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ABSTRACT

This thesis investigates the limited angle tomography problem where axial reconstructions are
produced from few measured projection views covering a 100° angular range. Conventional full
angle tomography requires at least a 180° range of projection views of the patient at a fine
angular spacing. Inference techniques presented in the literature, such as Bayesian methods,

perform inadequately on the information-starved problem of interest.

The concept of transformation maps is developed as a problem solving framework. A transfor-
mation map extracts generic prior knowledge quantitatively from independent examples and
fuses this knowledge with measured data during a reconstruction process. The success of this
method is firstly due to the preciseness in using measured instead of heuristic prior knowledge.
Secondly, suboptimal solutions are avoided by catering for the space variant requirements of

the prior knowledge.

X-ray projection data of a human head is acquired using the Lodox full body x-ray scanner.
This thesis demonstrates how a number of difficulties are overcome in using this trauma based x-
ray system to produce successful reconstructions which correspond well enough to conventional

tomographic reconstructions to have diagnostic value.
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CHAPTER 1

Introduction

Computed tomography has widespread application in non-destructive testing, electron mi-
croscopy and medicine. The cross-sectional views produced by tomographic reconstructions
(see Figure 1.1(a)) exhibit spatial and density information which is not presented by projection

views of x-ray imaging and therefore has an added diagnostic capacity.

1.1 Background

Conventional computed tomography requires that the patient be x-rayed from all angles in the
cross-section, or azial, plane. More precisely, an x-ray must pass through every point in that
plane from every direction over 180°. This amounts to a substantial radiation dose delivered to

a patient and any way of reducing this requirement is helpful.

In some situations of non-destructive testing, the dimensions of the object are such that it
cannot practically be x-rayed from all angles, or the density is so great that x-rays cannot
penetrate the object from all angles. Likewise in electron microscopy, physical tilt limitations

result in a cone of unmeasurable data.

1.1.1 Degenerate classes of tomography

Local tomography refers to the reconstruction from projections that do not expose the entire
object to radiation. Sparse angle tomography (see Figure 1.1(b)) is performed when data is

available at discrete angular steps only. When the angular range of available data is restricted,



(a) Full angle reconstruction (b) Sparse angle reconstruc- (c) Limited angle reconstruc-

using data at A§ = 1° inter- tion using data at A8 = 5° in- tion using data at A8 = 5° in-
vals over an angular range of tervals over an angular range tervals over an angular range
180°, o0 = 79.13. of 180°, oo = 489. of 90°, o0 = 889.

Figure 1.1 Axial tomographic reconstructions of the same slice are created using a decreasing
amount of data from left to right. In comparison to (a), observe angular aliasing artefacts in
(b), and a further loss of edge information in the vertical direction in (¢). The values for ojo
indicate correspondence to the ground truth as discussed in Section 1.2.3 and elsewhere.

limited angle tomography reconstructions are created (see Figure 1.1(c)). This thesis contributes

to the field of limited angle tomography.

Any lack of projection data results in artefacts or some form of absence or ambiguity of infor-
mation in the reconstruction. These artefacts appear as stripes through the image as seen in
Figure 1.1(b) due to course angular sampling intervals. The absence of edge information due

to a corresponding limited angular range is illustrated in Figure 1.1(c).

In the literature, various methods have been proposed to improve on results when data is
incomplete. Better results have been achieved in cases where it is possible to model the object
well; but increasingly poor results are obtained the more ill-posed the problem is and the less

prior or additional knowledge of the object is available.

1.1.2 Background references

Skilling (Skilling, 1998) outlines the well-known Bayesian framework for dealing with inference
problems where prior knowledge is combined with measured data to estimate unknown param-

eters. This paper provides a broad perspective of the inherent problem faced by this thesis and



Figure 1.2 Full body x-ray scanner installed in Groote Schuur Hospital used to acquire data
for this project.

points out some difficulties experienced in determining solutions. A good overview of sparse

and limited angle tomography can be found in (Siltanen et al., 2003).

1.1.3 Lodox

Lodox is a South African company that manufactures full body digital x-ray scanners. Their
product StatScan, of which an example is shown in Figure 1.2, is primarily targeted at medical
trauma applications. Rapid scanning, high image quality and low dose are the key elements of
its design (Beningfield et al., 2003).

A C-arm which houses an x-ray tube on top and a digital detector beneath the table scans a
patient from head to toe in the z-direction as indicated in Figure 1.2. This C-arm can also
rotate around the patient in the x X y cross-section plane for lateral imaging. Rotation occurs

counter clockwise as in this view from an upright position at 0° to a maximum of 100°.



(a) Unprocessed image. (b) Enhanced image.

Figure 1.3 Lodox full body scan. Notice fractures in all limbs.



Athough the machine is not designed for this purpose, this thesis proves that it can be used to
produce tomographic reconstructions. Compared to a conventional spiral tomography system,
this system geometry has the advantage that it offers a high resolution in the scanning direction.

The disadvantages are a coarse angular resolution and a limited angular range.

For interest’s sake Figure 1.3 shows a classic Lodox full body scan. Lodox employs a proprietary
algorithm that improves the sharpness of x-ray images and suppresses the overall dynamic range
by enhancing regional contrast as outlined in (Beutel et al., 2000). Such enhancement facilitates
the diagnosis of patients since it is unnecessary for radiologists to change the presentation state
(contrast and brightness) of images. Note that the enhanced image is only shown for clarity of

presentation and no such processing is performed on scans used for tomographic reconstruction.

1.2 Thesis project

The question that this project addresses is: ‘Given realistic constraints, can the Lodox machine
be used to produce limited angle reconstructions that are of diagnostic value?’ This question
can be restated in terms of a visual example: ‘Can we create a reconstruction that resembles
Figure 1.1(a) more closely in a reliable way while only using the measured data that was
available to produce Figure 1.1(c)?” And as a less ambitious first step: ‘Can we suppress the

artefacts in Figure 1.1(b) so that the reconstruction appears more like Figure 1.1(a)?’

1.2.1 Purpose and achievements

The purpose of this thesis is to develop a tomographic capability for the Lodox machine with
particular emphasis on limited angle tomography. Using actual measurements and addressing
the practical problem specifically for this system supercedes noise free simulation and likewise

simplified studies.

There are a number of unavoidable problems that are overcome through the course of this
project in pursuit of the end goal which is limited angle tomographic reconstruction. The
first portion of this work is concerned with the straightforward yet essential development of

tomographic functionality.

Thereafter a novel method is presented which is able to extract generic prior knowledge from

examples. This method successfully fuses such recorded knowledge with measured data during a



reconstruction process. Results of this thesis shows that significant improvements are achieved

for sparse and particularly limited angle reconstructions.

1.2.2 Scope and limitations

All results are determined from physical noisy measurements. A single complete dataset was
acquired from a human head at angular increments of Af = 1° over an angular range of 180°
at a resolution of 1.66 line pairs per millimeter. Appropriate subsets of this complete dataset
(typically at angular increments of A6 = 5°) are used as data for sparse and limited angle

tomographic reconstructions.

For limited angle tomography, the scope is restricted to the special case of having projection
data available at 5° intervals over a 100° angular range. Only the 128 x 128 1.8mm per pixel
resolution condition is investigated for limited angle reconstruction while higher resolution

reconstructions are provided for full angle tomography.

1.2.3 Quantitative and qualitative assessment of tomographic results

The complete dataset can be used as the ground truth because it defines the reconstruction
unambiguously (as discussed later). In contrast, sparse and limited angle reconstructions are not
adequately defined by the limited data available during their reconstruction. Since a complete
dataset is acquired after all, a corresponding complete set of projections for any sparse or
limited angle reconstruction can be compared to actual measured projections to evaluate the

effectiveness of the particular reconstruction method in question.

Note that most figures of reconstructions (see Figure 1.1 for example) quote values for oqo.
This value (o10) is the root mean square error that the projections of the reconstruction make
with the complete dataset projections (at angular increments of 1° over an angular range of

180°) regardless of the limitations imposed on the availability of data during reconstruction.

In addition to numerical measures, the opinion of a professional radiologist on the diagnostic
quality of the results is quoted in the final chapter. This qualitative assessment complements

the trends observed numerically and provides a real world reference frame.



1.3 Layout and overview

As outlined below, more fundamental aspects are discussed first, leading up to limited angle

tomography in the final chapters.

1.3.1 Chapter 2

This chapter presents essential background theory on tomographic reconstruction and Bayesian

methods. Familiarity with these topics are assumed later in the thesis.

1.3.2 Chapter 3

A chapter on the image formation process describes the peculiarities of the Lodox system and
discusses solutions specific to its imaging problems. The physical geometry of the machine is ac-
curately calibrated from the dataset and it is shown how filtered back-projection reconstructions

are produced.

1.3.3 Chapter 4
Efficient methods for iterative reconstruction are investigated. Ambiguity due to sparse projec-

tion data is demonstrated, which indicates the need for regularization or the incorporation of

additional knowledge. Prior knowledge is identified and formulated into a Bayesian framework.

1.3.4 Chapter 5

Transformation maps are introduced as an alternative to Bayesian methods. This machine

learning technique is able to capture, as well as apply, prior knowledge of a more natural kind.

1.3.5 Chapter 6

Finally the topic of limited angle tomography is addressed. This chapter includes a survey of
existing limited angle tomography methods. After a study of the properties of limited angle

reconstructions, the transformation map method is applied to the problem.



1.3.6 Chapter 7

The last chapter provides commentary of a radiologist on the diagnostic value of the recon-
structions presented. A summary of the project developments is presented and conclusions are

drawn from the findings. The thesis ends with recommendations for further study.



CHAPTER 2

Background theory

The purpose of this chapter is to provide necessary background theory to readers that are
inexperienced with tomographic reconstruction and Bayesian methods. The content of this

chapter is adapted from (de Villiers, 2000) and does not present any new material.

2.1 Theory of computerized tomography

The following subsections provide a summary of the theory behind the filtered back-projection
reconstruction algorithm. A comprehensive overview of tomographic techniques can be found
in (Kak and Slaney, 1988) and references found therein (for below). The idea of filtered back-
projection was first proposed by Bracewell and Riddle in 1967 and later independently by
Ramachandran and Lakshminarayanan in 1971. The superiority of this algorithm over the
algebraic techniques, originally used by Hounsfield, was demonstrated by Shepp and Logan in
1974. In 1975 Lakshminarayanan extended the theory to the equispaced collinear detector case

with a fan beam geometry similar to that of the Lodox machine.

2.1.1 Radon transform

Figure 2.1 illustrates a parallel beam projection PGHH (pl) of the cross-section function f(z,7) at

angle @/l. The value of the projection at pll = pl)l is the line integral of f(z,y) along rayg, so

Phod) = [  flaydl. (2.1)

rayo

The line labeled ray( is expressed as

zcos bl + ysingll = pH (2.2)



Figure 2.1 An example parallel beam projection geometry.

which can easily be derived from y = mz + ¢ with

1 ob
m=———— and c¢= .
tan 0” sin@”

Therefore, for different values of ,0” and 6/, Equation 2.1 can be rewritten as
P;‘” (ph = / / F(,y)0(z cos O + ysin 0l — pllYdudy (2.3)

which is the Radon transform of f(z,y). The forward Radon transform describes mathemati-

cally how projections are formed from a cross-section.

2.1.2 Fourier slice theorem

The Fourier slice theorem relates the measured projection data pl (pI) to the two-dimensional

oll
Fourier transform F'(u,v) of the cross-sectional image f(z,y). This theorem forms the basis

of the filtered back-projection method which is commonly used to perform the inverse Radon

transform when a complete dataset is available.

The Fourier transform of the cross-section function f(z,y) is defined as

F(u,v) = / / f(z,y)e 72 et gady. (2.4)

10



Along the line in the Fourier domain given by v = 0, the Fourier transform of the cross-section

18
F(u,0) = / Z / Z f(z,y)e 2™ drdy = / Z [ / Z f(m,y)dy] e 2Ty (2.5)

However, the parallel beam projection P (pl) at angle 6l = 0 is

oll
I >
Py (P 2/ f(z,y)dy. (2.6)
—00
By substitution, Equation 2.5 can be rewritten as
= pl 2
F(u,0) = / Py _ (e ™ dy (2.7)
—0o0
which equals the Fourier transform S|9|”:0(w) of the projection P;‘”:O(p”) by definition. In other
words, the one-dimensional Fourier transform of the projection at angle 0l = 0 equals the

two-dimensional Fourier transform of the cross-sectional image along a line at the same angle.
However, due to the rotational invariance property of the two-dimensional Fourier transform

this is true for all angles, so

gl

01 (@) = Fpotar(w, 0) £ F(wcos 0!l wsindl). (2.8)

2.1.3 Parallel beam filtered back projection equation

By measuring an infinite number of projections, Fjgjqr (w, 61y and hence F(u,v) will be known
over the entire Fourier plane. The cross-sectional image can then be recovered using the inverse

Fourier transform in Cartesian coordinates
o0 0 i
flz,y) = / / F(u, v)eﬂ”(”"'vy)d:vdy (2.9)
— o0 —o
or equivalently, using polar coordinates,
s 0
f(x’y) = / / Fpolar(w’0”)eJQW(:CuJC050”+ywsm0H)|w|dwd9|| (210)
0 —00

where |w] is the familiar Jacobian for converting the integrand to polar coordinates. By recalling

that pll = z cos 6!l + y cos 6!l and S|9|” () = Fpopar (w, 01,

oll

f(m’y):/o [/Oo gl (w)|w|ej2wwﬂ'dw] dg! :/0 Q) (z cos 8 +ysingl)as (2.11)
where

Qi () = / Sl (@)lwler? ! du. (2.12)
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Qg” (pl) is regarded as a filtered projection since the Fourier transform of the projection SBH( )
is multiplied by |w| in the Fourier domain before the result is inverse Fourier transformed. In
the space domain, this operation is equivalent to convolution with the impulse response of the
filter h(pl) = F~1 {|w|}, so

1 [
i ( (ph / PHH (pll = p*)dp*  where h(pl) = —/ |w|e]2m"p”dw. (2.13)
0 21 )

Finally using this result and exhanging the dummy variable p* < pll in Equation 2.13, Equation

2.11 can be rewritten as
s o0
Fzy) = / / Pl (o )z cos 8l + ysinll — pldgl el (2.14)
0 —00

which is a mathematical representation of the filtered back projection algorithm for parallel

beam projections.

2.1.4 Fan beam reconstruction theory

Practical scanners often have a fan beam geometry, as shown in Figure 2.2, where an entire
projection is measured at a time using an isotropic x-ray source. Fan beam projections Py(p) are

distorted when compared to parallel beam projections Pl (p”) and therefore some modification

oll
to the theory is required.

It is convenient to introduce virtual fan beam p’ as well as parallel beam pll projection axes that
pass through the center of rotation. The projection values for the different axes are assumed

to be equal where the same ray intersects the axes, i.e.
Py(p) = P(p') = Py (o). (2.15)

Therefore parallel beam projection data can be extracted (inconsecutively) from the fan beam

data using Equation 2.15 where

H _ / _ pltcen H _
pl = peos¢p= L 0 = 0+¢

VPP e , (2.16)
A= e o= tan gl

From Equation 2.14, the cross-section function in polar coordinates fyoqr(7,19) becomes

Frotar(rs0) = / / Pl () cos(oll - 9) — pldpl ol (2.17)
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Figure 2.2 A typical fan beam projection geometry.

by substituting z = r cos ¥ and y = rsind and using the identity cos(A — B) = cos Acos B +
sin Asin B. Substituting Py(p') = P;‘” (pll) and changing the variables of integration using
Equation 2.16,

fpolar('ra 19) = (218)
7T/2 o0 / lt t3
/ / Pi(p')h |rcos(0 + tan~! | L) — ) — —Locen L — P ]
—m/2 J—o0 cen 12 2 (p’ + t2 )3/2
P+ tcen cen
where the Jacobian J = focn is calculated from

t3
cen____ 1. 0‘ (2.19)

aplaoll  apll o0l
o ‘ (P + 2,32

op 00 00 oy

Using cos(A + B) = cos A cos B —sin Asin B and Pythagoras’ rule, the argument of h in square

brackets of Equation 2.18 can be rewritten as

/ /

t
rcos(f + tan™! < P ) —ﬁ)—pi
cen p12 + t%en
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/

= rcos(H—ﬁ)tc# — (tcen + 7sin(d — 9)) P

\/ p’2 + t%en V IOI2 + t%en

< tcen"n COS(0 - 19) _ /) tcen +7r Sln(9 - '19)

teen + 7 sin(f — /
cen ( ) p12+t%en

teenU
= - (2.20)
VP ten
if p* and U are defined as
o = teent cOS(0 — 1) and U= teen + 78In(0 — 1) (2.21)
teen + T 8in(0 — 19) teen ' '
From the definition of h(pll) given in Equation 2.13,
h (p* . ,OI) tcenU _ QL o |w|e]27rw P tcen U/ '2+tzendw
T
PP e
— :0 +tcen_/ |w |e]27rpfp
cen
2
_ P At +UC;"h( — ) (2.22)
cen
using the transformation
teenU
W= (2.23)
VP ten
/1 /12 2
for which dw = p +tce” dw* and |w| = ﬁce:;j'e" |w*|. Finally, by substituting Equation 2.22,
Equation 2.18 is rewrltten as
7T/2 ]‘ > / / * / tcen /
Spolar (r,9) = = | Be(p)hp® — p))———==dp'db (2.24)
—m/2 U ) pIQ 442
cen

which can be interpreted as a mathematical formulation of the filtered back projection algorithm

for a fan beam geometry.

2.2 X-ray attenuation and detection

This section provides some background on how x-rays are attenuated through an object to
produce an image of the object on a digital detector. The statistical nature of the image data

is also discussed.
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2.2.1 X-ray attenuation

A projection P(p,0) is the line integral through the density distribution function f(z,y) along
the beam path,

P@ﬁﬁi/mf@wML (2.25)

However, due to the Compton scattering and absorption characteristics of x-rays (Kak and

Slaney, 1988), the photon count detected is approximated by
Kl ~ eloan @0}l (2.26)
A projection is therefore related to its corresponding photon count by
P(p,0) = In Ny, = In &, (2.27)

where Ny is the number of photons that would have been counted if there were no loss due to

scattering or absorption.

Such logarithmic compensation of measured counts makes density differences appear propor-

tional to intensity differences in x-ray images.

2.2.2 Poisson noise distribution

The number of photons K], counted per unit time by an x-ray detector can be modeled as a
Poisson random variable (Kak and Slaney, 1988). Equivalently, the time T}, between the arrival
of photons at the detector is exponentially distributed with a mean of 1/c/,. The conditional

probabilities of the events K, = kI, and T}, = t/, are therefore

K’
o,

P(K =Kj|f) =%re ™ Ky=01.., a,>0

—a,t,
P(Ty = th]f) = dpe bl fy >0

where f represents the three-dimensional density distribution (i.e. the object) that is x-rayed.

It can be shown that the means and variances of the random variables K}, and T}, are given by

E[K!]=dal, VAR[K]]=d

) )

E[T)] = - VAR[T}] = = .

!

!
K3

.

Due to linear time integration to increase the signal to noise ratio and binning to reduce image

resolution, detector measurements are combined additively in the Lodox system. This operation
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can be written as

©Npin

ki = > K (2.28)

i'=(i—1) Npin+1
Assuming that each of the Ny;, detector readings which are combined into the ith bin are
independent, the resulting probability distribution P(K;) remains Poisson:

k; ©Npin
% where «; = Z aly. (2.29)
i'=(i—1) Npin+1

«

P(K; = kil f) = e
i

This can easily be proven by considering that the sum of independent random variables corre-

spond to the multiplication of their probability generating functions (Leon-Garcia, 1994), i.e.

i Npin tNpin iNy
bin ] _
Gi()= [  Gr@= [ eWED = e imn wEY it
1 7:’
’L'/:(’Llfl)Nbin#»l Z":(Z'fl)Nbin%*l

(2.30)

where the probability generating function for the Poisson random variable y with mean p is

G\ (z) = E[zX] = e"=7 1), (2.31)

This statistical model neglects the effect of additive electrical noise as well as the influence of

any remaining artefacts or systematic inaccuracies that occur in imaging systems.

2.3 Maximum likelihood solutions

The following sections describe how tomographic reconstruction can be stated as the solution
to an optimization problem. This section starts off by modeling the measurement noise as a

probability distribution and discusses how unbiased solutions can be found to inverse problems.

2.3.1 Likelihood function

Assuming that the binned measurements k = {kq, ks, ..., ki, ...kx } can be modeled as N inde-
pendent Poisson random variables K = {K1, Ko, ..., K, ..., Kn }, the conditional probability of
the joint event K =k, i.e. {Ky = ky,..., Ky = kn}, is given by

e

11 k—z!e—“i (2.32)

=

N
P(K|f) =[] P(Kilf) =
=1

Nk
1
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where the expected projection data vector @ = {ay, a9, ...,q;,...any} is calculated from the

expected object f(x,y) using
M
a = Hf or «; = ZHi,jfj (233)
=1
and H is a matrix that represents the projection process while f = {fi, fo,..., fj,..fm} is a

vector representation of f(z,y).

The probability density function in Equation 2.32 is commonly known as the likelihood function
and is conditioned on the object which remains fixed throughout the imaging process. The log-

likelihood can be rewritten as follows:

N a]?i N a/_gi N
In(P(K|f)) = lnH k:! e Y = Zln kZ! e Y = Zlnafi —Inkj! +1Ine @
=1 =1 =1
N N
= Zkilnai—ai—lnki! ~ Zkilnai—ai—(lzilnki—ki)
=1 =1
N
= Z kilnoy; — oy — ki Ink; + k; (2.34)
=1

where Stirling’s approximation Inz! ~ zInz — x is used.

The maximum likelihood estimate fL) of the object corresponds to the peak of the distribution

P(K|f) and also In P(K|f) since the logarithm is a monotonic function, so
FOML) — arg; max P(K|f) = arg; maxIn P(K|f). (2.35)

This optimum is achieved at

d1n P(K|f)

- 2.
o 0 (2.36)

which occurs when

O0ln P(K; 0
# = 55 (kilney — 0 — kil + ) =0
= Ino;—(1+Ink)+1=lnao; —Ink;
a = ki (2.37)

Therefore the maximum likelihood estimator is unbiased.

17



2.3.2 Solution by gradient based search methods

The solution to Equation 2.35 can be obtained in several ways. The steepest and conjugate

gradient ascent algorithms require the gradient g = VIn P(K|f) which can be calculated as

0 0 &
a—fjlnp(fﬂf) = a—fj;kilnHi,jfj_Hi,jfj_kilnki+ki (2.38)
N 1
_ k; H,, —H, 2.39
; HZ,jf] sJ 5] ( )
N ks
= H, L1 2.40
>oH, (55 ) (2.40)
S VimP(K|f) = H' ((k+ (Hf))—1) (2.41)

where =+ represents elementwise division for vectors. In other words, the calculation of the

gradient requires both forward and back projection operations.

The steepest ascent method updates an estimate f( by performing a line search in the direction
of the gradient ¢(™ = V¢m In P(K|f), so

FHD) ) () ) (2.42)

where each step length A is determined using one-dimensional search methods such that

f(+1) maximizes the objective function with respect to A,

Faster convergence can be achieved using the Conjugate Gradient method which is well ex-
plained in the literature (Press et al., 1999) in the context of minimization. Instead of search-
ing in the gradient direction ¢(™), only that component h(™ of this gradient direction which is
conjugate to all the previous search directions (h(’"),r =1,2,...,n — 1) is used. This conjugacy

condition can be expressed as
R T ARD =0 (2.43)
where A = Vg™ is a Hessian matrix. In addition, the orthogonality conditions
g™ g =0 and g™ RO =9 (2.44)

are also satisfied when the search direction is updated as

B = g g™

R (2.45)
‘g("‘l)

which conveniently does not involve the explicit calculation of the Hessian.
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2.3.3 EM algorithm

It was found that the line searches in the Conjugate Gradient method are quite time con-
suming due to the computational demand of the Radon transform. Significant performance

improvements can be achieved if no line search is performed.

It is shown in (Rangarajan et al., 1999) by differentiating a likelihood energy function that an

iterative update equation can be expressed as

(n+1) _ Z Hl J/f(n)

J; >

which maximizes the Poisson likelihood. Such an expectation maximization step involves only

(2.46)

one forward and back projection operation.

Equation 2.46 requires that the projection operations have a gain of less than or equal to unity

for stability.

2.3.4 ? errors

Many authors, including (Vengrinovich et al., 1998), model x-ray noise with a Gaussian distri-
bution. This is reasonable when the measured counts are logarithmically compensated and the

signal to noise ratio is high.

Assuming Gaussian errors, the likelihood function becomes

P(plf) = Hszlf H ma (2:47)

where p is a vector of logarithmic compensated projection data and the x? error is

I
M=
S

(2.48)
=1

In Equation 2.48, u; = pz(-n) is the corresponding projections of the object n-th estimate f(")

Similar to Equation 2.35, the Gaussian maximum likelihood (ML) estimate can be expressed

as the optimization problem

FME) — arg max P(p|f) = arg; maxIn P(p|f) = arg; min 2. (2.49)
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A benefit of the x? representation of projection errors is that the objective function is a
quadratic. Gradient based search methods, such as the Conjugate Gradient method, assume
that the objective function is quadratic and can consequently converge to the optimum in fewer

iterations.

2.4 Bayes’ Rule

A maximum likelihood estimate maximizes the probability that the data equals the (estimated
object’s) projections given the object. Bayesian methods argue that it is more sensible to
maximize the probability that the object equals the object estimate given the data. This

posterior distribution can be calculated using Bayes’ formula

P(f)P(plf)
P(p)

where the probability of the data P(p) is a constant and normalizes the area of P(f|p). The

P(flp) = (2.50)

prior distribution P(f) expresses the a priori knowledge of the object.

In its simplest form, the prior could be a uniform distribution of infinite extent. Under this
condition P(f) = P(p) and Bayes’ rule simplifies so that the maximum a posteriori (MAP)

estimate
FOMAP) arg y max P(f|p) (2.51)
equals the maximum likelihood estimate fML),

However, it is known that the density of the object and air is non-negative. It may also be
assumed that no density greater than fi,x could occur within the object. This prior knowledge

can be expressed as

P(f) =TI P(f) (2.52)

where

P(f;) =4 Jmo (2.53)

0 otherwise

{ L 0< f; < fmax

More sophisticated forms of prior knowledge are discussed in the following section.
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2.5 Gibbs priors

In various applications of image restoration (and reconstruction), the target image (or volume) is
believed to exhibit certain properties that can be characterized by local site (i.e. pixel or voxel)
interactions. Gibbs distributions can be used to model the contextual constraints that sites
must satisfy. There are many applications for Gibbs distributions including texture modeling
and region labeling (i.e. segmentation). In this section, only low-level Markov random field
models expressed as Gibbs distributions will be discussed. A more elaborate treatment of the
subject can be found in (Li, 1995).

2.5.1 Definitions

Some notation needs to be defined first. An image (or volume) is denoted f = {f;|j € S} where
S§=1{1,2,..,5,..,M} is a set of sites. A pixel on an image lattice can be indexed by j € S and
takes on a value f; in the real interval £ = [0, fmax]. In discrete labeling problems, £ is a label

set instead, and f is a segmented map.

The spatial relationship of the sites is determined by a neighborhood system N = {N|j € S}
where N is the set of sites which are regarded as being neighbours to j. A clique ¢ is a single site
¢ ={j} or a set of neighbouring sites ¢ = {4, 7',5",...}. Very often only pair cliques ¢ = {j, '}

are considered.

According to the Markov-Gibbs equivalence (Li, 1995), a Markov random field is a Gibbs

distribution
L -3
P(f) = 7€ T (2.54)
where the partition function

Z=Y e 1V (2.55)

is a normalizing constant. 7" is a constant referred to as the temperature, while the energy

U(f) =Y Velf) (2.56)

ceC

is the sum of clique potentials V,(f) over the set of all possible cliques C. The value of a

particular clique potential V.(f) depends on the local configuration of the clique c.
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A set of random variables F' = {F},.., Fjs} is called a Gibbs random field on S with respect
to N if its configuration satisfies a Gibbs distribution. Each of these random variables F; can

take on a value f; € L.

A Gibbs random field is homogeneous or isotropic if the value of V,(f) is independent of the

position or orientation respectively, of the clique ¢ with respect to S.

2.5.2 The role of energy functions

(Geman and Geman, 1984) draw the analogy between images and statistical mechanical systems.
They explain that the maximum a posteriori image corresponds to a low energy state of the

clique potentials and suggest that this solution be obtained by stochastic relaxation.

Gibbs energy functions are formulated in such a way that a minimum clique potential will be

achieved when every clique satisfies the image properties given by the prior knowledge.

(Li, 1995) argues that the role of energy functions are not merely to provide a quantitative cost
measure of the image estimate but also to guide the search for the optimal solution. This is
essential since the formulation of the objective function in Equation 2.51 is often multimodal

resulting in a very difficult optimization problem.

2.5.3 Clique potentials

A simple example of a clique potential represents the prior knowledge of image smoothness,

Ve(f) = %(fj — fi)? (2.57)

where the set of all cliques C includes only the pair cliques ¢ = {7, j'} for which j is an index
to the pixel at (z,y) and j' is an index to either of the pixels (z,y — 1) or (z — 1,y) for all =

and y in the image.

Few real life images have this property. Instead, a more popular assumption is that images can

be represented by smooth regions separated by discontinuities.

(Li, 1995) discusses the development of the discontinuity adaptive Markov random field model
that can represent this image property. An adaptive potential function g, (1) = V.(f) is defined

in terms of an adaptive interaction function h,(n), as

n
gy() = 2 /0 oo (o) (2.58)
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h, (1) g, (1) g, (1)

A r'y 4

Figure 2.3 Discontinuity adaptive functions.
for which
99+(n)
ol = dh ) = 2nh (1) (2.59)

and 7 is an intensity gradient or, in practice, the intensity difference of a pair clique, i.e.

n = fj — fj. The adaptive interaction function satisfies the following conditions:

3) hi(n) <0 (Vn>0)

4) limy, o [nhy(n)| = C < o0

One example of such discontinuity adaptive functions is illustrated in Figure 2.3 and given by

2 2

_n _
hy)=e 7, gy=—ye ~

=

(2.60)

where v determines the width of ().

The potential function g,(n) has a minimum for a smooth image. Small edges (quantified by
) are penalized nearly quadratically, however, in comparison to Equation 2.57, the penalty
for large edges is much less severe. The result is that this prior potential represents piecewise

smoothness.

Another possibility is proposed in the context of tomography. (Vengrinovich et al., 1998) defines

a clique potential

26
2 2 My — M
Vi(p) = Z (W — o)™ + B (s — 1), il = m (2.61)
a=1

23



where p = f while m; and mo are two levels of attenuation coefficient in a binary object that
is tomographically reconstructed from a limited number of projections. This potential reflects
the prior knowledge that the smoothness of the reconstruction should be balanced (using hyper
parameter (3) by the closeness of the attenuation coefficients to either of two possible attenuation

levels.

2.5.4 Maximizing the posterior distribution

Assuming Gaussian noise and a Gibbs distribution prior model, the maximum a posteriori

solution given by Equation 2.51 can be expressed in logarithmic form and simplified so that
FOMAP) — arg; max In P(f|p) = arg; min [U(f) + 2% (2.62)

where A is a constant. A local optimum of this energy expression can be obtained using a
gradient based method. However, U(f) is very often multimodal. (Press et al., 1999) and

(Li, 1995) discuss many search methods for local and global optimization.

Although stochastic methods such as simulated annealing and genetic algorithms have a better
chance of attaining the true global optimum, the deterministic annealing method of Graduated
Non-Convexity (GNC) reportedly finds good solutions at a significantly lower computational
expense. The dimensionality of most realistic problems necessitates the use of efficient algo-

rithms.

GNC optimizes an objective function repeatedly while changing the objective function slightly
at every major iteration. Initially a hyperparameter, such as v in the discontinuity adaptive
model, is set to a value so that the energy function is essentially convex. After the optimum for
this parameter setting is obtained, which is hopefully reasonably close to the desired solution,
the parameter value is adjusted so that the energy function becomes less convex. The old
estimate is used as the starting point of minimization for the next iteration. In this way GNC

attempts to avoid local optima.

2.6 Summary

This chapter introduced background theory. The text continues in a more focussed manner
by addressing a series of relevant problems to reach its goal in limited angle tomography. A

literature survey of limited angle tomography methods specifically is presented in Section 6.3.

24



CHAPTER 3

Image formation process

The way in which x-rays travel through the patient onto the detector defines the relationship
between the digital image data and the tomographic reconstruction. It is important to know
the machine geometry and imaging conditions very precisely to ensure accurate reconstructions

and eliminate avoidable artefacts.

An introduction to the scanning hardware is provided in the first section. This is followed
by a study of distortions observed in Lodox images. Section 3.3 presents an algorithm that
removes camera overlap artefacts. Once the image plane is calibrated, the dataset itself is used
to determine the three-dimensional imaging parameters of the system. The final sections of this

chapter show how direct tomographic reconstructions are achieved.

3.1 Data acquisition using the Lodox system

The Lodox system used to acquire the dataset was originally developed by Debtech. A brief
overview of their technology is given in this section since it provides important background.

The conditions under which the machine was used to obtain the dataset are also stated.

3.1.1 Overview

In the Lodox system (refer back to Figure 1.2) both the x-ray tube and detector are attached
to a C-arm. The C-arm can rotate and move around a patient that lies on a trolley. Scanning
is always done in one direction only at a fixed C-arm angle. The setup resembles that of a

third-generation fan beam tomography machine (Kak and Slaney, 1988). Although the 1999
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model installed in the Groote Schuur Hospital (which was used to acquire the dataset) can
only scan over a 90° range, newer models can scan up to 100°. Mechanical stress on the C-arm

bearings limits this angular range in the current design.

3.1.2 Image formation

Once the x-rays leave the tube, they are filtered by a lmm aluminium sheet and collimated by
a narrow gap between tungsten plates before passing as a fan beam through the scanned object
perpendicular to the scanning direction. At the detector, post-collimation is performed with
another pair of closely spaced tungsten plates and the x-rays are converted into visible light
by a paper scintillator. At this point an array of fibre-optic tapers demagnify the light rays to
12 different CCD cameras. The tapers are shaped like paralellograms and are tightly spaced
so that light is projected redundantly onto adjacent cameras where the tapers overlap. These
cameras operate in a linear-time integrating mode in the scan direction while the linear motor

drives the C-arm so that rows of the image are produced as the C-arm moves.

The intensity offset, also known as the dark current (Beutel et al., 2000), is measured before
each scan and is subtracted from the CCD outputs before gain compensation is performed
to make the CCD readings uniform. The outputs of the different cameras are combined and
overlapped according to the redundancy in the data (which is physically related to the overlap
of the fibre-optic tapers and the relative positioning of the tapers on the cameras). Finally
these values are binned and logarithmically scaled. The Handbook of Medical Imaging (Beutel
et al., 2000) discusses the physics of x-ray imaging in great detail.

The camera gain curves, amount of overlap and positioning parameters are estimated or mea-
sured beforehand when the machine is calibrated. Section 3.2 discusses camera alignment and

overlaps in more depth.

3.1.3 Operator settings and dataset

There are a number of operator settings. The x-ray tube can function at several different voltage
and current settings. Scanning at half and quarter speeds increases exposure. Binning of the
fundamental 60pm pixels into 1x1, 2x2, 3x3 and 5x5 bins provides different image resolutions.
Other settings such as the C-arm angle, scan start and stop positions, and collimator slit width

can be set by the operator using software in newer models of the Lodox system.
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(a) Scan at 0°. (b) Scan at 90°.

Figure 3.1 Lodox scans that are part of the dataset. Note that the table top (foam with
carbon fiber coating) of the trolley is visible in (b). Also note that fan beam magnification
occurs in the horizontal direction.

Unless otherwise stated, all the x-ray images used in this project were taken using the typical
settings of 100kV 100mA, at fullspeed and 5x5 binning resolution. Each scan image size is
approximately 8MB having 1164x2294 pixels of at least 8000 grey intensity levels. Since the
C-arm of the Lodox scanner can only be adjusted from 0 to 90°, and at least 180° is needed for
full tomographic reconstruction, the trolley was flipped around (reversed in the scan direction)
and the object scene was scanned from the other side, totalling 182 scans over a 180° range.

Figure 3.1 shows two of the scans in the dataset.

3.1.4 Reliability

Although the Lodox system is constantly being improved and debugged, it behaved somewhat
unreliably at the time the dataset was acquired. Out of 200 scans, 18 were considered to be
faulty or of too poor quality to be used and were rescanned. See Figure 3.2 for examples of

such scans.

Critically speaking, for the early Lodox machines no image produced is perfect. For example,
within up to a 100 pixel margin of all the images there appear to be gain compensation problems
(see the bright vertical line on the left hand side in Figure 3.1). Also, scanning starts at an
unpredictable position. These trivial problems are side-stepped by cropping the regions of

interest using markers as reference points.
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(a) Saturated scan with stripes. (b) Truncated and blank scans.

Figure 3.2 Faulty Lodox scans.

More subtle yet significant distortions in the images are studied in the next two sections. Image
correction algorithms were developed in this thesis and have since been integrated into Lodox.
Also, Lodox Development has recently improved the effectiveness of their detector significantly

by slowing down the readout speeds of the CCDs.

3.1.5 Image quality

In x-ray systems image quality improves with dose because noise increases linearly with the
square of the signal magnitude for Poisson-distributed x-ray quanta (Beutel et al., 2000).
Achieving good image quality using a low dose is desired and this property is commonly quan-
tified by means of the DQE, or detective quantum efficiency, defined in (IEC 62220-1. Ed
1, 2003). A better DQE also implies that the high voltage generator and x-ray tube need not

be heat loaded as much while still producing good images.

The DQE of the Lodox system is measured for the beam quality RQA5 as specified by the
International Electrotechnical Commission (IEC 62220-1) and compared to other x-ray imaging
systems. Additional information pertaining to the image quality of the Lodox Statscan system
can be found in (de Villiers and de Jager, 2003) and (Sheelke et al., 2005).

The detective quantum efficiency describes how much of the signal to noise ratio of the incident

radiation is sustained in the resultant digital image. This two-dimensional function of spatial
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Figure 3.3 Image quality measurements.

frequency is defined as
Win(u,v)

Wout,referred to input (Ua 1))

Win(u, v)

DQB(u.v) = Wous (u, 0)

= G*MTF?(u,v)

(3.1)

where Wiy, (u, v) is the input noise power spectrum, Woyt (u, v) is the output noise power spectrum
and G is the incremental gain. MTF (u,v) is the modulation transfer function which is only
measured in the scanning direction and the direction perpendicular to scanning (slot direction),
and is therefore actually two one-dimensional functions as described later (hence the parameters

u and v are neglected below). This equation can be restated as

Q

DQE = G?MTF?——~
Q Wout (’LL, U)

(3.2)

where @ is the quantum density (photons/mm? at the detector). The technique for measuring
the DQE is well explained in (Stierstorfer and Spahn, 1999). This section gives a brief overview
of the measurement process and reports on results. Figure 3.3(a) shows a scan of a dosimeter

and a tungsten plate suspended slightly above the detector.

Firstly the incremental gain is determined from a number of exposures by varying the current in
the tube. The dose at the detector is converted from pGray to photons/mm? using a conversion
factor supplied by the IEC for the given beam quality. The slope of a straight line fitted through

the plot of quantum density versus average raw pixel values yields G. See Figure 3.3(b).
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Figure 3.4 Image quality results.

The presampled horizontal and vertical MTFs are measured from the scan of a slightly angled
tungsten plate with accurately milled square edges as in (Samei et al., 1998). Pixel intensities
are projected parallel to the edge direction to produce an edge spread function. The numerical
derivative of the edge spread function is the line spread function, and the magnitude of the
Fourier transform thereof gives the MTF shown in Figure 3.4(a). A slightly poorer MTF
is noted in the scanning direction, especially at faster scanning speeds. This is ascribed to

scintillator afterglow.

The noise power spectrum Wo,¢ (u, v) at the output is determined by averaging the power spectra
of several partly overlapping windows of pixels over a uniformly exposed area. One-dimensional
horizontal and vertical cuts through the noise power spectrum are obtained by averaging 15
rows or columns of the two-dimensional spectrum around each axis, while maintaining exact
spatial frequencies in terms of radial distance from the origin. The axis itself is omitted. See
(IEC 62220-1. Ed 1, 2003) for more details.

The DQE is calculated from Equation 3.2 and the average is displayed in Figure 3.4(b) along
with DQEs of a non-scanning systems presented in (Granfors and Aufrichtig, 2000). At low
spatial resolutions, the Lodox system performs very well. This is well suited for tomography

applications which require relatively low spatial resolution x-ray data.
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Figure 3.5 Closeup view of a steel ruler with detected tick marks (+) and edge position (solid
white line) superimposed.

3.2 Camera distortion

Figure 3.5 shows a closeup view of a steel ruler taken with the Lodox machine. In this image
one would expect to see a straight line along the edge of the ruler and also expect to see evenly
spaced tick marks. However, there appears to be distortion in both these directions, and at
higher resolutions these distortions are more apparent. The cause of the distortions is believed
to arise from barrel distortion in the fibreoptic tapers and other inaccuracies in their alignment
and orientation. Quantitative knowledge of these distortions is necessary for making image
corrections. This is especially important because the geometry of the machine is inferred to a

high degree of accuracy in Section 3.5 using sparse data taken from the images.

The overlap artefacts, which can clearly be seen in this figure near pixel columns 1142 and 1334,

are investigated in Section 3.3.

3.2.1 Pixel column position errors

As demonstrated in Figure 3.6, the pixel column positions of the tickmarks on the ruler image
are detected with subpixel accuracy by fitting sections of sinusoids to the intensity profile of
these markings. Firstly, 8 rows of the image are averaged to improve the signal to noise ratio of

the markings. The least squares fit performed for each tick mark determines only the intensity
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Figure 3.6 Tick marks (+) detected near edge of camera (left) and near center of camera
(right). The metal ruler intensity profile (thin solid line) and the sinusoids fitted thereto (dark
solid lines extending into dotted lines) are shown.

offset and phase of the localized sinusoid. The average amplitude and frequency is used for all

tick marks and the region of interest size is chosen to span 2 tick mark cycles.

The further the tick marks lie from the center of any camera, the further apart they are spaced
from one another. Explicit examples of this phenomenon are given in Figure 3.6 while overall

results are shown in Figure 3.7.

From these results the tick marks appear to be on average 4 pixels apart, but vary between 3.5
and 4.5 pixels. This average value is bigger than the expected 3.33 pixels per millimeter for
5x5 binning of 60um pixels due to magnification by the fan beam geometry. The ruler was on
the trolley almost 30cm above the detector. Furthermore, absolute position errors of the pixel
columns are nearly 3 pixels (or 0.75mm) while relative position errors could be up to 6 pixels

in extreme cases.

3.2.2 Pixel row position errors
The edge of the ruler, superimposed at a slight offset in Figure 3.5, is a mean intensity contour

of the ruler image. Figure 3.7 shows that the row position error remains mostly below 1 pixel

(0.33mm) but can be incorrect by up to 2 pixels. These values are somewhat less than the
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Figure 3.7 Tick mark spacings (left) and pixel position errors (right).

column position errors because there is no fan beam magnification in the scanning direction,

and the time delay integration of pixel columns in the CCD also removes some distortions.

Further software developments have since successfully been integrated into the Lodox system
during the course of 2004. These algorithms are designed to operate on raw images, remove

distortions and perform camera overlapping automatically without any supervision.

3.3 Camera overlap artefacts

The most striking shortcoming of Lodox images is the presence of camera overlap artefacts.
These artefacts obscure image details and degrade image quality, but do not destroy underlying
image detail. They are believed to exist due to a combination of factors including the collimator
slot width, inaccurate manual camera overlapping and variation of the CCD intensity offset, or

dark current, during a scan.

A lot of research effort has been put into developing a robust standalone algorithm that removes
these artefacts well for different Lodox machines and all imaging procedure factors (de Villiers
and de Jager, 2001). Two algorithms are discussed in this section namely an intensity level
algorithm and an adaptive algorithm. The first algorithm is included not only because it gives

some insight into the artefact problem, but because the concept that it presents is fundamental
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Figure 3.8 High resolution view of one metal bar.

to later chapters in this thesis. Attention is therefore drawn to the understanding of the workings

of this algorithm rather than the latter adaptive algorithm.

3.3.1 Artefact properties

Figure 3.8 shows part of a high resolution Lodox image of a metal bar. The artefact, marked with
an arrow, affects only a few pixel columns where overlap from one camera to the next occurs.
These column indices are the same for all scans and can be identified a priori because they
are determined by the physical setup of the scanner. The shape of the artefact is significantly
different in the three indicated regions. Regions A and C show transient artefacts near the

edges of the metal bar while region B shows a steady state artefact.

Image intensity profiles of a Lodox image of six different metal bars are shown in Figure 3.9(a).
Since each metal bar is of uniform density, constant valued intensity profiles are expected to
match the corresponding x-ray attenuation level for each bar. However, artefacts can be seen

that change in shape and size as a function of intensity.

A slight difference in mean intensity for different cameras (on either side of the artefact) is also

noticeable in the imaging of high attenuation objects.
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Figure 3.9 Artefact properties and definitions.

3.3.2 Intensity level based algorithm

The intensity level based method assumes that the artefact shape is dependent only on the
local mean intensity level. Consequently this method fails to remove the artefacts in places
where there are abrupt, large changes in image intensity. Nevertheless, a good estimate of the

underlying image can be obtained with this algorithm.

Consider the simplest example where a scan is taken of a uniform object resulting in a region
of nearly constant intensity (consider Region B only of Figure 3.8). Regard this region as a
sequence of row vectors, Fjyqo;(7), where 7 is the row index. The artefact, Ay e(i), remains
exactly the same for each row. Note that the image detail (labeled AF (i) which in this case
is quantum and measurement noise only) changes randomly from one row to the next but the
superimposed artefact does not. In this region, an estimate of the artefact (an artefact row
vector, Ayrye(i) =< Ayougn(i) >) can be obtained by first averaging (in the column direction) all
the row vectors comprising the region and then subtracting from it the scalar average intensity of
the region. The underlying image with its random fluctuations can be recovered by subtracting

the estimated artefact from each original row vector in this region.

In the more general case described below, see Figure 3.9(b) for a visual representation of various

terms and note that the column indices, j, are omitted for clarity.
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Firstly, linear interpolation is performed horizontally across the artefact (note that a zeroth
order or cubic interpolation could be used instead requiring respectively more examples or
less examples for this method to estimate the artefact effectively). A rough estimate of the
artefact, A,ougn(i), for each row, i, is obtained by subtracting the relevant columns of the
original Lodox image, Fj,40,(7), from the linear interpolations, Fj,eqr (7). Each of these rough
estimates A,q,qn(7) is associated with the mean intensity level, F = Flinear(i) of the linear

interpolation at that row.

The true shape of the artefact Aye(7) at row i can be written as

Aprue() = Arougn (i) — AF(4) (3.3)

where AF (i) is detail of the true image profile that is clipped off by the linear interpolation as
defined in Figure 3.9(b). If there are N rows with the same intensity level tag F, indexed with

k, the expected true artefact for this set of rows can now be calculated as

Appue(F) =< Appue(k) > = < Apougn(k) > — < AF (k) >
= < Arough(k) > —0

= =Y A (b (3.4)
k

The expected value of AF (k) is zero because it is assumed that there is no correlation in the
clipped off detail amongst the rows in the underlying image. In Figure 3.9(b) the curve for
AF (k) will change randomly for all different rows k throughout the image that is associated
with the same intensity level tag F'. However, during this variation of AF (k) for different &
at the same F, the artefact remains constant according to the original algorithm assumption.

Equation 3.4 shows how these two concepts work together to yield the artefact at F.

In practice the intensity level tags F'(i) are quantized and a linear interpolation scheme is used
to build a lookup table of artefact shape versus intensity level. This lookup table is then used
to predict the artefact shape at an arbitrary intensity level in the image which can then be

subtracted out of the image.

3.3.3 Adaptive algorithm

The assumption on which the adaptive algorithm is based is that the artefact changes more

slowly than the image detail from one row to the next (in the vertical direction). Therefore,
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blurring the image one-dimensionally along the columns (in the vertical direction) will not have
much effect on the artefact (nor on low resolution components of the image), but it will smooth
out the image details. In this way, blurring is used to separate image details from low resolution
components of the image. Afterwards, the incorrect low resolution components of the image,

which are corrupted by artefacts, are discarded and replaced by interpolated smooth curves.

The restoration can be written as
< Firye (Z) >= Fsplz'ne(i) + FH(@) (3'5)

Here Fypjine(7) is a cubic spline interpolation over the artefact and the high resolution image

detail is

FH(Z) = Flodo:v(i) - FL(Z) (36)

where the low resolution component F7 (i) of the original Fj,q.,(7) can be calculated efficiently

from

k
FL(i) = o (Face(i+ N (i)/2) = Faeei = N()/2 = 1)) and  Face(k) =Y _ Fiodoa ().
1=0
(3.7)

A bigger blurring kernel size, N (i), is used where the underlying image has small intensity
changes, |A;Fyrye|, between rows or large intensity changes, |A;Fy .|, between columns. This
is necessary to accomodate rapidly changing artefacts and maximizes the extent over which
the artefact shape is inferred. These intensity gradients are estimated from restored images as
obtained in Section 3.3.2. Thus
k+Ai  J1
NE =a 3 3 <IAjFieli )] > =B < |AiFiruelis )] > (3.8)
i=k—Ai j=jo

where summation is done in a neighbourhood Aj of a fixed size that only moves as a function of
row index. The size of this neighbourhood Ai equals 50 rows for an image with a resolution of
1.666 line pairs per millimeter and scales in proportion to resolution. Fine tuning of parameters
«a and § around 5.5 and 0.6 respectively by up to 25% of their nominal values can result in
excellent artefact suppression for a particular image or region in an image. The values for these
parameters were chosen as quoted above so that good results are obtained for a broad range of

images. No single value is optimal for all images.
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Figure 3.10 An original chest x-ray with artefacts (top) and an image with the artefacts
removed (bottom).

3.3.4 Examples and performance

Figure 3.10 shows a typical example of the value that the artefact removal algorithm adds to
the image. Note that there are some markings on the spine which are not visible unless the
artefact removal algorithm is applied to the image. Both of the algorithms described above

produce nearly indistinguishable results in the region of the image shown.

Figure 3.11 shows closeup views of the results of the two different algorithms applied to the
same image region (the top of the skull). Evidently the adaptive algorithm is better capable of
removing the artefacts near large intensity transitions. There are no instances found where the

intensity level algorithm produces superior results to the adaptive algorithm.
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(a) Original. (b) Intensity level method (c) Adaptive method result.
result.

Figure 3.11 Results for different artefact removal algorithms.

A version of the adaptive algorithm has been used at a number of hospitals around the world for
nearly a year with such great approval by its staff that the option of disabling such processing

is no longer given to users of Lodox’s Statscan systems.

3.4 Consistency

A projection can be considered to be a profile of values that is formed by a set of line integrals
through a cross-section plane (see Figure 2.1). The integral of a projection through the same
cross-section of an object equals the total mass of that section. It does not matter from what
angle the projections are taken, the integral of the projection must still equal the total mass of
the cross-section. Such consistency does not exist in the Lodox images used as the dataset, for

the following reasons:

e The trolley is only partially imaged in some of the scans because of its width.

e There is some variation in x-ray generation and detection such that the intensity range of
images could differ by up to 10% if a scan is repeated under identical operator conditions

at different times.

e The image contrast and brightness vary throughout the image and differ abruptly between
some adjacent cameras. This is especially noticeable at high attenuation and is affected

by the variation in dark current and gain in each camera within a single scan. See
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Figure 3.12 Average, maximum and minimum accumulated row intensity profiles in dataset.

Figure 3.9(a). Although these system inconsistencies have been solved in 2004 by slowing

down CCD readout speeds, the dataset used in this thesis is subject to such corruption.

e Beam hardening and scattering of the polychromatic x-rays used in the Lodox system
prevents the detector from measuring the actual linear attenuation coefficient (Kak and
Slaney, 1988).

The contribution of the trolley to the inconsistency is removed by subtracting the mean trolley
intensity profile from each row in a scan. This is possible since scanning occurs parallel to the
trolley resulting in a nearly equal contribution to all rows. Slight mismatch at trolley edges is

removed using the adaptive camera overlap artefact removal algorithm in Section 3.3.3.

Figure 3.12 shows the remaining inconsistency where the dotted lines represent the minimum
and maximum mass of the object per row for the dataset (at different angles). This variation
is reduced to that of the thin solid lines by optimizing the contrast and brightness (scale) of

each scan so that they match the mean mass profile best in terms of mean square error.

Well known techniques in the literature (Kak and Slaney, 1988) for minimizing the effect of beam
hardening in reconstructions are not possible in the context of limited angle tomography with
Lodox. The dual energy technique involves taking an additional set of x-rays at a secondary
energy level. The Lodox system is not designed to do that. Other post-processing techniques
require the segmentation of bone out of reconstructions and estimating tissue thickness which

is not as straightforward with limited angular data. Therefore, no further attempts are made
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to improve the consistency in the dataset and henceforth reconstruction algorithms treat these

inconsistencies as imperfections in the dataset along with the measurement noise.

3.5 Projection geometry

It it difficult to determine the system geometry to a high accuracy using conventional measure-
ment instruments. Besides getting hold of suitable equipment and dismantling the system, it
would remain a nontrivial task to locate, for example, the center of rotation and the precise

position of the x-ray source.

Instead, now that the distortions in the image plane are quantified, the imaging system itself
can be used to measure the C-arm geometry. This is done by scanning a reference object from
different angles and consolidating markings on the object with their projections visible in the

image.

As seen in the upper parts of Figure 3.1, an upright perspex sheet with a regular grid of 9
aluminium pins can be found in every scan of the dataset. For identification purposes, each pin

has a different length.

The cross-sectional relative spatial coordinates (zy,yi) of these pins are known a priori to an
accuracy of opj, = 0.057mm (maximum fit error: €p;, = 0.12mm) from the log likelihood of a

set of 36 unique pin to pin distance measurements r e.

PR
pE -

2
/ 2 D)
. 1\"xz V(@ —25)? + (Y — yp)
(ks Yks Opin) = arg min N log(V2moymy) + Z 3 ( — ) (3.9)
k>E ptn

which has the same solution as the minimum variance x? cost function, except that it also

estimates the variance. A normally distributed error in the measurements is assumed.

In the Lodox images, the pin positions are manually located to the nearest pixel. Then, as the
example in Figure 3.13(b) helps to show, the row index is chosen where the steepest average edge
in the neighbourhood, orientated perpendicular to the perspex sheet, reaches 15% elevation.
Along this row, the pin column position is determined by fitting a Gaussian curve to the intensity
profile shown in Figure 3.13(c). The column positions of pins that appear close together in the
images, are chosen manually and are therefore known with less accuracy. This collection of pins,
as well as pins near camera overlap artefacts and pins within the image margins, are labeled

bad pins. Pixel column distortion is not determined in the image margins where excessive gain
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Figure 3.13 Detection of a pin position in a Lodox scan.

compensation problems occur. In the dataset, 312 out of 1638 pins are labeled bad. Although all
the pin data is used equally, the results show that the good pins have less variance, as expected

(see Figure 3.14(c) discussed later).

The pin positions are corrected for pixel column distortion by mapping them onto the phantom
ruler represented by the variable p (which is approximately 30cm closer to the x-ray source from
the physical detector) into millimeter units. Linear interpolation is employed in this mapping
and yields the pin’s projected position p;c,a on the p axis, where 0 is the C-arm angle and k is

the pin number.

Figures 3.14(a) and 3.14(b) show the geometry of the C-arm and how the pins are projected
onto the phantom ruler p from their cross-sectional coordinates. This projection is governed by

the following equations:

zxg = ¢ —ruccos(d) —rxasin(0) k9 = tan! (%) (3.10)
yx,p = Yo +rucsin(@) —rxycos(0) pro = rxptan(dry—0)+ pp

In these equations, the x-ray source is at point X=(zxg,yx,) when the C-arm is at angle 6
with respect to the center of rotation at C=(z¢c,yc). Pin k at (zk,yx) is projected onto the
projection axis at pj g where pp is the origin of the projection axis at point D. Further ry/c,
rxym and rxp are the distances from the points M to C, X to M and X to D respectively as
quantified in Figure 3.14. The intermediate quantity ¢ g is used to simplify the calculation of

Pk,9, and represents the angle to pin k from the x-ray source.
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(c) Geometry results

Figure 3.14 Geometry of the Lodox machine.
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Figure 3.15 Contribution of pixel segment to a projection bin.

The minimum variance data fit is found using a local search algorithm, by minimizing

X2 =3 (bho— prs)’ (3.11)

k.0

which has 190 parameters. Omitting the C-arm angles, , the results are given in Figure 3.14(c).

The results suggest that a point in the projection plane can on average be pinpointed to an
accuracy of 07 goo¢ = 0.09mm in the cross-sectional (axial) plane using the image corrections and
geometric setup described in this chapter. This limits the resolution to which reconstructions

can be performed with no regard to the resolution of the dataset.

Although the geometric parameters could be determined to greater accuracy using more pins in
the reference object and higher resolution data, the assumption that the estimated parameters
are constants breaks down at some point. Finite element analysis of the C-arm structure by
Ken Park (Park, 2002), reveal that deflections of up to 100um are expected as a function of

C-arm angle due to gravity alone.

Therefore, if a greater order of accuracy is required, then not only should more reference points
be used, but each scan’s geometric parameters should be considered individually (or at least

locally as a function of 6).

However, the accuracy to which the geometry is known at this stage is believed to be well

matched to the resolution of the dataset, which is 0.3mm per pixel.
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Figure 3.16 Accumulative projection of triangle.

3.6 Pixel projection

Figure 3.15 illustrates the partial volume effect (Beutel et al., 2000) where part of a pixel on a
regular grid is projected onto a discrete projection axis. In the general case, the contribution
that the shaded portion of the pixel makes to the projection bin is an elaborate analytical

function of the relative orientation and position of various components in the diagram.

A simplified diagram is shown in Figure 3.16 where a pixel consists of the union of four rotations

of a triangle about point C'. The pixel orientation is expressed using ¢.

It is useful to define a general function Acrr(OD) which determines that part of the area of a
triangle C'LR that lies below the line OD. In this simplified example, that function is expressed
using the angle of the line OD instead, such that

0 if Op <tan~'(yr/zr)
A(Icr, Ingr, L if tan—! <6p <0
Acrr(0p) = e, Ira, L) 1 - (yL/xL)_l b= (3.12)
A(C, L, R) - A(ICR, IR, R) if 0<#6p <tan (yR/mR)
A(C,L,R) if Op >tan~'(yr/TR)
where the area of a triangle with vertices C, L and R can be calculated from
|| Te v 1
TrR Yr 1

The area Ag,(0p) of the pixel at angle 6 below the same line is calculated by summing the

partial areas of the individual triangles that make up that pixel. Finally, the contribution that
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Figure 3.17 High resolution projection profiles of individual pixels.

the pixel makes to an interval 6p, to 6p,,, on the discrete projection axis is then determined

by subtracting the accumulated areas Aq, (0p,,,) — Ao~ (0p,)-

3.7 Projection axis resolution

Given a particular spatial resolution, this section describes how an optimal projection axis

resolution is selected.

Figure 3.17(a) shows a few projections of a single square pixel onto a high resolution projection
axis at different angles. Clearly the shape of the pixels affects the projections more significantly
the higher the projection axis resolution. If the projection axis resolution is too high, the
reconstruction is overspecified by the projections because it has structure that either contradicts
(real data from continuous origin) or concurs with (simulated data from discrete origin) that
which is consistent with the shape of the pixels. As demonstrated in the final chapter of
this thesis, a resolution mismatch of this kind introduces avoidable noise in real data iterated
reconstructions. On the other hand, if the projection resolution is too low, more pixels are used

than necessary to represent the projection data, and reconstructions can be poorly specified.

Figure 3.17(b) shows the average projection profile of all pixels in a 128 x 128 lattice for typical
geometrical conditions used in this thesis. A rectangle of equal area is fitted optimally in mean

square error to this curve. The width of this block defines the bin spacing used as the best
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choice of projection axis. For a 128 x 128 lattice this corresponds to a 216 element projection

axis in this case.

3.8 Filtered back-projection reconstruction

The filtered back-projection method described in Section 2.1.4 is used to perform tomographic
reconstruction. In essence, it requires that the x-ray projections are filtered with H(w) = a|w| in
the frequency domain where « is some constant. The filtered projections are then cumulatively

projected back onto a pixel grid. The results of this operation is provided below.

3.8.1 Results

Figures 3.18 and 3.20 to 3.22 show a few typical full angle tomographic reconstruction slices
of the object using 182 scans at an angular spacing of A@ = 1°. The head or limbs are the
most likely parts of the anatomy to be imaged tomographically in a clinical situation with the
Lodox system, because they are relatively easy to keep still for the long periods of time it will
take to perform the scans. Acquiring 182 scans of a human head cannot be done faster than 12

minutes if the machine were fully automated for this purpose (manually it took 4 hours).

In contrast to most tomography machines, a scan has to be completed before the x-ray source
is rotated. This makes the Lodox system a lot more susceptable to motion-blur problems due
to, for example, breathing. The benefit, however, is that the Lodox system offers very high
resolution imaging in the scanning direction. For these reasons, perhaps the most suitable

application for this study is forensic imaging.

It is possible to develop single slice tomographic capabilities into the Lodox system which could
offer very high contrast resolution. This requires a special mode where the C-arm rotates while

data is acquired. However, this topic falls outside the scope of this thesis.

Figure 3.19 shows an intensity profile through Figure 3.18 which is an enlargement of the slice
at scanning index i, = 225 using 1024 x 1024 0.22mm pixels. An intensity profile of the
equivalent low resolution 128 x 128 1.8mm pixel reconstruction in Figure 4.1(c) is also provided

in Figure 3.19.
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Figure 3.18 Filtered back-projection reconstruction slice at i, = 225.
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Figure 3.19 Intensity profiles through 128 x128 and 1024 x1024 filtered back-projection recon-
structions at z = —44.38mm, ¢, = 225.

The light streak running horizontally between bright bone sections in the lower part of the
left hand side eye is an example of a beam hardening artefact (Beutel et al., 2000). This
happens because projection data originate from polychromatic instead of monochromatic x-
rays and is therefore not an exact measure of the linear absorption coefficient of tissue (Kak
and Slaney, 1988). Figure 3.19 indicates this by Region A as an intensity profile in Hounsfield
units [HU] (see Figure 4.12(b) for interpreting Hounsfield units).

Noise levels and other fluctuations in the reconstruction of the same homogenous tissue are
indicated by Region B. For the 1024 x 1024 reconstruction, the peak to peak profile variation
is nearly 250 HU. For the 128 x 128 reconstruction in Figure 4.1(c), this variation is reduced to
about 100 HU.

Region C illustrates the partial volume effect. At a low spatial resolution, it is not possible to
represent detailed structures accurately. The presence of tissue is indicated inconclusively using
1.8mm pixels. Although increasing the slice thickness (not shown) by binning in the scanning
direction reduces noise in reconstructions, it does not attenuate the artefacts and it worsens

the partial volume effect.

The ripples of fine light and dark streaks seen throughout Figure 3.18 are aliasing artefacts due
to the relatively small number of angles at which scans were taken. Region D in Figure 3.19

shows that the variations can be up to 500 HU peak to peak. These ripples are not visible in
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the 128 x 128 reconstruction where the angular resolution is more comparable to the display

resolution.

Near the bottom of the image, the lower edge of the skull appears to extend a light streak over
the scalp tissue to its left. Also notice the slight increase in intensity for both resolutions of over
100 HU below the head which is labeled Region E in Figure 3.19. This happens because the
total angular range over which x-rays in the 180° dataset were detected, is less than 180° for
points in that region of space. For fan beam tomography, the angular range at which projections
must be taken is 180° plus the fan angle to ensure that 180° data exist for all points in the
image space. Therefore, the dataset is technically not complete and no reconstructions in this

thesis are quite full angle.

Figure 3.20 shows an enlargement of a slice at i, = 450 using 0.22mm pixels while Figure 3.21
displays only the central 40mm x40mm detail region of this slice using 1024 x 1024 pixels. This
image pushes the limits of the dataset resolution, as well as the accuracy to which the geometry

of each scan is known.

3.8.2 Performance

Reconstruction speed is fairly slow when no compromise is made on the accuracy of the pixel
projection process. Whilst determining all intersecting areas of beams and pixels on the fly,
back-projection takes approximately 4.87us per scan per pixel on a 1.8GHz Pentium 4 processor.
In other words, the 6 512 x 512 slices using 182 scans shown in Figure 3.22 took about 23 minutes

to compute.

For low resolution cross-sections, the contributions that projected pixels make to the projections
can be precomputed and stored in a lookup table. In this way a very large improvement in
speed for 128x128 images is possible. A 128 x 128 x 128 cube takes 2 minutes and 30 seconds

to reconstruct at 1.17s per slice.

(Coric et al., 2002) reports a speedup for the back-projection process of up to 20 times using
dedicated hardware and fixed point arithmetic. Hardware acceleration may be essential to the
future commercialization of tomographic functionality for Lodox. However, for the development

of new limited angle tomography techniques, no compromise on accuracy is tolerated.
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3.9 Summary

In this chapter many real world problems with the system and dataset were investigated and
overcome. It was shown that accurate reconstructions are possible and therefore the dataset
and the system are well characterized. The encapsulation of this reconstruction ability is a

fundamental building block for the rest of this thesis.

The results have shown that although a high spatial resolution is obtainable, relatively poor
contrast (or density resolution) is achieved due to the poor angular resolution and artefacts.
The next chapter investigates how to obtain better reconstructions from a limited number of

projections in the presence of noise and inconsistencies in the data.
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Figure 3.20 Filtered back-projection reconstruction slice at i, = 450.
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Figure 3.21 High resolution reconstruction using 39um per pixel at i, = 450.
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Figure 3.22 Filtered back-projection reconstruction slices at i, = {75, 150; 225, 300; 375, 450}.




CHAPTER 4

Optimizing reconstruction

Given a complete set of ideal projections, the filtered back-projection algorithm theoretically
converts the projection data to an exactly equivalent cross-section with no need for iteration. If
data is sparse, subject to measurement errors and beam hardening, this algorithm will however
not necessarily reconstruct a cross-section such that the projections of that cross-section equal
the projection data best in terms of mean square error. For example, in an extreme case
where only a single projection is known, an wunfiltered back-projection will clearly result in
a reconstruction that is more consistent with the data than a filtered back-projection. This
chapter investigates the best way to perform reconstructions from limited datasets so that they

are most consistent with measured projection data.

The criterion of optimality used for the better part of this chapter is the mean square error,
02 = x?, of the reconstruction projections with respect to the measured projection data. In
this thesis, 050 is the root mean square data projection error of projections spaced at Af = 5°
intervals over a 180° range. Similarly, oo is the root mean square data projection error of
projections spaced at Af = 1° intervals over a 180° range. Note importantly that o0, which is
quoted in many figures, represents a quantitative measure of comparison for a reconstruction
to the ground truth. This parameter is particularly useful for assessing sparse and limited angle

reconstructions throughout this thesis.

In the following section it is demonstrated that the filtered back-projection method should be
modified when data is sparse to minimize differences of the reconstruction projections with the
projection data. These findings are then extended to iterative reconstruction methods. The
final sections of this chapter discuss that reconstructions should be regularized to best provide

for unmeasured data. Bayesian reconstructions are included.
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(a) Ramp filter, A0 = 5°, (b) Optimal filter, A§ = 5°, (¢) Optimal filter, A = 1°,
050 = 489, g10 = 489. 050 = 304, g10 = 326. 050 = 299, g10 = 298.

Figure 4.1 Single step reconstructions (i, = 225).

4.1 Maximum likelihood reconstruction

As discussed in Section 2.3, the maximum likelihood reconstruction is the reconstruction that
fits the available projection data best in terms of mean square error. The class of reconstruction
techniques advocated below differs from most standard methods in that a search is generally
performed in a subspace of search directions (Skilling and Bryan, 1984) instead of a single search

direction at each stage that the reconstruction is updated from f(™ to f(+1.

It is constructive to point out that direct inversion reconstruction methods in Section 4.1.1
employ a self-contained iterative optimization procedure which is used to determine controlling
filter parameter values. These are regarded as single step methods because they closely resemble

a single step of classical gradient based search methods (see Section 2.3.2).

Tterative methods in Section 4.1.2 simply iterates direct inversion steps which automatically

recalculates the projection differences and filter parameters due to its new starting position.

4.1.1 Direct inversion in a single step

Figure 4.1 shows direct inversion reconstructions where projection data is known either at
AfO = 5° or 1° intervals as indicated. At a display resolution of 128 x 128 pixels, the projection
data for the 1° case is considered to be complete while in the 5° case it is considered to be

sparse. The poor angular resolution results in aliasing artefacts which are clearly visible in
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Figure 4.2 Optimal filters for direct inversion of 128 x 128 reconstructions.

Figures 4.1(a) and (b). Figures 4.1(a) and (c) appear to have visually pleasing sharp edges
while Figure 4.1(b) appears slightly blurred.

For the reconstruction in Figure 4.1(a) the familiar ramp filter, H;(w) = h; - |w|, was used on
the projections prior to back-projecting, while for Figures 4.1(b) and (c) an optimal blurring

component is included in the filter of the form:
Hy(w) = (ho + Iy - |w])e 502", (4.1)

Parameter values hgy, h1 and hy define the shape of the filter and are chosen optimally for each
reconstruction individually. These values are found by minimizing the o2 (equivalent to the
familiar x?) error between the available data and the corresponding projections of the resultant

reconstruction using the Nelder Mead simplex minimization algorithm (Press et al., 1999).

As expected, the theoretically correct ramp filter with no blurring component (he = 0) was
found to be the most optimal filter choice for the case of a complete dataset with 1° data
spacing intervals given a blank image as the starting point. For interest’s sake, Figure 4.2
shows the optimal filter shapes for a few different angular spacings in projection data. The
actual values used are calculated internally in an automatic way, as described above, and vary

depending on the starting point, and also vary slightly for different slices.

The reason why a blurring component is included is to reduce the sharpness of the angular
aliasing artefacts, which in turn improves the projection error as shown in Figure 4.3(a). In
other words, although the reconstruction appears more blurred in Figure 4.1(b), its projections

fit the data projections better in mean square error than in Figure 4.1(a).

o7



800

120

[ Ramp filter, AB=5°
I optimal filter, A8=5°
1001 [ Optimal filter, A§=1°

Ramp filter, AB=5°
— Optimal filter, A8=5°
— Optimal filter, A6=1°

600

4001
80r

60

Projection error
Counts

-200F
40¢

-400
201

-600

-800 . . .
0 50 100 150 200 —gOO -600 -400 -200 0 200 400 600 800

Projection bin index Projection error

(a) Projection error profiles. (b) Projection error histograms.

Figure 4.3 Projection data errors at § = 0° for single step reconstructions in Figure 4.1.

Figure 4.3(b) illustrates crudely by means of histograms that the statistical nature of the data
fit error is asymmetrical and non-Gaussian. This is due to inconsistencies in the dataset as

discussed in Section 3.4.

Direct inversion methods are well suited for high resolution reconstructions when a large amount
of data is available. For low resolution images it is feasible to use more computationally ex-
pensive algorithms in exchange for better reconstruction quality. The rest of this chapter

investigates more elaborate iterative techniques.

4.1.2 Iterative reconstruction methods

A much better data fit can be achieved by iterative methods. The aim of these methods is to

minimize the o2 error that the projections of the reconstruction make with the projection data.

The simplest algebraic reconstruction method (Kak and Slaney, 1988) repeatedly projects back
some fixed fraction of the difference between the projections of the current reconstruction f(™

and the data (i.e. the residuals) onto f(™) to produce a new reconstruction f™+1).

Some improvement is possible if this fraction is determined by minimizing the resultant o2 error
of f("*1) at each step as in Section 2.3.2. Evident from the curve for Hy(w) in Figure 4.4(a),

this alternative strategy still has a poor rate of convergence.
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Figure 4.4 Convergence curves for iterative reconstruction methods with Af = 5°.

Instead of updating the reconstruction in a single direction at each step, the more effective

iterative methods discussed below consider multiple directions.

4.1.2.1 Steepest descent

Steepest descent algorithms simply iterate direct inversion steps exactly as in Section 4.1.1.
The result of one iteration is used as the starting point for the next iteration. At each iteration
step, filter parameters (hg, h1, and hy) are recalculated by the Nelder Mead algorithm so that
the 02 error decreases maximally. In other words, these values are automatically determined
and are not constant from one iteration to the next. They are somewhat data-dependent and
tend to change dramatically during the first few iterations but still keep changing throughout

the reconstruction process.

As shown in Figure 4.4(a), the rate of convergence can be improved by filtering the projection
difference: the classical steepest gradient as in Section 2.3.2, using Hy(w) = hg, converges slowly
but steadily while the theoretical filtered back-projection choice, Hi(w) = hi - |w|, converges

much faster initially but comes to a standstill later on.

The best of both worlds is achieved by adding an offset parameter to the filter, so that Hy(w) =
ho + hy - |w|
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A further yet insignificant development, evident in the first few iterations only, is possible by
blurring the projections as in Equation 4.1. The added computation required to determine the

blurring parameter does not justify the use of filter Hs(w).

4.1.2.2 Conjugate gradients

The conjugate gradient method, as described in Section 2.3.2, is the standard modification
to the classical steepest descent algorithm (using Hy(w) = hg) aimed at solving quadratic or
nearly quadratic optimization problems in the fewest number of iterations possible. In this
method, a new search direction is chosen that is conjugate to all previous search directions. A
one-dimensional line search operation is performed in this conjugate search direction at each
step. The conjugate gradient method has been implemented for comparison to the algorithm

discussed next.

4.1.2.3 Using components of previous search directions

Previous search directions can easily be stored in a buffer. Instead of searching within the filter
parameter (ho through hy) subspace alone for the next iterate, the subspace can be augmented
by fractions of previous search directions to be added to the current search direction (in the
projection domain). Figure 4.4(b) shows numerically as a function of iteration number that the
performance of the conjugate gradient method is almost indistinguishable from the case where
the next iterate is searched for in the two directional subspace defined by hg and a fraction of

the previous search direction.

The figure also shows that the RMS data fit error is significantly less during the first 20 iterations
when searching in the three-directional subspace defined (in filter form Hs) by hg, hy and a
fraction of the previous search direction. Only a minuscule further improvement is achieved
using additional older search directions, possibly because the data fit optimization problem is

inherently quadratic only.

It was found (not shown to avoid cluttering) that using the filter form H3 with previous search

directions does not have a noteworthy advantage over filter form Hs under the same conditions.
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Figure 4.5 Isosurface views of reconstructed volume using the complete dataset.

4.1.3 Iterative volume reconstruction

Efficient volume reconstructions can also be achieved using the techniques described above. At
each iteration, the parameters defining the back-projection filter and the fraction of the previous
search direction to be added, are optimized for a single slice of the volume only. The slice with
the greatest data fit error is selected at each iteration for such optimization. All the other slices
make use of the same parameter settings. This technique offers stability, rapid convergence as
well as minimal computation. Figure 4.5 shows two isosurface views of a 128 x 128 x 128 volume

reconstruction of the complete dataset.

4.2 Implications of having sparse data

Very good maximum likelihood reconstructions are possible when data is complete. Redundancy
in the data alleviates noise, artefacts and other errors in the dataset when the o? error is

minimized. Of more practical interest, however, is the situation where data is sparse.

This section explores what happens during the reconstruction process when the angular reso-

lution (A#) of available data is poor.
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(a) Checkered start, Af = 5°, (b) Blank start, A8 = 5°, (c) Checkered start, A = 1°,
050 = 70.05, oo = 289. 050 = 70.05, oo = 144. O50 = 72.43, o0 = 69.77.

Figure 4.6 Iterated reconstructions (i, = 225).

4.2.1 Ambiguity and the influence of the starting point

Figure 4.6 shows iterated reconstructions using the algorithm described in Section 4.1.2.3. The
projections of the reconstructions in Figures 4.6(a) and (b) are both fitted to the same projection
data with an RMS error of o5c = 70.05 equally, yet the reconstructions appear quite different.
This illustrates the ambiguity that exists in the space domain due to the incompleteness of
data for Af = 5° intervals. A much better and definitive reconstruction can be achieved when
sufficient data is available. For the reconstruction using Af = 1° data intervals, the starting

point was found to be irrelevant.

At this stage iterated reconstruction methods do not seem to provide much visual improvement
over direct reconstruction methods, despite the immense numerical improvements evident in

the data fit.

4.2.2 Inconsistencies and overfitting

The RMS 5° (o50) data errors achieved by the reconstructions in Figure 4.6 (a), (b) and (c) after
100, 89 and 100 iterations, are 70.0486, 70.0498 and 72.43 respectively. All 50 RMS errors are
calculated using the same projection geometry at Af = 5° intervals, even for reconstructions
where projection data was available for A§ = 1°. (The RMS error with respect to the entire
dataset at 1° intervals is expressed by oi0). These RMS values reflect that a better data fit

can be achieved to sparser data in the presence of noise and inconsistencies. Accordingly,
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Figure 4.7 Projection data errors for iterated reconstructions.

Figure 4.7(a) shows a better error for the A§ = 5° reconstructions than for A0 = 1° at the
@ = 0° projection. However, a very poor fit at the 8§ = 1° projection is observed for the
Af = 5° reconstructions because no data was available at that angle. The good fit at § = 0°

and corresponding poor fit at # = 1° is an example of overfitting when data is sparse.

Notice that the non-Gaussian nature of the projection errors persists even for the iterated
reconstructions. Some method of constraining the reconstruction further seems to be necessary

to prevent overfitting as well as to overcome the ambiguity.

4.2.3 Positivity constraint

The main benefit of iterative methods is that additional prior knowledge can be incorporated
into the reconstruction. In particular, the knowledge that all densities in the reconstruction
must be non-negative was found to be very useful and can be implemented simply by clipping

intensities.

Notice how this added knowledge suppresses the checker board pattern in Figure 4.8(a) com-
pared to Figure 4.6(a). A lot of the ambiguity is resolved, but not all of it. The edge sharpness

and contrast in Figure 4.8(b) also seems much better than in Figure 4.6(b).
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(a) Checkered start, Af = 5°, (b) Blank start, A8 = 5°, (¢) Blank start, A = 1°,
050 = 77.96, 010 = 126. 050 = 77.96, 010 = 101. o050 = 81.05, 010 = 78.34.

Figure 4.8 Reconstructions using positivity constraint after 100 iterations (i, = 225).

Figure 4.12(a), a few pages further, shows an iterated reconstruction which is terminated pre-
maturely after only 10 iterations using data at A@ = 1° and applying the positivity con-
straint. Some small improvement is noticed compared to the unconstrained reconstruction in

Figure 4.6(c) at this low resolution.

If iteration is continued to 100 times, as in Figure 4.8(c), the reconstruction appears slightly
more noisy again or overfitted. This noise is not only due to the data. Negative noise (or artefacts
or inconsistencies in the data) that suggests negative densities in the space domain cannot be
represented under the positivity constraint. Therefore this noise is transferred to regions of
positive density. Another reason for this noisy appearance of the over-iterated reconstruction,
which will be addressed in more detail later, is that no data can be represented exactly on a

limited resolution pixel grid even if there were no noise, artefacts or inconsistencies.

The projection errors in Figure 4.9 show the same overfitting occurring when the data is sparse
as seen before in Figure 4.7. Observe though that the positivity constraint results in a much

better data fit for the A = 5° reconstruction at 8 = 1°.

For interest’s sake, compare the high resolution iterated reconstructions in Figure 4.10 to the
filtered back-projection reconstructions in Figure 3.22 and notice how the artefacts are reduced.
Figure 4.11 shows sagittal and coronal views for positively iterated reconstructions that will be

referred to again later in Chapter 6.
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Figure 4.9 Projection data errors for iterated reconstructions with positivity constraint.

In conclusion of this section, it is not ideal to achieve a maximum likelihood reconstruction
if there are inconsistencies, noise or a lack of data. In fact, there appears to be no sense in
achieving a better data fit than o5 = 81.83 (of the best 128 x 128 full data reconstruction in

Figure 4.12(a)), otherwise the data will be overfitted one way or another.

Therefore, the best reconstructions according to the ground truth (with minimum o4.) are
biased somewhat away from the reconstruction with minimum mean square error osc. Although
the positivity constraint performs such bias very successfully, it does not seem to be constrictive

enough when data is too sparse.

4.3 The properties of medical tomographic images

It is essential to explore the properties of reconstructions extensively so that an intelligent
choice can be made as to how the reconstructions should be biased. The aim of this section is to

determine the nature of the prior knowledge that can be used to regularize the reconstructions.
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Figure 4.10 High resolution positively constrained iterated reconstructions at 4
{75,150; 225, 300; 375,450} using the complete dataset.




67
Figure 4.11 A selection of sagittal (left) and coronal (right) views at 256 x 256 x 256.



Description Value [HU]
Air -1000
Fat -40 to -100
Fluid 0 to 20
Soft tissue 20 to 100
White matter 20 to 35
Grey matter 30 to 40
Acute intracranial hemorrhage | 55 to 75
Bone 1000
(a) A = 1°, g5 = 81.83, (b) Table of Hounsfield units.

o0 = 79.13.

Figure 4.12 Full angle reconstruction (i, = 225) and attenuation levels in Hounsfield units.

4.3.1 Hounsfield units

The level of attenuation in a tomographic reconstruction is expressed in Hounsfield units. Scal-
ing is done linearly so that air has a value of -1000HU and water 0HU. A more comprehensive
list of typical values found in such medical images is given in Figure 4.12(b) (Grossman and
Yousem, 1994). Tissue attenuation values may vary slightly for different tomographic systems

depending on the x-ray spectra being used (Beutel et al., 2000).

From this table it is evident that discrimination amongst different types of soft tissue and
fluids occurs within a very small percentage of the total range of densities. This means that
tomographic reconstructions must have very good contrast properties to permit observation of
different classes of tissue. Better contrast can be achieved by improving the angular resolution

because the signal to noise ratio in the image improves whenever more observations are available.

It is believed that preservation chemicals (Formalin) have unfortunately affected the soft tissue
attenuation properties of the human head used in this project in such a way that it becomes very
difficult to identify any regions in reconstructions other than the three dominant attenuation

classes — namely air, tissue and bone.

68



1500} Filtered backprojection, A8=1° 4
1250H Positively constrained, 100 iterations, A8=5° -
100011 — Positively constrained, 10 iterations, A@=1° i
750 T
500l —2 4 BS 2, ]

Lodox CT intensity profile [HU]

- LA | J 7 | | | |
60 -40 =20 0 20 40 60 80 100 120 140 160
y [mm]

Figure 4.13 Intensity profiles through 128x128 filtered back-projection and positively con-
strained iterated reconstructions at x = —44.38mm, 7, = 225.

4.3.2 Noise and artefacts in Lodox CT images

Figure 4.13 compares intensity profiles of positively constrained iterated reconstructions de-
scribed in Section 4.2.3 to a profile of a filtered back-projection reconstruction. In Region
A it is evident that the iterated reconstructions are more noisy. Region B indicates where
the A = 5° reconstruction exhibits poorer contrast than the A8 = 1° reconstruction. The
positively constrained reconstructions have sharper edges than the filtered back-projection re-
construction as seen in Region C. The lack of data causes an artefact in Region D for the
Af = 5° reconstruction. Much more accuracy in the attenuation levels is observed in the iter-
ated reconstructions in Regions E and F than in the filtered back-projection reconstruction. In
Region E this is believed to be due to inconsistencies and beam hardening while in Region F it

is due to the slight restriction on the angular range of the dataset.

From these intensity profiles it appears that the iterated reconstructions should be constrained
to be spatially smoother. It also seems that greater accuracy in the average intensity levels

throughout the reconstruction is achieved through iteration.
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Figure 4.14 Histograms for iterated 128 x 128 x 128 volumetric reconstructions with positivity
constraint.

4.3.3 Dominant attenuation classes

Figure 4.14(a) shows histograms of two volumetric reconstructions using different amounts of
data. In both cases there appear to be pronounced peaks around -1000, 0 and 1000 HU.
When more data is available, at A@ = 1° intervals, the peaks seem to be narrower and more

concentrated around these three attenuation levels.

A joint histogram for the Af = 1° reconstruction is displayed in Figure 4.14(b) as a contour
plot. The number of occurrences is plotted as a function of both intensity and local edge

magnitude. The next chapter describes the process used to estimate this edge magnitude.

The joint histogram shows that three clusters occur at -1000, 0 and to a lesser extent at 1000
HU with low local edge magnitude values. This means, as seen intuitively in the reconstruction
images themselves, that there are regions having nearly flat spatial attenuation at the three
dominant levels. These regions form clusters in the space domain and are separated by edges

having high local edge magnitudes with a greater range of attenuation values.

70



600

[o2]
o
o

T T T
Dy D e kark
Vv N Y Y Y Ny R Y N
L L A S ) B L N Ny L S S S T S A N O < A ] v
'—500 L S i e N O A Y > '—500\‘\\51/ s N RN /
E N i A A A A A N T B S S S E SSNNNN NN NN v ok
= S e R A A A N A U N A B B S = ﬁ\ NNNNY VNN N kek
%400,\k kk(/k(( 2 A A e Y S T I N il %400,x\ NN VN //((kgkk il
= I e A A A A N R B 2| - = SNV L L e
g R R A A A A A U R A A A g \\\/r//;yrr///rrkkkk{/kkk
2 R A A A A A A A N N Y R A A S N 2 \y//f/////yf//(//kl/kkkk?
C3F L v v v v 0 L 4 E300F ¢ /v 444 A v 1
g A A A A A N N e 2 % \zzz//({(«f»/f///yykkkk
1= AN A A A A N A R e e [ A A A A A A A A A A A A
[ v v v 0 0 L NN N Y L e [ o [ A A A A A A A A A A A A A A N 1
%’2004 ¢ ¢ N N NN e € e %’2004 A e  aaaeS B
@ [ A R R A N S R N g g I g & @ [ 2 N R A A A A
= T T N N T A A T /A/kkk & = [ A N A S A A A A A A A S S I S S
Q A N A Y s Q I S A N A
31007 2 A R S N T B R R rkggk g% B 3100# [ R T T 1
[ N S s « e [ A A A Y A A A A AN S
A A A A A AN R I N S A N A A N A g
s L R A S S AN €« N T T A S A A A A A
Oped ;v e r | wkeer ] Opee , svree v, o,
-1000 -500 0 500 1000 1500 2000 2500 -1000 -500 0 500 1000 1500 2000 2500
Lodox CT intensity [HU] Lodox CT intensity [HU]
(a) Effect of positivity constraint. Field compar- (b) Effect of completing the dataset. Field com-
ing Figure 4.1(a) — Figure 4.8(b). paring Figure 4.8(b) — Figure 4.12(a).

Figure 4.15 Transformation fields for 128 x 128 x 128 reconstructions.

4.3.4 Transformation fields

A novel way of comparing reconstructions is by examining their joint transformation field
(defined later in Section 5.3). Two examples are provided in Figure 4.15. These fields show how
the intensities and local edge magnitudes differ between two reconstructions. An arrow is used to
represent the mean change in both intensity and local edge magnitude for all voxels of similar
intensity and edge magnitude from the poorer reconstruction to the better reconstruction.
Although the arrow dimensions are given by the axes shown, they are scaled to avoid clutter in

this figure.

Figure 4.15(a) compares a filtered back-projection reconstruction to an iterative reconstruction
where the positivity constraint was applied. As shown, the most significant bias that the
positivity constraint seems to impose on the reconstruction occurs at low attenuation between
regions near sharp edges and also within regions of high attenuation. This is therefore where

the greatest visual improvement in the reconstruction is expected to be found.

Figure 4.15(b) compares a sparse angle reconstruction to a full angle reconstruction. Notice
the concentration of intensities towards the -1000, 0 and 1000 HU attenuation levels for low
local edge magnitude values in both fields shown in Figure 4.15. Generalising, the application
of any additional prior (a), or data (b), knowledge seems to result in regions being piecewise

smoother around the three dominant attenuation levels.
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The significant bias towards central attenuation values observed at high edge magnitudes in
Figure 4.15(b) for high attenuation and to a lesser degree for low attenuation too, is attributed to
the reduction in noise and less overfitting when more data is available. This is interpreted as the
smoothing of sharp noisy edges. Transformation fields and their application to reconstructions

are discussed further in the next chapter.

4.4 Regularization by Bayesian methods

Bayesian methods provide a widely used framework for augmenting data with prior knowledge
to achieve optimal a posteriori estimates. This section describes an implementation of the

theory in Section 2.5. See also (Li, 1995) for more details on Markov random field modeling.

Throughout the following discussion, the ojo data fit error is considered to be a quantitative
measure of the effectiveness of any regularization method applied during a reconstruction. The
data at A6 = 1° increments, which is not available during the reconstruction, is used for
evaluation purposes only and can therefore be named test data. As discussed before, comparing
respective projections of a reconstruction to this test data yields o1o. The 050 data fit error is

simply the square root of the familiar x? (= 0?) data error of the reconstruction.

4.4.1 Summary of prior knowledge

The nature of the prior knowledge is twofold. Firstly, regions are expected to be smooth, yet
separated by discontinuities. This implies that minor fluctuations in adjacent pixel intensities
should be attenuated while abrupt discontinuities should be permitted. Secondly, intensities
should be biased closer to the dominant intensity levels. Critically speaking, intensities closer
to a dominant level should be biased more towards that level than intensities that are further

away from that level (which could perhaps be closer to another dominant level).

4.4.2 Adaptive potential functions and clique potentials

A suitable form of adaptive potential function g,(n) for expressing the first part of the prior

knowledge above, as in Equation 2.58, is

1 .
gy(n) = — oy with ¢! (n) = 2ng2(n) /7 (4.2)
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where 7 is the intensity gradient, or rather intensity difference n = f; — f;, of a pair clique
in a second order neighbourhood system (8 neighbours per site). The parameter 7 controls
the permissible 1 edge magnitude. This form of adaptive potential function is prefered over a
Gaussian-based one for its computational advantage. For an isolated cross-section, the discon-

tinuity adaptive clique potential is

8
Voamrei(f) = Y gy(n), n=fi— fu- (4.3)
=1

The second part of the prior knowledge can be expressed in a similar way by redefining the
variable 77 to an intensity level error as niyvrr = fi — f. where f. is one of the three dominant

intensity levels, so that

3
Vimrr,i(f) = Z gy (M-MRrE), MMrE = fi — fe (4.4)
c=1

is the intensity level clique potential. In practice a fourth intensity level at fy = 2000HU is
introduced to better represent high density bone edges. Note from a coding point of view that
only the closest intensity level makes a significant contribution to the potential for a particular

pixel element f;, so summation is not necessary if only the closest level is identified and used.
A third potential function can be defined as

Voarmrr,i(f) = Vimrr,i(f) + aVpa-mrr,i(f) (4.5)

which is the weighted combination of the discontinuity adaptive and intensity level (Markov
Random Field) clique potentials. The next subsection describes how each of these potential
functions are used within the Bayesian framework to produce reconstructions from data pro-

jections available at Af = 5° intervals only.

4.4.3 Maximizing the posterior

Approximating the noise and inconsistencies in the data to Gaussian statistics, the a posteriori

solution occurs at
FIMAP) arg; max In P(f|p) = arg; min [SU(f) + bl (4.6)

where U(f) = > Vi(f) is the energy function which sums all possible clique potentials as
described in Section 2.5. Vz(f) is substituted with VDA—MRF,i(f)a VI—MRF,Z'(f) and VDAI—MRF,i(f)
to produce DA-MRF, I-MRF and DAI-MRF reconstructions respectively.
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This posterior solution is obtained using the conjugate gradient search method starting from a
blank image. A range of solutions were determined by varying the parameters 3 and + (and

also « in the case of DAI-MRF reconstructions).

Figure 4.16 shows the data fit errors for a number of reconstructions using the clique potential
form given by Equation 4.3 for different values of # and y. The o0 errors indicate that the
optimal values for 8 and « are 0.3 and 150 respectively. Clearly 8 = 0 will result in the best
o5 error which is not desired. Note that the ground truth 10 8 X v surface appears somewhat
noisy, implying difficulty in its minimization and also some sensitivity to the starting point of

reconstruction.

Figure 4.17 shows reconstructions using optimal parameters for three different forms of clique
potentials. The DA-MRF reconstruction is biased towards piecewise smoothness by Equation
4.3 while the I-MRF reconstruction (with optimally chosen parameters 5 = 0.9 and v = 150) is
biased towards dominant intensity levels by Equation 4.5. Lastly, the DAI-MRF reconstruction
(with optimally chosen parameters a = 0.3, § = 0.2 and y = 150) sums both potentials and
thereby includes both aspects of the prior knowledge which shows some further improvement
in the reconstruction. All these reconstructions appear somewhat unnatural due to the simple

nature of the prior knowledge.

When only Af = 5° data is available, this form of regularization brings the ground truth
010 error down to 91 from 101 for positively constrained reconstructions and from 144 for
unconstrained reconstructions. Quite obviously, however, it is much worse than for a complete

data set for which oo = 79.

N8| 01 02 03 04 05 06 N8| 01 02 03 04 05 06

70 | 79.0 80.3 81.6 827 84.1 854 70 | 95.7 93.7 928 932 941 95.0

110 | 78.9 79.7 80.7 81.7 82.8 83.9 110 | 96.2 93.3 92.7 92.7 934 94.1

150 | 78.6 79.3 80.1 80.9 819 828 150 | 94.8 928 92.4 924 928 93.6

190 | 78.8 79.2 79.7 80.6 81.2 82.1 190 | 984 951 93.0 93.8 93.5 94.2

230 | 79.7 79.3 794 80.1 80.6 81.3 230 | 102 969 93.9 939 93.8 938
(a) o0 fit errors. (b) 010 fit errors.

Figure 4.16 Data fit standard deviations for various DA-MRF reconstructions showing that
parameters = 0.3, v = 150 are optimal.
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(a) DA-MRF, 050 = 80.12, (b) I-MRF, 050 = 79.21, 010 = (¢) DAI-MRF, o5 = 79.52,
o1 =92.41. B = 0.3, v = 150. 93.48. = 0.9, v = 150. o1 = 91.19. a = 033, 8 =
0.2, v = 150.

Figure 4.17 Regularized reconstructions (Af = 5°, i, = 225).

4.5 Summary

This chapter presented a method that can be used to update a reconstruction so that its pro-
jections fit the data well. The subsequent problem of overfitting calls for additional constraints

to supplement (and to some extent even contradict) the projection data.

Prior knowledge is identified by investigating properties of complete dataset reconstructions.
Bayesian methods were used to demonstrate that the application of prior knowledge bias im-

proves reconstructions and compensates for ambiguities that exist when less data is available.

The next chapter further explores transformation maps as a method for automatically acquiring

and applying more complex prior knowledge.
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CHAPTER 5

Transformation maps

In this chapter, transformation maps are presented as an alternative to the Bayesian method for
regularizing reconstructions using prior knowledge. The principle advantage of a transformation
map is that it provides a way of determining nuances of the prior knowledge quantitatively from

examples.

A transformation map defines, in a feature space, how any particular input possibility should
be corrected in order to attain a corresponding desired output. If carefully constructed, such a

map could translate many different input images to a single regularised output image.

The similarity of neural networks to transformation maps is expressed first. Two examples are
provided before the method is introduced formally. Then the transformation map framework

is applied to sparse full angle tomography reconstruction.

5.1 Introduction

Neural networks in the context of soft computing (Jang et al., 1996) are capable of solving a wide
range of problems. These machine intelligence strategies are mentioned in this introductory
section because transformation maps can perform, by approximation, an identical task even

though they are implemented entirely differently.

Neural network enthusiasts may for this reason benefit from an alternate tool in situations where
transformation maps may be more suitable. Certainly in some cases neural networks may be
more suitable. The following overview hopes to put transformation maps into perspective and

point out the defining differences of these methods.
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5.1.1 Neural networks

Neural networks are commonly used as a black boz tool for classification and function approx-
imation. There are many types of networks with differing combinations of neurons forming
their internal structures. A neuron associates a given stimulus with a given response usually

by performing a nonlinear operation, such as thresholding, on the weighted sum of its inputs.

A number of examples, which demonstrate how given inputs are associated with desired out-
puts, are used during a training phase to regress values for the unspecified weights. Iterative
back-propagation, stochastic search methods, or pseudo-matrix inversion in the case of random
neural networks, are possible ways of determining the neuron input weights. Training a neural
network is a very computationally expensive process for large datasets, and classification time

is determined by the complexity of the network’s structure.

If the dimensionality of the input space is large (such as an image for the application of face
recognition) the number of dimensions is reduced by extracting feature vectors. The feature

vectors are then fed as input to the neural network.

In essence, a neural network performs a mapping from an input space to an output space.
It performs this mapping using a model generally defined by unintelligible weights and the

architecture of neurons.

5.1.2 Transformation maps

A transformation map can be considered to be simply an explicit illustration of the mappings
performed by implementation technologies such as neural networks. This implies an exhaustive
representation of the mapping of all input possibilities to the desired outputs over the range
of allowable inputs. Stated differently, a neural network is a possible mechanism of realizing a

transformation map.

5.2 Examples

This section introduces the transformation map method by two examples. Firstly a simple
one-dimensional problem is solved, and then an image is denoised. A secondary goal of this
presentation is to prove that transformation maps have the ability to store edge properties,

since this capability is exploited in the next chapter.
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Figure 5.1 Application of a transformation map to correct the pulse shapes in a signal.

5.2.1 Signal restoration example

Consider the problem of restoring the shape of an input pulse, f(¢), which may have been
distorted slightly by noise, blurring or edge sharpening. The leftmost pulse in Figure 5.1(a),
Jrarget (t) = f(t) for 0 < ¢ < 1, illustrates the desired output pulse shape and the pulses f(t) for
1 <t < 2 (sharpened), 2 < ¢t < 3 (blurred), 3 < ¢t < 4 (sharpened with noise) and 4 < t < 5

(blurred with noise) are examples of possible input pulses.

A derived signal, or feature, Hy = |f'(t) * h(t)| is determined which indicates the local mean
edge magnitude. Here xh(t) represents convolution with a Gaussian blurring kernel and the

prime denotes derivative. This signal is shown in Figure 5.1(a).

The error difference, fiarget(t) — f(t), between the (appropriately time-shifted) ideal pulse shape
and the input signal is calculated for each value of ¢ and is plotted in Figure 5.1(b) on a plane
invariant to ¢ as follows: for each value of ¢ at Hy = |f'(t) * h(t)| and Ho = f(t), a +, — or
o is plotted depending on whether the input signal should be increased, decreased or remain

unchanged respectively at that value of ¢ to recover fiarget (t) from f(t).

The plane, or map, can be populated by generating many more examples varying the amount

of sharpening, blurring and noise levels. This yields the underlying intensity surface shown in
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the figure. The average correction to the input signal is represented by a pixel intensity in this

transformation map which is independent of ¢.

Figure 5.1(a) also shows the result fou(t) of restoring the input signal f(¢). The correction
value is simply read off the map indexed by (7, j) = (H1,H2) and added to f ().

5.2.2 Image restoration example

Figure 5.2 presents an example where an input image f(z,y), shown in Figure 5.2(b), is denoised
while preserving edges using the transformation map method. The input image is obtained by
adding normally distributed noise with a standard deviation of o = 15 intensity units (out of 256
intensity levels) to the original image fiarget(,%y), shown in Figure 5.2(a). After denoising, the
standard deviation of the difference between the output image fout(z,y), shown in Figure 5.2(c),

and the original is o = 8.6 intensity units.

Figure 5.2(a) is actually cropped from Figure 1.2. Other regions, which exclude the cropped
regions in Figure 5.2, are used in generating the transformation map which is shown in Fig-
ure 5.3. However, results did not change significantly when the entire image (Figure 1.2) was

used to generate the transformation map.

The first transformation map dimension or feature, illustrated in Figure 5.2(d), is the local
edge magnitude given by Hy = |f'(z,y) * h(z,y)| where xh(z,y) represents convolution by a
Gaussian bivariate blurring kernel (with a standard deviation of 0.5, discussed later within this

subsection) and f’(x,y) is the intensity gradient at (z,y).

These calculations are performed by multiplication with the appropriate filters in the frequency
domain as discussed in the next section (see also lines 51-71 of the Matlab code in Figure 5.4).
Choosing local edge magnitude as a dimension makes sense because regions near edges are

expected to be treated differently from regions with a low intensity gradient magnitude.

As a second dimension Hy = f(z,y) — f(z,y) * ha(z,y), illustrated in Figure 5.2(f), is chosen
where xhy(z,y) indicates convolution with another Gaussian bivariate blurring kernel (with a
standard deviation of 1.5). For a given edge-free region, this measure closely resembles the
explicit noise which is to be subtracted out of the degraded image f(x,y). Hence a near-
linear increase in intensity is observed in Figure 5.3 for low |f'(z,y) * h(z,y)| (bottom) as

f(z,y) — f(z,y) * ha(z,y) increases around zero (middle) from left to right.
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(a) Original fiarget(z,y), 0 =0 (b) Input f(z,y), o =15.0 (c) Output fout(z,y), o = 8.6

(@) |f' (=, y) * h(z, y)| (e) f(z,y) * ha(z,y) (£) f(z,y) = fz,y) * ha(z,y)

Figure 5.2 Denoising example.
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fO6y)=f(x.y)*h,(xy)

Figure 5.3 Transformation map for denoising.

The intensity of a pixel at cell (i,5) = (H1, Hz2) in Figure 5.3 is the average intensity correction,
(frarget (z,y) — f(z,y)), of several occurrences of pixels in many different noisy images compared
to the original or target image all corresponding to the same value for (i,7). (Indices are
quantized in this implementation.) Each cell (7, 7) not only has an associated mean but also a
variance due to conflict in intensity correction values fiarget (2, y) — f(2,y) for different examples

corresponding to the same cell in the feature space H; X Hs.

The Gaussian blurring kernel standard deviations used in h(z,y) and ho(z,y) for this example
are chosen experimentally to produce a subjectively good-looking result with a o = 8.6 fit to
the ground truth fiarget(z,y). However, if values are chosen systematically as described in a
later section of this chapter, so that the collective variance of the conflicting examples in the
map is minimized, then a restoration result with o = 6.9 can be achieved. Although the result
is numerically superior, it is not necessarily better subjectively. Nevertheless, this technique

provides reasonable guidance in choosing values for unspecified parameters.

For interest’s sake, on the same restoration problem a 3 x 3 median filter produces an image with
a somewhat ‘blotchy’ appearance even though its standard deviation is o = 7.8 with respect
to fiarget(2,7). Also, by simple Gaussian blurring, a result with ¢ = 7.2 can be achieved by

choosing an optimal kernel size (that minimizes o).
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00

randn('state’,0);

%initialize random number generator

01 img=double(imread('lodoxmachine.bmp’,'bmp")); %load image

02 img512=img(1:512,1:512); %crop image

03 sz=64; Y%transformation map size

04 tx=zeros(sz,sz);txv=tx;txn=tx; %initialize transformation map

05 dblfact=0.5; %hyper parameter 1

06 bblfact=1.5; %hyper parameter 2

07 dscale=max(max(abs(GetDerivative(img512,dblfact))))*1.2; %fixed scale for first feature dimension
08 bscale=max(max(abs(GetBlur(img512,bblfact))))*1.2; %fixed scale for second feature dimension
09 for nnoise=1:100 %generate transformation map

10 noisimg=img512+15*randn(512,512); %creates noisy source image example
11 dimg=abs(GetDerivative(noisimg,dblfact))/dscale; %get first feature dimension

12 bimg=GetBlur(noisimg,bblfact); %get blurred image

13  beimg=((noisimg-bimg))/bscale+0.5; %determine second feature dimension
14 eimg=noisimg-img512; %determine error image

15 foriy=1:512

16 for ix=1:256 %uses only left hand side of image

17 id=floor(dimg(iy,ix)*(sz-1))+1; %index first feature dimension

18 ib=floor(beimg(iy,ix)*(sz-1))+1; %index second feature dimension

19 if (id>=1&&id<=sz&&ib>=1&&ib<=sz) %populate transformation map, variance and counter
20 tx(id,ib)=tx(id,ib)+eimg(iy,ix);

21 txv(id,ib)=txv(id,ib)+eimg(iy,ix)."2;

22 txn(id,ib)=txn(id,ib)+1;

23 end

24 end

25 end

26 end

27 for id=1:sz %normalize transformation map

28 forib=1:sz

29 if(txn(id,ib)>0)

30 tx(id,ib)=tx(id,ib)/txn(id,ib);

31 txv(id,ib)=txv(id,ib)/txn(id,ib);

32 end

33 end

34 end

35 noisimg=img512+15*randn(512,512); %generate example to denoise

36 dimg=abs(GetDerivative(noisimg,dblfact))/dscale; %get first feature dimension

37 bimg=GetBlur(noisimg,bblfact); %get blurred image

38 beimg=((noisimg-bimg))/bscale+0.5; %get second feature dimension

39 nimg=noisimg;

40 for iy=1:512

41 forix=1:512 %denoise image using transformation map
42 id=floor(dimg(iy,ix)*(sz-1))+1;

43 ib=floor(beimg(iy,ix)*(sz-1))+1;

44 if (id>=1&&id<=sz&&ib>=1&&ib<=sz)

45 nimg(iy,ix)=noisimg(iy,ix) -tx(id,ib);

46 end

47 end

48 end

49 std(reshape(noisimgimg512,512*512,1)) %display RMS error of noisy image

50 std(reshape(nimgimg512,512*512,1)) %display RMS error of transformation map
51 std(reshape(medfilt2(noisimg,[3 3])}img512,512*512,1)) %display RMS error of median filter result
52 sqrt(mean(mean(txv-tx.*tx))) %display transformation map standard deviation
53 function nim=GetDerivative(img,var) 72 function nim=GetBlur(img,var)

54 nx=size(img,1); 73 nx=size(img,1);

55 nx2=nx/2; 74 nx2=nx/2;

56 r2=zeros(nx,nx); 75 mask=zeros(nx,nx);

57 ang=r2; 76 for x=1:nx2

58 for x=1:nx2 77 for y=1:nx2

59 for y=1:nx2 78  r2(x,y)=((x-1)."2+(y-1).~2);

60  r2(x,y)=((x-1).A2+(y-1).A2); 79  r2(nx-x+1,nx-y+1)=(x.A2+y."2);
61 r2(nx-x+1,nx-y+1)=(x.2+y."2); 80  r2(x,nx-y+1)=((x-1).22+y."2);

62  r2(x,nx-y+1)=((x-1).22+y."2); 81 r2(nx-x+1,y)=(x.A2+(y-1).A2);

63  r2(nx-x+1,y)=(x."2+(y-1).~2); 82 end

64  ang(x,y)=atan2(y-1,x-1); 83 end

65  ang(nx-x+1,nx-y+1)=atan2(-y,-x); 84 nim=real(ifft2(fft2(img).*exp(-0.5*r2/nx/pi.*(var.*2))));
66  ang(x,nx-y+1)=atan2(-y,x-1);

67  ang(nx-x+1,y)=atan2(y-1,-x);

68 end

69 end

70 derfilt=sqrt(r2).*exp(j.*ang);

71 nim=abs(ifft2(fft2(img).*derfilt.*exp(-0.5*r2/nx/pi.*(var.*2))));

Figure 5.4 Matlab code for image denoising example.
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Figure 5.4 provides the Matlab source code for implementing the image restoration problem
described in this subsection. As indicated, the map is populated first using many noisy exam-
ples, then the map is normalized by dividing by the number of examples that occur for every

cell in the map. Finally the map is used to denoise a particular input image.

5.3 Definitions and implementation details

Blurring, indicated with *h(z,y), is performed by multiplication in the two-dimensional fre-

quency domain with the Fourier transform of the Gaussian kernel

1 12242
2 2

h(,’E, y) =

(5.1)

2ro

that has some standard deviation o. Derivative action, f'(z,y), on image f(z,y) is calculated

in conjunction with blurring in the Fourier domain (simultaneously) by multiplication with
j-(u+j-v) (5.2)

where u and v are the frequency domain variables and 57 = y/—1. This is a two-dimensional
equivalent of the familiar differentiation by multiplication with jw in the one-dimensional case,

where w is the frequency variable.

In this thesis, a transformation field, T = f(ftarget (x), f(x)), is a vector function that is defined
in a feature space H as the average change in respective feature space dimensions Hy, Ho, ...,

Hx between all source f = f(x) and target fiarget = fiarget(X) example pairs:

T = (Ha(frarger) = H1(F)) s (Ha(frarget) = Ha(f)) s oes (HN(frarger) = Hx(f)))- (5.3)
The angled brackets indicate averaging over examples that coincide in the feature space domain.
Input f and target fiarger functions are co-aligned by means of the space (or time) independent
variable x (in the two-dimensional case x = (z,y)). The N-dimensional feature space H =
Hi x Ha X ... X Hx is constructed by functionals #; = Hi(f(x)) through Hx = Hn(f(x))

which serve as the domain of the feature space. This domain is not directly dependent on

frarget (X) nor on x.

A transformation map T is a scalar function of all example pairs that exist in the feature space

H(f(x)) which is derived from f(x) but not fiarget(x) and is not dependent on x:

T(ftargeta f) = (ftarget (X) - f(x)> (54)
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and the map variance is defined as

Tmap = ( (frarget (%) — f(x))?) = T* (5.5)

. . 2 - 2
in the feature space. The total map variance Tiotalmap = O

fap 18 a scalar quantity which

measures the degree of conflict in example pairs. These definitions will be elaborated on later

in this chapter.

A transformation map is typically implemented using a multidimensional array. In order to
create a transformation map from examples, three of these arrays exist in memory. One is used
to accumulate all the examples fiarges (x) — f(x) at their corresponding array indices in the array.
These indices are calculated from appropriately quantized and scaled feature dimension values
Hi(f(x)) to Hn(f(x)). A second array is used to tally the number of examples accumulated in
each cell of the first array. A third array keeps record of the squared quantity (frarget () — f(x))?

for the calculation of the map variance.

The transformation map is determined by elementwise division of the accumulated example
array by the example count array. Note, importantly, that it is possible to populate empty cells

in the transformation map by blurring each of these arrays (identically) prior to this division.

After its creation, the transformation map bias T (f) is additively applied to a source image

f(x) to produce a resultant output image fout(x), i.e.

fout = f + AT (f) (5.6)

where A = 1 for non-iterative methods (A < 1 typically for iterative methods which are dis-
cussed later). The bias T(f) is simply read off the transformation map, indexed using the
appropriately quantized and scaled feature dimension values H;(f(x)) to Hx(f(x)). In other
words, each image voxel has its own set of feature indices (one per feature dimension) to index
the transformation map, and these indices must be (re)calculated from features of f(x) before

the transformation map can be indexed.

The method of scaling and quantization of the feature indices must be identical to when the map
was created. The scaling must obviously be such that the feature space which the transformation
map occupies captures all relevant examples. This can be done by finding minimum and
maximum values of feature dimensions over all typical examples. The quantization and hence
size of the map could easily be limited by physical memory and is chosen to be either 5122, 643
or 324,
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5.4 Application to tomography

Tomography is a very suitable problem to be explored in conjunction with transformation maps
as a method for extracting and applying prior knowledge. Both iterative and non-iterative

reconstruction techniques are discussed.

5.4.1 Randomness of tomographic artefacts

Tomographic angular aliasing artefacts (the steaks seen in Figure 5.5(b) compared to Fig-
ure 5.5(a), and in a sagittal view Figure 5.5(h) compared to Figure 5.5(g)) are known to
contain a lot of information and are not random (Kak and Slaney, 1988). In fact, it is shown in
(de Villiers, 1999) that samples of these artefacts along the reconstruction image border alone
can be used to reconstruct sparse angle tomographic images surprisingly well if the geometry of
the projections is known a priori. Sparse angle tomographic artefacts are substantially inter-
changeable with the measured data that created them. Likewise, being able to remove artefacts

correcly is equivalent to knowing unmeasured projections exactly.

Even though these artefacts are not of a random origin, intensities in reconstructions are effected
in a seemingly random manner if only local information (a neighbourhood of intensity values)
is available. For this reason any denoising filter (for example: Gaussian kernel blurring, the
median filter, or the more effective Bayesian method described in Section 4.4) can be used to

suppress these artefacts to some extent.

Instead of trying to predict artefacts or noise directly, most methods (including the transfor-
mation map method) use knowledge or assumptions about the underlying image to estimate a
better image given a corrupted image. If the artefacts are overwhelmingly destructive such that
no features of the underlying image can be recognized in the corrupted image for some region,
then it is not (directly) possible to predict anything reliably in that region (as discussed in the

next chapter).

In other words, it is only possible to suppress artefacts that are small relative to (or are distin-
guishable from) underlying image features so that the underlying image can still be recognized
from its prevailing features in the corrupted image. The features shown in Figures 5.5(d), 5.5(e)
and 5.5(f) are used in Section 5.4.2 to predict Figure 5.5(c) from Figure 5.5(b).

Refer to Section 4.3 for a discussion on properties of medical tomographic reconstructions since

artefacts are simply any deviation from these properties.
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(a) ftarget(l'yy), Af=1°. (b) f(mvy)a Af = 5°. (C) fOllt(mvy): Af = 5°.

(d) f(z,y). (e) |f'(z,y) = h(z, y)|. () f(z,y) * ha(z, y).

(g) ftarget (y1 Z)a Ae = 101 (h) f(y1 2)7 Ae = 507 Sagitta‘l (1) fOUt (y1 2)7 Ag = 501 Sagitta‘l
sagittal view. view. view.

Figure 5.5 Removal of angular aliasing artefacts from filtered back-projection reconstructions
with no iteration using the transformation field method.
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5.4.2 Removal of angular aliasing artefacts in single step reconstruction

Direct inversion algorithms, such as the filtered back-projection method, are capable of recon-
structing high resolution cross-sections rapidly without providing any means of applying prior
knowledge. The transformation map method can, however, be used to apply prior knowledge

subsequent to reconstruction.

Figure 5.5 shows how the aliasing artefacts caused by a sparse angular resolution can be re-
duced using a three-dimensional transformation map. Axial and sagittal views of filtered back-
projection reconstructed volumes are shown where data is available at either A8 = 1° or A8 = 5°
(frarget(z,y) or f(z,y) respectively). The space variable z is omitted from the notation when

convenient since the volumes are treated as sets of individual slices.

Restored reconstructions, i.e. those with prior knowledge applied by means of a transformation
map, are labeled fout(z,y) and shown in Figures 5.5(c) and 5.5(i). The derived measures that
constitute the dimensions of the three-dimensional (643) transformation map, in this case chosen
tobe Hy = f(z,y), Ho = |f'(z,y)*h(z,y)| and H3 = f(x,y)*ha(z,y), are also shown in Figures
5.5(d), 5.5(e) and 5.5(f) respectively. Standard deviations for h(z,y) and ho(x,y) are 0.7 and
1.5 respectively in this example. The feature f(z,y) — f(x,y) * ho(z,y) used for denoising
in Section 5.2.2, is broken up into two separate features H; and Hs in this subsection. This
modification adds to the map the capability to function differently depending on the intensity
f(z,y). Denoising in Section 5.2.2 is ignorant of intensity f(z,y) as it should be.

In this example it was found that generating the transformation map (discussed thoroughly in
the next subsection) using examples comparing the entire volume f(z,y,2) to frarget(2,y, 2)
achieves very similar results to using only the top half of the volumes, where z < zmax/2. This
is because there are ample examples in both situations that agree in the transformation map.
Results reflect that artefacts are greatly reduced — without blurring or oversharpening edges.
A natural look seems to be retained. Details in the target image that are not already present

in the input image are not recovered in the output image.

5.4.3 Understanding the transformation map

It is important to be able to interpret the transformation map visually to understand how it
is able to reduce artefacts. The following continues the discussion from the previous section
on the effect of the transformation map on the reconstruction with the aim of removing the

artefacts. Figure 5.6 partly illustrates the transformation map used.
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Figure 5.6 Slices of the 64 transformation map used in Figure 5.5 for the removal of tomo-
graphic artefacts.

Regard the transformation map method as a type of nonlinear edge preserving filter such as
anisotropic diffusion or the bilateral filter. See (Perona and Malik, 1990), (Tomasi and Man-
duchi, 1998) and in particular (Delaney and Bresler, 1995) on removing tomographic artefacts
with edge preserving filters. Any edge preserving denoising filter could be used to reduce tomo-
graphic artefacts if their tunable parameters are chosen accordingly. The difference is that the
transformation map method is more likely to produce natural looking results because, unlike
classical regularization methods, its characteristics are not modeled with simple mathematical
functions. Instead, the transformation map is created from realistic examples and leaves no

tunable parameters.

Nonlinear filters are able to reduce artefacts in cases where the artefacts are not as prominent
as edge features in the image. It is the nonlinearity in the algorithm that ‘decides’ if an
image characteristic is an artefact or not and biases it accordingly. For example, Figure 5.6(a)
illustrates the behaviour of the transformation map on image characteristics with low local
edge magnitudes, i.e. Ho =~ 0. In this figure darker pixels indicate that the transformation map
bias is negative and will result in decreased intensities while brighter pixels result in increased

intensities. Grey implies no change and equals zero.

Consider points in this map near (Hi,H3) =~ (0,0), for which the intensity (?#; or horizontal
axis) as well as the mean neighbouring intensities (3 or vertical axis) are close to the density
of soft tissue. The bias is as follows: if the intensity of a voxel is greater than 0 while the mean

is still around 0, that voxel intensity will be biased down towards 0. Likewise, if the intensity
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is less than 0 it will be biased up towards 0. Therefore, if there were a slight artefactual streak
through a big region of tissue in the image, its intensity will be biased towards the intensity of
the tissue. The same applies to air at (Hi,Hs) =~ (—1000, —1000).

If the artefactual streak were a bit more prominent in the hypothetical region of soft tissue,
or if we are considering a smaller region of tissue (or perhaps the border of the region) then
Figure 5.6(b) will be relevant instead because the local edge magnitude value Ho will be larger.
The intensities of the points in the map near (#1, Hs) ~ (0,0) and also (-1000,-1000) still ramps
down from left to right as before, yet the intensity variation is less pronounced. In other words,
the map bias will behave very similarly for these local image characteristics, yet will be slightly
smaller in magnitude. This makes sense because firstly, if an artefact is more prominent, then
there is less certainty of it being an artefact rather than an edge. Secondly, if it were an edge, it
should not be biased much because then the edge may disappear or be sharpened unjustifiably.

Similar logic dictates classical edge preserving filters (see Section 4.4.1).

For high local edge magnitudes as in Figure 5.6(c), the map bias magnitudes seem comparatively
lower, and not only flatter around the diagonal #; = H3 but also more uniform (there are
no more distinct peaks and troughs around (0,0), for example). This means that prominent
edges are generally not much affected (due to the central flatness) although outliers are indeed
smoothed (light left extreme and dark right extreme entries in the map bias intensities towards
the center). Note that the uniformity along the diagonal #, = H3 (or specifically that intensity
profiles of this figure along H; for different H3 are nearly identical except that they are shifted

proportionally to H3) implies invariance to intensity.

Of course, each of the nonzero entries in the 64 transformation map has some specific meaning
that defines the map’s behaviour for a given image characteristic. It is this unsimplified com-
plexity that gives transformation maps the advantage in delivering natural-appearing results
compared to methods that parameterize image characteristics in mathematical functions as in

the previous chapter.

5.4.4 TIterative regularization

In this subsection, the transformation map models the difference between a volume originat-
ing from Af = 5° data and a volume originating from A@ = 1° data. The transformation
map is calculated in the same manner as above using the same derived dimensions. The only
difference is that positively constrained iterated reconstructed slices are used to generate the

transformation map, instead of filtered back-projection slices. Further, the values for the stan-
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(a) Biased afterwards, Af = (b) Fixed fraction, A8 = 5°, (¢) More populated map, Af =
5%, o50 = 90.02, a1 = 102.6. o0 = 78.52, 010 = 90.82. 5°, 050 = 78.98, arie = 90.67.

Figure 5.7 Iterated reconstructions biased using transformation field method with positivity
constraint.

dard deviations for h(x,y) and ho(z,y) are both equal to 1. A systematic way of choosing these

parameter values are discussed in Section 5.5.

Similar to the previous section, a positively constrained iterated reconstruction can be biased
in a single operation after the iterated reconstruction is completed. Performing this operation
results in a poorer data fit 050 as indicated in Figure 5.7(a) with osc = 90.02. However, the
artefacts appear much reduced compared to the positively constrained iterated reconstruction
shown in Figure 4.8(b) with o5 = 77.96.

A better data fit can be achieved if such a bias correction operation is performed at each
step during reconstruction. Figure 5.7(b) with oz = 78.52 shows the result using a fized
fraction (in this case A = 0.1 in Equation 5.6) of the bias direction which is calculated from
the transformation map at each iteration step (in this case 100 iterations). Conceivably, this
fraction can be chosen to achieve a desired level of data fit (so that ose = 050 4im), as in

regularization with Lagrange multipliers.

In other words, following every projection data error correction step during iterative recon-
struction, the transformation map correction value (indexed by the feature dimensions which is
recalculated at each step) is determined for each voxel. Instead of adding this correction value
to the voxel intensity as is done for non-iterative regularization, only a fraction of this value is

added to the voxel intensity before the cycle iterates.
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As shown in Figure 5.7 compared to Figure 4.17, the ground truth fitness value for this recon-
struction (oo = 90.67) improves on an equivalent result obtained in the previous chapter using
Bayesian methods (o0 = 91.19). The Bayesian reconstructions also seem to have an artificial

look by comparison due to the simplicity of its mathematical approximations.

5.4.5 Populating the transformation map

The option of populating the transformation map by blurring has been mentioned earlier. Tt
is preferable to have as many examples as possible to extract a well defined transformation
map which is smooth and noise free. Instead of a single reconstruction volume pair, a whole

sequence of reconstruction volumes can be used as training examples.

The volumes corresponding to iterate numbers 10 to 15 for a positively constrained iterated
reconstruction, with a projection data spacing of A8 = 5°, are used as source examples. One
target volume reconstructed from Af = 1° interval projection data is paired with the six source

volumes separately to generate the transformation map.

Figure 5.7(c) shows that this new transformation map performs slightly better numerically.
No visual advantage is noticed in this case. The smallness in magnitude of improvement is

attributed to the fact that the original transformation map is already well populated.

5.5 Map effectiveness

In grey scale image processing, an element at a particular location in a transformation map
indicates a mean change in intensity for a large number of example pairs. The effectiveness of
a transformation map is determined by its variance. In other words, a large degree of variation
in the intensity change over all the examples at a particular location in the transformation map
implies that the map is ineffective in that region and suggests that more suitable map dimensions
should be chosen. In other words, the map needs to be made to depend on additional image

features in this case.

5.5.1 Optimal parameters

So far the dimension features have been chosen successfully in the examples presented. It is

conceivable that the task of choosing features may be more difficult for some problems. Given
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a poor choice of feature dimensions, the map variance could be used as a tool for identifying
problem areas within the map. This may assist in finding more suitable dimensions that resolve

ambiguities or conflict in the map more effectively.

For the same reason it was found that a sensible way to optimize unspecified parameters in
the feature dimensions (such as the blurring kernel sizes used in h(z,y) and ha(z,y) of Section

5.2.2) is to choose values that minimize the total transformation map variance.

5.5.2 Target accuracy

Target accuracy can be defined as the correctness of fiarget(x). An ideal example might not
be available and therefore target examples must sometimes be estimated. The transformation
map variance is also dependent on the target accuracy or correctness and does not exclusively
represent the map effectiveness. If target examples are not available but are estimated instead,
then the collective source to target differences could result in a high variance transformation
map, even though the map mean remains effective. The example in the following paragraph

illustrates this point.

Looking back at Section 3.3.2, it is apparent that the intensity level based artefact removal
algorithm falls within the framework of transformation maps where the map has one feature
dimension (mean intensity) and several output dimensions (one output dimension for each
pixel column as a function of the feature dimension). In this case no ideal target examples
are available but they are crudely estimated by means of linear interpolation. Averaging many
diverse artefact examples recovers effective mean artefact profiles for each given intensity level

despite that linear interpolation is a poor estimator.

In this example, the poor estimates of the target examples result in a large total map variance,

even though the map is effective.

5.6 Summary

This chapter introduced a problem solving framework which is closely related to neural net-
works. Besides its comparative simplicity and implementation efficiency, the advantage of
transformation maps over neural networks is that they permit the explicit investigation of the
input space. Conflict in the input space can be assessed, which assists with the choice of feature

dimensions.

93



The major difference to neural networks is that transformation maps use significantly more
training examples and such additional examples are typically generated by adding noise ar-
tificially. This method is best suited to problems having a relatively low number of feature

dimensions as it suffers from the so-called curse of dimensionality.

It was shown that transformation maps have applicability to a number of different problems. Of
particular interest is that transformation maps provide a means of extracting prior knowledge
from, and regularizing, tomographic reconstructions. It was shown that more natural-looking
results than with Bayesian methods were obtained for sparse angle reconstructions. In the next

chapter, limited angle tomography is investigated using transformation maps.
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CHAPTER 6

Limited angle tomography

This chapter is concerned with the reconstruction of fan beam x-ray data at a 5° angular spacing
covering a 100° angular range. Such a data limitation severely underspecifies the reconstruction
as discussed in (Tam and Perez-Mendez, 1981). For the sake of giving perspective, a 90° range
of missing data implies that two quadrants of the Fourier transform of a reconstruction remain

undetermined and are left to be recovered from prior knowledge.

First the qualities of limited angle tomographic reconstructions are illustrated. After a presenta-
tion of techniques found in the literature, an example of a Bayesian limited angle reconstruction
is provided for reference. Towards the end of this chapter it is shown how the transformation

map method is applied to the reconstruction problem to achieve a functional solution.

6.1 Unregularized limited angle reconstructions

Unregularized reconstructions are produced using projection data only while no additional
assumptions are made. However, in some cases the positivity constraint is applied, which
causes a noteworthy reduction in artefacts. This section discusses the results of using the most

straightforward reconstruction methods possible.

6.1.1 Caution on simulations, resolution and data fit
All the reconstructions in Figure 6.1 are produced from projection data of an identical angular

range (90°) and spacing (5°). These limited angle reconstructions (at i, = 225) correspond to

the full angle reconstruction in Figure 4.12(a).
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(a) Real data reconstruction, (b) Real data reconstruction, (c) Simulated data reconstruc-
1760 bins per projection. 216 bins per projection. tion, 1760 bins per projection.

Figure 6.1 Limited angle A8 = 5° over 90° reconstructions after 5000 iterations showing the
effect of using a high projection axis resolution. Notice definitive edges appearing in (c).

Figure 6.1(a) results from real measured projection data at the maximum available resolution of
1760 bins per projection. In the reconstruction process, a fraction of the error between the pro-
jections of the reconstruction with the available data is projected back onto the reconstruction

5000 times repeatedly. At each step the reconstruction intensities are clipped to be positive.

However, following the discussion in Section 3.7, the ideal number of projection bins is only
216 for the given geometry. Figure 6.1(b) shows great noise reduction with no loss in sharpness
under this condition. It has been verified that Figure 6.1(a) has a worse projection fit to the
216 binned projection data than Figure 6.1(b) while Figure 6.1(a) has a better projection fit to
the 1760 binned projection data than Figure 6.1(b).

Figure 6.1(c) is produced in exactly the same way using simulated instead of real measured
data at 1760 bins per projection. The simulated data are the corresponding projections of
the full angle reconstruction in Figure 4.12(a). For such a high projection axis resolution it is
understandable that the shape of the pixels plays a significant role in the overall projection.
This pixel shape information is responsible for the significant difference between Figures 6.1(a)
and 6.1(c).

For any simulations regarding limited angle tomography, it is advisable to use a phantom of a
higher resolution than that of the reconstruction because real data is of continuous origin. It
should be noted that doing this makes a zero error data fit unattainable because it is not possible

to represent exactly a high resolution object at a lower resolution. For a discrete reconstruction,
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the best possible representation of a phantom will not have a zero data error, even if there were
no measurement noise. This is true also using a lower projection axis resolution, although the

effect is mitigated.

6.1.2 Properties of limited angle reconstructions

Figure 6.2 shows a number of unregularized limited angle reconstructions created from data
covering a selection of angular ranges and spacings. It is apparent how the diagnostic value
of reconstructions steadily deteriorates as the angular range of data decreases. Edges in the
vertical direction disappear in extreme cases while edges in the horizontal direction remain very

much the same.

Filtered back-projection reconstructions at A8 = 5° data intervals exhibit streaks due to the
poor angular resolution. Applying a positivity constraint in an iterative reconstruction pro-
cedure seems to improve results significantly: better contrast and a reduction in artefacts are

observed comparing Figure 6.2 (a) to (d), for example, despite no more data being used.

At a higher angular resolution, as in Figure 6.2(g), the streak or ripple artefacts are much
reduced while edge definition in the vertical direction remains poor. It is concluded that re-
stricting the angular range of data results in a loss of edge information and contrast in a

corresponding angular range of the reconstruction.

6.1.3 Comparing limited to full angle reconstructions

The diagrams in Figure 6.3(a) relate the limited angle to full angle reconstructions shown
in Figure 6.4. By comparing the histograms in Figure 4.14(a) and Figure 6.3(a) it becomes
apparent that the intensities concentrate around the dominant levels (air, soft tissue and bone)
even less for limited angle than for sparse full angle reconstructions. This implies that the
limited angle reconstructions could benefit significantly from using piecewise smoothness as

prior knowledge.

The intensity profiles in Figure 6.4(d) demonstrate how inadequately the limited data affirms
the existence of edges in the vertical direction. Edges are much better defined in the horizontal
direction. Figure 6.3(b) shows explicitly by means of a transformation field that full angle

reconstructions have stronger edges in the vertical direction than corresponding limited angle
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(a) Filtered back-projection, (b) Filtered back-projection, (c) Filtered back-projection,
A = 5° over 90°. A6 = 5° over 120°. A6 = 5° over 150°.

(d) Positively iterated, Af = (e) Positively iterated, Af = (f) Positively iterated, Af =
5° over 90°. 5° over 120°. 5° over 150°.

(g) Positively iterated, Af = (h) Positively iterated, Af = (i) Positively iterated, Af = 1°
1° over 100°. 1° over 130°. over 160°.

Figure 6.2 Unregularized limited angle reconstructions showing the effect of having more
available data.
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Figure 6.3 Comparison of limited angle 100° in Figure 6.4(a) to full angle 180° in Figure 6.4(c)
128 x 128 x 128 volume reconstructions.

reconstructions. It is evident from examining Figures 6.4(d) and 6.4(e) that the intensity levels
for the limited angle reconstruction are more correct for the intensity profiles in the horizontal

than in the vertical direction.

Note that the 0%900 data fit errors in Figure 6.4 refer to the projection errors with respect to
the limited angle data subset, while the oo data fit errors refer to the projection errors of the
reconstruction with respect to the entire dataset (which is not used as data during limited angle

reconstruction).

6.2 Reconstructions using partial spatial knowledge

In Figure 6.5 the left hand column of images are closeups of limited angle reconstructions in
Figure 6.4. The right hand column of images are corresponding views of full angle reconstruc-
tions. For the center column, the same limited angle data constraint is applied as for the left
hand column, while the intensities in the spatial region outside the dotted circle are forced to

equal the full angle reconstruction on the right at all times during iterative reconstruction.

These closeups reveal that there exist some regions in limited angle reconstructions such as (g)

that resemble full angle reconstructions such as (i) well.
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(a) AB = 5° over 100°, 012°° =
50.2, 010 = 286.

1750
1500
1250
1000
750
500
250
0
-250
-500
-750

Lodox CT intensity profile [HU]

-1000 ==
-60

(b) A8

100°

= 1° over 100°, 050~ =
60.2, 710 = 269.

(c) A8 = 1° over 180°

69.2, o1o = 79.1.

100° __

, O50

AB=5° over 100°
A6=1° over 100°

— AB=1° over 180°

-40 -20

20

! A
40 60
y [mm]

80

| |
100 120

| ) |
140

(d) Vertical profiles through center with poor correspondence of edges at x = —44.38mm.
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(e) Horizontal profiles through center with good correspondense of edges at y = —49.09mm.

Figure 6.4 Limited and full angle reconstructions with intensity profiles through the recon-

structions, i, = 225.
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(a) Unconstrained, A = 5° (b) Spatially constrained, (¢) Unconstrained, A6
over 100°. A6f = 5° over 100°. over 180°.

(d) Unconstrained, A = 5° (e) Spatially constrained, (f) Unconstrained, A = 1°
over 100°. A6 = 5° over 100°. over 180°.

(g) Unconstrained, Af = 5° (h) Spatially constrained, (i) Unconstrained, Af = 1°
over 100°. A6 = 5° over 100°. over 180°.

Figure 6.5 Closeup views of positively iterated reconstructions in Figure 6.4.
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Regions corresponding to the complementary angular range of edges in the limited angle recon-

struction such as (a) resemble the full angle reconstruction such as (c) very poorly.

Great improvement within the dotted circles is observed when correct spatial knowledge is
applied outside the dotted circles (in the center column of Figure 6.5). This is especially true
where edges in the vertical direction are lacking, as in this case. The important observed quality
of limited angle tomographic reconstruction is that a correcting bias in some region results in

an intensity contrast improvement in another region.

The conclusion that is drawn from this qualitative demonstration is as follows: if some region
can be regularized well, then the improvement resulting from such bias is not restricted to
the region to which it was applied. The complementary region is also improved indirectly by

maintaining the data constraint which bonds the regions together.

As demonstrated earlier with negative noise being constrained to positivity, the converse is
also true: the application of any incorrect bias will propagate elsewhere in a reconstruction.
Accordingly, if a region is biased incorrectly, then not only that region but complementary

regions will also be biased incorrectly through the data constraint.

6.3 Survey of limited angle tomography methods

Now that limited angle tomography has been introduced, this chapter proceeds by presenting
a selection of strategies proposed in the literature for dealing with the problem. The less
effective methods are discussed first. No methods found adequately solve the problem in a
realistic ill-posed situation. An overview of state-of-the-art techniques is provided in (Siltanen
et al., 2003).

6.3.1 Direct inversion

There are a number of ways to perform reconstructions in a single step. It is possible to set
up a linear system of equations p = H f which expresses measured projections p as raysums
through a discrete cross-section f. Having more unknowns than linearly independent equations
for the limited angle tomography case implies that the matrix H is singular. Because high
frequency components are poorly transferred in tomography, H has been shown to be singular
even in full angle tomography (Wilson, 1998). A solution with the smallest |f|? = > j fj2 can be

obtained by singular value decomposition, but is infeasible for realistically sized problems due
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to computational expense and memory requirements (Boyd and Little, 1994). More efficient
implementations of this inversion in the frequency domain have been explored by (Tam and
Perez-Mendez, 1981) and (Jaffe, 1990). Reconstructions obtained through direct inversion are

very much equivalent to results obtained by the filtered back-projection method.

Squashing is a technique introduced by (Reeds and Shepp, 1987) to perform an affine transform
on limited angle projection data. (Olson and Jaffe, 1990) explains that squashing does little
more than converting a limited angle data set into a suitable form to be applied directly to a

full angle tomography reconstruction algorithm.

(Yagle, 1998) expresses a closed form solution to limited angle discrete tomography of finite
support objects. In this paper, the phantom is expressed as impulses on a regular lattice and
projections as well as phantom densities must be integer values. It is reported that totally
incorrect reconstructions could result from noise that exceeds integer roundoff errors. Very
large extrapolation coefficients need to be calculated for larger images. Success of equation-
based solutions to limited angle tomography that does not incorporate prior knowledge other

than geometric conditions, must be considered in the light of caution expressed in Section 6.1.1.

6.3.2 Regularization

Ill-conditioned inverse problems are unstable in the sense that small changes in data can cause
large changes in the solution (Kwee et al., 1997). Such problems can be stabilized by regular-
ization so that the solution has some desired property such as smoothness. This is done by the

minimization of an expression of the form

freg = arg; min U(f) + )\Xz] (6.1)

where U(f) has a minimum when the solution f has the desired property and A can be tuned
so that the level of data fit x> matches the measurement error in the data. Many methods use

this framework for achieving a solution.

The Laplacian smoothness condition,
2
u() = v (6.2)
J

is used by (Tam and Perez-Mendez, 1981) to regularize the limited angle inverse problem. The

maximum entropy method used by (Lawrence, 1989) for limited angle tomography maximizes



the entropy S(f) = —U(f) of an image f, with f; > 0, where

S(f) = —ij Inpj, pj= ﬁ (6.3)
J

(Tam and Perez-Mendez, 1981) concludes that maximum entropy does not produce better
results than any other simple limited angle tomography method. This is understandable since
the results of the maximum entropy method show the least amount of configurational structure
(which is least informative) yet are consistent with the measured data (Bontekoe et al., 1994).
The maximum entropy method is better suited to problems such as gas and plasma diagnostics
(Denisova, 1998) where the observed quantity obeys Boltzmann statistics, or in astronomical
imaging (Narayan and Nityananda, 1986) where entropy describes the properties of the image

intensity distribution well.

Correlation amongst pixels can be specified using minimum cross-entropy, defined by (Skilling
and Bryan, 1984) as

S(F)=>_fi—fj— filn(f;/£}) (6.4)
J

where f’ is the default or expected image. (Fielden et al., 1991) concludes in a full angle
magnetic resonance imaging application that truncation artefacts cannot be suppressed using

minimum cross-entropy without some loss of resolution.

(Hanson and Wecksung, 1983) demonstrates that good Bayesian limited angle reconstructions

can be achieved in a simple example if the prior knowledge is specific enough.

Good results are presented by (Delaney and Bresler, 1995) using piecewise smooth regularization

with an objective function of the form
XA NI+ A8V (6.5)
J

where I penalizes negative values of f and ¢ is a nonconvex functional that operates on
the intensity gradient of f. This objective function is equivalent to discontinuity adaptive
priors discussed extensively in (Li, 1995) within the Bayesian framework. The results, however,

deteriorate significantly as the range of available projections is decreased.

Deterministic annealing is used by (Hsiao et al., 2001) in a simulated Bayesian sparse angle

segmentation example to overcome problems due to sensitivity to initial conditions.
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6.3.3 Sinogram extrapolation

A linear neural network approach is taken by (Wong and Yau, 1998) to extrapolate 12.5%
missing projections with good accuracy in a simulated example. The missing projections are
expressed as a function of the projection data and undetermined parameters. These parameters
are initialized using a sinogram of a similar phantom, and iterated a few times. The exterior

of the object is assumed to be known.

(Andia et al., 2002) obtains comparable results to Bayesian methods reconstructing SPECT
data non-iteratively by performing nonlinear operations on the sinogram before back-projection.

Training is performed using a similar dataset to the projections of the phantom.

In (Prince and Willsky, 1993) the phantom’s mass, center of mass and boundary of its sinogram
is estimated from available projections. Together with parameters that specify smoothness

constraints which are assumed to be known a priori, a complete sinogram is extrapolated.

The success of all these algorithms is dependent on how representative the a priori parameters

or training examples are of the phantom to be reconstructed.

6.3.4 Projection onto convex sets

(Sezan and Stark, 1984) shows that the iterative application of a set of constraints which can be
expressed as projection operators onto closed convex sets converges to a solution that satisfies

all the constraints.

(Oskoui-Fard and Stark, 1989) explains that expressing raysum data constraints using this
method is equivalent to the algebraic reconstruction technique used in (Andersen, 1989). How-
ever, these projection operators may include positivity constraints, amplitude limits, energy
limits, spatial support or known Fourier coefficients. Although this technique is effective, the

range of prior knowledge that can be applied using this method is somewhat limited.

6.3.5 Optimal views
Conventional spiral tomography machines provide poor resolution in the direction normal to

the cross-section plane. Cross-section slices are typically printed as a montage onto film to be

viewed on a light box.
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(McCauley et al., 2000) displays limited angle reconstructions that appear very similar to
corresponding full angle reconstructions. These are, however, not axial views. (Kolehmainen et
al., 2003) provides such views for dental tomography. Due to its high resolution in the scanning

direction, the Lodox system can also provide such views.

Figure 6.6 shows a good correspondence of limited angle reconstructions to full angle recon-
structions in Figure 4.11 for coronal views but not for sagittal views. All of these are simply
positively iterated reconstructions. Note that even for coronal views there is some interference

visible from out-of-plane structures as predicted by (Starke and de Jager, 1998).

6.3.6 Complementary data fusion

(Boyd and Little, 1994) uses laser range detection and ultrasonic measurements to determine
the exterior and outer layer thickness of an aircraft wing in a limited angle tomography problem.
A priori knowledge of x-ray attenuation coefficients for certain structures in the wing is also
available. Projection onto convex sets is the recommended method to combine the various
constraints for a realistically sized problem. Good results are presented. In another paper
(Tam et al., 1990), a similar technique is used to reconstruct turbine blades by combining wall

thickness measurements.

In positron emission tomography (PET), which is a sparse data rather than limited angle
problem, registered magnetic resonance images (MRI) are used to enhance the reconstruction
quality. (Chen et al., 1991) shows how Gibbs energies are applied to achieve improved resolution
where anatomical and functional boundaries match. Alternatively, after performing an intensity
transform to the MR image, (Oakley et al., 2000) biases the PET reconstruction towards this

reference.

6.3.7 Shape modeling
It is possible to convert an ill-posed inverse problem into a well-defined problem by modeling

the solution. However, it is difficult to express unforseen special cases into any model especially

if the model describes a physical shape instead of a mere quality which is always true.
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107
Figure 6.6 A selection of limited angle sagittal (left) and coronal (right) views at 256 x 256 x 256.




(Gureyev and Evans, 1998) modeled hardwood samples and successfully reconstructed cross-
sections in simulations from very few projections. From regularity assumptions, the three-
dimensional problem is converted into a quasi-one-dimensional reconstruction problem. It is
argued that the shape of vessels (voids) or parenchyma (nonfibrous tissue) can be determined
by optical methods in practice and therefore be known a priori in their simulations. Their

results show some tolerance to irregularities.

In atmospheric tomography, (Semeter and Mendillo, 1997) uses so-called Chapman functions to
model the atmosphere which constrains the vertical profile initially. This constraint is removed

later when entropy is maximized instead.

Boundary modeling using snakes (deformable polygons with curvature constraints) is investi-
gated by (Mohammad-Djafari et al., 1997) in the context of sparse angle tomographic recon-

struction of simple binary blob-like phantoms.

In this thesis little attention is given to the modeling of shapes since there is so much physical
shape variablity in expected reconstructions. Instead, effort is concentrated on the modeling of

local image properties.

6.4 Bayesian limited angle reconstructions

Figure 6.7 shows Bayesian limited angle tomographic reconstructions using projection data at
5° spacing over a 100° range. Tunable parameters in the potential functions (defined in Section
4.4.2 with values as quoted in Figure 6.7) are chosen such that the ground truth oo data fit is
minimized as in Section 4.4.3. Such ad hoc tuning produces the best possible reconstructions

for the given forms of potential functions.

Although the Bayesian reconstructions have a noticeably better ground truth data fit (e.g. 010 =
249) than the corresponding unregularized reconstruction in Figure 6.4(a) (with o0 = 286),
they appear quite unnatural and still resemble the best possible reconstruction in Figure 6.4(c)
(with 010 = 79.1) poorly. Edge information in the missing angular range is not recovered
correctly despite the attainment of piecewise smoothness as suggested by the prior knowledge.
It is noted that the reconstructions are correctly biased by the prior knowledge in some but not

in other regions.

In the somewhat related example of sensitivity encoding magnetic resonance imaging, noise

levels are not uniform throughout reconstructions. (Samsonov and Johnson, 2002) proposes that
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(a) DA-MRF, ¢19°° = 50.2, (b) I-MRF, 0i% = 508, (c) DAI-MRF, 00 = 53.3,
010 = 275. B=10.2, v = 360. 010 = 254. =24, v = 470. ol = 249. a = 033, 8 =
1.125, v = 210.

Figure 6.7 Bayesian limited angle reconstructions (Af = 5° over 100°).

space-varying anisotropic diffusion is superior to space-invariant methods of edge-preserving

denoising in that situation.

As explained more analytically in (de Villiers, 2000), the reason why space-invariant methods
found in the literature, as demonstrated in Figure 6.7, fail to converge to the correct recon-
struction, is because the methods bias intensities incorrectly in regions where edges are poorly
defined. By applying prior knowledge bias only to those regions that closely resemble the final
reconstruction, one stands a much better chance of avoiding local optima in maximizing the
posterior distribution. Although it may be possible to represent a space-varying form of some
clique potential to deal with this inherent convergence problem, it is not clear how to derive
such a prior knowledge model, nor to find values of any tunable parameters with reasonable

justification.

The contribution made by the masters thesis (de Villiers, 2000) which may be difficult to get

hold of, is presented in a more accessible and simplified document (de Villiers, 2004).

In the following section, the transformation map method is applied to the problem. The ability
of the method to extract prior knowledge from examples overcomes the difficulties experienced

in modeling using Bayesian methods.
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6.5 Reconstruction using a transformation map

A good choice of feature vectors for the regularization of sparse angle tomographic reconstruc-
tions in the previous chapter has been intensity, blurred intensity and local edge magnitude.
These three-dimensions provide the transformation map with the ability to smooth out noise
without blurring or sharpening edges beyond the curvature indicated by the training examples
(refer to Section 5.2.1). Of course, these dimensions also provide the map with the ability to

bias mean intensities towards any of the dominant classes of intensity levels.

In limited angle reconstructions, however, little or no bias should occur where the reconstruc-
tion is degenerate, otherwise it will be biased unjustifiably, resulting in convergence to a local

optimum. This is what happened in the Bayesian reconstructions of the previous section.

To achieve this goal, keeping in mind that the better defined regions occur near well defined
edges in the horizontal direction and poorly defined regions exist where edges in the vertical
direction prevail, the edge magnitude dimension is split up into vertical and horizontal local

edge magnitude dimensions.

6.5.1 Training examples for the transformation map

In this chapter the transformation map is calculated by comparing full angle to limited angle
reconstructions for slice index i, = 150 only (see Figure 4.10), unless specified otherwise. The
full angle reconstruction (at i, = 150) is rotated by multiples of 90° and mirrored, providing 8
permutations. Limited angle reconstructions are produced from artificially generated projection
data for each of these 8 cases. An example of such a limited angle and full angle pair is shown
in Figures 6.8(a) and 6.8(b). The limited angle reconstructions are produced in 500 iterations
using the positivity constraint in accordance to the absolute geometry specified by Af = 5°

over a 100° range.

Not only the final 8 limited angle reconstructions, but also intermediate reconstructions at
intervals of 50 iterations are used in calculating the transformation map. More examples (as
in Figure 6.8(c)) are generated from these by adding Gaussian noise with standard deviations
ranging from zero to 100 in 20 steps. Still more examples are created by performing edge
sharpening (by standard unsharp masking) of strengths ranging from 0 to 1 in 5 steps. These
details are not important since they can be changed vastly with little effect to the transformation

map. The idea is simply that many representative examples are created.

110



(a) Target frarget(,y), rotated (b) Limited angle reconstruc- (¢) Source f(z,y), sharp-
full angle reconstruction. tion of target image. ened reconstruction with noise
added.

(d) Blurred source. (e) Local horizontal edge mag- (f) Local vertical edge magni-
nitude of source. tude of source.

Figure 6.8 Sample quantities used to determine transformation map.

See Figure 6.9 for an outline of the operations involved in creating the transformation map.
Also, note that the limited angle reconstruction cycle, illustrated in Figure 6.10, is identical to

what is described previously for sparse angle tomography.

6.5.2 Feature vectors

The four-dimensional transformation map being calculated is indexed by intensity (H; =

f(z,y)), blurred intensity (Ho = f(z,y) * h(z,y)), local horizontal edge magnitude (Hs =

% * ho(z,y)) and local vertical edge magnitude (Hy = %Iy’y) * ho(x,y)) as illustrated in

Figures 6.8(c), 6.8(d), 6.8(e) and 6.8(f) respectively for the example. As before, *h(z,y) and
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Build transformation map

Obtain full angle reconstruction target
Clear transformation map and map entry counters

Generate many limited angle source examples with noise, blurring and sharpening
Calculate feature dimensions for limited angle source
For each source voxel:
- Index transformation map using feature dimension values
- Add difference between target and source to transformation map cell
- Increment map entry counter at that cell index
Normalize transformation map by dividing each cell value by its counter

Figure 6.9 Steps in building a transformation map.

Data corrective step

Perform volume projection and find slice with biggest projection error
Find best filter parameter values for worst slice only, by iterating:
- Try different parameter settings using local search strategy
- Filter (a copy of) projection error using this parameter setting
- Back-project filtered projection error onto (a copy of) slice
- Quantify projection error of this new slice
Filter all volume projection errors using determined filter parameter settings
Back-project filtered volume projection errors accumulatively onto current volume

Prior corrective step

Calculate feature dimensions for current volume
For each voxel of current volume:

- Index transformation map using feature dimension values
- Add transformation map cell value to voxel value

Figure 6.10 Iterative limited angle reconstruction cycle.
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0 0 500

(a) High local vertical edge (b) Low local edge magni- (c) High local horizontal edge
magnitude. tude. magnitude.

Figure 6.11 Enlarged views of transformation map in Figure 6.12.

xho(x,y) indicates convolution with Gaussian blurring kernels, both having standard deviations
of 1 in this instance. The transformation map holds the average difference in intensity from the
source f(z,y) to the target frarget(2,y) (Figures 6.8(c) and 6.8(a) respectively) at the indexed

feature coordinates.

6.5.3 The effect of the transformation map

Figure 6.11 shows selected closeup views of the resultant 32 x 32 x 32 x 32 transformation map
displayed as a montage in Figure 6.12. The small subimages in Figure 6.12 are slices in the
intensity X blurred intensity plane. These subimages are ordered from left to right in increasing
local horizontal edge magnitude, and are ordered from top to bottom in increasing local vertical
edge magnitude. Tt is clear that the transformation map is not well populated in the case of
large local vertical edge magnitude and would therefore not have much of a biasing effect for

that condition.

The ill-defined condition of large local vertical edge magnitude is shown in Figure 6.11(a). In

this region most of the transformation map values are zero.

For low edge magnitudes, Figure 6.11(b) shows the biasing effect of the map towards dominant
intensity levels. If an intensity is higher than a dominant level, the map indicates (with darker
pixels) a negative bias back down towards it. If the intensity is lower, it is biased (indicated

with brighter pixels) up towards the closest dominant level.
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Major axis: local vertical edge magnitude [HU/mm]

(Minor axis: blurred intensity)

-500

500

-500 0 500

Major axis: local horizontal edge magnitude [HU/mm]
(Minor axis: intensity)

Figure 6.12 Four-dimensional transformation map for limited angle reconstruction displayed
as a montage. The intensity X blurred intensity planes are ordered according to the horizontal
and vertical edge magnitude dimensions leftwards and downwards respectively. Enlargements
are provided in Figure 6.11.
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(a) AB = 1° over 180°, 012°° = (b) A8 = 5° over 100°, 012°° = (c) DAI-MRF, 00 = 53.3,
69.2, 010 = 79.1. 50.2, 010 = 286. o10 = 249.

(d) Using transformation map (e) As for Figure 6.13(d) ex- (f) Using transformation map
calculated from slice i, = 150, cept wusing simulated data, calculated wusing all slices,
3% =495, 010 = 188.0. 033 =70.5, 010 = 183.5. 03" =493, 010 = 172.8.

Figure 6.13 Comparison of transformation map limited angle reconstruction results.

Figure 6.11(c) shows the map for high local horizontal edge magnitudes. In such regions smooth-
ing occurs to some extent. If intensities are higher than the blurred intensity, the intensity is
biased down towards the mean and if intensities are less than the blurred intensity, the intensity
is biased up towards the mean. The extent to which this happens depends on the other features

as well.

6.5.4 Results

Figure 6.13 shows limited angle reconstruction results using the transformation map method.

Figure 6.13(d) is produced using the transformation map in Figure 6.12. The reconstruction
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cycle illustrated in Figure 6.10 was iterated 5000 times starting from blank to produce this
result. For each iteration after every data correcting step, the intermediate reconstruction is
updated by a fixed fraction A of the direction indicated by the transformation map following
the discussion in Section 5.4.4. Specifically, each pixel is biased by this fraction A (=0.0035 in
this case) of the value in the transformation map which is indexed by the feature vector for

that pixel. A controls the goodness of fit to the Af = 5° projection data used.

A ground truth full angle reconstruction with oo = 79.1, as well as limited angle reconstruc-
tions using the positivity constraint (010 = 286) and Bayesian methods (010 = 249) are also
provided for comparison. The transformation map reconstructions with 173 < o1o < 188 ap-
pear significantly better than the limited angle reconstructions shown for the other methods,

both visually and in terms of ground truth oo data error.

For interest’s sake, Figure 6.13(e) shows a similar reconstruction where simulated data projec-
tions were used instead of measured projections. Noise was added to the projections whilst the
projection geometry should be perfect. Little difference in the reconstruction quality for these

results is observed.

A different transformation map is used for the reconstruction in Figure 6.13(f) giving a slighly
better result (010 = 172.8). In this particular case, the transformation map is calculated using
128 slices instead of only 1 at 4, = 150. The reason that only a single slice is used to determine
the transformation map in general is to prove independence of prior knowledge in the sense
that the prior knowledge extracted here can be applied equally successfully to another dataset

under similar imaging conditions.

Lastly, Figures 6.14 and 6.15 present results for a number of different slices. The transformation
map used for these reconstructions is shown in Figure 6.12. In all the examples, a significant
improvement is observed in the transformation map reconstructions over straightforward pos-
itively iterated reconstructions. A natural look is retained in the results and edges come into

appearance that exist in the full angle reconstructions.

Having a complete dataset remains the superior option. However, if the measurements are not

available, transformation maps seem to provide a successful alternative.
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010]0

A6 = 5° over 100°, 019°° = Af = 5° over 100°, g12°° = AG = 1° over 180°, o19%° =
377 are = 179.1. 359010_1194 487010_643

(d) AG = 5° over 100°, 039" = (e) AG = 5° over 100°, 039" = (f) A6 = 1° over 180°, 019" =
43.0, 010 = 277.5. 41.5, 010 = 194.7. 56.3, g10 = 78.9.

(g) A8 = 5° over 100°, g29°° = (h) AG = 5° over 100°, g29°° = (i) A8 = 1° over 180°, g19°° =
50.5, 1o = 287.6. 49.5, 010 = 188.0. 68.3, 010 = 82.7.

Figure 6.14 Limited angle reconstructions at i, = {75,150,225} using transformation map
regularization (center) compared to positively iterated limited angle (left) and full angle (right)
reconstructions.
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(a) A8 = 5° over 100°, g29°° = (b) Ab = 5° over 100°, g19°° = (¢) AG = 1° over 180°, g19°° =
52.7, o10 = 276.1. 52.0, 010 = 199.3. 74.1, 010 = 86.5.

(d) AG = 5° over 100°, 039" = (e) AG = 5° over 100°, 039" = (f) A6 = 1° over 180°, 019" =
38.6, 010 = 283.0. 37.6, 010 = 235.8. 56.4, 010 = 77.3.

(g) A8 = 5° over 100°, g29°° = (h) AG = 5° over 100°, g29°° = (i) A8 = 1° over 180°, g19°° =
53.8, g0 = 240.6. 53.1, 010 = 208.3. 66.9, 010 = 86.4.

Figure 6.15 Limited angle reconstructions at i, = {300, 375,450} using transformation map
regularization (center) compared to positively iterated limited angle (left) and full angle (right)
reconstructions.
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6.6 Envisaged limited angle tomographic system

This section gives an overview of what is practically required to build limited angle tomographic
functionality into the Lodox system. Some further development work is essential for achieving
results as presented above in a commercial system, as opposed to in an offline development

system.

6.6.1 Scanning hardware

As mentioned before, in existing Lodox systems, scanning does not start accurately enough at
any requested offset (in the z direction). It is also difficult to rotate the C-arm to a precise
angular position. These fundamental problems need to be addressed. Although software tech-
niques could be used to overcome these issues, it is a waste of valuable processing time which

could much more productively be used on the reconstruction.

It would be useful, but not be essential, to change the detector hardware so that scanning can
also be performed in the reverse, —z, direction. This would halve acquisition time although it
will heat load the x-ray tube and generator more. Allowing faster scanning speeds than the
current maximum of 140mm/s is also advised. Such developments are important considerations

because the patient needs to remain immobile for the duration of at least 20 scans.

Furthurmore, the determination of the C-arm geometry must be automated by means of a
three-dimensional calibration tool, since different machines (and machine model versions) may
have slightly different geometries. Projection lookup tables that relate voxels to projection data

can then be precomputed for predefined C-arm angles at which the patient will be scanned.

6.6.2 Gathering prior knowledge

Transformation maps extract prior knowledge from examples. Full angle and limited angle
reconstruction example pairs must be available to generate the transformation map which will
subsequently be used in a commercial system. It will be necessary to obtain a complete high
resolution dataset of a subject that has not been treated with formalin, as in this thesis, since

such treatment may have a significant effect on the attenuation properties of tissue.

Although it is not certain at this point, even more datasets may be required for different kV

settings that change the x-ray spectra and ultimately, to some extent, the Hounsfield units in the
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final reconstruction. Likewise, any technology change, such as the removal of fibre optic tapers
or additional filtration, may have a significant effect which may necessitate the acquisition of
another complete dataset. The sensitivity of the transformation map reconstruction method to

such variability to its input has not yet been investigated.

Of course the limited angle reconstruction source example must correspond well to the C-arm
geometrical conditions under which the system will be used. The prior knowledge has an
angular dependency which relates to the C-arm geometry. Similarly, the spatial resolution of
the examples used to generate the transformation map must also correspond to the resolution

of subsequent reconstructions that employ that transformation map.

It is conceivable that superior results could be obtained by using a transformation map tailored
to the region of interest. In other words, if a head is scanned, a transformation map trained
using head examples would be recommended, while if a torso is scanned, a transformation
map trained from torso examples would be preferred instead. These recommendations are not

requirements.

6.6.3 Speeding up processing time

Around the order of 5000 data correcting and prior knowledge correcting cycles are iterated for
a single transformation map based 128 x 128 limited angle reconstruction. This is a substantial
amount of computation. For such a limited angle tomographic system to produce results in

reasonable time to be commerically viable, hardware acceleration is essential.

Fortunately, many of the required operations can be performed in parallel. It seems sensible to
dedicate one processor per scan angle to speed up the projection and back-projection processes,

which constitute the bulk of the computation.

6.7 Summary

This chapter investigated the properties of limited angle reconstruction. Methods used in the
literature are reported. Bayesian limited angle reconstructions were performed for reference.
Thereafter the transformation map method is applied to the problem. It is shown that, using a
transformation map, much improved results are achieved compared to other methods. Results
resemble the full data reconstructions much more closely. Even though the results are not

perfect they give insight into the true underlying reconstruction when the data is not available.
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CHAPTER 7

Conclusion

This final chapter summarizes the most important features of this project and provides some
closure to the topic of limited angle tomography for the Lodox system. The diagnostic value
of various reconstructions is qualified first to give added perspective. Then a summary of the

project developments, findings, conclusions and recommendations follows.

7.1 Diagnostic value of reconstructions

Professor S. J. Beningfield, Head of the Department of Radiation Medicine, at Groote Schuur

Hospital, is quoted below on the diagnostic value of results presented in this thesis.

7.1.1 High resolution full angle reconstructions

Refer to the Af = 1° over 180° positively iterated axial, sagittal and coronal full angle recon-

structions in Figures 4.10 and 4.11 on pages 66 and 67 respectively:

These are excellent quality; the coronals are reminiscent of the multiplanar recon-

structions now obtainable with multi-slice CT with 0.5mm isotropic vozel data.

7.1.2 Low resolution sparse angle reconstructions
Refer to the Af = 5° over 180° positively iterated (in Figure 4.8(b) on page 64), Bayesian (in

Figure 4.17(c) on page 75) and transformation map (in Figure 5.7(c) on page 91) sparse angle

cross-sections:
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Figure 4.8(b) is not diagnostic, other than for gross pathology.
Figure 5.7(c) and Figure 4.17(c) are very similar, apart from coarser pizels in Fig-

ure 4.17(c) and are acceptable for diagnosis.

7.1.3 Coronal views of high resolution limited angle reconstructions

Refer to the AO = 5° over 100° positively iterated sagittal and coronal reconstructions in

Figure 6.6 on page 107:

Sagittal views - blurring compromises diagnostic quality significantly, especially the
top image. The bottom image verges on acceptability for moderate size pathology.
The lower coronal image is good and diagnostically acceptable, while there is blurring

in the right lower quadrant of the top coronal image.

7.1.4 Low resolution unregularized limited angle reconstructions

Refer to the filtered back-projection and positively iterated limited angle reconstructions in

Figure 6.2 on page 98 showing the effect of having more data available:

(a) unusable

(b) better but still not usable

(c) the first barely acceptable image

(d) not useful

(e) barely acceptable for gross pathology

(f) just usable

(9) smoother image but not usable in practice
(h) barely acceptable for gross pathology

(1) reasonable for moderate pathology

7.1.5 Low resolution limited angle reconstructions
On page 115, refer to the A§ = 1° over 180° low resolution full angle reconstruction in Fig-

ure 6.13(a), and the Af = 5° over 100° positively iterated (b), Bayesian (c) and transformation

map, (d) to (f), limited angle reconstructions:
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(a) very good

(b) unacceptable for any diagnostic purpose

(¢) also not usable, limited greyscale and artefactual errors

(d) barely acceptable - about the quality of first-generation 80 pizel matriz CT
(e) slightly better than (d)

(f) minimal improvement on (e), just acceptable

Refer to Figures 6.14 and 6.15 on pages 117 and 118:

Left column: poor - minimal diagnostic value
Middle column: some moderate diagnostic value

Right column: good value

To summarize, the transformation map limited angle reconstructions have functional diagnostic
value, while limited angle reconstructions using other methods do not. When the full dataset
is available, the quality of the results obtained is comparable to that of leading commercial
tomographic systems. When data is sparse, the transformation map method generates recon-

structions that are of diagnostic quality.

7.2 Quantitative comparison of results

Throughout this thesis reconstructions are compared to the ground truth with the parameter
o1o. This parameter represents the root mean square error of the projections of a particular
reconstruction, no matter how it was created, with the complete dataset of measured projections
over a 180° range at an angular spacing of Af = 1°. It is believed that this is the best way
of evaluating or comparing reconstructions quantitatively, even though it gives no indication of

how natural-looking the reconstuction may be.

Of particular interest is an evaluation of the transformation map method compared to other
methods on the low resolution sparse angle and limited angle tomography problems. Figure 7.1
shows a table of the ground truth fitness parameter oo for the positively constrained iterative

method, the Bayesian method and the transformation map method.

This table of results reflects firstly that the quality of limited angle reconstructions are in general

significantly worse than of sparse and full angle reconstructions. Secondly, the results using a
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Method\Problem Sparse angle tomography | Limited angle tomography
Positivity constraint around 101 around 286
Bayesian 91.2 to 92.4 249 to 275
Transformation map 90.7 to 90.8 173 to 188
Ground truth best 78.3 to 79.1 78.3 to 79.1

Figure 7.1 Quantitative comparison of different reconstruction algorithms showing typical
values of fit to the ground truth (o).

transformation map is numerically superior to the other techniques implemented, especially in

the case of limited angle tomography.

7.3 Summary of developments

This thesis addresses and overcomes a number of difficulties in achieving a high degree of
accuracy in measurements. The first set of problems solved in this thesis, such as correcting
distortion and artefacts in scans, and inferring the three-dimensional geometry of the imaging

system, is peculiar to the Lodox machine.

Later developments, such as the strategy devised for effectively constraining a cross-section or

volumetric reconstruction to measured projections, have more general applicability.

Of particular emphasis is the chapter on transformation maps. Transformation maps were
shown to be a powerful problem solving framework. Its service to image artefact removal and
the regularization of tomographic reconstructions is demonstrated. It was in fact the unnatural
looking results due to Bayesian methods that prompted research into transformation maps

which characterise prior knowledge more precisely.

Overcoming all these diverse problems was instrumental to proceeding with the investigation

into limited angle tomography.

A study of the properties of limited angle reconstructions guided in the choice of feature di-
mensions used in the transformation map. Ultimately in this thesis, the transformation map

method is used to solve the limited angle tomographic problem.
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7.4 Findings

It was found that for medical cross-sections, there are a limited number of dominant density
classes and that the distribution of these densities have a wider spread in limited and sparse
angle reconstructions than in full angle reconstructions. Full angle reconstructions are also less

noisy and have particular edge sharpnesses at interfaces between different tissue types.

Both for limited and sparse angle tomographic reconstruction, it was found that a transforma-
tion map can successfully extract such knowledge quantitatively from examples. It was also
found that transformation maps can effectively apply this knowledge during reconstruction to

achieve superior results: other regularization methods seem to produce artificial-looking results.

For limited angle reconstructions, it is shown that biasing a reconstruction with correct knowl-
edge in one region results in a corresponding improvement in the reconstruction for a comple-
mentary region. Using this property, which is due to the nature of the data constraint, the
transformation map biases predictable regions so that improvements occur indirectly in less

predictable regions. The iteration of this principle leads to a final reconstruction.

7.5 Results

In terms of full and sparse angle tomography, this thesis has illustrated that the Lodox system
can achieve good quality high resolution medical reconstructions. For unregularized limited
angle reconstructions, high resolution coronal views are produced which resemble those of full

angle reconstructions well.

It is shown that reconstruction quality improves significantly the bigger the angular range of
available projection data. However, this thesis is only concerned with the special case of having
projections at 5° intervals over a 100° range. For this situation, considerable numerical as well
as visual improvements in reconstruction quality over other methods are demonstrated using

transformation maps.
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7.6 Conclusions

In response to the research question, it is concluded that the Lodox machine can be used to cre-
ate limited angle reconstructions that have diagnostic value. However, these reconstructions are

not as precise and therefore do not have as much diagnostic value as full angle reconstructions.

At some point in reducing the amount of available data, a reconstruction becomes medically of
no diagnostic value. This thesis presented a technique that produces useful results from severely

restricted measurements when other methods do not.

7.7 Recommendations

This study may have provoked many questions such as ‘how does the algorithm perform at
higher resolutions?’ or ‘what about a bigger or even smaller angular range?’. It would be
interesting to know what the minimal data requirements are in terms of angular resolution and
range to achieve diagnosable reconstructions. These questions are not answered in this thesis

and warrant further investigation.

It seems reasonable to presume that more elaborate forms of prior knowledge which specify
properties of interfaces between tissue types, particularly at higher reconstruction resolutions,
could advance reconstruction. Also, volumetric limited angle reconstructions (as opposed to
individual cross-sections), could benefit from information of neighbouring cross-sections and
improve results. Perhaps it would be wise to add a local edge magnitude dimension in the

scanning direction to the transformation map in that case.

Given the time required to aquire scans of the patient, the best medical application for sparse,
full and limited angle tomography using the Lodox system is perhaps forensic medicine. In a
linear scanning system such as Lodox, patient movement would have more severe consequences
to reconstruction precision than in spiral computerized tomography where slices are scanned

sequentially.

Since medical imaging inherently places the utmost demands on imaging quality and scanning
speeds, it is advisable to investigate limited angle tomography using the technology developed
in this thesis for certain industrial non-destructive testing applications or electron microscopy

where limited angle tomography is the only alternative.
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