 
and the BG and the secondary region is the object-of-interest (OOI) within the ROI. All LDOF 
images must contain an ROI but not necessarily an OOI. Moreover, if an OOI exists, then it may 
either be equivalent to the entire ROI or represent a sub-region of the ROI. For the latter, the ROI 
then contains two regions. These include the in focus OOI and an in focus ground region. Based 
on this understanding every LDOF image may then be classified by three regions. These are the 
in focus OOI, in focus ground region and BG. The ROI is determined in the first stage of the 
proposed model. A rudimentary estimate of the OOI is produced by considering the dominant 
gradients contained within the confines of the ROI. Subsequently, the in focus ground region is 
extrapolated using the ROI and OOI.  The delineation of these regions then allows for the tri-
region classification of the LDOF image. 

Stage 3 of the proposed model involves the matting of the OOI from within the ROI. This 
stage is dependent on the classification of the LDOF image and only applies to scenarios where a 
distinct in focus ground region is present. For all other scenarios the OOI is either non-existent or 
equivalent to the entire ROI. The OOI, which is an element of the ROI, describes the region where 
an observer will focus, or concentrate, more intently and which it is reasonable to assume will 
have the most influence on the quality of the final 3D product. As such, the accurate delineation 
of this closed boundary region and the subsequent assignment of relative depth to this region is 
expected to have the greatest impact on the efficacy of the depth map. Therefore, in the proposed 
model more prominence is given to the accurate delineation and subsequent extraction of the OOI 
compared to any other subprocess within the depth map generation stage. The OOI is isolated and 
accurately matted from the ROI using the dominant gradients, edge saliencies and k-means cluster 
segmentation. 

Stage 4 of the proposed model may be broadly described as the complete delineation and 
subsequent segmentation of the LDOF image into its constituent objects and regions, as well as 
the labelling or categorisation of these segmented regions within the image. Six Gestalt-based 
regions are proposed. These include the ground region, the OOI, objects on top of the ground 
region, objects on the periphery of the ground region, skyline region and objects within the skyline 
region. Segmentation is performed using k-means and binary quantisation clustering. 

Stage 5 of the proposed model is responsible for the generation of the grey-level intensity 
depth map. This stage is split into three substages. The non-OOI region in a LDOF image may be 
described as either equidistant-based or gradient-plane-based. The first substage involves the sub-
classification of the image into one of the two proposed scenarios. This is achieved through the 
correlation of clusters derived from the k-means and binary quantisation segmentation of the non-
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OOI region. The second substage deals with the equidistant-based situation and the third substage 
accounts for the gradient-plane-based scenario. 

Equidistant-based implies that the non-OOI region in the LDOF image are all located at the 
same relative distance behind the OOI. In this scenario the relative depths of the non-OOI region 
are determined using depth from defocus (DfD). This is a method of estimating depth based on 
the relationship between the focused and defocused regions in a LDOF image. In the proposed 
model, owing to source being single LDOF images, a Gaussian re-blur analysis DfD technique is 
chosen. This involves firstly, generating a blurred version of the source LDOF image using a 
Gaussian kernel and secondly, determining the Gaussian defocus blur by calculating the ratio of 
the gradients between the original and blurred image. To minimise outliers, a shiftable joint 
bilateral filter is applied to the Gaussian defocus ratio map. Since the edges of objects have a high 
probability of being the edges of the depth map, more emphasis is given to the edge locations. As 
a consequence the Gaussian defocus ratio map is filtered a second time using a domain transform 
edge-preserving filter. 

Gradient-plane-based implies that the non-OOI region in the LDOF image contains a distinct 
ground region as well as permutations of the other four Gestalt-based regions. In this scenario the 
assignment of relative depths to the objects (including the OOI) and regions in the LDOF image 
is based on their respective properties as well as their associated location on a gradient-plane. The 
gradient-plane is constructed using the ground region together with vanishing point (VP) 
estimation. VP estimation is based on the analysis of the convergence and intersecting of the 
dominant straight edges in the image directly in the image-plane parametric space. 

For both substages the depth map is finalised through the application of a domain transform 
edge-preserving filter. This is done to minimises some of the irregularities, such as blocky 
artefacts, discontinuities and outliers. 

Stage 6 of the proposed model involves the synthesis of a stereoscopic image pair using depth 
image-based rendering (DIBR). DIBR is whereby objects and regions in the image are laterally 
shifted according to their associated depth values in the depth map in order to produce a new image 
that will appear as if it were captured from a new viewpoint. A consequence of this shifting or 
warping is some pixels will become “dis-occluded”, creating gaps in the generated image. By 
generating two disparity image pairs, contrary to a single left or right disparity image, the width 
of the dis-occlusions is effectively halved, thereby spreading the discrepancies across the images. 
The dis-occlusions are further minimised by applying an asymmetrical edge-preserving bilateral 
filter to the depth map prior to the warping sub-process. To resolve the remaining dis-occlusions, 
hole-filling is subsequently performed using nearest-neighbour horizontal interpolation of the BG 
regions. The interpolation also takes into account the depth as well as direction of warp. As a 
means of minimising the striping artefacts, specific directional Gaussian and circular averaging 
smoothing is applied independently to each view, with additional average filtering applied to the 
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border transitions. Both the pre- and post-processing smoothing is shown to effectively alleviate 
a significant amount of the discontinuities while maintaining the subjective view quality. 

The rendering of a left and right stereoscopic image pair from a single 2D LDOF image 
concludes the 2D-to-3D conversion process. However, as a means of demonstrating the efficacy 
of the algorithm, an additional stage is incorporated into the proposed model. 

Stage 7 involves the generation and presentation of a single 3D anaglyph (red-cyan) image 
based on the merging of the left and right disparity images. Anaglyph images are prone to certain 
deficiencies, such as colour distortions, retinal rivalry and ghosting effects. To simultaneously 
minimise these concerns, the proposed algorithm matches perceptual colour appearance attributes 
in the uniform CIEL*a*b* colour space of the stereo disparity pairs, rather than only direct 
matching of the CIEL*a*b* or CIE XYZ values. This approach is shown to be more accurately 
aligned with the colour perception of the HVS. 

 
D. Novel Contributions 
 

The original contributions made in this thesis include: 
 

1. An extremely robust automatic technique for the extraction of the FG or ROI from a LDOF 
image through the interrogation and correlation of edge, gradient and higher-order statistics 
(HOS) saliencies. The results show the proposed method outperforms several of the 
previously proposed state-of-the-art approaches [41, 42, 51-55]. 

2. A method to autonomously delineate an in focus OOI from a larger in focus ROI using the 
dominant gradients and k-means segmentation. 

3. An unsupervised tri-region classification method for LDOF images. 
4. An automatic Gestalt-based technique for the categorisation and labelling of the objects and 

regions in a LDOF image. 
5. A novel and improved unsupervised method for vanishing point (VP) detection. The straight 

edge detection and subsequent interrogation of the converging and intersecting dominant 
straight lines as well as the final extrapolation of the optimal VP is performed entirely in the 
image-plane coordinate space. The results show the proposed method either matches or 
outperforms several of the previously proposed approaches [23, 56-59]. 

6. An unsupervised method of sub-classifying a LDOF image based on the relative distance 
relationships between the OOI and non-OOI objects and regions. 

7. An unsupervised method of extrapolating gradient-planes through the correlation of the 
extracted Gestalt-based ground region with VP estimation. 

8. An autonomous depth map generation method for LDOF images. The results show the 
proposed method outperforms several of the previously proposed approaches [60-65]. 
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9. An improvement to the DIBR autonomous hole-filling techniques used for the resolution of 
dis-occlusions and inconsistencies associated with 3D image warping. Results show the 
proposed approach outperforms other previously proposed methods [62, 65]. 

 
E. Structure of the Thesis 

This research investigates three notable challenges associated with the overall automatic 
conversion of single 2D LDOF images into 3D. 

The first research problem involves two sub-components. The first sub-component (stage 1 
of the proposed approach), which deals with the extraction of the region-of-interest (ROI) from 
within a LDOF image, is discussed in chapter 2. The second sub-component (stages 2 and 3 of 
the proposed approach), which is concerned with the precise delineation and extraction of the 
object-of-interest (OOI) from within the ROI, is discussed in chapter 3. This is in support of the 
depth map generation process, whereby the accurate delineation of the OOI is necessary for 
improved accuracy. The title of chapter 2 is “Unsupervised Region-of-Interest Extraction based 
on the Correlation of Gradient and Higher-Order Statistics Saliencies.” The OOI within a LDOF 
image may either constitute the entire ROI or represent a subcomponent of a larger FG region. 
The problem with the latter is that without any a priori knowledge of the scene both the OOI and 
non-OOI region within the larger ROI become indistinguishable. The title of chapter 3 is 
“Unsupervised Matting of the Object-of-Interest in Low Depth-of-Field Images.” 

The second research problem has three sub-components. The first sub-component involves 
the segmentation of the non-OOI region and the subsequent labelling of these objects and sub-
regions. In addition to the OOI, a distinction and associated categorisation of the ground and sky 
regions as well as the individual objects on top of or within these regions needs to be made. The 
second sub-component is concerned with the allocation of depth to these specific regions. 
Although a LDOF may provide some distinction between the foreground and background, the 
relative depths of the objects within and across these regions are not so easily distinguishable. 
Furthermore, the allocation of depth to certain regions, such as the ground and the object on the 
periphery of the ground, are incremental while others may be static. 

The first two sub-components are combined into a single research component (stages 4 and 5 
of the proposed approach) and are discussed in chapter 4. This is entitled “Autonomous Depth 
Map Generation of Single 2D Low Depth-of-Field Images using Defocus, Linear Perspective and 
Gestalt Principles.” 

The third sub-component (stage 5 of the proposed approach), which involves the estimation 
of the vanishing point in the image, is discussed in chapter 5. This is necessary for determining 
the incremental depth of the associated gradient-plane needed for the assignment of relative depth 
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values to the objects and regions across the image. The title of chapter 5 is “Vanishing Point 
Detection of Man-Made Environments.” 

The third research problem (stage 6 of the proposed approach), which involves the handling 
of the dis-occlusions associated with the 3D image warping component, is discussed in chapter 
6. The resolving of these discontinuities has a direct bearing on the efficacy of the final 3D product. 
There is no one optimal resolution to this problem. Moreover, irrespective of how effective the 
hole-filling is for either one or several of the test images there is no actual way of quantifying or 
predicting future successes. This is owing to the fact that this data doesn’t actually exist. The title 
of chapter 6 is “Stereoscopic Image Synthesis of Single 2D Low Depth-of-Field Images using 
Depth Image-Based Rendering.” 

Stage 7 of the proposed approach, which involves the generation of an anaglyph image from 
the synthesised stereoscopic image pair, is discussed in chapter 7. This is entitled “3D (Anaglyph) 
Image Generation.” 

Finally, chapter 8 concludes the thesis by summarising the key aspects of the research as well 
as discussing some future work. 
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II. UNSUPERVISED REGION-OF-INTEREST EXTRACTION BASED ON THE 

CORRELATION OF GRADIENT AND HIGHER-ORDER STATISTICS SALIENCIES 

 
A. Introduction 

The recognition and visual delineation of the region-of-interest (ROI) in an image plays a vital 
role in arenas such as multimedia entertainment, machine vision, depth estimation as well                  
as 2D-to-3D conversion. There is no optimal solution for the unsupervised extraction of the ROI. 
However, by interrogating and correlating certain saliencies associated with low depth-of-field 
images the automatic delineation and subsequent extraction of the ROI may be possible. 

 

Fig. 9 Depth-of-field [66]. (a) High DOF. (b) Low DOF. 

 
In photography and cinematography, the term depth-of-field (DOF) refers to amount of                        

focus (sharpness) or defocus (blurriness) present in an image. Image or video capture is           
broadly categorised into two DOF techniques. These include deep or high DOF and shallow or 
low DOF (LDOF). The LDOF technique tends to spotlight the subject by minimising or removing 
distractions through the defocussing or blurring of the background (BG). This provides hints as to 
where in the image or on the screen the viewers should be focussing their attention. Fig. 9 provides 
an illustration of both these DOF methods. 

Moreover, an image captured by a camera using a standard convex lens with a LDOF setting 
will contain objects at a particular distance from the camera that are in focus, as well as objects 
that are out of focus, to varying degrees, depending on their distance in front of or behind the focal 
plane. These attributes may provide a means of both extrapolating the relative depths across an 
entire image as well as delineating the ROI. In LDOF images the sharp (focussed) regions are 
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usually associated with the foreground (FG) regions while the blurred (defocussed) regions are 
typically associated with the BG regions, as illustrated in  Fig. 9(b). 

Several methods have been proposed for FG or ROI extraction [41, 42, 51, 52, 55, 67, 68]. 
This research, which may be considered as an amalgamation and extension of the approaches 
proposed by Won et. al [68] and Kim [41], investigates and proposes a method for the detection 
and subsequent extraction of the ROI in LDOF images through the interrogation and correlation 
of high-frequency saliencies using gradient and higher-order statistics (HOS) analysis techniques 
together with cluster-based segmentation. 

This paper is organised as follows: Section B provides a brief discussion of some of the related 
work. Section C provides a description of the proposed model as well as the necessary steps 
required to perform unsupervised ROI extraction. Section D reports the experimental results         
and provides are comparison of the proposed method against other state-of-the-art techniques. 
Section E provides a brief summary of the research and section F closes the paper.   

 

B. Related Work 

Two simple approaches were initially proposed for ROI extraction; these include direct edge 
analysis and region- or texture-based segmentation [69]. 

For the edge-based methods, their efficacy is directly related to the homogeneity of the grey-
level intensities. This dependency is shown to be limiting [70], especially for natural objects, 
where boundary edges often remain disconnected and undefined. Even with the incorporation of 
edge-linking techniques these methods nevertheless provide insufficient information needed for 
effective ROI extrapolation. 

The region-based techniques usually involve two processes. The first is detection, the purpose 
of which is to be able to locate the ROI. The second is extraction, the aim of which is to effectively 
delineate the closed boundaries of the ROI. 

In LDOF images the subset of regions that constitute the complete ROI may be 
inhomogeneous when considering low-level features such as texture and colour. Another concern 
is that with unsupervised region segmentation no baseline criterion or reference exists, resulting 
in the problem becoming ill-posed [42]. 

As a consequence other more traditional segmentation methods such as k-means [71],  mean 
shift [72], graph-cut [73-75], active contour [76, 77] and learning-based [78] segmentation may 
be unsuitable for the unsupervised delineation of the ROI in LDOF images. Fig. 10 provides an 
illustration of the segmentation results obtained through the application of some of these 
algorithms to several LDOF images. Some of the concerns associated with these aforementioned 
techniques include initialisation, inconsistent cluster sizing, iterations and long processing times. 
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Fig. 10 Common segmentation techniques applied to LDOF images. (a) Original image; (b) k-means 
segmentation [71] (cluster size = 4); (c) Mean shift segmentation [79] (supervised for cluster size = 4);     
(d) Graph-cut segmentation [75] (region/cluster size = 4). 
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Based on the experimental results illustrated in Fig. 10 as well as owing to the concerns and 
inconsistencies associated with these more traditional segmentation approaches other techniques 
have been proposed that deal more explicitly with the unsupervised segmentation of the ROI in 
LDOF images. 

These methods are broadly classified into the three categories. The first is multi-resolution 
wavelet analysis [61, 62, 70, 80, 81], the second is Gaussian blur analysis [42, 51, 53, 60, 63, 69, 
82-84], which includes depth from defocus (DfD), and the third is local variance and higher-order 
statistics (HOS) analysis [41, 65, 67, 68, 85]. The first and third methods are more closely 
associated with explicit ROI estimation while the second method deals more broadly with the 
estimation of overall relative depth. 

When digitally transposed, the ROI in a LDOF image may be mathematically described as 
regions of high-frequency and the BG may be mathematically described as regions of low 
frequency. 

Multi-resolution wavelet analysis techniques attempt to attenuate the low frequency 
components while exploiting the high-frequency components in an image as a result of energy 
compaction through subband decomposition. A focused region in an image will exhibit low 
attenuation of its high frequency components, while defocused regions will have a large 
attenuation of the high frequency components. This suggests that the measure of the image blur 
caused by the defocus is directly related to the amount of local spatial frequencies. Wavelet 
transforms [86] provide a means to analyse signal structures of different sizes and spatial 
frequencies. Each wavelet coefficient is spatially localised since only local segment features are 
included, and since sub-band decomposition allows for non-overlapping of frequency bands, each 
wavelet coefficient is also frequency localised [80]. 

Fig. 11 Three-scale wavelet decomposition [80] 
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One method proposes the extraction of the ROI through analysis of the high frequency 

coefficients of the Haar, or short length filter Daubechies', wavelet transforms [70]. Another 
method proposes using a three scale 1D wavelet transform to generate the wavelet                        
transform coefficients [62]; the sub-bands are illustrated in Fig. 11, where LH1 – LH3, HL1 – HL3  
and HH1 – HH3 correspond to the high to low horizontal, vertical and diagonal frequency 
components respectively and LL3 represents the DC component.    D – D  

The source image is initially divided into macro-blocks of 16×16 pixels. A three-scale wavelet 
transform is performed on each macro-block and each pixel in the macro-block is then assigned              
a value equal to the sum of the total non-zero wavelength coefficients (up to a maximum                        
of 16 ⋅ 16 = 256). Finally a macro-block level depth map is directly extrapolated by interpreting 
each block as having a depth level of between 0 and 255 (either through normalisation or 
subtraction of 1). To refine the depth map the Lipschitz edges are considered. 

The Lipschitz exponent, 𝛼, is described as a measure of the number of times a signal point is                   
differentiable [81]: 𝛼 = 1 implies a the signal is differentiable once, 𝛼 = 0 implies the signal is a 
step edge, and 𝛼 = −1 implies the signal is a Dirac impulse. Using the modulus maxima of the 
wavelet coefficients across successive scales the Lipschitz exponent is calculated, whereby an 
edge is estimated to be in focus if −1 < 𝛼 < 0 and defocused in 0 < 𝛼 < 1. 

The final depth map is generated by integrating the Lipschitz exponents of the edges and the 
macro-block depth map into image rows and allocating each structure a distinct depth value 
according to each row subsection. The accuracy of the intial depth map is improved by performing 
local high frequency wavelet analysis of each pixel [61] as opposed to a block of pixels [62]; 
however, computation time is significantly increased. Futhermore, the initial edge map is 
improved by determining the Lipschitz exponents using 2-D wavelet analysis, as opposed to 1D 
wavelet analysis and enhanced by performing edge linking [62]. Finally, colour-based 
segementation is incorporated into the refinement of the final depth map. 

In LDOF images some uniform FG regions may exhibit low frequency attributes and some 
busy textured BG regions may exhibit high-frequency attributes. Although it is reasonable to 
assume that a significant majority of these high-frequency regions represent the FG, these regions 
alone may not completely represent the ROI. Athough multi-resolution wavelet analysis 
techniques have their merits, a concern is that some of these inconsistencies are neglected. This is 
owing primarily to the energy compactation of the subband decomposition, which may result in 
the unavoidable discarding or attenuation of useful information pertaining to the ROI [42, 80]. 

Gaussian blur analysis techniques, such as DfD, deals with how objects are perceived 
depending on their distance from the camera’s focal plane based on the relationship between the 
focused and defocused regions in an image [87]. In LDOF images objects will exhibit a certain 
amount of blur (out of focus) relative to their position very near to, or very far from, the object in 
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focus. For the purpose of ROI extraction it is not necessary to have a complete description of all 
the depths in an image. Nevertheless, ROI extraction may be considered as a subdivision of depth 
estimation, since in a typical LDOF captured image part, if not all, of the FG is considered to be 
nearest in distance from the camera. Direct Gaussian blur analysis is more adequately suited to 
deriving overall relative depth values. As a consequence, a large amount of unnecessary data may 
exist and needs to be accounted for and effectively discarded in order to provide adequate 
estimation of the ROI. Even with the incorporation of bilateral filtering some of the sporadic 
outlier regions may be misinterpreted as belonging to the FG and several of the intensity consistent 
and smooth FG regions may be misinterpreted as belonging to the BG. For a more expansive 
discussion on DfD and other Gaussian blur analysis techniques refer to p. 79. 

The high-frequency components in a LDOF image may provide a foundation for the 
estimation of the ROI. However, exploiting only these attributes may result in inconsistencies 
occurring in both the defocused and focused elements of an image. This is owing to some sections 
of defocused regions having busy texture areas with high enough frequency components so as to 
be considered as in focus, and some sections of focused regions having constant texture areas with 
insufficiently high-frequency components so as not to be considered as in focus. 

As a means of minimising the irregularities associated with multi-resolution wavelet and 
Gaussian blur analysis techniques, in terms of ROI extraction, a method is proposed whereby local 
variances (second-order moments) are considered as a means of extracting the energy of the high-
frequency components in grayscale images through the application of block-wise maximum a 
posteriori (MAP) segmentation on every pixel [68]. This method is later expanded to include HOS, 
or more specifically fourth-order moments [41]. The interrogation of high-frequency components 
using HOS (third-order and above moments), when compared to local variances, is shown to 
provide an improvement to both Gaussian noise suppression as well as the preservation of some 
of the non-Gaussian information. The HOS method proposed by Kim [41] is subsequently 
modified to incorporate colour images [67, 85], as well as include additional refinements to 
increase performance of OOI segmentation using block-based methods [67]. The following 
discussion provides a mathematical description of the HOS technique proposed for ROI 
estimation. 

Given an 𝑀×𝑁  input image I, the nth-order moment is described as 

 

 𝑚̂(𝑛)(𝑥, 𝑦) = 1
𝑁𝜂 ∑ (𝐼(𝑠, 𝑡) − 𝑚̂(𝑥, 𝑦))

𝑛,
(𝑠,𝑡)𝜖𝜂(𝑥,𝑦)

 

 
𝑚̂(𝑥, 𝑦) = 1

𝑁𝜂
∑ 𝐼(𝑠, 𝑡), (0 ≤ 𝑥 < 𝑀, 0 ≤ 𝑦 < 𝑁)(𝑠,𝑡)𝜖𝜂(𝑥,𝑦) , 

    (1)
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where 𝜂(𝑥, 𝑦) is a set of neighbouring pixels centred at (𝑥, 𝑦), 𝑚̂(𝑥, 𝑦) is the sample mean of 
𝐼(𝑥, 𝑦) and 𝑁𝜂 is the size of 𝜂 [67, 68]. For an RGB image the maximum nth-order moment of each 
of the pixels across the three channels is considered, giving 

 

 𝐻𝑂𝑆𝑅𝐺𝐵(𝑥, 𝑦) = max(𝑚̂𝑅
(𝑛)(𝑥, 𝑦), 𝑚̂𝐺

(𝑛)(𝑥, 𝑦), 𝑚̂𝐵
(𝑛)(𝑥, 𝑦)) .   (2)

 
In the case of the 4th-order moment operation the resulting dynamic range of the HOS values 

may exceed 2×109. As a consequence a down-scaling factor (DSF) is introduced such that 

 

 

𝐷𝑆𝐹 =

⎩⎪
⎪
⎨
⎪
⎪⎧

 

300    for max(𝐻𝑂𝑆𝑅𝐺𝐵(𝑥, 𝑦)) < 107

700             for max(𝐻𝑂𝑆𝑅𝐺𝐵(𝑥, 𝑦)) < 108

1000  otherwise.                                   

    (3)

 
In the case of the local variance (second-order moment) 𝐷𝑆𝐹 = 1. Applying the DSF, the final 
saliency HOS map (ΠHOS) is then defined as 

 

 ΠHOS
(𝑛) (𝑥, 𝑦) = min(255, 𝐻𝑂𝑆𝑅𝐺𝐵(𝑥,𝑦)

𝐷𝑆𝐹 ) .   (4)
 

The HOS method is shown to be more robust than the local variance method, where the former 
is shown to yield denser values in the focused regions while suppressing noise in the defocused 
regions [41]. Moreover, the HOS technique is shown to be extremely effective in high-frequency 
component analysis and together with direct gradient analysis is applied to the problem of ROI 
detection and subsequent delineation. 

 

C. Proposed Approach 

LDOF images by definition contain regions that are in focus (focused) as well as regions       
that are out of focus (defocused). From observation, the focused regions have a higher probability          
of being associated with areas closer to the camera i.e. the foreground (FG) or the                        
region-of-interest (ROI) in an image, while the defocused regions have a higher probability of 
being associated with areas further away from the camera i.e. the background (BG) in an image.  

When digitally transposed it is understood that the FG in a LDOF image may be 
mathematically described as regions of high-frequency. This rudimentary understanding provides 
a foundation for the proposed model whereby the delineation of the ROI is achieved primarily 
through the interrogation of the high-frequency (HF) components. The HF attributes considered 
are edges, gradients and heuristics associated with higher-order statistics (HOS). In the proposed 
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model these three these attributes are correlated in order to form a more robust means of 
identifying and effectively isolating the closed boundaries of the ROI from the rest of the LDOF 
image. Moreover, as a means of refining the ROI, cluster-based segmentation and colour pixel 
analysis are also considered. 

In this research the following process is proposed for the unsupervised extraction of the ROI 
from a single LDOF image:  

The first step involves the extrapolation of three saliency maps. These include the edges in 
the image as well as the gradient and 4th-order moment (HOS) of each pixel. Although an edge 
map is a binarised array it is nevertheless considered as another type of saliency map. 

The second step involves the extrapolation of two separate approximations of the ROI by 
individually analysing the gradient and HOS saliency maps. It is assumed the ROI, or more 
specifically the boundaries of the FG regions, will be associated with higher absolute values in the 
gradient and HOS saliency maps and vice versa for BG regions. Although some BG regions may 
contain higher values than some FG regions, it is reasonable to assume that the majority of the 
higher values will be associated with the FG regions. Since the gradient and HOS saliency maps 
contain all the derived attribute values for all pixel locations in the image, two separate 
approximations of the ROI are produced by statistically thresholding these maps. These ROI 
estimate maps are expected to contain pixel points belonging to both the FG and BG regions. 
However, a significant majority of the pixels are expected to belong to the FG. 

The third step involves the extrapolation of a baseline reference for the ROI. Owing to the ill-
posed nature of the problem there is no a priori reference for the ROI. To resolve this quandary a 
baseline reference map or mask is proposed. This ROI baseline reference mask is expected to 
contain the locations of pixels having the highest probability of representing the edges and/or 
clusters of FG regions. The ROI estimate maps may contain a modicum of BG outliers. However, 
the ROI baseline reference mask is expected, in principle, to contain relatively few to no edges or 
regions belonging to the BG. Moreover, if the image contains an OOI, then the majority of the 
prominent connected components in this baseline mask is expected to represent some part (most 
likely the boundary regions) of the OOI. This ROI baseline reference mask is extrapolated through 
a more adaptive or refined statistical thresholding of the gradient saliency map. 

The fourth step involves the extraction of the ROI through the correlation of the baseline ROI 
reference mask, gradient ROI estimate map, HOS ROI estimate map and edge saliency map. The 
fifth and final step involves the refinement of the ROI using k-means segmentation as well as 
CIEDE2000 colour-difference analysis. 
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1) Saliency Maps 

i. Edge Saliencies 

The edge saliency map (ΠEDGE) is produced through the merging of six extrapolated edge 
maps. The first four edge maps are derived through the application of the Sobel edge detection 
method to the R, G and B layers, as well as the grayscale version, of the image. The fifth and sixth 
edge map are based on the application of both the Sobel and Canny edge detection methods to the 
lightness (L) layer of the transformed CIEL*a*b* version of the original colour image. 
Application of edge detection to the a* and b* layers of the CIEL*a*b* colour space is not 
considered owing to the increase in the number of inconsistencies as well as spurious and 
branchpoint edges. The proposed method for ΠEDGE is shown, from experiment, to be the most 
robust when dealing with LDOF images. 

Edge maps are binarised arrays that provide an estimate of the location of edges, around and 
within objects and regions, across an entire image and while this is useful in some regards it is 
usually insufficient in providing information that may be used to adequately discern between the 
FG and BG regions of an image. In the proposed algorithm ΠEDGE is not considered as a direct 
means of ROI estimation. However, it is employed in a supplementary capacity to correlate the 
gradient- and HOS-based approximations of the ROI. 

 

ii. Gradient Saliencies 

The direct analysis of gradients in an image is usually associated with edge detection rather 
than focus/defocus analysis. However, both these arenas are considered to be somewhat related. 
It is understood that for LDOF images there is a higher probability of the focused FG                    
regions (especially edges) having local neighbourhood gradients noticeably greater than the 
defocused BG regions. This is owing, in the main, to the point spread nature of defocused light, 
which will typically exhibit gradients with lower values. As such, in this research, the 
extrapolation of the gradients across the image is considered to be a rudimentary form of blur 
analysis. 

There currently exist several techniques for estimating gradients in images. From experiment, 
the Sobel gradient method is shown to be the most robust for LDOF images. A typical gradient 
map will consist of gradient magnitude as well as associated direction values. However, for the 
generation of the gradient saliency map, denoted by ΠGRAD, the direction values are not 
considered. Results of ΠGRAD are illustrated in Fig. 12(b). The more pronounced components are 
indicative of the high gradient FG regions. For display purposes the pixel intensities are scaled 
across 7 grey levels as opposed to 256. 
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Fig. 12 Gradient saliencies. (a) Original images; (b) Full gradient maps; (c) Gradient-based ROI estimate 
maps. 
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From experiment, an approximation of the ROI is produced by applying a threshold to ΠGRAD. 
This is referred to as the gradient-based ROI estimate and is denoted by ΠGRAD

ROI . The threshold is 
determined by extracting the top 30% of the nonzero gradient values in ΠGRAD and using the 
lowest gradient value from this selection. The reason for adopting this approach is that the gradient 
values are relative and may often be clustered above or below a threshold. As a consequence, a 
percentage-based threshold may therefore be considered as being more effective than selecting all 
pixels whose value is above a certain threshold, like in the case of edge detection. Results                   
of ΠGRAD

ROI  are illustrated in Fig. 12(c). 

 

iii.  HOS Saliencies 

The interrogation of only the high-frequency components, as in the case of afore-discussed 
gradient saliencies, may result in inconsistencies occurring in both the focused and defocused 
elements of an image. As a means of minimising these irregularities as well as to provide an 
additional correlator for these elements, the proposed model also considers the heuristics 
associated with the higher-order statistics (HOS) analysis of the image. In the proposed model the 
fourth-order moment HOS algorithm proposed by Kim [41] and Kim et. al [67] is used to derive 
the HOS saliency map (ΠHOS). Results of ΠHOS are illustrated in Fig. 13(b). The more pronounced 
components are indicative of the FG regions. For display purposes the pixel intensities are scaled 
across 5 grey levels as opposed to 256. 

In the proposed model an approximation of the ROI is produced by applying a threshold            
to ΠHOS. This is referred to as the HOS-based ROI estimate and is denoted by ΠHOS

ROI . From 
experiment the threshold is chosen as the lowest value between 0.5 and the mean of all the values 
in ΠHOS between 0.3 and 1. Results of ΠHOS

ROI  are illustrated in Fig. 13(c). 
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Fig. 13 HOS saliencies. (a) Original images; (b) Full HOS maps; (c) HOS-based ROI estimate maps. 
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2) ROI Detection and Extraction 

i. ROI Baseline Reference Mask 

 
Fig. 14 ROI reference masks. (a) Original images; (b) ROI baseline reference; (c) Gradient-HOS 
intersection; (d) Gradient-HOS union. 
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It is necessary to have some sort of rudimentary ground-truth reference for the ROI in order 
to correlate the data from the saliency maps. However, the problem is ill-posed. To resolve this 
conundrum, it is shown from experiment that by applying a more restrictive threshold to the 
gradient saliency map ΠGRAD a robust baseline reference for the ROI may be extrapolated. The 
threshold is determined by considering the top 3% of pixels from the nonzero gradient values          
in ΠGRAD and using the lowest gradient value from this selection. Subsequently any connected 
component having a pixel count less than 0.015% of the area of the image is removed. Results       
of the ROI baseline reference mask, denoted by ΠROI

REF, are illustrated in Fig. 14(b). 
From Fig. 12 and Fig. 13 it may be seen that the estimate maps ΠGRAD

ROI  and ΠHOS
ROI  contain both 

FG as well as BG regions while ΠROI
REF provides a more refined description of the boundaries of the 

ROI and therefore may be considered as a form of ROI detection. 

 

ii. ROI Estimation 

From experiment the optimal estimation of the ROI is achieved through the correlation of the 
intersection as well as union of the gradient and HOS ROI estimate maps (ΠGRAD

ROI  and ΠHOS
ROI ) 

together with the edge saliency map ΠEDGE and the ROI baseline reference mask ΠROI
REF. 

A first approximation of the ROI is based on the intersection between ΠGRAD
ROI  and ΠHOS

ROI . This 
is illustrated in Fig. 14(c) and denoted by Γ1. Expansion and refinement of this region is performed 
using morphology. Regions and edges that are within a close pixel proximity of each other are 
assumed to be a subset of a larger connected region. In the proposed model, for the intersection 
approximation, this proximity is chosen to be 2 pixel spaces. Initially the region is expanded by 
performing dilation, filling and erosion. Subsequently, the region is refined by firstly eroding the 
connected components and secondly, removing any cluster not associated with ΠROI

REF and thirdly, 
dilating the resulting connected components. Finally, the ROI is expanded by incorporating edges 
together with morphology. Initially the region is expanded by including ΠEDGE. This is followed 
by dilation, filling and erosion. Subsequently small connected components and lines are removed 
and any of the newly expanded regions not associated with ΠROI

REF are excluded. This expansion      
of Γ1 is denoted by Γ1

ROI. From experiment, in order to account for the proposed 2 pixel proximity 
association, a 3×3 square structuring element is shown to be adequate for the dilation and erosion. 
This is illustrated in Fig. 15(b). 
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Fig. 15 Initial ROI Estimation. (a) Original images; (b) ROI approximation 1; (c) ROI approximation 2;   
(d) ROI Correlated ROI estimation. 
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A second approximation of the FG is based in the union between ΠGRAD
ROI  and ΠHOS

ROI . This is 
illustrated in Fig. 14(d) and denoted by Γ2. Initially this region is refined by removing any cluster 
not associated with ΠROI

REF. Subsequently, the ROI is expanded by incorporating edges together 
with morphology. As with the previous scenario, regions and edges that are within a close pixel 
proximity of each other are assumed to be a subset of a larger connected region. In the proposed 
model, for the union approximation, this proximity is chosen to be 1 pixel space. 

Initially the region is expanded by including ΠEDGE. This is followed by dilation, filling and 
erosion. Small connected components and lines are removed. Any of the newly expanded regions 
not intersecting or bordering with Γ1 are excluded. This expansion of Γ2 is denoted by Γ2

ROI.  From 
experiment, in order to account for the proposed 1 pixel proximity association, a 2×2 square 
structuring element is used for the dilation and erosion. This is illustrated in Fig. 15(c). 

It is assumed that Γ2
ROI

  contains both FG and BG elements. However, from experiment it is 
observed that a significant portion of the BG is actually excluded while essentially retaining the 
entire ROI. This is a crucial outcome of the proposed model. Based on this understanding the ROI 
is estimated by expanding and refining Γ1

ROI using Γ2
ROI. This is illustrated in Fig. 15(d). 

Firstly, Γ1
ROI

 is refined by performing an intersection with Γ2
ROI. Secondly, all regions in Γ2

ROI 
intersecting with Γ1

ROI are set to 0. Thirdly, the remaining regions in Γ2
ROI are separated using the 

edge saliency map ΠEDGE. Fourthly, from experiment, if more than 50% of the perimeter of the 
applicable connected component is adjacent to Γ1

ROI then it is considered to be a valid extension 
of the ROI. Further refinements of the ROI are performed by evaluating the outer regions of            
the ROI through edge delineation. 

The key benefit of the proposed method is that an extremely robust and accurate means of 
detecting and delineating the closed boundaries of the ROI in a LDOF image is achievable by only 
considering the correlation of ΠGRAD

ROI , ΠHOS
ROI , ΠEDGE and ΠROI

REF. 
 

iii. Final ROI Extraction 
 

The method presented in the previous section provides an extremely adequate estimation of 
the ROI. For improved precision of the ROI, specifically around the border regions, further 
refinements are considered using segmentation together with colour difference analysis. 

Over the past half century there have been a significant number of proposals developed for 
image segmentation [43, 88-91]. However, there is no one particular algorithm that satisfies all 
possible types of scenarios. Segmentation techniques are broadly divided into three              
categories [92]. The first is edged based, the second is region-based and the third is special theory 
based. The first category involves methods based on identifying abrupt changes in the intensity of 
image pixels. These include histogram [93, 94] and gradient based [95, 96] techniques. The latter 
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two categories are based on identifying similarities in the intensity of image pixels. These include 
thresholding [90, 97], region-based [98-101] and clustering [102-104] techniques. In this research 
the k-means cluster-based segmentation technique is considered. 

Fig. 16 Final ROI Extraction. (a) Original images; (b) Ground mask; (c) Invalid border regions;   
(d) Final delineated ROI. 
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The k-means clustering method, as described by Macqueen (1967), is among the most popular 

of the approaches employed in image segmentation [102]. An algorithm was initially proposed by 
Hartigan (1975) and subsequently modified for improved efficiency by Hartigan and                  
Wong (1979) [71]. Gan et. al [105] provide the pseudo-code of the k-means algorithm employed 
in the proposed model. The distance measure is based on the Euclidean distance. The k-means 
algorithm is simple and fast and efficiently provides for rapid convergence to local minima of the 
error function. 

The disadvantages of the k-means algorithm include increased sensitivity to initialisation as 
well as the need for pre-allocation of the number of clusters, where a wrong value may result in 
suboptimal results. Moreover, the algorithm is limited to spherical (or elliptical) shaping and is 
sensitive to outliers. Since no a priori data analysis is available the cluster loci are randomly 
initialised. A primary concern with this is that inconsistencies may occur when attempting to 
reproduce the segmentation results. A secondary concern is the selecting of the number of clusters 
and iterations, since unsupervised clustering may result in suboptimal over- or under-segmentation 

Even though shortfalls may exist with k-means segmentation, it is nevertheless 
computationally advantageous and, from experiment, more suitable to LDOF images. 

An initial unsupervised segmentation of the LDOF source image is performed using k-means 
clustering. To improve the consistency of the algorithm the initial cluster intensity locus value is 
pre-assigned to 128 instead of being randomly chosen. Moreover, to avoid or minimise the 
probability of local minima the algorithm is iterated through 3 cycles. The optimal outcome is 
subsequently chosen as the iteration with the largest distance between clusters in combination with 
the smallest distance within the clusters.  

From experiment the number of clusters, n, is determined by comparing cluster collections  
for 𝑛 = 𝑚 and 𝑛 = 𝑚 − 1 starting with 𝑚 = 7 and decrementing until 𝑚 = 3. Firstly, the percentage 
overlap of each of the arrays in cluster collection 𝑛 = 𝑚 with respect to the ROI (determined in 
the previous section) is calculated and the maximum percentage overlap, denoted by 𝛲max

𝑚 , is 
extracted. Secondly, the percentage overlap of each of the arrays in cluster collection 𝑛 = 𝑚 − 1 
with respect to the ROI is calculated and the maximum percentage overlap, denoted by 𝛲max

𝑚−1, is 
extracted. Thirdly, if 𝛲max

𝑚 > 0.85𝛲max
𝑚−1, then 𝑛 = 𝑚. However, if 𝛲max

𝑚 < 0.85𝛲max
𝑚−1,                       

then 𝑚 = 𝑚 − 1 and the process is repeated. From experiment, the ceiling value of 7 and floor 
value of 3 is shown to lower the probability of over- and under-segmentation, respectively, and 
the limiting factor of 85% of the previous 𝛲max

𝑛  is shown to adequately offset the loss of integrity 
of the ROI against the overall improved delineation. 

An estimation of the BG of the image is initially derived using the segmentation clusters. This 
is illustrated in Fig. 16(b). From experiment the following process is employed for this purpose. 
Firstly, an entire cluster array is considered to belong to the BG if it has less than a 5% overlap 
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with the ROI. Secondly, the remaining FG cluster arrays are analysed by interrogating the 
individual connected components within the cluster array. In this case any connected component 
having less than a 10% overlap with the ROI is also considered as belonging to the background. 
Thirdly, any cluster array or connected component excluded from the BG are subsequently 
collated and reassessed. This is achieved by performing segmentation on the collated BG region 
using k-means clustering. From experiment a cluster value of 3 is chosen. The first two stages 
above are subsequently applied to these sub-segmented cluster arrays. To account for the 
reproducible inconsistencies associated with k-means segmentation the entire process above is 
iterated 3 times with the BG being constructed in an accumulative manner. Finally, any segment 
in the BG not located on the border region of the ROI or completely enveloped by the ROI is 
excluded. 

An initial estimate of the invalid border regions is extrapolated by considering the intersection 
between the above derived segmentation-based BG region and the ROI. This is illustrated                  
in Fig. 16(c). Subsequently, the applicable connected components are interrogated and validated 
using colour difference analysis. 

There exist several methods for estimating the differences in the colour intensity of             
pixels [106]. An early attempt, referred to as the CIE76 colour-difference formula, was proposed   
in 1976. In this formula the difference in the colour of two pixels is estimated by analysing the 
pixels in the CIEL*a*b* colour space. To resolve some non-uniformities associated with                
the CIE76 colour-difference formula, an updated algorithm was proposed in 2000 by the   
members of the CIE Technical Committee 1 – 47, referred to as the CIEDE2000 colour-difference               
formula [107]. Although the CIEDE2000 colour-difference formula also analyses the pixels in     
the CIEL*a*b* colour space, it more specifically considers the CIEL*C*h* colour space. The 
latter refers to the lightness, chroma and hue, respectively, which may be calculated directly from 
the L*a*b* coordinates. Even though the CIEDE2000 colour-difference method is substantially 
more complicated and computationally involved than its early predecessor, the CIE76 colour-
difference formula, it nevertheless provides a significantly more accurate means of comparing 
minor differences in colour intensity between two pixels or clusters of pixels [108]. 

In the proposed model the segmented-based invalid regions are assessed by interrogating the 
perimeter pixels adjacent to the ROI using the CIEDE2000 colour-difference algorithm proposed 
by Sharma et al. [109]. If more than 60% of the adjacent pixels contain a colour-difference greater 
than 3 then the connected component is assumed to be an invalid ROI segment and subsequently 
excluded from the ROI. Owing to border transitions the pixels are compared up to an adjacent 
distance of 3 pixels. The perimeter pixels adjacent to the BG pixels are not considered. Results of 
the segment-based refinement of the ROI are illustrated in Fig. 16(d). This concludes the method 
proposed for the unsupervised extraction of the ROI from a single 2D LDOF image. 
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D. Results and Discussion 

The proposed method is evaluated using a common database of a 121 LDOF images together           
with their ground-truth masks obtained from Li and Ngan (2007) [42] and the COREL                        
dataset [110, 111]. A training set of a 160 LDOF images together with their ground-truth                        
masks (excluding the 121 test images) were obtained from Li and Ngan (2007) [42],  the COREL      
dataset [110, 111] as well as the World Wide Web. Subjective as well as objective comparative 
analyses are performed against seven other proposed methods [41, 42, 51-55]. Moreover, the 
precision and F-measure is also evaluated against the other proposed approaches. 

In this section the ROI is denoted by ΩROI and the nonzero pixels associated with the ground-
truth mask of the image are denoted by ΩGT. In addition, the terms true positive, false positive and 
false negative are used as comparative descriptors. True positive denotes the number of pixels 
common to both ΩROI and ΩGT. False positive indicates the number of nonzero pixels belonging 
to ΩROI but not to ΩGT. False negative indicates the number of nonzero pixels belonging to ΩGT 
but not to ΩROI. 

Some of the representative results obtained by different methods are illustrated in Fig. 17. The 
original images in Fig. 17(a) are titled (from top to bottom) as Dog, Bee-Flower-1, Owl, 
Strawberry, Beckham and Flower-Yellow, respectively. Fig. 17(g) provides the corresponding 
ground-truths where the ROI is indicated by the white region and the BG is indicated by the black 
regions. Fig. 17(b)-(d) show the results obtained from the methods proposed by Kim (2005) [41], 
Li and Ngan (2007) [42] and Chen and Li (2012) [51], respectively. Fig. 17(e)-(f) present the 
results of the proposed method as well as the associated binarised formats needed for ground-truth 
analysis. 

When considering Kim’s method, although the six images exhibit minimal false positive 
regions, all of them exhibit some degree of BG misclassification, i.e. false negative regions, such 
as the holes in the Owl and Dog images as well as the missing stem in the Flower-Yellow image. 
In the case of Li and Ngan’s proposal, several of these associated false negative regions are 
resolved However, some false positive regions are introduced, such as the green regions      
between the flower petals in the Bee-Flower-1 image and the green region next to the owl’s left 
leg in the Owl image. In comparison, while Chen and Li’s method eliminates false positives such 
as the green regions between the flower petals in the Bee-Flower-1 image it also misclassifies part 
of the bee’s wing and the stem of the flower in the Bee-Flower-1 image as belonging to the 
background as well as the right part of the flower bud in the Flower-Yellow image. Although there 
are some minor false positives in the proposed method, it is nevertheless comparable to Chen and 
Li’s method and shows a noticeable improvement to Kim’s and Li and Ngan’s methods. 
Furthermore, in comparison, the proposed method also produces more complete ROIs as well as 
clearer boundaries for a significant number of the 117 test images (Refer to Fig. 20). 
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Fig. 17 Experimental results for test images: Dog, Bee-Flower-1, Owl, Strawberry, Beckham and Flower-
Yellow (from top to bottom). (a) Original images; (b) Results from Kim (2005) [41];  (c) Results from Li and 
Ngan (2007) [42]; (d) Results from Chen and Li (2012) [51]; (e) Results of proposed method; (f) Binarised 
results of proposed method; (g) Binarised ROI ground-truths for original source image. 

 
A second set of comparative results is illustrated in Fig. 18. The original images in Fig. 18(a) 

are titled (from top to bottom) as Bee-Flower-2, Meerkat, Dragonfly, Flower-Red, Frog and 
Referee, respectively. Fig. 18(g) provides the corresponding ground-truths where the ROI is 
indicated by the white region and the BG is indicated by the black regions. Fig. 18(b)-(d) show 
the results obtained from the methods proposed by Kim (2005) [41], Li and Ngan (2007) [42] and 
Li and Ngan (2011) [52], respectively. Fig. 18(e)-(f) presents the results of the proposed method 
as well as the associated binarised formats needed for ground-truth analysis. 

When considering Kim’s method, although the six images exhibit minimal false positive 
regions, all of them exhibit some degree of false negative regions, such as the stem in                        
the Bee-Flower-2 image, the missing heads in the Meerkat image and the holes in the Dragonfly 
and Referee images as well as part of the flower in the Frog image. In the case of Li and          
Ngan’s (2005) proposal, several of these associated false negative regions are resolved with 
exception of the hovering bird in the Meerkat image, the missing tailpiece in the Dragonfly image 
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and the missing arm in the Referee image. However, some false positives are also introduced, such 
as the green regions around the outside of the flower in Flower-Red image. 

In comparison, while Li and Ngan’s (2011) supervised method eliminates most of these 
shortfalls, some false negative regions are introduced, such as the spine region of the adult meerkat 
in the Meerkat image. Although there exist some minor false positives in the proposed method, it 
is nevertheless comparable to Li and Ngan’s (2007) unsupervised method as well as Li and   
Ngan’s (2011) supervised method and shows a noticeable improvement to Kim’s (2005) method. 
Furthermore, in comparison, the proposed method also produces more complete ROIs as well as 
clearer boundaries for a significant number of the 117 test images (Refer to Fig. 20). 

Fig. 18 Experimental results for test images: Bee-Flower-2, Meerkat, Dragonfly, Flower-Red, Frog and 
Referee (from top to bottom). (a) Original images; (b) Results from Kim (2005) [41]; (c) Results from Li and 
Ngan (2007) [42]; (d) Results from Li and Ngan (2011) – supervised approach  [52]; (e) Results of proposed 
method; (f) Binarised results of proposed method; (g) Binarised ROI ground-truths. 

 
A third set of comparative results taken from the COREL dataset is illustrated in Fig. 19. The 

original images in Fig. 19(a) are titled (from top to bottom) as Moth, Cheetah, Hornbill and Soccer, 
respectively. Fig. 19(b) provides the corresponding ground-truths. Fig. 19(c)-(g) show the results 
obtained from the methods proposed by Ye and Lu (2002) [54], Kim (2005) [41], Li and              
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Ngan (2007) [42], Liu et. al (2010) [53] and Rafiee (2013) [55], respectively. Fig. 19(h) presents 
the results of the proposed method. 

When considering Ye and Lu’s method, some distinct false positive regions are present, such 
as the background stem in Moth image and the ground region to the right of the cheetah in               
the Cheetah image. There also exist some false negative regions, such as the under-tail coverts 
and vent part of the hornbill in the Hornbill image as well as the leg of the soccer player to the left 
in the Soccer image. In the case of Kim’s proposal, several of these associated false positive 
regions are resolved. However, some false negatives are introduced, such as the ground region to 
the left of the cheetah in the Cheetah image. The false negative in the Soccer image is resolved. 
However, the Hornbill image remains problematic. Li and Ngan’s method exhibits similar 
discrepancies to those associated with Ye and Lu’s method. However, some of the false positive 
regions are attenuated or eliminated altogether. In comparison, the method proposed by Liu et. al 
provides a consistent correlation with the provided ground-truth images. However, some false 
negatives are introduced, such as the moth’s antennae in the Moth image and the top of the 
cheetah’s head in the Cheetah image. Moreover, the under-tail coverts and vent part of the hornbill 
in the Hornbill image is still unresolved. Also, in comparison, the method proposed by Rafiee 
provides a consistent correlation with the provided ground-truth images. However, some false 
positives are introduced, such as the region between the ball and the head of the soccer player. 
Moreover, the under-tail coverts and vent part of the hornbill in the Hornbill image is still 
unresolved. 

Fig. 19 Experimental results for test images from the COREL dataset: Moth, Cheetah, Hornbill and Soccer 
(from top to bottom). (a) Original images; (b) ROI ground-truths for original source images; (c) Results 
from Ye and Lu (2002) [54]; (d) Results from Kim (2005) [41]; (e) Results from Li and Ngan (2007) [42];  
(f) Results from Liu et. al (2010) [53]; Results from Rafiee (2013) [55]; (h) Results of proposed method.  
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Although some minor false positives and false negatives exist in the proposed method, it is 

nevertheless comparable to the methods proposed by Kim and Liu et. al and Rafiee. Furthermore, 
a noticeable improvement is shown in comparison to Ye and Lu’s as well as Li and Ngan’s 
methods. 

To provide an objective comparison of the proposed method against the aforementioned 
methods, the segmentation errors are computed across all of the 121 test images (117 from Li and 
Ngan [42] plus 4 from the COREL dataset [110, 111]) using the measurement criterion adopted 
by these investigations. 

The segmentation error, which may be defined as the proportion of the misclassified pixels to 
the nonzero ground-truth pixels, is mathematically expressed by the following operation: 

 

 𝑒𝑟𝑟𝑜𝑟 = |ΩROI ⋃ ΩGT|−|ΩROI ⋂ ΩGT|
|ΩGT|   (5)

 
where ΩROI denotes the ROI,  ΩGT denotes the nonzero pixels associated with the ground-

truth mask of the image and  | ⋅ | indicates set cardinality. 

Fig. 20 Objective comparison. Segmentation errors of the 117 test images for Kim (2005) [41], Li and Ngan 
(2007) [42], Li and Ngan (2011) – supervised approach [52], Chen and Li (2012) [51] and the proposed 
method. 

 

0

5

10

15

20

25

30

35

40

45

50

55

0,036 0,107 0,179 0,25 0,321 0,393 0,464 0,536 0,607 0,678 0,75 0,821 0,893 0,964 1

Segmentation Errors [Objective Comparison]

Kim (2005)

Li and Ngan (2007)

Li and Ngan (2011) [Supervised]

Chen and Li (2012)

Proposed Method



42 
 

The distribution of the segmentation errors across the 117 test images [42] for                        
Kim (2005) [41], Li and Ngan (2007) [42], Li and Ngan (2011) [52], Chen and Li (2012) [51]  and 
the proposed method are illustrated in Fig. 20. Li and Ngan’s (2011) approach is supervised 
compared to the rest of the approaches, including the proposed method, which are unsupervised. 
The results of the proposed method are obtained by taking the average error from 50 iterations of 
the proposed algorithm across the 117 test images. 

Although the proposed unsupervised method shows less accuracy in the 0.036 range 
compared to Li and Ngan’s (2011) supervised method and Chen and Li’s (2012) unsupervised 
method, it nevertheless exhibits twice the accuracy of the next closest method (Li and              
Ngan’s (2011) supervised approach) in the 0.107 range. Moreover, 63% (74 out of 117) of the 
segmented ROI images in the proposed method fall in the range 0 ≤ 𝑒𝑟𝑟𝑜𝑟 ≤ 0.107 compared         
to 32% (37), 37% (44), 49% (57) and 42% (49) for Kim’s, Li and Ngan’s (2007), Li and                 
Ngan’s (2011) and Chen and Li’s methods, respectively. More significantly, only 5% (6 out            
of 117) of the segmented ROI images in the proposed method have an error greater than 0.25 
compared to 44% (51), 31% (36), 28% (33) and 44% (51) for Kim’s, Li and Ngan’s (2007), Li and 
Ngan’s (2011) and Chen and Li’s methods, respectively. Also, the proposed method has a 
maximum error of 0.607 compared to 1 for the other four proposed methods. 

 

                                                              TABLE I

PERFORMANCE EVALUATION BY OBJECTIVE CRITERION (SET 1) 
 

Image 
Kim           

(2005) [41] 

Li and Ngan 

(2007) [42] 

Chen and Li 

(2012) [51] 

Proposed 

Method 

Max Error 

Difference (%) 

Dog 0.3435 0.0442 0.012 0.0156 0.36 

Bee-Flower-1 0.4144 0.2366 0.1087 0.1188 1.01 

Owl 0.1427 0.061 0.0432 0.0459 0.27 

Strawberry 0.0598 0.0542 0.0356 0.0345 0.11 

Beckham 0.0762 0.0279 0.0228 0.021 0.18 

Flower-Yellow 0.1168 0.2262 0.075 0.0194 5.56 

Average 0.1922 0.1084 0.0496 0.0425  
 

 
To provide an objective comparison of the three sets of images subjectively analysed earlier, 

the segmentation errors are computed and compared. Table I shows that for the first set (refer          
to Fig. 17) the proposed method performs better for 3 out of the 6 images while Chen and Li’s 
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method performs better for the other 3 images. The average error across the 6 images for the 
proposed method is 0.043 compared to 0.05 for Chen and Li’s method. The proposed method has 
a maximum improvement of 5.56% compared to 1.01% for Chen and Li’s method. 

                                                              TABLE II

PERFORMANCE EVALUATION BY OBJECTIVE CRITERION (SET 2) 
 

Image 
Kim           

(2005) [41] 

Li and Ngan 

(2007) [42] 

Li and Ngan 

(2011) [52] 

Proposed 

Method 

Max Error 

Difference (%) 

Bee-Flower-2 0.2482 0.2173 0.0674 0.0997 3.23 

Meerkat 0.3223 0.1368 0.1095 0.0673 4.22 

Dragonfly 0.1563 0.1754 0.0984 0.0994 0.1 

Flower-Red 0.1606 0.231 0.1047 0.0795 2.52 

Frog 0.3145 0.0676 0.056 0.0234 3.26 

Referee 0.1817 0.1035 0.0287 0.015 1.37 

Average 0.2306 0.1553 0.0775 0.0641  
 

 
Table II shows that for the second set (refer to Fig. 18) the proposed method performs better 

for 4 out of the 6 images while Li and Ngan’s (2011) method performs better for the other 2 
images. The average error across the 6 images for the proposed method is 0.064 compared to 0.078 
for Li and Ngan’s (2011) method. Moreover, the proposed method has a maximum improvement               
of 4.22% compared to 3.23% for Li and Ngan’s (2011) method. 

                                                             TABLE III 

PERFORMANCE EVALUATION BY OBJECTIVE CRITERION (SET 3) 
 

Image 
Ye and Lu 

(2002) [54] 

Kim        

(2005) [41] 

Li and Ngan  

(2007) [42] 

Liu et. al      

(2010) [53] 

Proposed 

Method 

Max Error 

Difference (%)

Moth 0.16 0.0698 0.0589 0.085 0.0263 5.87 

Cheetah 0.44 0.1828 0.1196 0.102 0.0485 5.35 

Hornbill 0.12 0.133 0.1229 0.111 0.0378 7.32 

Soccer 0.23 0.219 0.2937 0.177 0.1677 0.93 

Average 0.24 0.1512 0.1488 0.1188 0.0701  

 
Table III shows that for the third set (refer to Fig. 19) the proposed method performs better 

for all 4 images compared to four of the other methods. Moreover, the average error across the 4 
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images is 0.07 with maximum improvement of 7.32%. The segmentation error is not one of the 
metrics used for an objective comparison in the fifth reference, Rafiee (2013) [55], and as a 
consequence those respective comparative results are not presented in Table III. 

An objective comparison is made between the initial ROI estimation using the edge, gradient 
and HOS saliencies and the final ROI estimation that is based on a refinement of the former      
using k-means segmentation and CIEDE2000 colour difference analysis. From Table IV it is 
evident that the final method proposed for the extraction of ROI results in an optimal minimum 
error of 0.1058 – an improvement of 3.4% compared to the initial approximation of the ROI. 

                                                              TABLE IV 
PERFORMANCE EVALUATION BY OBJECTIVE CRITERION (ROI EXTRACTION)

 

Error Initial ROI Final ROI 

0.036 19 24 

0.107 48 50 

0.179 21 24 

0.250 12 13 

0.321 8 2 

0.393 3 1 

0.464 1 0 

0.536 2 1 

0.607 1 2 

0.678 1 0 

0.750 0 0 

0.821 0 0 

0.893 0 0 

0.964 0 0 

1.000 1 0 

Average 0.1398 0.1058 

 
In addition to the objective comparison, the segmentation performance is computed by 

considering the average precision, recall and F-measure or balance F-score over the ground-truth 
databases. The general F-measure formula, denoted by 𝐹𝛽 , is defined as 
   

 𝐹𝛽 = (1+𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) +𝑅𝑒𝑐𝑎𝑙𝑙   (6)
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where 

   

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 +𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒) = |ΩROI ⋂ ΩGT|

|ΩROI|
  (7)

 
and 

   

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 +𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = |ΩROI ⋂ ΩGT|

|ΩGT|  . (8)

 
Achanta et. al [112] and Chen and Li [51] recommend a value of 0.3 for 𝛽2. This is to allow 

for precision to be weighed more than recall. 
 

 

                                                                   TABLEV 
AVERAGE F-MEASURE, PRECISION AND RECALL FOR 117 TEST IMAGES 

 

Approach 
F-measure (%) 

for 𝜷𝟐 = 𝟎. 𝟑 
Precision (%) Recall (%) 

Kim (2005) [41] 84.0 90.9 67.7 

Li and Ngan (2007) [42] 84.6 88.1 75.3 

Li and Ngan (2011) [52] 89.4 91.4 83.3 

Chen and Li (2012) [51] 85.8 91.2 71.7 

Rafiee (2013) [55] 91.3 93.9 83.6 

Proposed Method 95.2 92.7 96.1 

 
As evident in Table V, the proposed method achieves the highest average F-measure value    

of 95.2% as well as a recall (sensitivity) rate of 96.1%. The proposed method also exhibits a 
precision rate of 92.7%. Compared to Li and Ngan’s (2011) method (nearest supervised rival), the 
proposed algorithm achieves gains of 5.8% and 1.3% in F-measure and precision, respectively. 
Compared to Rafiee’s (2013) method (nearest unsupervised rival), the proposed algorithm 
achieves gains of 3.9% and 12.5% in F-measure and recall, respectively, and exhibits a 1.2% 
difference in precision. 

Owing to space constraints only a selected number of the total ROI extraction results are 
presented in this section. The author may be contacted at serenr@gmail.com for more than 300 
LDOF images and their associated segmentation results; over 230 of the images also include their 
associated binary ground-truth masks. 
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Fig. 21 Selection of segmentation results (Set 1). 
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Fig. 22 Selection of segmentation results (Set 2). 
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For a truer reflection of the proposed algorithm for unsupervised ROI extraction some of        
the limitations (failed or inadequate segmentation results) are considered. From the 117 test 
images, 6 of them produced segmentation errors greater than 0.25. These are illustrated in Fig. 23. 

Fig. 23 Segmentation results from the 117 test images with error greater than 0.25: Three-Birds, Crouching-
Cheetah, Bird-Reed, Albino-Wolf, Marbles and Mantis (from top to bottom). 

 
The LDOF technique in which the cheetah is photographed in the Crouching-Cheetah image 

results in the head being more in focus than the rear of the body. As a consequence the proposed 
model incorrectly classifies the rear of the cheetah as belonging to the BG. Furthermore, the out 
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of focus leaves in front of the lower jaw result in that region exhibiting low frequency saliency 
values. As a consequence the lower jaw is also misinterpreted as belonging to the BG. The leaf 
located below the bird in the Bird-Reed image is wrongly classified as the BG. Even though           
the OOI (the bird) is effectively reflected and the result is subjectively acceptable, the large false 
negative value skews the segmentation error. The praying mantis in the Mantis image is perched 
on top of a post box in the ROI. However, the glossy paint as well as the curvature of the roof of 
the post box results in that region exhibiting low frequency saliency values. As a consequence the 
region is misclassified as belonging to the BG and, owing to the associated large false negative 
value, unevenly skews the segmentation error. 

 
Fig. 24 Segmentation results for images with low defocus of foreground versus background [51].  
(a) Original images; (b) Associated ground-truth masks; (c) Results of proposed algorithm.  

 
Fig. 24 illustrates some segmentation failures resulting from images with low differences in 

the defocus degree of the foreground versus background. Referring to the image on the first row, 
it may be observed that although the OOI (soccer player in red and black jersey) is accurately 
segmented the soccer player in the BG with the yellow and black jersey is misclassified as 
belonging to the FG. This results in a large false positive segmentation error. A possible resolution 
to this error may be to consider retaining only the largest segment. With the image in the second 
row the error may be subjectively explained. Although the ground-truth excludes both the 
unopened buds above, as well as the leaves to left of the bunch, both these regions may be 
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subjectively considered as belonging to the ROI. In the case of the image in the third row, there is 
a similar colour distribution between the OOI (the soccer player in the FG with his arms spread 
apart) and the soccer player running in the semi-blurry BG region. The segmentation component 
responsible for both the expansion as well as the refinement of the ROI misinterprets both these 
similar colour regions as belonging to the FG. 

Some of the large segmentation errors may be a consequence of incorrectly delineated ground-
truths. However, most of the limitations highlighted above reflect some of the challenges still 
inadequately resolved in the arena of unsupervised ROI extraction. 

The proposed algorithm is computationally benchmarked against four of the other proposed 
models. The testing computer is a Quad Core CPU 2.50 GHz with 4.00 GB of RAM. The proposed 
method is implemented using MATLAB R2014a. 

 
                                                                   TABLE VI

AVERAGE COMPUTATIONAL SPEED 
FOR 117 TEST IMAGES (AVG. SIZE 400×300) 

 

Approach 
Average Computational Speed  

(in seconds) 

Kim (2005) [41] 8 

Li and Ngan (2007) [42] 40 

Li and Ngan (2011) [52]
– supervised approach 

4.7 

Chen and Li (2012) [51] 7 

Rafiee (2013) [55] 2.3 

Proposed Method 4.8 

 
Table VI provides a comparative analysis of the average computational cost across the 121 

test images. In this regard, although the method proposed by Rafiee (2013) is shown to be more 
computationally efficient, the proposed unsupervised model achieves an average processing time 
of 4.8 s, which is comparable to Li and Ngan’s (2011) supervised method (4.7 s on average). In 
addition, the proposed algorithm provides at least a 42% improvement on Kim’s as well as Chen 
and Li’s methods (8 s and 7 s, respectively) and a significant improvement on Li and                
Ngan’s (2007) method (approximately 40 s on average). 

Even though the dataset used for the validation may appear to be somewhat limited, the 
robustness of the proposed model may possibly be further strengthened by testing using           
images coming from different cameras with various resolution sizes. This may be considered at a 
later stage. 
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Moreover, a concern with the HOS technique is that although it may be effective in exploiting 
the high frequency attributes in LDOF images it may often exhibit sensitivity to noisy images. A 
method to address these concerns has been proposed by Ahn and Chong (2015) [113] whereby 
adaptive second-order statistics are considered. For improved robustness this adaptive approach 
may possibly be incorporated at a later stage into the proposed model. 

 

E. Summary 
 

The proposed model has been both subjectively as well as objectively measured against 
several state-of-the-art methods [41, 42, 51-55] through the comparison of 121 LDOF test images 
selected from two common datasets. 

By subjectively examining Fig. 17, Fig. 18 and Fig. 20, the results shows that although there 
exists some minor false positives, the proposed approach is nevertheless comparable to the other 
seven approaches. From the subjective examination of Fig. 17 the results show that the proposed 
model is comparable to Chen and Li’s (2012) method while providing a noticeable        
improvement to Kim’s (2005) and Li and Ngan’s (2007) methods. Moreover, by subjectively 
examining Fig. 18, the results again show that the proposed technique is comparable to Li and 
Ngan’s (2007) unsupervised method as well as Li and Ngan’s (2011) supervised method while 
demonstrating a noticeable improvement to Kim’s (2005) method. Furthermore, the subjective 
examination of Fig. 19 provides evidence of the proposed model being comparable to the 
approaches proposed by Kim (2005), Liu et. al (2010) and Rafiee (2013) while providing a 
noticeable improvement to Ye and Lu’s (2002) as well as Li and Ngan’s (2007) methods. 

As is objectively evident from Fig. 20, the results show that the proposed method outperforms 
the compared ROI extraction methods. Although the proposed unsupervised method                        
shows 4% (24 compared to 25) and 25% (24 compared to 32) less accuracy in the 0.036 range 
against Chen and Li’s (2012) unsupervised method and Li and Ngan’s (2011) supervised method, 
respectively, it nevertheless outperforms all other methods by at least twice the accuracy in            
the 0.107 range. Moreover, 63% (74 out of 117) of the segmented ROI images in the proposed 
unsupervised method fall in the range 0 ≤ 𝑒𝑟𝑟𝑜𝑟 ≤ 0.107 compared to 32% (37), 37% (44)               
and 42% (49) for Kim’s (2005) [41], Li and Ngan’s (2007) [42] and Chen and Li’s (2012) [51] 
unsupervised approaches, respectively, as well as 49% (57) for Li and Ngan’s (2011) [52] 
supervised method. More significantly, only 5% (6 out of 117) of the segmented ROI images in 
the proposed unsupervised approach have an error greater than 0.25 compared to 44% (51),          
31% (36) and 44% (51) for Kim’s (2005) [41], Li and Ngan’s (2007) [42] and Chen and                  
Li’s (2012) [51] unsupervised methods, respectively, as well as 28% (33) for Li and                   
Ngan’s (2011) [52] supervised approach. Also, the results show that the proposed method has a 
maximum error of 0.607 compared to 1 for the other four proposed methods. 
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As is objectively evident from Table V, the proposed method achieves both the highest 
average F-measure value of 95.2% and recall rate of 96.11%. In addition a precision rate of 92.7% 
is achieved. Compared to best unsupervised approach (Chen and Li (2012) [51]) gains of 9.4%  
and 1.5% are attained for the average F-measure and precision rate, respectively. Compared to 
best supervised approach (Rafiee (2013) [55]) a gain of 3.9% is attained for the average F-measure. 

As evident from Table VI, the computational time for the proposed algorithm is comparable 
to the supervised approach of Li and Ngan (2011) [52] and achieves at least a 43% reduction 
compared to the other unsupervised approaches of Chen and Li (2012) [51], Kim (2005) [41] and 
Li and Ngan (2007) [42]. 

 

F.  Conclusion 
 

Effective unsupervised image segmentation remains a challenging problem in the field of 
image and video processing. The difficulty with unsupervised region segmentation is that the 
problem is ill-posed. This is owing to having no primary segmentation criteria. This research 
presents a novel method for the unsupervised extraction of the ROI from a single LDOF image. 

The basic premise of this research involves the interrogation of high-frequency components 
for use in ROI extraction. However, a concern is that by only exploiting the high-frequency 
components inconsistencies may occur when interpreting both the defocused and focused 
elements of an image. This is owing to some areas of the defocussed regions exhibiting busy 
texture attributes with high enough frequency components so as to be considered as in focus, and 
some areas of focussed regions containing constant texture characteristics with insufficiently high-
frequency components so as to be considered as out of focus. 

The proposed method reduces the effects of these inconsistencies by considering a correlated 
approach to the ROI detection and extraction problem through the interrogation of several 
saliencies based on gradient and higher-order statistics (HOS) analysis techniques. In addition to 
the correlation of these saliencies the proposed model supplements these approaches through edge 
and segmentation correlation. 

The proposed method consists of four stages. The first stage involves the extraction of edge, 
gradient and HOS saliency attributes. The second stage involves the extrapolation of an ROI 
reference mask based on the gradients in the image. The third stage involves the interrogation of 
the gradient and HOS saliencies under the guidance of the ROI reference mask and the subsequent 
extraction of the ROI. The fourth and final stage involves the refinement of the ROI. These 
refinements are performed through a closer inspection of the outer regions using k-means 
segmentation as well as the border regions using CIEDE2000 colour difference analysis. 

The proposed algorithm has been assessed both subjectively as well as objectively and is 
shown to be comparable or outperform existing unsupervised state-of-the-art ROI extraction                         
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approaches [41, 42, 51-55]. Results show that compared to the best unsupervised approach a gain 
of 3.9% is attained for the average F-measure. Although the proposed method is built on existing 
techniques, it nevertheless extends as well as introduces several novel concepts into the ROI 
extraction framework. 

Future work may include investigating further strategies for saliency estimation and 
correlation as well as the expansion of the model to incorporation 2D LDOF sequential video and 
real-time functionality.  
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III.  UNSUPERVISED MATTING OF THE OBJECT-OF-INTEREST IN              
LOW DEPTH-OF-FIELD IMAGES 

The explicit extraction of the region-of-interest (ROI) from within a low depth-of-                  
field (LDOF) image is discussed in the previous section on p. 18. This component of the research 
expands on the ROI extraction concept for specific scenarios of LDOF images and considers the 
more refined extraction of the object of interest (OOI) from within the ROI. 

 

A. Introduction 
 

The closed boundary delineation of the OOI is often vital in arenas such as machine vision, 
segmentation, rotoscoping and 2D-to-3D conversion. For all LDOF images there will exist regions 
in focus (focused) and regions out of focus (defocused). This is illustrated in Fig. 25. The focused 
regions, which are typically referred to as the foreground (FG) or the so-called ROI, are associated 
with high-frequency (sharp) components and the defocused regions, which are typically referred 
to as the background (BG), are association with low frequency (blurred) components. For           
most LDOF images the key purpose is to give more prominence to an object, such as a person       
or animal, the so-called OOI, rather than a region within a scene. 

Fig. 25 Low depth-of-field images [60, 63] 

 
Some of the variations commonly encountered with LDOF images are illustrated in Fig. 25. 

These include several of the permutations that may exist for the ROI and ROI-OOI combinations. 
For the ROI there are two very broad LDOF image classifications. The first is where no           
distinct OOI is present within the ROI, as in the case of a landscape, prairie or field, like for 
example the image illustrated in Fig. 25 (a). The second is where there exists a distinct OOI within 
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the ROI, like for example the images illustrated in Fig. 25(b) – (f). Within this second classification 
two further ROI-OOI permutations or categories may exist. The first category is where the         
entire ROI represents the OOI, as illustrated in  Fig. 25(d) and (e) as well as Fig. 26(a). The second 
category is where the ROI contains both an OOI as well as a distinct ground region, as illustrated                      
in Fig. 25(b), (c) and (f).  

 

Fig. 26 Image Matting [114]. (a) Original defocused image; (b) Trimap; (c) Matted foreground with new 
background. 

 
The term image matting or just matting is used to generically describe the soft extraction or 

isolation of an in focus OOI from the surrounding out of focus BG [114]. This is illustrated               
in Fig. 26. Matting more often than not refers explicitly to the scenario where the OOI constitutes 
the entire ROI i.e. the first ROI-OOI category. However, the ROI may be more generically 
described as representing a region rather than a distinct closed boundary object within a LDOF 
image and the OOI, if it exists, may be defined as being an element of the ROI and either 
constituting the entire ROI or denoting a subcomponent of the ROI. The problem with this latter 
scenario (the second ROI-OOI permutation) is that since the in focus OOI is contained within the 
in focus ROI, interrogating only the high-frequency components may be inadequate in 
distinguishing between the OOI and the non-OOI region within the ROI. 

There are three approaches to image matting. These include manual, semi-automatic and 
unsupervised. For the second approach, some intermediate user interaction is usually required for 
the identification, delineation and refinement of the OOI. This is often in the form of a predefined 
trimap [45]. For the third unsupervised matting approach it may be necessary to autonomously 
generate a sort of conceptual trimap within the model. 

A trimap is a tri-colour (black, white and grey) image indicating definite background regions, 
definite foreground regions and unclassified pixels, respectively, with the unclassified regions 
most likely located around the borders of significant objects. This is illustrated in Fig. 26(b)     
where Ω𝐹  refers to the definitely focused OOI, Ω𝐷 denotes the definitely defocused BG region   
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and Ω𝑈  refers to the unknown region. This latter region is primarily associated with the boundary 
regions of the OOI and represents a selection of unclassified pixels like, for example, thin wisps 
of hair or fur that may be interpreted either as belonging to the foreground or the background. 
These complex pixels would require additional examination to provide a more precise alpha matte. 
For the second ROI-OOI permutation the unknown region Ω𝑈  in the trimap needs to account for 
both the border regions of the OOI as well as the non-OOI region. 

For an unsupervised approach, owing to the ill-posed nature of the problem, there is no a 
priori reference for the focussed OOI and the surrounding focussed non-OOI or ground-plane 
region, denoted by GOI. As a consequence in this research the trimap is not specifically employed 
as a reference for the delineation of the OOI from the surrounding image, but instead it may be 
more appropriately described as a tri-region classification of the LDOF image. In this case Ω𝐹  
represents a more generic description of the in focus OOI, Ω𝑈  provides a broad description of the 
in focus ground plane region that either partially or entirely surrounds the OOI, and Ω𝐷 represents 
a more general description of the out of focus BG region. 

This research expands on the matting concept by proposing a method for the automatic 
delineation of the closed boundaries of an OOI from a LDOF image where the OOI represents a 
subcomponent of a larger ROI. This will require firstly, the extraction of the ROI and secondly, a 
reference for the OOI based on an analysis of the gradients in the image and thirdly, the estimation, 
refinement and subsequent delineation of the OOI from the rest of the ROI through the 
interrogation and correlation of edges and gradients in the ROI together with cluster-based 
segmentation. 

Only images where part of the OOI overlaps with the out of focus BG of the image are 
considered in this research. Scenarios where the OOI is completely enveloped by the ROI, like for 
example the image illustrated in Fig. 25(f), are excluded. In these latter scenarios, absent of any a 
priori information pertaining to the OOI or other monoscopic cues such as motion, there is no 
discernible robust means of differentiating the OOI from the non-OOI region in the ROI. 

This paper is organised as follows: Section B provides a description of the proposed model as 
well as the necessary steps required to perform unsupervised OOI matting. Section C reports the 
experimental results. Section D provides a brief discussion on some of the limitations of the 
research and section E closes the paper. 

 

B. Proposed Approach 
 

The proposed model involves four stages. The first stage considers the extrapolation of the    
in focus FG or the region-of-interest (ROI) from the out of focus BG. This stage is described in 
detail in the previous section Unsupervised Region-of-Interest Extraction based on the 
Correlation of Gradient and Higher-Order Statistics Saliencies on p. 18. The second stage 
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involves the extrapolation of a baseline reference for the OOI. The third stage involves the 
generation of a more precise estimate of the OOI by expanding the OOI baseline reference using 
edges and k-means segmentation. For each approximation of the OOI, starting with the baseline 
reference, the LDOF image is classified into one of six proposed ROI-OOI permutations or types. 
The fourth and final stage involves the precise delineation of the close boundaries of the OOI from 
rest of the ROI. 

 

1) OOI Baseline Reference 

In an unsupervised scenario no a priori baseline reference exists for either the OOI or GOI 
and as a result the problem becomes ill-posed. To resolve this conundrum, the proposed model 
uses the dominant gradient saliencies in the image to initially derive a baseline reference for          
the OOI. The objects in an image are expected to exhibit more clearly defined or dominant edges 
than non-object regions. Moreover, for scenarios where a distinct OOI exists, the boundary of this 
region is expected to contain more clearly defined or dominant edges than the rest of non-OOI 
region (including the GOI) within the LDOF image. 

In this research, dominant edges are considered as a subcategory of dominant regions. These 
regions are high energy connected components that are represented by edges with the longest 
lengths as well as those forming closed segments. Since each of these dominant regions represent 
individual connected components containing a certain amount of energy (pixels), it may be 
assumed with a high degree of probability that majority of the closely clustered high energy 
regions within the ROI are associated with the OOI. 

In the proposed model the gradient saliency map (ΠGRAD) defined on p. 26 is considered as 
the reference for the dominant regions. The OOI baseline reference, denoted by ΠOOI

INIT, is 
determined by firstly, considering only connected components within ΠGRAD that intersect with 
the ROI and secondly, excluding any segment within this range that is below a certain energy 
threshold. From experiment, any segment or filled region having a pixel count (energy) less        
than 5% of the perimeter of the image is omitted. This is illustrated in Fig. 27(c). 

 

2) LDOF Image Classification 

In the proposed model OOI matting is only performed on LDOF images where the OOI 
represents a subcomponent of a larger ROI. As a consequence it is necessary at this stage to 
unambiguously distinguish between the various types of LDOF image scenarios. Although it is 
implausible to account for every possible scenario, a wide range of LDOF images may 
nevertheless be classified by considering only a few of the most common variations encountered, 
such as those illustrated in Fig. 25 
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For most scenarios involving an OOI the focus of the image is centred on the OOI. However, 
in some cases the OOI may be located on top of a ground region and depending on the focal plane 
settings during image capture the in focus ROI may also encapsulate (a portion of) this ground 
region. This is denoted by GOI. Each LDOF image classification may be described as a 
permutation of three regions of concern. These include the in focus OOI, in focus GOI and out of 
focus BG regions. 

In the proposed model, if a LDOF image contains a distinct OOI, then the location of the OOI 
is also considered as a variable. This results in six possible types of LDOF image classifications. 
At this stage the purpose of the classification is not to yield a precise delineation of the OOI but 
rather to provide a technique of broadly classifying the LDOF image into one of the six possible 
scenario types. Table VII provides a description of these various classification types together with 
their trimap representations. The grey region in the trimap represents an approximation of the GOI, 
the white region denotes an approximation of the OOI and the black region represents an 
approximation of the BG (non-ROI). 

Based on the descriptions provided in Table VII this research only explores OOI matting 
for images classified as either type 2 or 3. Type 1 and 6 either contains no OOI or the OOI is 
indistinguishable from the ROI and is therefore not applicable. For type 4 and 5 classifications the 
method proposed for ROI extraction in the previous section on p. 18 may be used for OOI 
extraction without requiring any further adaptation. 

The terms OOI and GOI refer to the precise delineation of both the OOI and the ground 
region within the ROI. However, for the purpose of LDOF image classification it is only necessary 
to have a rudimentary approximation of these two sub-regions. The type of the LDOF image 
classification is determined by interrogating the OOI and the ground plane approximations and 
associating the permutation with a corresponding description provided in Table VII. 
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TABLE VII

DESCRIPTION OF VARIOUS TYPES OF LDOF IMAGES 
 
 

Classification Description Trimap 

TYPE 1 

 The ROI extends across the entire width of the 

image 

 A distinct OOI is NOT present 

 The GOI represents the entire ROI 

 This is illustrated in Fig. 25(a). 
 

TYPE 2 

 The FG extends across the entire width of the 

image 

 A distinct OOI is present 

 A distinct GOI is present 

 The OOI overlaps with the BG region 

 No part of the OOI overlaps with the bottom 

row of the image 

 This is illustrated in Fig. 25(d). 

 

The ground plane may either be less than the 

width or span the entire width of the image. 

 

TYPE 3 

 The FG extends across the entire width of the 

image 

 A distinct OOI is present 

 A distinct GOI is present 

 The OOI overlaps with the BG region 

 The OOI overlaps with the bottom row of the 

image 

 This is illustrated in Fig. 25(e). 

 

The ground plane may either be less than the 

width or span the entire width of the image. 
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Classification Description Trimap 

TYPE 4 

 A distinct OOI is present 

 A distinct GOI is NOT present 

 The OOI represents the entire ROI 

 The OOI overlaps with the bottom row of the 

image 

 This is illustrated in Fig. 25(c).  

TYPE 5 

 A distinct OOI is present 

 A distinct GOI is NOT present 

 The OOI represents the entire ROI 

 This is illustrated in Fig. 25(b). 

TYPE 6 

 The ROI extends across the entire width of the 

image 

 A distinct OOI is present 

 A distinct GOI is present 

 The OOI is entirely enveloped by the ROI 

 This is illustrated in Fig. 25(f). 

 

When the OOI is fully enveloped by the GOI the 

location of the OOI within the GOI is not 

considered as a variable. 
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At this point a rudimentary classification of the image may be made. The OOI is chosen 
as the rectangular bounded region of the OOI baseline reference ΠOOI

INIT (Refer to Fig. 27(c)). For 
the ground plane region, the rectangular bounded region of ΠOOI

INIT is initially omitted from the      
original ROI (Refer to Fig. 27(b)) and any segment not incident with the bottom border of the 
image is subsequently excluded; this is denoted by ΠGRND

INIT . 
From experiment, if any part of ΠGRND

INIT  is incident on either the left or right boundaries of 
the image, then the image is rudimentarily classified as either type 2, 3 or 6. If ΠOOI

INIT is fully 
enveloped by ΠGRND

INIT  , then it is a type 6 classification. If none of the previous conditions apply 
and if the bottom border of ΠOOI

INIT is located on the bottom border of the image, then it is a type 3 
classification, else it is a type 2 classification. 

If ΠOOI
INIT spans the entire width of the image or ΠOOI

INIT = ∅, then there is no discernible a 
priori means of determining whether the FG represents a landscape type situation with no      
distinct OOI or if the entire ROI is the OOI. In this eventuality the image is classified as type 1. 

If ΠGRND
INIT = ∅, then this implies a type 4 or 5 classification. However, if the bottom border 

of ΠGRND
INIT  is located on the bottom border of the image, then it is a type 4 classification, else it is 

a type 5 classification.  
A classification of the LDOF image is made each time an approximation of the OOI is 

produced. If the image is classified as either type 1, 4, 5 or 6, then no further processing occurs 
and the OOI is equated to the ROI. 

For illustrative purposes, a classification tri-map may be constructed. Initially,                        
if ΠGRND

INIT ≠ ∅, then by using the centre column of the image, ΠGRND
INIT  is split into two 

subcomponents. Subsequently a straight line bounded representation of ΠGRND
INIT  is constructed by 

protracting a straight line through the centroids of the upper most row of both subcomponents 
across the entire span of the image. 

For certain LDOF image scenarios the ground plane may often appear skewed (non-
horizontal) and inconsistent or incomplete. This is owing primarily to the camera parameters 
and/or the position of the camera during image capture. Although the focus of the OOI is 
minimally affected in these scenarios, a consequence is that some of the defocussed regions of the            
ground plane may be mistakenly interpreted as belonging to the BG thereby resulting in an           
inconsistent ROI region. As a consequence, if the protracted straight line intersects the bottom 
border of the image or if only one subcomponent exists, the bounded ground plane is generated 
by protracting the upper most row of ΠGRND

INIT   across the entire width of the image.  
Finally, the classification tri-map is produced by setting the pixels associated with the 

bounded region of ΠGRND
INIT  to 128 and those associated with rectangular bounded region of ΠROI

OOI 
to 255. The remaining pixels, which represent an approximation of the BG region, are all assigned 
the value 0. This is illustrated in Fig. 27(d). 
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Fig. 27 Image Matting. (a) Original defocused image; (b) Region-of-Interest; (c) Baseline OOI reference;   
(d) LDOF image classification. 
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3) OOI Matting 

The baseline OOI reference ΠOOI
INIT may be used for a rudimentary classification of the LDOF 

image. However, on its own, it is inadequate for the precise delineation of the OOI from the ROI. 
For this purpose a more refined estimate of the OOI and GOI is required. In the proposed model 
the matting of the OOI is achieved over four stages. The first two stages involve the estimation of 
the OOI which is derived by starting with ΠOOI

INIT and subsequently expanding on this region 
through a series of incremental assessments. The third stage involves an estimation of the ground 
plane region by using the estimation of the OOI as a reference. The fourth and final stage involves 
the matting of the OOI by excluding the ground plane region GOI from the ROI. 

 
Fig. 28 Image Matting. (a) Original LDOF image; (b) Initial OOI reference; (c) Final OOI reference. 

 
The first stage initially uses ΠOOI

INIT as a foundation and subsequently expands this region using 
common edges. In the proposed model the edge saliency map (ΠEDGE) defined on p. 26 is 
considered for this purpose. Initially, any segment in ΠEDGE having a certain overlap within a 
buffer range of ΠOOI

INIT is considered as belonging to the OOI. From experiment the rectangular 
bounded region of ΠOOI

INIT is selected as the buffer range and a percentage overlap of 30% is used 
as the threshold. Subsequently, close neighbourhood edges are linked and any closed boundary 
regions are filled. This expanded OOI region is denoted by ΠOOI′

1 . 
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Fig. 29 OOI Matting: Stage 1. 
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The next step involves a deeper interrogation and refinement of the new regions in ΠOOI′
1 . 

Firstly, ΠOOI′
1  is segmented using k-means clustering. The k-means segmentation technique 

employed in this research is discussed on p. 35. The output is only dependent on the a priori 
number of clusters requested. Owing to the nature of LDOF images some segmentation 
discontinuities may arise when objects and regions transition between the FG and BG regions. 
From experiment, a cluster value of 3 is shown to minimise under-segmentation while also 
avoiding over-segmentation. For the various OOI matting substages a cluster value of 3 is set 
whenever k-means segmentation is employed. 

Secondly, each connected component in each of the cluster arrays are analysed, separated and 
collated in arrays containing ground regions and non-ground regions. From experiment, by 
employing a type of Gestalt reasoning [24], any connected component that is incident with the 
bottom border of the image is initially considered as belonging to the ground region. 

Thirdly, the two collated arrays are further sub-segmented using k-means clustering. 
Subsequently the connected components within each of the sub-segmented cluster arrays                 
are validated. From experiment any connected component having a percentage overlap of less    
than 85% of the rectangular bounded region of ΠOOI

INIT is considered as invalid and excluded          
from ΠOOI′

1 . To ensure the integrity of the OOI baseline reference is preserved a union is performed 
between ΠOOI

INIT and the refined ΠOOI′
1 ; the result is denoted by ΠOOI′′

1 . 
Finally, the initial OOI reference ΠOOI

1  is derived by intersecting ΠOOI′′
1  with the ROI. A flow 

diagram of the algorithm for the first stage is provided in Fig. 29 and an illustration of the results 
are provided in Fig. 28(b). 

The second stage involves the expansion of ΠOOI
1 . Firstly, the entire LDOF image is 

segmented using k-means clustering. Secondly, the connected components within each of the 
segmented cluster arrays are validated. From experiment any connected component is considered 
as belonging to the OOI if either it has a percentage overlap of greater than 85% of the rectangular 
bounded region of ΠOOI

1  or if more than 50% of the perimeter of the connected component is 
adjacent to ΠOOI

1 . Thirdly, the invalid regions are collated into a single array and subsequently 
segmented using k-means clustering. Again the connected components within each of the clusters 
are assessed using the aforementioned validation criteria with the expanded OOI region as the 
reference. The last process is repeated two more times for the invalid segments and at each 
validation step the expanded OOI region is used as the reference. This expanded OOI region is 
denoted by ΠOOI′

2 . A flow diagram of the algorithm for the first component of the second stage is 
provided in Fig. 30. 
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Fig. 30 OOI Matting: Stage 2a. 
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Fig. 31 OOI Matting: Stage 2b. 
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The next step involves a deeper interrogation and refinement of the new regions in ΠOOI′
2  

similar in manner to the first stage. Firstly, ΠOOI′
2  is segmented using k-means clustering. 

Secondly, each connected component in each of the cluster arrays are analysed, separated and 
collated in arrays containing ground regions and non-ground regions. Ground regions include any 
connected components that are incident with the bottom border of the image. Thirdly, the two 
collated arrays are further sub-segmented using k-means clustering. Subsequently the connected 
components within each of the sub-segmented cluster arrays are validated. From experiment any 
connected component having a percentage overlap of less than 85% of the rectangular bounded 
region of ΠOOI

1  is excluded from ΠOOI′
2 ; this is denoted by ΠOOI′′

2 . 
Finally, the refined OOI region ΠOOI

2  is derived by performing an intersection between ΠOOI′′
2  

and the ROI. A flow diagram of the algorithm for the second component of the second stage is 
provided in Fig. 31 and an illustration of the results are provided in Fig. 28(c). 

 

Fig. 32 Image Matting. (a) Original defocused image; (b) ROI; (c) Ground region GOI; (d) Matted OOI. 
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Fig. 33 OOI Matting: Stages 3 and 4. 
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The third stage involves the extraction of the ground region by estimating the non-OOI region 

of the entire LDOF image. From experiment, the following method is employed for this purpose. 
Firstly, the entire LDOF image is segmented using k-means clustering. Secondly, an entire cluster 
array is considered to belong to the non-OOI region if it has less than a 5% overlap with the with 
the OOI reference ΠOOI

2 . Thirdly, if a cluster arrays is invalid, then the individual connected 
components within the cluster array are assessed. In this case any connected component having 
less than a 10% overlap with the ΠOOI

2  is also considered as belonging to the non-OOI region. 
Fourthly, any cluster array or connected component excluded from the non-OOI region are 
subsequently collated and reassessed. This is achieved by performing segmentation of the collated 
non-OOI region using k-means clustering. The first two stages above are subsequently applied to 
these sub-segmented cluster arrays. To account for the reproducible inconsistencies associated 
with k-means segmentation the entire process above is iterated 3 times with the non-OOI region 
being constructed in an accumulative manner. Finally, any segment in the non-OOI region not 
located on the border region of ΠOOI

2  or completely enveloped by ΠOOI
2  is excluded. 

The final in focus ground plane region GOI is extrapolated by performing an intersection 
between the non-OOI region and the ROI. Any low energy regions such as sparse edges and small 
connected components are considered to be invalid and are excluded from GOI. From experiment 
the morphological erosion and subsequent dilation of the region using a 5×5 square structuring 
element is adequate for the refinement of these regions. Moreover, any of the remaining connected 
components that are not incident with the bottom border of the image are excluded from GOI. 
Subsequently, the matted OOI is derived by excluding GOI from the ROI. A flow diagram of the 
combined algorithm for the third and fourth stages is provided in Fig. 33. and an illustration of the 
results of the GOI and the matted OOI are provided in Fig. 32. 

 

C. Results 
 

There are three distinct outcomes to this research. The first involves the rudimentary 
approximation of the OOI by using the dominant gradients in the image as a baseline reference. 
The second involves the use of the rudimentary approximation of the OOI together with the 
extracted ROI to classify the LDOF image into one of six possible types. The third involves the 
matting of the OOI from the ROI for type 2 and 3 classifications. 

The proposed methods are tested on real world images. These include images from Li and 
Ngan (2007) [42] (together with their ground-truth masks), the COREL dataset [110, 111] as well 
as numerous images from the World Wide Web (WWW). A separate set of training images were 
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also sourced from Li and Ngan (2007) [42], the COREL dataset [110, 111] , Bae and Durand [60],             
Ko et. al [65], Zhou and Sim [63]  and from WWW. 

 
Fig. 34 Experimental results for LDOF image classification: Boy-Soccer, Dog-Deer, Girl-Bridge, Crane and 
Field (from top to bottom).  (a) Original defocused image; (b) ROI; (c) OOI reference; (d) Classification. 

 
Some of the results obtained for the methods proposed for the rudimentary approximation of 

the OOI and LDOF image classification are shown in Fig. 34. The original images in  Fig. 34(a) 
are titled (from top to bottom) as Boy-Soccer, Dog-Deer, Girl-Bridge, Crane and Field, 
respectively.  Fig. 34(b) provides the corresponding extrapolated ROIs. These are derived using 
the method proposed in the previous section Unsupervised Region-of-Interest Extraction based on 
the Correlation of Gradient and Higher-Order Statistics Saliencies on p. 18. Fig. 34(c) shows the 
corresponding rudimentary approximation of the OOI proposed for use in the classification of      
the LDOF image. Fig. 34(d) provides the results obtained using the proposed method for LDOF 
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image classification. The OOI is indicated in white, the ground region in grey and the (defocussed) 
background in black. The descriptions as well as templates of the six proposed types of 
classifications are provided in table VII on p. 59. 

Although the approximations of the OOI for the Boy-Soccer and Crane images may be 
considered as reasonably accurate closed boundary delineations of the OOI, the Dog-Deer, Girl-
Bridge and Field images are noticeably inadequate and further expansion and correlation is 
required in order to have consistency across a wide range of LDOF images. Nevertheless, the 
results show that a reasonable enough approximation of the OOI is derivable from the dominant 
gradients in the image and that this is sufficient for the accurate classification of a LDOF image. 

Some of the results obtained for the method proposed for OOI matting of type 2 and 3 
classified LDOF images are shown in Fig. 35. The original images in  Fig. 35(a) are titled (from 
top to bottom) as Stag, Model, Puppies, Baseball-Girl and Tiger-Water, respectively.  Fig. 35(b) 
provides the corresponding extrapolated ROIs. These are derived using the method proposed in 
the previous section Unsupervised Region-of-Interest Extraction based on the Correlation of 
Gradient and Higher-Order Statistics Saliencies on p. 18. Fig. 35(c) shows the matted ground 
region of the ROI. Fig. 35(d) provides the results obtained using the proposed method for OOI 
matting of single 2D LDOF images. 

Although the girl in the background of the Baseball-Girl image may be considered as an error, 
this is actually a consequence of the ROI sub-stage not effectively dealing with low differences in 
the defocus degree of the foreground versus background and not as a result of the proposed OOI 
matting method. This also applies to the small region between the horns of the stag in the Stag 
image. Similarly, the tiger in the Tiger-Water image should exclusively be considered as the OOI. 
However, the water region is significantly contrasted from the surrounding ground region and, 
absent of any a priori knowledge, should also be considered as belonging to the OOI. 

The results show that by correlating the ROI with the dominant gradients in the image together 
with cluster-based segmentation it is possible to produce a reasonably accurate delineation of the 
closed boundary region of the OOI. Although the proposed method is inherently dependent the 
accuracy of the segmentation, the use of the dominant gradients provides a baseline reference for 
the OOI and as a consequence deal with the ill-posed problem associated with the unsupervised 
correlation of these segments. 

Objective analysis of category types 4 and 5 LDOF images are presented in the previous 
section Unsupervised Region-of-Interest Extraction based on the Correlation of Gradient and 
Higher-Order Statistics Saliencies on p. 37. Currently in the literature there is no objective 
OOI/non-OOI ground-truth data available for category types 2 and 3 LDOF images. As a 
consequence the presented results for these specific category types are only subjectively assessed. 
Future work may include the generation of an OOI/non-OOI ground-truth database for all 
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categories of LDOF images. Although the generation itself will be subjectively produced it may 
be objectively assessed through peer consensus. 

 

Fig. 35 Image matting results 1: Stag, Model, Puppies, Baseball-Girl and Tiger-Water (from top to bottom). 
(a) Original defocused image; (b) ROI; (c) Matted ground region; (d) Matted OOI. 
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Owing to space constraints only a selected number of the total OOI matting results are 
illustrated in this section. The author may be contacted at serenr@gmail.com for more than 300 
LDOF images and their associated segmentation results; over 230 of the images also include their 
associated binary ground-truth masks. 

 

Fig. 36 Image matting results 2. 

D. Discussion 

A notable drawback of the proposed method is the that accuracy of the matting is dependent 
on the accuracy of delineated segmentation clusters. For some scenarios where the OOI may 
exhibit similar intensity values to the ground region the segmentation may result in some regions 
of the OOI being mistaken as belonging to the surrounding ground region and vice versa. These 
are illustrated in the Girl-Tracks and Girl-Hitchhiker images in Fig. 37. 
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Although the delineation of the ROIs as well as the classification of the images are accurate, 
the matting results are shown to be in error. In the Girl-Tracks image, owing to the colour of the 
ground and the boots being relatively close in intensity, the k-means clustering algorithm 
associates both regions with the same cluster. In the Girl-Hitchhiker image, the shadow cast from 
the OOI creates regions of continuity with the ROI and discontinuity with the ground plane. 

 

Fig. 37 LDOF image classification and OOI matting results: Goblet, Girl-Tracks and Girl-Hitchhiker (from 
top to bottom). (a) Original defocused image; (b) ROI; (c) Classification; (d) Matted OOI. 

 
Another limitation of the proposed method is the high number of heuristic strategies 

employed. Further research is necessary to possibly amalgamate and refine this approach. The 
segmentation may also be affected when considering scenarios where the ground region is multi-
layered or multi-coloured. Further research is warranted in this regard. 

E. Conclusion 

A novel unsupervised method is proposed for the accurate delineation or extraction of the 
OOI from a single LDOF image when the OOI is located within a larger ROI. Firstly, a baseline 
reference of the OOI is determined by using the dominant gradients in the image. Secondly, an 
approximation of the OOI is produced by expanding these baseline artefacts within the confines 
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of the ROI. Thirdly, the image is classified into one of six types of LDOF image scenarios. 
Fourthly, segmentation is performed using k-means clustering and, under the guidance of the OOI 
approximation, the non-OOI region are initially identified and subsequently excluded from           
the ROI thereby isolating only the closed boundary region of the OOI. This final stage is dependent 
on the type of LDOF image. 

In an unsupervised OOI matting model no a priori reference for the OOI exists and as such 
the problem becomes ill-posed. However, the results show that the interrogation of the dominant 
gradients in a LDOF image is an extremely effective means of identifying the OOI and also 
providing a rudimentary or baseline reference for the approximation of the OOI. Matting is only 
applicable to two of the six proposed types of LDOF images. For the other four types the initial 
extraction of the ROI provides a sufficient representation of the OOI. In this research the initial 
extraction of the ROI is achieved using the method proposed in the previous section on p. 18 
entitled Unsupervised Region-of-Interest Extraction based on the Correlation of Gradient and 
Higher-Order Statistics Saliencies. 

In some scenarios the OOI may represent the entire ROI and in others the ROI may be 
comprised of two regions. These include the OOI and the non-OOI region. The non-OOI region 
are usually referred to as the ground-plane region; this is denoted by GOI. By this understanding 
the matting of the OOI essentially involves the removal of GOI from within the ROI. The 
identification and subsequent removal of GOI is performed in three stages. Firstly, segmentation 
of the regions within the LDOF image is performed. The results show that k-means clustering is 
adequately suited for LDOF images. Secondly, an approximation of the OOI is produced within 
the confines of the ROI by correlating the edges and cluster segments using the OOI baseline 
reference as a guide.  Thirdly, an approximation of GOI is produced within the confines of              
the ROI by invalidating the cluster segments against the approximation of the OOI. The results 
show that this feedback approach is the most effective means of isolating the closed boundaries of 
the OOI from the rest of the ROI. 

Image classifications plays a vital role in several arenas of image processing. In this research 
a novel method is proposed for the classification of LDOF images. The classification of a LDOF 
image is actually a classification of the ROI within the LDOF image and may be considered as 
being independent of the matting of the OOI. Six types of ROI scenarios are described in this 
research. The results show that the dominant gradients within the ROI provide an adequate 
reference for the OOI and the proposed expansion and refinement of this region within the confines 
of the ROI is provides an extremely robust means of determining the OOI-ROI permutation and 
subsequently the classification of the LDOF image into one of the six proposed types. 

Future work may include the matting of the OOI as well as the classification of the LDOF 
image independent of the extraction of the ROI. 
  



77 
 

 

IV. AUTONOMOUS DEPTH MAP GENERATION OF                                    

SINGLE 2D LOW DEPTH-OF-FIELD IMAGES USING                             

DEFOCUS, LINEAR PERSPECTIVE AND GESTALT PRINCIPLES 

 

A. Introduction 

A depth map may be described as a 2D representation of 3D space whereby every pixel in an 
image is given an associated relative depth value. This is usually in the form of a grey-level 
intensity array, as illustrated in Fig. 38. Depth maps play a vital role in arenas such as 3D computer 
graphics, machine vision and 2D-to-3D conversion. 

 
Fig. 38 An input image and its estimated depth map [40]. In this case the higher the intensity of the pixel 
(whiter) implies a closer relative depth to the camera.  

 
There is no optimal solution for the unsupervised generation of a depth map from a single 2D 

image. Even if the regions in a scene are accurately delineated there is still no precise means of 
assigning depth to these regions without a priori information such as the parameters of the capture 
device. The fundamental problem is that given only limited information in two dimensions, a third 
dimension, depth, has to be extrapolated. 

There are two broad associated complexities with respect to depth map generation. The first 
involves the segmentation of the objects and regions within the image and the second entails the 
actual assignment of depth values to these objects and regions.  

For the assignment of depth to be effective it is necessary to account for the multiple objects 
and sub-regions present within a scene; all of which have to be meticulously delineated and 
categorised. In addition to accurately delineating these objects and regions, objects effectively 
occluding (in front of and partially blocking) other objects need to be identified. This is essential, 
since every pixel has to be grouped and assigned an appropriate and relative depth value.  
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This images considered in this research are single 2D low depth-of-field images. In 
photography and cinematography, the term depth-of-field (DOF) refers to amount of                      
focus (sharpness) or defocus (blurriness) present in an image. Image or video capture is           
broadly categorised into two DOF techniques. These include deep or high DOF and shallow or 
low DOF (LDOF). Illustrations of both these DOF methods are provided in Fig. 9. 

 
Fig. 39 Depth-of-field [66]. (a) High DOF. (b) Low DOF. 

 
The categorisation of segments of regions in an image is commonly referred to as            

labelling [43]. Some of the most common labels include the object of interest (OOI), ground 
region, background and skyline. Without any a priori baseline reference for the regions in an image 
the labelling of these regions may have to rely on Gestalt principles [24].  

Emphasis in a LDOF image is usually placed on the in focus OOI. The precise delineation of 
this region, which is referred to as image matting [114], is crucial to the accuracy of the depth 
map, since all if not a significant majority of the pixels constituting the OOI, especially those at 
the boundaries, need to be accounted for prior to the assignment of depth. 

This research proposes a model for the unsupervised estimation and allocation of relative 
depths across an entire single 2D LDOF image. This is achieved through the incorporation               
of LDOF image classification, OOI matting, Gestalt-based region classification, gradient-plane 
estimation [23, 56] using vanishing point detection [23, 56] and Gaussian blur                        
analysis [42, 51, 53, 60, 63, 69, 82-84]. The final product is presented in the form of a grey-level 
intensity map. 

This paper is organised as follows: Section B provides a brief discussion of some of the related 
work. Section C provides a description of the proposed model as well as the necessary steps 
required to autonomously generate a depth map from a single 2D LDOF image. Section D reports 
the experimental results. Section E provides a brief summary of the research and closes the paper.    
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B. Related Work 

Depth from defocus (DfD) deals with how objects are perceived depending on their distance 
from the camera’s focal plane based on the relationship between the focused and defocused 
regions in an image. [87]. In LDOF images objects will exhibit a certain amount of blur (out of 
focus) relative to their position very near to, or very far from, the object in focus. Fig. 40 shows 
three different images of the same scene shot with three different LDOF focal settings [115]. 

 

Fig. 40 Depth from defocus [115]. (a) Apple in focus; (b) Grapefruit in focus; (c) Background in focus.  

 
In Fig. 40(a) the apple is in focus while the grapefruit and the BG appear out of focus. The 

BG appears more out of focus (defocused) than the grapefruit because it is further away from the 
apple. In Fig. 40(b) the grapefruit is brought into focus, with the apple and BG defocused. 
Although the BG is still defocussed it nevertheless exhibits much less blur than in Fig. 40(a), 
agreeing with the concept of distance from the focal plane. In Fig. 40(c) the BG is brought into 
focus and both the grapefruit and apple are defocused. Again it is observed that owing to its 
distance from the background the apple is more defocused than the grapefruit. These attributes 
may provide a means extrapolating the relative depths across an entire image. 

 
Fig. 41 Defocus blur [116]. 

 

By comparing the two images shown in Fig. 41 the relationship between defocus and the 
optical setting of the camera may be further emphasised. In both these images LDOF settings are 
used, resulting in the OOI appearing in focus and the background appearing to be out of            
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focus. Apart from the minimal angular difference, the OOI appears to be sharp and approximately 
the same size in both images. At first glance the background in A.1 appears to be more                      
blurred than the background in B.1. However, this is only true in reference to absolute blur and 
not relative blur. In terms of the latter there is a direct association with magnification [60]. When 
taking this into account, the depth of distant background objects always holds true in relation to 
the relative blur. Fig. 42 illustrates this concept, whereby both background objects are magnified 
to the same size and appear to have the same diameters of blur kernels with approximately equal 
Gaussian spreads. 

 

 
Fig. 42 Relative blur [116] 

 
Most of the early work into DfD was done by Pentland [87], who introduced the concept of 

the blur circle (also known as circle of confusion) into the DfD framework. This research was 
closely followed by Grossman [117] and Subbarao [118, 119]. 

For a camera with lens of focal length4 fL, the relationship between the position of a point close 
to the optical axis in a scene and the position of its focused image is given by the familiar thin lens 
formula [120]: 

 

 1
𝑓L

= 1
𝑢

+ 1
𝜈

,   (9)

                                                 

4 Depends on the shape and material of the lens. For the thin lens model 1
𝑓L

≈  ( 1
𝑅1

 − 1
𝑅2

)(𝑛 − 1), where 𝑛 is the 

refractive index of the lens and 𝑅1 and 𝑅2 are the radii of the two surfaces of the lens. 
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where u represents the distance between the in focus object (focal plane) and the lens and 𝜈, 

which is the focus setting, represents the distance between the lens and the image plane. This is 
illustrated in Fig. 43. 

                   

Fig. 43 Geometry of (real) finite-aperture imaging system [121] 

 
Two scenarios exist when considering Eq. (9) and the associated variables given in Fig. 43; 

these include 𝜈 = 𝜈0 and 𝜈 ≠ 𝜈0. For the former a point on an object is projected on the image 
plane as a point. Subsequently all points located at this focus distance (on the focal plane) will 
appear as points on the image plane. For the latter the thin lens law is violated. In this case a point 
from an object is projected on the image plane not as a point but rather as a disk (assuming a 
circular lens). This disk is referred to as the blur circle or circle of confusion (CoC). Geometrically, 
the equation for the radius of this disk, denoted by c, is given by 

 

 𝑐 = 𝐷
2 |1 − 𝜈

𝜈0|   (10)

 
where D is the aperture of the lens. 5 It may also be shown that b1 = b2 = 𝑐. Moreover, by analysing 
the geometry of Fig. 43 the following equation may be obtained for the estimation the depth: 

 

                                                 

5 D is not necessarily equal to the diameter of the lens since some cameras come equipped with a diaphragm, a 

mechanism that generates a variable-diameter opening in front of the lens. For standard cameras 𝐷 =  𝑓L
𝑁 , where N is 

referred to as either the f-number, f-stop or relative aperture. Some references use f0 instead of N. 
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 𝑢 =  
𝑓L𝜈

𝜈 − 𝑓L − 2𝑐𝑁
(for 𝑢 > 𝜈) .   (11)

 
Pentland showed that this CoC is a nonlinear monotonic function relative to u and may be 

modelled as the convolution of a focused image with a Gaussian point spread function (PSF). If 
P is the real-world defocused point, then p at coordinates (𝑥, 𝑦) is the projected image point having 
a blur radius of 𝜎(𝑥, 𝑦). By letting 𝜎(𝑥, 𝑦) = 𝜎, where 𝜎 is a constant for a given window, the PSF 
may then be expressed as 

 

 ℎ(𝑥, 𝑦) = 1
√2𝜋𝜎2

exp (− 𝑥2+𝑦2

2𝜎2 ).   (12)

 
At this point an important conclusion is drawn: the width 𝜎 of the PSF ℎ(𝑥, 𝑦), which is assumed 
to be of Gaussian shape, is proportional to the CoC or c, such that 

 

 𝜎 = 𝛾𝑐,   (13)
 
where 𝛾  becomes a camera-specific proportionality constant. From this it is inferred that the depth 
may be determined by the PSF difference between a focused and a defocused image, hence the 
terminology “depth from defocus”. 

Based on these observations it would seem that the direct interrogation of the Gaussian PSF 
would be the most appropriate method for defocus analysis. Although this is true it has proven to 
be a complicated research area, especially when considering blind or unsupervised approaches 
where no a priori knowledge is available.  

The regions of defocus in an image may be visualised as being in focus areas having 
subsequently been convolved with a circular Gaussian PSF. This is described by the following 
linear model equations [94]: 

 

 𝑖𝑏(𝑥, 𝑦) = 𝑖0(𝑥, 𝑦) ⊗ ℎ(𝑥, 𝑦) (spatial domain)   (14)
 
 
 

 𝐼𝑏(𝜇, 𝜈) = 𝐼0(𝜇, 𝜈) ℋ (𝜇, 𝜈) (frequency domain)  (15)
 

where 𝑖𝑏 represents the defocused (blurred) image, 𝑖0 represents the true image, h represents          
the impulse response or the PSF responsible for the blurring of 𝑖0 (refer to Eq. (12)), and 𝐼𝑏, 𝐼0 
and ℋ  refer to the equivalent in the frequency domain, respectively; ⊗ denotes 2D convolution. 

The reverse of the convolution process is termed deconvolution, the aim of which is to   
recover 𝑖0 given 𝑖𝑏 and h. Even with these variables known a priori, the solution to the 
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deconvolution problem, through inverse filtering, may nevertheless be counterproductive owing 
to the effects of noise amplification. 

Further complications exist with deconvolution when both 𝑖0 and 𝑖𝑏 are not known. This 
situation is termed blind deconvolution. Solutions to this ill-posed problem have been          
proposed [122]. These usually begin with an initial guess of 𝑖0, which is often taken to be the 
blurred image itself; subsequently, attempts are made to obtain h through a least squares solution; 
and finally, the iteration is reversed and attempts are made to estimate 𝑖0 based on the          
estimated h. The disadvantage of these approaches is that they may prove to be computationally 
expensive, owing to the size of h usually being much smaller than 𝑖0. 

In order to improve efficiency, techniques such as iterative blind deconvolution (IBD) [123] 
have been proposed. In the case of IBD, the 2D FFT of 𝑖0 and h are alternatively updated                
until 𝐼𝑏(𝜇, 𝜈) ≅ 𝐼0(𝜇, 𝜈) ℋ (𝜇, 𝜈) is almost satisfied; in this scenario the convergence progression, 
as well as robustness towards noise, is shown to be very much improved [122-124]. 

Deconvolution has applications in several research fields. However, for this technique to be 
viable in relative depth estimation, the PSF would have to be applied to each of the estimated 
defocused regions and not on the entire image as is currently proposed. Although attempts to 
improve the efficiency and reliability of image-based deconvolution have been put forward, such 
as the coded aperture method [125], these techniques nevertheless require prior physical 
modifications to the capture device, making them impractical for the purpose described in this 
research. 

An alternative approach to the PSF technique is the reverse heat equation method. This 
technique, which was originally proposed by Gabor (1965) [126], may also be applied to the image 
de-blurring problem. Since the Gaussian PSF is a fundamental solution to the heat equation, the 
reverse of the PSF may effectively be formulated in terms of the reverse of the heat equation. 
Another study proposes that the reverse heat equation be iteratively applied to each of the edge 
pixels, with the point of convergence being determined at each step by the difference in the 
gradient of the edge pixel and the average gradient of the local neighbourhood [82]. This 
approximation of the convergence is referred to as the reverse diffusion time. This approach, 
which is proposed as an estimated measure of the relative depth, is termed the inverse diffusion 
method. 

DfD, as described above, was originally designed to estimate depth by firstly, using two or 
more images and secondly, by having knowledge of the camera parameters. For single LDOF 
images two problems becomes apparent. Firstly, there is only a one image and secondly, the 
camera parameters are essentially unknown. This may seemingly make the DfD method 
impractical for unsupervised depth recovery. However, several DfD methods have been proposed 
for the extraction of relative depths from single LDOF images by analysing the blurred regions 
through manipulation of the gradient information [41, 42, 51, 61-63, 65, 67, 70, 82, 83, 127]. 
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These blur analysis techniques, which are often referred to as Gaussian blurring or re-blurring 
methods, are based on the direct interrogation of the complete blur across the LDOF image. 

As discussed above, the defocused regions of an image are defined as having characteristics 
that are Gaussian in nature and may be described as in focus areas of an image having been 
convolved with a circular Gaussian PSF. By analysing the gradient differences between a 
reference image and images of the same scene with different Gaussian blur attributes it may be 
possible to infer some degree of relative depth. The rationale is that across these images the objects 
in the focussed regions will contain relatively sharper gradients (fast high amplitude variations) 
than objects in the defocussed regions (small amplitude variations). The problem with single 
defocussed images is that these secondary images are non-existent. 

A technique to resolve this discrepancy has been proposed whereby a second image may be 
created by applying a Gaussian filter to the original defocused source (reference) image. This 
second image, in relation to the reference image, will have the appearance of an increased blur 
(smoothness) across the entire image. The approximate relative depths may then be estimated by 
calculating the differences between the reference image and the new re-blurred image. LDOF 
images by definition contain a certain amount of blur, therefore, the term re-blurred as it is used 
here actually implies the additional blurring of an image containing some initial amount of blur. 

Several methods exploiting this technique have been proposed for the delineation of the ROI 
in LDOF images [42, 51]. In these cases a type of focused saliency map (FSM) is employed. The 
FSM, which effectively emphasises the focused regions in the image, is produced by performing 
a direct subtraction of the aforementioned re-blurred image from the source image. 

Fig. 44 Gaussian Blur [42]. (a) Two PSF with different blur parameters (𝝈𝒉𝒃𝒈 = 𝟑. 𝟏𝟔 and 𝝈𝒈𝒓 = 𝟏).  
(b) Corresponding Fourier transforms. 

 
A defocused image 𝑖𝑑𝑓 (𝑥, 𝑦) may be described as comprising two components. These include 

the FG, 𝑖𝑓𝑔(𝑥, 𝑦), and the BG, 𝑖𝑏𝑔(𝑥, 𝑦). The latter is described as a region containing a non-zero 
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PSF, compared to the approximate zero PSF of the focused FG region; this original non-zero PSF 
is denoted by ℎ𝑏𝑔(𝑥, 𝑦). To generate the afore discussed second image, 𝑖𝑟(𝑥, 𝑦), a PSF is applied     
to 𝑖𝑑𝑓 (𝑥, 𝑦). This is described by the following equation: 

 

 𝑖𝑟(𝑥, 𝑦) = 𝑖𝑑𝑓 (𝑥, 𝑦) ⊗ 𝑔𝑟(𝑥, 𝑦) ,  (16)
 
where 𝑔𝑟(𝑥, 𝑦) denotes the re-blurring PSF and ⊗ denotes convolution. 

If 𝐺𝑟 and 𝐻𝑏𝑔 refer to the Fourier transform of 𝑔𝑟 and ℎ𝑏𝑔, respectively, then the product of 
these two PSFs may be expressed as 

 

 𝐺𝑟(𝜇, 𝑣)𝐻𝑏𝑔(𝜇, 𝑣) = exp(−2𝜋2𝜎ℎ𝑏𝑔
2

(1 + (
𝜎𝑔𝑟

𝜎ℎ𝑏𝑔)
2
) (𝜇2 + 𝑣2) .  (17)

 

From the Eq. (17), if 𝜎𝑔𝑟 < 𝜎ℎ𝑏𝑔, then the value of 1 + (
𝜎𝑔𝑟

𝜎ℎ𝑏𝑔)
2
 will tend towards 1, resulting 

in 𝐺𝑟(𝜇, 𝑣)𝐻𝑏𝑔(𝜇, 𝑣) ≅  𝐻𝑏𝑔(𝜇, 𝑣). For LDOF images it is assumed that most of the blurred regions 
will have parameters 𝜎ℎ𝑏𝑔 > 1. By setting 𝜎ℎ𝑏𝑔= 3.16 (larger) and 𝜎𝑔𝑟 = 1 (smaller), the curve       
of 𝐺𝑟(𝜇, 𝑣)𝐻𝑏𝑔(𝜇, 𝑣) is almost identical to 𝐻𝑏𝑔(𝜇, 𝑣), as illustrated in Fig. 44.  

Based on the outcome displayed in Fig. 44(b) it may be concluded that 𝐼𝑑𝑓 (𝜇, 𝑣) − 𝐼𝑟(𝜇, 𝑣) 
will result in most of the energy corresponding to the focused area in the image; the FSM of a 
defocused image is then defined as 

 

 FSM(𝑥, 𝑦) = |𝑖𝑑𝑓 (𝑥, 𝑦) − 𝑖𝑟(𝑥, 𝑦)| .  (18)
 

Owing to noise and soft shadows, some inconsistencies may arise in the FSM. To attenuate 
some of these isolated points a smoothing filter is usually applied to the FSM. The extraction of 
the ROI is performed using a three-step process. Firstly, a trimap is constructed by applying 
morphological filtering and thresholding to the FSM [41]. This trimap comprises of three      
regions viz. definite FG regions, definite BG regions and unknown border regions. Secondly, an 
initial estimate of the ROI is made by excluding the definite BG regions from the trimap. Thirdly, 
the ROI is refining by applying adaptive error control matting [84] to the unknown border regions. 
Although the FSM method described here may be used to address the ROI matting problem it is 
nevertheless insufficient for extrapolating image-wide relative depth information. 

Other methods, based on the analysis of the Gaussian blur, have been proposed for estimating 
the relative depths of entire single defocused images. Instead of subtracting the second re-blurred 
image from the original source image [42], the defocus blur amount is estimated by obtaining the 
gradient ratio between the original source image and the second re-blurred image [63]. The 
defocus blur is initially estimated at edge locations and then propagated across the entire image, 
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producing a relative full depth map. This method is closely related to the earlier discussed inverse 
diffusion method [82]. 

By assuming the edges in an image are ideal step edges, the following function may be 
considered: 

 𝑖𝑒(𝑥) = 𝐴𝑢(𝑥) + 𝐵,  (19)
 
where 𝑢(𝑥) is the step function, A is the amplitude, and B is the offset of the edge located at 𝑥 = 0. 
However, the edges in a defocused image are not truly ideal and therefore contain some degree of 
blurring; this is described as 

 𝑖𝑒0(𝑥) = 𝑖𝑒(𝑥) ⊗ 𝑔0(𝑥, 𝜎𝑔0),  (20)
 

where 𝑖𝑒0(𝑥) represents the edges of the defocused image and 𝑔0(𝑥, 𝜎𝑔0) represents the Gaussian 
PSF where the standard deviation, 𝜎𝑔0, is specific to each of the edge pixels. The ratio between 
the gradient of the original step edges and the defocused (blurred) edges may then be calculated 
at these edge locations. 

For convenience the 1D case is first described and then extended to 2D. Based on Eq. (19) 
and Eq. (20) it is shown that 

 

 ∇𝑖𝑒𝑟
(𝑥) =  ∇(𝑖𝑒0(𝑥) ⊗ 𝑔𝑟(𝑥, 𝜎𝑔𝑟)) 

   

 =  ∇((𝐴𝑢(𝑥) + 𝐵) ⊗ 𝑔0(𝑥, 𝜎𝑔0) ⊗ 𝑔𝑟(𝑥, 𝜎𝑔𝑟)) 
   

 
= 𝐴

√2𝜋(𝜎𝑔0
2 + 𝜎𝑔𝑟

2
)

exp
⎝
⎜
⎜
⎛
− 𝑥2

2(𝜎𝑔0
2 + 𝜎𝑔𝑟

2
)⎠

⎟
⎟
⎞
,   (21)

 
where 𝜎𝑔𝑟 is the standard deviation of the re-blurring Gaussian kernel, 𝑔𝑟(𝑥, 𝜎𝑔𝑟). The magnitude 
of the gradient ratio between the original defocused source image and the re-blurred second image 
is then described as 

 

 |∇𝑖𝑒0
(𝑥)|

|∇𝑖𝑒𝑟
(𝑥)|

=
⎷

√√
√𝜎𝑔0

2 + 𝜎𝑔𝑟
2

𝜎𝑔0
2 exp

⎝
⎜
⎜
⎛ 𝑥2

2𝜎𝑔0
2 − 𝑥2

2(𝜎𝑔0
2 + 𝜎𝑔𝑟

2
)⎠

⎟
⎟
⎞
.   (22)

 
The gradient ratio is actually maximum at the edge locations, which are located at 𝑥 = 0. This 

then gives the maximum ratio as  
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𝑅 =

|∇𝑖𝑒0
(𝑥)|

|∇𝑖𝑒𝑟
(𝑥)|

=
⎷

√√
√𝜎𝑔0

2 + 𝜎𝑔𝑟
2

𝜎𝑔0
2 .   (23)

 
From above, the maximum ratio is dependent on only 𝜎𝑔0 and 𝜎𝑔𝑟. Rearranging Eq. (23), the 

defocus blur may then be defined as  

 

 𝜎𝑔0 = 1
√𝑅2−1

𝜎𝑔𝑟.   (24)

 
The proposed blur estimation method is illustrated in Fig. 45. 

 

Fig. 45 Blur Estimation (Image adapted from [63]). 

 
The 1D model, which is described above, is extended to 2D by using 

 

 ‖∇𝑖(𝑥, 𝑦)‖ = √∇𝑖𝑥
2 + ∇𝑖𝑦

2 ,    (25)

 
where ∇𝑖𝑥 and ∇𝑖𝑦 

 are the gradients in the x and y directions, respectively. By setting 𝜎𝑔𝑟 = 1 and 
determining the edge locations by the Canny method [95], the sparse defocus (depth) map of a 
single defocused image is then defined as 

  

 𝑑𝑚̂(𝑥, 𝑦) = 1

√(
|∇𝑖𝑒0(𝑥,𝑦)|
|∇𝑖𝑒𝑟(𝑥,𝑦)|)

2
− 1

. 
  (26)

 
To minimise some of the inconsistencies, a bilateral filter (BF) [128] is applied to the         

sparse saliency map, 𝑑𝑚̂(𝑥, 𝑦). A final defocus map 𝑑𝑚(𝑥, 𝑦) is produced by interpolating                
the sparse saliency map values at the edge locations across the entire image. 
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Fig. 46 Model for distance between second-derivative extrema [60] 

 
Another proposed approach to the Gaussian re-blurring technique uses the second 

derivative Gaussian filter response as a means to determine the defocus blur of an image [60, 127]; 
this is illustrated in Fig. 46. Any given edge in an image is typically a non-ideal step edge i.e. it is 
described as either an error function or as an ideal step edge that is blurred by a Gaussian, as 
described by Eq. (20) on p. 86. Furthermore, the derivative of Eq. (20) will actually yield a 
Gaussian, and the second derivative of Eq. (20), which equates to the first derivative of a Gaussian, 
will produce a zero-crossing response as illustrated in Fig. 46. 

By adapting Eq. (20) on p. 86, the second derivative filter is modelled by  

 

 𝜕
𝜕𝑥2 𝑖𝑒0(𝑥, 𝑦) = −𝐴𝑥

√2𝜋(𝜎𝑔0
2 + 𝜎𝑔𝑟

2
)

3
exp

⎝
⎜
⎜
⎛
− 𝑥2

2(𝜎𝑔0
2 + 𝜎𝑔𝑟

2
)⎠

⎟
⎟
⎞
	,   (27)

 

 
= −𝐴𝑥

√2𝜋(
𝑑
2)

3 exp
⎝
⎜
⎜
⎛
− 𝑥2

2(
𝑑
2)

2
⎠
⎟
⎟
⎞
,   (28)

where  

 

 (
𝑑
2)

2 = 𝜎𝑔0
2 + 𝜎𝑔𝑟

2 .   (29)
 
Rearranging Eq. (29) then gives 

 

 
𝜎𝑔0 = √(

𝑑
2)

2
− 𝜎𝑔𝑟

2 ,   (30)

 
where d is the measure of the distance between the extrema, as illustrated in Fig. 46, 𝜎𝑔𝑟 is the 

pre-defined re-blur kernel and 𝜎𝑔0 represents the computed estimate of the blur kernels at edge 
locations of the original defocused source image [60]. 
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Owing to factors such as noise, soft shadows, glossy highlights and intensity consistent 
regions, some irregular estimates of the defocus blur may be present in the sparse defocus map. 
As with the previous approach, these inconsistencies or outliers may be somewhat attenuated 
through the application of some type of edge-preserving smoothing filter, such as a bilateral      
filter [128, 129]. A full defocus map is subsequently produced by interpolating the edge values of 
the filtered sparse defocus map across the entire image using, for example, a local neighbourhood 
pixel intensity [130], matting Laplacian [45] or morphological filtering and thresholding [42]. 
Although the defocus blur maps described here are not equivalent to relative depth maps, they 
may nevertheless be considered as rudimentary estimates of the relative depths. 

 

C. Proposed Approach 

The proposed model involves five stages. The first stage considers the classification of the 
LDOF image. The second stage involves the delineation or matting of the OOI from the rest of the 
image. Both these stages are described in detail in the previous section Unsupervised Matting of 
the Object-of-Interest in Low Depth-of-Field Images on p. 54. The third stage determines the 
method employed for the assignment of relative depths across the image. This is dependent on the 
classification of the LDOF image as well as the description of the non-OOI region. In the proposed 
model two descriptors are considered; these include equidistant- and gradient-plane-based. The 
fourth stage is dependent on the outcome of the third stage. For the equidistant-based approach 
the defocussed regions across the entire image are interrogated using Gaussian blur analysis. For 
the gradient-plane-based approach the non-OOI region is initially segmented and subsequently 
labelled according to Gestalt principles. The fifth and final stage, which is also dependent on the 
outcome of the third stage, involves the generation of the depth map by assigning relative depth 
values across the entire image. 

For the equidistant-based approach the OOI is initially considered as the region of shallowest 
depth. Subsequently, the rest of the image is assigned relative depths based on the Gaussian blur 
analysis. For the gradient-plane-based approach a gradient-plane is initially produced by 
considering the vanishing point in the image. Subsequently, the relative depths are assigned to the 
Gestalt regions depending on their label and location along the gradient-plane. 

 

1) Relative Depth Descriptor 

The classification of a LDOF image is dependent on the depth-of-field settings of the capture 
device as well as the ROI and the position of the OOI. This is described and discussed in the 
previous section Unsupervised Matting of the Object-of-Interest in Low Depth-of-Field Images   
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on p. 54. In the proposed model six classification types are considered. These may be described 
using the illustrations provided in  Fig. 47. 

 

Fig. 47 Low depth-of-field images [60, 63] 

 
Type 1 classification (refer to Fig. 47 (a)) contains no discernible OOI. Type 2, 3 and 6 

classifications (refer to Fig. 47 (b), (c) and (f)) contain an OOI as well as an in focus ground   
region i.e. the OOI is a subcomponent of the ROI. For type 4 and 5 classifications (refer                        
to Fig. 47 (d) and (e)) the OOI represents the entire ROI. 

Depending on the classification of the image there may be two descriptions for the non-OOI 
region and consequently two approaches to the way the relative depth values may be assigned 
across the LDOF image. 

The first is referred to as equidistant-based. This describes scenarios where all objects and 
sub-regions within the non-OOI region of the image are considered as being approximately equal 
distant behind the OOI. This descriptor is only applicable to type 4 and 5 classifications (refer       
to Fig. 47 (d) and (e)). 

The second is referred to as gradient-plane-based. This describes scenarios where the objects 
and sub-regions in the non-OOI region of the image exhibit different depths relative to the OOI. 
This descriptor may apply to all classification types. Some of these regions may include the 
ground, which typically exhibits incremental relative depths, as well as objects (including the OOI) 
which lie at different locations on top of the ground (refer to Fig. 47 (a) – (c) and (f)). Another 
common region is the sky or some type of uniform area in the background (refer to Fig. 47 (b)   
and Fig. 47 (c)). For these scenarios the region in its entirety must be treated as being the furthest 
or deepest point in the image. 
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To determine which of these two scenarios describe the non-OOI region in a LDOF image, 
the proposed model considers firstly, segmenting the non-OOI region and secondly, grouping the 
sub-segments into ground, sky and unknown regions according to Gestalt principles and thirdly, 
interrogating the attributes of the ground and sky regions. 

Fig. 48 Sub-classification of Type 4 and 5 classifications: Bird-Reed, Bird-Flight, Coke and Dog (from top to 
bottom) (a) Original defocused image; Extrapolated Gestalt-based (b) ground region and (c) sky region. 

 
Two conditions have to be met for the image to be sub-classified as equidistant-based. Firstly, 

the LDOF image has to be classified as either type 4 or 5 and secondly, from experiment, either 
more than 30% of the perimeter of the ground region intersects with both the bottom row of the 
image as well as the non-OOI region or less than 30% of the perimeter of the sky region intersects 
with both the top row of the image as well as non-OOI region. If these conditions are not met, then 
by default the image is sub-classified as gradient-plane-based. Some type 4 and 5 classifications 
together with their Gestalt ground and sky regions are illustrated in Fig. 48. The Bird-Reed and 
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Bird-Flight images are classified as equidistant-based and the Coke and Dog images are classified 
as gradient-plane-based. 

Fig. 49 Gradient-plane sub-classification. (a) Original defocused image; Extrapolated Gestalt-based (b) 
ground region and (c) sky region. 
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In the proposed model the non-OOI region is segmented using both k-means and binary 
quantisation clustering. The k-means segmentation technique is discussed on p. 35. Owing to the 
Gaussian spread nature of LDOF images certain significant boundary regions may become diluted. 
Although binary quantisation clustering is less effective than the k-means technique, when applied 
to the global segmentation of LDOF images, it is nevertheless observed from experiment to be 
more effective in dealing with diluted boundaries. 

Binary quantisation is whereby a colour palette is optimally designed and each pixel is then 
assigned to a cluster based on the total squared error between the original pixels and the colours 
assigned from the palette [131]. The method chosen for this research is the one proposed by 
Orchard and Bouman [104]. In this case the colour palette is designed using a hierarchical binary 
tree structure where, based on the cluster covariance, eigenvalues, eigenvectors and mean distance, 
together with an erosion-based weighting, the pixels are separated according to their closeness to 
a plane perpendicular to the principal eigenvector and passing through the mean. Each original 
pixel is subsequently mapped to a cluster that is based on the closest distance to a colour in the 
palette using ordered dithering and error diffusion techniques. 

From experiment, a cluster value of 3 is chosen for both the k-means and binary quantisation 
segmentation of the non-OOI region. Subsequently, ground and sky regions are produced 
separately per mode of segmentation. Using Gestalt principles, it is reasonable to assume that the 
ground region is located on the lower part of the image and the sky region is located on the upper 
part of the image. Based on this understanding and from experiment, the proposed model considers 
an array to be associated with the ground region if more than 30% of the perimeter of the entire 
cluster intersects with the bottom row of the image as well as non-OOI region and with the sky 
region if more than 30% of the perimeter of the entire cluster intersects with the top row of the 
image as well as non-OOI region. 

Unsupervised systems are usually absent of any a priori information and consequently result 
in the problem becoming ill-posed. To account for these constraints, the proposed model correlates 
the k-means-based regions with the binary quantisation-based regions by intersecting the data. 

For type 1 and 6 classifications the union, instead of the intersection, of the respective regions 
is considered. For the Gestalt ground region, the k-means-based ground region is intersected with 
binary quantisation-based ground region. Similarly, for the Gestalt sky region, the k-means-based 
sky region is intersected with binary quantisation-based sky region. Subsequently, any regions in 
the Gestalt sky region having an intersection overlap with the Gestalt ground region are considered 
to belong to the Gestalt ground region and excluded from the Gestalt sky region. Finally, any 
connected component not incident with top border or incident with the top and bottom borders are 
excluded from the Gestalt sky region. At this stage, for the purpose of classification, the non-OOI 
regions are broadly delineated into two Gestalt regions viz. ground and sky. However, five Gestalt 
sub-regions are actually considered when assigning relative depth values. This is discussed in the 
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following section on p. 95 and illustrated in Fig. 55 on p. 101.  Examples of the Gestalt ground 
and sky regions are illustrated in Fig. 48 on p. 91 and Fig. 49 above. 

2) Relative Depth Assignment 

i. Equidistant-based 

An image captured by a camera using a standard convex lens with a LDOF setting will contain 
objects at a particular distance from the camera that are in focus, as well as objects that are out of 
focus, to varying degrees, depending on their distance in front of or behind the focal plane. Based 
on this understanding it may therefore be possible to extrapolate a certain amount of information 
relating to the relative depths of the regions in a scene. 

For the equidistant-based depth map the OOI is initially considered as the region of shallowest 
depth. Subsequently, the rest of the image is assigned relative depths based on the Gaussian blur 
analysis or more specifically the Gaussian re-blurred saliencies in the image. Some examples of 
these depth maps are illustrated in Fig. 50(b). 

 

Fig. 50 Depth maps for type 4 and 5 classifications. (a) Original images; (b) Initial depth maps; (c) Finalised 
depth maps after application of bilateral filter. 

 
For the Gaussian re-blurred saliency map the defocus blur amount is estimated through 

examination of the gradient ratios between the original image and a second blurred version of the 
original image; the so-called re-blurred image. 

A sparse defocus map is produced by implementing the method proposed by Zhuo and          
Sim [63]. This is discussed on p. 85. To generate the re-blurred image a Gaussian low-pass filter 
is applied to a grayscale transformed version of the source image. From experiment a window size 
of 0.4% of the perimeter of the image with a sigma value of 1 is chosen. The gradients of both the 
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original image as well as the re-blurred image are determined by using a Sobel mask. In the 
proposed model any pixel not associated with the edge saliency map (defined on p. 26) is set to 
zero and to account for the full grayscale spectrum, the pixel intensities are extrapolated and 
distributed across the range [0, 255]. 

Some irregular estimates of the defocus blur may occur in the sparse defocus map. This is 
owing, in the main, to factors such as noise, soft shadows, glossy highlights and intensity 
consistent regions. Edge-preserving filtering is often used to attenuate some of these isolated 
points, spurious edges and outlier regions. 

Tomasi and Manduchi (1998) [128] introduced the bilateral edge-preserving smoothing filter 
as an alternative to Perona and Malik’s (1990) anisotropic diffusion method [132]. The former is 
a nonlinear filter functioning non-iteratively by weight averaging the colours of the neighbour 
pixels based on their distance in space and range. The latter is modelled on an iterative process 
employing partial differential equations [133]. 

The bilateral filtering of a pixel (𝑥, 𝑦) is expressed as 
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where 𝜂(x,y) denotes a smoothing window centred at pixel (𝑥, 𝑦), 𝜎𝑠 is the spatial Gaussian 
weighting that decreases the influence of pixels based on distance, 𝜎𝑟 is the range Gaussian 
weighting that decreases the influence of pixels based on intensity and 𝐾  is the normalisation 
operator given by 
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2𝜎𝑠
2

(𝑗,𝑘)∈𝜂(𝑥,𝑦)
) . exp

(
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Owing to the nonlinearity of the averaging process the bilateral filter (BF) becomes 

computationally intensive. As a consequence improvements to these type of filter methods have 
been proposed. In this research two of these modified filters are considered for the refinement of 
the Gaussian re-blurred saliency map. The first is a shiftable edge-preserving BF proposed by 
Chaudhury et. al [129, 134, 135]. In this case the exploitation of the shiftability associated with 
use of trigonometric range kernels allows for the realisation of the BF in constant time. The second 
is a domain transformed edge-preserving BF proposed by Gastal and Oliveira [133]. In this case 
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the original RGB image, which is represented by five dimensions viz. x, y, r, g and b, is frequency 
domain transformed to a lower dimension prior to filtering, while preserving distances. This 
concept is illustrated in Fig. 51. 

Fig. 51 Domain transform edge-aware filtering [133]. (a) Input signal I in original domain; (b) Associated 
domain transform; ct(u); (c) I in the transformed domain; (d) Filtering using a Gaussian filter in the 
frequency domain; and (e) Filtered signal obtained through the reversal of ct(u) for 𝑮{𝑰𝒘}. 

 
The following equation describes this filtering process: 

 

 𝐽(𝑝) = ∫ 𝐼(𝑝)𝐹 (𝑝,̂ 𝑞)̂
Ω

𝑑𝑞 = ∫ 𝐼(𝑝)𝐻(𝑡(𝑝)̂, 𝑡(𝑞)̂)
Ω

𝑑𝑞   (33)

 
where I denotes the input image, F represents the BF in the spatial domain and H represents the 
filter kernel in the frequency domain. The resultant J denotes the output image derived through 
the filtering of I with either F or H, with 

 

 𝐻(𝑡(𝑝)̂, 𝑡(𝑞)̂) = 𝛿{|𝑡(𝑝)̂ − 𝑡(𝑞)̂| ≤ 𝑟},   (34)
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and 

 

 𝑟 = 𝜎𝐻𝑖
= 𝜎𝐻√3× (

2𝑁−𝑖

√4𝑁−1),   (36)

 
where 𝜎𝑠 and 𝜎𝑟 refers to the spatial and range standard deviation of the signal, respectively, 𝐼𝑘 is 
the k 

th channel of I (for an RGB image, 𝑐 = 3), 𝜎𝐻𝑖
 is the standard deviation for the kernel used in 

the i 
th iteration, N is the total number of iterations and 𝜎𝐻 = 𝜎𝑠  (i.e. since variances and not 

standard deviations are added for each iteration, 𝜎𝐻𝑖
 must halve at each iteration and have a 

squared sum matching the original desired variance, 𝜎𝐻
2 ). The distance between neighbouring 

pixels in the spatial domain is typically computed using the 𝐿2 norm. However, for the frequency 
domain the 𝐿1 norm is considered. An added benefit of the domain transform edge-preserving 
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filter method is that the domain transformation and reversal through 𝑐𝑡(𝑢) allows for the 
preservation of the geodesic distance between points on the curves, which adaptively warps the 
input signal and thereby allows for linear time edge-preserving filtering. 

Fig. 52 Gaussian re-blurring saliencies. (a) Original images; (b) Edge saliency maps. (c) Defocus maps 
after application of first bilateral filter; (d) Defocus maps after application of second bilateral filter. 
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From experiment, a spatial standard deviation 𝜎𝑠 =  0.65% the perimeter of the image, a range 

standard deviation 𝜎𝑟 = 1.7𝜎𝑠 and a 𝑛×𝑛 smoothing window with n = 𝜎𝑠 is chosen for the BF. For 
the domain transform edge-preserving filter a spatial standard deviation 𝜎𝑠 =  0.9% the perimeter 
of the image, the range standard deviation is set to 0.1 and the number of iterations is set to 3. The 
results of the two-stage filtering are illustrated in Fig. 52(c) and (d). 

The equidistant-based depth map is produced by initially using the full smoothed Gaussian  
re-blur map as the foundation. Subsequently, the pixel intensities are distributed across the              
range [0, 255] with 255 representing the furthest distance from the observer. Finally, the pixel 
intensities of the OOI region are assigned a value of 0. Examples of this depth map are illustrated 
in Fig. 50(b) on p. 94. 

 

ii. Gradient-Plane-based 
For the gradient-plane-based depth map the objects and regions vary in relative depth across 

the image. In the proposed model the autonomous assigning of these relative depths is achieved 
in a three-staged approach. Initially, the non-OOI region is segmented, grouped and labelled into 
five Gestalt-based regions. For type 1 and 6 classifications the entire image is considered as the         
non-OOI region. Subsequently, a gradient-plane is produced by considering the vanishing point 
in the image. Finally, the depth map is generated by assigning relative depth values to the Gestalt-
based regions according to their associated label as well as location along the gradient-plane. Some 
examples of these depth maps are illustrated in Fig. 53(b) on p. 99. 

In the proposed model the five Gestalt-regions considered are the ground, sky, objects on the 
periphery of the ground, objects on top of the ground region and objects within the sky region. 
The ground and sky regions are discussed earlier on p. 91. Objects on the periphery of the ground 
are considered to be any non-sky regions that are external to the ground regions. 

To determine the objects on top of the ground, the ground region is segmented using k-means 
clustering. From experiment, a cluster value of 3 is chosen. Initially, a base ground region is 
chosen. This is assumed, with reasonably high probability, to be the cluster array containing the 
most non-zero elements. Subsequently, the connected components in the remaining two cluster 
arrays are analysed and if it is not incident on either the outer perimeter of the ground region or 
the bottom border of the image, then it is considered to be a valid internal ground region object. 

The same concept and process used to determine the ground objects are applied to the objects 
within the sky region. The difference is that a connected component is considered to be a valid 
internal sky region object only if it is not incident on the outer perimeter of the sky region. 
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Fig. 53 Gradient-based depth maps: Kid, Teddy, Pumpkin, Girl-City, Coke and Dog (from top to bottom).     
(a) Original images; (b) Initial depth maps; (c) Finalised depth maps after application of bilateral filter. 
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A shortcoming with the proposed approach, in terms of defining the internal Gestalt regions, 
is that objects such as rocks overlapping with the bottom of the image and clouds overlapping with 
the top will not be considered as valid internal ground and sky objects, respectively. Although the 
assignment of relative depths to these objects may be incorrect, depending on their size, it may 
not necessarily have a dramatic effect on the final 3D product. 

For most gradient-plane-based scenarios the furthest point from the observer is termed the 
vanishing point (VP) [21-23]. The VP may be described as a point in the distant of a scene where 
straight line edges of artefacts such as buildings, paths and street markings tend to converge (Refer 
to Fig. 47 (a) and (b)). These inferred imaginary protracted lines are referred to as vanishing       
lines (VLs). The gradient plane may therefore be described as the gradual gradient variation in an 
image from the observer to the VP along the direction of the VLs over the range [0, 255] with the 
furthest point denoted by the value 255. Consequently, the assignment of depth to the pixels, 
objects and regions is dependent on their location along this so-called gradient-plane [23, 56]. Five 
of the most common gradient-plane permutations are illustrated in Fig. 54. 

 

Fig. 54 Five major depth map gradients using the VP (Blue circles denote vanishing points) [136]. The larger 
the depth value the lower (darker) the grey level intensity. 

 

In this research the method proposed in the section Robust Vanishing Point Detection of    
Man-Made Environments on p. 109 is considered for the VP estimation. In the absence of 
sufficient VLs the VP may be considered as the maximum boundary depth and in the absence of 
a VP the bottom-up scenario is usually chosen as the default mode [136]. 

The incremental relative depth values of the ground region may be directly extrapolated from 
the gradient-plane. Since the sky region denotes the furthest region in the image, every pixel in 
this region is subsequently assigned a depth value of 255. In Fig. 54 the range of the                
gradient-planes is [255, 0] whereby the nearest point is denoted by 255 and the furthest point          
by 0. However, in this research the range is reversed to [0, 255].  The objects on top of the ground 
region are treated as individual objects and are given slightly shallower (-10) depth prominence 
compared to their adjacent neighbour pixels. For the objects within the sky region, the relative 
depths are assigned using a Gaussian re-blurred saliency map. This is discussed earlier on p. 94. 
To account for blur inconsistencies, any value less than 240 is set to 240. 
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Fig. 55 Relative depth assignment. (a) Gestalt regions. Brown indicates the ground region, green and purple 
indicates the peripheral ground objects, the OOI is displayed in maroon and the sky region is indicated in 
blue; (b) Associated depth map. This shows the depth values of the peripheral ground objects following the 
contours of the ground. The OOI represents an object on top of the ground; therefore, the entire OOI region 
is assigned the same relative depth value. 

 
The regions on the periphery of the ground region may be broadly described according to two 

scenarios. There first is where these regions may be considered as objects lying directly on top of 
the ground region, such as the Kid, Teddy and Pumpkin images in Fig. 53 on p. 99. The second is 
where these regions are located a certain relative distance away from the ground region, such as 
the Girl-City image in Fig. 53. The former is referred to as a continuous scenario and the latter is 
referred to as a discontinuous or layered scenario. 

For type 1, 2, 3 and 6 classifications the ground plane region associated with the ROI, denoted 
by ΠGRND

INIT , may be considered as a reference for discerning between the continuous and 
discontinuous scenarios. A detailed description of this region is discussed on p. 61. 

In the continuous scenario, the ground region appears to gradually expand across a region of 
the image through the upward and outward protraction of ΠGRND

INIT  and the pixels adjacent to ΠGRND
INIT  

are expected to be similar in intensity to the perimeter of the ground region. In this case ΠGRND
INIT  is 

considered to be a small subcomponent of the ground region. 
In the continuous scenario, depth is assigned separately to each individual column of pixels 

in each connected component representing the objects on the periphery of the ground region by 
vertically protracting the depth value of the adjacent ground plane pixel throughout the column. If 
a column within the object has no associated adjacent ground plane pixel, then the depth of the 
column is equal to nearest valid column depth value. This proposed technique will allow the depth 
of the object to follow the contours of the ground; this concept is illustrated in Fig. 55. 

In the discontinuous scenario, the ground region is expected to be almost equivalent to ΠGRND
INIT  

and the ground region will appear to have an abrupt delineation from the rest of defocussed BG 
regions. From experiment, if there is a greater than 70% overlap between the ground region and 
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the straight line bounded representation of ΠGRND
INIT  (described on p. 61), then it is considered to be 

discontinuous. For this eventuality the relative depth values are assigned to regions or objects on 
the periphery of the ground using a Gaussian re-blurred saliency map. This is discussed earlier    
on p. 94. In this case the relative mean defocus distance between each of the objects on the 
periphery of the ground and the ground region is considered. 

Although the continuous and discontinuous scenarios may apply to all gradient-plane-based 
images, the likelihood of discerning between them for type 4 and 5 classifications is extremely 
low. This is owing to the absence of a focussed ground region, as in the Coke and Dog images      
in Fig. 53. As a consequence, for these two classifications it is always assumed to be continuous. 

For type 1 and 6 classifications the entire depth map is merged with the Gaussian re-blurred 
saliency map by using the shallower depth value as the dominant intensity. This is to account for 
some of object discontinuities that may arise during the segmentation process. 

 

iii. Depth Map Finalisation 

The techniques employed for the allocation of depth to the objects and regions within the 
image may result in certain areas exhibiting spurious edges, as well as striated or blocky artefacts. 
To minimise some of these irregularities, including discontinuities and outliers, a domain 
transform edge-preserving filter is applied to the depth map. The filter is discussed earlier                
on p. 95. In the proposed model, from experiment, the spatial standard deviation is set to 20, the 
range standard deviation is set to 0.1 and the number of iterations is set to 3. To account for the 
full grayscale spectrum, the final step involves the extrapolation and distribution of the smoothed 
pixel intensities across the range [0, 255]. This is illustrated in Fig. 50(c) and Fig. 53(c). This 
concludes the method proposed for the unsupervised generation of a depth map from a single 2D 
LDOF image. 

 
D. Results and Discussion 

The training and test data is sourced from previous works as well as numerous images from 
the World Wide Web (WWW). Comparative analyses are performed against six other proposed 
methods [60-65]. Results of some of the benchmarking and test images obtained from the WWW 
are also presented. 

Some of the representative results obtained for the benchmarking data are illustrated                   
in Fig. 56. The original images in Fig. 56(a) are titled (from top to bottom) as Kid, Pumpkin          
and Bird-Reed, respectively. Fig. 56(b) show the results obtained from the methods proposed by 
Zhuo and Sim [63]. Fig. 56(c) present the results of the proposed method. 
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Fig. 56 Benchmarking: Kid, Pumpkin and Bird-Reed (from top to bottom). (a) Original image; (b) Defocus 
map generated by Zhou and Sim [63]; (c) Depth map generated using proposed method. 

 
When considering Zhuo and Sim’s method, although the three defocus-based depth maps 

appear on face value to be aesthetically more appealing, they nevertheless in practical terms 
contain numerous inconsistencies. In the Kid and Bird-Reed images it is evident that the boy and 
bird, respectively, represent single closed boundary objects in the images. However, in their 
interpretation these objects incorrectly exhibit varying degrees of relative depth. Moreover, in     
the Kid and Pumpkin images there are numerous objects and regions on top of the ground plane 
region that have been allocated vastly inconsistent relative depth values. 

In the proposed model the OOI is considered to be a single object that is equidistant from the 
camera and therefore the entire closed connected region is allocated the same relative depth value. 
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Moreover, the objects on the ground region, such as the kid (OOI) and hedges in the Kid image 
and the pumpkins in the Pumpkin image, are allocated relative depth values that are more 
consistent with their observed 3D Gestalt placement in the scenes. 

 Although there exist some minor relative depth inconsistencies in the proposed method, it 
nevertheless shows a noticeable improvement to Zhuo and Sim’s approach. 

Fig. 57 Subjective comparison 1. (a) Original image; (b) Defocus magnification blur map generated by Bae 
and Durand [60]; (c) Defocus map generated by Zhou and Sim [63]; (d) Blur radius map generated by  
Zhu et. al [64]; (e) Depth map generated using proposed method. 

 
Some of the representative results obtained for the test data are illustrated in Fig. 57. The 

original image is illustrated in Fig. 57(a). Fig. 57 (b) – (d) show the results obtained from                  
the methods proposed by Bae and Durand [60], Zhou and Sim [63] and Zhu et. al [64], 
respectively. Fig. 57(e) present the result of the proposed method. 

The same concerns highlighted in the analysis of Fig. 56 above are applicable to the results 
generated by the other approaches in Fig. 57. The proposed model shows a noticeable 
improvement to Bae and Durand’s method and is comparable to the method proposed by               
Zhu et. al. 

A second set of comparative test results is illustrated in Fig. 58. The original image is 
illustrated in Fig. 58(a). Fig. 58(b) and (c) show the results obtained from the methods proposed 
by Valencia et. al [62] and Guo et. al [61], respectively. Fig. 58(d) present the result of the 
proposed method. 

Fig. 58 Subjective comparison 2. (a) Original image; (b) Depth map generated by Valencia et. al [62]; (c) 
Depth map (cropped in the reference paper) generated by Guo et. al [61]; (d) Depth map generated using 
proposed method. 

 



105 
 

When considering the method proposed by Valencia et. al, although the segmentation of the 
foreground objects as well the subsequent assignment of relative depths to these regions may be 
considered as reasonably accurate, essentially the all the background regions are negated. In 
comparison to this approach, while the method proposed by Guo et. al. shows more refinement of 
the boundaries of the objects and less noise and stripy artefacts, it also disregards the background 
regions. 

Although there exist some minor relative depth inconsistencies in the proposed method, it 
nevertheless deals more accurately with the foreground objects and more effectively with the 
assignment of relative depths to the background objects and regions. 

A third set of comparative test results is illustrated in Fig. 59. The result obtained from the 
method proposed by Ko et. al [65] is shown in Fig. 59(b) and the result of the proposed method is 
provided in Fig. 59(c). 

When considering the method proposed by Ko et. al, although the segmentation of the 
foreground object may be considered as reasonably accurate, a significant amount of the 
background objects and regions are assigned inconsistent relative depth values and in particular, 
the ground plane region, which should exhibit incremental relative depth towards the vanishing 
point or region. 

Fig. 59 Subjective comparison 2. (a) Original image; (b) Depth map generated by Ko et. al [65]; (c) Depth 
map generated using proposed method. 

 
Although there exist some minor relative depth inconsistencies in the proposed method, it 

nevertheless deals more accurately and effectively with both the segmentation and the subsequent 
assignment of relative depths to the background objects and regions. 

Some representative results of the VP estimation are illustrated in Fig. 60. A detailed 
description of this sub-component of the depth map process as well as analysis of the results are 
presented in the section Robust Vanishing Point Detection of Man-made Environments on p. 109. 
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Fig. 60 Vanishing point estimation. 

 
The testing computer is a Quad Core CPU 2.50 GHz with 4.00 GB of RAM. The proposed 

unsupervised method is implemented using MATLAB R2014a. For equidistant-based images the 
model achieves an average processing time of 1 s for an average image size of 543×385. For 
gradient-plane-based images the model achieves an average processing time of 3.3 s for average 
image size of 596×420. 

Fig. 61 Depth map results. 
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Owing to space constraints only a selected number of the depth map results are presented in 
this section. The author may be contacted at serenr@gmail.com for more than 300 LDOF images 
and their extrapolated depth maps. 

Currently in the literature there is insufficient objective ground-truth depth map data available 
for LDOF images. As a consequence the presented results are only subjectively assessed. Future 
work may include the generation of a ground-truth depth map database for LDOF images. 
Although the generation itself will be subjectively produced it may be objectively assessed through 
peer consensus. 

Even though an objective comparison is not provided it must be emphasised that the relative 
depth maps autonomously produced by the proposed model are not meant to be precise depth 
representations of all the delineated objects and regions in the image; but rather as sufficient 
approximations of the relative depths that may be applied specifically for use in the extrapolation 
of stereoscopic image pairs from single LDOF images using depth image-based rendering. 

A limitation of the proposed approach is that it is inherently dependent on the accuracy of the 
segmentation. However, the results show that by applying Gestalt principles to the segmentation 
together with vanishing point analysis and Gaussian blur saliencies it is possible to overcome the 
ill-posed problem and produce a reasonably acceptable relative depth map of a LDOF image. 

Another limitation is the assumption that the entire OOI is at a uniform relative depth. For 
close-up images this assumption may conflict with the sensitive a priori visual expectations of     
an OOI, such as the changing contours of a human face. Although the relative depth map may be 
clean and well defined it may nevertheless result in the final 3D stereoscopic image exhibiting a 
cardboard effect. Further research, possibly using machine learning approaches, is warranted in 
improving this shortcoming. 

 
E. Conclusion 

A novel unsupervised method is proposed for the assignment of relative depths to the objects 
and regions within a single 2D LDOF image. Depending on the description of the non-OOI region, 
relative depths are assigned using either Gestalt principles together with vanishing point detection 
or Gaussian blur analysis. In the proposed model there are two descriptions of the non-OOI region 
in a LDOF image. These include equidistant-based and gradient-plane-based. The former only 
applies to type 4 and 5 classifications while the latter may apply to all classifications. A novel 
method is proposed for the discernment of these two scenarios through the analysis of the Gestalt-
based ground and sky regions. 

For the equidistant-based scenario the entire non-OOI region may be described as being a 
certain relative depth behind the OOI. The results show that for these scenarios Gaussian re-blur 
analysis may be effectively employed for the assigning of relative depths across the image. 
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For the gradient-plane-based scenario the non-OOI region is constituted of distinct objects 
and sub-regions. This may include a ground region as well as objects, such as the OOI, that are 
located on top of this plane at different relative depths. The results show that each object or sub-
region within the non-OOI region may be effectively delineated through the correlation of k-means 
and binary quantisation segmentation and subsequently labelled into one of five proposed Gestalt-
based categories. Moreover, the results show that a gradient-plane may be accurately constructed 
by correlating the Gestalt-based ground region with vanishing point detection and subsequently 
employed in the assignment of relative depths to the objects and regions across the image. 

Results also show that blocky artefacts and inconsistencies in the depth maps may be 
adequately alleviated through the application of a domain transform edge-preserving filter. 

Future work may include the use of more scenario-specific segmentation methods as well as 
the possible incorporation of machine learning to more effectively identify and subsequently 
assign relative depth values to the objects and regions in an image according to the specific 
semantics of the involved scene. Moreover, the proposed method may be expanded to account for 
high DOF images. 
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V. VANISHING POINT DETECTION OF MAN-MADE ENVIRONMENTS 

 
A. Introduction 

Vanishing point (VP) detection plays a vital role in 3D interpretation as well as in arenas such 
as machine vision, depth estimation as well as 2D-to-3D conversion systems. VP estimation is a 
subcomponent of linear perspective (LP). LP is the term used to describe one the monoscopic 
depth cues employed by the human visual system to explain the phenomenon of 3D depth 
perception on a 2D plane through the inference of imaginary converging lines or regions. The 
more the number of lines or regions converge, the more it will have the appearance of being further 
away [21-23]. The point or apex at which these imaginary vanishing lines (VLs) or regions (VRs) 
terminate is termed the vanishing point (VP). This is illustrated in Fig. 62. 

Fig. 62 Vanishing lines and points [137] 

 
Features, like these VLs, VRs and VPs as well as other useful topographical data may be 

identified and extrapolated using several geometric-based algorithms. Natural settings are more 
prone to irregularities compared to the regular structures present in artificial (man-made) 
environments where there is a higher likelihood for the existence of straight as well as parallel 
lines [138]. In the former scenario clues may possibly be extracted through analysis of clustered 
textured regions. For the latter situation clues may be extracted based on the horizon, as well as 
straight lines of objects in image frames, which among others may include buildings, walls, roads, 
street markings, piers and railway tracks. 

The precise location or interpretation of the VP is often subjective and there is no optimal 
solution for the unsupervised extraction of these phenomena. Although there have been numerous 
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algorithms proposed for the estimation of VPs across a variety of structural scenarios, the problem 
nevertheless remains ill-posed and most of the solutions, more often than not, require complicated 
computational modelling and/or significant a priori knowledge about the object space, despite 
their claimed practicability [57].  

This research proposes a novel and simple technique for the estimation of the VP and 
associated VLs based on a preconceived notion of converging straight lines in images of man-
made environments through the analysis and extrapolation of data entirely in the image plane 
coordinate space. This research may be considered as an amalgamation and extension of the 
general techniques proposed by Schaffalitzky and Zisserman [59], Almansa et. al [139],        
Battiato et. al [23] and Tsai et. al [140]. 

The supervised training of the algorithm is performed using images from previous              
works [23, 56-59] as well as numerous random images from the World Wide Web. 

The next section of this paper discusses some of the approaches that have been previously 
proposed for straight line detection and VP estimation. The proposed method is presented in 
section C. A block-based approach is proposed for the extrapolation of the candidate VPs from an 
image space-based accumulator array. An evaluation metric is also proposed for the selection of 
the optimal VP and the associated VLs. Section D provides a demonstration and discussion on the 
performance of the proposed approach on real image data. Finally, conclusions and 
recommendations for future research are stated in section E. 

 
B. Previous Approaches 

There currently exist three broad types of approaches to VP estimation. These include        
edge-based [137-140], region-based [141-143] and prior-based [144-146] methods. 

VP detection using edge-based methods is principally based on the analysis of straight line 
edge segments in an image. These methods fundamentally require three processes [137]. The first 
process, which is usually performed subsequent to edge detection, involves the interrogation       
and identification of the straight lines in an image. The second process, which is referred to               
as the accumulation step, comprises the clustering of the dominant straight line segments 
according to common candidate VPs. The third and final process, which is referred to as the search 
step, involves the estimation of the dominant VP and associated VLs. 

The precise detection of edges is key to the identification of the dominant lines in an image. 
The most common edge detection techniques usually involve the iterative application of isotropic 
masks to every pixel location across an entire image. The edges are subsequently extrapolated 
through thresholding of the estimated horizontal, vertical and, in some instances, diagonal 
gradients of each pixel. There are several methods employed for edge detection, like for example 
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the popular Canny algorithm [95]. Other gradient-based masks, such as Frei-Chen [138] and   
Sobel [23, 57], have also been considered for use in VP detection. 

The efficacy of an edge map is dependent on the chosen threshold value, which is primarily 
dependent on intensity and not actually on the relationships between pixels. If the threshold value 
is too low, then both false as well as thick edges may result. On the other hand, if the threshold 
value is too high, then some edges may be too discontinuous or are not detected at all. Two popular 
thresholding techniques are the maximum entropy and Otsu methods [147]. 

Owing to several factors, like for example lighting, continuous pixel intensities and blurs, it 
is plausible to expect that some of the edges will either not be detected or will be discontinuous in 
their representations of objects and regions. As a consequence it is common practice to refine the 
edge map [94]. Noise may be reduced through, for example, the removal of small connected 
components as well as the pruning of spurious edges. Disconnected boundaries may be linked 
through, for example, the use of morphological reconstruction methods. For the linking of close 
neighbourhood regions simple morphological methods, such as dilation and erosion, may be 
employed. However, to account for several scenarios, which may include larger discontinuities, a 
more adaptive morphological edge-linking algorithm may be required [148]. 

Edges in general are too broad in their description to be effective for VP detection. For this 
purpose, straight edges or more specifically, dominant straight lines, are more appropriately 
suited. One popular method of straight line detection is the Hough Transform (HT)              
technique [149]. It is often referred to as the Hough/Radon transform owing to its mathematical 
equivalence to the Radon transform [150]. In this case the dominant straight lines in an image are 
extrapolated through analysis of the slope or tangent and the y-axis intercept of collinear pixels in 
the binarised edge map. Initially, each parameter pair are sampled at suitable locations and collated 
into an accumulator matrix, also referred to as an accumulator space or array.  Subsequently, 
through examination of the maxima values, the dominant straight lines may be identified. The key 
benefits of the HT include its tolerance to gaps in boundary locations and being largely immune 
to noise. 

An alternative technique to the HT straight or dominant line detection method involves the 
analysis and identification of the straight lines directly in the image plane coordinate space. In the 
approach proposed by Schaffalitzky and Zisserman [59] the straight lines are extracted directly 
from the binarised edge map through the breaking of edges at points of high curvature. 

Another approach involves the application of the Helmholtz principle [139, 151, 152]. This 
technique involves the detection of similar groups or types of lines, like for example level or 
straight lines, through the computing of thresholds in images containing geometric structures, such 
as those associated with artificial environments. This method is not considered as another type of 
global edge detection technique but rather as a means of predicting potential candidate edges based 
on some feasibility criteria rather than on a priori edge information. 
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A third technique proposed for straight line segment detection in the image plane is the block-
based approach [140]. In this case each pixel in the middle position of an edge segment is analysed 
and adjacent pixels are plotted in an outward direction away from the respective central reference 
pixel until the adjacency rule becomes invalid in both directions; the resulting sub-segment then 
represents a straight line in the image, as illustrated in Fig. 63. 

Fig. 63 Block object finding [140] 
 

The detection or identification of straight lines in an image is an important first step. However, 
in order for the straight line segments to be useful in VP detection it is necessary to be able to 
analyse and evaluate the intersection of these lines. In addition to the detection of straight lines, 
for current purposes, the HT accumulator array may also more importantly be applied to the 
detection of inter-connected lines [94, 153]. By partitioning the aforementioned accumulator 
spaces into sectors or so-called accumulator cells they may be used to identify potential    
candidate VPs based on the accumulation or clustering of overlapping prominent lines or their 
mathematical equivalent. 

 
Fig. 64 Gaussian-sphere as an accumulator space [154]. 
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Depending on the angular attributes of some of the prominent lines, there may be scenarios 

where the candidate VPs are located outside of the image plane or seemingly infinite in nature. To 
account for this, it may be necessary to translate the unbounded image plane coordinate space onto 
a bounded space. Two proposed approaches include the Gaussian-sphere [139, 154, 155] and 
polar-parameter space [138, 155] techniques. 

The Gaussian-sphere accumulator array approach was originally proposed in the seminal 
work by Barnard (1983) [156]. This method employs the use of a Gaussian sphere as a means of 
representing the finite but unbounded image plane as a bounded space. As illustrated in Fig. 64, 
each line segment on the image plane, in relation to the perspective centre, is initially transposed 
or warped onto a Gaussian sphere and then geometrically rendered into great circles. 
Subsequently, the VPs are hypothesised through the probabilistic interrogation of the largest 
cluster regions of the overlapping great circles on the accumulation array. Finally, based on the 
orientation of the associated accumulator cells, the VPs are subsequently extrapolated back onto 
the image plane. 

Since Barnard there have been several refinements and advancements to this proposed 
technique [157, 158]. However, further interrogation in more recent works show that camera 
calibration parameters, viewing angle and distance to the scene may create inconsistencies when 
estimating maxima in the accumulator array. Furthermore, textural effects of natural images may 
be responsible for sporadic variations and, in combination with artefacts of image geometry, may 
produce spurious VPs on the Gaussian sphere [137, 138, 154]. 

As an alternative to the bounded Gaussian-sphere space approach, the prominent lines 
detected in the unbounded image space may be translated and analysed in the bounded               
polar-parameter space. These polar-parameter space approaches are inherently based on the 
application of the HT. Tuytelaars et al. (1998) [155] proposed the use of a cascaded HT (CHT) 
method whereby the HT is iterated through three stages in the polar-parameter space. As a means 
of preserving the symmetry between the spatial domain and the polar-parameter space, the original 
unbounded space is initially split into three bounded subspaces and the CHT is applied separately 
to each subspace. The first stage of the CHT involves the application of the HT to the original 
image, which in turn yields the peaks corresponding to the straight lines in the image. The second 
stage of the CHT involves the application of the HT to the filtered output of the first stage, which 
in turn yields peaks corresponding to intersecting lines in the image. The maxima of the dominant 
peaks will typically correspond to the VPs. The third and final stage of the CHT involves the 
application of the HT to the refined output of the second stage, which in turn yields peaks 
corresponding to dominant collinear line intersections in the image. These dominant lines may 
often represent significant boundaries of interest, such as the horizon line. This aforementioned 
proposal was originally developed for the interrogation of aerial images. However, adaptations to 
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the method for application to more common scenarios, like landscapes, roads, buildings and indoor 
structures, have been proposed [23, 57, 138].  

As an alternative to the Gaussian-sphere and polar-space approaches, an image-plane 
coordinate space approach is also proposed. For the former two techniques the dominant straight 
lines are effectively translated from an unbounded image space into an alternative bounded space 
for estimation of the VP. However, for the latter method, it is proposed that the respective 
prominent straight lines be directly analysed in the unbounded image-plane or spatial               
domain [138, 140, 159].  

VP and VL estimation in the spatial domain involves the direct computation of intersecting 
dominant straight lines in the coordinate space. This technique involves four processes. Firstly, 
converging or concurrent dominant lines are generated by effectively protracting each dominant 
straight line across the entire image window. Secondly, candidate VPs are selected                        
as points (or clusters) in the image with the most intersections around them. Thirdly, the    
dominant VP is chosen from the collection of candidate VPs. The second and third processes are 
essentially equivalent to the accumulator array method of the HT. Fourth and finally, the VLs are 
chosen as the extended prominent straight lines passing through or close to the VP [23].  

The spatial domain-based approaches attempt to eliminate some of the false alarms and 
inconsistencies, like for example asymmetry, observed in the Gaussian-sphere- and polar-plane-
based approaches. However, the concern with the former is that the accumulator space is 
essentially unbounded. As a consequence, three concerns need to be addressed when analysing 
the dominant straight lines in the image plane. The first involves the instances where the VP may 
lie beyond the image window. For these situations it becomes necessary to expand the parameter 
space so as to accommodate those intersecting points whose coordinates are greater than the image 
size. The second involves the handling of possible infinities that may arise owing to non-
converging vertical, horizontal and parallel lines. The third involves the situation whereby more 
than one VP needs to be taken into account. 

Most spatial domain VP detection techniques employ a sort of joint Gestalt [160] approach 
when analysing the straight lines in the image. Some of these Gestalts include the orthogonality 
between lines and their subsequent convergence in 3D space [139, 140, 154] as well as parallel, 
coplanar and equally spaced lines [59]. 

In terms of orthogonality between lines, one option is to consider an angular precision       
factor [139, 154]. Another may be to employ threshold constraints, such as those in illustrated        
in Fig. 65. In this case the constraints include the angle 𝜃 and distance d between two regression 
lines, denoted by L1 and L2 [140]. This is mathematically expressed as 
 

 tan 𝜃 ≤ tan 𝜃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, (37)
 

where 
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 tan 𝜃 = |
𝑚1 − 𝑚2

1 + 𝑚1𝑚2| for 𝑚1𝑚2 ≠ −1, (38)
 

and 

 

 𝑑 ≤ 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. (39)
 
 

 
Fig. 65 Object combination scheme for two regression lines [140] 

 
Both Schaffalitzky and Zisserman [59] and Almansa et. al [139] show that for images of 

artificial environments the analysis of the 3D parallelism alone is a reliable method for     
estimating VPs, including those that lie outside the boundaries of the image window. 

In the case of the Schaffalitzky and Zisserman approach the concurrent straight line segments 
are firstly grouped using the random sample consensus (RANSAC) technique [161]. Secondly, 
the coplanar equally spaced parallel lines are extracted by performing a direct analysis of the 
binarised edge map as well as the analysis of additional parallel correspondences and patterns 
through the interrogation of feature points in the image. Thirdly, a set of probable candidate VPs 
are estimated using a maximum likelihood estimate (MLE) threshold. The MLE is based on the 
perpendicular distances between the estimated crossing points and the associated converging lines 
within a localised region. Fourthly, the coplanar parallel lines are translated into a single projected 
vanishing line. Finally, the dominant VP and associated VLs are extrapolated through the 
correlation of the projected vanishing line with the candidate VPs. 

In the Almansa et. al approach the straight line segments are initially grouped according to 
rotation and translation and subsequently projected onto a vanishing region. Each vanishing region 
may be described as a quadrilateral containing a group of concurrent lines. The grouping of the 
lines are based on a practical application of the Helmholtz principle [162] whereby each 
quadrilateral is firstly, positioned according to the equiprobability that the lines meet a specific 
vanishing region and secondly, sized and shaped according to the angular precision the respective 
lines. The dominant vanishing region is estimated through the local neighbourhood analysis of the 
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clustered maxima of the refined vanishing regions together with the thresholding of the lines based 
on a minimum description length. 

Edge-based approaches provide an effective method of VP estimation without the need for 
camera calibration or a priori scene information. In addition, these methods may be able to account 
for finite as well as infinite VPs. 

Region or characteristic-based approaches to VP detection are based on the exploitation of 
characteristics, such as texture and colour, measured around a local neighbourhood within an 
image. By analysing the dominant orientation of texture within a region in an image using, for 
example, Gabor filtering [163], dominant orientation rays may be identified and, based on their 
intersection, used to detect the VP. 

Another region-based approach is to consider the use of colour segmentation. In these cases, 
the image is initially delineated into segments, using for example the mean shift                     
technique [23, 56, 57]. Subsequently, the segments are grouped and assigned to a set of pre-defined 
regions, such as the foreground, skyline, road and mountain. Finally, the VP is estimated through 
analysis of the regions. This approach is illustrated in Fig. 66. 

Fig. 66 Region-based VP detection [56]. (a) Original image; (b) Segmented image; (c) VP based on image 
classification; (d) VP and VL detection using an edge-based method. 

 
Region-based methods are often dependent on the relationship between the positions and 

characteristics of objects in an image. This type of grouping is termed the Gestalt laws of 
perception [24]. For example, it may be assumed, if a sky region and accompanying horizon line 
exist in an image, it will have a higher probability of being located towards the upper part of the 
image and vice-versa for the ground region. Furthermore, the smaller the objects appear to be, as 
well as the closer the objects are clustered together, may provide an indication of where the VP is 
possibly located. 

Region-based approaches are more effective than edge-based techniques with regards to 
images of natural scenes. However, for artificial environments the latter approaches have shown 
to be more effective. For a more globally robust method of VP detection it may be advisable to 
consider a combination of edge- and region-based techniques. 
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An attempt to combine edge- and region-based methods has been proposed by                   
Battiato et. al [23]. In their approach images are initially classified into different types of scenarios, 
such as landscape as well as outdoor and indoor man-made environments. The edge-based 
component of their method is employed in the case of the latter two scenarios and involves the use 
of the HT accumulator technique for the detection of both the main straight lines as well as the 
intersections of the main straight lines. The region-based component is employed for use in 
landscape type scenarios. This technique involves the initial delineation of the image using mean 
shift segmentation. Subsequently, each cluster is labelled as a distinct semantic region like for 
example, ground or sky. Finally, the VP is extrapolated through a sort of rudimentary analysis of 
these sub-regions. This approach is illustrated in Fig. 66. 

Another combined method has been proposed by Chappero et. al [57]. Their approach may 
be considered as an extension of the method proposed by Battiato et. al, since both techniques 
involve the use of the HT accumulator techniques and both rely on the analysis of colour clusters 
that are delineated through the application of mean shift segmentation. However, in the Chappero 
et. al approach an added criterion involving the analysis of pixel gradients is considered for the 
identification of the candidate VLs. 

Other approaches to VP detection involve the combination of edge- or region-based methods 
together with prior-based techniques [144-146]. However, these approaches are not robust in 
determining VPs and subsequent VLs since the estimated results are mainly dependent on large 
iterative training sets, adjustments to numerous variables and modifications to several reasoning 
procedures. In addition, spurious results may occur owing to scarcity of object identification as 
well as sparse and vague object relations and distributions in the image. Under very narrowly 
defined conditions, prior-based methods have shown to perform slightly better than the non-prior-
based approaches. However, in these cases accuracy still has to be weighed against the increased 
and costly processing time. 

 
 

C. Proposed Method 

This research provides a simple and robust method for the detection of VPs and associated 
VLs in images of artificial or man-made environments. This is achieved through the direct 
extrapolation and analysis of the converging straight lines entirely within the image plane 
coordinate space. The following process provides a high-level overview of the proposed method: 

 
Step 1: Perform edge detection and morphological refinements 
Step 2: Identify dominant or major straight lines 
Step 3: Refine the straight-line segments 
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Step 4: Construct an accumulation matrix based on the extrapolation of intersecting points 
of every straight-line segment with every other straight line segment through 
solving of the polynomial from their respective slope-intercept forms. 

Step 5: Construct a second accumulation matrix based on the perpendicular distance of 
every straight line to every intercept point in the first accumulation matrix. 

Step 6: Select up to 5 candidate VPs from the second accumulation matrix by considering 
the number of segments (associated VLs) passing near each intercept point within 
a certain range. 

Step 7: Select the optimal or dominant VP through a deeper interrogation of the associated 
VLs passing near each intercept point within a certain range. 

1) Straight Edge Segment Detection 

Edge detection is performed on the source image using the Canny method. Based on the 

evaluation of the training data a threshold of 0.25 and a sigma of √6 is chosen. If the input image 
is colour, then the Canny algorithm is applied separately to each R, G and B layer as well as to the 
grayscale version of the image. The four binary maps are subsequently merged into a single 
binarised edge map. This is illustrated in Fig. 67(b). 

Fig. 67 Detection of straight line edges. (a) Original images; (b) Full edge maps; (c) Straight line segments. 
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Only three types of quantised straight edges may exist in an image viz. horizontal, vertical 
and diagonal; of these the diagonal or sloping edges are the most significant in terms of VP 
detection. Majority of the segments in both the horizontal as well as vertical edge maps will 
contain segments that are sloping i.e. between 0° and ±90° (excluding ±45°). Edges sloping            
at ±45° are accounted for in the diagonal edge map. 

When considering a single row within an edge map, any absolutely vertical (±90°) or   
diagonal (±45°) line will only be represented by a single pixel within the row. Based on this 
understanding, the horizontal edges are then associated with all connected components    
containing 2 or more pixels within a single row. In the proposed model the horizontal edge map 
is produced by iterating through each row and extracting any connected component containing 2 
or more pixels and collating the segments into a single binarised array. 

Conversely, when considering a single column within an edge map, any absolutely    
horizontal (0°) or diagonal (±45°) line will only be represented by a single pixel within the 
column. Based on this understanding, the vertical edges are then associated with all connected 
components containing 2 or more pixels within a single column. In the proposed model the vertical 
edge map is produced by iterating through each column and extracting any connected component    
containing 2 or more pixels and collating the segments into a single binarised array. 

The diagonal edge map is produced by removing all horizontal and vertical intersections from 
the original edge map. The remaining segments are expected to be small clusters, single pixels, 
and some edges containing slopes around ±45°. 

For VP estimation it is understood that the dominant straight line edges in an image play a 
more prominent role. As such, a minimum descriptor length (MDL) threshold is applied to the 
horizontal, vertical and diagonal edge maps. This results in the removal of all connected 
components containing pixels fewer than the MDL. From experiment, the MDL is calculated          
as 0.01% of the pixel area (width multiplied by the height) of the image. The three edge maps are 
subsequently merged into a single binarised edge segment map. To finalise the edge segment map, 
the locations of all corner, crossing pixels, spurious edges (length of 3 or less pixels) and closed 
loop or connected border regions are set to zero, followed by application of the MDL threshold. 
Rudimentarily, any segment containing branchpoints or more than two endpoints may be 
considered as being non-straight edges; as such, any edge fitting this description is removed from 
the edge segment map. The remaining edges in this initial straight edge segmentation map are 
further interrogated through a more precise measure of straightness. 

A simple method of determining if an edge is a straight line may be to calculate the difference 
between true length (actual number of pixels) and straight line length (quantised pixel distance 
between endpoints); if the difference is less than or equal to a certain threshold, like for         
example 3 pixels, then the edge may be considered as a straight line. 
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Another method may be to consider the area or energy contained within the closed region of 
each segment. If one were to visualise a line segment, then the joining of the endpoints by a straight 
line will form either a closed region or a single connected component with multiple closed regions. 
The minimum width of the quantised area or energy within the closed regions may provide a 
means of determining whether the line is considered to be straight or curved. In the case of a 
straight line segment the minimum width of the area is expected to be zero or at the very most 
infinitesimal. In pixel terms, from experiment, this is denoted by connected components 
containing minimum thickness of only 1 or 2 pixels. Conversely, a curved (non-straight) segment 
is expected to be comprised of relatively large energy regions. From experiment this taken to be 
regions containing minimum widths greater than 2 or more pixels. 

In the proposed model the latter technique is chosen for the identification of the straight edge 
segments. Although this technique is computationally more expensive than the former approach, 
from experiment it is, nevertheless, shown to be more accurate. Fig. 67(c) provides an illustration 
of the filtered straight line edges in the image. 

2) Straight Line Interpretation and Co-Planar Refinements 

Fig. 68 Digital straight lines. (a) Original images; (b) Digital straightened segments; (c) Refined digital 
straight lines. 
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Majority of the valid binarised edges only provide an approximation of the straight lines or 
edges in the image, however, for VP estimation these edges need to be perceived as being 
absolutely (in relative terms) straight. To resolve this, the endpoints of each segment are 
considered, since only 2 points are required to completely describe and represent a straight line    
in 2D coordinate space. An illustrative interpretation of the straight lines is shown in Fig. 68(b). 

To minimise infinities only the dominant (longest) horizontal and vertical edge segments are 
assumed to be valid and subsequently retained. In the proposed model horizontal edges contain 
slopes between ±2.5° and vertical edges contain slopes between 87.5° and 92.5°. Positive and 
negative slopes are treated independently. Positive horizontal edge segments contain slopes 
greater than or equal to 0° and less than or equal to 2.5° and negative horizontal edge segments 
contain negative slopes greater than or equal to −2.5° or equal to 0°. The positive and negative 
dominant horizontal edges are determined by comparing and extracting the largest segments from 
the positive and negative horizontal edge segments, respectively. If either of the dominant 
horizontal edge segments have a slope of 0° only the larger of the two segments is considered as 
the dominant horizontal edge. 

Positive vertical edge segments contain slopes greater than or equal to 87.5° and less than or 
equal to 90° and negative horizontal edge segments contain negative slopes less than or equal         
to 92.5° or equal to 90°. The positive and negative dominant vertical edges are determined by 
comparing and extracting the largest segments from the positive and negative vertical edge 
segments, respectively. If either of the dominant vertical edge segments have a slope of 90° only 
the larger of the two segments is considered as the dominant vertical edge. 

Images of natural outdoor scenes often contain a horizon. In these type of scenarios, the VP 
is often located on the horizon line. For an unsupervised algorithm it is not known a priori whether 
a scene is outdoor or indoor. However, irrespective of whether a horizon exists or not this line will 
nevertheless represent a dominant horizontal edge. As such, in the proposed model, an estimation 
of the horizon line is attempted for all scenarios. If both the dominant and non-dominant horizontal 
edges are interrogated, then the horizon line is considered to be the row containing the most 
energy. To account for slope inconsistencies a buffer of two rows above and below the respective 
row is considered i.e. the energy contained with five consecutive rows are analysed for each 
candidate row. The horizon is assumed to span a significant width of the image. From experiment 
any candidate row containing a nonzero pixel count of less than 30% of the width of the image is 
excluded from analysis. For the purpose of VP detection, the horizon edge is chosen as the largest 
connected component within the candidate horizon row. The horizon edge may but not necessarily 
be one of the positive or negative dominant horizontal edges. 

Converging diagonal lines play the most significant role in the estimation of the VP. In the 
proposed model these types of lines are handled differently compared to horizontal and vertical 
straight lines. Owing to the ill-posed nature of the problem it is not possible to know a priori which 



122 
 

of the parallel diagonal lines provide optimal VP convergence. Moreover, to minimise over-
clustering of the converging diagonal lines and subsequent skewing of the accumulator matrix it 
is necessary to optimise the collection of valid straight lines segments through the discarding of 
redundancies. Owing to the possibility of inherent discontinuities it is not feasible to remove all 
non-dominant redundant parallel diagonal lines. Therefore, in the proposed model, a more 
reserved approach is chosen. 

For every segment there exists an associated perpendicular range. This may be visualised as 
the bidirectional protraction of every point on the straight-line segment in a perpendicular direction 
to the segment and across the entire range of the coordinate space. Initially two segments are 
considered to be parallel if their slopes are both positive or both negative and are within a close 
degree proximity of each other. Subsequently if the smaller segment intersects the perpendicular 
range of the larger segment, then the smaller segment is considered to be redundant and 
invalidated. This refinement is necessary for the minimisation of possible infinities as well as to 
account for the redundant intersections. From experiment a parallel degree range of 2° and a 
perpendicular overlap range of 80% is chosen. The dominant horizontal, vertical and horizon edges 
are always considered to be valid irrespective of the refinement process. An illustrative 
interpretation of the refined straight lines is shown in Fig. 68(c). 

 

3) Candidate Vanishing Points 
 

The candidate VPs are extrapolated from an associated accumulator array (AA). The AA may 
be described as a two-dimensional integer array. In the proposed model the AA canvas is expanded 
to account for candidate VPs that may potentially lie outside of the boundaries of the original 
image domain. From experiment the expansion is chosen to be two times the height and three 
times the width of the source image. If the ratio of the width to the height is less than 80%, then 
the expansion is chosen to be three times the height and five times the width of the source image. 
In either scenario the original spatial region is located vertically on the bottom and horizontally in 
the middle of the expanded domain. 

The values in the AA are determined by extrapolating the intersecting points of every   
straight-line segment with every other straight line segment through solving of the polynomial 
from their respective slope-intercept forms. A value of 1 is added to the accumulator at each 
intersection point (row and column location) for each line pair. Illustrative interpretations of the 
intersecting refined straight lines are shown in Fig. 69(b). 
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Fig. 69 Candidate VPs. (a) Original images; (b) Protracted straight lines (for illustrative purpose only);   
(c) Candidate VPs. 

 
Each pixel in a digital image represents the quantisation of an associated point in 3D analogue 

space. As such each edge and subsequent straight line interpretation (especially the slope) of the 
edge will be prone to the errors associated with quantisation. Moreover, the extrapolation of the 
intersecting points of the quantised straight line segments are based on analogue polynomials. As 
a consequence, the maxima points in the AA may not necessarily represent the optimal       
candidate VPs. To address these concerns, the proposed model instead estimates the candidate 
VPs by evaluating the perpendicular distance between each non-zero location in the AA and every 
refined valid straight line segment. For each non-zero location in the AA the number of segments 
within a perpendicular range of p, 2p and 4p are determined. From experiment, p is chosen               
as 0.25% of the perimeter of the image. 

In the proposed model up to 5 candidate VPs are extrapolated. Initially, from experiment, a 
candidate VP is chosen as the point in AA containing the maximum number of segments within a 
perpendicular range sorted in the order 2p, p and 4p. Subsequently, to avoid clustering of the 
candidate VPs, a 𝑛×𝑛 region centred on the respective candidate VP in the AA is set to zero prior 
to selecting the next candidate VP. Based on experiment, n is chosen as 2.5% of the perimeter of 
the image. This candidate VPs are illustrated in in Fig. 69(c). 
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4) Optimal Vanishing Point Estimation 

Finally, from experiment, the dominant VP is chosen as the candidate VP containing the 
maximum number segments within a perpendicular range sorted in the order 4p, p and 2p. The 
segments with a perpendicular range of 4p are chosen as the associated vanishing lines (VLs). 
From experiment, p is chosen as 0.25% of the perimeter of the image. This is illustrated in Fig. 70. 

 

Fig. 70 Dominant VP and associated VLs. 

 
D. Results and Discussion 

The results are divided into two sections. The first section discusses the training data used in 
the proposed model and the second section involves the testing of the algorithm against data not 
available during the training phase.  Although the proposed model relies only on the straight edges 
in the image to estimate the VP, the algorithm is nevertheless multivariate. In order to establish a 
benchmark, supervised training of the algorithm is performed using the data associated with the 
previously proposed models. Subsequently, testing of the model is conducted. The testing 
component of the results section is vital to establishing the efficacy as well as the novelty of the 
proposed model. 

 

1) Benchmarking 
 

The training dataset consist of images from previous works as well as numerous random 
images from the WWW. These include the 6 images in Fig. 71 from Battiato et. al [23, 56], 3 
images in Fig. 72 and Fig. 73 from Schaffalitzky and Zisserman [59], 3 images in Fig. 74 from 
Chappero et. al [57], 10 images from the York urban database provided by Denis et. al [58]           
and 33 images from the WWW (refer to Fig. 75). The York urban database is a collection of 102 
images of indoor and outdoor urban structures and includes the associated ground-truths for the 
dominant straight line edges based on the Manhattan world assumption [164]. 
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Fig. 71 Training set 1. (a) and (c) Results of proposed method; (b) and (d) Comparative results of the method 
proposed by Battiato et. al [23] using VLs and geometric depth maps. 

 
A subjective comparison between the proposed method and the approach proposed                    

by Battiato et. al [23] is provided in Fig. 71. Based on these results the proposed approach                   
is comparable to the method proposed by Battiato et. al. Their method employs the use of the 
Hough transform accumulator technique for the detection of both the main straight lines as well 
as the intersections of the main straight lines. One disadvantage of the method proposed by               
Battiato et. al is that only concurrent lines are considered and horizontal, vertical and horizon lines 
as well as redundant parallel coplanar lines are not taken into account. Another disadvantage is 
that the HT accumulation matrix for straight line detection is constructed on a pixel-by-pixel basis 
compared to the more computationally efficient segment-based method employed in the proposed 
model. The method proposed by Battiato et. al also attempts to account for more natural 
environment type scenarios by incorporating a sort of rudimentary region-based approach using 
mean shift segmentation. 
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Fig. 72 Training set 2. (a) Results of proposed method. (b) Results from Schaffalitzky and Zisserman [59]. 

 
A subjective comparison between the proposed method and the approach proposed by 

Schaffalitzky and Zisserman [59] is provided in Fig. 72. Based on results the proposed approach 
is comparable to their method. Both methods extrapolate the straight-line segments directly from 
the edge map in the image plane parametric space and both consider the concurrent or converging 
lines to be a dominant factor in VP estimation. The significant difference between the proposed 
method and the Schaffalitzky and Zisserman approach is that the latter method considers coplanar 
equispaced parallel straight lines as another dominant influence in VP estimation. These heuristics, 
which includes features such as tiles, windows and planks on boardwalks or peers, may be useful 
in projecting possible VP regions, provided there exists a priori knowledge of the scene. However, 
in the case of unsupervised VP detection this information is unavailable. 

Further inconsistencies may be highlighted through interrogation of the scenario evidenced  
in Fig. 73(b).  In the Schaffalitzky and Zisserman method the brick wall may firstly result in 
conflicting horizontal and vertical coplanar parallel lines and secondly, create unnecessary clusters 
of straight line segment that may cause inconsistencies in the projection of the VP candidates. 
Another concern with the Schaffalitzky and Zisserman approach is that in addition to the detection 
of the parallel straight lines being performed in the parametric space using classical techniques 
their method also performs the detection using more elaborate feature extraction techniques. 

In the proposed model consecutive (coplanar perpendicular space) parallel straight lines are 
assumed to be redundant and therefore only the dominant segment in each consecutive parallel 
straight line grouping is considered as a potential VL. The refinement of these line groupings is 
illustrated in Fig. 73(d) as well as Fig. 68(c). The added mathematical complexity in the 
Schaffalitzky and Zisserman approach appears to be unnecessary, since comparable, if not better, 
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results are achievable with the simpler proposed method. In addition to being computationally 
more efficient, the proposed approach requires noticeably fewer heuristics for the estimation of 
the VP. 

Fig. 73 Training set 2. (a) Original image; (b) Incorporation of coplanar parallel lines using the feature 
extraction method proposed by Schaffalitzky and Zisserman [59]; (c) Extracted straight edges using  
the proposed method; (d) Refined straight edges using the proposed method; (e) Results of the proposed 
method (Dominant VP); (f) Results of the proposed method (Secondary VP). 

 
A subjective comparison between the proposed method and the approach proposed by 

Chappero et. al [57] is provided in Fig. 74. Based on these results the proposed approach is 
comparable to method proposed by Chappero et. al. However, the significant advantage of the 
proposed method is that it is dependent on only one criteria (edge segments) as opposed to the 
three (Hough, pixel gradients and segmentation) considered by Chappero et. al. In addition, the 
latter method requires two accumulation matrices to be constructed and analysed; one for the 
Hough transform and the other for the first derivatives (gradients) in the image plane. Another 
disadvantage is that the accumulation matrices are constructed on a pixel-by-pixel basis compared 
to the more computationally efficient segment-based method employed in the proposed model. In 
the method proposed by Chappero et. al an attempt is also made to account for more natural 
environment type scenarios by incorporating a sort of rudimentary region-based approach using 
mean shift segmentation; this is similar in a way to the aforementioned Battiato et. al approach. 
The proposed model also takes into account VPs that may lie outside of the parametric space; this 
eventuality is discussed but not implemented in the approach proposed by Chappero et. al. 
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Fig. 74 Training set 4. (a) Results of proposed method; (b) Results from Chappero et. al [57]. 

 
Owing to space limitations only a limited number of images from the training dataset are 

provided in this section. The complete database of training images and associated results are 
available from the author at serenr@gmail.com. 
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Fig. 75 Training set 1. 15 of the 33 training images from the WWW. 

 

2) Testing 

The testing dataset consists of 144 images representing a variety of VP scenarios. As with the 
training images the test images chosen provide a reasonable amount of variation such as indoor 
and outdoor man-made structures as well as natural environments. In addition, attributes such as 
colour, illumination, texture, size etc. are also taken into account. These include 52 images from 
the WWW (refer to Fig. 76) and 93 images from the York urban database (refer to Fig. 77). The 
latter also includes the associated ground-truth VP coordinates. 

Owing to space limitations only a limited number of comparative results of the total dataset 
of test images are presented in this section. The complete database of test and training images and 
the associated results is available from the author at serenr@gmail.com. 

In the proposed model the VP is considered to be the dominant convergence point used to 
guide the observer’s 3D depth perspective. Although this point is imaginary, it nevertheless 
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represents a point in 3D space at a location in the distant of the scene in the direction of the 
imaginary perspective lines. 

 

Fig. 76 Test results using the proposed method. The images pairs are numbered 1 to 19 starting with 1 on 
the top left corner and moving column-wise then row-wise until 19 on the bottom right corner. 
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Fig. 77 York urban database. (a) Original image; (b) Refined straight edges extracted using the proposed 
method; (c) Results of proposed method; (d) Results of proposed method applied to the respective York 
urban ground-truth. 
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The following is a brief analysis of the results shown in Fig. 76. Image 15 (second row from 
bottom, first column from the left) shows that according to the proposed model the VP is estimated 
to be the convergence region at the end of the peer. However, one may subjectively consider          
the VP to be located on the horizon line at the base of the mountains in the background. The reason 
for the VP being located at the extrapolated point is that man-made structures like the peer exhibit 
more dominant digital straightness compared to natural structures such as mountains and trees. 
Another example is given in image 14 (third row from bottom, first column from the right); in this 
case the estimated VP is considered to be in the direction of the apex of the building where              
the VLs converge to a point outside the parametric space. While this appears to be subjectively 
correct, in this scenario there are actually two more VPs (east and west) in addition to the   
projected VP (north). The proposed model is also tested against more natural environments; such 
as image 18 (last row, first column from the left). In this case the striations between the rows of 
plants together with the dominant horizon line present on the ridge of the field result in VP being 
located on the horizon line but nevertheless in the centre of the dominant convergence region. 

The proposed model is also evaluated using the source and ground-truth data provided by    
the York urban database. This dataset comprises both outdoor and indoor images of man-made 
environments. Some of the results are illustrated in Fig. 77. 

A success rate of 81% (75 out of 93) is achieved when compared to the ground-truth data. The 
accuracy of the data is based on a buffer of 1% of the sum of the width and height of the source 
image around the ground-truth VP. 

The limitation of the proposed method for VP estimation is that it is inherently dependent on 
extrapolation of the straight lines in the image. This is a concern for images of natural 
environments where minimal straight lines are present. Further research is warranted in this regard. 

 
 
E. Conclusion 

A novel unsupervised method is proposed for estimation of the VP in images containing 
artificial or man-made environments. The simplicity of the proposed approach is that it is only 
dependent on the analysis of a few edge segments, which are extracted from a binarised edge map, 
directly in the image-plane coordinate space. Moreover, the proposed method achieves similar, if 
not better, accuracy than other methods that involve the use of more mathematically complex 
techniques such as Gaussian spheres, polar-space transformations, Helmholtz probability, 
Bayesian inference, Hough transforms and segmentation. 

The proposed model consists of four stages. Firstly, the straight edges in the image are 
estimated. The results show that horizontal, vertical and diagonal straight edges may be 
extrapolated directly from the edge map of the image by evaluating the energy present within the 
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confines of each connected component. Secondly, redundant straight line edges are excluded. The 
results show that two types of redundant edges may be excluded. The first are the non-dominant 
overlapping parallel edges and the second are non-dominant parallel edges within the 
perpendicular co-planar space of the dominant edges. The third stage of the proposed model 
involves the selection of candidate VPs. The results show that these candidate VPs may be 
extrapolated firstly, determining the intersecting points of every straight-line segment with every 
other straight line segment through solving of the polynomial from their respective slope-intercept 
forms and secondly, using a block-based approach to evaluate the straight lines passing within a 
perpendicular buffer distance of each intersecting point. The fourth and final stage involves the 
extraction of the optimal VP from the selection of candidate VPs. The results show that the   
optimal VP may be determined by performing a more refined interrogation of vanishing lines that 
are within a perpendicular distance of the candidate VPs. 

Future work may include the expansion of the model to account for natural environments 
using a type of region-based approach. The vanishing regions that converge towards a VP tend to 
be triangular in nature. By exploiting these properties, it may be possible to infer straight lines and 
subsequently extrapolate a VP. However, for this type of approach it may be necessary to 
incorporate a method to discern between artificial and natural environments. 
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VI. STEREOSCOPIC IMAGE SYNTHESIS OF                                                  

SINGLE 2D LOW DEPTH-OF-FIELD IMAGES USING                                     

DEPTH IMAGE-BASED RENDERING 

 
A. Introduction 

The purpose of a 2D-to-3D conversion system is to output two images representing a source 
image or video frame from two different viewpoints. Depth image-based rendering (DIBR) is the 
term given to the process of generating or rather synthesising images of a scene that appear to be 
simultaneously captured from different viewpoints of that scene using only a single source image 
and its associated depth map [39]. In the case of 2D-to-3D conversion only two of these simulated 
viewpoints are required. However, if the original source image is chosen as one of the viewpoints, 
then only one synthesised disparity image is actually needed. 

 

 
Fig. 78 Extrapolation scenario of virtual cameras views from original camera (Image adapted from [165]) 

 
To create these so-called “virtual” views, pixels representing objects closer to the camera, as 

determined by the depth map, need to be moved either left or right, in front of the background 
pixels. This pixel location reassignment process is commonly referred to as warping. A 
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consequence of warping is some pixels will become occluded and other pixels will be revealed, 
resulting in missing pixels or “gaps” appearing in the background, as shown in Fig. 78. 

The problem with these dis-occluded regions is even with a highly accurate depth map there 
is no precise means of determining the values of the revealed pixels, since the depth map only 
provides depth information and not intensity nor lateral nor angular information of the occluded 
regions. In most cases, specifically single images and static video frames, these values may only 
ever be predicted within a certain probability, since they never actually exist. These newly created 
holes need to be resolved effectively so as not to significantly distort the quality of the generated 
disparity images. This sub-step of the DIBR process, which involves the predicting and subsequent 
filling, of these missing pixels is referred to as hole-filling.  

It is common to set the original image as one view, say the right eye and then synthesize the 
left-view. The advantage is it would only be necessary to generate one additional view. However, 
the disadvantage will be the size of the dis-occlusion spaces occurring in the rendered view. By 
synthesising two views these missing pixel spaces may effectively be halved since it will be split 
across both images. The fundamental problem with these missing pixel spaces is that there is no 
information in the original reference image or depth map that may be used to accurately determine 
the values of the dis-occluded regions. In essence, the information needed may only ever be 
obtained from an image that had been simultaneously captured from the new viewpoint, for 
example, by using a stereoscopic camera. This is not an easy problem to solve and owing to these 
irregularities directly affecting the subjective image quality, the hole-filling problem is the most 
significant issue currently existing in DIBR. 

This paper is organised as follows: Section B provides a brief discussion of some of the  
related work. Section C provides a description of the proposed model as well as the necessary 
steps required to autonomously generate two disparity views of a single 2D LDOF image          
using DIBR. Section D reports the experimental results. Section E provides a brief summary of 
the research and closes the paper. 

 
B. Related Work 
 

Fig. 79 Depth image-based rendering (DIBR) System (Image adapted from [47]) 
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There are three primary processes involved in DIBR. These include depth map pre-

processing, 3D image warping and hole-filling [47]. A typical DIBR system is illustrated                  
in Fig. 79. Depth map pre-processing involves the possible prior smoothing of the depth map as 
well as the setting of certain camera and geometric constraints. The image warping component is 
responsible for creating the disparity shift between the left and right images. The hole-filling 
element addresses the assignment of pixel intensity values to the missing (dis-occluded) pixel 
spaces occurring as a consequence of the image warping. 

The following section provides a deeper discussion into some of the techniques previously 
proposed for the different stages of the DIBR process. 3D image warping is discussed prior to 
depth map pre-processing in order to provide a deeper understanding for the latter requirement. 

 

1) 3D Image Warping 

By using the original 2D source image or video frame as a reference and relatively shifting 
the pixels either left or right, according to the depth information provided in the depth map, 
different images of the reference scene may be created in such a way so as to appear as though 
they have been simultaneously captured by cameras located either slightly to the left or right of 
the original camera position. This pixel shifting process employed to generate these alternative 
viewpoints is commonly referred to as 3D warping or just warping [166]. The essence                        
of 2D-to-3D conversion is to simulate stereoscopy and, therefore, only two viewpoints or “virtual” 
camera views are needed. In the case where the original image is chosen as one of the viewpoints, 
then for the “second eye" it is only necessary to synthesise one other viewpoint. 

Fig. 80 Camera configuration for rendering of virtual stereoscopic images [48]. 
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Image warping contains two steps. The first involves the projection of each pixel in the real 

view image into the 3D world based on the camera parameters and the second involves the re-
projection of the pixels back to the 2D image of the virtual view for view generation [167].           
Fig. 80 provides the geometrical basis of the DIBR warping process [47]. The left and right eye 
images, located at the “virtual” camera positions 𝐶𝑙 and 𝐶𝑟, respectively, may be generated for a 
certain lateral distance 𝑡𝑐  based on the focal length f and the depth map value 𝑍. The geometrical 
relationships are expressed as 

 
 𝑥𝑙 = 𝑥𝑐 +

𝑡𝑐×𝑓
2

⋅ (
1
𝑍

− 1
𝑍𝑐) (40)

and 
 𝑥𝑟 = 𝑥𝑐 −

𝑡𝑐×𝑓
2

⋅ (
1
𝑍

− 1
𝑍𝑐) (41)

 
where 𝑍𝑐 , referred to as the convergence distance, is the distance between the camera and              
the zero-parallax setting (ZPS).  

The product of 𝑡𝑐  and 𝑓  generates a value indicating the maximum disparity or lateral shift in 
the synthesised images. Although both 𝑡𝑐  and f are constant for each scenario they are nevertheless 
unique to each scenario. Once each of the variables have been assigned a value, these warping 
equations become even more simplified and may, in a straightforward process, be used to directly 
map pixels for the left and right eye view, synthesising the stereoscopic image pair [47]. 

  

2) Depth Map Pre-Processing 

Depth map pre-processing is the first step in the DIBR process, implying it is actually 
performed prior to the 3D warping stage. This stage usually involves the selection of the 
abovementioned convergence distance 𝑍𝑐  or ZPS and maximum disparity shift value, given by 
the product of 𝑡𝑐  and 𝑓 , as well as the smoothing of the depth map. Subsequently, warping may 
be performed by inputting 𝑍𝑐 , 𝑡𝑐 , 𝑓  and the modified depth map values 𝑍 directly into Eq. (40)         
and Eq. (41). 

The relationship between disparity, depth and horizontal (lateral) position is illustrated              
in Fig. 81. Here it shown that only objects within the 𝑍𝑛𝑒𝑎𝑟 to 𝑍𝑓𝑎𝑟 range are perceived as 3D 
while those outside these limits are viewed as 2D. Incidentally, this explains why applications 
destined for 3DTV do not exceed the five-meter limit, since depth beyond this distance from the 
camera is not visually perceptible on these systems. Moreover, Fig. 81 shows that the scene will 
not change if the viewer decides to shift his point of view horizontally [168]. 
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Fig. 81 Relationship between disparity, depth and horizontal position for sample parallel  

cameras (𝒕𝒄 = 𝟎. 𝟏 𝐦 𝐚𝐧𝐝 𝒇 = 𝟎. 𝟎𝟓 𝐦) [168]. 

 
Although there exist several methods for estimating the ZPS [169], the “shifted” depth map 

approach is commonly preferred for 3DTV [47]. If 𝑍𝑛𝑒𝑎𝑟 denotes the depth value closest to the 
observer and 𝑍𝑓𝑎𝑟 denotes the depth value furthest from the observer, then 

 

 𝑍𝑐 = (
𝑍𝑛𝑒𝑎𝑟−𝑍𝑓𝑎𝑟

2 ) .   (42)

 
For a typical 8-bit depth map the range will most likely be 𝑍𝑛𝑒𝑎𝑟 = 0 and 𝑍𝑓𝑎𝑟 = 255. The depth 
map will then be adjusted and normalised such that the 𝑍 values lie in the interval of [−0.5, 0.5]. 

 

 
Fig. 82 Binocular parallax [170] 
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Three types of “binocular” parallax may be experienced by an observer. These are                       
termed zero, positive and negative parallax [10]. Fig. 82 illustrates what may occur, for                
example, in 3DTV and cinema. Zero parallax has the eyes converged at the plane of the screen, 
positive parallax will result in the objects appearing submerged into the display screen and in the 
case of negative parallax, objects will appear as being between the observer and the display   
screen. Pixels located between 0 < 𝑍 ≤ 0.5  will result in positive parallax, while pixels located 
between −0.5 ≤ 𝑍 < 0 will result in negative parallax. 

For sporadic images it is unlikely the baseline distances 𝑡𝑐  as well as camera parameters, such 
as f, are known a priori. Therefore, in the case of an autonomous 2D-to-3D conversion system, it 
will be required to formulate values for 𝑡𝑐  and f. For a comfortable view a 1º horizontal disparity 
offset is suggested as the maximum depth range. For a standard 4 × 3 image the maximum lateral 
shift will translate to approximately 5% of the width of the image. In addition, a viewing distance 
of four times the image or video frame height is also recommended [47, 171]. 

The purpose of smoothing the depth map, which is usually performed through Gaussian 
filtering, is multi-fold. Firstly, it may be used to effectively reduce noise and blocky artefacts and 
secondly, redistribute inaccuracies and thirdly, smoothen transitions at object boundaries, across 
the entire depth map [172]. Moreover, it may be applied more aggressively to the edges of              
the OOI in order to alleviate or even remove some of the dis-occlusion distortions arising as a 
consequence of warping [39]. This smoothing function is discussed in more detail below, in the 
hole-filling subsection. 

 

3) Hole-Filling 

Fig. 83 DIBR Image Warping [47]. (a) Original image; (b) Warped “Left-view” image (The red indicates the 
dis-occluded regions). 
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A consequence of warping is that some pixels will become occluded and other pixels will be 
revealed, resulting in missing pixels or “gaps” appearing in the background. This is illustrated       
in Fig. 83. These newly created holes need to be resolved effectively so as not to significantly 
distort the quality of the generated disparity images. This sub-step of the DIBR process, which 
involves the prediction of the intensity values and subsequent filling of these missing pixels, is 
referred to as hole-filling. 

As mentioned earlier, it is not uncommon to set the original image as one of the viewpoints, 
for example, the right eye and then synthesise only the left-view. The advantage is it that only one 
additional view is needed. However, the disadvantage will be the increased size of the resulting 
dis-occluded regions in the synthesised view. On the other hand, by synthesising two views these 
missing pixel spaces may effectively be halved, since it will be split across both images. 
Irrespective of whether a single view or two views are synthesised, the fundamental problem is 
that there is no information in the original reference image that may be used to precisely determine 
the intensity values of these missing pixels. 

Fig. 84 Occlusion analysis [173]. (a) Left frame of a stereo pair (Synthesised); (b) Right frame of a  
stereo pair (Original); (c) Categorisation of occluded pixels; (d) Possible noncircular object occluded by the 
square (right frame).  

 
The complication surrounding the missing pixel information may be more clearly understood 

by considering the scenario illustrated in Fig. 84. Assuming Fig. 84(b) represents the original 
image (right eye) and Fig. 84(a) represents the virtually generated or synthesised view (left eye), 
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then from this scenario, Fig. 84(b) cannot provide any texture information regarding the newly 
exposed pixels. Even with a highly accurate depth map there is still no precise means of 
determining the values of these revealed pixels, since a depth map only provides depth information 
and not lateral nor angular information of the dis-occluded regions. Moreover, as shown                    
in Fig. 84(d), there is actually no way of telling whether the information behind the square is in 
fact circular in shape i.e. the information needed is only ever obtainable from an image 
simultaneously captured from the new viewpoint, for example, by using a stereoscopic camera. 

Since the inception of DIBR, several approaches have been proposed to address the               
hole-filling problem [47-49, 166, 174, 175]. These techniques are grouped under two categories. 
The first is pixel interpolation- or extrapolation-based methods and the second is depth map 
smoothing methods 

Interpolation or extrapolation techniques are commonly referred to as image inpainting [176]. 
Inpainting provides a means of filling these dis-occlusions by either mapping pixels from               
the original image or extrapolating or mirroring values, using the foreground (FG) or      
background (BG) information, onto the synthesised views [166]. The six most popular inpainting 
schemes employed in DIBR include [49, 174, 175]: 

1) Constant colour filling. This involves estimation of the average colour of the closed 
boundary of each hole (FG and BG objects are not separated) and subsequent filling of the entire 
hole with a unique and constant colour.  

2) Horizontal interpolation. This is a basic interpolation of the known boundary pixels in the 
horizontal direction. Each dis-occluded region is divided into single pixel height rows and each 
individual row is then filled by interpolating the intensity values of the endpoints left and right 
towards the centre. The relative depths of objects are not accounted for so the FG and BG objects 
will appear to be fused together. 

3) Horizontal extrapolation with depth information. This method is similar in concept to the 
horizontal interpolation technique. However, in this case the relative depth of objects are taken 
into account. Since the 3D warping will only create dis-occluded regions in the BG, the boundary 
pixels of the foreground objects may essentially be ignored i.e. extrapolation of intensity 
information is based only on the border pixels constituting the objects in contact with the hole at 
the greatest relative depths. As with the standard horizontal interpolation approach, each dis-
occluded region is split into single pixel rows. However, in this case only one endpoint is 
considered, resulting in interpolation either occurring from left to right or vice versa i.e. there is 
no joining or fusing of FG and BG objects.  

4) Edge oriented averaging with depth information. This method is identical to the previously 
discussed method in regard to handling of the FG and BG boundary pixels. However, instead of 
performing direct horizontal interpolation of the background border pixels, interpolation is based 
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on the minimal intensity difference in four directions around each pixel. This technique attempts 
to improve and preserve the boundary transitions. 

5) Diffussion-based interpolation. This is a more sophisticated method of interpolation than 
the previous techniques and is based on the smoothing and subsequent inward diffusion of the 
pixels on and near the hole boundaries. This technique may nevertheless be considered as an 
extension of the first two approaches. There are many variations to diffusion-based interpolation 
such as linear, nonlinear (for example, Laplacian), isotropic and anisotropic. A specific model may 
be chosen depending on the properties of the local neighbourhood such as direction or structure 
curvature. In general diffusion-based interpolation approaches have shown to exhibit less 
perceptual inconsistencies such as abrupt disconnected edges and border transitions.  

6) Exemplar-based interpolation. These approaches may be seen as an amalgamation of the 
aforementioned methods together with texture synthesis techniques [177, 178]. Inspiration is taken 
from local region-growing techniques whereby attempts are made to grow the texture of the local 
neighbourhood one pixel or one patch (referred to as exemplar) at a time. The dis-occluded regions 
may be synthesised by learning and sampling from similar regions (in the form of random textures 
or regular patterns) in known parts of an image or a texture sample. Exemplar-based interpolation 
approaches are more suitable to supervised models. 

In general, exemplar-based followed by diffusion-based image inpainting techniques are 
considered to be the most popular. The former is more applicable to the recovery of texture of 
large areas while the latter is more suited to small regions as well as straight lines and curves. 
Although these two interpolation techniques are significantly more sophisticated than the other 
aforementioned approaches they are nevertheless more accurate and robust. 

Although there have been major advances in the field of image inpainting these methods may 
nevertheless suffer from discrepancies such as stripe distortions, abrupt boundary transitions as 
well as other texture artefacts. As a means of ameliorating or even removing these inconsistencies, 
depth map smoothing has been proposed [47, 166]. These smoothing techniques, which are briefly 
discussed in the previous subsection, are not actually dis-occlusion filling or inpainting methods 
but rather are considered as a means of either reducing or altogether avoiding the existence of dis-
occlusion regions through the smoothing of the depth map prior to 3D warping. 

Although there are several filter types that may be applied to achieve smoothing of the depth 
map, for conceptual simplicity the Gaussian filter ℎ(𝑛, 𝜎𝑛) is considered. This is defined as 

 

 ℎ(𝑛, 𝜎𝑛) = 1

√2𝜋𝜎𝑛
2

exp (− 𝑛2

𝜎𝑛
2),   (43)

 
for − 𝑤

2 ≤ 𝑛 ≤ 𝑤
2 , where n implies the direction (either horizontal, 𝜇, or vertical, 𝜐), 𝜎 denotes the 

depth smoothing strength and 𝑤 represents the filter’s window size. Given a depth map 𝑑          
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where 𝑑(𝑥, 𝑦) indicates the depth of the pixel in the associated original image at position (𝑥, 𝑦), 
then the depth value after smoothing 𝑑(̂𝑥, 𝑦) will be equal to 

 

 

𝑑(̂𝑥, 𝑦) =
∑ {∑ (𝑑(𝑥 − 𝜇, 𝑦 − 𝜐)ℎ(𝜇, 𝜎𝜇))ℎ(𝜐, 𝜎𝜐)

𝑤
2
𝜇=−𝑤

2 }

𝑤
2
𝜐=−𝑤

2

∑ {∑ ℎ(𝜇, 𝜎𝜇)ℎ(𝜐, 𝜎𝜐)
𝑤
2
𝜇=−𝑤

2 }

𝑤
2
𝜐=−𝑤

2

 .   (44)

 
Manipulation of 𝑤 and 𝜎 will have a direct influence on the 3D warping process, whereby the 

dis-occluded regions will either be reduced in size or eliminated altogether, depending on the 
degree of smoothing. In both cases, this will have a relatively positive impact on the subjective 
quality of the synthesised images. There are two types of smoothing that may be performed; these 
include symmetric and asymmetric. For the former, 𝜎𝜇 = 𝜎𝜐, and for the latter, 𝜎𝜇 ≠ 𝜎𝜐. Fig. 85 
provides an illustration of both forms of depth map smoothing.  

Although symmetrical smoothing has shown to minimise or even eliminate the 
aforementioned texture artefacts associated with interpolation, the synthesised images 
nevertheless are prone to geometric distortions, in particular when object boundaries are vertically 
straight. However, noticeable improvements to these distortions are observed when smoothing is  
performed asymmetrically, specifically in the cases where 𝜎𝜇 ≪ 𝜎𝜐  [47, 167]. Asymmetric 
smoothing, with emphasis in the vertical direction, is characteristically congruent with the 
binocular modus operandi of the HVS, whereby horizontal shifts rather than vertical disparities 
are responsible for depth perception [179]. This type of asymmetric filtering provides smoothing 
of the sharp depth changes, in particular around the border transitions of the OOIs, while still 
providing reasonably good and stable disparity depth cues. 

Fig. 85 Depth Map Smoothing [47]. (a) Original Depth Map (The higher the intensity value implies the pixel 
is located closer to the camera i.e. a shallower depth); (b) Symmetrically smoothed depth map;  
(c) Asymmetrically smoothed depth map (with a stronger emphasis in the vertical direction). 
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Another type of filter, often considered, which is an adaptation of the Gaussian filter, is the 
bilateral edge-preserving filter [128, 129]. This is described on p. 95 together with a discussion on 
the adaptations and improvements to these types of filters. 

All methods that attempt to address the inconsistencies associated with hole-filling contain 
some inherent discrepancies and most scenarios are prone to non-ideal conditions. As a 
consequence, in this research a combination of these techniques, in conjunction with other 
approaches, are considered as means of achieving reliable and autonomous DIBR. 

 
 

C. Proposed Approach 

The purpose of this stage is to produce two images representing two slightly different lateral 
viewpoints of the original source image i.e. a left and right disparity image-pair. In the proposed 
model this is achieved through the application of depth image-based rendering (DIBR). As 
discussed above, DIBR is divided into three stages. These include depth map pre-processing, 
image warping and hole-filling. 

 

1) Depth Map Pre-processing 

The purpose of the depth map pre-processing substage is to assign the convergence distance 
and maximum disparity shift value as well as smoothen the depth map.  

For viewer comfort, the convergence distance is set to [−0.5, 0.5]. This is denoted by 𝑍𝑐             
in Eq. (40) and (41) on p. 137. The effect of setting 𝑍𝑐 = 0.5 is that the eyes will converge on the 
screen at the 127-128 depth range i.e. values below 127 (shallower depth) will appear to pop out 
of the screen towards the viewer and values above 128 (deeper depth) will appear to be submerged 
into the screen away from the viewer. 

In the proposed model the original image is not considered as one of the disparity pair. By 
rendering both the left and right disparity images the dis-occlusion distances created during          
the 3D warping process are effectively reduced by half. The maximum disparity shift value is set 
to 10% the width of the image; this is denoted as 𝑡𝑐×𝑓  in Eq. (40) and (41) on p. 137. Since the 
dis-occlusion distances are distributed across the left and right rendered disparity pair there will 
be a maximum horizontal shift of 5% of the width of the source image for each disparity image. 

To further alleviate some of the dis-occlusions generated during the image warping substage, 
an asymmetrical bilateral filter (BF), instead of a Gaussian, is applied to the depth map. The choice 
of edge preserving may appear to be counterintuitive since the purpose of the smoothing is to 
spread the effect of the warping in a manner so as to minimise the resulting dis-occlusions. 
However, the problem with not preserving the edges, especially of the OOI, is that border regions 
of the objects are also spread out during warping resulting in perceptual irregularities appearing 
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in the synthesised images. The choice of the BF therefore allows for the spreading of the warping 
to be performed primarily in the regions between objects. 

Fig. 86 Gradient-based depth maps. (a) Original images; (b) Depth maps; (c) Asymmetrically smoothed 
depth maps; (d) Final merged asymmetrically smoothed depth maps. 

 
In this research the joint shiftable filter proposed by Chaudhury et. al [129, 134, 135] is 

chosen;  this is discussed on p. 95. From experiment, a spatial standard deviation 𝜎𝑠 =  0.55% the 
perimeter of the image, a range standard deviation 𝜎𝑟 = 1.7𝜎𝑠 and a 𝑛×𝑚 smoothing window      
with 𝑛 = 𝜎𝑠 and 𝑚 = 5𝑛 is chosen for the BF. This is illustrated in Fig. 86(c). 

The final pre-processed depth map is produced by merging the filtered depth map with the 
original depth map and using the shallower depth value as the dominant intensity. To ensure that 
the integrity of the OOI remains intact after smoothing, particularly around the border regions, the 
entire OOI region is allocated the same depth value. This is illustrated in Fig. 86(d). 
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2) 3D Image Warping 

In this research both the left and right disparity images are rendered by applying the method 
proposed by Zhang and Tam [47]. This is described by Eq. (40) and (41) on p. 137. In the proposed 
model 𝑡𝑐×𝑓 = 10% the width of the image (compared to 5%), 𝑍𝑐 = 0.5, 𝑥𝑐  denotes the current 
column value of pixel 𝑥(𝑟, 𝑐) and 𝑍 indicates the normalised value of pre-processed depth map at 
location 𝑥(𝑟, 𝑐); 𝑥𝑙 and 𝑥𝑟 will indicated the shifted column value of 𝑥(𝑟, 𝑐) in the disparity        
image pair. 

Fig. 87 3D warping. (a) Original image; (b) Disparity warp using original depth map; (c) Disparity warp 
using the asymmetrically smoothed depth map. 

 
The shifting of pixels during the image warping process will result in several location 

conflicts. In these cases the pixel with the smallest 𝑍 value (shallower depth) will take precedence. 
This implies that the objects and regions with shallower depth values will partly or fully         
occlude (overlap and replace) the objects and regions with deeper depth values at the same 
location. Moreover, depending on the location and depth of objects and regions, the shifting 
process may result in several dis-occluded (blank) regions being generated in the disparity images. 
Furthermore, pixels on the left and right border that are shifted to the right and left, respectively, 
will also result in blank regions. This is illustrated in Fig. 87(b). As discussed above, by pre-
processing the depth map with an asymmetrical filter prior to warping, results in the reduction of 
the spacing between the gaps and in some instances the complete resolution of the gaps. This is 
illustrated in Fig. 87(c). 
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3) Hole-Filling 

The consequence of the warping process results in the appearance of dis-occlusions. For the 
disparity images to be effective, these inconsistencies need to be adequately resolved. In other 
words, the holes need to be filled. In the proposed model hole-filling or inpainting is achieved by 
firstly, performing depth map smoothing prior to 3D warping (discussed earlier on p. 144) and 
secondly, closing the dis-occlusions through horizontal interpolation using depth as well as the 
direction of warp and thirdly, applying localised smoothing to some of the filled regions. The 
combination of directional edge-based horizontal interpolation and diffusion-based inpainting is 
chosen over the exemplar-based approaches owing firstly, to the small sizes of the disocclusions 
and secondly, to the blurring effect being more closely associated with the low-frequency textural 
information usually attributed to the background regions in LDOF images and thirdly, to the 
former being more appropriate for unsupervised applications. The techniques applied for hole-
filling are the same for both the left and right disparity images, except for the reversal in direction. 

Dis-occlusions occur when objects or regions at a shallower depth are moved left or right in 
front of object or regions at a deeper depth. By this understanding, the dis-occlusions represent 
discontinuities in the objects or regions at the deeper depth. As a consequence, the colour intensity 
chosen for the horizontal interpolation is based on the occluded object or region.  

The setting of the convergence distance to [−0.5, 0.5] results in objects and regions being 
shifted in both the left and right directions within each of warped disparity images. Moreover, the 
effect of the depth map smoothing creates interspersed dis-occlusions within a larger dis-occlusion 
region. As a consequence, the direction of warp is required in determining which of the several 
possible occluded regions is the source of the horizontal interpolation. If a dis-occlusion is created 
by an object or region being shifted to the left, then the horizontal interpolation of the dis-occlusion 
should be from left to right and vice versa for an object or region being shifted to the right. Any 
remaining gaps are filled using vertical interpolation. In this research a method referred to as 
interpolation averaging is also proposed. In this case a second horizontal-vertical interpolated 
image is produced using a new set of intensity values as the reference. From experiment the pixels 
located at a quantised distance of two away from the border pixels are chosen. Subsequently, the 
final interpolated image is chosen as the average of the two interpolated images. 

The interpolation process may result in the appearance of blocky lateral striations. This is 
illustrated in Fig. 88(b). To minimise these stripy artefacts, additional smoothing is performed. 
Only large regions adjacent to the defocussed BG regions are considered for additional smoothing 
since these regions are firstly, associated with the larger dis-occlusions and secondly, are expected 
to blend in with the smoothed appearance of the defocussed BG regions. The defocussed regions 
in an image may be described as being Gaussian in nature. Therefore, in the proposed the 
smoothing is performed primarily using Gaussian filtering. 



148 
 

From experiment, a region is considered to be large if it either contains at least 50 non-zero 
elements and has a horizontal distance greater than m pixels or has as vertical distance greater   
than m pixels, where 𝑚 =  0.8% of the width of the image. 

Fig. 88 Stereoscopic images. (a) Warped disparity image; (b) Hole-filling using horizontal interpolation. 

 
Smoothing is performed in two stages. For the first stage smoothing is applied to two regions 

of the large gaps. These include the inner and outer regions. The inner region is determined by 
eroding the large gaps. From experiment, a 5×5 square structuring element is chosen for the 
erosion. This will result in the removal of the outer two boundary layers from the large gap regions.  
For these inner regions, the final interpolated image together with a buffer around the region are 
initially smoothed using a Gaussian low-pass filter. Subsequently pixels associated with the inner 
region are delineated. From experiment a buffer of 2 pixels is chosen and for the filter a 9×9 square 
matrix and a standard deviation of 1 is chosen. 

The outer region is determined by dilating the large gaps and subsequently removing the inner 
region. From experiment, a 3×3 square structuring element is chosen for the dilation. This will 
result in a region that may be described as a hollow close bounded segment with a boundary 
thickness of 3 pixels. For these outer regions, the final interpolated image together with a buffer 
around the region are initially smoothed using a circular average filter. Subsequently pixels 
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associated with the outer region are delineated. From experiment a buffer of 2 pixels is chosen and 
for the filter a radius of 5 is chosen. 

Fig. 89 Stereoscopic images. (a) Original image; (b) Final left disparity image; (c) Final right disparity image. 

 
From experiment, the image is shown to exhibit less inconsistencies when the intensity of the 

perimeter pixels of both the smoothed inner and outer regions are set as the original value from 
the final interpolated image. The aim of the smoothing is to be able to match the defocussed BG 
region to some extent. Based on a significant portion of the test images, adjusting the filter 
parameters according to the size of the image is not necessarily more effective. 
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Minor irregularities may occur on the border transition owing to the smoothing performed on 
inner and outer regions of the large gaps. As a consequence, a second smoothing stage is 
considered in the proposed model. This smoothing is performed on a thin region between the 
border of the OOI and the newly interpolated and smoothed regions, from the first stage, using an 
averaging filter. Initially smoothing is applied to the entire image. However, only the intensities 
associated with a single pixel thickness region located at a pixel distance of 2 from the perimeter 
of the OOI are replaced in the final rendered image. The final synthesised left and right disparity 
images are illustrated in Fig. 89. 

This concludes the proposed hole-filling sub-process of the DIBR process and subsequently 
concludes the model proposed for the autonomous rendering of a stereoscopic image pair from a 
single 2D LDOF image. 

 
D. Results and Discussion 
 

 

Fig. 90 Subjective comparison 1. (a) Original image; (b) Left and right views generated by   
Valencia et. al [62]; (c) Left and right views generated using the proposed method. 
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The training and test data are sourced from previous works as well as numerous images from 
the World Wide Web (WWW). Comparative analyses are performed against two other proposed 
methods [62, 65]. 

A set of comparative test results is illustrated in Fig. 90. The original image is illustrated           
in Fig. 90(a). Fig. 90(b) shows the results obtained from the method proposed by                         
Valencia et. al [62]. Fig. 90(c) present the result of the proposed method. 

When considering the method proposed by Valencia et. al, the hole-filling is achieved by the 
interpolation or stretching of the image. The concern with this approach is that the OOI in the 
synthesised images represent an augmented version of the original object. Although this distortion 
resolves the dis-occlusions, the skewing of the regions in the synthesised images makes this 
approach highly inaccurate. 

Even though there exist some minor inconsistencies in the proposed method, it nevertheless 
deals more accurately with the dis-occlusions. Moreover, the entire original closed boundary OOI 
remains intact in both the synthesised images. 

 

Fig. 91 Subjective comparison 2. (a) Original image; (b) Left and right views generated by Ko et. al [65];   
(c) Left and right views generated using the proposed method. 
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A second set of comparative test results is illustrated in Fig. 91. The original image is 
illustrated in Fig. 91(a). Fig. 91(b) show the result obtained from the method proposed by                
Ko et. al [65]. Fig. 91(c) present the result of the proposed method. 

When considering the method proposed by Ko et. al, although the entire closed boundary OOI 
remains intact, there are parts of the background that are inconsistent in terms of 3D projection. 
For the left image, the object (girl) should be shifted to the right. Although this is done with regards 
to the closed boundary region of the OOI, the concern is with the background regions. For 
example, the sign post is located some distance further away from the girl and therefore the shift 
of the girl left or right is expected to either widen or narrow the gap, respectively, between the girl 
and the sign post. However, this is not the case. Another problem occurs in the image of the           
left view. In this instance the regions near the right arm of the girl appear to be inconsistent. This 
is owing to asymmetric smoothing of the depth map where the constant depth value of the         
entire OOI is not retained. 

Although there exist some minor inconsistencies in the proposed method, it firstly is 
comparable to the method proposed by Ko et. al and secondly, deals more accurately with the 
background regions in the synthesised images. 

Additional results for some of the synthesised disparity image pairs for the training and test 
images are provided in Fig. 92 – Fig. 94. 

There are some apparent limitations to the proposed approach. Firstly, the efficacy of the 3D 
warping of the objects and regions in the synthesised images is inherently dependent on the 
accuracy of the depth map in terms of both the delineation as well as the relative depth values. 
The delineation is important since the objects and regions are skewed left and right in the 
synthesised views based on the relative depth values associated with the individual objects and 
regions in the original image. 

When considering the OOI, for example, if the delineation falls within the boundaries of        
the OOI, then parts of the OOI will be misaligned, misplaced or missing in the synthesised images. 
For example, the butterfly’s antennae in the synthesised Butterfly images in Fig. 93. Another 
concern associated with this scenario is that there may be additional discontinuities or 
inconsistencies associated with the interpolation. For the hole-filling to be effective only the 
background pixels should be interpolated. However, in this scenario since the parts of the OOI 
outside the delineated region will be considered as belonging to the background. As a 
consequence, these in focus OOI pixels might be incorrectly interpolated together with the         
non-OOI pixels, which are often associated with defocussed regions. Although the smoothing of 
the depth map may alleviate some of these inconsistencies, in some cases the effect is nevertheless 
noticeable; for example in the region near the right ear of stag in Stag image in Fig. 94. 



153 
 

Conversely, if the delineation exceeds the boundary of the OOI then parts of the background 
will be misaligned, misplaced or missing; for example, the background in-between the wisps of 
hair on the right-hand side of the man’s head in left synthesised Forever image in Fig. 94. 

Secondly, the efficacy of the smoothing of the interpolated gaps is dependent on the degree 
of defocus of the adjacent regions. When there is a high degree of defocus in the background the 
smoothing of the interpolated regions appear to be consistent with the adjacent background. 
Examples of these type of scenarios is the upper defocussed regions in Kid image in Fig. 92 and 
the non-OOI regions in the Girl and Butterfly images in Fig. 93 as well as the Forever image          
in Fig. 94. 

If the adjacent pixels exhibit a high degree of focus, particularly in the case of type 2 and 3 
classifications, then the smoothing actually degrades the regions surrounding the OOI. Examples 
of these include the regions around the legs of Kid image in Fig. 92 as well as the non-OOI region 
in the Girl and Butterfly images in Fig. 93. These inconsistencies may also apply to images with 
relatively medium degrees of defocus, such as the Bird image in Fig. 92. 

A possible resolution to address the perceptual inconsistencies associated with filling and 
smoothing of the dis-occluded regions adjacent to the high- and medium frequency textured 
background regions may be to incorporate unsupervised exemplar-based interpolation together 
with some sort of adaptive smoothing that varies the filter window size according to depth. Further 
research is warranted in this regard. 
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Fig. 92 Synthesised stereoscopic image pairs of selected training images: Kid (top) and Bird (bottom) 
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 Fig. 93 Synthesised stereoscopic image pairs of selected test images – Set 1: Girl (top) and Butterfly (bottom)  
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Fig. 94 Synthesised stereoscopic image pairs of selected test images – Set 2: Stag (top) and Forever (bottom) 
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Owing to space constraints only a selected number of the stereoscopic image results are 
presented in this section. The appendix on p. 188 contains a selection of uncompressed or in 
some instances, optimally resized, training and test results. The author may be contacted at 
serenr@gmail.com for more than 300 LDOF images and their associated synthesised disparity 
image pairs. 

 

Fig. 95 Results of synthesised stereoscopic images – Set 1. 

 
  



158 

  

 
 
 
 

Fig. 96 Results of synthesised stereoscopic images – Set 2. 
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Fig. 97 Results of synthesised stereoscopic images – Set 3. 
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E. Conclusion 

A novel unsupervised method is proposed for the synthesis of two images that represent a 
scene being viewed from two different perspectives. The stereoscopic images are produced by 
firstly, warping or laterally shifting the objects and regions according to a depth map of the LDOF 
image and secondly, resolving the dis-occlusion through the use of interpolation and low pass 
filtering. 

The results show that by applying asymmetrical smoothing prior to warping reduces the 
degree of dis-occlusions. Moreover, the remaining inconsistencies may be effectively resolved 
by performing combined horizontal-vertical interpolation of the background regions that takes 
direction of warp into account together with smoothing of the new interpolated regions. The 
results show that the blocky striations within the interpolated regions may be effectively 
minimised or eradicated by combining Gaussian and circular averaging filtering together with 
average filtering on the border transitions. This makes it possible to automatically generate 
extremely accurate stereoscopic images of single 2D LDOF images. 

Future work may include more precise hole-filling techniques by incorporating automatic 
exemplar-based approaches as well as using machine learning and Bayesian inference and the 
expansion of the proposed method to account for high DOF images. 
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VII. 3D (ANAGLYPH) IMAGE GENERATION 

 
A. Introduction 

There currently exist four popular presentation modes employed for the display of 3D images 
and video. These include anaglyph, polarised, shutter  and autostereoscopic; the first three are 
illustrated in Fig. 98 [180].  

Fig. 98 3D Display Formats [180] 

 
Anaglyph images are produced by superimposing two individually coloured (typically red 

and cyan) disparity images into a single image. This image may then be viewed through glasses 
having similar coloured filters. 

In the case of polarised, each of the disparity images are individually circularly polarised 
and displayed simultaneously. Usually the left eye is polarised clockwise and the right eye is 
polarised anticlockwise and glasses containing circular polarising filters for each eye may then 
be used to view these images. These glasses are also referred to as “passive” because no power 
source is required for their operation. They are relatively cheap to manufacture and the most 
popular mode for 3D cinema. Circular polarisation is not a digital effect, whereby the disparity 
images are fused and stored as a single tangible digital image, as is in the case of anaglyphs, but 
rather the physical effect of the filters of the projection system simultaneously projecting the 
disparity images onto the screen [181]. 

For the shutter format, active glasses are used to alternatively “black-out” each eye 
depending whether the respective left or right image is being displayed on the screen. The glasses 
contain LCD lenses that “shutter” in complete synchronisation with the respective disparity 
images. The shutter effect is essentially unnoticeable owing to the extremely rapid speed at which 
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the shuttering occurs. These glasses are referred to as “active”, owing to the power source needed 
to operate the synchronisation sensor and LCD lenses. They are relatively expensive and largely 
reserved for use with 3DTV. The choice of “active” vs. “passive” has to do with the resolution 
of the images, since in the former the 3D image is essentially half the resolution of the 2D image 
quality being displayed. 

Autostereoscopic displays refer to any 3D display set up not requiring any special glasses; 
in this technology the display itself acts as the disparity filter. These displays usually also 
incorporate some type of eye tracking technology that allows for the individual left and right 
disparity images to be simultaneously targeted to each retina of the observer. 

 
Fig. 99 Red-cyan anaglyph 3D displaying [50] 

 
Of these four approaches, anaglyph is the simplest and most economical [50]. The anaglyph 

image concept was introduced in 1853 by Rollman [182], with the first printed anaglyph being 
attributed to Ducos du Hauron in 1891 [183]. This allows for the perception of depth through the 
splitting of the red, green and blue (RGB) colour channels across a stereoscopic image pair. The 
separation of the colour channels and subsequent superimposition of the stereoscopic pair into a 
single anaglyph image is owing, in the main, to the large redundancy occurring between the left 
and right stereoscopic images. Fig. 99 illustrates the concept of the 3D anaglyph through the 
splitting of the RGB channels into R and G-B. This is referred to as red-cyan. 

This paper is organised as follows: Section B provides a brief discussion of some of the 
related. Section C discusses the method chosen for generation of the 3D anaglyph images.      
Section D reports the experimental results. Section E closes the paper. 

 
 

B. Related Work 

Dubois proposed the CIE XYZ anaglyph method which attempts to minimise the differences 
between the anaglyph image and the perception of the source stereoscopic image pair by 
minimising the Euclidean distance (𝐿2 norm) [183]. This is formulated as 

 

 min
𝑉𝐴

‖(𝐶×̇𝑉 ) − (𝐶𝐴×̇𝑉𝐴)‖,   (45)
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where 𝑉  is a  6×1 matrix representing the normalised pixel value of the stereo pair, given                
by 𝑉 =  [𝑅𝑙, 𝐺𝑙, 𝐵𝑙, 𝑅𝑟, 𝐺𝑟, 𝐵𝑟]

𝑇 ; 𝑉𝐴 is a 3×1 matrix corresponding to the pixel in the anaglyph 
image, given by 𝑉 =  [𝑅𝐴, 𝐺𝐴, 𝐵𝐴]

𝑇 ; 𝐶  is a 6×6 matrix given by  

 

 𝐶 = [
𝐶𝑠 0
0 𝐶𝑠],    (46)

 
where  

 

 
𝐶𝑠 = [

0.4641 0.3055 0.1808
0.2597 0.6592 0.0811
0.0357 0.1421 0.9109],    (47)

 
and is responsible for converting 𝑉  from the RGB colour space into the CIE XYZ colour space; 
and 𝐶𝐴 is a 6×3 matrix given by  

 

 𝐶𝐴 = [
𝐴𝑟
𝐴𝑙]

,    (48)

 
with  

 

 
𝐴𝑙 = [

0.3185 0.0769 0.0109
0.1501 0.0767 0.0056
0.0007 0.0020 0.0156]   (49)

 
and 

 

 
𝐴𝑟 = [

0.0174 0.0484 0.1402
0.0184 0.1807 0.0458
0.0286 0.0991 0.7662],   (50)

 
where 𝐴𝑙 corresponds to the simulation of the red filter on the left and 𝐴𝑟 corresponds to the 
simulation of the cyan filter on the right, which converts the passing lights into the CIE XYZ 
colour space. The symbol ×̇ in Eq. (45) denotes matrix multiplication. 

Zhang and McAllister [184] proposed using the Chebyshev distance (𝐿∞ norm) for the  
minimisation of Eq. (45). This uniform approximation method is shown to be superior in colour 
representation compared to the aforementioned Euclidean distance method. However, this 
technique is less computationally efficient owing to each pixel in the anaglyph image needing to 
be linearly optimised. 

McAllister et al. [185] proposed the CIEL*a*b* anaglyph method, which minimises the 
colour distances in the CIEL*a*b* uniform colour space as opposed to the CIE XYZ colour 
space, as described above. In this case the CIE XYZ colour space is first determined by setting 
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𝐶𝑠 = [

0.4243 0.3105 0.1657
0.2492 0.6419 0.1089
0.0265 0.1225 0.8614],   (51)

 
and the stereo pair are then converted to the L*a*b* colour space using 

 

 
𝐿𝑖 = 116 ⋅

√(
𝑌𝑖
𝑌𝑛)

3
− 16 

 

(52)

 
𝑎𝑖 = 500 ⋅

[√(
𝑋𝑖
𝑋𝑛)

3
−

√(
𝑌𝑖
𝑌𝑛)

3

]
 

 

 
𝑏𝑖 = 200 ⋅

[√(
𝑌𝑖
𝑌𝑛)

3
−

√(
𝑍𝑖
𝑍𝑛)

3

]
, 

 
 

where 𝑖 ∈ {𝑙, 𝑟} and (𝑋𝑛, 𝑌𝑛, 𝑍𝑛) = (11.144, 100, 35.201), which represents the normalised 
tristimulus values of the white point. The matrices used for the simulation of the red and cyan 
filters are given by  

  

 
𝐴𝑙 = [

0.1840 0.0179 0.0048
0.0876 0.0118 0.0018
0.0005 0.0012 0.0159]   (53)

 
and 

 

 
𝐴𝑟 = [

0.0153 0.1092 0.1171
0.0176 0.3088 0.0777
0.0201 0.1016 0.6546],   (54)

 
respectively. 

Each anaglyph pixel is estimated by simultaneous minimisation of the Euclidean (least 
squares) distance of the CIEL*a*b* colours of the left eye and right eye pixels when converted 
from their associated RGB values. The difficulty encountered is the minimisation of the equation 
is ill-posed; therefore, an efficient iterative method, such as the Levenberg-Marquardt algorithm, 
is needed to resolve this unconstrained nonlinear problem. 
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Fig. 100 Colour Appearance Attributes CIEL*a*b* Anaglyph Method [50] 

 
The advantage of working in the CIEL*a*b* colour space, compared to the CIE XYZ colour 

space, is with the former the perceptual colour distance correlates well with the Euclidean 
distance; in addition, the CIEL*a*b* colour space more precisely simulates the perception of the 
HVS owing to the incorporation of nonlinear response compression and chromatic adaptation 
transform algorithms. 

Li et al. [50] proposed that the matching of colour appearance attributes (CAA), such as 
lightness, saturation and hue, be considered, in addition to the XYZ or L*a*b* values. The key 
benefit of working within the CIEL*a*b* colour space, as opposed to the CIE XYZ colour space, 
is the former allows for a more direct method of translating these aforementioned colour 
appearance attributes. Fig. 100 provides an illustration of the   proposed CAA CIEL*a*b* 
anaglyph method. 

Gamma and inverse gamma correction is implemented to compensate for the nonlinear 
transformation of the captured RGB values in the reproduction of the colour component for the 
LCD display. The clipping subcomponent is responsible for keeping each channel range      
between 0 and 1. An advantage of using the CAA CIEL*a*b* anaglyph method is the 
minimisation algorithm is in a closed form solution, as opposed to the ill-posed iterative 
optimisation technique proposed in the CIEL*a*b* anaglyph method. Furthermore, the proposed 
CAA CIEL*a*b* anaglyph method has shown to noticeably improve on the effects of the three 
most pronounced shortcomings generally encountered with anaglyphs, viz. colour distortions 
(also referred to as chrominance accuracy), retinal rivalry and ghosting effects. 

 

C. Proposed Approach 

The primary focus of this research is 2D-to-3D conversion, which involves the synthesis of 
disparity image pairs from single 2D LDOF images. This essentially concluded at the end of the 
hole-filling sub-process within the DIBR process discussed in the previous section Stereoscopic 
Image Synthesis of Single 2D Low Depth-of-Field Images using Depth Image-Based Rendering 
on p. 134. The mode of display is only aesthetic and not an aspect of the 2D-to-3D conversion 
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process per se. Therefore, emphasis is placed on employing anaglyph as a simple, efficient and 
cost effective means of verifying the subjective efficacy of the proposed autonomous 2D-to-3D 
conversion model and not on the development of a newer or better method of anaglyph image 
generation or presentation. In the proposed model the anaglyph image is generated from the 
synthesised left and right disparity images using the method proposed by Li et al. [50]. 

 
D. Results 
 

Fig. 101 3D images of training data. The original images together with their 3D anaglyph 
interpretations based on the synthesised left and right disparity images. 

 

Some of the representative results obtained for the training data are illustrated in Fig. 101. 
Owing to space limitations only a limited number of results of the total dataset of compressed 
test images are presented in this section. The appendix on p. 188 contains a selection of 
uncompressed or in some instances, optimally resized, training and test results. The complete 
database of training and test LDOF images and their associated anaglyphs is available from the 
author at serenr@gmail.com. 
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Fig. 102 3D images of test data – Set 3. The original images, synthesised left and right disparity images 
and associated 3D anaglyph interpretations are presented. 
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Fig. 103 3D images of test data – Set 1. The original images, synthesised left and right disparity images 
and associated 3D anaglyph interpretations are presented. 
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Fig. 104 3D images of test data – Set 2. The original images, synthesised left and right disparity images 
and associated 3D anaglyph interpretations are presented. 
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E. Conclusion 

The method proposed by Li et al. [50] is considered for the unsupervised generation of 3D 
anaglyph image from two disparity images. Although anaglyph is qualitatively inferior, when 
compared to the other two aforementioned stereoscopic visualisation methods this technique is 
the only one presentable in standard colour print format. Moreover, the 3D experience is 
achievable using inexpensive colour filtered glasses and ordinary computer monitors, without 
the need for any additional 3D compatible hardware and/or software.  
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VIII. CONCLUSION 
 

A. Summary 

This research presents a novel method for the automatic synthesis of stereoscopic image 
pairs from single 2D low depth-of-field (LDOF) images. Results show that this is achievable 
through the unsupervised generation of depth maps and the subsequent extrapolation of 
disparity image pairs through the use of depth image-based rendering (DIBR). 

Results show that the accuracy of the synthesised stereoscopic images is inherently 
dependent on the accuracy of the depth map. In turn the accuracy of the depth map is inherently 
dependent on the accuracy of the segmentation of the objects and regions in the image. 

In LDOF images the emphasis is usually placed on a distinct object-of-interest (OOI) in 
the scene. A LDOF image therefore may be described as being constituted of two regions. These 
include the OOI and the non-OOI region. In the proposed model segmentation is performed in 
three stages. Firstly, the region-of-interest (ROI) is extracted and secondly, the                       
object-of-interest (OOI) is delineated within the ROI and thirdly, the non-OOI region is sub-
segmented. 

Results show that the interrogation and correlation of edge, gradient and higher-order   
statistics (HOS) saliencies together with k-means segmentation provides an extremely           
robust automatic method for the extraction of the ROI. Moreover, the results show that                
the proposed method outperforms several of the previously proposed state-of-the-art                       
approaches [41, 42, 51-54]. 

Sub-segmentation of the ROI is only necessary for scenarios where the ROI contains both 
an in focus OOI and an in focus non-OOI region. It is therefore necessary to discern between 
the different ROI scenarios. In other words, a classification of the LDOF image is required. The 
challenge is that owing to there being no a priori reference for the OOI the problem becomes 
ill-posed. However, the results show that the interrogation of the dominant gradients within the 
ROI is an extremely effective means of identifying the OOI and also providing a rudimentary 
or baseline reference for the approximation of the OOI. Subsequently, an adequate 
approximation of the OOI may be extrapolated through the expansion and refinement of the 
baseline OOI reference using edge saliencies and k-means segmentation. Results show that this 
approximation of the OOI together with the ROI provides an extremely accurate means of 
classifying the LDOF image. 

Moreover, results show that an accurate delineation of the non-OOI region within the ROI 
is possible using k-means clustering together with the approximation of the OOI as a reference. 
The subsequent removal of the non-OOI region from the ROI results in the matting of the closed 
boundary region of the OOI. 

The relationship between the OOI and the entire (focussed and defocussed) non-OOI region 
in a LDOF may be described as either being equidistant-based or gradient-plane-based. For the 
former the entire non-OOI region may be described as being relatively equidistant behind the 
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OOI. For the latter the objects and regions within the non-OOI region may be described as being 
either in front of or behind the OOI at different relative depths. 

Sub-segmentation of the non-OOI region is only necessary for the gradient-plane-based 
scenario. It is therefore necessary to distinguish between the two non-OOI scenarios. Results 
show that by correlating the k-means segmentation with the binary quantisation segmentation 
of the non-OOI region it is possible, with a high degree of accuracy, to determine if the non-
OOI region is equidistant-based or gradient-plane-based. 

In the equidistant-based scenario the relative depths of the non-OOI region are assigned 
using depth from defocus (DfD). The DfD method chosen in the proposed model is the Gaussian 
re-blur technique. 

In the gradient-plane-based scenario the non-OOI region is sub-segmented using k-means 
and binary quantisation segmentation. Correlation of the clusters using Gestalt-based principles 
is used to delineate and subsequently label the objects and regions in the non-OOI region. The 
assigning of relative depths to the segmented objects (including the OOI) and regions is 
achieved using a gradient-plane. The incremental relative depth of the gradient-plane is 
determined by correlating the Gestalt-based ground region with vanishing point (VP) detection. 

VP detection is achieved through the analysis of the intersecting dominant straight edges 
in the image directly in the image-plane parametric space. The results show that the proposed 
unsupervised VP detection method either matches or outperforms several of the previously 
proposed approaches [23, 56-59]. 

Results show that some of inconsistencies in the depth, such as blocky artefacts and 
outliers, are alleviated through the application of a bilateral edge-preserving filter. The proposed 
automatic depth map generation method outperforms several of the previously proposed 
approaches [60-65]. 

The stereoscopic image pairs are synthesised using the depth map together with depth 
image-based rendering (DIBR). The results show that some of the dis-occlusions are either 
negated or alleviated by applying an asymmetrical bilateral edge-preserving filter prior to the 
3D warping process. The remaining dis-occlusions are resolved through horizontal 
interpolation that takes into account the direction of warp. To alleviate some of the stripy 
artefacts Gaussian and circular averaging filtering is applied to the newly interpolated regions 
followed by average filtering on the border transitions. This proposed staged filtering approach 
effectively reduces the discontinuities while preserving the subjective view quality. Results 
show that the proposed method for the unsupervised resolution of the dis-occlusions generated 
during the automatic 2D-to-3D conversion  of single 2D LDOF images outperforms other 
previously proposed approaches [62, 65]. 

Although computational efficiency is taken into account in this research, accuracy and 
quality are given prominence over the need for real-time speed. This research shows that the            
automatic 2D-to-3D conversion of single 2D low depth-of-field images is achievable through 
firstly, the delineation and labelling of the objects and regions in the image through the 
interrogation of edge, gradient and higher-order statistics together with k-means and binary 
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quantisation segmentation as well as the application of Gestalt principles and secondly, the 
relative assignment of depth the objects and regions through Gaussian re-blur analysis and 
vanishing point detection and thirdly, the synthesis of the stereoscopic image pair using depth 
image-based rendering. 

 
B. Future Research 

Some of the future work may include: 
 

1. The expansion of the entire model to incorporate monocular LDOF sequential video 
frames as well as real-time functionality. 

2. The use of more scenario-specific segmentation methods as well as the possible 
incorporation of machine learning to more effectively identify and subsequently assign 
relative depth values to the objects and regions in an image. 

3. Improved vanishing point detection to account for more natural environments as well as 
investigate unsupervised techniques for the use in the classification of natural and 
artificial environments.  

4. More precise hole-filling techniques using machine learning and Bayesian inference as 
well as investigate autonomous techniques to account for sequential video. 

5. The possible incorporation of high DOF sequential video. 
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