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Abstract

In this thesis, we propose a method for estimating the parameters of a parametric bidirec-

tional reflectance distribution function (BRDF) for an object surface.

The method uses a novel Markov Random Field (MRF) formulation on triplets of cor-

ner vertex nodes to model the probability of sets of reflectance parameters for arbitrary

reflectance models, given probabilistic surface geometry, camera, illumination, and re-

flectance image information. In this way, the BRDF parameter estimation problem is cast

as a MRF parameter estimation problem.

We also present a novel method for estimating the MRF parameters, which uses Population

Monte Carlo (PMC) sampling to yield a posterior distribution over the parameters of the

BRDF.

This PMC based method for estimating the posterior distribution on MRF parameters is

compared, using synthetic data, to other parameter estimation methods based on Markov

Chain Monte Carlo (MCMC) and Levenberg-Marquardt nonlinear minimization, where

it is found to have better results for convergence to the known correct synthetic data pa-

rameter sets than the MCMC based methods, and similar convergence results to the LM

method.

The posterior distributions on the parametric BRDFs for real surfaces, which are repre-

sented as evolved sample sets calculated using a Population Monte Carlo algorithm, can be

used as features in other high-level vision material or surface classification methods.

A variety of probabilistic distances between these features, including the Kullback-Leibler

divergence, the Bhattacharyya distance and the Patrick-Fisher distance is used to test the

classifiability of the materials, using the PMC evolved sample sets as features. In our ex-

periments on real data, which comprises 48 material surfaces belonging to 12 classes of

material, classification errors are counted by comparing the 1-nearest-neighbour classifica-

tion results to the known (manually specified) material classes. Other classification error

statistics such as WNN (worst nearest neighbour) are also calculated.

The symmetric Kullback-Leibler divergence, used as a distance measure between the PMC
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developed sample sets, is the distance measure which gives the best classification results

on the real data, when using the 1-nearest neighbour classification method.

It is also found that the sets of samples representing the posterior distributions over the

MRF parameter spaces are better features for material surface classification than the opti-

mal MRF parameters returned by multiple-seed Levenberg-Marquardt minimization algo-

rithms, which are configured to find the same MRF parameters. The classifiability of the

materials is also better when using the entire evolved sample sets (calculated by PMC) as

classification features than it is when using only the maximum a-posteriori sample from

the PMC evolved sample sets as the feature for each material.

It is therefore possible to calculate usable parametric BRDF features for surface classifica-

tion, using our method.
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Glossary of Symbols and Abbreviations

In this thesis, the following abbreviations are used:

• AGMMP-Average Gaussian Mixture Model Probability

• BRDF-Bidirectional Reflectance Distribution Function

• EMD-Earth Mover’s Distance

• LM-Levenberg Marquardt

• PMC-Population Monte Carlo

• MRF-Markov Random Field

• MCMC-Markov Chain Monte Carlo

• NN1-First nearest neighbour

• KL-Kullback-Leibler

• MAP-Maximum-a-posteriori

• PF-Particle Filtering

• PPF-Partitioned Particle Filtering

• SFS-Shape from Shading

• SVM-Support Vector Machine

• WNN-Worst Nearest Neighbour
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Chapter 1

Introduction

This chapter describes the machine vision problem which the parametric BRDF estimation algorithm

we have designed is intended to solve. It also describes the series of machine vision methods we have

used to solve the parametric BRDF estimation problem, in this thesis.

1.1 Control of froth flotation cells

In the South African mining industry, after the mineral ore extraction and comminution but before the

smelting process, there is the flotation process. The mineral ore is ground to dust (comminuted), mixed

into a solution, and air is bubbled through the liquid. The minerals which are the desired product for

smelting attach themselves to the bubbles, and are extracted from the flotation cell froth surface, where

the minerals have been concentrated.

The flotation process is an active area of research, since it promises to improve the profitability of the

mining process significantly. At present, human flotation cell operators are responsible for optimizing

the froth surface yield, but since they make relatively simple decisions based only on the appearance of

the froth at any point in time, attempts are being made to partially automate/facilitate this process using

machine vision techniques. To this end, research is being done to extract significant features from video

footage of the froth so that ultimately the control loop may be closed automatically, allowing automatic

operation and control of the flotation cells without human intervention. Previous research in extracting

features for froth classification includes [34] and [35].
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1.2 Problem and hypothesis formulation, goals and methodology

Our primary hypothesis is that it is possible to extract a meaningful probability density function over

the parameters of any parametric bidirectional reflectance distribution function (BRDF), given a prob-

abilistic dense disparity field or elevation map of the object surface, a reflectance map (image) of the

surface, and light source and camera information, by formulating it as a Markov Random Field (MRF)

parameter estimation problem. Our secondary hypothesis is that such posterior distributions on para-

metric BRDFs can be used as features for material surface classification. We make certain simplifying

assumptions regarding light sources, estimating them from the physical geometry of the problem rather

than calculating them algorithmically.

To calculate a parametric BRDF for a surface, it is necessary to create a three dimensional reconstruc-

tion for the material surface in question, using available machine vision techniques. The techniques

implemented in this thesis that are used to achieve a reasonable quality of dense stereo reconstruction

for the froth surfaces, include the fields and applications of structured lighting, sparse point correspon-

dence estimation, camera calibration, and dense stereo reconstruction through Markov random field

energy minimization (using Belief Propagation algorithms).

The purpose of obtaining the reflectance characteristics of the material surfaces is to use them as features

to classify the surfaces, grouping them into materials which have similar BRDFs.

However, noise is introduced in the estimation of the camera, lighting parameters, scene geometry, and

by inaccuracies in the surface reconstruction. Additionally, depending on the BRDF parameterisation

used, certain parameter sets generate very similar-looking surfaces under the same illumination config-

urations. An iterative nonlinear minimizer such as the Levenberg-Marquardt algorithm may thus easily

be trapped in a local maximum rather than the true (global) maximum of such a posterior parametric

BRDF distribution. By exploring the space of possible BRDF parameters using an iterative resampling

scheme, we benefit from exploring the surface characteristic with respect to the goodness of fit of each

of the tested BRDF parameter samples, while simultaneously selecting the MAP sample as the best

guess for the reflectance parameter set.

A reflectance feature can therefore be used as summary data for possible correct parameter values for

surface classification.

This thesis addresses the issue of uncertainty in surface geometry reconstruction. In the mainstream lit-

erature of BRDF extraction from known scene geometry, it is always assumed that the scene is known

exactly. However, techniques such as reconstruction via dense stereo estimation are never exact, and

the uncertainty in the derived dense stereo maps should be projected as uncertainties into the scene, and

into the corresponding estimation of the BRDF parameters. These uncertainties in the scene geometries

with respect to the extraction of BRDF models have to our knowledge never been considered or incor-
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porated into a model/paremeter estimation scheme. In this thesis, we propose a method for including

the uncertainty in reconstructed surface geometry, when calculated using dense stereo reconstruction

algorithms on a stereo image pair, within our MRF parameter estimation method, through the use of a

pseudolikelihood measure.

The uses for parametric BRDF data, which is calculated by estimating corresponding MRF parameters

are as follows:

• Sample sets representing the BRDF/MRF parameters may be used as features for surface classi-

fication

• Estimates for the MRF parameters can be used in shape from shading algorithms which use MRF

optimization given MRF/BRDF parameters ([73], [72], [71])

• A stereo reconstruction scheme could use MRF/BRDF parameter estimates for improved recon-

struction

• The MRF/BRDF parameters could be used in an iterative reconstruction/BRDF parameter esti-

mation scheme

• Advances in MRF parameter estimation methods could be applied to this method for BRDF

estimation, once the framework for casting BRDF estimation into MRF estimation is established.

It is worth noting that one of our goals in creating a framework where BRDF based MRF potential terms

are used is to obviate the need for using pairwise MRF interaction terms in stereo reconstruction. These

pairwise MRF potential terms are often defined in an ad-hoc manner for smoothing of disparity maps

to enforce smoothness constraints on the object which is being reconstructed. MRF potential terms on

point triplets based on BRDF parameters could provide a less artificial way of doing such smoothing.

Although this is one potential use for BRDF based MRF potential functions, this particular use is not

explored in this thesis.

Now that some possible uses for such a parametric BRDF model for material surfaces have been de-

scribed, the novel theoretical innovations presented in this thesis may be summarized as follows:

• The estimation of parametric BRDF model parameters within a Markov random field pseudolike-

lihood framework with the explicit incorporation of the uncertainties in the reconstructed scene

geometry

• The use of Population Monte Carlo sampling and Dynamically weighted MCMC sampling for

MRF parameter estimation
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Figure 1.1: A froth flotation cell, with a video camera and digital light projector visible in the scene. The froth
surface in the flotation cell is one of the object surfaces which we analyse and classify according to its BRDF
characteristics.

• A new similarity measure for comparing sample sets which represent posterior distributions,

called the namely the Average Gaussian Mixture Model Probability

• A new framework for embedding shape from shading in a MRF MAP estimation problem (orig-

inally proposed by us in [73])

• A new framework for casting the BRDF parameter estimation problem as a MRF parameter

estimation problem

• The use of posterior distributions on MRF/BRDF parameters as features in a classification frame-

work.

This is the first classification algorithm (to our knowledge) that uses posterior distributions in BRDF

parameter space as features for classification and it is the first time (to our knowledge) that the same

equipment (namely a digital light projector) has been used both for structured lighting based dense

stereo reconstruction and also as the light source in a BRDF extraction framework. An example of a

flotation cell is shown in Fig. 1.1, where some of the equipment required to create a dense stereo surface

reconstruction (video cameras and digital light projector) is also visible.

The rest of this thesis is divided into the following chapters, the contents of which are summarized as

follows:

In chapter two we review the relevant literature in the fields of BRDFs, Markov random field (MRF)
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parameter estimation, the Markov Chain Monte Carlo (MCMC) sampling methods, particle filtering,

and Population Monte Carlo (PMC) methods.

In chapter three we describe the two parametric BRDF models which our algorithm is tested on, namely

the isotropic Ward model, and the anisotropic Phong model.

In chapter four we describe the MRF formulation applied to reflectance modelling. We describe how

the BRDF parameter estimation problem may be posed as a MRF parameter estimation problem, and

why this is appropriate given the data we have used to reconstruct our material surfaces. Also described

is the pseudolikelihood function which is used to weight the samples of the probability distributions in

the BRDF parameter space.

In chapter five we describe importance sampling, the particle filter, partitioned particle filter, Markov

Chain Monte Carlo (MCMC) sampler, dynamically weighted MCMC sampler, and Population Monte

Carlo (PMC) sampler. We also describe the types of importance and softening functions we use to

derive the posterior distributions on the parametric BRDF models.

In chapter six we describe the method we used to calculate a probabilistic 3-D surface reconstruction,

which is used as input data for the calculation of the parametric BRDFs for surfaces. The pseudolike-

lihood function developed in chapter four is adjusted to incorporate the uncertainty in the dense stereo

reconstruction.

In chapter seven we report results of our algorithms operating on synthetic data. The algorithms

tested for calculating the BRDF parameters, using our MRF parameter estimation framework, are the

Levenberg-Marquardt (LM) nonlinear optimizer, the dynamically weighted MCMC sampler, and the

PMC sampler.

In chapter eight we test the PMC sampler on real data, using the Ward and anisotropic Phong models.

The data are collected using a digital light projector and a stereo camera rig. Forty-eight material

surfaces are extracted using this setup, and the posterior distributions in the parameter space are used

as features in intra and extra-class similarity matrices. It is found that the posterior distributions on the

BRDF parameter spaces are reasonable candidates for features for material surface classification.

In chapter nine we conclude the thesis and provide a discussion of our results.

The appendices are summarized as follows:

• Appendix A contains a brief description of sampling from a multinomial distribution,

• Appendix B contains a description of some pixel similarity measures which can be used in dense

stereo reconstruction,

• Appendix C contains the mathematical formulation of the thin plate spline method of interpola-
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tion, which we used to generate synthetic data,

• Appendix D contains a description of nonlinear optimization methods, particularly the Levenberg-

Marquardt method, which was tested for convergence performance against the Population Monte

Carlo method to estimate Markov Random Field parameters,

• Appendix E contains tables of similarity measurements between different real material surfaces,

using different probabilistic distance measures operating on the sample sets, which are calculated

using the Population Monte Carlo algorithm.
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Chapter 2

Literature Review

This chapter reviews some of the relevant literature in the field of BRDF extraction, Population Monte

Carlo, Markov Chain Monte Carlo and iterative Bayesian sampling methods, and some of the estab-

lished methods for Markov Random Field parameter estimation. These are the core components in the

novel aspects of the BRDF estimation methodology. The other software modules required to calcu-

late the reflectance parameters from these probabilistic surfaces include everything required to create

a probabilistic dense surface reconstruction, such as camera calibration, rectification, sparse feature

correspondence resolution and dense stereo reconstruction algorithms.

2.1 BRDF parameterisations and extraction

This section examines some previous attempts at estimating BRDFs and object reflectance characteris-

tics.

In [115], Torrance and Sparrow do a study in interpreting the reflectance of surfaces via an analysis of

the surface roughness. Their reflectance model assumes that the surface consists of small, randomly

oriented, mirror-like facets. Specular reflection occurs against these facets, and diffuse reflection is due

to multiple reflections and internal scattering between the facets. Shadowing and masking of adjacent

facets is included in the model. The model they derive from their assumptions predicts the off-specular

peak phenomenon, which causes an increase in reflection as the angle of incidence increases. The

model holds well for many metallic and non-metallic surfaces.

In [33], the concept of the Bidirectional Reflectance Distribution function is introduced. The BRDF is

a distribution function, which relates the irradiance incident from one given direction to its contribution

to the reflected radiance in another direction. The work gives much of the currently used nomenclature

including concepts, terms, symbols, and units, for categorizing and specifying reflectance quantities
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for a variety of different beam configurations (both incident and reflected beams). These concepts are

defined and interrelated in terms of the BRDF.

The imaging gonioreflectometer is introduced in [122], and the Ward BRDF model is presented. The

model has three parameters: a diffuse reflectance coefficient, a specular reflectance coefficient, and a

surface roughness parameter which is the standard deviation of the surface slope. The model is also

extended to surfaces with uncorrelated slope distributions along orthogonal directions along its surface.

In [86], the Lambertian reflectance model is generalized (extended). This model accounts for such

radiometric phenomena as masking, shadowing and surface interreflections. A surface is modelled as a

collection of symmetric “V-cavities”, each of which has two opposing facets (this is the same surface

model as used in [114]). In [86], each facet is assumed to be Lambertian. A more complex diffuse

reflectance term is derived, which can provide reasonably good reflectance models for a variety of

rough surfaces, without including specular reflection in the BRDF at all.

Sato et al. in [106] present a method for extracting the geometry and some reflectance characteristics

of everyday objects from images. The geometry of the surface of the object is first found by integrating

range data, then each component of the reflectance (diffuse and specular) is separated from the image

data (which consists of images of the object taken from different locations). The specular component is

estimated by identifying suitable points on the object’s surface, where there are clearly visible specular

highlights.

Rusinkiewicz in [102] develops a method for decomposing BRDF data into re-parameterized data,

transformed into functions of the halfangles and a difference angle, rather than the usual angle of in-

cidence and reflection. It is shown that this transformed data is more compact (requiring less storage),

due to the nature of the features of standard BRDFs, where specular lobes and retro-reflective peaks are

often aligned with the newly transformed coordinate axes.

In [99] and [98], Dror et al. develop an algorithm for learning relationships between surface reflectance

and certain features from a single image, by exploiting the statistical regularities in the spatial structure

of real world illumination, which translate into relationships between surface reflectance and statistical

features of the image. This is done in an attempt to facilitate visual material recognition, to improve

reconstruction algorithms, and to overcome the limitations of shape from shading algorithms (which

assume known surface reflectance properties), and of classical stereo and motion estimation algorithms

(which assume Lambertian reflectance). The material recognition algorithm is verified using a set of

photographs of physical spheres of known reflectance.

In [70], a method for calculating bidirectional texture functions (BTFs) from a surface is developed.

BTFs are six-dimensional functions that model a surface texture as a function of illumination and view-

ing directions (the additional dimensions are for texture data). In [70] it is shown how to develop novel

views given data points of the BTF at various known values.
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In [2], Ashikhmin et al. propose an anisotropic Phong BRDF model which conserves energy, is re-

ciprocal, and has a non-Lambertian diffuse reflectance term. It is also suited for use in Monte Carlo

renderers. We selected this anisotropic Phong model as one of the models to use for testing our param-

eter estimation algorithm on synthetic data, due to its simplicity and its performance characteristics.

In [79], a method which simultaneously estimates the BRDF (Ward parameterisation) and the texture of

a surface is developed. An image is acquired where half the image is of a plane of a reference material,

and the other half is of the material under investigation. The line separating the two materials must form

a plane with the light source and camera locations. First a least squares approach is used to find the

BRDF Ward parameters (as in [58]), after which the texture information is expressed as the difference

in the measured BRDF values at a region in the image, and the expected value given the calculated

Ward reflectance parameters.

In [56], a new reflectance model is developed which posits that any BRDF is in fact a simplification

of the Bidirectional Surface Scattering Distribution Function (BSSRDF). The BSSRDF allows for light

transport between any two points on the surface of the material. Integration of the BSSRDF, single

scattering, diffusion approximation, and texture handling are all incorporated in a ray tracing framework

using Monte Carlo sampling for integration.

In [65], an algorithm is developed which robustly detects the different materials of real objects, and fits

an average BRDF to each of them. This is done by clustering the acquired surface reflectance samples

into groups of similar materials, using the Lafortune [61] parametric BRDF model.

In [94], Ramamoorthi introduces a signal processing framework for BRDF estimation, which describes

the reflected light as a convolution of a lighting function and the object’s BRDF. This is expressed

mathematically as the product of spherical harmonic coefficients of the BRDF, with the lighting. The

inverse rendering problem is then cast as a deconvolution problem.

In [40], a method is developed for estimating the shape and reflectance of a surface from a small number

if images. The surface is represented by a set of discrete cosine transform (DCT) coefficients. The

algorithm alternates between doing steepest descent on the DCT coefficients (using a photoconsistency

measure), updating the surface Lambertian albedo characteristics (per point) using a linear least squares

method, solving numerically (Newton’s method) for the light source directions, and solving (Newton’s

method) for the specular reflectance and surface roughness.

In [117], images of an opaque object are taken with different polarizers over the camera lens. Using the

fact that specular light tends to be polarized, and diffuse not, Umeyama uses an Independent Component

Analysis algorithm to calculate the diffuse and specular reflectance components of the object’s surface

reflection.

In [131], a View Independent Reflectance Map (VIRM) is proposed, which is calculated from calibrated
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images of the object. The VIRM is a simplified version of the Torrance-Sparrow model, which only

models a single material under distant lighting conditions. An iterative method solves for the geometry

and the VIRM using a photoconsistency measure. In [94], it is noted that there is an inherent ambiguity

when trying to recover both the lighting and the BRDF, since a blurred light source and a sharp BRDF

give the same results as a sharp light source and a low-pass BRDF. [131] takes advantage of this by

replacing specular reflection with the combination of a circular low pass filter and a perfect specular

(mirror) reflectance at each point on the surface. It is essentially a simplified model for reflectance

under the assumptions that all parts of the surface are of the same material, with distant lighting, and

that no self shadowing or self-reflection occurs. The advantage of this method is that many of the model

parameters may be calculated linearly.

In [126], four parametric BRDF models are compared, namely those of Phong, Ward, He-Torrance

and Lafortune. In this comparative study, different real world objects have their reflectances measured

using a gonioreflectometer. Each model is then fitted via nonlinear optimization with the L2 norm of

the BRDF error, weighted by the cosine of the reflectance angle. It was found that the Ward and Phong

models perform best when there is less dependence of the reflectance on the angle of incidence. The

He-Torrence model works well for some surfaces, and the Lafortune model performs well on all the

surfaces.

In [43], a method is developed for calculating the BRDF and the shape of a material from a set of images.

The algorithm iterates between optimization of BRDF parameters, computing the surface normals and

material weight maps, and enforcing the integrability of the resultant normal map (by solving a Poisson

equation). The material weights indicate the relative amount of each of two “fundamental” materials

which comprise the surface subregion.

In [119], the BRDF is estimated by sampling frontier points on the object contour, and under assump-

tions of fixed or varying illumination, the parameters are found by formulating the problem as one of

blind deconvolution, and using a minimization technique. Frontier points are points on the object such

that the plane formed by the point and the two camera centers is tangential to the object. The algorithm

iteratively re-estimates the illumination and surface reflectance given several images of the object and

frontier points. In the fixed-illumination moving-camera setting, the algorithm iterates between fixing

the BRDF parameters and recovering the light distribution by using the Lucy-Richardson algorithm,

then fixing the light distribution and estimating the BRDF (with gradient descent). In the fixed camera

varying lighting setting, a cost function is minimized with gradient descent. For more precise geometry

recovery, the algorithm of [51] is used.

In [12], a variational method is developed which alternates between estimating the surface geometry

(using a photoconsistency measure) and the reflectance parameters. The initial geometry is estimated

using a shape-from-silhouette method, which takes as inputs the captured images of the object rotating

on a turntable, and the projection matrices for each image.
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In [64], an MCMC ray-tracing rendering framework is developed which uses importance sampling

to focus samples on the ray-traced paths which carry higher amounts of energy. It is assumed that

parametric BRDFs for all surfaces are known, and that the direction of each ray from the surface point

to the camera is known. The importance sampling occurs over the incident light direction from the

light sources onto the material. To facilitate importance sampling over the incident directions, the

BRDF for the surface is factorized and reparameterised. This results in a more efficient MCMC ray

tracing renderer. In some sense there is a similarity between this paper and our work: whereas in

[64] it is assumed that the direction of the incident light is unknown and the parametric BRDF is known

exactly, but the incident light directions are many and must be integrated over with MCMC sampling. In

contrast, we assume that the direction vectors of the incident and outgoing light path are known exactly,

and a probabilistic representation for the parametric BRDF is to be found using sampling methods.

2.2 MRF parameter estimation

In this section we review some of the history of MRF parameter estimation over both continuous and

discrete MRFs, as well as some of the more recent methods. This serves as background to the novel

MRF parameter estimation method which we develop in this thesis.

Besag introduced the coding method in [6], where nodes on a lattice are separated into disjoint sets,

called codings. The conditional densities within a coding are independent. Two codings are needed

for a 4 neighbourhood system, and four codings for an 8 neighbourhood system. Each of the Maximal

Likelihood MRF parameter estimates are based only on the information from one coding. The estimates

from each coding may be averaged (one method) to estimate the overall best MRF parameters.

In [7], Besag introduced the pseudolikelihood function. This method incorrectly assumes that lattice

node labels are independent, but allows us to avoid calculating the partition function when estimating

the probability of a labelling on a lattice for a particular set of MRF parameters. In [8] the pseudolike-

lihood parameter estimation technique, is further tested. We selected this method to derive probability

estimates for BRDF model parameters as is seen in later chapters. In [9], a parameter estimation method

for MRFs on images is outlined, which iterates between making an Iterative Conditional Modes (ICM)

estimate of the correct label for each pixel, and using these label estimates to maximize the MRF pa-

rameters using a pseudolikelihood measure.

The roots of Mean Field approaches to MRF parameter estimation (e.g. [37] and [136]) are in statistical

mechanics. The Mean Field estimation approach takes a similar form to the pseudolikelihood approach,

but uses a mean field approximation for the values of the neighbouring random variable node values

(labels) instead of the neighbouring site labels. Different mean field algorithms estimate the mean field

approximations differently, for example by iteratively averaging the neighbouring pixels intensities
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[37], or by using a saddle point approximation [136].

In [52], a method of estimating Gibbs hyperparameters in a positron emission tomography (PET) setting

is developed. It relies on simultaneously deriving a posterior distribution on both the state values on

the lattice and on the parameters of the MRF. Using samples from this posterior, it is simple to estimate

quantities like the mean of the image (lattice), averaged over the (hyper)parameter uncertainties. Note

that in this way it is similar to our method, which estimates reflectance parameters, given a per-lattice-

site range map, with associated certainties for each height, for each point on the lattice (this probabilistic

range map is derived from a posterior distribution on the pixel disparities using a stochastic dense stereo

method). These parameters may also be estimated from the samples of this posterior distribution.

The partition function, required to calculate the probability for each sample set of image realizations

and MRF parameters is estimated using Geyer’s reverse logistic regression method [41], which is an

improvement on Bennett’s ratio method [4], which is itself an advance on the importance sampling

method of [42].

In [46], the GMRF parameter estimation via the histogramming method of [24] which uses lattice

codings is investigated, and the relationship between this and the Maximum Likelihood method is

explored. A method for reducing bias in the histogramming method is also proposed.

In [105], a Maximum Likelihood method is developed for estimating the shape and temperature pa-

rameters of a Generalized Gaussian Markov Random Field (GGMRF), although the approach may be

extended to general MRFs. The method relies on efficient estimation of the partition function. This is

done by estimating the expectation value of the derivative of the partition function and integrating it by

fitting a second order spline to it. The expectation value is estimated using a Metropolis-Hastings style

algorithm, and a careful study of the prior distribution values involved has allowed for the construction

of a proposal distribution which is tuned to the problem and improves the estimates derived from the

sampling procedure.

In [17], the idea developed in [25] and [46] is extended. The authors seek to produce a general method

for parameter estimation, using image analysis to model pixel (node) interactions on a lattice only as a

case study. A grey level image with G levels is divided into G binary planes. Each plane is modelled

using a stochastic spatial model, from which the MRF parameters are estimated using a weighted least

squares method.

In [104], an efficient scheme for estimating the shape parameter for the generalized Gaussian MRF

(GGMRF) is proposed. To do this, an offline numerical computation of the log of the partition function

is done. The domain of application for this technique is tomography, and the parameters depend also on

unknown image data. An EM method was designed to do the parameter estimation with missing data.

It is also shown that the temperature parameter for the GGMRF has a simple closed form solution.

In [69], a novel stochastic approach is used for parameter estimation in multiresolution MRFs (MRMRF).



2. Literature Review 14

Images are decomposed by wavelets and the MRF parameters are estimated using the subbands as input

texture data. The idea is that these estimated MRF parameters may be used to classify the texture of

the image. The method proposed for estimating the MRF parameters is a Markov Chain Monte Carlo

(MCMC) method, using the pseudolikelihood of the image given the proposed MRF parameters as a

probability, for each sample in the chain. These samples yield a posterior distribution on the probability

of the MRF parameters. This paper was one of the main inspirations for our MRF parameter estimation

method, which uses a Population Monte Carlo sampler, rather than an MCMC sampler to estimate MRF

parameters.

In [95], 3-D Gaussian MRF models are used for texture segmentation in 3-D MRI images. These MRF

models parameters are estimated by solving a system of standard normal equations for each of a set of

voxels from MRI texture data.

In [59], an MRF segmentation model which combines colour and texture features (given by a set of

Gabor filters) is introduced. The parameters for the model (which include Gaussian Mixture Model

coefficients) are estimated with an EM algorithm, to handle incomplete training data (unknown labelling

of input pixels in the unsupervised learning case).

In [85], a “homotopy calculation method” is developed for image restoration under specific independent

Gaussian noise and neighbourhood system assumptions. The method alternates between updating MRF

parameters and updating (restored) image labels.

In [121], Wainwright does an analysis a method which uses the same convex variational relaxation

to construct an M-estimator to fit MRF parameters (in a general setting) and to perform approximate

marginalization in the prediction (restoration/labelling) step. It is proved to be beneficial to use an

inconsistent M-estimator that returns an incorrect model since the errors in the M-estimator can off-

set errors in the prediction step. (The prediction step may be equivalent to denoising, smoothing or

interpolating new noisy data).

In [129], a method for texture analysis which combines filter theory and random fields, using a Maxi-

mum Entropy approach, is developed. The parameters for this MRF are estimated using MCMC.

In [137], a method for estimating the best MRF parameters in a dense stereo algorithm is developed. The

method alternates between finding the disparity map given current MRF parameters, and optimizing the

MRF parameters given the input images and the disparity map. An EM algorithm is used to estimate

the MRF parameters given a disparity map, and belief propagation is used to estimate the disparity map

given the MRF parameters.

In [47], Haindl presents a method for the unsupervised segmentation of colour image textures. The

texture segmentation is done in the MRF parameter space. A recursive maximum pseudolikelihood

parameter estimation procedure for a GMRF model is derived, and used to evaluate the segmentations.
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This is analogous to our work: we ultimately seek to create “reflectance features”, which are sample

based posterior distributions on the parameter space of a BRDF, that are extracted from a (probabilistic)

object surface.

In [142], two recursive-in-order least squares algorithms for estimating the parameters of a 2-D GMRF

are presented. The first uses auxiliary vectors to find recursive forms of the parameter vector for a

noncausal GMRF, the second replaces the GMRF model with a noncausal nonsymmetric model; the

computational complexity is about half that of the conventional Least Squares estimator.

In [81], a method is presented for estimating the clique potentials in a pairwise GMRF on the lattice of

pixels on an image. Since the energy of the GMRF will take the form of a weighted sum of Gaussian

kernels, the authors use Support Vector Machine (SVM) learning (the Mean Field theory SVM learning

algorithm [82]), for estimating this energy function. The potential function of each clique shape in the

GMRF is modeled as a Gaussian shaped kernel. The intended domain of application for this method is

image texture modelling, and the method is satisfactory for synthetic data.

There are several investigations in the literature about using the Expectation Maximization (EM) method

to optimize MRF parameters. For example, [135] develops a method for blind image restoration using a

coupled Markov random field. Other EM based methods for MRF parameter estimation include [138],

[22], [134], [16], [38], [92], and [104].

In [135], Zhang develops an algorithm to do blind image restoration, using two coupled Markov random

fields to model the original image: a compound Gauss Markov (CGM) field, and a line process. The

method uses a mean field algorithm in an Expectation Maximization framework. There are two sets of

model parameters which relate to the noise in the Gauss Markov field, and to the expected level of image

blurring (each pixel in the observed image is treated as a locally-blurred transform of the corresponding

region in the original (unrectified) image). After each set of mean field iterations, the blur parameters

are estimated (as coefficients of a discrete cosine transform (DCT) on a “blurring kernel”). The noise

parameters for the CGM model are not iteratively re-estimated in this algorithm, and reasonably good

initial values must be given for these parameters if the algorithm is to converge correctly. Zhang points

out that whereas the blur parameters may be estimated by calculating the coefficients of a DCT, the

noise parameters in the CGM model would have to be estimated using a nonlinear gradient descent

type algorithm. This introduces additional control parameters and may produce bad local minima.

There is some similarity between this method and ours: in [135], noise parameters for an observation

model and correct image data (MRF field labelling) are estimated given observed data, whereas we are

dealing with the problem of parameter estimation of an MRF model, given probabilistic information

on possible individual labels at points on a disparity map. However, [135] avoids doing parameter

estimation on the actual potential function parameters of the MRF.

In [116], the progress with the EM mean field algorithm is continued, this time with application to
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magnetic resonance imaging (MRI) data. The observed MRI volumetric intensity image is modelled

as being the result of a true image with spatially interacting pixels, and spatially low frequency bias,

which is the result of the operation of the MRI scanner. As in the previous example, this is solved

by iteratively estimating the bias parameters and the estimate of the original image, in an Expectation

Maximization manner.

In [104], a Maximum Likelihood approach is used for the recovery of the shape parameter in a General-

ized Gaussian Markov Random Field (GGMRF). Recovery of the temperature parameter was shown in

[16] to have a simple closed-form solution, although estimation of the shape parameter is made difficult

by the need to calculate the partition function. An optimal Maximum Likelihood method is developed

which calculates the logarithm of the partition function, offline. An alternative method was suggested

in [93], which estimates the shape parameter through the computation of the kurtosis of differences

over neighbouring pixels.

In [103], a general framework for a multi resolution non-homogeneous Generalized Gaussian Markov

Random Field (GGMRF) parameter estimation method is developed. It is shown to be applicable to

the domains of optic flow and PET (tomography). At each resolution (in a coarse to fine approach) the

noise variance parameters at each pixel are estimated (the MRF field is non-homogeneous, so the noise

parameter varies across the image, or across the data). The temperature of the MRF across the data is

also re-estimated at each resolution.

2.3 Shape from shading in a stochastic MRF framework

In [23], the shape from shading problem is for the first time treated in a stochastic framework, using

Markov Random Fields in a Bayesian formulation, with simulated annealing. The stochastic method

outperforms a deterministic method to minimize the associated energy function, although it is much

slower. A hybrid method is also proposed, which combines the deterministic and stochastic approaches,

in a multi-resolution framework. Our method uses a different control point parameterisation of the

surface, and solves the inverse problem (i.e. reflectance parameter estimation).

2.4 Partitioned Particle Filtering (PPF) and Importance Sampling

The bootstrap filter was developed by Gordon in [45] and [44], and forms the basis for the particle filter

which is also known as the conditional density propagation (condensation) filter. The condensation

(conditional density propagation) algorithm was developed in [14], to track the parametrization of a

shape contour in a recursive Bayesian manner. In [74], MacCormick and Blake introduce partitioned

particle filtering, which is in essence a repeated importance sampling algorithm, using a different impor-
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tance sampling distribution for each partition. It may be used to refine or improve the sample locations

of a sample set representing a probability distribution without introducing bias. In [75], this method is

used for tracking the contours of a human hand.

In [84] it is shown that all particle filtering algorithms, Kalman filtering algorithms, and Hidden Markov

Models inference algorithms are special cases of inference done on a (Dynamic) Bayesian Network

(DBN).

2.5 Population Monte Carlo methods

In [63], the Population Markov Chain Monte Carlo, or simply Population Monte Carlo (PMC) sampler

is introduced. This sampler uses statistical information from a group of Metropolis-Hastings samplers

to calculate better proposal distributions for each of the samplers. It is found that the Population MCMC

method performs better than an evolutionary algorithm, and better than a single Metropolis-Hastings

sampler in a problem involving exploration of arc frequencies in networks.

The Population Monte Carlo (PMC) method is (apparently independently) also introduced in [19]. It

is shown that iterated importance sampling can produce more accurate approximations to a distribu-

tion than the sequential sampling of a MCMC algorithm. The PMC method is a combination of the

MCMC method (for the construction of the proposal distribution), importance sampling, SIR (sample-

importance-resampling for sample equalization), and iterated particle systems. In their excellent intro-

duction, they point out that early literature on MCMC methods attempted to dissociate the method from

importance sampling, despite the commonality of sampling from a different distribution to the target

distribution. Only recently have the two approaches (importance sampling and MCMC) been coupled,

(see [76], [68], and the iterated particle systems of [27]). The PMC method is tested by simulating

from a Gaussian Mixture Model, and an ion-channel model. The PMC sampler is found to perform

much better than an equivalent Metropolis Hasting sampler. The PMC algorithm of [19] includes a

resampling step of all samples at each iteration, which is not included in the PMC algorithm of [63].

One of the first iterated particle systems was the bootstrap filter [45], which propagated samples in a

Bayesian manner. Additional sampling steps were introduced in [5]. The auxiliary particle filter of [90]

added an auxiliary variable to improve the sampling efficiency and robustness to outliers.

In [76], a transformation called an “importance link function” is used to adjust the samples taken from

the proposal distribution, to resemble more closely the target distribution. The goal of reducing the

importance weight variances is achieved in three case studies which include an analysis of a case-

deletion influence analysis for a linear and nonlinear model, using this method. Unfortunately the

construction of the importance link functions requires a detailed understanding of both the posterior

and the importance distributions.
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In [54], a short cross-disciplinary survey of Monte-Carlo and importance sampling style algorithms,

as well as genetic algorithms, and sampling techniques in physics systems such as lattice systems and

polymer models is presented. It is found that many of the techniques related to these models may be

described as Population Monte Carlo methods.

In [26], a theoretical advance is made for general PMC schemes: given a function of interest, it is

found that the asymptotic variance for this function may be minimized by iteratively minimizing the

parameters on a kernel of importance functions (referred to as a D-Kernel). This is relevant to variance

reduction in general Monte Carlo experiments and simulations, where much effort has been put into

reducing the number of samples required to represent a posterior distribution by sampling efficiently

and avoiding sampling in areas where the function has uninteresting values. However, the adaptivity of

this PMC model is limited to the modification of the weights of each of the kernels.

Fan [32] uses the PMC framework in a photo-realistic rendering application, where it is known that

Monte Carlo integration algorithms on a per pixel rendering basis can produce physically accurate

lighting models. This method requires the calculation of integrals of two types: hemispheric integrals

and image plane integrals. Two PMC samplers are used in this method. The first is used for hemispheric

rendering integrals, where incident light directions are sampled from some importance function. The

appropriate choice of an an importance function to sample from will allow for more realistic and faster

rendering if for example, the importance function allows us to ignore a light source that is occluded from

a particular pixel. The second sampler in this method, is the “adaptive image plane sampler”, which is

used for the selection of pixels for refinement, based on perceptually weighted variance criteria. The

hemispheric integral sampler allows samples to be guided towards important illumination directions,

without introducing bias.

In [62], the work of [32] is continued. A Population Monte Carlo algorithm is developed that improves

the rendering efficiency of their algorithm, which concentrates computation on important light source

paths, in rendering a scene. The PMC energy redistribution algorithm allows for sample reuse, and the

consequent propagation of important samples for calculating light transport enables more intelligent

calculation of path integrals. The PMC algorithm in this context iterates over a population of light

transport paths, where each path is calculated using a ray tracing algorithm.

In [18], an algorithm is developed that iteratively updates the mixture weights and parameters of a

mixture of importance sampling probability density functions, to optimize the performance of an im-

portance sampler. A Rao-Blackwellisation step is incorporated, for updating the weights and density

parameters. It is also pointed out that one of the benefits of importance sampling (or Population Monte

Carlo) schemes is the parallelizability, which allows it to take advantage of parallel or multiple-core

architectures.

In [20], a PMC method (which the authors refer to as both Population Monte Carlo and Iterated Im-
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portance Sampling algorithm) is tested on missing data problems. It is found that the PMC method

outperforms the MCMC method, and can provide a good representation of distributions of interest in

just a few iterations. While the selection of good importance functions is still important, the iterative

parallel multi-sample nature of the PMC algorithm makes it more robust to poor choices of impor-

tance function. In fact, the PMC framework allows for the inclusion of multiple importance kernels,

each suited differently to the missing-data problem. A Rao-Blackwellization step is included and offers

some benefit.
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Chapter 3

Parametric BRDFs for Reflectance
Modelling

An early method for capturing the BRDF of a material was to use a device called a gonioreflectometer,

which has a moving photometer and light source. Data points are collected by moving the light source

and the photometer and repeatedly taking measurements. The imaging gonioreflectometer, an improve-

ment which allows the device to capture an entire hemisphere of surface reflections simultaneously,

was introduced in [122]. This device incorporates a hemispherical mirror and a charge coupled device

(CCD) with a fish eye lens, to collect all the incident light rays. In the same paper a parametric model

is introduced for anisotropic reflectance, known as the Ward model. Although no parametric model

can ever capture a material’s reflectance completely, the Ward model is simple and accurate, and is

still used today with many variations. In [122], the model’s correctness is validated using the imaging

gonioreflectometer. For our parametric BRDF estimation method we explore two possible BRDF pa-

rameterisations, namely the Ward model of [122], and the anisotropic Phong model of [2]. However,

our method would extend just as well to most BRDF parameterisations.

In general BRDFs are written in the form ρ(θi, φi; θr, φr), where ρ is a fraction of the reflected energy,

which depends on the incident angles (θi, φi) (between the surface normal and the light source), and the

angles of reflectance (θr, φr), the angles between the surface normal and the camera sensing element.

The azimuthal angle φ is taken about the surface normal at the point of incidence, and the angle of

elevation θ is taken against the surface plane. Sometimes the incident and reflected angles are described

in vector form, as is done in the description of the anisotropic Phong model.

A BRDF function should actually be a 5-dimensional function ρ(θi, φi; θr, φr, λ), where the λ param-

eter refers to the wavelength of the light (polarization should also be included explicitly, but seldom

is). The function is called “bidirectional”, because the incident and reflected angles can be exchanged
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for one another, and the function will return the same value (due to the physics of light). This is why

backwards ray tracing, for rendering, works. With colour cameras, we could theoretically develop a

reflectance estimation technique that works across three colour channels. Since this is a trivial exten-

sion, we do not explore the three colour BRDF parameterisation estimation problem, but rather work on

the average intensity across colour channels. In each of the two models described here, the following

notation is used:

• a · b is the scalar product of vectors a and b,

• n̂ is the surface normal,

• h is the normalized halfway vector between the incident light direction vector k1 and the reflected

light direction vector k2,

• u,v are tangent vectors along the surface which, with n̂, form an orthonormal basis.

3.1 The Isotropic Gaussian Ward reflectance model

This section describes the isotropic Ward BRDF model, as expounded in [122]. The isotropic Ward

model is given by

ρbd,iso(θi, φi; θr, φr) =
ρd
π

+ ρs
1√

cos θi cos θr

exp (− tan2 δ/α2)
4πα2

, (3.1)

where ρd is the diffuse reflectance, ρs is the specular reflectance, α is the standard deviation of the

surface slope, and δ is the angle between the half vector h and the surface normal n̂. The model is

clearly symmetrical, and the normalizing term ensures the correct energy balance. The isotropic model

may be extended to the anisotropic one if it is assumed that the surface has different (uncorrelated)

roughnesses in perpendicular directions along the surface. These roughnesses are denoted by αu and

αv. The anisotropic Ward model is

ρbd(θi, φi; θr, φr) =
ρd
π

+ ρs
1√

cos θi cos θr

exp(− tan2 δ(cos2 φ/α2
u + sin2 φ/α2

v))
4παuαv

, (3.2)

where φ is the azimuth angle of the half vector projected onto the surface plane (as seen in Fig. 3.1).

The previous equation may be computed more efficiently by avoiding some of the trigonometric calcu-

lations, and restating Eqn. 3.2 as:

ρbd(θi, φi; θr, φr) =
ρd
π

+ ρs
1√

cos θi cos θr

1
4παuαv

exp

(
−2

h·u
αu

+ h·v
αv

1 + h · n̂

)
, (3.3)
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where

h · u =
sin θr cos θr + sin θi cos θi

||−→h ||
, (3.4)

h · v =
sin θr sin θr + sin θi sin θi

||−→h ||
(3.5)

and

h · n̂ =
cos θr + cos θi
||−→h ||

, (3.6)

with

||−→h || =
[
2 + 2 sin θr sin θi(cosφr cosφi + sinφr sinφi) + 2 cos θr cos θi

] 1
2 . (3.7)

The following substitutions are used for vector calculations:

~h = k1 + k2, (3.8)

h = ~h

||~h||
, (3.9)

cos(θr) = k1 · n̂, (3.10)

cos(θi) = k2 · n̂. (3.11)

In the above equations k2 is the reflected ray direction (away from the surface), k1 is the incident ray

direction (away from the surface), u is a unit vector in the surface plane, and v is a unit vector in the

surface plane, perpendicular to u. It is noted in [122] that there is some spectral dependence between

ρd and ρs, and that the normalization factor 1
4πα2 loses some accuracy when α > 0.2.

3.2 The Anisotropic Phong model

The anisotropic Phong model, due to [2] (a more detailed derivation of this model is given in [3]),

parameterizes a BRDF with four parameters, referring approximately to diffuse and spectral reflectivity

and horizontal and vertical surface roughness. The model has four parameters, namely Rs and Rd, the

specular and diffuse reflection coefficients, and nu and nv, the surface roughness coefficients. As with

the Ward model, the reflectance is modeled as a sum of diffuse and specular components:

ρ(k1,k2) = ρd(k1,k2) + ρs(k1,k2). (3.12)

The specular component of the reflectance function is

ρs(k1,k2) =

√
(nu + 1)(nv + 1)

8π
(n̂ · h)nu cos2 φ+nv sin2 φ

(h · k)max((n̂ · k1), (n̂ · k2))
F (k · h), (3.13)

where
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• nu and nv are the surface roughness parameters,

• φ is the angle between u and the halfvector h projected onto the surface (see Fig. 3.1),

• k1 is the vector from the surface to the light source, normalized to unit length,

• k2 is the vector from the surface to the camera center, normalized to unit length,

• ρ(k1,k2) is the specified BRDF function,

• k indicates that either k1 or k2 can be used,

• F (cos θ) is the Fresnel reflectance given an incident angle θ.

The approximation to the Fresnel reflection term is

F (k · h) = Rs + (1−Rs)(1− (k · h))5. (3.14)

The above approximation, where Rs is the material’s reflectance for the normal incidence, is due to

[107]. For more efficient computation, it is shown that the computation of trigonometric functions may

be avoided by rewriting Eqn. 3.13 as

ρs(k1,k2) =

√
(nu + 1)(nv + 1)

8π
(n̂ · h)

nu(h·u)2+nv(h·v)2

1−(h·n̂)2

(h · k)max((n̂ · k1), (n̂ · k2))
F (k · h). (3.15)

The diffuse term (which does not depend on nu or nv) for Eqn. 3.12 is given as

ρd(k1,k2) =
28Rd
23π

(1−Rs)(1− (1− n̂ · k1

2
)5)(1− (1− n̂ · k2

2
)5). (3.16)

The leading factor of 28
23π is for total energy conservation. A diagram of the vectors in this model is

shown in Fig. 3.1. The anisotropic Phong model has many advantages over the Ward model: it obeys

energy conservation and reciprocity laws and allows for different reflectance characteristics in different

directions (as a result of the surface roughness which has two spatial parameters associated with it).

It also models Fresnel reflectance, where as the angle of incidence decreases the specularity increases.

The roughness coefficients nu and nv have no physical meaning in the anisotropic Phong model (unlike

the Ward model).

Although in the anisotropic Phong model, the diffuse term may be replaced with another one (e.g. the

Lambertian reflectance function, which is wholly diffuse), the authors of [2] prefer to use an angle

dependent diffuse term which balances the energy between diffuse and specular reflection for better

energy conservation.

The two reflectance models described here are widely known, especially the Ward model. Demonstrat-

ing our method using each of these two methods will help in proving the genericity of our solution.
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Figure 3.1: BRDF geometry.



Chapter 4

Markov random field model for Shape
from Shading

The Markov random field model allows for local probabilistic interactions between nodes on a lattice.

By associating high probabilities to surface geometries which are congruent with the available informa-

tion about lighting, camera and surface reflectance, we are able to use the MRF framework to estimate

the surface which is most likely to have created the reflectance measurements.

4.1 Markov random field framework

This section outlines the Markov random field (MRF) framework which is used to estimate reflectance

parameters of stereo reconstructed surfaces. It may seem unnatural to estimate parametric probabilistic

BRDF models using MRF parameter estimation, but it can be justified by noting that since (uninterpo-

lated) a disparity map always consists of a set of discrete random variables which have uncertainties

associated with them, any stereo based 3D reconstruction of a surface is in fact the realization of a

discrete 2-D Markov Random Field, where the labels on the image points correspond to the projected

depths of those points into the scene. This idea was stimulated by our previous research in [73], [72]

and [71], where we cast the shape from shading problem into a MRF framework.

Surface geometries are calculated given the reflectance parameters of the surfaces, by minimizing local

clique energy over all the individual cliques that make up the surface. This is done using Loopy Belief

Propagation, and Gibbs sampling. This led us to hypothesize that the same reflectance parameters of the

surface can be estimated using the same (much expanded) MRF framework, by treating a probabilistic

surface reconstruction as a posterior distribution on a MRF. We now describe MRFs in general, and

then our particular use of them.

25
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If a Markov random field model is defined on a lattice of connected sites (or nodes), each of which

represents a discrete random variable that can take on one of a set of possible labels, it means that the

probability of a node taking on any particular label depends only on the labels of its neighbouring nodes.

In particular, the sites of a MRF on a lattice S are said to be connected according to a neighbourhood

system N , such that

N = {Ni|∀i ∈ S}, (4.1)

where Ni is the set of sites neighbouring node i. A clique is a set of nodes which are all neighbours of

each other. If the conditional probability function for the label of node i given all other site labellings

is equal to the probability of the site given the labels of its neighbouring nodes only, i.e. if

p(fi|fS−{i}) = p(fi|fNi), (4.2)

then the random field is a Markov random field.

Usually MRFs are described using Gibbs distributions on the lattice. If potential energy terms are

defined for each clique, for each possible set of labellings on those cliques, then the probability of a

particular lattice labelling can be defined as (Gibbs random field formulation):

p(f) = Z−1 exp(−U(f)/T ), (4.3)

where Z is the normalizing partition function, T is a temperature variable, and U is the potential energy

on the lattice given a realization (or instance) of labels, f . The constant

Z =
∑
f∈F

exp(−U(f)/T ), (4.4)

known as the partition function, ensures that the probability of Eqn. 4.3 is normalized. The temperature

T affects the relative probabilities of high and low energy lattice labellings. As the temperature becomes

higher, all node labellings become closer to having the same likelihood. Algorithms using simulated

annealing rely on decreasing the temperature gradually to find the highest probability labelling (maxi-

mum a posteriori or MAP labelling) for the lattice. Often T is not used at all; similarly for the purposes

of this thesis we set T = 1, and ignore it from here onwards.

The energy function U(f) is a sum of clique potential functions ψc(f) over the set of cliques C (cliques

for which potential energy interaction terms are defined) on the lattice S. This is defined as

U(f) =
∑
c∈C

ψc(f). (4.5)

All energies must be positive to ensure correct normalization by Z. It should be clear at this point

that higher energies in the potential functions correspond to lower probabilities for the labellings which

produce them. The order of a clique is the number of nodes in that clique. In their original unpublished
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paper [57], Hammesley and Clifford showed that any Gibbs random field is a Markov random field, and

for completeness, we include a proof of this theorem. First we examine the probability at site i on a

lattice, given the labels on all other sites:

p(fi|fS−{i}) =
p(fi, fS−{i})
p(fS−{i})

=
p(f)∑

f ′i∈L
p(f ′)

, (4.6)

where f ′ = {f1, . . . , fi−1, f
′
i , fi+1, . . . , fm} (i.e. all labels except fi are fixed), m is the number of

sites on the lattice, and S− {i} indicates all sites on the lattice except site i. Now

p(f) = Z−1 exp(−
∑
c∈C

ψc(f)), (4.7)

so

p(fi|fS−{i}) =
exp(−

∑
c∈C ψc(f))∑

f ′i
exp(−

∑
c∈C ψc(f ′))

. (4.8)

Next C is divided into two sets A and B, with A consisting of cliques which have site i as a member

and B consisting of sites which do not have site i as a member. Now Eqn. 4.8 can be rewritten as

p(fi|fS−{i}) =
exp(−

∑
c∈A ψc(f)) exp(−

∑
c∈B ψc(f))∑

f ′i

{
exp(−

∑
c∈A ψc(f ′)) exp(−

∑
c∈B ψc(f ′))

} . (4.9)

The probability depends only on the potentials of cliques containing site i, since ψc(f) = ψc(f ′) for

cliques not containing i. Thus all other energy terms cancel out, as they appear in both the numerator

and the denominator, leaving

p(fi|fS−{i}) =
exp(−

∑
c∈A ψc(f))∑

f ′i
exp(−

∑
c∈A ψc(f ′))

. (4.10)

Thus a Gibbs random field is a Markov random field.

4.2 Markov random field formulation applied to the Shape from Shad-
ing problem

This section explains how the Markov random field methodology can be used with a surface inten-

sity image (reflectance map), given lighting and camera information, both to recover its shape and to

estimate the MRF parameterisation (in this case the MRF parameters will correspond to the BRDF

parameters). The MRF is constructed by identifying “corner vertex nodes” on an image lattice. These

corner vertex nodes are situated at the corners of pixels. This is a departure from usual MRF image pro-

cessing methods, where the nodes or sites typically represent the states on the pixels themselves. We

then form a set of clique potential functions ψ which are functions of triplets of corner vertex nodes.
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Figure 4.1: This diagram illustrates the energy terms (square nodes) on the triplets of random variables repre-
senting the labels on corner vertex nodes (round nodes labeled xi). If a loopy belief propagation approach is used
to calculate the posterior distribution (as in [73]), the square nodes would represent factor nodes connected to the
variable nodes (round nodes).

A diagram for the topology for this scheme with pixels, corner vertex nodes, and the corresponding

energy terms for each triplet, is shown in Fig. 4.1. With the inclusion of explicit range data on each

corner vertex node, the additional energy terms are shown in Fig. 4.2.

The shape from shading algorithms we developed in [73], [72] and [71] calculate (approximately) an

optimal set of labels for the height at each corner vertex on a surface, given a reflectance map of that

surface with known lighting and camera information. As in these three papers, the state on a corner

vertex node represents the range or depth of the surface at that location. Each triplet of vertices describes

a unique plane passing through the corresponding 3D locations on the surface. The orientation of that

plane relative to the direction of the light source allows a probability to be assigned to that configuration

for that triplet, given the observed intensities in the corresponding image region. It is also assumed

without loss of generality to the functioning of the algorithm that there is a single light source at infinity,

and therefore that all the light rays are parallel (the algorithm can be easily adjusted to incorporate light

sources within the scene).

The plane generated by the triplet of corner vertex nodes for each clique forms an angle with the

incident light, giving a reflectance value for the pixel, or for the image region which corresponds to that

triangle on the surface. The expected image intensity value, as perceived by the camera depends on
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Figure 4.2: This diagram illustrates the energy terms (square nodes) on the triplets of random variables repre-
senting the labels on corner vertex nodes (round nodes labeled xi) as well as the corresponding dependence of
the corner vertex node labels xi on the range data for each corner vertex node contained in zi. The round nodes
labeled zi are visible nodes giving range or depth data.

Figure 4.3: A triangular plane is generated by the three points on the surface, each corresponding to a label value
for the site of one of the corner vertex nodes surrounding the pixel. The normal to the plane n̂ and the incident
light source direction ~L are indicated. The elevation of a node i, when taking on a label xi, is hi (it will be seen
later that this example is for an affine camera). The square region interior to the four corner vertex nodes is a
pixel, in this case with intensity 158/255
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the reflectance function used. This is shown in Fig. 4.3, where the assumption is made that the corner

vertex node labels correspond to discrete distances measured perpendicularly from the image plane.

Next a Markov random field (MRF) is defined on this set (lattice) of corner vertex nodes X, given the

image data Y and explicit range data Z (which may come from a source such as a laser scanner or

sparse surface reconstruction). This MRF is used to derive a probability for the depth or range of the

surface at the location of the surface corresponding to a particular corner vertex node:

p(X|Y,Z, θ) ∝
∏
i,j,k
i<j<k

exp(−ψijk(xi, xj , xk, yijk, θ))
∏
i

exp(−ψi(xi, zi)) (4.11)

The energy of a particular set of corner vertex nodes (i, j, k) in a clique taking on a particular set of

labels (xi, xj , xk) is taken to be

ψijk(xi, xj , xk, yijk, θ) = |yijk − L(i, j, k, xi, xj , xk, ~L,P, θ)|/σb (4.12)

where L is the radiance of the surface point into the camera lens, and the BRDF parameters are con-

tained in θ, and yijk is the pixel intensity (on a gray scale from 0 to 1) of the image region contained by

the three vertex nodes (usually one pixel), and xi, xj , xk are the labels of corner vertex nodes i, j, k. P

contains the two camera projection matrices of the two cameras in the stereo rig, and σb is a parameter

which affects the sharpness of the energy function. The potential term ψi(xi, zi) encodes probabilistic

range data on the label xi at node i. An example of a workable potential function for an affine camera

is

ψi(xi, zi) = |zi − ui(xi)|/σr, (4.13)

where zi is the specified depth or range of the surface at point i, and ui(xi) is the depth or range at

surface point i given the label of the corner vertex node xi at that point on the surface. As before, σr is

a parameter which affects the sharpness of the function. Whether the point is given a value because it

lies on a known boundary or because we have range data about the point, it is treated the same way. The

potential energy term ψi(xi, zi) in Eqn. 4.11 can be used to incorporate such a constraint. In addition,

the specification of boundary conditions may resolve some of the ambiguities, since there is generally

a number of surfaces that generate a particular intensity map under particular lighting conditions [139],

[29]. The MRF formulation allows such boundary conditions and range data to take on the form of

either hard or soft constraints.

BRDF(·) is the reflectance model, which returns the expected intensity at the location described by

the indices i, j, k, given the light source, the surface and the camera information. The simplifying

assumption that the camera is affine gives the following equations for the partial derivatives in the

height (with respect to change in position in the horizontal and vertical directions on the image):

p = ∂u/∂x and q = ∂u/∂y, (4.14)
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where u represents the height of the surface, x and y are orthogonal directions on the image plane.

Assuming square pixels and an overall scale of one unit per pixel, ∂x and ∂y are set to 1, and the

calculated elevation difference on opposite sides of a pixel is ∂u. With these assumptions, the surface

normal is calculated as

n̂ = (−p,−q, 1)/
√

(p2 + q2 + 1). (4.15)

If the BRDF under consideration is the simple Lambertian reflectance model, then

BRDF(i, j, k, xi, xj , xk, ~L,P, θ) =
ρd
π
, (4.16)

and the surface radiance is

Lr(i, j, k, xi, xj , xk, ~L,P, θ) =
ρd
π
I|n̂ · ~L|, (4.17)

where the vector θ contains the BRDF parameter set (it is empty in this case, since the Lambertian

reflectance model does not have any associated parameters), L is the (isotropic) radiance emitted by the

surface element, and I is the intensity of the light source. If the BRDF model follows the Ward model,

the parameters would be θ = (ρs, ρd, α).

For a projective camera, the calculation of the local surface normal becomes a task of extracting the 3-D

locations of the triangulated points and calculating the normal using the vector cross-product. Thus, if

Zi, Zj , and Zk are the 3-D locations in world coordinates of surface/image points i, j, k, then

n̂ = (Zj − Zi)× (Zk − Zi)/||(Zj − Zi)× (Zk − Zi)||, (4.18)

where “×” indicates the vector cross-product operation (it is also required that the normal points in the

direction of the camera). “BRDF” is a function which returns the intensity value given local surface

geometry information (the 3-D locations of the surface points corresponding to the three corner vertex

nodes of a particular clique). The camera projection matrices P1 and P2 for the stereo pair are contained

in P.

As in [73] we can extend the energy function to include static scene/moving light source information

(on the assumption that all points on the surface are always visible to both the camera and to all light

sources). We develop a simple occlusion formulation in [72], but we do not explore that formulation in

this thesis, although it is applicable). For multiple reflectance maps, Eqn. 4.12 above is adjusted to:

ψijk(xi, xj , xk, ~yijk, θ) =
M∑
m=1

|ym,ijk − Lrm(i, j, k, xi, xj , xk, ~L,P, θ)|/σb, (4.19)

where θ is a parameter set which contains the BRDF parameter set. M is the number of images from

the same camera (one image taken for each light source), m indexes each of the images, and ym,ijk



4. Markov random field model for Shape from Shading 32

Figure 4.4: Two possible surface depth or range parameterisations. In the first parameterisation (left), the site
label for a surface point (corner vertex node) corresponds to a distance of the point from the camera center. In the
second parameterisation (right), the label value on a node corresponds to the depth of the surface point behind
the camera plane.

is the intensity of the image region contained by the projection of the 3-D points corresponding to the

three corner vertex nodes i, j, k of the first image, in the mth image. −→L m is the light source direction in

the mth image, and Lrm(·), is now a function which returns the intensity value for the mth image. This

is the basic formulation which we explored in [73] and [72].

4.2.1 Depth or Range parameterisation for shape from shading

At this point we note that if the label of a corner vertex node refers to its elevation, there are at least

two obvious parameterisations to consider. These are depicted in Fig. 4.4. The first parameterisation

(Fig. 4.4, left), is such that the label on a corner vertex node corresponds to its range from the (first)

camera center. The second parameterisation (Fig. 4.4, right) is such that the label of a corner vertex

node corresponds to the perpendicular depth of the surface point behind the image plane.

Note that in the second height parameterisation ym,ijk does not relate to a single pixel form = 1 (except

in the case of an affine camera), but rather to a projected region in the first image (see Fig. 4.5). The

calculation of the expected intensity value over this region is more complicated than the examination of

a single pixel intensity for m = 1. Furthermore, the first parameterisation corresponds to the geometry

of 3-D points reconstructed from stereo image point correspondences. Therefore, in this thesis we only

explore the use of a single intensity image (corresponding to the first camera) for BRDF parameter

estimation, using the first parameterisation.
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Figure 4.5: In this figure we see how in the second parameterisation, different height labels for the same triplet
of corner vertex nodes would require us to evaluate the expected intensity over a region in the image of the first
camera which does not correspond to a single pixel. The advantage offered by the first parameterisation (left) is
that only single pixels around a site need to be inspected to calculate the energy functions.

4.3 MRF model for surface reflectance using Ward and Phong reflectance
models

Now that the general MRF framework for BRDF extraction has been established, it is possible to con-

sider individual reflectance models, such as the Ward and Phong models. To incorporate the Ward

reflectance model, Eqn. 4.12 is adjusted to read:

ψijk(xi, xj , xk, yijk, θ) = |yijk −WARD(i, j, k, xi, xj , xk,
−→
L ,P, θ)|/σb (4.20)

where θ = (ρd, ρs, α) contains the Ward reflectance parameters. WARD(·) is a function which takes

as parameters the locations on the lattice i, j, k and calculates the 3-D points on the material surface

given the labels on the random variables xi, xj , xk. The angles or vectors of incidence and reflectance

are calculated for this 3-D surface triangle given the location of the camera center (calculated linearly

using the first camera matrix contained in P, see [49] for details) and the light source direction ~L. Then

Eqn. 3.1 can be used to determine the expected intensity of the image region at the point on the surface.

Similarly, for the anisotropic Phong model:

ψijk(xi, xj , xk, yijk, θ) = |yijk − PHONG(i, j, k, xi, xj , xk,
−→
L ,P, θ)|/σb, (4.21)

where θ = (Rd, Rs, nu, nv), or simply θ = (Rd, Rs, n), since we have set nu = nv. This geometry is

shown in Fig. 4.6, where the normal n̂ calculated for the surface triangle corresponding to particular
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Figure 4.6: In this figure is shown a surface triangle in the scene, which corresponds to the corner vertex nodes
i, j, k taking on labels which correspond ranges indicated by the black squares. The triangle normal n̂ is shown.
The reflectance intensity of the surface triangle is viewed in the upper right half of pixel 1 (the region’s perimeter
is drawn with a broken line). The light source direction is also shown.
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labels chosen for the random variables xi, xj , xk at corner vertex nodes i, j, k is added. This is described

in section 6.4.2 after triangulation has been discussed. The reflectance intensity of the surface triangle

is projected into the upper right half of pixel 1 (the region’s perimeter is drawn with a broken line). The

light source direction ~L is also shown (the angles/directions in Eqns. 3.1 and 3.12 assume the direction

is from the surface to the camera/light source). The geometry of Fig. 3.1 is used on the triangular

surface patch to calculate the intensity of the corresponding area in the image plane.

4.4 MRF parameter estimation using the Pseudolikelihood approxima-
tion

The task of parameter estimation, or of the evaluation of the probability of a given labelling with a given

set of parameters, requires the evaluation of a function of the form

p(f |θ) = Z(θ)−1 exp(−U(f, θ)) =
exp(−U(f, θ))∑
s∈F exp(−U(s, θ))

, (4.22)

where f is the realization of the site labellings, and F is the configuration space of all possible site

labellings. The problem with evaluating this probability is that Z(θ), known as the partition function, is

combinatorially difficult to calculate. Much effort has gone into developing methods for approximating

the partition function, as described in the literature review.

One method for MRF parameter estimation, and for bypassing the need to evaluate the partition function

when evaluating probabilities on lattice site labellings, is to use the pseudolikelihood estimate, proposed

in [7]. The conditional probability per site on a graph is estimated using only its immediate (Markov)

neighbours. This is now expressed in general terms, with a general potential function U(·). Note that

the pseudolikelihood equals the true likelihood when all the labels are independent. For a single site i

(and neighbourhood) labelling,

p(fi|fNi , θ) =
exp(−U(fi, fNi , θ))∑

fs∈L exp(−U(fs, fNs , θ))
, (4.23)

where fi is the label on node i,Ni is the neighbourhood system on node i, L is the set of possible labels,

θ is the set of MRF parameters, and S is the set of discrete sites on the lattice. The pseudolikelihood

for all the labels on the lattice is

PL(f |θ) = log
∏
i∈S

p(fi|fNi , θ). (4.24)

This pseudolikelihood estimate is necessary to approximate

p(θ|f) = p(f |θ) p(θ)
p(f)

. (4.25)
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If the pseudolikelihood estimate of p(f |θ) is available, and if we assume uniform priors p(θ) and p(f),

then we can use

p(θ|f) = exp(PL(f |θ)), (4.26)

which immediately allows us to use Monte Carlo type techniques to explore the distribution p(θ|f), and

Maximum Likelihood Estimation (MLE) and gradient descent methods to find its MAP value [69].

To calculate the pseudolikelihood of a BRDF label set given the parameters θ, we define the potential

function U(·) for node i to be

Ui(xi, xNi , θ) =
∑

j∈Ni,k∈Ni
k>j

ψijk(xi, xj , xk, yijk, θ), (4.27)

where j, k ∈ Ni indicates that j and k are indices of nodes neighbouring node i, and θ contains the

BRDF parameters (θ = (ρd, ρs, α), in the case of the Ward model). The function implicitly uses ~L (the

lighting direction) and P which contains the camera projection matrices. As potential functions with

the clique connectivity indicated in Fig. 4.2 are being used, the potential term U involves a summation

of four local clique potentials per corner vertex node.

The pseudolikelihood estimate of the parameters θ, given a particular realization of the MRF, is ex-

pressed as

θ∗PL = arg max
θ
PL(f |θ). (4.28)

A stereo reconstruction may be modelled as a realization of a Markov random field, since it is a function

of the disparity map between the pair of stereo images. This disparity map is an instance of the set of

possible disparity maps, given the number of potential candidate matches in the second image for points

in the first image.

The Markov Random Field framework for using corner vertex nodes with potential energies on their

triplets is novel to this thesis, as is the notion of using control points which are no the pixels themselves,

but rather the corner vertex nodes which lie at their intersections. We are now equipped to begin a

discussion of some of the sampling algorithms and optimization methodologies which may be used to

do parameter estimation on this Markov Random Field arrangement.



Chapter 5

MCMC, Population Monte Carlo, and
iterative Bayesian resampling methods

This chapter describes the theory of sampling techniques such as particle filtering, partitioned particle

filtering (PPF), MCMC, dynamically weighted MCMC and Population Monte Carlo. Ultimately we

would like to use MCMC style sampling methods to do parameter estimation on the MRFs as described

in the previous chapter. Resampling and importance sampling are also described as they are important

techniques used by the other sampling methods. Particle filtering and partitioned particle filtering are

reviewed because the partitioned sampling in PPF is similar to PMC, (additionally it is shown in [84]

that inference done on a Markov network using particle filtering is one type of message passing done

for inference on a Bayesian network, and that a MRF is one type of Bayesian network). The concepts

are thus interrelated. The chapter ends with a discussion of the pdf softening methodology used on the

target distribution on the BRDF parameters. This is necessary since the target posterior distribution on

the BRDF parameters is too sharp to use PMC effectively to calculate a representative set of weighted

samples for the pdf.

Our PMC method may be seen as a compromise between doing an exhaustive search for the optimal

values (MAP parameter values), and returning an unbiased posterior distribution on these parameters.

We also identify that Partitioned Particle Filtering (due to [74]) over a single time step is a special case

of Population Monte Carlo sampling. In the notation used here

• Xt indicates a random variable at time t,

• X t indicates the set of random variables {Xi} for i = 0, . . . , t,

• xti is the ith sample at time t from Xt,

• πti is the weight on sample xti,

37
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• −→x t is the set of samples xti, i = 1, . . . ,M , if there are M samples.

• −→π t is the set of sample weights πti , i = 1, . . . ,M , if there are M samples.

5.1 Particle Filtering

This section describes particle filtering, also known as the conditional density propagation (condensa-

tion) algorithm, or more generally as iterative nonlinear Bayesian filtering. To do so, consider Bayes’

theorem

p(X|Z) =
p(Z|X)p(X)

p(Z)
, (5.1)

where in this context X refers to a state estimate, and Z to the observed data, which are used to make

state estimates. The chain rule of probability

p(A,B,C) = p(A|B,C)p(B|C)p(C), (5.2)

is used to derive the recursive formulation of the particle filter equations. The Markov property in

stochastic dynamics implies that the state variables form a temporal Markov chain:

p(Xt|Xt−1) = p(Xt|X t−1). (5.3)

where X t−1 = {X0, . . . ,Xt−1}. Observations (posterior probability correction at each time step, for

each particle, given the observed data) are assumed to be mutually independent, and also independent

of the dynamical process:

p(Zt−1,Xt|X t−1) = p(Xt|Xt−1)
t−1∏
i=1

p(Zi|Xi), (5.4)

where Zt−1 = {Z0, ..Zt−1} and X t−1 = {X0, ..Xt−1}. Since observation densities p(Zt|Xt) are

modeled as independent,

p(Zt|X t) =
t∏
i=1

p(Zi|Xi), (5.5)

where Zt = {Z0, ..Zt} and X t = {X0, ..Xt}. Finally, by combining the previous equations, the

particle filter equations given observation densities are:

p(Xt|Zt) = ktp(Zt|Xt)p(Xt|Zt−1) (5.6)

where

p(Xt|Zt−1) =
∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Zt−1)dXt−1 (5.7)
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Figure 5.1: Bayesian network of the basic particle filter, which is one of many inference algorithms which can
be run on a Bayesian network. This illustrates the conditional dependencies between the state variables (hidden
nodes, circles), and the observations taken at each time step (visible nodes, squares).

in which p(Xt|Xt−1) represents the state dynamics, which can be defined uniquely for each time step

t. The observation density at time t is p(Zt|Xt). Even if there are no dynamics on the state vector

over time, additive noise may be inserted via the term p(Xt|Xt−1), in which case it is referred to as

“stochastic diffusion”. Adding random noise to evolving particle sets is important to keep exploring

new parts of the parameter space. The observation density may also change over time, as does the data

Zt against which the state vector Xt is to be compared. This latter probability is the answer to the

question “how likely is it that a particular state vector gave rise to the observed data”. The normalizing

term kt is expanded as

kt = p(Zt|Zt−1). (5.8)

One way to solve these equations algorithmically is to represent the prior (and posterior) distribution

at each time step using a weighted set of samples, or particles: {xti, πti}, with i = 1, 2, ..., N , where

xti represents the ith sample at time t, and πti represents the probability of this sample. In this thesis,

{xti, πti}, for i = 1, 2, ..., N is also written {−→x t,−→π t}. The Bayesian network depicting the basic parti-

cle filter is shown in Fig. 5.1. An algorithm which describes the basic particle filter follows:

1. For t = 0, . . . , T

2. Generate distribution of samples Xt, represented by (−→x t,−→π t) by sampling

from p(Xt|Zt−1) (note that p(Xt|Zt−1) = p(X0), if t = 0)

This can be done by selecting sample xt−1
i with probability πt−1

i , and generating a new

sample xti ∼ p(Xt|Xt−1 = xt−1
i )

3. For i = 1, . . . ,M (M is the number of samples representing the distribution Xt

4. Weight the ith sample according to its observation probability:

πti = p(Zt|Xt = xti) (5.9)

5. end (3)

6. Do a resample operation on the particles currently representing Xt,

i.e. (−→x t,−→π t) = resampleParticles(−→x t,−→π t, σ)
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where σ is a parameter (standard deviation) for the addition of Gaussian noise

6. end (1).

5.1.1 Resampling

In the resampling step, samples are taken from the distribution p(Xt), which is already represented by

the weighted sample set {−→x t,−→π t}, by choosing sample xti with probability πti , and giving the resulting

sample the probability 1/M where M is the number of samples. There may be several samples with

the same value, and the same probability. Gaussian noise is often added to these samples to ensure that

the samples keep exploring the target distribution. A concise way of writing a resampling step is as

follows:

1. Normalize −→π , if it is not already normalized

2. For i = 1..N (N is the number of samples)

3. (Ii) ∼M(1,−→π )

4. If Gaussian noise is added, n ∼ N (0; Σ), otherwise n = 0

5. xi,new = xIi + n

6. πi,new = 1/N

7. end (2)

where n is a sample drawn from the Gaussian distribution with mean 0 and covariance Σ. M is the

multinomial sampling function, which draws one index from the available indices, which have corre-

sponding probabilities in the normalized vector −→π (see Appendix A for a more detailed explanation

of multinomial sampling). Ii indicates the index chosen for sample i. Hereafter, the above steps are

indicated by the notation

p(X)new = resample(p(X)), (5.10)

where p(X) is a pdf, represented by a sample set. Alternatively we may state the operation as

(−→x new,−→π new) = resampleParticles(−→x ,−→π ), (5.11)

where−→x is the set of samples representing p(X) and−→π contains all the corresponding sample weights.

If we add Gaussian noise to the new sample values, we write

(−→x new,−→π new) = resampleParticles(−→x ,−→π , σ) (5.12)

where Σ = σId×d, where d is the dimension of a sample vector, and Id×d is the identity matrix of

dimension d× d (corresponding to the case of a spherical Gaussian distribution).
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This resampling operation is referred to in the literature variously as branching, reweighting, reconfig-

uration, rejuvenation, resampling, prune-enrichment, selection. It is not probabilistically correct to add

sample noise in the resampling stage without justifying it with a stochastic diffusion term p(Xt|Xt−1).

However, it is often algorithmically more convenient to add sample noise at the resampling stage than to

add it at the importance sampling stage, if importance sampling via importance reweighting is included

in the particle filtering scheme.

5.2 Importance sampling

Suppose that within a recursive Bayesian particle filtering framework, one prefers not to sample from

the prior distribution p(Xt−1|Zt−1), but rather from an alternative proposal distribution g(Xt|Zt). The

expectation of a function f(X) given a prior distribution on the random variable X is expressed as

E[f(Xt)] =
∫
f(Xt)

p(Xt|Zt)
g(Xt|Zt)

g(Xt|Zt)dXt (5.13)

=
∫
f(Xt)

p(Zt|Xt)p(Xt)
p(Zt)g(Xt|Zt)

g(Xt|Zt)dXt (5.14)

=
∫
f(Xt)

πt(Xt)
p(Zt)

g(Xt|Zt)dXt (5.15)

where

πt(Xt) =
p(Zt|Xt)p(Xt)
g(Xt|Zt)

(5.16)

represents the weight of the sample/particle drawn from the proposal distribution, after it has been

renormalized to remove the bias introduced by sampling from the proposal distribution, and after it has

been observed against the data Zt. Then

E[f(Xt)] =
1

p(Zt)

∫
f(Xt)πt(Xt)g(Xt|Zt)dXt (5.17)

=
∫
f(Xt)πt(Xt)g(Xt|Zt)dXt∫
p(Zt|Xt)p(Xt)g(X

t|Zt)
g(Xt|Zt)dX

t
(5.18)

=
∫
f(Xt)πt(Xt)g(Xt|Zt)dXt∫
πt(Xt)g(Xt|Zt)dXt

(5.19)

=
Eg(Xt|Zt)[πt(Xt)f(Xt)]
Eg(Xt|Zt)[πt(Xt)]

. (5.20)

This shows that it is necessary to normalize the weights at each time step, across the new particle

weights π(Xt) to form a posterior from which an expectation can be taken.
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Drawing samples xt1, . . . , x
t
N from g(Xt|Zt), expectations of interest can be approximated by

E[f(Xt)] =
1
N

∑N
i=1 π

t(xti)f(xti)
1
N

∑N
i=1 π

t(xti)
≈

N∑
i=1

π̃t(xti)f(xti), (5.21)

where the normalized weights are given by

π̃t(xti) =
πt(xti)∑N
j=1 π

t(xtj)
, (5.22)

and where, in terms of the notation used elsewhere in this thesis,

πti = πt(xti). (5.23)

Particle filtering where the samples are generated from a proposal distribution g(X|Z) is expressed by

the equation

p(Xt|Zt) = ktp(Zt|Xt)
g(Xt|Zt)
g(Xt|Zt)

p(Xt|Zt−1), (5.24)

which indicates that all samples are drawn from g(Xt|Zt) and reweighted by ktp(Zt|Xt)p(X
t|Zt−1)

g(Xt|Zt) .

It was stated earlier that it is often algorithmically more convenient to add sample noise at this stage than

to add it at the importance sampling stage, if importance sampling is included in the particle filtering

scheme.

This is because importance sampling may take the form either of simulating from a specified impor-

tance sampling distribution which can be based on the previous sample set (in which case noise is

added through the importance function, which is usually a Gaussian distribution centered on the ex-

pected mean of the state variable X), or of multiplication (reweighting) of the incoming sample set’s

weights (which often represents the uniform distribution) by each sample’s probability evaluated by the

importance function, followed by a resample operation (this is called importance reweighting). If the

latter is done, as in [75], the only logical place to add the noise is after the resampling stage.

5.2.1 Classic Sample Importance Resample (SIR) algorithm

The usual form of the SIR filter, which incorporates a resample step after the importance sampling step,

is described as follows.

1. For t = 0..T

2. Simulate a sample set −→x t from distribution gt, with

xti ∼ gt(Xt|Zt), (1 ≤ i ≤ N). (5.25)
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3. Calculate the probability weight π̂ for each sample in −→x t:

π̂ti =
p(Zt|Xt = xti)p(X

t = xti|Zt−1)
gt(Xt = xti|Zt)

(5.26)

4. Normalize the sample weights:

πti =
π̂ti∑N
j=1 π̂

t
j

(5.27)

5. Resample the sample set:

(−→x t,−→π t)new = resampleParticles(−→x t,−→π t). (5.28)

6. end(1).

In the SIR algorithm described above, step 2 indicates that the ith of N samples is drawn from the

importance function gt. In step 3 the new probability weights of each of the samples are calculated.

Note that each new probability depends on that particle’s previous probability, and has as a denominator

the probability of that sample having been drawn from the proposal distribution gt.

5.2.2 Alternative SIR algorithm

An alternative way of doing Sample Importance Resampling, using importance reweighting, is de-

scribed in the following algorithm:

1. For t = 1..T

2. Reweight the samples in the sample set (−→x U ,−→π U ) representing the uniform distribution

U over the parameter space:

πi ← gt(X = xUi |Zt), (1 ≤ i ≤ N). (5.29)

3. (−→x t,−→π t) = resampleParticles(−→x U ,−→π , σ)

4. Reweight the samples in the sample set (−→x t,−→π t):

π̂ti ←
πtip(Z

t|Xt = xti)p(X
t = xti|Zt−1)

gt(Xt = xti|Zt)
, (1 ≤ i ≤ N). (5.30)

5. Normalize the sample weights:

πti =
π̂ti∑N
j=1 π̂

t
j

(5.31)

6. end(1).

In the above algorithm, σ is the standard deviation of the additive Gaussian noise in the resampling

operation. If t = 1, p(Xt−1|Zt−1) = p(X0), which can be represented by a set of samples evenly

distributed in the parameter space to represent the uniform distribution (if there is no prior information

about the distribution p(X0)). In step 2, samples representing the uniform distribution can be generated

by choosing sample points at regular intervals in the parameter space.
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5.3 Partitioned Particle Filtering

Partitioned Particle Filtering (PPF), due to [74], is a method for concentrating samples in a particu-

lar region in the parameter space, within the particle filtering framework. The method uses iterative

importance reweighting, which is probabilistically equivalent to importance sampling. The partitioned

particle filtering scheme may be expressed by adjusting Eqn. 5.6 to read

p(Xt|Zt) = ktp(Zt|Xt)
N∏
n=1

gn(Xt|Zt)
gn(Xt|Zt)

p(Xt|Zt−1), (5.32)

where N is the number of partitions on the state vector X (the rest of the equations are the same as in

the basic particle filter). This algorithm may be computed as follows:

1. For t = 0, . . . , T

2. Generate distribution of samples Xt, represented by (−→x t,−→π t) by

sampling from p(Xt|Zt−1) (note that p(Xt|Zt−1) = p(X0), if t = 0)

3. For n = 1, . . . , N partitions

4. For i = 1, . . . ,M samples representing the distribution Xt

πti ← πtig
n(Xt = xti|Zt) (5.33)

5. end(4).

6. Do a resampling step on the samples currently representing Xt,

i.e. (−→x t,−→π t) = resampleParticles(−→x t,−→π t, σ),

where σ is a parameter (standard deviation) for the addition of Gaussian

noise,

7. For i = 1, . . . ,M samples representing the distribution Xt

8. Reweight

πti ← πti/g
n(Xt = xti|Zt) (5.34)

9. end (7)

10. end (3)

11. Weight each of the M samples according to its observation probability:

πti ← πtip(Z
t|Xt = xti) (5.35)

11. end (1).

In [74], the partitioned particle filtering scheme is represented diagrammatically as follows (in this

example there are two partitions, one for each dimension of the random variable X, with associated
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Figure 5.2: The sample set is resampled using importance function g1 (left). The new sample set after the
importance resampling stage (with additive Gaussian noise applied to the new samples) is shown on the right.

importance sampling functions g1 and g2):

p(X|Zt−1)→ ∼ → ∗h1(X′|X)→∼ g1

→ ∗h2(X′′|X′)→∼ g2

→ ∗h3(X′′|X)→ ×f(Zt|X′′)→ p(X|Zt) (5.36)

Note that before each importance sampling partition, the samples are passed through local dynamic

distributions ∗hn(X′|X), which usually take the form of linear transition kernels. Although this step

could be absorbed into the importance sampling stage, in the motion tracking literature (where par-

titioned particle filtering was introduced), the dynamics are separated from the importance sampling

process. In this diagram, ∼ indicates a resampling operation, and the operation ∼ gn refers to a single

importance weighting-resampling step, performed on the incoming sample set.

Note that in the scheme shown in Eqn. 5.36, the symbol gn indicates a weighted resampling operation

where the samples have their weights multiplied by an importance function, after which the weighted

samples are resampled, and then the weights are multiplied by the inverse of the probability of the

importance function for each sample. This ensures that the distribution remains unbiased after any PPF

importance weighted resampling operation. Figs. 5.2 and 5.3 show evolution of a particle set over two

importance resampling iterations. These diagrams also describe the effects of the importance sampling

operations of PMC.
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Figure 5.3: The result of the previous importance resampling operation (Fig. 5.2) is resampled using importance
function g2 (left). The new sample set after the importance resampling stage (with additive Gaussian noise
applied to the new samples).

5.4 Markov Chain Monte Carlo (MCMC)

MCMC is a popular method for exploring probability distributions and for integrating functions. Ac-

cording to Bayes’ theorem the following equation can be written which describes the posterior distri-

bution of θ conditional on X, and which assumes no prior information about the distribution of X:

p(θ|X) =
p(θ)p(X|θ)∫
p(θ)p(X|θ)dθ

∝ p(θ)p(X|θ). (5.37)

Any feature of a posterior distribution may be used for Bayesian inference, including nth order mo-

ments, highest posterior density regions, and quantiles. These can be expressed in terms of a posterior

distribution on θ. The posterior expectation of a function g(θ) is

E(g(θ|X)) =
∫
g(θ)p(θ)p(X|θ)dθ∫
p(θ)p(X|θ)dθ

, (5.38)

which can be simplified to

E(g(θ)) =
∫
g(θ)p(θ)dθ∫
p(θ)dθ

. (5.39)

The integrals in such an expression are hard to evaluate, but can be evaluated by using a Markov chain.

A sequence of random variables {θ0, θ1, . . . , θN} is thus generated: each state from time i > 0 is a

sample from a distribution p(θi+1|θi), which depends only on the state at time i. If it is assumed that the

Markov chain is time homogeneous, then the sequence converges to some stationary distribution %(·).

When sampling with Markov chains, the first m samples are usually discarded (this is known as the
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burn-in), so that {θi, i = m+ 1, . . . , n} are dependent samples approximately from %(·). Therefore,

θ =
1

n−m

n∑
i=m+1

θi (5.40)

is an ergodic average. Such a Markov chain may be constructed using the Metropolis-Hastings algo-

rithm. For each time i, the next state θi+1 is chosen by sampling from a proposal distribution g(θ′|θi).

The candidate is accepted with probability

α(θi, θ′) = min
(

1,
p(θ′|X)g(θ′|θi)
p(θi|X)g(θi|θ′)

)
. (5.41)

If the new sample candidate is accepted, the next state is θi+1 = θ′, otherwise θi+1 = θi. Assuming

the prior distribution p(θ) is flat (e.g. if prior information is unavailable), and if p(θ|X) ∝ p(θ)p(X|θ),

then

α(θi, θ′) = min
(

1,
p(θ′|X)g(θ′|θi)
p(θi|X)g(θi|θ′)

)
= min

(
1,
p(X|θ′)g(θ′|θi)
p(X|θi)g(θi|θ′)

)
(5.42)

since

p(θ′|X)
p(θi|X)

=
p(X|θ′) p(θ

′)
p(X)

p(X|θi) p(θi)
p(X)

=
p(X|θ′)p(θ′)
p(X|θi)p(θi)

=
p(X|θ′)
p(X|θi)

. (5.43)

The last step follows because there is no prior probability on the observation labels X, nor on the

parameters θ. With a symmetric proposal distribution, the acceptance probability formula for the cor-

responding Metropolis algorithm is simplified to

α(θi, θ′) = min
(

1,
p(X|θ′)
p(X|θi)

)
. (5.44)

After describing the basis of the algorithm mathematically, the Metropolis algorithm [80] can be de-

scribed algorithmically as:

1. Start with θ0, then iterate:

2. For i = 1, . . . , N − 1

3. Propose θ′ from g(θi, θ′)

4. Calculate ratio:

a =
p(X|θ′)
p(X|θi)

(5.45)

5. If a > 1, accept θi+1 = θ′

else accept with probability a

if rejected: θi+1 = θi

6. end(2)
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Similarly, the Metropolis-Hastings algorithm [50], which has an asymmetrical proposal distribution,

can be described in the following algorithm:

1. Start with θ0, then iterate:

2. For i = 1, . . . , N − 1

3. Propose θ′ from g(θi, θ′)

4. Calculate ratio:

a =
p(X|θ′)g(θ′|θi)
p(X|θi)g(θi|θ′)

(5.46)

5. If a > 1, accept θi+1 = θ′

else accept with probability a

if rejected: θi+1 = θi

6. end (2)

5.5 The dynamically weighted MCMC sampler

After preliminary testing of a basic Metropolis type sampler on the distribution of the BRDF pseudo-

likelihood function, it was found that the acceptance ratio was too low, due to the sharp nature of the

target distribution on the BRDF parameters. Since the goal is to explore the distribution as well as

to find a good MAP value, we implemented the dynamically weighted MCMC sampler, due to [68].

Some analysis of the convergence characteristics of this sampler is included, as a way of describing its

behaviour, which may not be well known or understood.

As described in [76], it is possible to include importance sampling in a MCMC sampler for better

exploration of a target distribution. In [68], a dynamic weighting scheme for MCMC samplers is

introduced, which is essentially an augmentation of MCMC with importance reweighting. The goal

is to allow the sampler to move more freely through the target distribution, and to prevent it from being

trapped in local probability maxima. The notation used to describe the dynamically weighted MCMC

sampler is the same as in [68], and the arguments and proofs for the behaviour of the algorithm are

taken directly. This is done to facilitate easy comparison with the contents of the original paper. The

notation follows:

• %(x) is the target distribution

• X is the space on which %(x) is defined

• Xi is a state variable, also defined on X

• Πi is a dynamic weight, taking values in the range (0,∞)
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• T (x, y) is a proposal transition function which is aperiodic and irreducible

• g(x) is an invariant measure of T (x, y)

• g(x, y) = g(x)T (x, y)

• U(a, b) is the uniform distribution between a and b.

Note that a measure g is an invariant measure for a sequence of random variables (Xi)i≥0 if, whenever

the initial condition X0 is distributed according to g, so is Xi for i > 0.

There are two types of sample transition rule for the dynamically weighted MCMC sampler, namely

the Q-type and the R-type moves. The essential idea of each is to increase the weight of a sample until

it is accepted. Although the sample weights can increase very far above unity, the weighted posterior

distributions (sample sets) still form approximately unbiased representations of the target distributions,

up to a scale factor. Both the R-type and the Q-type sampler associate weights with each of the samples,

which is atypical for MCMC samplers. The sample weights are used to store information which affects

the probability of making a transition (accepting a new, different sample). If the sampler is stuck in a

local maximum value for the probability in the target distribution, the weight of the sample increases

until the transition is accepted. The two algorithms are now described (taken directly from [68]):

5.5.1 Q-Type dynamic weighted MCMC sampler

Suppose that the initial state is (X0,Π0) = (x, π), i.e. X0 denotes the original system state at time

i = 0 and W0 its weight.

1. For i = 0, . . . , N − 1

2. Propose the next state Y = y from the proposal distribution T (x, y), and compute the Metropolis

ratio:

r(x, y) =
%(y)T (y, x)
%(x)T (x, y)

(5.47)

3. Choose θ = θ(x, π) ≥ 0 and draw u ∼ U(0, 1)

4. Update (Xi,Πi) to (Xi+1,Πi+1) according to

(Xi+1,Πi+1) =

{
(y,max(θ, πr(x, y))) if u ≤ min(1, πr(x, y)/θ)

(x, aπ) otherwise,
(5.48)

where a > 1 can be a constant or an independent random variable

5. end(1)
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5.5.2 R-Type dynamic weighted MCMC sampler

Suppose that the initial state is (X0,Π0) = (x, π), i.e. X0 denotes the original system state at time

i = 0 and W0 its weight.

1. For i = 0, . . . , N − 1

2. Draw Y = y from T (x, y) and compute Metropolis ratio r(x, y)

3. Choose θ = θ(x, π) ≥ 0, and draw u ∼ U(0, 1)

4. Update (Xi,Πi) to (Xi+1,Πi+1) according to

(Xi+1,Πi+1) =

{
(y, πr(x, y) + θ) if u ≤ πr(x,y)

πr(x,y)+θ

(x, π(πr(x, y) + θ)/θ) otherwise,
(5.49)

where a > 1 can be a constant or an independent random variable

5. end(1).

In each of these dynamically weighted MCMC sampler variants, θ is a variable parameter that can

depend on previous values of (X,Π). The augmented sample chains eventually escape local modes

(maxima in the probability distribution) by increasing the sample’s associated weight Π. In [68] it

is assumed that θ = constant, although theoretically it may be varied. The new acceptance/rejection

steps of these two sampling types cause the equilibrium distribution (if it exists) of the samples to

deviate from the target distribution %. However, the principle of invariance with respect to importance

weighting (IWIW), introduced in [127], is applicable to the R-type sampling move (and approximately,

for the Q-type move).

The IWIW principle (taken from [68]) states that the joint distribution f(x, π) of (X,Π) is “correctly

weighted” with respect to %, if
∑

π

∑
πf(x, π) ∝ %(x). Therefore the target distribution can be repre-

sented by the weighted samples, up to a scale factor. A transition rule is said to be IWIW if it maintains

the correctly weighted property for the joint distribution of (x, π), when the initial joint distribution is

correctly weighted.

In [68], it is shown that the R-type move is IWIW. Since we wish to compare PMC to MCMC for

exploring the posterior distribution of our BRDF parameters, we implemented the R-type and Q-type

dynamically weighted MCMC samplers and compared the performance with the other methods. The

proof that the IWIW property applies to the R-type sampler relies on taking an expectation over the

possible sample weights for the new sample at each iteration. The joint probability distribution over

possible values for (x, π) is f1(x, π), while the probability for values (y, π′) (the next sample in the

chain) is f2(y, π′). The joint transition probability for a sample x moving to y is T (x, y). I(·) is the

indicator function which returns 1 when its argument is true. The proof offered in [68] that R-type
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sampling is IWIW follows:∑
π′f2(y, π′)

=
∑

π′

{∑
x

∑
π π
′f1(x, π)I[π′ = πr(x, y) + θ]

× T (x, y) πr(x,y)
πr(x,y)+θ +

∑
z

∑
π π
′f1(y, π)

× I
[
π′ = π(πr(y,z)+θ)

θ

]
T (y, z) θ

πr(y,z)+θ

}
=
∑

x

∑
π f1(x, π)T (x, y) πr(x,y)

πr(x,y)+θ (πr(x, y) + θ)

+
∑

z

∑
π f1(y, π)T (y, z) θ

πr(y,z)+θ
π(πr(y,z)+θ)

θ

=
∑

x

∑
π πf1(x, π)%(y)T (y,x)

%(x) +
∑

π

∑
z πf1(y, π)T (y, z)

=
∑

x c1%(y)T (y, x) = c1%(y) = 2c1%(y).

(5.50)

This proves that R-type sampling generates a Markov Chain with sample weights in proportion to the

probability values of the target distribution at the locations of the samples. In [68], a similar type of

reasoning is presented to establish that Q-type sampling, when θ > 0, generates a distribution which

approximately satisfies the IWIW principle. This reasoning follows:∑
π′f2(y, π′)

=
∑

π′

{∑
x

∑
π f1(x, π)T (x, y) min(1, πr(x,y)

θ )π′+∑
π

∑
z aπf1(y, π)T (y, z)qπ(y, z)

}
=
∑

x

{∑
π f1(x, π)T (x, y)πr(x, y)

}
+ a

∑
π qπ(y)f1(y, π)

=
∑

x c1%(x)T (x, y) %(y)T (y,x)
%(x)T (x,y) +Ra = c1%(y) +Ra,

(5.51)

where qπ(y, z) is the probability of rejection when the chain proposes a move from y to z, and qπ(y) is

the total rejection probability for moving away from sample location y, with

Ra = a
∑
π

πqπ(y)f1(y, π). (5.52)

Following the analysis of [68], when q%(y) is approximately constant, then Ra ≈ ac1%(y), which

approximately satisfies the IWIW property. Also, if
∑

π πf1(y, π) is large, the residue Ra ≈ 0, in

which case the IWIW property is also approximately met. In the case where θ = 0, all the sample

moves are accepted, and the two moves become equivalent. In this case, the IWIW property is satisfied,

as is shown by ∑
π′f2(y, π′) =

∑
x

∑
π f1(x, π)T (x, y)πr(x, y)

=
∑

x c1%(x) %(y)T (y,x)
%(x)T (x,y) = c1%(y). (5.53)

Interestingly, one of the differences with setting θ > 0 is that the normalizing constant changes from c1

to 2c1, although the IWIW property is maintained in both cases.

Next, as in [68], the behaviour of these sampling steps for θ = 0 and θ = 1, for the case where T (x, y)

is reversible, is described. The descriptions are taken almost exactly from [68].
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5.5.3 Case 1: θ = 0

When θ = 0, the Q-type and R-type moves become identical. In this case, all proposed moves are

accepted. The weight of the new sample Π′ given the previous sample weight Π is

Π′ = Πr(x, y). (5.54)

Given that g(x) is the invariant distribution of T (x, y), and g(x, y) = g(x)T (x, y) is the joint transition

distribution of the two steps taken consecutively, if we define the weighting function to be u(x) =

%(x)/g(x), where g(x) is the importance sampling distribution, the update formula for the sample

weights may be written as

Π′ = Π
u(y)g(y, x)
u(x)g(x, y)

. (5.55)

Therefore, if one has a reversible Markov chain where g(x, y) = g(y, x), and if the first sample is

(X0 = x0,Π0 = c0u(x0)), then for any i > 0, it is true that Πi = c0u(Xi). The weights in this

Monte Carlo Markov Chain are identical to those generated by a standard importance sampler using the

importance function g.

5.5.4 Case 2: θ = 1

With θ = 1, the Q-type sampler converges to a standard importance sampler, with a trial pdf g(x).

Any weight Π corresponding to sample X will converge to a degenerate distribution about c0u(x)

(again u(x) = %(x)/g(x)). This is because if u0 = miny(%(y)/g(y)), once the sample (x, π) satisfies

π = c0u(x), with c0u0 ≥ 1 for some c0, the proposed transition y will always be accepted. The new

weight will be c0u(y). The weight will stabilize at π(x) = c0u(x) as soon as c0u0 ≥ 1, and the

equilibrium distribution of x will be g(x). The weighting process over the sample chain for any starting

value Π will therefore climb until

Πi ≥ max
y:T (Xi,y)>0

u(Xi)
u(y)

, (5.56)

after which the weight process stabilizes. It is shown by a simple example that the weights of the R-type

sampler tend to increase monotonically. With T (x, y) symmetric and %(·) uniform on X , the weights

are

Π′ =

{
π + 1 if u ≤ π

π+1

π(π + 1) otherwise,

in which case the Π process increases to infinity with probability 1. By multiplying with a random

value V ∼ (1 − δ, 1 + δ), (if δ is chosen such that E(log(V )) is not too small), the stability of the
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weight process Π can be recovered:

Πi+1 =

{
V (πr(x, y) + 1) if accepted

V (π(πr(x, y)) + 1) if rejected.

An argument for this is supplied in [68].

5.6 The theory of Population Monte Carlo

According to [19], early MCMC literature attempted to dissociate itself from the literature on impor-

tance sampling, even though both of these had in common the notion of sampling from a proposal

distribution other than the prior distribution while arriving at the correct posterior distribution by using

normalization and reweighting. It was only much later that the MCMC and importance sampling were

combined (e.g. [76], [68]).

In our implementation, there is little difference between partitioned particle filtering (over a single time

step) and PMC. In [19], it is shown that the importance functions per sample (as each sample may have

its own importance function) may depend in any way on the previous importance functions and sample

distributions. This is because the sample set is immediately reweighted to represent a draw from the

target distribution, at every iteration. Theoretically, PPF applies the same importance function gn (with

resampling) in the sequence to all of the particles in partition n. Suppose we want to construct a target

distribution %(·) using a MCMC sampler, where we can specify the probability of a set of samples in

terms of the product of the probability of each sample individually:

%
⊗
n(θ1, ..., θn) =

n∏
i=1

%(θi). (5.57)

Here the distribution is on the space χn, whereas %(θi) is on the space χ. PMC allows one to avoid

the problem of calculating the convergence of an MCMC sampler to the correct stationary distribution

by using importance sampling to correct at each time step for the bias introduced by the proposal

distribution.

To use this, each sample θti in the sample set θt = (θt1, ..., θ
t
n), (each sample has been drawn from gti) is

reweighted by

πti =
%(θti)
gti(θ

t
i)
, i = 1, ..., n, (5.58)

where gti is the proposal distribution for the simulation of θti . This definition implies that estimators

which take the form

Jt =
1
n

n∑
i=1

πtih(θti) (5.59)
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are unbiased estimators of E%[h(θ)] at every iteration t, for every integrable function h(·). In fact,

E[πtih(θti)] =
∫ ∫

%(θ)
gti(θ|C)

h(θ)gti(x|C)dx u(C)dC

=
∫ ∫

h(x)%(θ)dθ u(C)dC = E%[h(X)], (5.60)

where C indicates the vector of past random variables which affect gti , and u(C) refers to its distribution.

Assuming that the variances

var(πtih(θti)) (5.61)

exist for all 1 ≤ i ≤ N , i.e. that the proposals for gti have heavier tails than %, then the variance

decomposition rule for J, namely

var(Jt) =
1
N2

N∑
i=1

var(πtih(θti)), (5.62)

implies that the importance-weighted terms are always uncorrelated. Since distributions % are often

unscaled and unnormalized, one can instead use

πti ∝
%(θti)
gti(θ

t
i)
, i = 1, . . . , N. (5.63)

The weights, although now normalized, have caused the distributions to lose their unbiasedness and

variance decomposition properties, although they still approximate the true distributions.

As noted in [96], instead of updating the weights at each iteration, it improves the representation of

target distributions to resample N values yti (with replacement) from the sample set (θt1, ..., θ
t
N ) at

each time step t, according to the sample weights πti . This ameliorates the degeneracy problem, where

irrelevant samples are maintained and do not help in representing the distribution compactly. The new

sample set (yt1, ..., y
t
N ) resulting from this resampling operation is similar to an i.i.d. sample taken from

the distribution %
⊗
n(θ1, ..., θN ).

The essential feature of the PMC sampler is that at iteration t, N values are simulated from a proposal

distribution which depends itself on the N × (t − 1) previous samples. There is almost no constraint

on the dependencies of the new importance distributions on the old ones or on the previous samples.

In [97], it is noted that in the absence of repeated resampling operations at each iteration of the PMC

sampler, the algorithm is equivalent to Metropolis-Hastings sampling in the N dimensional space χN

(N is the number of samples in the sample set), which converges to the target distribution %
⊗
n, (i.e. to

the same desired target distribution). It is also equivalent to N parallel Metropolis-Hastings samplers

which accept or reject each sample in the N dimensional sample set, (i.e. a parallel MCMC sampler),

which converges to the target distribution %
⊗
n.

The generic PMC method can be described (taken from [26]) as follows:
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• n=0: Initialize sample locations and probability weights:

1. Generate (θ0
i )1≤i≤N ∼ g0

2. Compute (π0
i )1≤i≤N = (p(θ0

i )/g
0(θ0

i ))1≤i≤N .

3. Generate (I0
i )1≤i≤N ∼M(1,−→π 0)

4. Set (θ0
i,new)1≤i≤N = (θ0

I0i
)1≤i≤N .

• For n > 0

1. Conditionally on previous θji and θji,new (j < n),

generate independently (θni )1≤i≤N ∼ gni
2. Compute (πni )1≤i≤N = (p(θni )/gni (θni ))1≤i≤N .

3. Generate (Ini )1≤i≤N ∼M(1,−→π n)

4. Set (θni,new)1≤i≤N = (θnIn
i

)1≤i≤N .

As before, −→π n indicates the normalized set of sample weights πni , for 1 < i < N . I is a sample

index, and M is the multinomial sampling function (see Appendix A). Note that the mathematical

functioning of partitioned particle filtering over a single time step with N iterations, assuming there

are no time dynamics for state vector transitioning (as indicated by the ∗h(·) in the previous section

on PPF), is identical to N iterations of Population Monte Carlo, if the incident distribution over X, i.e.

p(Xt|Xt−1), is uniform. In PPF, the motion prior (or state dynamics) for each time step, at t > 0, takes

the form p(Xt|Xt−1), and at t = 0, p(Xt|Xt−1) = p(X0).

The objective in using the Population Monte Carlo sampler for parametric BRDF extraction is to si-

multaneously derive a sample set that is a good representation on the underlying BRDF parameters,

and one in which the best (maximum a posteriori) sample is reliably close to the true parameter values

for the parametric BRDF model. Therefore, using synthetically generated surfaces, one can compare a

PMC sampler with a MCMC sampler in terms of the rate at which the MAP sample will reliably come

within a threshold of the true parameter values.

To do importance sampling on the distribution of the parameters of the BRDF model, we use the pseu-

dolikelihood of Eqn. 4.24 as a target distribution. Thus

p(θ) = exp(PL(X|θ)) =
∏
i∈S

p(xi|xNi , θ) =
∏
i∈S

exp(−U(xi, xNi , θ))∑
s∈L exp(−U(s, xNi , θ))

, (5.64)

where L is the set of possible labels which the random variable xi can take on, and where for each

corner vertex node i,

U(xi, xNi , θ) =
∑
j∈Ni,

k∈Ni,k>j

ψijk(xi, xj , xk, yijk, θ) (5.65)
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with

ψijk(xi, xj , xk, yijk, θ) = |yijk − BRDF(i, j, k, xi, xj , xk, ~L,P, θ)|/σb, (5.66)

where σb is a user-definable parameter which governs the sharpness of the energy function.

If the number of corner vertex nodes is large, it can be inefficient to use an importance function which

calculates the pseudolikelihood over the entire lattice of corner vertex node sites, if it requires too much

computation. A single location on the lattice does not provide a strong enough importance function

if it is simply used directly. We propose using a “sub” pseudolikelihood, which uses a product of the

individual site probabilities over a certain part of the lattice, for example k = 1000 to 20000 sites. An

importance sampling step can be done using these k sites, after which the next importance sampling

step is done on the next k. This is expressed as

gn(θ) = exp(PLn(X|θ)) =
(n+1)k−1∏
i=nk

p(xi|xNi , θ)

=
(n+1)k−1∏
i=nk

exp(−U(xi, xNi , θ))∑
s∈L exp(−U(s, xNi , θ))

. (5.67)

One can also create subsets of the original set S of corner vertex nodes, which include every kth site

on the lattice. The first subset S1 could include sites {0, k, 2k, . . . }, the second subset S2 could then

include sites {1, k + 1, 2k + 1, . . . }, the third subset S3 includes sites {2, k + 2, 2k + 2, . . . }, and so

on. If this is the case, the pseudolikelihood can be written

gn(θ) = exp(PLn(X|θ)) =
∏
i∈Sn

p(xi|xNi , θ)

=
∏
i∈Sn

exp(−U(xi, xNi , θ))∑
s∈L exp(−U(s, xNi , θ))

. (5.68)

For multiple geometric surfaces under the same lighting conditions (different reconstructions from dif-

ferent synchronized image pairs), one can move progressively through each surface.

5.7 The softening of a probability density function

It is beneficial to use a sharpening/softening function on the posterior distribution of a random variable

if it is represented by a set of samples, especially when applying a set of different cost functions to the

particles at different stages. When the resampling of these particles is done, and if one particle has a

very high probability, that particle will be sampled repeatedly, resulting in degeneracy. This is especially

likely when using probabilities based on multiplying likelihoods over thousands of pixels/nodes. We
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would rather maintain bad (low probability) samples for a few more resampling iterations, in case they

prove to be good samples under some other energy function (a clique potential over other corner vertex

node triplets in the image data in our case), or if there are other local maxima close to some of the local

minima. To do this we use importance sampling for the same effect as simulated annealing, within the

PMC paradigm. The method used to soften our distributions is

πnew
i ∝ (πold

i )l, (5.69)

i.e. for each sample, take the weight of the ith sample and take it to the lth power. After all the

weights have been adjusted in this way, the weights−→π new are normalized. Note that with this softening

algorithm, values of l < 1 soften the distribution, while l > 1 sharpen it. The operation of this algorithm

on a pdf p(θ) can be written as

pnew(θ) = s(p(θ)). (5.70)

The operation of this algorithm on a set of weighted samples is denoted by

{−→θ ,−→π }new = sp({
−→
θ ,−→π }old), (5.71)

or (overloading the notation), its performance on a single sample is written πnew
i = ss(i, πold

i ).

Using this, one can construct an importance function which is a compounded function of softening and

pseudolikelihood, i.e.

gn(θ|X) = s(exp(PLn(X|θ))), (5.72)

remembering that we are using p(θ|X) = exp(PL(X|θ)), assuming there are uniform priors on X and

θ.

This function does not involve probabilistic information on the label nodes X calculated from a proba-

bilistic dense stereo correspondence algorithm, which we believe it should. In later chapters we modify

this pseudolikelihood function to include information on the label probabilities, which are derived from

the corresponding dense stereo uncertainty for each reconstructed point, as calculated by a Loopy Belief

Propagation algorithm.

Now that we have expounded some sampling methodologies and described their usefulness for eval-

uating Pseudolikelihoods, we turn to the framework we have used for calculating probabilistic dense

disparity fields for stereo pairs of images.



Chapter 6

Stereo reconstructions and uncertainty

In this chapter we show how we construct (smoothed) probabilistic surface reconstructions using Loopy

Belief Propagation (LBP), and how to incorporate the uncertainties in the surface reconstruction into

the potential energy terms that are used to estimate the MRF parameters which are also the BRDF

parameters of the surface.

In this thesis, the method used to derive smooth probabilistic disparity maps, which are used to gen-

erate 3-D surface reconstructions of object surfaces, is the accelerated LBP algorithm due to Tappen

[112]. The LBP method for dense stereo calculates a posterior density estimation on a MRF, defined on

the lattice of corner vertex nodes (which occur between pixels). The basic Loopy Belief Propagation

algorithm for dense stereo correspondence calculation is due to [109] and is the source of many of the

modern belief propagation based stereo algorithms ([111], [108], [128], [60], [66], [133]).

The approximation of the posterior distributions can be accelerated using the method of [112]. Our

implementation of this algorithm varies from the original in that we find the posterior distribution on

the disparities of the corner vertex nodes, i.e. the points at the intersection of pixels quadruplets (and

pixel pairs if the point is on the edge of the image), rather than on the image pixels themselves, as is

usually done in dense stereo correspondence algorithms. One could define the lattice as having one

node for each pixel, but having lattice nodes on corner vertex nodes allows for smoother transitioning

from the notation developed in previous chapters (and from the notation in [71], [73], [72]).

Belief propagation methods are better suited to reconstructing bubble surfaces, and surfaces with vary-

ing height profiles, than graph-cut based methods [112],[110]. This is because the regularity of the

energy functions required for graph-cut based optimization causes a bias towards fronto-parallel planar

surfaces, i.e. for neighbouring pixels to have identical disparities. Bubbles have smooth curvature,

and we found that the bubble and material surface reconstructions calculated using belief propagation

methods are visibly more accurate than reconstructions based on dense correspondences calculated

58
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using graph-cut methods.

In addition, most dense stereo correspondence algorithms derive a final “best disparity solution”, whereas

we believe a probabilistic solution gives a truer account of the uncertainties involved in a surface re-

construction. Our aim is to include these probabilistic disparities in our BRDF parameter estimation

method. Our BRDF estimation algorithm would also work using one of the algorithms which solve

only for the final MAP estimate for the stereo reconstruction of a surface (such as dense stereo recon-

struction via graph-cuts), since the state space for each node label is the same, but in that case we cannot

include soft probabilistic information (calculated by the dense stereo correspondence algorithm) about

the likelihood of the alternative corner vertex node labels. For example, a graph-cut or Gibbs sampling

based MRF optimizer may be used to obtain the MAP labelling on the set of nodes, in which case the

corresponding probabilities on the node labels can be set to the uniform distribution if there is no other

information available. The pseudolikelihood summation of Eqn. 4.23 would still occur over the local

configuration space of each node.

6.1 Overview of process for probabilistic dense stereo reconstruction and
MRF parameter estimation

This section outlines the general process for creating a dense probabilistic surface reconstruction, and

for doing MRF parameter estimation to estimate BRDF parameters. The process can be divided into

the following steps:

1. Capture stereo images A of calibration object

2. Capture stereo images B of scene under structured lighting (checkerboard pattern)

3. Capture stereo images I of scene illuminated by white light

4. Calculate and calibrate projection matrices of cameras P in stereo pair using images A

5. Rectify images B giving images IR using calibrated projection matrices P (and point correspondence

data for images A), using the rectification methods of [36] and [55]

6. Do dense stereo correspondence on rectified images IR, calculating disparity field X and

probabilities (beliefs) on this field b

7. Use probabilistic dense stereo correspondence information X and b, along with image intensity

information (images I), camera projection matrix data (calculated in 4), and light source

information to estimate MRF parameters, using PMC, dynamically weighted MCMC, or multiple-

seed Levenberg-Marquardt algorithm.

In this thesis, steps 1 to 5 were done using standard algorithms. For step 4 (calculation and calibration

of camera projection matrices), we used the method of [140]. For step 5 (rectification of stereo images),

we used a combination of [55] and [36].
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Figure 6.1: The lattice of nodes in X (round nodes) and the nodes on the dual lattice (square nodes). A node on
the dual lattice ls,t is situated between nodes s and t.

We thus proceed immediately to describe step 6, which is done using the dense stereo correspondence

algorithm of [109], which has for a long time been a competitive alternative on the Middlebury rankings

of stereo reconstruction algorithms (see [53], where its performance may be examined, and where

comparisons of alternative dense stereo correspondence algorithms can be viewed).

6.2 MRF formulation for dense stereo correspondence estimation

The description of [109] is followed almost exactly in describing the LBP application to dense stereo

correspondence estimation. In this description, the reference view is the first image in the image pair.

Stereo vision is modeled by three coupled MRFs defined on the lattice S of corner vertex nodes. It will

be shown how these three MRFs, defined on sets of random variables D,L and O, can be combined

into a single MRF. D is the disparity field of the reference view (the first image in the pair), L is a

spatial line process on the dual lattice (shown in Fig. 6.1), and represents explicitly the presence or

absence of depth discontinuities in the reference view. O is a spatial binary process, which indicates

occluded points in the reference view. Note that the nodes on the lattice S are ordered.

Using Bayes’ rule, we specify the joint posterior probability over D,L and O, given a pair of rectified

stereo images, IR = (IR1, IR2), where IR1 is the reference (left) image. This gives the Bayesian

formulation:

p(D,L,O|IR) =
p(IR|D,L,O)p(D,L,O)

p(IR)
. (6.1)

This model draws on the model of [39], where D and L are two coupled MRFs. The disparity field

D represents the set of random variables to estimate, and L represents the discontinuities of those
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variables, across the lattice. Assuming that IR is independent of L (since the line discontinuities are

not observed explicitly in the image), this becomes

p(IR|D,L,O) = p(IR|D,O). (6.2)

For the sake of simplicity one may ignore the dependence between O and {D,L} although in fact

the occlusion between image regions is dependent on the relative depths of the surfaces in the images.

Nevertheless, with this assumption,

p(D,L,O) = p(D,L)p(O). (6.3)

The stereo model is now

p(D,L,O|IR) =
p(IR|D,O)p(D,L)p(O)

p(IR)
. (6.4)

A match measure F (s, ds, IR) is defined, which has as arguments a site s, a disparity ds, and the image

data IR, and returns a dissimilarity measure on the regions (windows) about s and ds:

F (s, ds, IR) = 1− d(s, ds, IR), (6.5)

where d(s, ds, IR) is a match measure between sites s in the first image IR1 and the corresponding

site given the disparity ds in the second image IR2, given the image data IR. The disparity value

ds is measured in pixels, and in our implementation takes on a value in the range −20 ≤ ds ≤ 20,

ds ∈ Z. In [109], the pixel dissimilarity measure of [11] is used. For our purposes any method which

returns a value in the range [0;1] is reasonable for calculating d(s, ds, IR): the method must return

values between 1 (for a perfect match) and 0 (for a poor match). Some region matching measures are

described in Appendix B. This gives

p(IR|D,O) ∝
∏
s/∈O

exp(−F (s, ds, IR)/σf ), (6.6)

where s /∈ O indicates that the probability is calculated using only the non-occluded sites, (O is the set

of occluded sites), and σf is a factor which makes large pixel dissimilarities have a low probability.

The first order neighbourhood of sites is defined as the Ising neighbourhood, where a site’s neighbours

include only the site immediately above it, to the left of it, to the right of it and below it, as depicted

in Fig. 6.2. The first order neighbourhoods Gs and Ns = {t|t > s, t ∈ Gs} are thus defined for each

site s on the lattice S. The ordering on sites s on the lattice S allows the expression {t|t > s, t ∈ Gs}
to include only sites which are in Gs and which are also higher in the ordering than s. The use of this

expression thus allows one to avoid double counting pairwise interaction potential terms.

The line process which is used to preserve continuity in the disparity field is defined as a set of binary

random variables ls,t, s ∈ S, t ∈ Ns on the dual lattice. If ls,t = 1, this indicates the presence of a



6. Stereo reconstructions and uncertainty 62

Figure 6.2: The white round nodes are the Ising neighbours of the black node.

Figure 6.3: Robust function ρ(x) = − ln((1− e) exp(− |x|σ ) + e), derived from the Total Variance model [101]
(this diagram taken from [109]). The function plotted on the left has e = 0.01, σ = 1.0. The function shown in
the middle has e = 0.01, σ = 2.0, the function shown on the right has e = 0.1, σ = 2.0.
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disparity discontinuity between the labels ds and dt; if ls,t = 0, there is no disparity discontinuity. The

outlier process O is also a set of binary random variables. The prior distribution of Eqn. 6.4 is expanded

as:

p(D,L,O) ∝

(∏
s

∏
t∈Ns

exp(−ψc(ds, dt, ls,t))

)(∏
s

exp(−nc(os))

)
, (6.7)

where ψc(ds, dt, ls,t) is the joint clique potential function (spatial interaction term) of ds, dt and ls,t,

and nc(os) is the clique potential function of os. Spatial interaction may be incorporated by defining

ψc(ds, dt, ls,t) = ψ(ds, dt)(1− ls,t) + γ(ls,t). (6.8)

The functions ψ(ds, dt) and nc(os) can be specified manually. In the above, ψ(ds, dt) penalizes the

different assignments of neighbouring sites when no discontinuity is present between them, and γ(ls,t)

penalizes the occurrence of a discontinuity between sites s and t. It is usual to set γ(ls,t) = 0. When

the previous formulae are combined,

p(D,O,L|IR) ∝

(∏
s/∈O

exp(−F (s, ds, IR))

)(∏
s

exp(−nc(os))

)
(∏

s

∏
t∈Ns

exp(−(ψ(ds, dt)(1− ls,t + γ(ls,t))))

)
. (6.9)

The term nc(os) is then simplified by ignoring the spatial interaction of the occlusion sites, giving

nc(os) = n(os). (6.10)

In [109] it is noted that the form of nc(os) should be

nc(os) = n(os) +
∑
t∈Ns

n′(os, ot), (6.11)

where n(os) is a single-site clique potential function, which penalizes occlusion, and n′(os, ot) penal-

izes different occlusion labels os and ot for sites s and t. However, this is ignored.

Using the methodology of [13] for combining line processes with robust statistics, the MAP formulation

of the problem is rewritten in [109] as

max
D,L,O

p(D,L,O|IR) = max
D

{
max
O

∏
s

exp(−(Fs, ds, IR)(1− os) + n(os))

max
L

∏
s

∏
t∈Ns

exp(−(ψ(ds, dt)(1− ls,t) + γ(ls,t)))
}
. (6.12)

With the problem expressed in this form, the task is to find the set of labels for D, L, and O, which

maximizes the probability p(D,O,L|IR) in Eqn. 6.9. However, the problem can be simplified. The
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spatial binary processes of ls,t and os are converted to analog processes, with 0 ≤ las,t ≤ 1 and 0 ≤
oas ≤ 1, following the paradigm of [13]. It is possible to make the simplification

max
O

∏
s

exp(−(F (s, ds, IR)(1− oas) + n(oas)))

= exp(−min
O

∑
s

(F (s, ds, IR)(1− oas) + n(oas))), (6.13)

where

min
O

∑
s

(F (s, ds, IR)(1− oas) + n(oas)) (6.14)

is an objective function, describing a robust estimator.

The robust potential energy functions for the robust estimator of Eqn. 6.12 which use the above analog

processes [13] are defined as:

ψmin
d (s, ds) = min

oa
s

(F (s, ds, IR)(1− oas) + n(oas)) (6.15)

and

ψmin
p (ds, dt) = min

(las,t)
(ψ(ds, dt)(1− las,t) + γ(las,t)). (6.16)

Note that the robust function ψmin
p (·, ·) is not dependent on the precise location on the lattice. Finally,

the posterior probability of the disparity field is defined by including the two robust functions:

p(D|IR) ∝
(∏

exp(−ψmin
d (s, ds))

)(∏
s

∏
t∈Ns

exp(−ψmin
p (ds, dt))

)
. (6.17)

In this way, the two analog processes are absorbed into a single outlier process, and three coupled

Markov random fields are converted into a single Markov random field, using robust estimators.

6.2.1 Robust statistics

Robust estimators are now briefly described, since the potential functions of our Markov random field

are defined using this technique (we do not use the robust functions of Eqn. 6.15 and 6.16, they were

derived for illustration). Robust estimators are described in detail in [13], and arose out of the need to

prevent too great an influence of outliers on an objective function. Hampel et al. in [48] describe the

goals of robust statistics as

1. to describe the structure best fitting the data

2. to identify the outlying data points.
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The task of robust estimation is to find the values in a parameter vector a = [a0 . . . aN ] that provide

the best fit for a model u(s,a), given data measurements d = {d0 . . . dS}. The model may be fitted by

minimizing the residual errors ds − u(s,a):

min
a

∑
s∈S

ρ(ds − u(s; a), σs), (6.18)

where s iterates over the data points, σs is a variable scale parameter, and ρ is the error norm. If the

measurement errors are normally distributed, the optimal ρ-function is quadratic in the residual errors:

ρ(ds − u(s; a), σs) =
(ds − u(s; a))2

2σ2
s

. (6.19)

This is the standard least-squares estimation problem. If a quadratic error function is used, then the

influence of outliers increases without bound. Many robust functions are designed to have cost functions

that fall away from the quadratic, such as the truncated quadratic estimator of [15]. The choice of

different robust functions results in different robust estimators. An estimator that is less sensitive to

outliers is said to be more robust. When the quadratic function of Eqn. 6.19 is used, the outliers

contribute too much to the error. In [48], the behaviour of robust functions is analysed using influence

functions which are proportional to the derivative of the ρ-function. If the quadratic ρ-function is x2,

then the influence function λ is 2x. This means that for least-squares estimators, the influence of outliers

increases linearly and without bound. One alternative to the least squares estimator is to use Huber’s

minimax estimator [91]:

ρε(x) =

{
x2/2ε+ ε/2 if |x| ≤ ε
|x| if |x| > ε

(6.20)

with

λε(x) =

{
x/ε, if |x| ≤ ε

sign(x) if |x| > ε.
(6.21)

In this estimator, the ρ-function increases like x2 for small errors, and increases like |x| for larger errors.

The Lorentzian estimator has a different characteristic:

ρ(x, σ) = log
(

1 +
1
2

(
x

σ
)2

)
, λ(x, σ) =

2x
2σ2 + x2

, (6.22)

which allows the influence of residual errors to decrease when the absolute value is greater than a certain

threshold.

Two alternative robust functions which are derived from the Total Variance model of [101] are used

here for dense stereo correspondence (they are also used in [109]). They are derived from an objective

function with the potential function specified as ρ(x) = |x|, and are truncated into the functions:

ψd(s, ds) = − ln((1− ed) exp
(
− |F (s, ds, IR)|

σd
) + ed

)
, (6.23)
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and

ψp(ds, dt) = − ln((1− ep) exp
(
− |ds − dt|

σp
) + ep

)
, (6.24)

where ed, σd, ep, σp are definable parameters for the robust functions. If these functions are substituted

into Eqn. 6.17, then a function of similar form to that maximized in Eqn. 6.12 is obtained. Plots of these

robust functions (Eqns. 6.23 and 6.24) for different parameter values are shown in Fig. 6.3. These are

the functions used to generate smooth probabilistic disparity maps in our experiments (and in [109]),

and to calculate beliefs on the states of any corner vertex node.

The posterior probability distribution over the disparity field D is a Markov random field. This Markov

random field on D is now converted into a loopy Bayesian network/Markov network consisting of the

set of hidden nodes X and visible (observation nodes) Y. Each variable node xs in the Markov network

is a discrete random variable representing the disparity of the corner vertex node at site s. Each such

node also has connected to it (topologically) a visible node which represents a direct observation on

the probability distribution over the labels of the discrete random variable xs. The visible nodes are so

called because the probability vectors they contain are known exactly, unlike the variable nodes where

the state probabilities must be calculated through inference algorithms [84].

Each observation node (visible node) ys typically contains probabilistic values for match measures for

site s in the reference image corresponding to various points (in the horizontal scan line, within the

range of disparities) in the rectified target image, as indicated by the disparity value (node label) xs. We

denote X = {xs}, i.e. X is the set of random variables {xs}∀s ∈ S, such that each xs can take on any

label in L, and each label corresponds to a disparity value. We also define the set of visible data nodes

Y = {ys}, i.e. each random variable xs has an associated visible data node ys for 1 ≤ s ≤ N , where

N is the number of sites on the lattice S (see Fig. 6.4 for a graphical depiction of the connectivity of

the visible and hidden nodes). The visible data ys for a site s on the lattice S is a vector of probabilities.

The MRF may be defined using clique potential functions:

p(X|Y) ∝

 ∏
s,t:s>t,t∈Ns

υst(xs, xt)

(∏
s

υs(xs, ys)

)
(6.25)

where X represents the set of random variables describing the disparity field, so

υst(xs, xt) = exp(−ψp(xs, xt)) (6.26)

and Y is effectively the image data, thus

υs(xs, ys) ∝ exp(−ψd(s, xs)), (6.27)

which is (almost exactly) the original formulation of [109]. The multiplication iterators s, t : s > t, t ∈
Ns indicate a use of the ordering on the node sites which prevents the double counting of potential
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Figure 6.4: A depiction of the pairwise clique potential system used to smooth probabilistic disparity maps.
The round nodes labeled x are the random variables (corner vertex nodes) in the rectified image; the round nodes
labeled y are the local (visible) observation nodes for each corner vertex node x. Pairwise potential terms are ψij ,
local evidence potential terms are ψi.

energy terms. However, in keeping with our established notation for clique potentials (ψ) and total

clique potentials per node per clique type (U ), the previous three equations may be rewritten as

p(X|Y) ∝

(∏
s

exp(−UBs )

)(∏
s

exp(−UCs )

)
(6.28)

where

UBs =
∑

t:s>t,t∈N s
ψp(xs, xt) (6.29)

and

UCs = ψd(s, xs). (6.30)

In the above, υst(xs, xt) becomes a compatibility matrix between adjacent nodes xs and xt. The second

function υs(xs, ys) is often referred to as the evidence or local evidence on node xs. Thus, three coupled

MRFs defined on the sets of random variables D,L,O have been converted into a single MRF on the

random variables X and image data Y using the robust functions of Eqns. 6.23 and 6.24.
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6.3 Loopy Belief Propagation for dense stereo estimation

In this section the Loopy belief propagation (LBP) and accelerated LBP algorithms for approximate

inference on Bayesian networks are described. Belief propagation is an iterative algorithm for approx-

imating the posterior distributions on loopy or non-loopy Bayesian networks. If the graph or network

has no cycles, then the inference is exact (i.e. the posterior distributions obtained when the algorithm

converges are probabilistically correct). Loopy belief propagation, introduced by [89], works by gener-

alizing the forwards-backwards message passing algorithm to graphs which have cycles. Theoretically,

the algorithm is prone to double counting information, to converging to the wrong posterior distribu-

tion, and failing to converge. It is found that in many applications, including dense stereo matching,

the algorithm works very well. A range of variations on the algorithm has been developed, including

ones which guarantee convergence (such as [132],[125]), and ones which improve the accuracy of the

posterior distribution by considering embedded trees [120].

If there are cycles in the graph, the algorithm converges instead to something close to the correct pos-

terior distribution. Some work has been done on the convergence properties of the Loopy Belief Prop-

agation (LBP) algorithm on cyclic graphs under various constraints. It is shown in [124] that in loopy

networks where the variable nodes are Gaussian, the inference is exact. The inference is also exact

when dealing with a network containing a single loop, as is shown in [123]. In some cases, a loopy

Bayesian network will exhibit oscillatory behaviour in the posterior distribution on any node and on the

messages, as the same information is passed around the loops in the network. One effective message

damping method, which reduces the oscillatory behaviour, is proposed in [83], where the messages

from each node are adjusted to be a combination of the existing message and the usual update message.

In [130] it is shown that the LBP algorithm does not in general converge to the correct posterior in a

loopy network, but rather to an equivalent result to the Kikuchi approximation to the Gibbs Free Energy

on a lattice of random variables. It is shown in [130] that Belief Propagation is only one of a series of

message passing variants. The authors go on to define a more general message passing algorithm called

Generalized Belief Propagation.

However, we choose to use an accelerated version of the classical dense stereo Belief Propagation algo-

rithm of [109]. This offers faster convergence with similar performance. We further motivate our choice

for using this method over alternative LBP and non-LBP based dense stereo estimation algorithms, by

noting that the belief propagation method of [109] was for a long time one of the best performers on

the Middlebury stereo data sets [53]. Moreover, many of the best Belief Propagation-based algorithms

to appear on the Middlebury rankings were derived from the Belief Propagation method of [109].
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6.3.1 Factor node algorithm for Loopy Belief Propagation

A concise description of the factor node algorithm for approximating posterior distributions on loopy

networks is the factor graph algorithm, (see [84] for a complete description). Briefly, the variable nodes

first send messages to their neighbouring factor nodes:

µx→f (x) =
∏
g 6=f

µg→x(x). (6.31)

Then each factor node sends a message to each of its neighbouring variable nodes:

µf→x(x) =
∑

f(u)
∏
y 6=x

µy→f (y). (6.32)

The above two steps are iterated until convergence or some other stopping criterion is reached. In these

equations x and y are variable nodes (corner vertex nodes), while g and f are factor nodes. Each factor

node represents a clique potential function on its connected variable nodes. This is the algorithm we

used in [72] to obtain an approximate solution to the shape from shading problem, using the same

connectivity on the corner vertex nodes as is depicted in Fig. 4.1, where the square nodes are factor

nodes and the round nodes are variable nodes.

6.3.2 Loopy Belief Propagation: max-product, parallel message passing protocol

It is possible to do loopy belief propagation without factor nodes, as is described in [89]: this is the

method followed here, and in [109].

Given the two MRF potential energy functions ψst(xs, xt) and ψs(xs, ys), the parallel message passing

schedule can be described, using the max-product update rule for approximating the posterior distribu-

tions p(X|Y) for the random variable labels at each of the sites. If mst(xs, xt), abbreviated mst(xs), is

the message being sent to node xt from node xs, andms(xs, ys) (abbreviated toms(xs)) is the message

that observed node ys sends to node xs, and if bs(xs) is the belief at node xs, (note that xs refers both to

the node in the network, and to the random variable which that node represents) then the max-product

algorithm for belief propagation on the lattice of corner vertex nodes may be described as follows:

Max-product algorithm

1. Initialize all messages to the uniform distribution

2. For i = 1 . . . T

Update all the messages:

mi+1
st (xt)← κmax

xs

(
υst(xs, xt)mi

s(xs)
∏

k∈Ns\t

mi
ks(xs)

)
(6.33)
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Figure 6.5: A depiction of the message passing algorithm on a lattice. Messages are passed between nodes
which are topologically connected. The prior data is contained in the visible (round) nodes labeled ’y’, which
contain the image data. The discrete random variables (square nodes) represent the disparities at the corner vertex
node at each point (corner vertex node) on the lattice. The square region interior to four ‘x’ nodes represents a
pixel. This diagram is taken from [109].

end(2)

3. Compute final beliefs at time T

bs(xs)← κms(xs)
∏
k∈Ns

mT
ks(xs). (6.34)

Then the maximum a posteriori label for a node xs is found by

xMAP
s = arg max

xk∈L
bs(xk). (6.35)

The iterator k ∈ Ns \ t indicates that messages from all the random variables neighbouring the random

variable (corner vertex node) xs at site s are included, except xt. A diagram showing the message

passing scheme is shown in Fig. 6.5.

In the above algorithm, κ is a normalizing constant which normalizes the message vectors m (makes

its elements, which are probabilities, sum to unity). Since all final beliefs bs(·) are normalized (the

elements must sum to unity, since it is a probability vector), the multiplication of intermediate messages

by κ can usually be omitted, although it can help to prevent underflow. T is the number of iterations

of belief propagation, so step 3 uses the final messages at time T to calculate the posterior beliefs on
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Figure 6.6: A user-selected subregion of the rectified image pair of Fig. 6.7. The right sub-window is wider
because of the possibility of matches in the range of disparity, which in this example is 30 pixels.

the node labels. L is the set of possible labels that a corner vertex node may adopt, and depends on the

disparity range selected for the image pair. The term υst(xs, xt) is a square compatibility matrix which

is populated with elements calculated according to Eqn. 6.26. The algorithm may also be run until it is

detected that there is little or no change in the messages. Note that the product of two messages (vectors

containing probabilities) is a componentwise product.

After the Belief Propagation algorithm is run there exists a probability on the disparity for each site on

the lattice, that is contained in bs(xs). Our MRF method for BRDF extraction uses these probabilities

on the labels of corner vertex nodes. In Fig. 6.9 are shown the resulting maximum a posteriori disparity

values per pixel in a disparity map for the rectangular sub-window in a rectified image of froth shown

in Fig. 6.6. The posterior distribution from which the disparity map was extracted, was calculated using

the LBP algorithm which was just described. These sub-windows were extracted from the rectified froth

pair shown in Fig. 6.7. It is easy to see that the disparity map generated with LBP is an improvement

on the disparity map calculated by using only the window correlation measure, shown in Fig. 6.8.

Whether it is more accurate is unknown since there is no other method available to us which gives

a perfect groundtruth reconstruction for surfaces which change their shape quickly over time against

which we can compare this reconstruction method. It is clear that the LBP smoothed disparity maps are

less noisy, and in this sense it is a definite improvement.

An excellent compendium of belief propagation style-algorithms for static and dynamic Bayesian net-

works may be found in [84].

6.3.3 Match measure

There is a number of different algorithms which can be used for calculating the match measure for Eqn.

6.5, which is incorporated in the observation potential of Eqn. 6.27. These include 2-D correlation,

Kullback-Leibler divergence, histogram intersection, mutual information (MI), Earth Mover’s Distance
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Figure 6.7: A rectified pair of froth surfaces. These surfaces are illuminated by a checkerboard pattern of
coloured light, generated by a digital light projector. This coloured pattern facilitates the calculation of accu-
rate disparity maps. The images were rectified using the method of [55]. The final transformed sparse feature
correspondences are superimposed on the images.

Figure 6.8: MAP estimate for the disparity map, using a 2-D correlation window.
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Figure 6.9: The probability map corresponding to the disparity map of Fig. 6.8 is smoothed using Loopy Belief
propagation, (max-product updates, parallel message passing schedule). The MAP disparity values are shown
above.

and the inner product. Each of these measures performs better under different conditions. In our

experiments, we use a dissimilarity measure which uses the simple 2-D correlation measure:

r(A,B) =
∑

m

∑
n(Amn −A)(Bmn −B)√∑

m

∑
n(Amn −A)2

∑
m

∑
n(Bmn −B)2

, (6.36)

where A and B are the averages of pixels in the first and second rectangular image windows respec-

tively. The correlation is converted into a measure which is in the range [0; 1]:

d(s, ds, IR) = (r + 1)/2, (6.37)

where the image windows A and B are the rectangular image regions about site s in the first rectified

image IR1 and the corresponding region in the second rectified image IR2, given the disparity ds.

The interested reader is referred to Appendix B, where brief descriptions of some alternative window

match measures are described.

6.3.4 Accelerated message passing

An enhancement described in [112] is to update all messages in each column and row, traversing the

image four times per iteration. First we start at the rightmost column and update the messages for

each column left of the rightmost column, in a leftwards direction. An analagous procedure is repeated

in the other three directions (down, right, up). This allows the messages calculated at the previous

row/column to be used immediately on the next row/column, without waiting for the next time step.

In this way, information spreads across the lattice much faster than it does when using the parallel
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update schedule of [109], described in the previous section. This accelerated method converges to a

local energy minimum faster than the standard LBP algorithm, which works on all nodes on the lattice

in parallel. The following algorithm replaces step 2 in the max-product parallel algorithm in Section

6.3.2.

Accelerated Loopy Belief Propagation message update schedule for dense correspondence

In this algorithm, the message mright(xj) indicates the message from the node to the right of node xj ,

to node xj (similarly for mup(xj),mleft(xj),mdown(xj)). It is assumed that the lattice has R rows and

C columns. A message is excluded if it refers to a node that does not exist.

1. For n = 1, . . . , T (T is the number of LBP iterations)

2. For c = C − 1 . . . 1, (from right to left)

3. For xj ∈ variable nodes in column c

4. Update message from right (if node xi is to the right of node xj):

mright(xj)← max
xi

(
υij(xi, xj)mi(xi)mright(xi)mup(xi)mdown(xi)

)
(6.38)

5. end(3)

6. end(2)

7. For r = 2 . . . R, (from top to bottom)

8. For xj ∈ variable nodes in row r

9. Update message from above (if node xi is above node xj):

mup(xj)← max
xi

(
υij(xi, xj)mi(xi)mright(xi)mup(xi)mleft(xi)

)
(6.39)

10. end(8)

11. end(7)

12. For c = 2 . . . C, (from left to right)

13. For xj ∈ variable nodes in column c

14. Update message from left (if node xi is to the left of node xj):

mleft(xj)← max
xi

(
υij(xi, xj)mi(xi)mleft(xi)mup(xi)mdown(xi)

)
(6.40)

15. end(13)

16. end(12)

17. For r = R− 1 . . . 1, (from bottom to top)

18. For xj ∈ variable nodes in row r

19. Update message from below (if node xi is below node xj):

mdown(xj)← max
xi

(
υij(xi, xj)mi(xi)mdown(xi)mleft(xi)mright(xi)

)
(6.41)
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Figure 6.10: The MAP disparity map corresponding to the same disparity probability field as represented in Fig.
6.8 is smoothed using Loopy Belief propagation, (max-product updates, accelerated message passing schedule).

20. end(18)

21. end(17)

22. end(1).

For a parallel message passing schedule (as in [109]), with an image of width C, it would take C

iterations for information to pass from one side of the image to the other. With accelerated message

passing, this happens in one iteration. All other aspects of the accelerated LBP and parallel message

passing (previous section) LBP are similar. In Fig. 6.11, we show the resulting maximum a posteriori

disparity values per pixel for a rectangular sub-window in a rectified image of froth, calculated using

the accelerated LBP algorithm just described. The matter presented in this chapter thusfar does not

represent original work, and is presented merely to motivate the use of the accelerated LBP algorithm

for dense stereo reconstruction rather than the parallel LBP algorithm. In the latter parts of this chapter

we use the derived probabilities using the accelerated LBP method on a stereo pair to define a new

potential function on a MRF which includes the BRDF related MRF energy functions as described in

Chapter four.

6.4 Calculation of 3-D points from corner vertex node labels

In this section it is shown how to triangulate a pair of points from a set of dense stereo correspondences

into the scene. This procedure will be done for each disparity label, for each point in the reference view

(first image). The corresponding probability for a particular disparity, for a particular point, is taken to

be the probability of the surface passing through the corresponding point in the scene.

In dense stereo reconstruction algorithms it is common, after calculating the MAP disparity map for
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the rectified image pair, to project each of the pixels/points into 3-D space. This is necessary for our

algorithm since the BRDF functions WARD(·) and PHONG(·) assume the ability to calculate the 3-D

point locations given the labellings on corner node vertex triplets. Given H1 and H2, the rectifying

homographies for the cameras for the first and second images respectively, and given P1 and P2, the

corresponding calibrated projection matrices for the first and second images, one may calculate the lo-

cation of the 3-D point corresponding to a disparity value of dR1
r(i) in the rectified image, (corresponding

to corner vertex node i in the unrectified image) using a linear triangulation method.

First it is necessary to find the location of the corner vertex node in the rectified image IR1 correspond-

ing to corner vertex node i in the unrectified image I1. Assume there is a point in the first unrecti-

fied image at pixel (xi, yi). First, this point is converted into a vector of homogeneous coordinates

XI1
i = [xi yi 1]T . The point is then transformed by the same rectifying homography that was applied

to the first image to rectify it:

YR1
r(i) ' H1XI1

i , (6.42)

where the symbol ' indicates that the vector to its left is homographically equal to the vector to its

right, i.e. when each vector is multiplied by a (different) scalar value, to make its last element unity,

then the vectors are the same.

Following this formulation, r(i) is the index of the corner vertex node at YR1
r(i), in the rectified image.

It is possible that due to inaccuracy in calibration or in the calculation of the rectifying homographies,

the location contained in the coordinates of YR1
r(i) does not correspond exactly to a corner vertex node

location, i.e. a point between four pixels in the rectified image. If this is the case, the nearest corner

vertex node to the coordinates in YR1
r(i) is selected as the node corresponding to corner vertex node i in

the unrectified image. Illustrations of this are given in Figs. 6.12 and 6.13. The inverse relationship

also exists

XI1
i ' H−1

1 YR1
r(i). (6.43)

In reality, one may also need to store the offsets of the warped image boundaries when homographically

warping an image. If the image is warped such that some of the image points fall on negative coordinates

in the image plane, then the offsets must be stored if the parts of the warped image with negative image

plane coordinates are not to be discarded. If the offsets for the warped image are (ox, oy), (i.e. the

image point at (0, 0) corresponds to the image plane point (ox, oy) (the warped image is shifted to have

all its points at positive pixel coordinates), then the previous two equations become

(image plane point) y ' H1XI1
i , (6.44)

(image point) YR1
r(i) = y − [ox oy 0]T , (6.45)

and

XI1
i ' H−1

1 (YR1
r(i) + [ox oy 0]T ). (6.46)
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Figure 6.11: The MAP disparity map corresponding to the same disparity probability field as represented in Fig.
6.8 is smoothed using Loopy Belief propagation, (max-product updates, accelerated message passing schedule).

In Eqns. 6.45 and 6.46 it is assumed that y and YR1
r(i) have been homogeneously scaled so that the last

element is unity.

This is illustrated in Fig. 6.12, where a homographically warped image is drawn, in which parts of the

warped image are at negative coordinates on the image plane. The use of offsets is also appropriate if

the image is warped (rectified) onto a region in the image plane which is positive and displaced from

the origin. Then the image is translated so that as little image space as possible is wasted: the image

is translated so that the topmost point of the warped image is on the horizontal axis (the zero vertical

image coordinate), and the leftmost point of the warped image is at the vertical axis (zero horizontal

image coordinate). Therefore the offsets are nearly always stored and used as per Eqns. 6.45 and 6.46,

in our implementation.

Thus if I1 and I2 are the first and second images in the stereo pair, and if IR1 is the rectified first image

and IR2 is the rectified second image, then r(i) in image IR1 is at homogeneous image coordinates

YR1
r(i) = Q(XI1

i , o
1
x, o

1
y,H1) in the first rectified image and this corresponds to coordinates YR2 =

YR2
b + [dR1

r(i) 0 0]T where YR2
b = YR1

r(i) + [o1
x − o2

x o1
y − o2

y 0]T in the second rectified image, given

that dR1
r(i) is the disparity label for corner vertex node xR1

r(i) in IR1.

The function YR1
r(i) = Q(XI1

i , o
1
x, o

1
y,H1) is described algorithmically rather than mathematically, as a

homogeneous scaling operation is involved, which would make a mathematical description difficult:

1. yi ← H1XI1
i

2. yi ← homo(yi)

3. YR1
r(i) ← yi − [o1

x o1
y 0]T

where “homo(x)” is a function that takes as an argument the homogeneous vector x = [x1 x2 x3] and

scales it so that the last element is unity, i.e. x/x3 = homo(x).
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Figure 6.12: An image (I1) is depicted on the left and the same image homographically warped (rectified) by
matrix H1 on the right (IR1). The middle figure is the image plane, with the origin indicated. The image on
the right is obtained by viewing the image plane in image coordinates. The origin in the image plane has pixel
coordinates (−ox,−oy), if the image is translated so that all points have positive pixel coordinates. Each square
indicates a pixel. The corner vertex node i (circle) on the left corresponds to the corner vertex node r(i) on the
right. The corner vertex nodes may be numbered row by row, starting at the top left of the image and rectified
image. This is the same homographical warping done to obtain rectified image pairs, such as those shown in Fig.
6.7. The random variables on the lattice for the corner vertex nodes for the image on the left are labelled xi,
the random variables for the corresponding corner vertex nodes for the homographically transformed image on
the right are labelled xR1

i . The point coordinates (0,0) are indicated in the second image. The offsets (ox, oy)
indicate the displacements between the pixel locations and the corner vertex node locations on the image plane.
If there is an offset of (ox, oy), it means that the pixel at (x, y) corresponds to the coordinates (x+ ox, y+ oy) in
the image plane.

Figure 6.13: The disparity map from Fig. 6.8 is superimposed on the rectified image grid to show that the
disparity maps come from cropped subwindows within the rectified images.
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The 3-D coordinates Zi of the point corresponding to corner vertex node r(i) given a disparity dR1
r(i)

may be found using a linear 3-D triangulation algorithm, such as the Singular Value Decomposition

(SVD) method described in [49]:

Zi = triangulate(H1,H2, o
1
x, o

1
y, o

2
x, o

2
y,Y

R1
r(i),Y

R2
b , dR1

r(i),P1,P2), (6.47)

where o1
x and o1

y are the offsets for IR1, and o2
x and o2

y are the offsets for the IR2. The triangulation

algorithm takes a point correspondence between points in the rectified images IR1 and IR2, and finds

the corresponding original positions of the points in the unrectified images I1 and I2 via Eqn. 6.43. In

fact, the triangulation function can take the following parameters:

Zi = triangulate(XI1
i ,H2, o

2
x, o

2
y,Y

R2
b , dR1

r(i),P1,P2), (6.48)

since it is already known that the point YR1
r(i) in IR1 corresponds to XI1

i in I1. Since there is a probability

p(xR1
r(i) = s) on the corner vertex node xR1

r(i) taking on a value s, this translates into a probability on the

location of the 3-D point Zi. Since point r(i) with disparity s in IR1 triangulates into

Zsi = triangulate(XI1
i ,H2, o

2
x, o

2
y,Y

R2
b , s,P1,P2), (6.49)

we can say

p(Zsi ) = p(xR1
r(i) = s). (6.50)

These points Zsi occur along the same ray. A disparity s at node r(i) in the first rectified image IR1

corresponds to corner vertex node i in the first unrectified image I1 having a label s. The probabilities

are equivalent (excluding information derived from the BRDF estimates):

p(xi = s) ≡ p(xR1
r(i) = s). (6.51)

What we have done is simply equated the probability of a corner vertex node xR1
r(i) having a particular

disparity in the rectified image pair, to the probability of the same corner vertex node being triangulated

to the corresponding point into the scene. The number of points in the scene which a corner vertex node

in I1 can be triangulated into is the same as the number of possible disparity values dR1
r(i) ∈ L.

Later in this chapter a methodology for incorporating this probabilistic information on the probability

of a corner vertex node label in IR1 into the estimation of the probability of the state of a corner vertex

node label in I1 is developed, which includes energy terms associated with BRDF information (Eqn.

4.12), using Gibbs style potential interactions within a pseudolikelihood framework.

6.4.1 Triangulating points in 3-D given image points and calibrated projection matrices.

Assume that the location of a point in each of the original (unrectified) images has been calculated:

XI1
i in I1 and XI2

i in I2, using Eqn. 6.43 or 6.46 on some pair of corresponding points YR1
r(i) and

YR2 = YR2
b + [dR1

r(i) 0 0]T in the rectified images IR1 and IR2.
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Included here is a description of a linear algorithm for triangulating image points into world coordinates

(in R3). The method assumes that the projection matrices contained in P have all been found through

calibration. If in image n there is a point Xn = PnZ, and Z is the 3-D world coordinate of the point

which is projected as Xn in image n, then it is possible to rewrite the coefficients to form a linear system

of the form AZ = 0. For convenience, we write Xn = (x, y, 1), the location of the projected point in

the first image. The homogeneous scale factor is eliminated by taking the cross-product Xn × (PnZ)

to give three linearly dependent equations:

x(p3TZ)− (p1TZ) = 0

y(p3TZ)− (p2TZ) = 0

x(p2TZ)− y(p1TZ) = 0. (6.52)

One can now assemble a matrix of the form

A =


xp3T − p1T

yp3T − p2T

x′p′3T − p′1T

y′p′3T − p′2T

 (6.53)

where piT is the ith row of P1 and p′iT is the ith row of P2. This linear system can be solved in many

ways, for example by using the SVD.

The function of Eqns. 6.48 and 6.49 (Zi = triangulate(XI1
i ,H2, o

2
x, o

2
y,Y

R2
b , dR1

r(i),P1,P2)) can there-

fore be described in the following algorithm:

1. YR2 ← YR2
b + [dR1

r(i) 0 0]T

2. y2 ← YR2 + [o2
x o2

y 0]T

3. x2 ← H−1
2 y2

4. XI2
i ← homo(x2)

5. Use linear algorithm described above to find 3-D point Zi given XI1
i ,X

I2
i ,P1,P2,

where as before homo(x) is a function that takes as an argument the homogeneous vector x = [x1 x2 x3]T

and scales it so that the last element is unity, i.e. x/x3 = homo(x).

Note that if the projection matrices are uncalibrated, the reconstructed points are reconstructed only up

to a projective ambiguity (see [49] for details). Therefore the cameras must be accurately calibrated.

An example of part of the maximum a posteriori surface generated by the disparity map of Fig. 6.11 is

shown in Fig. 6.14.

6.4.2 Calculation of BRDF potential terms using triangulation

It was stated earlier that the MRF clique potential terms of Eqns. 4.20 and 4.21 are calculated using a

method which involves projection of the corner vertex nodes into the scene. The algorithm for calcu-
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Figure 6.14: The MAP surface reconstruction of a surface over a small image region. In this case, a specular
highlight on part of the surface has led to bad matching for pixels corresponding to the highlighted area, and a
corresponding bad MAP estimate for this region of the surface reconstruction.

lating BRDF(i, j, k, xi, xj , xk,
−→
L ,P, θ) follows:

1. Zi =triangulate(XI1
i ,H2, o

2
x, o

2
y,Y

R2
b , xi,P1,P2)

2. Zj =triangulate(XI1
j ,H2, o

2
x, o

2
y,Y

R2
b , xj ,P1,P2)

3. Zk =triangulate(XI1
k ,H2, o

2
x, o

2
y,Y

R2
b , xk,P1,P2)

4. Calculate normal n̂ given the 3-D surface triangle formed by Zi,Zj ,Zk
5. Calculate all other intermediate variables such as h, k1 and k2

6. Calculate expected intensity as viewed by P1 according to Eqn. 3.1 or 3.12.

Note that the sixth parameter in the triangulate(·) functions above are states on the corner vertex nodes

of the first unrectified image I1. In this way the labels for a corner vertex node i in I1 are used directly

in the triangulation of a point into the scene, via the disparity of the corresponding point r(i) in the

rectified images IR. The label on the corner vertex node i in I1 is used as the disparity value of corner

vertex node r(i) in IR1.

6.5 Incorporating dense stereo uncertainty into Markov random field
pseudolikelihood model for estimating BRDF parameters

In a previous section, it was shown how a probabilistic dense stereo map can be estimated for a given

surface. The true value for any corner vertex node label is taken to be the MAP value for the corner

vertex node label (i.e. the label with the highest belief associated with it according to Eqn. 6.34).

However, in the calculation of the pseudolikelihood, we take into account not only the other possible

labels (and the corresponding depth or range) of the surface at each point, but also the probabilities on
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these labels as calculated by a loopy belief propagation based dense stereo correspondence algorithm.

Recalling Eqns. 6.28, 6.29 and 6.30:

p(X|Y) ∝

(∏
s

exp(−UBs )

)(∏
s

exp(−UCs )

)
(6.54)

where

UBs =
∑

t:s>t,t∈N s
ψp(xs, xt) (6.55)

and

UCs = ψd(s, xs), (6.56)

one can form potential energy terms appropriate for calculating the pseudolikelihood (the potential

energy terms for Markov neighbours of a site are used to calculate the site’s probability of taking on a

specific label). These energy terms are for nodes in the rectified first image IR1, where corner vertex

node i in the first image corresponds to corner vertex node or point r(i) in the rectified first image:

V B
i =

∑
t∈Nr(i)

ψp(xR1
r(i), x

R1
t ) (6.57)

and

UCi = ψd(r(i), xR1
r(i)). (6.58)

These are energy terms relating to the labels xR1
r(i) on corner vertex nodes in the first rectified image

IR1. They use the local clique structure of the transformed corner vertex locations in the rectified

image. Note that the potential term of Eqn. 6.57 differs from the potential term of Eqn. 6.29, because

the calculation of the pseudolikelihood (Eqn. 4.24) requires the summation of all neighbouring pairwise

potential terms, even though this means using pairwise potential terms twice.

This pseudolikelihood can be reformulated to include the label probabilities for each site, given the

compatibility cliques on the neighbouring pairwise nodes r(i) in the rectified first image, and the energy

associated with the local evidence (robust function with pixel dissimilarity measure). This is written as

PL2(X|θ) = log
∏
i∈S

p(xi|xNi , θ)

= log
∏
i∈S

exp(−UAi (xi, xNi , θ)− V B
i (xi, xNi)− UCi (xi, IR))∑

s∈L exp(−UAi (s, xNi , θ)− V B
i (s, xNi)− UCi (s, IR))

, (6.59)

where the potential term UA is the BRDF-based potential energy term called U in Eqn. 5.65, using the

methodology of section 6.4.2, specifically encoding the energy terms associated with the corner vertex

nodes’ agreement with the image data.
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It is sensible to omit the V B potential term if there is no reason to assume any spatial continuity charac-

teristics (as are usually encoded in this term), e.g. if the surface of the object is not predictably smooth

or homogenous. One problem with this formulation is that, by itself, it does not allow the rectified

probabilistic disparity map to be smoothed: in typical LBP or general MRF methods to denoise or

smooth a probabilistic disparity map, the algorithm is allowed to run for many iterations, and informa-

tion flows from one side of the disparity map to the other. With the pseudolikelihood in the form of Eqn.

6.59, only local interactions are considered, with no information flow across non-adjacent (non-Markov

neighbouring) nodes or pixels; this is undesirable since information from non-adjacent nodes should be

incorporated into the probabilistic reconstruction of any point on the surface.

In our implementation, the probability on the range label xi of corner vertex node i in the unrectified

first image depends on the belief on the disparity b(xR1
r(i)) of corner vertex node r(i) in the rectified

first image IR1, calculated using a dense stereo LBP algorithm. This is because there is a one-to-one

correspondence between the disparity xi for corner vertex node r(i), and a range label for corner vertex

node i in the unrectified first image I1. We seek to include both information from the reflectance and

from the dense stereo correspondence in the calculation of the probability of a corner vertex node label.

It may seem artificial to include a posterior distribution derived from an LBP calculated approximation

for the beliefs on the disparities of the corner vertex nodes in the rectified first image IR1, without

also using a LBP type algorithm to calculate the beliefs on the corner vertex node states using BRDF

information. However, this is easily justified by noting that the BRDF data is not yet available at this

stage. In fact, it is the BRDF parameters that we seek to estimate. The beliefs on the disparity field

as calculated by the LBP algorithm can best be regarded as a range sensor reading for each site on the

lattice, even though it is the result of processing such raw probabilistic data on the corner vertex node

states.

This situation may also arise if for example an LBP algorithm for dense stereo was implemented locally

on the hardware of a stereo camera pair, and transmitted to a computer for BRDF estimation. In general,

the probabilities/beliefs for the disparity field may be calculated by any non-Bayesian method, and it is

this general case that our algorithm caters for.

It is therefore preferable to use the final posterior belief on the node label, after the image and pairwise

clique interactions have been taken into account, and the information has spread across the whole

disparity map. One way of including this in the pseudolikelihood framework, is to convert the belief

on the label of any transformed corner vertex node back into a potential function. For a single potential

energy term, p(x) = k1 exp(−UD(x)/T ). Therefore this can be converted into a potential term:

UDi (xi, IR) = ψDi (xi) = −T log(b(xR1
r(i))/k1), (6.60)

where T is the temperature and k1 is a normalization constant. This formulation permits the incor-

poration of probabilistic information gained from LBP type dense stereo correspondence algorithms
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about the likelihood of any label xR1
i in the rectified image IR1, into a potential energy term, within the

paradigm of Gibbs random field type energy interactions.

Note that the LBP algorithm for dense stereo correspondence is calculated using the pair of rectified

images IR with the set of corner vertex nodes on the lattice of sites in IR1, and not on the set of

corner vertex nodes for the first unrectified image I1. A pseudolikelihood which incorporates this dense

stereo-based probability through the potential energy as in Eqn. 6.60 is

PL3(X|θ) = log
∏
i∈S p(xi|xNi , θ)

= log
∏
i∈S

exp(−UA
i (xi,xNi

,θ)−UD
i (xi,I

R))∑
s∈L exp(−UA

i (s,xNi
,θ)−UD

i (s,IR))
. (6.61)

For notational convenience we also write the function

ePL3(X|θ) = exp(PL3(X|θ))

=
∏
i∈S

exp(−UA
i (xi,xNi

,θ)−UD
i (xi,I

R))∑
s∈L exp(−UA

i (s,xNi
,θ)−UD

i (s,IR))
. (6.62)

Now that the third pseudolikelihood function PL3 has been defined, the importance function of Eqn.

5.72 can be reformulated:

G(θ|X) = s(ePL3(X|θ)), (6.63)

remembering that we are using p(θ|X) = exp(PL(X|θ)), since there are uniform priors on X and θ,

and where s(·) is the softening function, as described previously (Eqn. 5.70). This is the importance

function used for the PMC based MRF parameter estimation. As with the previous pseudolikelihood

functions, one can construct importance functions Gn based on iteration over a certain part the lattice,

using

ePLn3 (X|θ) =
∏
i∈Sn

p(xi|xNi , θ), (6.64)

where Sn is the nth subset of the sites on the lattice, for example Sn = {n, n+ k, n+ 2k, . . . }, where

k is the number of subsets into which the surface is partitioned. This function can be softened, giving

Gn(θ|X) = s(ePLn3 (X|θ)). (6.65)

6.6 Population Monte Carlo for BRDF parameter estimation

A valid implementation of the generic PMC algorithm to approximate a posterior distribution on a

BRDF parameterisation can now be given as:
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6.6.1 Population Monte Carlo algorithm (I)

• n=0: Initialize sample locations and probability weights:

1. Generate samples (θ0
i )1≤i≤N ∼ G0

2. Compute weights (π0
i )1≤i≤N = (ePL3(X|θ0

i )/G
0(θ0

i |X))1≤i≤N

3. {−→θ 0,−→π 0} = resampleParticles({−→θ 0,−→π 0})

• For n > 0

1. Generate samples (θni )1≤i≤N ∼ Gn({−→θ n−1,−→π n−1}|X)

2. Compute weights (πni )1≤i≤N = (ePL3(X|θni )/Gn(θni |X))1≤i≤N

3. {−→θ n,−→π n} = resampleParticles({−→θ n,−→π n}).

Step 1 in both cases needs to be clarified. Given an analytical or functional expression for a pdf, it is

sometimes easy to sample from it (for example from the normal distribution), but often it is not. In

our case, where the importance functions G are not known analytically (they are evaluated per sample

given the data), the distributions must be generated or sampled from in a different way. When n = 0,

step 1, (“Generate samples (θ0
i )1≤i≤N ∼ G0”), is performed as follows:

1. Generate an evenly spaced set of samples (u0
i )(1≤i≤N) over the parameter space to represent the

uniform distribution in R3 (if there are three parameters), and set the weights v0
i = G0(u0

i |X),

(1 ≤ i ≤ N)

2. {−→θ 0,−→π 0} = resampleParticles({−→u 0,−→v 0}, σ0).

When (n > 0), step 1 (“Generate samples (θni )1≤i≤N ∼ Gn({−→θ n−1,−→π n−1}|X)”), can be performed

in the following way:

1. Reweight each of the samples θn−1
i , for 1 ≤ i ≤ N , according to

vi = πn−1
i Gn(θn−1

i |X)/ePL3(X|θn−1
i ) (6.66)

2. {−→θ n,−→π n} = resampleParticles({−→θ n−1,−→v }, σn).

The additive Gaussian noise at the resampling stage is parameterized by σn, which is the standard de-

viation of the noise, and which decreases at each iteration of the PMC algorithm. It is likely that the

function ePL3(·) is far more expensive to evaluate than any Gn(·), (this motivates us to create impor-

tance functions Gn(·) which use only part of the data and are therefore computed faster). Furthermore,
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the function ePL3(·) is too sharp, and sampling from it would cause too many particles to be resam-

pled from the MAP sample, resulting in degeneracy. For this reason propagation of samples which

are weighted directly with the ePL3(·) function as a factor is avoided (although to recover the correct

posterior distribution at any time it is necessary to correctly weight the samples with ePL3(·)).

The calculation of correctly weighted samples at every time step can be avoided by using an algorithm

that calculates the correctly weighted sample set whenever it is required, but maintains a set of weighted

samples which always represents the uniform distribution, retaining the samples which are in positions

considered to be important. This is the PMC algorithm used in this thesis:

6.6.2 Population Monte Carlo algorithm (II)

• n=0: Initialize sample locations and probability weights:

1. Generate samples (a0
i )1≤i≤N ∼ G0

2. Compute weights (c0
i )1≤i≤N = (1/G0(a0

i |X))1≤i≤N

3. Normalize the weights c0

4. If the correct posterior distribution ePL3(X|θ) is needed:

5. Compute (π0
i )1≤i≤N = (ePL3(X|a0

i )/G
0(a0

i |X))1≤i≤N

6. {−→θ 0,−→π 0} = resampleParticles({−→a 0,−→π 0})

7. end.

• For n > 0

1. Generate samples (ani )1≤i≤N ∼ Gn({−→a n−1,−→c n−1}|X)

2. Compute weights (cni )1≤i≤N = (1/Gn(ani |X))1≤i≤N

3. Normalize the weights cn

4. If the correct posterior distribution ePL3(X|θ) is needed:

5. Compute (πni )1≤i≤N = (ePL3(X|ani )/Gn(ani |X))1≤i≤N

6. {−→θ n,−→π n} = resampleParticles({−→a n,−→π n})

7. end.

Once again it is necessary to specify how the sampling is done at step 1 in each case. When n = 0, at

step 1, which reads “(a0
i )1≤i≤N ∼ G0”, the samples are generated in the following way:

1. Generate an evenly spaced set of samples (u0
i )(1≤i≤N) over the parameter space to represent the

uniform distribution in R3, and set the weights c0
i = G0(u0

i |X), (1 ≤ i ≤ N)
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2. {−→a 0,−→c 0} = resampleParticles({−→u 0,−→c 0}, σ0)

The second case step 1 (n > 0), which reads “Generate samples (ani )1≤i≤N ∼ Gn({−→a n−1,−→c n−1}|X)”,

is performed in the following way:

1. Reweight each of the samples an−1
i , for 1 ≤ i ≤ N , according to

wi = cn−1
i Gn(an−1

i |X) (6.67)

2. {−→a n,−→c n} = resampleParticles({−→a n−1,−→w }, σn).

As before, the additive Gaussian noise at the resampling stage is parameterized by σn, which is the

standard deviation of the noise, and which decreases at each iteration of the PMC algorithm.

Note that each sample θni contains the information for the BRDF parameters. P (both camera projection

matrices), and ~L (the light source direction), are used implicitly in the pseudolikelihood calculations. P

has been calculated through calibration algorithms using a calibration checkerboard, and ~L is estimated

from the scene geometry (the projector is positioned midway between the two cameras).

In our experiments, the standard deviation of the additive Gaussian noise for the resampling operation

(resampleParticles(·, σn)) is initialized with σ0 = 0.07, and decreases linearly over the PMC iterations

until finally σT = 0.

The MRF framework for estimating BRDFs through MRF parameters has been established, and meth-

ods for sampling its parameters have been described, along with a Pseudolikelihood based cost function

to take into accoutn uncertainties in the reconstructed surface. The next two chapters deal with conver-

gence results for synthetic data and classification results on real surface data.



Chapter 7

BRDF parameter estimation on synthetic
data

Our algorithm was tested using both synthetically generated surface and illumination data, and on real

data comprising of reconstructed surfaces of materials and of froth surfaces. The testing on synthetic

data was done to demonstrate the performance of the algorithm, and its convergence to the correct

posterior distribution and to the true reflectance parameters which were used to generate each syn-

thetic surface reflectance image. Three algorithms are compared for convergence to the true reflectance

parameters, namely a Levenberg-Marquardt nonlinear optimizer, a dynamically weighted MCMC sam-

pler, and a PMC sampler. Some statistics are reported, concerning the convergence results for different

algorithm running parameters. The parameters which are varied, in order to explore the performance of

the parametric BRDF estimation algorithms, are

1. The number of possible labels for each synthetic corner vertex node

2. The number of samples to propagate in the PMC method

3. The number of seeds in the Multiple-Seed LM algorithm

4. The BRDF model used to render the synthetic surfaces (Ward and anisotropic Phong)

Samples sets which have been passed through one or more PMC iterations are referred to as “evolved”,

or “developed” samples.

88
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7.1 Reparameterisation of Ward and Phong models

In the course of our preliminary experiments on synthetic data, it was found that the best range of

parameters for the Ward model, for accurate recovery, are as follows:

ρd ∈ [0, 1], ρs ∈ [0, 1], α ∈ (0, 0.5]. (7.1)

In [122] it is noted that for a physically valid reflectance function, ρs + ρd < 1, and that α should not

be “too large” (in their experiments α is always less than 0.5).

We set the parameter space for the samples or particles in our MCMC and PMC samplers and seeds

in the LM minimizer to be in the range of values in the unit cube. Given samples in this range and

assuming the Ward BRDF parameterisation, the calculation of α is done by taking the last component

of any particle (or seed) and multiplying it by 0.5 to recover the BRDF parameter vector. Similarly, the

optimal anisotropic Phong parameter values were found to be in the ranges:

Rd ∈ [0, 1], Rs ∈ [0, 1], nu ∈ (0, 25], nv ∈ (0, 25]. (7.2)

We tested only the isotropic version of the anisotropic Phong model [2], setting nu = nv, which means

that the samples and seeds exist in R3. Since the optimal range for these parameters is (0,25] (values

greater than 25 are difficult to estimate accurately and do not generate realistic looking surfaces), we

multiply the last component of any sample vector by 25 to get the anisotropic Phong parameter set.

This enables us to initialize all samples at evenly spaced points on the unit cube, for both the Ward

and anisotropic Phong parameter models (which is not necessary mathematically, but it allows reuse of

software modules, including those for visualizing the samples and cost functions).

7.2 Synthetic Data

The convergence results of the MCMC, PMC and LM algorithms were tested by varying a number of

the internal and external algorithm parameters. The MRF based BRDF probability model as we have

described it allows the following internal parameters to be varied:

• The number of samples in the PMC sampler

• The amount of additive Gaussian noise used when sampling from the importance function

• The number of corner vertex nodes to iterate through before doing a resample operation

• The degree to which the sample set should be sharpened or softened (annealed), if at all

• The number of possible labels per corner vertex node (in the synthetic data)
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• The prior distribution on the labeling of each corner vertex node.

The external factors which affect the algorithm running on real or synthetic data are

• The reflectance model used

• The number of simultaneous light sources.

The last two items on internal parameter variability refer to the simulated disparity noise. In stereo

images, disparity noise can lead to depth ambiguity of points on the reconstructed surface. To test each

algorithm’s ability to recover the correct BRDF parameters, using synthetic data, a synthetic proba-

bilistic range map was generated for each synthetic surface. Normalized probabilities were associated

to each of the range values corresponding to the labels of each corner vertex node, according to the

following distribution, which has a maximum probability on the true depth or range value of the point:

pi(xi, zi) ∝ exp(−ψi(xi, zi)), (7.3)

where

ψi(xi, zi) = |zi − ri(xi)|/σ. (7.4)

Here zi is the true range of the synthetic surface at point i, ri(xi) is the corresponding range of corner

vertex node i given a labelling of xi on that node and the projective camera data, and σ is a definable pa-

rameter for generating priors on the height profiles of these synthetic surfaces. We set each incremental

label on the corner vertex nodes to correspond to an increment of 0.3 units (pixel widths) of range from

the camera center, with σ = B/5, where B is the number of possible disparity labels which a corner

vertex node can take on. Note that in our synthetic data experiments, the surfaces are generated with-

out doing dense stereo correspondence estimation on a pair of images. Therefore the pseudolikelihood

function used in the synthetic data experiments is

PLs(X|θ) = log
∏
i∈S p(xi|xNi , θ)

= log
∏
i∈S

exp(−UA
i (xi,xNi

,θ)−UR
i (xi,zi))∑

s∈L exp(−UA
i (s,xNi

,θ)−UR
i (s,zi))

, (7.5)

where

URi = ψi(xi, zi). (7.6)

The target distribution is then

ePLs(X|θ) = exp(PLs(X|θ))

=
∏
i∈S

exp(−UA
i (xi,xNi

,θ)−UR
i (xi,zi))∑

s∈L exp(−UA
i (s,xNi

,θ)−UR
i (s,zi))

. (7.7)
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In the above, the energy term URi referring to the range of each surface point is not dependent on the

posterior distribution calculated using a Loopy Belief Propagation algorithm, as in Eqn. 6.61. Only a

single image I1 is used, since there is no dense stereo correspondence done.

To calculate the softening functions, the set of corner vertex nodes on the lattice is divided into three

subsets: S0,S1,S2, such that Sn = {n, n+ k, n+ 2k, . . . } with k = 3. The synthetic pseudolikelihood

function is then

ePLns (X|θ) = exp(PLns (X|θ))

=
∏
i∈Sn

exp(−UA
i (xi,xNi

,θ)−UR
i (xi,zi))∑

s∈L exp(−UA
i (s,xNi

,θ)−UR
i (s,zi))

, (7.8)

as in Eqn. 6.65. Since 20 PMC iterations are done, 20 importance functions Gn are required. The three

functions are reused, so

Gns (θ|X) = s(ePLjs(X|θ)), (7.9)

where j = mod(n, 3).

For the synthetic data it is assumed that the only light source is a point light source at infinity. The

algorithm may be extended to other types of light sources. The convergence of the PMC algorithm to

the known correct parameters is compared to the convergence results of a dynamically weighted MCMC

based algorithm, which also returns a sample set representing a pdf over all the BRDF parameters, and

to the convergence results for a multiple-seed Levenberg-Marquardt minimization algorithm.

To generate synthetic surfaces for testing the algorithms using the Ward parameterisation, twenty points

in a cube of space are randomly chosen. Interpolation is done between these points using thin plate

spline interpolation (due to [28] and discussed in [30]). This generates a smooth and natural-looking

surface, which is good for recovery of Ward parameters. The interested reader is referred to Appendix

C, where the algorithm for thin plate spline interpolation is described. Since the surface is known

precisely, it can be rendered from any viewpoint, with any reflectance model. Examples of such surfaces

are shown in Fig. 7.1.

Experimentation showed that such smooth flat synthetic surfaces are not optimal for recovery of the

anisotropic Phong parameterizations. This is because it is difficult to separate the effects of the sur-

face roughness parameters (nu, nv) and the diffuse/specurity parameters (Rd, Rs) when using surfaces

which do not have many parts which are at relatively oblique angles to the camera. The Ward model

behaves differently: to separate the specular reflectance coefficient ρs from the surface roughness α, a

surface which has less curvature away from the image plane is required (the size of the specular lobe is

an indicator of the amount of data available to separate the effects of the ρs and α terms).

Each model is therefore tested synthetically on its own optimal surface type for BRDF parameter esti-

mation. Therefore, to recover the anisotropic Phong model parameters in our synthetic experiments, we
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Figure 7.1: Synthetically generated surfaces (generated using thin plate spline interpolation) for testing of Ward
BRDF parameter recovery algorithms.

used jagged surfaces, with more extreme angles between the surface normals and the incident lighting

and camera direction angles. These surfaces were generated by making the depth or range at each point

on the surface a sample from a uniform distribution over the range [0,6], and adding a constant depth

value. Such a surface is shown in Fig. 7.2.

When testing the BRDF extraction algorithms for both the Ward and anisotropic Phong reflectance

models, it is assumed that the light source is positioned at infinity. Multiple Levenberg-Marquardt

nonlinear minimizations on a probability error function derived from the pseudolikelihood function are

also done. The parameter set for each minimization is initialized on a parameter vector taken from a set

of regularly-spaced points within the BRDF parameter space. The experimentation methodology for

testing the algorithms on the synthetic data is as follows:

Experimental methodology using synthetic data

1. For i=1, . . . ,number of trials

2. Generate random synthetic surface (smooth or jagged),

3. Render surface with random light source (at infinity) and camera at the origin, with Ward

or anisotropic Phong reflectance model, giving reflectance image I1,

4. Create range disparity field X = {xi}, where xi can take on labels which correspond to

discrete ranges about the true range of the surface at corner vertex node i. Then S contains the
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Figure 7.2: Synthetically generated rough surface for testing of Phong BRDF parameter recovery algorithms.

labels corresponding to the true range of the surface at each corner vertex node i,

5. Run the LM, MCMC and PMC parameter estimation algorithms, storing the results,

6. end (1)

7. From the resulting data, analyse the convergence characteristics, and tabulate or plot

graphically the results for each method.

7.3 Multiple-seed Levenberg-Marquardt, dynamically weighted MCMC
and PMC convergence results for synthetic data

In this section we report on convergence results for three different strategies for estimating BRDF

parameters, namely the Multiple-seed LM minimization method, the dynamically weighted MCMC

method, and the Population Monte Carlo method.

7.3.1 Multiple-seed Levenberg-Marquardt minimization

The first method is a Levenberg-Marquardt nonlinear optimization based approach (see Appendix D for

a summary of nonlinear optimization methods and a description of the LM method in particular). The

error function supplied to this method is

ε(i) = 1/p(xi|xNi , θ) = 1/
exp(−UAi (xi, xNi , θ)− URi (xi, zi)∑
s∈L exp(−UAi (s, xNi , θ)− URi (s, zi)

. (7.10)
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Interestingly, the convergence results were found to be superior to those obtained when using an error

function of

ε(i) = 1− p(xi|xNi , θ). (7.11)

Therefore, the function shown in Eqn. 7.10 was used for the LM convergence experiments.

There are as many elements in the error vector ε as there are corner vertex nodes in the image. The LM

function, which returns both a locally optimal parameter value and its corresponding error, is

[θmin, err] = LM(seed,S,X, ~L,P, I1), (7.12)

where “seed” indicates the initial parameter set for θ, S is the set of labels for X corresponding to

the true surface, X is the range disparity field, and I1 is the reflectance image rendered using the true

BRDF parameter set. As before, −→L is the light source direction, and P is the projective camera matrix

data (for one camera), and reflectance images are rendered given a BRDF model for each intermediate

parameter set in the LM algorithm. These parameters are used to calculate the potential energy terms for

Eqn. 7.10, so that the parameter set θmin, which contains the BRDF parameters producing the smallest

error may be calculated.

The LM method does not return any kind of posterior distribution, only the parameter vector which is a

local (and hopefully global) minimum of the error function (within the specified tolerance of error and

the user-specified limit of LM iterations).

The convergence results of the Multiple-seed LM method tested on synthetic data are shown in Figs.

7.3 to 7.6. To ameliorate the problem of the LM minimizer finding bad local probability maxima, we

implemented a multiple-seed version of the algorithm, initializing the BRDF parameter set at regularly

spaced points (seeds) within the space of possible BRDF parameter values (distributed as the samples

in Fig. 7.15), then running the LM minimizer once for each of these seeds. The more seeds tested, the

more likely it is that the resulting minimum-error parameter set is in fact the global minimum for the

cost function.

The results of the iterative minimizations for the Multiple-seed LM minimizer, using the error function

of Eqn. 7.10, are shown in Figs. 7.3 to 7.6. The LM algorithm was run 20 times on synthetic data, with

512 seeds. To test the convergence stability of the algorithm, subsets of the seeds and their correspond-

ing final optimized values were randomly selected from the 512 seeds. The number of seeds in these

subsets ranges from 1 to 512. The plots in Figs. 7.3 and 7.4 show the average distance between the

true BRDF parameter set and the best LM-optimized sample per sample subset. The Multiple-seed LM

algorithm is described as follows:
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7.3.2 Multiple-seed Levenberg-Marquardt for MRF parameter estimation

1. Initialize 512 seeds evenly spaced on the BRDF parameter space.

2. For n=1, . . . ,N

3. Generate random surface and virtual range disparity field X consisting of the possible labels

for the range of disparity values for each corner vertex node in the image, and S, the

labelling of X which corresponds to the true surface

4. Generate random BRDF parameter vector~bn, and render intensity map I1 of surface

given lighting, camera and reflectance parameters

5. For i=1, . . . ,512

6. Generate seedi (seeds are positioned at discrete intervals in the cube of parameter space)

7. Calculate [θni , errni ] = LM(seedi,S,X, ~L,P, I1)

8. end(5)

9. end(2)

10. For n=1, . . . ,N

11. For j=1, . . . ,512

12. Sample a random subset un consisting of j non-duplicate elements from the set (θn, errn)

13. Find the parameter vector θnmin in un corresponding to the minimum value of errn in un

14. Calculate dnj,min = ||θnmin −~bn||
15. end(11)

16. end(10)

17. Calculate dj,min = 1
N

∑
n d

n
j,min.

After running this battery of minimizations, dj,min contains the average minimum error difference be-

tween the parameter vector of the LM calculated optimum value and the true BRDF parameter vector

used to render the image of the synthetic surface. This value is calculated for the range of subset sizes

(each subset is populated with randomly chosen entries from the set of LM-minimized parameter vec-

tors from the 512 seeds). The values for dj,min for the Ward parameterisation, plotted against the number

of seeds j in the subset, are shown in Fig. 7.3. The results using the anisotropic Phong parameterisation,

with the rough synthetic surfaces shown in Fig. 7.2, are shown in Fig. 7.4.

It can be seen by examining Figs. 7.3 and 7.4 that the more seeds that the multiple-seed LM algorithm

is initialized with, the greater the likelihood of having a low minimum error. The smaller the number of

seeds, the greater the risk that the LM algorithm will converge into bad local minima (represented by

the peaks in these two sets of graphs). The number of disparity labels for the synthetic surface data is

indicated in the graphs by “labels”. The errors tend to decrease with more disparity labels.

Also shown in Figs. 7.5 and 7.6 are the convergence results for a single Multiple-seed LM run, with 512

seeds (a different, random parameter vector was used to render the surfaces on which the LM algorithm
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Figure 7.3: Average convergence results over 20 runs for the LM algorithm, run using the Ward reflectance
model to render randomly generated surfaces.
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Figure 7.4: Average convergence results over 20 runs for the LM algorithm, run using the anisotropic Phong
model to render randomly generated surfaces.
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Figure 7.5: Convergence results for a single randomly selected run for the Multiple-seed LM algorithm, run
using the anisotropic Phong reflectance model to render randomly generated surfaces.

was run in each of the four subgraphs in Figs. 7.5 and 7.6). The results are for the same algorithm

as is presented in section 7.3.2, but with N=1 (in Figs. 7.3 and 7.4, N=20). A comparison of Figs.

7.5 and 7.6 with Figs. 7.3 and 7.4 shows us that there are more peaks in Figs. 7.3 and 7.4, which is

expected since these graphs are averaged results over many runs. In the example Multiple-seed LM runs

shown in Figs. 7.5, the optimal parameter sets are found reliably using subsets of 400 seeds or more.

In the example Multiple-seed LM runs shown in Figs. 7.6, the optimal parameter set is found within a

parameter seed subset of size 220 for the case of 10 disparity labels (upper left quadrant), within a subset

size of 350 seeds for 20 disparity labels (upper right quadrant). For the case of 30 disparity labels, a

parameter seed subset size greater than 150 is sufficient to find a good solution (one within 0.015 units

Euclidean distance from the true Ward parameters). Finally, for the case of 40 disparity labels (bottom

right quadrant), the final peak is at a parameter seed subset size of 250. Note however that the Multiple-

seed LM algorithm as described in section 7.3.2 indicates that for displaying the results, the subsets are

chosen randomly. Therefore the results for an individual run of the Multiple-seed LM algorithm with

512 seeds are of limited benefit, although they do give some kind of insight about the distribution of

erroneous results (the peaks in the plots), and can be used to estimate the number of parameter seeds

needed to reduce the risk of deriving a best Multiple-seed parameter set that is at a bad local probability

maximum.
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Figure 7.6: Convergence results for a single randomly selected run for the Multiple-seed LM algorithm, run
using the Ward reflectance model to render randomly generated surfaces.
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7.4 R-type and Q-type dynamically weighted MCMC convergence re-
sults

The MCMC method we implemented was the dynamically weighted MCMC sampler of [68], which,

like the PMC method, uses the pseudolikelihood function for each sample as the target distribution prob-

ability. This dynamically weighted variant was chosen because it was found that the classical MCMC

sampler did not explore the parameter space in a satisfactory way. The dynamically weighted MCMC

sampling method returns a posterior distribution on the BRDF parameters which is more densely sam-

pled than the Population Monte Carlo method, but is less efficient in finding the global maxima of the

distributions.

The posterior distribution of Eqn. 7.7 for a range of synthetic surfaces was explored as the target

distribution %(·) using the R-type and Q-type dynamically weighted MCMC samplers, with θ = 1.

The proposal distribution T (x, y) is a Guassian kernel with σ = 0.05 in R3, centered on the previous

sample. The initial sample in each experiment is initialized with θ0 (we use θ instead of X in Eqns.

5.48 and 5.49, to represent the BRDF parameter set) sampled from the uniform distribution in the unit

cube in R3, and Π0 = %(θ0), i.e.

%(θ0) = ePLs(X|θ0), (7.13)

where as before X is the set of random variables representing the states on the corner vertex nodes

in image I1. Sample proposals outside the unit cube of parameter space are automatically rejected.

In each case, the sampler was allowed to run for 20000 iterations. The computational load is therefore

approximately equivalent to the PMC algorithm run with 1000 samples per sample set over 20 iterations.

For each sample run, the distance between the parameter set of the MAP sample and the true BRDF

parameters used to generate the surface, at each time step, is stored. These MAP distances for each time

step are averaged over 100 MCMC runs. This enables visualization of the average convergence rates

for each of these MCMC samplers. The methodology for collecting and displaying the average results

for the dynamically weighted MCMC sampler follows:

1. For n=1,. . . ,N

2. Generate random surface and virtual range disparity field X consisting of the possible labels

for the range of disparity values for each corner vertex node in the image, and S, the

labelling of X which corresponds to the true surface

3. Generate random BRDF parameter vector~bn, and render intensity map I1 of true surface (S)

given light source ~L, camera data P, and reflectance model and parameters~bn,

4. Run Q-type or R-type dynamically weighted MCMC algorithm for 20000 iterations,

using Eqn. 7.7 as the target distribution, storing each sample set (θni ,Π
n
i ), while

maintaining a running store of the sample θni,max which has the highest probability

%(θni ), up to the current value i.
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Figure 7.7: Average convergence results for the dynamically weighted MCMC algorithm with R-type moves
using the Phong model.

5. end(1).

6. For i=1,. . . ,20000

7. Calculate di = 1
N

∑N
n=1 ||~bn − θni,max||.

8. end(6).

In the above, we have N=100 experiments for each combination of BRDF model (Ward or Phong) and

number of labels (10,20,30,40), for both the Q-type and R-type samplers. The graphs shown in Figs.

7.7 to 7.10 plot the average values di against the sample number i.

Fig. 7.7 shows the average convergence results using synthetic data for the R-type sampler, using the

anisotropic Phong reflectance model. In Fig. 7.8, the average convergence results using synthetic data

for the R-type sampler, using the Ward reflectance model, are shown. Figs. 7.9 and 7.10 show the

same data, but using the Q-type sampler. The convergence results are very similar. Generally, the error

value approaches 0.1 (which is an error value similar to the error value obtained by the LM or PMC

based methods), and on average this takes about 20000 samples to reach. Furthermore, 20000 weighted

samples is too great a number to be used effectively in many of the pdf comparison measures used for

classification of surfaces (described in the next chapter).

In Figs. 7.11, 7.12, 7.13 and 7.14 are shown more convergence results for the dynamically weighted

MCMC sampler. Each plot shows the convergence behaviour for a single randomly chosen sample
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Figure 7.8: Average convergence results for the dynamically weighted MCMC algorithm with R-type moves
using the Ward model.

Figure 7.9: Average convergence results over 100 runs for the dynamically weighted MCMC algorithm with
Q-type moves, using the Phong model.
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Figure 7.10: Average convergence results over 100 runs for the dynamically weighted MCMC algorithm with
Q-type moves, using the Ward model.

Figure 7.11: Convergence results for one randomly selected example, run using the dynamically weighted
MCMC algorithm with R-type moves using the Phong model.
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Figure 7.12: Convergence results for one randomly selected example, run using the dynamically weighted
MCMC algorithm with R-type moves using the Ward model.

Figure 7.13: Convergence results for one randomly selected example, run using the dynamically weighted
MCMC algorithm with Q-type moves, using the Phong model.
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Figure 7.14: Convergence results for one randomly selected example, run using the dynamically weighted
MCMC algorithm with Q-type moves, using the Ward model.

run. It is seen that the MAP samples do not move steadily towards the true parameter set used to

generate the synthetic surfaces, but sometimes move away from it (upwards sloping parts of graphs

in Figs. 7.11..7.14). This is indicative of the nature of the target distribution probability function of

the pseudolikelihood (Eqn. 7.7), which has erroneous local maxima. When a MAP sample is close to

one of the false local maxima, it is counted as the best sample, but it is actually further from the true

parameter set.

7.4.1 Convergence results for the PMC method

The posterior distribution of Eqn. 7.7 for a range of synthetic surfaces was also explored as the target

distribution %(·) using the PMC method. The methodology for gathering synthetic data for the perfor-

mance analysis of the PMC algorithm follows:

1. For n=1,. . . ,N

2. Generate random surface and virtual range disparity field X consisting of the possible labels

for the range of disparity values for each corner vertex node in the image, and S, the

labelling of X which corresponds to the true surface

3. Generate random BRDF parameter vector~bn, and render intensity map I1 of true surface (S)

given light source ~L, camera data P, and reflectance model and parameters~bn,
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4. Run PMC algorithm with 64,125,1000 samples for 20 iterations,

using Eqn. 7.7 as the target distribution, storing each sample set (−→θ ,−→π )n,i at each iteration i

5. end(1).

6. The MAP sample is found by choosing the sample θ with the highest probability weight π

at any iteration i. The distance of the MAP sample to the true synthetic BRDF parameter set is

stored for every iteration. The averages of these distances over 100 runs are recorded

in Tables 7.1 to 7.4, per PMC iteration, in the columns labelled “MAP dist”.

7. The variance of the sample set weights −→π n,i is calculated for each iteration, and averaged over

the number of trial runs (N=100). These are also recorded in Tables 7.1 and 7.2, per PMC iteration,

in the columns labelled “var”.

The variance of the weights in a weighted sample set is an indication of the number of effective samples,

and is used to show that the samples are not being wasted in regions of the target distribution of low

probability. If the samples were thus distributed, the sample variance would be higher. A sample

variance which decreases over successive PMC iterations thus indicates that the PMC algorithm is

finding the local maxima in the distribution (if such local maxima exist).

Some visualizations of the PMC algorithm in operation are shown:

Visualization of PMC algorithm operation

In Figs. 7.15 to 7.28, volumetric plots show the distribution of the pseudolikelihood function ePL3(X|θ)
of Eqn. 6.62, sampled at regular points in the cube of parameter space, with the locations of the samples

at different iterations of the PMC algorithm superimposed. The data is plotted at intervals of 5 iterations

of the PMC algorithm’s operation. It can be seen how the samples evolve and change position as the

PMC algorithm iterates. The volumetric slices in these plots are chosen (almost randomly) to assist in

the visualization of the probability density function. The particle weights in these plots are not directly

visible. Figs. 7.15 to 7.19 show five iterations of the PMC algorithm, run on a surface rendered with the

Ward reflectance model. Figs. 7.20 to 7.24 show another example using the Ward reflectance model,

with a different synthetic surface and parameter set. Figs. 7.25 to 7.28 show five iterations of the PMC

algorithm run on a surface rendered using the anisotropic Phong model.
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Figure 7.15: Posterior distribution of Ward parameterisation calculated from synthetically generated probabilis-
tic surface. The true parameter values in this plot are (x, y, z) = (0.7, 0.4, 0.9) = (ρd, ρs, 2α). The points
indicate samples for PMC iteration number 1. Two different views are shown.

Figure 7.16: Posterior distribution of Ward parameterisation calculated from synthetically generated probabilis-
tic surface. The true parameter values in this plot are (x, y, z) = (0.7, 0.4, 0.9) = (ρd, ρs, 2α). The points
indicate samples for PMC iteration number 5. Two different views are shown.
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Figure 7.17: Posterior distribution of Ward parameterisation calculated from synthetically generated probabilis-
tic surface. The true parameter values in this plot are (x, y, z) = (0.7, 0.4, 0.9) = (ρd, ρs, 2α). The points
indicate samples for PMC iteration number 10. Two different views are shown.

Figure 7.18: Posterior distribution of Ward parameterisation calculated from synthetically generated probabilis-
tic surface. The true parameter values in this plot are (x, y, z) = (0.7, 0.4, 0.9) = (ρd, ρs, 2α). The points
indicate samples for PMC iteration number 15. Two different views are shown.
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Figure 7.19: Posterior distribution of Ward parameterisation calculated from synthetically generated probabilis-
tic surface. The true parameter values in this plot are (x, y, z) = (0.7, 0.4, 0.9) = (ρd, ρs, 2α). The points
indicate samples for PMC iteration number 20. Two different views are shown.

Figure 7.20: Posterior distribution of Ward parameterisation calculated from synthetically generated probabilis-
tic surface. The true parameter values in this plot are (x, y, z) = (0.8, 0.9, 0.5) = (ρd, ρs, 2α). The points
indicate samples for PMC iteration number 1. Two different views are shown.
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Figure 7.21: Posterior distribution of Ward parameterisation calculated from synthetically generated probabilis-
tic surface. The true parameter values in this plot are (x, y, z) = (0.8, 0.9, 0.5) = (ρd, ρs, 2α). The points
indicate samples for PMC iteration number 5. Two different views are shown.

Figure 7.22: Posterior distribution of Ward parameterisation calculated from synthetically generated probabilis-
tic surface. The true parameter values in this plot are (x, y, z) = (0.8, 0.9, 0.5) = (ρd, ρs, 2α). The points
indicate samples for PMC iteration number 10. Two different views are shown.
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Figure 7.23: Posterior distribution of Ward parameterisation calculated from synthetically generated probabilis-
tic surface. The true parameter values in this plot are (x, y, z) = (0.8, 0.9, 0.5) = (ρd, ρs, 2α). The points
indicate samples for PMC iteration number 15. Two different views are shown.

Figure 7.24: Posterior distribution of Ward parameterisation calculated from synthetically generated probabilis-
tic surface. The true parameter values in this plot are (x, y, z) = (0.8, 0.9, 0.5) = (ρd, ρs, 2α). The points
indicate samples for PMC iteration number 20. Two different views are shown.



7. BRDF parameter estimation on synthetic data 112

Figure 7.25: Posterior distribution of anisotropic Phong parameterisation calculated from synthetically gener-
ated probabilistic surface. The true parameter values in this plot are (x, y, z) = (0.8, 0.9, 0.5) = (Rd, Rs, n/25),
where n = nu = nv . The points indicate samples for PMC iteration number 1. Two different views are shown.

Figure 7.26: Posterior distribution of anisotropic Phong parameterisation calculated from synthetically gener-
ated probabilistic surface. The true parameter values in this plot are (x, y, z) = (0.8, 0.9, 0.5) = (Rd, Rs, n/25),
where n = nu = nv . The points indicate samples for PMC iteration number 5. Two different views are shown.
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Figure 7.27: Posterior distribution of anisotropic Phong parameterisation calculated from synthetically gener-
ated probabilistic surface. The true parameter values in this plot are (x, y, z) = (0.8, 0.9, 0.5) = (Rd, Rs, n/25),
where n = nu = nv . The points indicate samples for PMC iteration number 10. Two different views are shown.

Figure 7.28: Posterior distribution of anisotropic Phong parameterisation calculated from synthetically gener-
ated probabilistic surface. The true parameter values in this plot are (x, y, z) = (0.8, 0.9, 0.5) = (Rd, Rs, n/25),
where n = nu = nv . The points indicate samples for PMC iteration number 20. Two different views are shown.
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The convergence results of the PMC BRDF parameter estimation method are shown in Tables 7.1 to 7.4.

The PMC algorithm was run using 1000, 125, and 64 samples (recorded in the tables as “numSamples”),

over 20 iterations, for different numbers of possible synthetic corner vertex node labels. The importance

functions of Eqn. 7.9 were used for this, in the PMC algorithm described in section 6.6.2.

The number of labels per synthetic corner vertex node could take on the values of 10,20,30 and 40. A

value of 40 for the number of labels (“numLabels”) corresponds to the equivalent of a disparity range

of 40 pixels, in the case of real stereo image data (we are however using synthetic data at this stage, so

the number of labels corresponds to the number of discretizations of the range of the point along the

ray through the camera center). The Tables 7.1 to 7.4 also record convergence information with respect

to the average Euclidean distance of the MAP sample from the true value (in the column “MAP dist”),

as well as changes in the average sample variance (in the column “var”, where “×10−6” indicates that

the values in the column should be multiplied by ×10−6 to obtain the correct variances).

It is seen in each of these tables that the average Euclidean distance between the true BRDF parameters

used to generate each surface image and the MAP sample of the sample set (indicated in columns by

“MAP dist”, which indicates the Euclidean distance between the true sample and the MAP sample)

decreases as the PMC algorithm proceeds through each iteration. The sample variances (indicated in

columns by “var”) also decrease as the PMC algorithm proceeds through each iteration. Note that the

elements of Tables 7.1 to 7.4 are average values over 100 runs. The convergence results for the “MAP

dist” statistic appears to be better when using the anisotropic Phong reflectance model than when using

the Ward reflectance model. This is because the algorithms tested using the anisotropic Phong models

were run using jagged surface data (Fig. 7.2), whereas the Ward model experiments were done on

smooth surfaces. These results are presented in table form since there are too many variables to easily

distinguish graphically plotted data.

Tables 7.5, 7.6, 7.7 and 7.8 contain PMC convergence statistics for the Ward and anisotropic Phong

models, for the case where a single randomly chosen run is examined (rather than averaging the results

over 100 runs, as is done in Tables 7.1,7.2,7.3 and 7.4). This data gives insight about the behaviour

that one could expect for a particular PMC run. Note that in all the Tables 7.1..7.8 there is a sudden

drop in the sample variance at the 20th PMC iteration (last row in each table). This is because after the

last iteration, the samples are reweighted with the unsoftened pseudolikelihood functions of Eqn. 7.7,

which is a sharper function than the functions to weight the samples in the previous iterations (Eqn.

7.9).

When examining Table 7.5, one can see by inspection of columns 2,4 and 6 that the Euclidean distances

of the MAP particle to the true BRDF parameter set, after 20 iterations, are 0.026, 0.21 and 0.35. These

distances are large, indicating that this table represents a poor sample run for those values (numLabels

= 10, numSamples = {1000,125,64}). The errors improve for the example sample runs where “numLa-

bels” is greater than 10 (see last row corresponding to 20th PMC iteration. The sample runs described in
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numLabels 10 10 10 10 10 10 20 20 20 20 20 20

numSamples 1000 1000 125 125 64 64 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var
iters (×10−6) (×10−6) (×10−6) (×10−6) (×10−6) (×10−6)

1 0.3439 18.2 0.4054 38.2 0.489 671 0.2863 3.609 0.4547 343.1 0.5139 507.7
2 0.23 1.975 0.3763 33.35 0.4878 191.9 0.1587 0.8979 0.3991 113.3 0.4925 210.2
3 0.1872 0.887 0.355 31.79 0.4643 104.1 0.1356 0.2929 0.3955 61.44 0.4851 91.51
4 0.1864 0.594 0.3419 29.01 0.459 47.61 0.1252 0.1789 0.3754 60 0.4571 54.43
5 0.1829 0.4873 0.3318 17.94 0.4664 31.86 0.1266 0.148 0.362 54.08 0.4574 47.1
6 0.1693 0.456 0.318 54 0.463 37.39 0.1115 0.1217 0.3278 56.76 0.4523 42.57
7 0.1595 0.4411 0.3122 92.38 0.4647 49.42 0.1142 0.09438 0.3217 39.96 0.4475 39.58
8 0.155 0.4097 0.2992 65.05 0.4398 34.72 0.1258 0.08784 0.3239 49.76 0.4356 51.65
9 0.1531 0.3693 0.306 90.41 0.435 60.79 0.1221 0.07107 0.3243 36.71 0.4413 33.72
10 0.1499 0.3678 0.2959 70.44 0.4397 35.9 0.1126 0.0616 0.3233 35.01 0.4348 48.48
11 0.1578 0.3439 0.2875 39.84 0.4389 20.02 0.1109 0.05896 0.3187 34.53 0.4268 14.03
12 0.1454 0.3274 0.2733 60.29 0.4335 30.38 0.1219 0.05774 0.3146 32.28 0.4288 19.21
13 0.1446 0.3042 0.2752 41.95 0.4262 20.47 0.1109 0.04885 0.3066 27.7 0.4211 26.8
14 0.1365 0.2913 0.2734 31.16 0.4221 14.33 0.119 0.04144 0.3105 22.14 0.4183 20.45
15 0.1432 0.2662 0.2731 48.82 0.4332 22.6 0.1026 0.03878 0.3111 22.42 0.4192 25.01
16 0.1511 0.2603 0.2775 38.36 0.4219 25.88 0.1146 0.05723 0.3027 19.77 0.407 27.55
17 0.1367 0.2577 0.2765 30.33 0.4325 10.96 0.1025 0.06599 0.3042 30.07 0.4007 15.97
18 0.1312 0.2016 0.2771 47.14 0.4256 33.04 0.1036 0.05574 0.3022 22.81 0.4092 22.34
19 0.1276 0.1784 0.2792 41.68 0.4275 35.52 0.09577 0.02362 0.2935 18.92 0.4075 41.43
20 0.1324 0.1509 0.2831 21.13 0.4231 2.829 0.1043 0.01832 0.2979 16.03 0.4029 1.434

Table 7.1: Convergence results of the PMC algorithm when using the isotropic Ward reflectance model. Average
statistics are shown over the 20 iterations of the PMC algorithm. The image size is 100x100 pixels. The table is
populated with average values over 100 runs.

numLabels 30 30 30 30 30 30 40 40 40 40 40 40

numSamples 1000 1000 125 125 64 64 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var
iters (×10−6) (×10−6) (×10−6) (×10−6) (×10−6) (×10−6)

1 0.3525 13.2 0.4325 17.7 0.5345 1685 0.3622 4.176 0.4881 30.34 0.4715 3690
2 0.226 0.9745 0.4232 17.62 0.5501 119.3 0.261 1.146 0.4814 20.39 0.4758 167.5
3 0.2024 0.5346 0.4254 24.9 0.5205 49.54 0.1926 1.15 0.4788 18.7 0.4628 91.95
4 0.1746 0.483 0.4374 11.18 0.5403 60.63 0.1956 0.9106 0.4711 10.45 0.4487 72.02
5 0.166 0.4922 0.4129 9.79 0.5344 62.12 0.1605 0.7327 0.473 12.08 0.4274 62.59
6 0.1462 0.4152 0.402 8.759 0.5293 44.85 0.1283 0.6255 0.463 8.152 0.4315 65.71
7 0.1585 0.3615 0.3994 5.312 0.5183 44.23 0.1353 0.5818 0.4613 3.844 0.4241 69.01
8 0.138 0.3642 0.4078 5.761 0.5147 40.84 0.1265 0.5739 0.4504 2.467 0.4263 46.67
9 0.1363 0.4002 0.3966 8.043 0.49 47.86 0.138 0.463 0.4576 7.981 0.4171 61.87
10 0.1396 0.3736 0.4102 10.24 0.4928 24.3 0.138 0.4517 0.4545 4.122 0.4056 54.2
11 0.1383 0.3318 0.3995 6.799 0.4934 30.02 0.1302 0.4178 0.4618 6.183 0.4063 32.29
12 0.131 0.2832 0.41 7.085 0.4963 73.06 0.1279 0.4353 0.4633 11.42 0.4071 49.19
13 0.1424 0.3007 0.3982 4.16 0.4899 41.57 0.1281 0.3804 0.4667 9.817 0.393 34.92
14 0.1359 0.2658 0.3936 5.581 0.4919 33.66 0.1286 0.3689 0.4668 8.161 0.4012 32.39
15 0.1354 0.2186 0.3962 5.621 0.4808 27.12 0.1327 0.3284 0.4662 8.779 0.4064 37.01
16 0.1253 0.2101 0.4009 4.37 0.4815 29.05 0.12 0.2988 0.4699 8.499 0.4017 22.18
17 0.1178 0.1805 0.3984 4.038 0.4811 40.7 0.1157 0.2744 0.4694 5.663 0.3964 32.38
18 0.1319 0.16 0.3966 2.45 0.482 26.7 0.1305 0.2462 0.4712 12.83 0.3867 21.32
19 0.1165 0.1442 0.3972 5.208 0.4778 28.23 0.1284 0.2299 0.4725 9.248 0.3946 15.64
20 0.1188 0.1157 0.3984 0.0005852 0.4815 3.233 0.1335 0.2167 0.467 0.001259 0.3942 7.014

Table 7.2: Convergence results of the PMC algorithm when using the isotropic Ward reflectance model. Average
statistics are shown over the 20 iterations of the PMC algorithm. The image size is 100x100 pixels. The table is
populated with average values over 100 runs.
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numLabels 10 10 10 10 10 10 20 20 20 20 20 20

numSamples 1000 1000 125 125 64 64 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var
iters (×10−6) (×10−6) (×10−6) (×10−6) (×10−6) (×10−6)

1 0.1795 0.8904 0.2465 36.15 0.3519 113.3 0.2234 1.217 0.2713 27.24 0.3388 186.9
2 0.139 0.3015 0.1858 55.57 0.3223 64.9 0.1499 1.168 0.2253 19.65 0.3704 136.9
3 0.1563 0.3128 0.1736 33.8 0.3074 60.52 0.1078 0.7134 0.2138 21.78 0.2592 40.93
4 0.1294 0.2932 0.1603 13.41 0.2898 90.01 0.09533 0.7099 0.1898 20.27 0.2906 25.63
5 0.1253 0.3842 0.1585 11.48 0.2742 85.06 0.08339 0.623 0.1681 11.87 0.2612 23.16
6 0.1132 0.399 0.1545 11.4 0.2664 80.64 0.07423 0.624 0.1601 12.82 0.227 45.45
7 0.1037 0.2723 0.1525 9.954 0.253 170.8 0.05957 0.4831 0.1358 7.895 0.2275 38.69
8 0.07545 0.2984 0.1467 7.33 0.2508 46.54 0.05457 0.4188 0.1355 10.6 0.2386 37.11
9 0.0908 0.4696 0.1408 7.767 0.2412 71.77 0.04967 0.4033 0.1408 8.923 0.2587 47.7
10 0.08269 0.3232 0.1223 8.123 0.2407 59.95 0.0501 0.4691 0.1259 11.84 0.2385 44.16
11 0.07377 0.4734 0.1318 11.7 0.2334 34.56 0.04934 0.3547 0.1139 9.815 0.2096 72.25
12 0.06823 0.3687 0.1242 8.291 0.2313 26.48 0.04109 0.3591 0.1085 5.499 0.2077 53.11
13 0.06078 0.6598 0.1144 6.772 0.2239 29.77 0.0422 0.3062 0.1055 7.303 0.2045 24.51
14 0.06593 0.2872 0.1181 5.618 0.2187 28.93 0.03383 0.3279 0.09987 10.36 0.2072 14.96
15 0.04666 0.4632 0.1058 9.705 0.2119 30.32 0.03618 0.2373 0.09868 7.476 0.1884 20.57
16 0.05153 0.5783 0.1029 7.163 0.21 48.4 0.03579 0.2792 0.09587 7.341 0.1873 30.73
17 0.04271 0.5383 0.1002 4.441 0.2097 32.32 0.02893 0.3314 0.09573 9.429 0.2006 24.24
18 0.04678 0.3965 0.1057 5.579 0.2057 21.66 0.0261 0.2101 0.09648 4.017 0.1999 14.42
19 0.03458 0.4505 0.1086 5.828 0.2034 31.26 0.02508 0.2299 0.09485 4.912 0.1784 32.66
20 0.04566 0.002106 0.11 0.2994 0.2021 0.6664 0.02658 0.00356 0.08941 0.1715 0.1773 0.1784

Table 7.3: Convergence results of the PMC algorithm when using the anisotropic Phong reflectance model.
Average statistics are shown over the 20 iterations of the PMC algorithm. The image size is 100x100 pixels. The
table is populated with average values over 100 runs.

numLabels 30 30 30 30 30 30 40 40 40 40 40 40

numSamples 1000 1000 125 125 64 64 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var
iters (×10−6) (×10−6) (×10−6) (×10−6) (×10−6) (×10−6)

1 0.1828 2.094 0.2565 28.7 0.3674 130.2 0.1937 1.524 0.2886 77.58 0.353 127.6
2 0.1166 1.948 0.2161 18.6 0.3486 78.5 0.1645 1.158 0.2576 86.93 0.3273 151.7
3 0.1112 1.449 0.2157 16.02 0.3146 66.5 0.1244 0.6507 0.2503 22.89 0.3047 211.4
4 0.09082 1.01 0.1832 18.66 0.3012 69.94 0.1255 0.5472 0.2251 4.055 0.2836 110.5
5 0.08589 0.4637 0.1677 14.17 0.2938 61.51 0.07503 0.629 0.197 6.878 0.262 52.27
6 0.0761 0.3838 0.1612 19.05 0.2636 57.4 0.07258 0.6713 0.1766 5.772 0.2551 50.04
7 0.06001 0.357 0.1744 25.53 0.2569 40.2 0.06998 0.6258 0.1881 7.928 0.2445 28.68
8 0.05305 0.3329 0.1499 23.11 0.2562 24.3 0.06695 0.6558 0.1794 7.173 0.242 27.21
9 0.04989 0.3237 0.1425 12.43 0.2539 26 0.05039 0.56 0.1636 6.844 0.2358 47.06
10 0.05222 0.3424 0.1401 10.27 0.2467 25.61 0.04837 0.6176 0.1578 4.977 0.2335 40.95
11 0.0436 0.2651 0.1453 11.28 0.2313 33.58 0.04664 0.4883 0.1565 6.839 0.2212 59.94
12 0.04978 0.4266 0.1385 8.441 0.236 48.4 0.04759 0.4076 0.1525 3.447 0.2198 35.92
13 0.05267 0.3163 0.1367 3.826 0.2237 21.91 0.03595 0.6366 0.1388 4.72 0.2159 32.97
14 0.03302 0.2544 0.135 5.948 0.2259 15.91 0.04676 0.4036 0.1441 4.112 0.2092 42.32
15 0.0393 0.3448 0.129 3.438 0.2114 27.52 0.03554 0.3983 0.1359 8.125 0.2052 32.46
16 0.02465 0.2298 0.1208 10.51 0.2098 47.67 0.04451 0.4037 0.1424 5.453 0.2037 51.84
17 0.03896 0.3499 0.1218 7.47 0.215 14.75 0.05564 0.2726 0.1381 8.625 0.2075 28.76
18 0.04136 0.2983 0.1185 5.528 0.2124 39.14 0.03834 0.3052 0.132 4.137 0.1993 29.61
19 0.03825 0.3004 0.1246 7.979 0.2093 34.31 0.02899 0.4205 0.1305 7.654 0.196 28.87
20 0.03095 0.01321 0.1209 0.2453 0.2089 0.3795 0.03218 0.04817 0.1231 0.1989 0.1951 0.6611

Table 7.4: Convergence results of the PMC algorithm when using the anisotropic Phong reflectance model.
Average statistics are shown over the 20 iterations of the PMC algorithm. The image size is 100x100 pixels. The
table is populated with average values over 100 runs.
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numLabels 10 10 10 10 10 10 20 20 20 20 20 20

numSamples 1000 1000 125 125 64 64 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var
iters (×10−7) (×10−5) (×10−5) (×10−6) (×10−5) (×10−4)

1 0.48 17 0.45 12 0.57 25 0.27 18 0.46 21 0.37 32
2 0.22 15 0.45 2.6 0.57 7.3 0.2 1.8 0.39 3.8 0.35 0.82
3 0.24 11 0.46 1.9 0.54 6.8 0.21 0.91 0.43 2.6 0.35 0.35
4 0.16 8.5 0.44 2.9 0.56 2.9 0.21 0.62 0.4 2 0.35 0.28
5 0.076 6.5 0.41 4 0.52 1.6 0.2 0.57 0.19 1.5 0.35 0.25
6 0.13 5.4 0.25 4.2 0.53 3.3 0.07 0.48 0.23 1.8 0.36 0.26
7 0.11 4.8 0.46 3.5 0.56 3.6 0.056 0.42 0.25 1.8 0.35 0.32
8 0.061 4.4 0.23 3.9 0.33 1.1 0.054 0.4 0.42 1.4 0.34 0.3
9 0.057 4.4 0.22 3.3 0.52 5 0.19 0.35 0.45 0.97 0.35 0.35
10 0.085 4 0.21 2.3 0.48 3.5 0.0068 0.3 0.45 1 0.37 0.31
11 0.084 3.6 0.25 3 0.4 9.4 0.036 0.3 0.43 0.97 0.39 0.4
12 0.096 3.6 0.2 2.1 0.39 48 0.038 0.27 0.42 1.1 0.36 0.31
13 0.092 3.5 0.2 2.2 0.38 24 0.13 0.24 0.43 0.71 0.37 0.34
14 0.058 3.2 0.21 1.9 0.37 5.1 0.12 0.23 0.44 0.55 0.39 0.4
15 0.096 2.8 0.24 1.9 0.37 2.2 0.047 0.21 0.43 0.46 0.35 0.47
16 0.052 2.6 0.25 1.6 0.35 2.3 0.12 0.17 0.41 0.56 0.35 0.64
17 0.039 2.3 0.23 1.8 0.38 1.8 0.072 0.15 0.43 0.6 0.3 0.2
18 0.062 2.3 0.21 1.2 0.35 3 0.11 0.13 0.41 0.72 0.32 0.35
19 0.037 2.1 0.22 1.2 0.34 2.2 0.032 0.1 0.41 0.65 0.33 0.27
20 0.026 2 0.21 1.8 0.35 0.3 0.11 0.085 0.43 0.32 0.32 0.066

Table 7.5: Convergence results of the PMC algorithm when using the isotropic Ward reflectance model. A single
example run is shown over the 20 iterations of the PMC algorithm. The image size is 100x100 pixels. The table
is populated with values for a single randomly chosen run of the PMC algorithm.

numLabels 30 30 30 30 30 30 40 40 40 40 40 40

numSamples 1000 1000 125 125 64 64 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var
iters (×10−7) (×10−5) (×10−5) (×10−7) (×10−5) (×10−5)

1 0.18 16 0.3 3.3 0.63 9.4 0.071 16 0.13 2.5 0.32 15
2 0.054 12 0.23 4.2 0.52 6.2 0.14 18 0.13 2 0.3 17
3 0.11 10 0.22 3.4 0.39 4.6 0.14 18 0.15 1.3 0.29 10
4 0.15 9.5 0.11 1.3 0.4 6.6 0.14 10 0.032 2.4 0.17 3.9
5 0.063 8 0.095 0.88 0.51 5.7 0.096 7.2 0.051 1.5 0.14 8.7
6 0.061 7.6 0.091 0.86 0.33 3.9 0.1 5.1 0.013 1.3 0.12 7.9
7 0.034 6.9 0.079 1.3 0.21 3.9 0.1 3.9 0.041 0.88 0.12 5.3
8 0.05 3.8 0.097 0.93 0.21 2.7 0.027 3.8 0.0064 0.71 0.11 8.1
9 0.043 5.3 0.07 0.35 0.17 10 0.087 3.3 0.027 1.6 0.11 4.7
10 0.041 4.1 0.093 0.62 0.16 9.1 0.066 3.7 0.017 0.91 0.1 2.4
11 0.03 4.8 0.072 0.51 0.17 6.6 0.067 2.6 0.031 0.83 0.095 3.7
12 0.044 3.8 0.059 0.48 0.15 4 0.063 3.1 0.022 1.2 0.11 3.7
13 0.044 3 0.058 1 0.16 4.7 0.052 2.5 0.0027 0.69 0.098 6
14 0.039 2.4 0.048 0.76 0.16 4.1 0.022 3.2 0.011 0.82 0.097 4
15 0.043 2.5 0.036 0.75 0.15 3 0.022 3.8 0.0062 0.84 0.089 3.7
16 0.045 2.8 0.028 0.67 0.15 4.4 0.073 2.1 0.0061 0.7 0.075 2.3
17 0.059 2 0.029 0.59 0.14 3.2 0.048 2.8 0.026 0.96 0.075 3.4
18 0.036 2.7 0.03 0.88 0.13 5.2 0.1 3.2 0.0072 0.56 0.077 6.1
19 0.041 3.2 0.048 1 0.13 2.7 0.015 3.1 0.014 0.52 0.073 5.4
20 0.038 0.21 0.047 0.014 0.14 0.052 0.015 0.22 0.03 0.029 0.08 0.033

Table 7.6: Convergence results of the PMC algorithm when using the isotropic Ward reflectance model. A single
example run is shown over the 20 iterations of the PMC algorithm. The image size is 100x100 pixels. The table
is populated with values for a single randomly chosen run of the PMC algorithm.
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numLabels 10 10 10 10 10 10 20 20 20 20 20 20

numSamples 1000 1000 125 125 64 64 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var
iters (×10−7) (×10−6) (×10−5) (×10−7) (×10−5) (×10−5)

1 0.19 13 0.15 24 0.28 9.2 0.38 9.8 0.12 2.8 0.14 3.2
2 0.12 9.1 0.14 20 0.28 9.4 0.13 5.9 0.14 2 0.13 2.5
3 0.24 6.6 0.13 17 0.28 7 0.15 4.9 0.14 1.7 0.13 1.8
4 0.26 8.6 0.11 16 0.28 6.1 0.021 7.1 0.1 1.3 0.12 1.8
5 0.17 7.8 0.11 15 0.27 2 0.04 5.8 0.085 1.7 0.11 2.05
6 0.052 8.4 0.084 8.8 0.27 2.7 0.098 4.6 0.079 1.05 0.079 1.2
7 0.14 10 0.099 5 0.27 1.6 0.026 3.4 0.07 0.78 0.7 1.1
8 0.022 6.1 0.089 8.8 0.22 4.5 0.084 2.4 0.06 1.4 0.06 1.4
9 0.054 5.4 0.076 8.8 0.24 4.5 0.024 3.4 0.048 0.56 0.08 0.74
10 0.013 3.9 0.072 12 0.23 3.3 0.093 3 0.043 0.67 0.05 0.96
11 0.1 3.6 0.07 8.6 0.24 2.7 0.085 3.5 0.029 0.4 0.06 0.64
12 0.056 3.1 0.056 6.4 0.24 1.5 0.027 3.6 0.036 0.71 0.036 0.72
13 0.031 2.6 0.06 5.4 0.24 4.1 0.037 3.3 0.027 0.92 0.027 0.85
14 0.097 3 0.051 4.7 0.24 2.7 0.011 2.5 0.021 0.72 0.019 0.88
15 0.025 3.1 0.057 5.4 0.21 6.1 0.017 3.1 0.023 0.74 0.016 0.63
16 0.03 2.9 0.043 7.8 0.19 6.5 0.038 3.2 0.026 0.9 0.026 1.1
17 0.031 3.6 0.044 11 0.19 3.4 0.039 4.1 0.018 0.6 0.021 0.71
18 0.089 2.5 0.055 6.3 0.19 5.4 0.026 3.5 0.014 0.81 0.012 0.53
19 0.035 2.6 0.043 4.5 0.19 4.4 0.0056 5.4 0.014 0.72 0.011 0.46
20 0.13 0.063 0.039 0.12 0.2 0.027 0.013 0.018 0.017 0.022 0.019 0.022

Table 7.7: Convergence results of the PMC algorithm when using the anisotropic Phong reflectance model. A
single example run is shown over the 20 iterations of the PMC algorithm. The image size is 100x100 pixels. The
table is populated with values for a single randomly chosen run of the PMC algorithm.

numLabels 30 30 30 30 30 30 40 40 40 40 40 40

numSamples 1000 1000 125 125 64 64 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var MAP dist var
iters (×10−7) (×10−5) (×10−5) (×10−7) (×10−5) (×10−5)

1 0.18 16 0.3 3.3 0.63 9.4 0.071 16 0.13 2.5 0.32 15
2 0.054 12 0.23 4.2 0.52 6.2 0.14 18 0.13 2 0.3 17
3 0.11 10 0.22 3.4 0.39 4.6 0.14 18 0.15 1.3 0.29 10
4 0.15 9.5 0.11 1.3 0.4 6.6 0.14 10 0.032 2.4 0.17 3.9
5 0.063 8 0.095 0.88 0.51 5.7 0.096 7.2 0.051 1.5 0.14 8.7
6 0.061 7.6 0.091 0.86 0.33 3.9 0.1 5.1 0.013 1.3 0.12 7.9
7 0.034 6.9 0.079 1.3 0.21 3.9 0.1 3.9 0.041 0.88 0.12 5.3
8 0.05 3.8 0.097 0.93 0.21 2.7 0.027 3.8 0.0064 0.71 0.11 8.1
9 0.043 5.3 0.07 0.35 0.17 10 0.087 3.3 0.027 1.6 0.11 4.7
10 0.041 4.1 0.093 0.62 0.16 9.1 0.066 3.7 0.017 0.91 0.1 2.4
11 0.03 4.8 0.072 0.51 0.17 6.6 0.067 2.6 0.031 0.83 0.095 3.7
12 0.044 3.8 0.059 0.48 0.15 4 0.063 3.1 0.022 1.2 0.11 3.7
13 0.044 3 0.058 1 0.16 4.7 0.052 2.5 0.0027 0.69 0.098 6
14 0.039 2.4 0.048 0.76 0.16 4.1 0.022 3.2 0.011 0.82 0.097 4
15 0.043 2.5 0.036 0.75 0.15 3 0.022 3.8 0.0062 0.84 0.089 3.7
16 0.045 2.8 0.028 0.67 0.15 4.4 0.073 2.1 0.0061 0.7 0.075 2.3
17 0.059 2 0.029 0.59 0.14 3.2 0.048 2.8 0.026 0.96 0.075 3.4
18 0.036 2.7 0.03 0.88 0.13 5.2 0.1 3.2 0.0072 0.56 0.077 6.1
19 0.041 3.2 0.048 1 0.13 2.7 0.015 3.1 0.014 0.52 0.073 5.4
20 0.038 0.21 0.047 0.014 0.14 0.052 0.015 0.22 0.03 0.029 0.08 0.033

Table 7.8: Convergence results of the PMC algorithm when using the anisotropic Phong reflectance model. A
single example run is shown over the 20 iterations of the PMC algorithm. The image size is 100x100 pixels. The
table is populated with values for a single randomly chosen run of the PMC algorithm.
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Tables 7.6, 7.7 and 7.8 also seem to describe good runs, with the final “MAP dist” (after 20 iterations)

errors always below 0.14.

7.4.2 Conclusion

The conclusion of this chapter is that, according to an analysis of convergence results for the dynam-

ically weighted MCMC, PMC, and Multiple-seed LM algorithms, only the PMC sampler can provide

a unique combination of convergence to a good MAP sample value, while also returning a sample

set which represents the posterior distribution. It also does so with relatively few samples and within

relatively few iterations, compared to the dynamically weighted MCMC sampling algorithm.

It is seen in Tables 7.1 and 7.2 that the convergence statistics when using either 125 or 64 samples

are much worse than when using 1000, with average errors in the region of 0.4 units from the true

BRDF parameters. However, in general, and when using smaller numbers of samples per sample set

in the PMC method, the sample set variances tend to decrease steadily over the 20 PMC iterations.

This indicates that the BRDF probability functions have bad local maxima, into which the samples are

collecting (this was verified in our experiments).

This is consistent with our finding that the PMC algorithm run with larger numbers of samples has

both a reduced average MAP distance, and a lower sample variance: the larger number of samples

has allowed the algorithm to find the correct local maxima more reliably. This clearly indicates that

a higher number of samples (1000 or greater) is required to achieve decent convergence results when

using the PMC method. It was also discovered that there were regions in the parameter space close to

the limits in the unit cube which gave poorer convergence results. When true BRDF parameter sets were

sampled from these regions, all three BRDF estimation methods (Multiple-seed LM, dynamic MCMC

and PMC) suffered, giving unreliable convergence to the true BRDF parameter set used to render the

synthetic image I1.

One can compare the PMC sampler results when using 125 samples with the dynamic MCMC sampling

results after 1300 sampling steps (the computational loads are approximately equivalent, since the PMC

method uses the pseudolikelihood over all sites on the lattice (Eqn. 7.7) only at the end of 20 iterations,

whereas the dynamic MCMC samplers use this pseudolikelihood over all sites for every sample). Sim-

ilarly, one can compare the PMC sampler when using 64 samples with the dynamic MCMC sampler,

after 700 samples, in Figs. 7.7 to 7.14. When this comparison is done, it is seen that the dynamically

weighted MCMC sampler sometimes returns an MAP sample with a smaller distance to the true BRDF

parameter set. This suggests that if a very small amount of time is available, and only a few samples can

be processed, the dynamically weighted MCMC sampler is a reasonable alternative choice. However,

we could easily adjust the PMC sampler to store the best MAP sample through all the iterations, and

return that sample as the MAP sample. In addition the PMC sampler would still have the advantage of
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returning a sample set small enough to be used as features in classification (less than 1000 samples for

efficient calculation, although this depends on the method used for inter-feature distance calculations).

Although we have no way to verify the correct convergence of the model’s MRF parameters to a real

material’s BRDF parameters given the uncertainty in its reconstruction, the fact that there are local

maxima in the probability distribution in the BRDF of the real material, and that these local maxima

are distributed in a particular way, is represented by the PMC sample set. The more samples are used

to represent this distribution, the more accurately it will be represented by the sample set. Therefore,

even though the PMC samples after 20 iterations may have missed an optimal solution for the BRDF

parameterisation for a given real surface, the samples do still represent the parametric MRF/BRDF

probability distribution, and can thus be used as features nonetheless.



Chapter 8

Testing PMC and LM algorithm on real
data: Classification results

This chapter describes the classification experiments done on real data captured using a stereo projector

and digital light projector, using the parametric BRDF posterior distributions extracted from the stereo

data as features. The goal is to test whether samples representing parametric BRDFs, calculated using

the PMC algorithm developed in this thesis, can be used to classify materials, and to discover which

sample set classification method gives the best classification results. This is done by calculating proba-

bilistic reconstructions on a number of real world objects, namely different material surfaces. The cloth

materials are draped over a hemispherical object, to allow the extraction of BRDF data over a wide

range of incident and reflected angles. The plastic materials are either naturally curved or are flexible

and are bent into a curving shape. The froth surface appears to have sufficient curvature on the bubbles

to allow parametric BRDF estimation.

The testing on real data is done firstly to show that the resulting posterior distributions developed are

reasonably congruent with the visible surface characteristics, but more importantly to show that the

sample sets representing the parametric BRDFs can be used as features for material surface classifi-

cation. The correctness of these distributions is not verified using any other method, as there is no

other method available which calculates the posterior distributions on surface parametric BRDFs given

probabilistic reconstruction information. Since it is actually the MRF parameters which are estimated,

standard parametric BRDF parameter estimation methods such as [122] could not be used to verify

this method, since the cost functions being minimized are themselves different (our cost functions in-

volve pseudolikelihoods and MRF potential functions, rather than simple least-squares fitting between

predicted and measured pixel intensity values, as is usually done in BRDF parameter estimation algo-

rithms).

121
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Figure 8.1: The checkerboard used to calibrate the cameras is seen held over the froth surface, from each camera
in the stereo rig.

8.1 Real data

Images of real froth surfaces were acquired using a stereo pair of video cameras which recorded footage

of the froth of a flotation cell. For the material surfaces, which are static, we used two high resolu-

tion still cameras to capture the stereo images. A digital light projector (DLP) was used to project

a checkered pattern of coloured squares onto the material surface, to allow identification of the pixel

correspondences with better accuracy. The DLP was positioned about 1.5m from the surface. The pro-

jector was configured to alternate between shining a coloured checkerboard pattern for half a second,

and then shining white light onto the froth surface. On the assumption that the froth does not change

shape significantly faster than the projector transitions from shining the coloured pattern to shining the

white light, the intensity image of the surface under the white light corresponds to the same surface re-

constructed using the coloured checkerboard pattern of projected light. The reflectance intensity image

for the reconstructed surface geometries is obtained as an image from one of the video cameras at a

moment when the projector is shining a white screen (one or two frames after the checkerboard pattern

is projected).

The calibration checkerboard is shown in Fig. 8.1, in the left and right camera views, with the cameras

in similar configurations as when taking footage of the froth surfaces. Fig. 8.2 shows the left and right

views under white illumination from the digital light projector (DLP). Fig. 8.3 shows images taken an

instant before the images of Fig. 8.2, of the same froth surface under a colourful checkerboard lighting

pattern projected by the DLP.

The purpose of gathering data in this way is to have an accurate probabilistic stereo reconstruction.
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Figure 8.2: White light is projected by the projector onto the froth surface. This view is shown from each camera
in the stereo rig.

Figure 8.3: A checkerboard pattern is projected onto the froth surface. This pattern gives better stereo recon-
struction, as it allows greater certainty on pixel matching.
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The first set of images which include a physical checkerboard are taken in order to calibrate the stereo

cameras. Images where the projector shines a coloured light pattern onto the material surface are used

to create an accurate probabilistic reconstruction. The images captured when the projector is shining

white light are used to estimate the parametric BRDF, given the probabilistic surface reconstruction.

As with the unstable froth surfaces, the stereo data for the material surfaces was captured with structured

lighting shone onto each material surface, followed by a screen of white light from the same projector

source, which allows calculation of the parameterized BRDF posterior distributions. Images of the

materials analysed are shown in Figs. 8.4 to 8.15. These materials exhibit a wide range of reflectance

characteristics, such as glossiness, shininess (laminated paper surface, leather), and fuzziness (cloth

materials). After the stereo data is captured, probabilistic reconstruction is done using the dense stereo

algorithms described in Chapter 6.

Developed (evolved) sample sets which represent the posterior pseudolikelihood function on the BRDF

parameterisation for a surface are calculated for each material, including the froth surface. This is

done using the PMC algorithm described in section 6.6.2, with the pseudolikelihoods and importance

functions defined using three subsets of corner vertex nodes on the lattice: S0, S1, S2, such that Sn =

{n, n+ k, n+ 2k, . . . } with k = 3. The pseudolikelihood function over any subregion is therefore

ePLn3 (X|θ) = exp(PLn3 (X|θ))

=
∏
i∈Sn

exp(−UA
i (xi,xNi

,θ)−UD
i (xi,I

R))∑
s∈L exp(−UA

i (s,xNi
,θ)−UD

i (s,IR))
. (8.1)

Since 20 PMC iterations are done, 20 importance functions Gn are required. The three functions are

reused, so

Gn(θ|X) = s(ePLj3(X|θ)), (8.2)

where j = mod(n, 3).

Then a number of similarity measures used to compare probability density functions represented by

sample sets drawn from normal distributions are used for the comparison of these probability density

functions. Some measures which are not usually used for comparison of probability density functions

are also used to compare the sample sets. Classification statistics are given for each such similarity

measure.

8.2 Comparing sample sets

For the classification of surfaces through the comparison of their BRDFs, it is necessary to define dis-

tance measures between probability density functions. In particular, it is necessary to define measures

between weighted sets of samples, since the posterior distributions on the BRDFs are represented by

weighted sample sets, which are calculated using the PMC algorithm.
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Figure 8.4: Material surface #1 (shiny fabric).

Figure 8.5: Material surface #2 (shiny plastic).
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Figure 8.6: Material surface #3 (laminated paper).

Figure 8.7: Material surface #4 (glossy brown paper).
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Figure 8.8: Material surface #5 (canvas).

Figure 8.9: Material surface #6 (smooth cloth).
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Figure 8.10: Material surface #7 (fuzzy cloth).

Figure 8.11: Material surface #8 (t-shirt cloth).
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Figure 8.12: Material surface #9 (t-shirt cloth).

Figure 8.13: Material surface #10 (smooth blue cloth).
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Figure 8.14: Material surface #11 (black leather).

Figure 8.15: Surface #12 (Froth).
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8.2.1 Comparing sample sets assuming Gaussian noise: Average Gaussian Mixture
Model Probability

This section introduces our “Average Gaussian Mixture Model probability” (AGMMP) measure. This

measure is reminiscent of sample classification using Parzen windows [87] but is closer to sample

classification using Gaussian Mixture Modelling [31]. The GMM framework is modified to compare

two weighted samples sets, since the Parzen windows and GMMs can only classify an unweighted

sample set given a weighted sample set. Using the AGMMP measure, it is possible to compare two

probability density functions which are represented by sample sets with associated weights in a simple

manner. This is done by making assumptions about the samples’ dependencies, and about the type

of noise about each sample. It is assumed that samples across sets have generated each other as if

sampling from Gaussian mixture models which have a single mode on each point in the sample set. The

multivariate normal distribution equation, which describes the joint probability of an N dimensional

sample x, given a Gaussian distribution with covariance Σ centered at u, is

Nµ,Σ(x) =
1

(2π)d/2|Σ|1/2
exp

(
− 0.5(x− µ)TΣ−1(x− µ)

)
, (8.3)

where N is the multivariate Gaussian distribution, d is the size of the random vector (in this case, the

size of the parameter vector for the BRDF model being tested), and |Σ| is the determinant of covariance

matrix Σ.

Assume that one is given two weighted sample sets: {~x,−→π x}, where {πix} is the normalized probability

weight on sample xi, and {~y,−→π y}, where πjy is the normalized probability weight for sample yj .

Assume also that the conditional probability of any two samples is governed by a multivariate Gaussian

distribution, so that the probability of a sample xi in the first set arising from yj in the second set is

p(xi|yj) = Nyj ,Σ(xi), (8.4)

where the covariance of any Gaussian mixture center Σ = σId×d, where Id×d is a d×d identity matrix.

Suppose px(wi) is the probability weight of the ith sample in the first sample set, so px(wi) = πxi . The

probability of any xi being generated by the set of samples ~y is

p(xi|−→y ) =
1
M

M∑
j=1

p(xi|wj , yj)py(wj), (8.5)

where py(wj) is the probability weight of the jth sample in the second sample set, so py(wj) = πyj . M

is the number of samples in −→y . If one assumes independence between the samples xi, then

p(−→x |{−→y ,−→π y}, σ) =
N∏
i=1

p(xi,−→y ), (8.6)
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where N is the number of samples in−→x . This gives the usual equation for the probability of data given

a Gaussian mixture model with prior probabilities py(wj) on each center j:

p(−→x |{−→y ,−→π y}, σ) =
1
M

N∏
i=1

M∑
j=1

Nyj ,Σ(xi)πyj . (8.7)

This probability measure has taken into account the sample weights on the second set, but not on the

first set. To incorporate this information into our measure, we create a symmetrical measure:

AGMMP({−→x ,−→π x}, {−→y ,−→π y}, σ) =
p(−→x |{−→y ,−→π y}, σ) + p(−→y |{−→x ,−→π x}, σ)

2
. (8.8)

8.2.2 Comparing unevolved sample sets using a correlation measure and the inner
product

Assume the samples are in their initial positions at evenly spaced positions on a grid in the parameter

space, and that they have been given normalized weights corresponding to the observation density ePL3

as described in Eqn. 6.62. Then we may intuitively apply a correlation measure to the sample weights,

with the summations and pairwise products on the sample weights done in the same order as that in

which the particles are indexed. The equation for the correlation coefficient between two vectors is

r =
∑

m(πm1 −mean(~π1))(πm2 −mean(~π2))√
(
∑

m(πm1 −mean(~π1))2)(
∑

m(πm2 −mean(~π2))2)
, (8.9)

where πm1 indicates the weight of the mth sample in the first sample set.

In a similar manner, we may use the inner product (referred to as “IP” in the tables which follow) to

compare two sample sets, if the samples are in the same locations in parameter space:

r =
∑
m

(πm1 π
m
2 ). (8.10)

In both cases, the sets of sample weights −→π m
1 and −→π m

2 are assumed to be normalized in the sense that

the probabilities sum to 1.

8.2.3 Comparing sample sets using the Earth Mover’s Distance

Another measure we used with some success for defining distances between sample sets is the Earth-

Mover’s distance. An efficient optimization method for solving this class of transport problem was

developed in [100], in which each feature or data point (called a “signature”) is given a mass, and a

function is defined which returns the amount of work required to transport mass from any signature in

the source distribution to any signature in the target distribution. The algorithm finds the optimal way
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to move all mass from the first signature set to the second signature set. The amount of work required

to do this is called the Earth Mover’s Distance (EMD). A low EMD between two signature sets thus

indicates that they are similar.

To apply this technique to the task of comparing probability distributions which are represented by

weighted sample sets, each sample is treated as a signature. The signature weight is set equal to the

sample weight (sample probability). In this way, particle sets representing the same distribution tend

to have low EMDs, and particle sets representing different distributions would have high EMDs. More

information on the EMD may be found in Appendix B.

Although we cannot support the use of the Earth Mover’s Distance (EMD), which is a linear trans-

port optimization algorithm, as a probabilistic distance measure, this method was found to be effective

as a measure of similarity for the comparison of weighted sample sets. Again the task is to compare

the probability density functions of parametric BRDFs represented by weighted sample sets. To com-

pare such sample sets, a measure is required that returns a high value to indicate similarity between

sample sets. Low values thus indicate large differences between sample sets which represent different

underlying posterior distributions on the BRDF of the measured surfaces.

The EMD measure gives the opposite of this (a small distance corresponds to a similar pair of sample

sets), but it is easy to correct it by inverting or negating the output and adding a constant value. There

are in fact not many alternatives available for comparing non-Gaussian distributions represented by

weighted particles: methods such as correlation and mutual information rely on the pdfs being defined

at all points on the domain (i.e. not represented by a collection of isolated samples, but rather known at

intervals throughout the domain of the distribution). The Chi-squared method partitions the pdf samples

first, but it is not obvious how the sample space should be partitioned (binned).

8.2.4 Comparing sample sets: analytical expressions for BRDF posterior distributions
which are assumed to be normally distributed

There are many theoretical probabilistic distances which can be used to compare two pdfs. The math-

ematical expressions for the Kullback-Leibler divergence and symmetric Kullback-Leibler divergence

[113], and the Chernoff [21], Bhattacharyya [10], Matusita [78], Patrick-Fisher [88], Mahalanobis [77],

Lissack-Fu [67] and Kolmogorov [1] distances, are shown in [141], and reproduced in Table 8.1.

In [141], a method is developed which can calculate the similarity between non-Gaussian sample sets

using Chernoff, Bhattacharyya, Matusita, Lissack-Fu, and other distances, by transforming the sample

sets into Reproducing Kernel Hilbert Space. This method does not cater for probabilistically weighted

sample sets in its current form: it assumes the samples are independently drawn from the original

“ensembles”, or probability densities. This method of [141] allows for good classification and discrim-
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KL-divergence JR(p1||p2) =
∫
X
p1(X) log{p1(X)

p2(X)}dX
Symm. KL divergence JD(p1, p2) =

∫
X

[p1(X)− p2(X)] log{p1(X)
p2(X)}dX

Chernoff JC(p1, p2) = − log{
∫
X
pα2

1 (X)pα1
2 (X)}dX

Bhattacharyya JB(p1, p2) = − log{
∫
X

[p1(X)p2(X)]1/2dX}
Matusita J t(p1, p2) = {

∫
X

[
√
p1(X)−

√
p2(X)]1/2dX}1/2

Patrick-Fisher JP (p1, p2) = {
∫
x
[p1(X)π1 − p2(X)π2]2dX}1/2

Lissack-Fu JL(p1, p2) =
∫
X
|p1(X)π1 − p2(X)π2|α1 [p1(X)π1 + p2(X)π2]α2dX

Kolmogorov JK(p1, p2) =
∫
X
|p1(X)π1 − p2(X)π2|dX

Table 8.1: A list of distances between probability density functions, taken from [141], where 0 ≤ α1, α2 ≤ 1
and α1 + α2 = 1. π1 and π2 are the prior probabilities on the distributions.

Chernoff JC(p1, p2) = 1
2α1α2(µ1 − µ2)T [α1Σ1 + α2Σ2]−1(µ1 − µ2) + 1

2 log |α1Σ1+α2Σ2|
|Σ1|α1 |Σ2|α2

Bhattacharyya JB(p1, p2) = 1
8 (µ1 − µ2)T [ 1

2 (Σ1 + Σ2)]−1(µ1 − µ2) + 1
2 log

1
2 |Σ1+Σ2|

|Σ1|1/2|Σ2|1/2

KL divergence JR(p1||p2) = 1
2 (µ1 − µ2)TΣ−1

2 (µ1 − µ2) + 1
2 log Σ2

Σ1
+ 1

2 tr[Σ1Σ−1
2 − Id]

Symm. KL divergence JD(p1, p2) = 1
2 (µ1 − µ2)T (Σ−1

1 + Σ−1
2 )(µ1 − µ2) + 1

2 tr[Σ−1
1 Σ2 + Σ−1

2 Σ1 − 2Id]

Patrick-Fisher JP (p1, p2) = [(2π)d|2Σ1|]−1/2 + [(2π)d|2Σ2|]−1/2

−2[(2π)d]|Σ1 + Σ2|]−1/2 exp{− 1
2 (µ1 − µ2)T (Σ1 + Σ2)−1(µ1 − µ2)}

Mahalanobis JM (p1, p2) = (µ1 − µ2)TΣ(µ1 − µ2)

Table 8.2: Some analytical expressions for probabilistic distances between Gaussian probability density func-
tions, where 0 ≤ α1, α2 ≤ 1 and α1 + α2 = 1. |Σ| indicates the determinant of Σ. Id is the identity matrix.

ination of sample sets which are drawn from highly non-Gaussian distributions, but is more complex

than the simple analytical expressions for the same distances (Chernoff, Bhattacharyya). Since the

posterior distributions on the parametric BRDFs of the real material surfaces appear to be generally

unimodal, we use the analytical expressions shown in Table 8.2, making the simplifying assumption

that the evolved weighted sample sets are normally distributed.

The analytic expressions for calculating some of these probabilistic distances, if the samples represent-

ing the pdfs are assumed to be drawn from normal distributions, are shown in Table 8.2. Although the

sample sets representing the posterior distributions for the parametric BRDF models that are calculated

for the material and froth surfaces are not necessarily normally distributed, they are close enough to

normal to support the use of these analytic expressions for probabilistic distance calculation. Thus

the means and variances of the evolved weighted sample sets, calculated using the PMC method, are

estimated and substituted into the equations in Fig. 8.2.

In the similarity matrix shown in Tables 8.3 to 8.5, and in the similarity matrices shown in Appendix

E, results are tabulated for the similarities between weighted sample sets. Some of the matrices con-

tain results from comparisons done on the original, evenly-spaced weighted sample sets, distributed
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 993.7 990.5 992 971.7 975 985.9 964.6 989.1 988.8 991.8 965.7 985.4 985.1 979 978.5 974.5
2 994.7 990.4 968 972.8 987.3 962.9 988.6 984.5 987.9 964.4 983.5 986.3 979.3 979.3 973.8
3 993.1 961.5 979.7 986.7 971.2 986.4 984.5 990.1 956.1 987.6 980.6 973 971.1 968.5
4 999.4 935.5 968.1 912.3 996.2 995.2 990.7 999.4 961.7 997.1 997.7 997.7 997.8

5 993.2 974.7 991 982 953.1 975.7 882.9 989.6 942.6 930.2 924.8 915.6
6 994.2 970.5 983.6 974.9 983.9 932.3 981.6 977 969.5 966.1 960
7 992.6 975.3 934 964.6 847.3 983.3 925.3 906.9 902.1 887.9
8 994.5 990.4 988.9 985.8 971 993 991 990.8 989.4

9 996.3 994.6 990.6 976.7 991.8 989.4 989.3 987.8
10 994.8 975.4 984.5 985.7 982.2 982.3 977.8
11 999.9 959.7 997.3 998.4 998.3 998.5
12 993.6 962.4 954.3 953.2 943.5

13 997.1 996.1 996.4 995.3
14 998.7 998.4 998.5
15 998.7 998.4
16 999.4

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table 8.3: Columns 1 to 16 of similarity matrix for parametric BRDF surfaces of real materials, using the
AGMMP measure with σ = 0.005, with evolved sample sets (20 PMC iterations) in the range (ρd ∈ [0, 1], ρs ∈
[0, 1], α ∈ [0, 0.5]) in Ward parameter space. These similarity values are derived from probabilistic distance
measures on parametric BRDF distributions corresponding to the target distributions of ePL3(X|θ) (Eqn. 6.62).
(The data in this similarity matrix has been transformed linearly for better visibility; the ordering for similarities
between material pairs is preserved).
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17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 742.4 745.4 778.6 659.2 954.7 973 948.6 965.8 983.3 989.5 986.2 986.8 981.7 978.7 982.9 984
2 747.3 754.6 785.9 665.2 960.3 977 956.1 971.8 985.7 992 988 989.4 985.2 980 982.7 984.6
3 768.2 769.8 802.1 692 946.3 969.3 940.3 962.6 980.4 988 984.4 984.8 981 973 979.1 980.4
4 600.9 609.8 652.1 478.1 987.3 991.3 986.3 991.3 990.3 995.3 996.2 997.2 977.5 996.6 996.6 997.9

5 863.7 865.8 890.9 812.9 875.2 917.9 861.9 902 949.4 967.7 961 965.5 947.3 931.3 946 951.4
6 792.2 802.1 829.7 736.9 939.9 966.4 930.9 955.2 981.9 988.3 987.7 986.3 985.2 971 980.6 980.8
7 886.6 889.6 912 845.4 840.5 890 822.6 868.7 932.2 959.8 946.7 955.5 928.9 909.2 925.8 937.2
8 667.3 670 709.6 564.6 979.1 988 977.1 985.5 991.1 993.3 992.4 993.3 985.4 990.7 992.1 992.3

9 663.1 665 705 551.9 971.2 981 968.9 978.6 985 992.2 989.3 991.3 976 987.1 988.4 989.9
10 709.1 711.1 747.8 618.1 957.1 973 952.3 966.7 982.7 990.4 986.6 987.8 978.1 981.5 983.2 985.5
11 595.9 606.1 648.5 472.6 988.9 992.3 988 992.5 990.7 995.5 996.8 997.6 977.3 997.4 997.3 998.5
12 815.7 817.5 846.5 750.5 913.7 942.9 904 930.9 964.7 977.5 971.4 973.6 963 956.4 962.3 966.5

13 648.2 652.7 693.2 539.1 987.8 993.6 986.9 992.6 994.4 995.6 995 996.7 987.4 995.6 995.6 996
14 610.2 619.4 660.8 494.3 993 996.1 992.6 996 994.5 995.3 997.2 997.5 984.4 998.5 998.3 998.6
15 620.6 630.3 671.2 505.6 992.5 995.7 992 995.6 994.5 995.8 997.2 997.8 984.3 998.3 997.9 998.5
16 593.1 602.9 645.3 473.3 994.5 996.5 994.1 996.9 994 994.8 997.6 997.5 982.8 999.2 998.8 999.1

17 994.5 992.6 989.7 986.9 559.2 718 540.9 713.1 764.8 896.1 911.5 855.3 830 667 745 773.3
18 994.4 986.4 989 554 704.5 537.3 709.5 759 886 927.6 860.8 822.7 669.8 745.5 779.6
19 994.3 978.8 639 766.3 621.5 764.9 811.9 917.4 931.7 887.4 865 737 801.1 826.9
20 995.5 471.7 618.5 457.1 634.4 690.3 823.4 917.4 819.1 751.3 613.2 688.4 733.1

21 999.8 997 999.9 998.4 990.8 984.6 991 989 981.1 995 993.8 992.5
22 997.4 995 997.1 995.3 991 993.5 993.4 989.2 995.7 995.5 994.2
23 998.6 991.3 985 991.3 989.3 981.8 995.3 994.1 992.7
24 998.7 994.6 990 994 993.4 986.8 997 996.4 995.3

25 996.3 992.6 992.8 993.1 994.1 992.7 994.3 992.4
26 994.7 992.8 993.6 986.2 988.8 990.4 991.8
27 996 993.8 986.9 992.1 993.7 994.1
28 996.6 985.7 994.5 995.1 995.9

29 996.2 986.5 991 987.8
30 998.8 998.4 998.4
31 997.5 996.9
32 998.4

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table 8.4: Columns 17 to 32 of similarity matrix for parametric BRDF surfaces of real materials, continued
from Table 8.3.
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33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

1 979.8 980.9 982.4 984.6 987.9 991.8 992 989.9 484.2 306.9 328.6 495.5 738 817 811.9 667.5
2 983.5 985.1 982.9 985.9 983.7 987.4 989.5 987.6 483.9 296 317.5 506 747 824.4 822.4 668.2
3 978.1 978.5 978.8 982.7 989.1 991 991.8 990.6 520.9 347.6 369.7 533.7 765.4 839.6 833.1 698.5
4 986.3 986.8 994.3 992.8 969.4 985.3 984.9 979.2 270.2 34.51 53.16 275.4 585.7 683.8 690.4 458.4

5 940.6 948.8 947 952.1 990.2 981.7 985.2 986.9 663.4 514.7 538.4 675 872.3 921.2 918.8 822.8
6 979.7 981.7 982.1 985.9 984.2 986.2 985.9 984.5 568.8 428.5 450.3 609 807.4 880.4 866.6 778.4
7 919.6 928.8 932 934.7 986.3 973.3 977.9 980.9 701.5 572.8 596.7 716 899 941.3 937.9 860.3
8 988.7 989.2 991.2 991.1 974.1 985.8 986.4 981.2 373.4 165.9 186.5 385.7 657.1 749.5 745.9 566.6

9 981 980.8 985.6 986.2 982.3 991.7 991.4 988.6 358.6 144 162.6 356 645.3 733.9 737.8 533.4
10 978.7 979.5 980.4 982.9 987.4 993.5 992.8 991.4 433.6 249.6 271.8 437.8 702.1 785.8 781.2 621.6
11 986.9 987.1 995.1 993.5 967.7 984 983.7 977.7 261.9 23.35 42.34 269.4 581.9 680.5 688.3 451.5
12 957.5 963.7 960.4 965.8 991.9 988.5 989.9 991.6 591.5 432.9 456.4 597.7 818.5 879.8 875.9 758.6

13 992 992.7 994.4 993.4 971.6 985.1 986.3 980.3 342 121.8 142.1 355.1 636.9 732.4 730.5 535.6
14 992.3 992.1 997.1 995.2 964 980.6 981.4 974.2 288 59.13 79.28 304.4 601.2 701.1 702.4 489.4
15 992.2 991.9 996.4 994.7 966 981.7 982.8 976.1 299.7 69.07 89.06 316 611.8 709.6 712.2 496.1
16 991.5 991.8 997.5 995.3 960.6 978.6 979.3 971.5 263.9 30.22 50.46 279.8 583.5 685.6 687.9 468.2

17 792.6 751 787.2 858.6 918.9 825.7 864.4 866.4 898.1 777.1 802.9 916.4 989.7 984.6 982.7 934.6
18 779.2 738.8 775.7 842 904.5 815.4 844.1 854.9 920.5 825.7 846.2 943.5 992.1 986.3 987.8 962.2
19 831.1 801.1 828.4 876.7 938 875.3 897.1 905.7 889.4 776.6 799.4 907.6 988 989.7 987.6 941
20 694.3 662.5 696 748.4 837.4 759.9 763.2 800 969.6 920.8 932.4 980.2 990.8 976.6 982.9 983.7

21 990.6 990.6 994.5 991 934.5 957.2 958.9 947.9 220.6 23.47 18.31 255.5 552.4 664.9 659.4 458.3
22 994.7 994.9 995.8 993.8 954.4 971.7 973.5 965 304.8 93.37 112.9 332.5 610.8 714.5 706.5 525.8
23 991 991 994.7 991.2 935.3 957.8 959.5 948.6 224 4.207 22.7 258.6 554.7 666.9 661.1 461.4
24 993.8 994.2 996.5 993.7 948.8 968.3 969.9 960.3 269.3 52.76 72.28 297.2 585 692.7 685.6 495.1

25 995.9 995.9 995 994.8 966.8 980.4 981.3 974.2 370.5 179.2 200.7 393 651.2 750.6 737.5 590.3
26 988.1 988.4 989.1 990.6 977.9 987.1 987.8 984.3 413.6 219.6 241 434.2 693.8 781.6 777.2 611.6
27 990.7 990.4 992.9 993.4 970.1 983.3 983 977.3 363.5 173 195.2 391 658.3 754.5 747.3 584
28 990.9 991 993.7 993.1 971.6 984.7 985.6 980.2 348 131.8 152.2 364.9 645.1 738.8 737.8 544.1

29 994.9 994.2 993.7 995.2 972.3 981.7 982.8 976.2 445.3 277.1 296.9 472.7 704 796 780.5 662.5
30 993 993.2 997.5 995.3 960 977.8 978.7 970.6 279.9 53.03 74.14 298.9 594.4 696.9 695.6 489.5
31 993.2 993.3 997 995.4 962.9 979.3 980.1 972.4 303.3 86.64 107.1 322.4 608.8 709.8 706.2 514.2
32 991.7 991.6 996.6 995 965.3 981.3 982 975 294.9 69.77 89.77 311.8 606.7 705.7 706.7 497.2

33 996.8 995.9 995.2 995.3 965.2 978.3 979.2 971.6 380 200.5 221.7 407.9 657.3 758 742.9 608.8
34 996.4 994.3 994 964.4 978 979.1 971.7 374.4 186.6 207.7 401.4 655.1 754.9 740.2 599.4
35 996.4 995.4 963 977.8 978.8 970.9 338.3 137.7 158.6 363.3 632.6 732 725 557.2
36 995.1 970.3 981.4 982.4 975.7 408.5 223.4 246.2 435.3 681.6 774.9 764 622.9

37 992.5 987.9 989.5 990.2 599.3 439.3 462.4 609.5 823.3 883.9 879.6 760
38 994.2 992.4 991.9 483.7 326.5 352.1 492.9 739.1 820.5 809.9 687.9
39 993.4 991.5 519.5 335 356.9 528.7 767.3 839.1 836.6 687.9
40 993.2 521.1 353.4 378.2 529.2 772.7 843.8 839.1 703.1

41 997 992.2 993.1 993.7 957.8 920.4 948.4 960.9
42 999.3 998.4 997.5 934.3 884.3 924.7 939.2
43 998.2 996.3 933.5 884.5 922.9 937.9
44 997.1 953.1 913.7 945.5 957.2

45 995.4 986.5 989.1 978.1
46 993.9 992 971.2
47 993.9 981.5
48 996

Table 8.5: Columns 33 to 48 of similarity matrix for parametric BRDF surfaces of real materials, continued
from Table 8.4.
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for example as shown in Fig. 7.15, while others refer to comparisons done on PMC evolved sample

sets, calculated over 20 iterations, distributed as shown (for example) in Fig. 7.19. In all cases, 1000

samples were used over PMC 20 iterations. In these similarity matrices, entry (i, j) in any table is the

similarity between material #i and #j. The similarities (distances) for the EMD measure have been

inverted, since a high EMD between materials indicates a low similarity and vice versa. Some of the

matrices have been linearly transformed, to make them easier to read (linear scaling does not affect the

classification results at the algorithmic level, and preserves the relative similarity ordering between any

pair of distances).

Tables 8.3, 8.4, 8.5 show a similarity matrix between sample sets representing estimated parametric

BRDF distributions on real material surfaces, using our AGMMP similarity measure. In particular,

there are 12 different material types. In this similarity matrix (and in those in Appendix E), columns

4n + 1, 4n + 2, 4n + 3, 4n + 4, for n = 0, . . . , 11, belong to the same material class, with the BRDF

posterior estimated for different shapes and orientations of the same material (and the same is true for

the rows). In the tables, materials belonging to different classes are separated by vertical or horizontal

lines. The similarity measures in these tables are expected to be higher when materials of the same

class are being compared.

In Tables 8.6 to 8.11, classification results are given using the “Miss”, “WNN” and “NN1” error clas-

sification statistics. The “Miss” statistic is a count of the number of times in the similarity matrix

(iterating once over the entries for each material) that one of the extra-class materials has a similarity

coefficient with the current material that is higher than the lowest similarity coefficient among the intra-

class members of the current material. For example, on examination of material #1 using the AGMMP

measure with σ = 0.005 in Table 8.3 it is clear that the lowest intra-class similarity value for mate-

rial #1 (first four entries in the first row: the lowest value among entries (1, 2)(1, 3)(1, 4), which are

(990.5, 992, 971.7) in Table 8.3) is 971.7. The “Miss” total is incremented for every entry in the first

row (1, 5)(1, 6)...(1, 48), which is above 971.7. Then, the next material type is considered, maintaining

a running total for the Miss count, and so on. The “WNN” statistic, which is an abbreviation for “Worst

Nearest Neighbour”, indicates the number of cases out of the 48 surfaces where there is some extra-

class material having a higher similarity (lower probabilistic distance) to the material than the distance

from the current material to any one of its intra-class materials. The “NN1” statistic is similar to this: it

indicates the number of materials for which the best match (nearest neighbour) is an extra-class match

and is better than all intra-class matches. The “NN1” statistic was used for classifiability testing in

[141].

Classification results using the AGMMP distance measure are shown in Table 8.6, for the case where

the samples are in the initial locations, before any PMC sampling iterations have been done, with each

sample weighted directly by the pseudolikelihood measure ePL3(X|θ) of Eqn. 6.62. In Table 8.6, clas-

sification error statistics are shown for sample sets compared using the AGMMP measure, for varying
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σ 5e-1 1e-1 2e-1 3e-1 5e-2 1e-2 5e-3 1e-3 5e-4 1e-4 MAP EMD corr IP

Miss 817 857 827 842 838 838 838 838 838 838 194 91 85 131

WNN 44 44 44 44 47 44 44 44 44 44 44 36 36 36

NN1 44 44 44 44 44 44 44 44 44 44 31 17 16 23

Table 8.6: Classification error statistics for the 48 surfaces, using the Ward reflectance model with samples in
original positions. Statistics are shown for the classification done using the AGMMP measure with varying values
of σ (first 10 columns), the MAP sample, the EMD, the correlation as defined in Eqn. 8.9 (called “corr”), and the
inner product defined in Eqn. 8.10 (called “IP”).

σ 5e-1 1e-1 2e-1 3e-1 5e-2 1e-2 5e-3 1e-3 5e-4 1e-4 MAP EMD corr IP

Miss 812 854 812 831 827 827 827 827 827 827 216 84 93 147

WNN 44 47 48 48 48 48 48 48 48 48 40 35 37 37

NN1 44 44 45 45 45 45 45 45 45 45 29 16 17 25

Table 8.7: Classification error statistics for the 48 surfaces, using the anisotropic Phong reflectance model with
samples in original positions. Statistics are shown for the classification done using the AGMMP measure with
varying values of σ (first 10 columns), the MAP sample, the EMD, the correlation as defined in Eqn. 8.9 (called
“corr”), and the inner product defined in Eqn. 8.10 (called “IP”).

values of σ, as it appears in Eqn. 8.8. Finding a good value for σ is a task which depends on the data,

and is done manually in our experiments. The values for σ which are tested in all PMC experiments are

0.5, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001. Tables 8.6 and 8.7 show that the AGMMP

gives extremely poor classification results for unevolved, weighted sample sets (the samples are in the

original positions, regularly spaced on the cube of BRDF parameter space). Classification results when

using the distances between MAP sample values are also poor when run on unevolved sample sets, (this

statistic is shown in the column labelled “MAP”). The EMD measure gives good classification results

(NN1 gives 17 out of a possible 48 errors), and the correlation gives good classification results also.

In Tables 8.6 and 8.7, error counts in the column labelled “corr” refer to comparison using correlation

over the weights of the samples at their initial locations, evenly spaced on the unit cube of parameter

space. Therefore, with the samples at identical locations on the parameter space for the two materials

to be compared, one can treat the sets of sample weights ~π1 and ~π2 as vectors, since the particles are at

corresponding locations in each of the unit cubes in the BRDF parameter space.

Tables 8.8 to 8.11 contain classification error results using PMC developed sample sets, evolved over

20 iterations, as features for the material surfaces.

In Tables 8.8 and 8.9, it is seen that the AGMMP distance measure gives good NN1 classification results.

In Table 8.8, the best performance is achieved (for the NN1 statistic), with a minimum of 23 errors out

of a possible 48 errors, when σ = 0.1 and σ = 0.001. In Table 8.9, the best NN1 classification results
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σ 5e-1 1e-1 2e-1 3e-1 5e-2 1e-2 5e-3 1e-3 5e-4 1e-4

Miss 211 189 165 134 135 138 132 191 132 191

WNN 39 43 42 40 40 40 39 40 39 40

NN1 27 25 26 27 26 26 26 25 26 25

Table 8.8: Classification error statistics for the 48 surfaces, using the Ward reflectance model with PMC devel-
oped particle sets. The statistics are shown for the AGMMP distance measure, with varying values of σ.

σ 5e-1 1e-1 2e-1 3e-1 5e-2 1e-2 5e-3 1e-3 5e-4 1e-4

Miss 234 216 193 159 159 175 171 231 171 231

WNN 43 40 39 37 37 37 37 38 37 38

NN1 24 23 24 24 23 24 25 24 25 24

Table 8.9: Classification error statistics for the 48 surfaces, using the anisotropic Phong reflectance model with
PMC developed particle sets. The statistics are shown for the AGMMP distance measure, with varying values of
σ.

are 25 out of a possible 48 errors, obtained when σ ∈ {0.1, 0.001, 0.0001}.

In Tables 8.10 and 8.11, classification results are shown when using the different probabilistic distances

shown in Table 8.2. In both tables, the best NN1 classification results are given when using the symmet-

ric Kullback-Leibler divergence, which in each case gave 15 out of a possible 48 errors. An important

result is that classification performance is always better when using a set of samples, rather than us-

ing only the distances between the MAP samples. The classification results obtained when using the

Euclidean distances between the best parameter sets for the different materials, calculated using the

Multiple-Seed LM method, with 512 seeds, is worse than any of the other classification methods, with

38 out of 48 NN1 errors for the anisotropic Phong model experiment, and 33 out of 48 NN1 errors for

the Ward model experiment.

Notice also that the “corr” measure in Table 8.6, calculated using the original evenly spaced samples,

gives the lowest Miss total for classification using unevolved sample sets. Interestingly, the EMD

measure for the evenly spaced samples, weighted according to Eqn. 6.62, gives a lower (better) score

than the corresponding EMD similarities for the sample sets developed over 20 PMC iterations (Tables

8.10 and 8.11). The AGMMP measure works better on the evolved sample sets than on the evenly

spaced sample sets, but the classification results are generally worse for AGMMP than when using the

other distance measures on the developed sample sets.

It should be clear that the “Miss” statistic is quite an aggressive statistic, since it counts every case where

the similarity of a material surface with an extra-class material surface is better than the worst intra-class

similarity. Moreover, with 48 surfaces and 12 classes of material, the highest possible Miss statistic for

a given similarity metric (Gaussian similarity, EMD, correlation, etc.) is Miss = 44 × 48 = 2112,
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Chern Bhatta KL Symm KL. PF Mahalanobis MAP EMD LM512

Miss 157 155 134 119 198 160 174 161 412

WNN 39 38 37 37 47 38 39 37 48

NN1 22 22 19 15 26 24 25 23 38

Table 8.10: Classification error statistics for the 48 surfaces, using the anisotropic Phong reflectance model
with PMC developed particle sets. The statistics are shown for the Chernoff distance (labelled Chern, with α1

arbitrarily set to 0.7), the Bhattacharyya distance (Bhatta), the Kullback-Leibler Divergence (KL), the Symmetric
KL Divergence (Symm KL), the Mahalanobis distance, the Earth Mover’s Distance (EMD) and classification
based on the MAP sample obtained after the final iteration of the PMC method. Also included in the last column,
are results using the distances between the best results of multiple-seed LM iterations with 512 seeds, evenly
spaced on the parameter space.

Chern Bhatta KL Symm KL. PF Mahalanobis MAP EMD LM512

Miss 117 116 98 80 165 121 157 135 241

WNN 42 41 38 38 47 41 42 39 42

NN1 23 24 18 15 26 26 27 25 33

Table 8.11: Classification error statistics for the 48 surfaces, using the Ward reflectance model with PMC devel-
oped particle sets. The statistics are shown for the Chernoff distance (labelled Chern, with α1 arbitrarily set to
0.7), the Bhattacharyya distance (Bhatta), the Kullback-Leibler Divergence (KL), the Symmetric KL Divergence
(Symm KL), the Mahalanobis distance, the Earth Mover’s Distance (EMD), and classification based on the MAP
sample obtained after the final iteration of the PMC method. Also included in the last column, are results us-
ing the distances between the best results of multiple-seed LM iterations with 512 seeds, evenly spaced on the
parameter space.
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which would occur if every one of the materials had one extremely dissimilar within-class candidate

material. A Miss statistic of 400 is therefore quite low, since it means that only 19% of the possible class

violations occurred. This measure gives an indication of how reliably the materials can be clustered

based on such similarity measures.

Upon viewing coarse volumetric plots of the pseudolikelihood function on the BRDF parameters (Eqn.

6.61) of three of the materials, it is clear why misclassifications may occur. The volumetric pseudo-

likelihood plots over the BRDF parameters for materials #8 and #9, shown in Fig. 8.16 are similar in

appearance, and it is difficult to distinguish between them with the naked eye. Material #11, shown in

Fig. 8.17 clearly has a different BRDF, which makes its classification easier. Note also that the high

probability regions as indicated in the plots agree with our expectations about the Ward reflectance prop-

erties of the material surfaces. Materials #8 and #9 are expected to exhibit little specular reflectance

and a large amount of diffuse reflectance. Material #11 is expected to show little diffuse reflectance,

high specular reflectance, and a very high roughness parameter α, since the specular lobes are large

over regions of varying inclination. These characteristics are evident in the plots of Figs. 8.16 and 8.17.

The statistics for “Miss”, “NN1” and “WNN” over the forty-eight surfaces, and for each of these prob-

abilistic distances are shown in Tables 8.7, 8.9 and 8.10 for the anisotropic Phong parameterisation,

and in Tables 8.6, 8.8, 8.11 for the Ward parameterisation. It is shown in these tables that the Ward pa-

rameterisation gives better classification results. This is consistent with our discovery (using synthetic

data) that smooth flat surfaces are worse for recovering the anisotropic Phong parameterisations than

jagged surfaces. Since the real surfaces we reconstructed and classified using our method were smooth

and comparatively flat, it is consistent that the Ward parameterisation should give (moderately) better

classification.
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Figure 8.16: Volumetric plot of the pseudolikelihood estimate PL3(X|θ) for the probabilities on the Ward
BRDF parameters on materials #8 and #9. The pdf has been evaluated at the same locations where a sample
set for the PMC method would be initialized, but the samples have not been superimposed onto these plots.
(x, y, z) = (ρd, ρs, 2α).
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Figure 8.17: Volumetric plot of the pseudolikelihood estimate PL3(X|θ) for the probabilities on the Ward
BRDF parameters on material #11. The pdf has been evaluated at the same locations where a sample set for the
PMC method would be initialized, but the samples have not been superimposed onto these plots. (x, y, z) =
(ρd, ρs, 2α).
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numLabels LM (512 seeds, 10 iterations) R-type MCMC (20000 iterations) PMC (1000 samples, 20 iterations)

10 1.3 hours 9 minutes 4 minutes
20 2.6 hours 18 minutes 8 minutes
30 3.8 hours 27 minutes 12 minutes
40 5 hours 36 minutes 16 minutes

Table 8.12: Approximate average running times for the BRDF estimation algorithms. The processor used was
an AMD Athlon 4600.

8.3 Running times of MRF/BRDF parameter estimation algorithms

The estimation algorithms proposed for parametric BRDF estimation (multiple-seed Levenberg Mar-

quardt, dynamically weighted MCMC, and PMC) require varying amounts of time to converge. To

compare the computational load for each of these methods, the running times of the three algorithms

are presented in Table 8.12. These running times are for both the real and synthetic data, for the cases

where each corner vertex node can take on any of 10,20,30 or 40 labels corresponding to 3-D loca-

tions or disparity values. The computational load increases approximately linearly with the number of

possible labels for the corner vertex nodes since the number of labels affects the computational com-

plexity of calculation of the denominator in the pseudolikelihood calculations of Eqns. 6.62 and 7.7

linearly. The multiple-seed LM algorithm was run with 512 seeds, the MCMC algorithm was run for

20000 iterations, and the PMC algorithm was run for 20 iterations with 1000 samples per iteration. The

Multiple-seed LM algorithm was significantly slower than the other two algorithms. The reason that

512 seeds were chosen as the upper limit is that it is at this point that the average error function for this

algorithm run on synthetic data reliably reaches a good minimum value when run on synthetic data, as

seen in Figs. 7.3 and 7.4.

In the case that only a single MAP value is required, the data shows that if less than 15 minutes is

available for calculation, the PMC algorithm is appropriate. If 5 hours is available, then the Multiple-

seed LM algorithm run with 512 seeds is likely to give better results. The PMC algorithm was not

tested under operating parameters which could take advantage of the greater amount of time. It would

be possible to process more samples than the current maximum of 1000 samples for each of 20 PMC

iterations, or to run the PMC algorithm for more iterations, or to process more samples over more

iterations in the given time, but this was not tested (to run a battery of tests each of which takes five

hours is extremely time consuming). To extract BRDF posterior distribution samples for features for

classification, the PMC algorithm is the only possible choice.
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Chapter 9

Conclusions

We have described a method for extracting BRDF features from calibrated image data. The image data

is obtained using a stereo camera pair and a digital light projector that is used to improve the dense stereo

correspondence estimation using structured lighting, as well as to supply a light source which is used

to estimate the BRDF of the reconstructed surface. These features consist of the posterior probability

distributions on MRF parameters, which are actually BRDF parameters which have been used as MRF

potential function parameters. This framework can parameterize the reflectance characteristics of a

wide set of material surfaces, but cannot, in its present form, handle material surfaces that exhibit

complicated radiometric phenomena such as translucence, radiosity, and subsurface scattering.

Our method uses a Population Monte Carlo iterative resampling scheme to simultaneously approach the

optimal set of parameters, while also returning a posterior distribution over the BRDF parameters in this

parameter space. This method can take into account the probabilistic uncertainties of a surface which

has been reconstructed from a dense stereo correspondence algorithm. This is also the first classification

algorithm (to our knowledge) which uses posterior distributions in BRDF parameter space as features

for object surface classification.

Our method regards the reconstructed surface as a realization of a Markov random field in the space of

possible depth/disparity fields for the reconstructed surface, and treats the parameter estimation of the

BRDF model as a MRF parameter estimation problem.

Two novel methods for doing Markov random field parameter estimation were proposed and inves-

tigated in this thesis, namely a Population Markov Chain Monte Carlo sampler, and a dynamically

weighted Markov Chain Monte Carlo sampler.

A pseudolikelihood measure is used to weight the relative “fitness” (i.e. the congruence of the pa-

rameterisation with the observed image data and known light source and camera configurations) of

each of the tested parameter sets (samples/particles). In this way posterior distributions on the BRDF
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parameterisations are derived, using both dynamically weighted MCMC and Population Monte Carlo

samplers. The final posterior distributions on the BRDF parameters are intended for use in surface

categorisation/classification, but could also be used as parameters for a MRF based dense stereo recon-

struction algorithm, to give a probability on the configuration of triplets of corner vertex nodes on the

object surface, and in this way improve surface reconstruction estimates.

We tested the convergence of different sampling algorithms for reaching the MAP value for the re-

flectance parameterisation, using synthetic data, with the Ward and anisotropic Phong BRDF models.

We compared a Levenberg-Marquardt nonlinear optimizer initialized on multiple seeds, dynamically-

weighted MCMC samplers, and a Population Monte Carlo sampler, to test the relative performances of

these algorithms for finding the true BRDF parameterisations which were used to generate the images

of the synthetic surfaces. For the MCMC and PMC algorithms, a sample set representing the posterior

distribution on the BRDF parameters is also generated in addition to a good MAP estimate.

Using synthetic data, it is found that the Multiple-seed LM minimizer, minimizing an error function

(Eqn. 7.10) which maximizes a pseudolikelihood corresponding to the fitness of a sample representing

the BRDF parameter vector, converges less reliably when given fewer seeds for initialization. The

reliability of the Multiple-seed LM algorithm for finding the correct BRDF parameters is improved by

increasing the number of seeds on which the algorithm is initialized (the best result is the one which

is retained), however this results in an increase in computational load. When 512 seeds are used, the

Multiple-seed LM algorithm has improved reliability of convergence to the correct parameter set (using

synthetic data), but takes about 20 times longer than either the PMC or dynamically weighted MCMC

sampling algorithms. The Multiple-seed LM method also does not yield a posterior distribution on the

BRDF parameters, which we have shown to be valuable information for material surface classification.

The dynamically weighted MCMC samplers (Q-type and R-type) have more stable convergence char-

acteristics than the LM method, but by the time the MAP sample is within a reasonable distance (Eu-

clidean distance < 0.1 in the Ward parameter space, which is taken to be the unit cube in R3) of the

true BRDF parameter set for the synthetic surface image, there are too many samples (about 20000) for

the distributions to be compared efficiently using available pdf comparison techniques. This caused us

to test only the results of the LM and PMC methods for performing real material classification.

When testing the Population Monte Carlo (PMC) method with 1000 samples over 20 iterations, for

parametric BRDF estimation on synthetic data, it was found that the MAP sample reliably converged

to within a Euclidean distance of 0.14 units from the true parameter values in the unit cube of param-

eter space, in the experiments using the Ward model. The convergence in the case of the anisotropic

Phong model was better, with an average distance of < 0.05 units (the difference is due to the fact

that the anisotropic Phong experiments were run on jagged synthetic surfaces: these differences are

also present in the dynamically weighted MCMC convergence results and the Multiple-seed LM con-

vergence results, where the convergence results when using the anisotropic Phong model are slightly
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better). There is also a steady decrease in sample variance for all disparity ranges tested, for both

reflectance models.

The posterior distributions on the BRDF parameters, as calculated using the PMC method, were then

tested for their potential use as features for classification, using a variety of inter-feature distance mea-

sures including the Earth Mover’s Distance and our new symmetrical per-sample Gaussian Mixture

Model based distance measure (called the Average Gaussian Mixture Model Probability measure),

using both Ward and anisotropic Phong reflectance models of the real material surfaces. Chernoff,

Bhattacharyya and Patrick-Fisher distances, as well as the Kullback-Leibler and Symmetric Kullback-

Leibler divergences were also tested for their use as inter-feature distances in comparing the evolved

particle sets, on the simplifying assumption that the parametric BRDF samples were generated from

normal distributions. A first-nearest-neighbour (NN1) and worst-nearest-neighbour (WNN) misclas-

sification testing methodology was used to reveal the types of inter-feature distances which gave the

fewest nearest neighbour misclassifications. It was found that the Symmetric Kullback-Leibler diver-

gence is the inter-feature distance measure which gave the fewest NN1 misclassifications, on our real

surface data. Few nearest-neighbour errors indicate good clustering of the data using the selected fea-

tures.

We also tested the classification methods on the real materials using as features the BRDF parameter

sets derived using the best Multiple-seed LM parameter sets (i.e. from all of the LM minimization

operations done on the set of parameter seeds, the solution with the lowest error was chosen).

The results show that the PMC-based classification method outperforms the Multiple-seed LM method

when the calculated features for each method (the weighted sample set for the PMC method and the

lowest error parameter vector for the Multiple-seed LM method) are used for classification on real

material surface data, reconstructed using a stereo camera pair with structured lighting for dense stereo

reconstruction.

The PMC method is therefore a suitable method for doing MRF parameter estimation, for calculating

posterior distributions on parametric BRDFs for material surfaces, given probabilistic surface recon-

structions. The sample sets calculated using the PMC method are reasonably good features for material

surface classification.

9.1 Novel contributions

The novel theoretical contributions of the thesis include the estimation of parametric BRDF model

parameters within a Markov random field pseudolikelihood framework with the explicit incorporation

of the uncertainties in the reconstructed scene geometry. This is the first time, to our knowledge,

that a Population Monte Carlo sampler, rather than a Markov Chain Monte Carlo sampler, has been
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used for Markov random field parameter estimation in any setting. There appears to be no reference

in the literature that a dynamically weighted MCMC sampler has ever been used for MRF parameter

estimation: this is one of the techniques we explore. In Chapter 8, we have developed a new similarity

measure for comparing sample sets which represent posterior distributions, which to our knowledge has

not been used before, namely the Average Gaussian Mixture Model Probability (AGMMP) measure.

9.2 Final criticisms

In the framework of monocular vision, many ambiguities occur in reconstructing the 3D-surface of

a scene from one 2D-image. In such situations, the stochastic methods which use a multihypotheses

algorithm are often efficient. This is the basis of the work we have presented here. The problem of

3D-reconstruction admits a variety of approaches: there can be one or several images of the same

scene, taken either under the same point of view but different lighting conditions (photometric stereo)

or under the same lighting but different points of view. There may or may not be boundary conditions

or range data available for the surface to be reconstructed. If it is available, it may only be given as soft

probabilistic constraints. The framework as presented here caters for either case.

The photometric characteristics of the materials i.e., their BRDFs, can also be known, or not. With

more information, fewer ambiguities occur, and the 3D-surface should be better reconstructed. The

real advantage of the stochastic methods using a multi-hypotheses algorithm is that they allow the

formulation of all the variants of 3D reconstruction in a common formalism.

The framework we have presented allows any sampling algorithm to be used to extract the paramet-

ric BRDF of a surface since it has been embedded in a Markov Random Field parameter estimation

problem. This version of the problem naturally allows one to include hard or soft constraints on the

depths of any of the surface points. This is the core advantage of the framework, since any improved

sampling or parameter estimation problems may immediately be applied using our framework. The

second major theoretical benefit of using MRF potential terms based on the BRDF of the surface to

be reconstructed, is that it allows a physically meaningful constraint to be imposed, in contrast to the

many existing MRF based surface smoothing algorithms, where the potential terms are often ad-hoc

and physically meaningless.

A final criticism pertaining to the utility of this method in favour of others for the purpose of froth

classification is that the framework introduced is overly complex, and that better classification results

may be found using much simpler statistical methods which do not rely on 3D reconstruction or BRDF

estimation.

While it is true that classifiers such as support vector machines and neural networks could have better

classification accuracy when given the task of labeling images taken from froth footage (or surfaces of
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other types), our method has both classification power, but also calculates geometry and BRDF features.

Our research group has hypothesized that knowledge of the geometry of individual froth bubbles may

give insight about the the level of material loading on the froth surface. In addition, knowledge about

the reflectance characteristics of the froth can give insight as to the quality and type of the mineral ore

particles contained on the froth surface. Therefore the intermediate calculations are also of potential

value in the automation of the froth flotation control process.

9.3 MRF parameters and their relationship to BRDF parameters

It is difficult to relate the concept of a BRDF parameter such as the alpha parameter in the Ward model

to its corresponding variable in an MRF pseudolikelihood equation such as Eqn. 6.61.

While the two alphas mean the same thing in each case (i.e. the standard deviation of the surface

slope at any point), it is correct to say that the two alphas are not identical, since the estimation of the

posterior distributions on the Markov Random Field parameters involve a cost function which involves

the pseudolikelihood concept developed in chapters 4 and 6. Furthermore it can involve other potential

function weighting terms such as the temperature and normalization constant of Eqn. 6.60.

In its present form, the probability distribution on the BRDF parameters is calculated using assumptions

about the scene geometry and the relative certainties on each of the reconstructed points. If the assump-

tions are accurate, then the probability on any MRF/BRDF parameter is well justified, and the posterior

distribution on the MRF parameter becomes as accurate as the model with its parameters allows. If,

however the potential function and other pseudolikelihood parameters are not well chosen, the resulting

posterior distribution will not give a fair indication of the BRDF parameters calculated, for that scene.

9.4 Future work

The framework we have provided for approaching the shape from shading problem, and for estimating

BRDF parameters by solving for the MRF parameters on this structure allows for many further avenues

of exploration. It may be possible to use other sampling techniques, including genetic algorithms, to

improve the posterior estimate on the MRF parameters. It may also improve the computation time

and accuracy to divide the calculation of the parameters into a two-step solution, in an expectation

maximization framework, where the probabilities on the disparities are calculated alternately with the

MRF parameter estimates. Using our framework, it should be possible to solve for the incident light

direction, or the camera parameter, if the surface and BRDF characteristics are known. Our approach

can be extended to include multiple light sources, in a stereo or monocular vision setting. Finally in

the classification stage, more effective methods can be used to compare the posterior distributions on
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the BRDF parameters, and the distances between them. A way of incorporating self-occlusion in the

surface (from the light source) has not been developed.



Appendix A

Multinomial Distribution and
Multinomial Sampling

In a random process where

• there are n independent trials

• each trial produces one event E1, E2, . . . , Ek, where these events are mutually exclusive and

collectively exhaustive, so π1 + π2 + ...+ πk = 1

• on each trial, Ej occurs with probability πj , j = 1, 2, . . . , k,

we can define random variables X1,X2, ..Xk such that Xn is the number of trials in which En occurs.

Then, X = {X1,X2, ...,Xk} is said to have a multinomial distribution with index n and parameter

π = {π1, π2, . . . , πk}. Usually n is fixed and known.

The individual components of a multinomial random vector are binomial and have a binomial distribu-

tion: Xn ∼ Bin(n, πn). Each trial is independent, but the groups of events are not independent, since

given a known number of events of one type we have some information about the number of other types

of events. If X = {X1,X2, ...,Xk} is multinomially distributed with index n and parameter vector

π = {π1, π2, ..., πk}, it may be written as

X ∼M(n, π) (A.1)

This notation may be used to indicate a single sample taken from a set of k samples (particles) with

probabilities π1, π2, ...πk, by writing X ∼M(1, π), and is used in this thesis for describing resampling

operations.
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Appendix B

Pixel Match Measures

This appendix describes some of the pixel/corner match measures which are used in disparity calcula-

tion algorithms, and which may be used in the BRDF parameter estimation algorithm proposed in this

thesis.

B.1 2-D Correlation

Given two image regions A and B, the two dimensional correlation between the two regions is:

r =
∑

m

∑
n(Amn −A)(Bmn −B)√

(
∑

m

∑
n(Amn −A)2)(

∑
m

∑
n(Bmn −B)2)

. (B.1)

This value is in the range [−1, 1]. To convert this into an (approximately) probabilistic value, the values

are scaled to be in the range [0, 1].

B.2 Sum of Square Differences

The sum of square difference (SSD) measure is as follows:

r =
∑
m

∑
n

(Amn −Bmn)2. (B.2)

This measure returns values which are larger the greater the difference between the image regions. To

convert this into a probabilistic value one can invert the values, or take the negative of the values and

add a constant, then scale them to be in the range [0,1].
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B.3 Linear optimization of transport problem with Earth Mover’s Dis-
tance

This is a method designed to solve the linear transport problem using linear optimization. Given two

distributions, or sets of features (in [100] these are called “signatures”), with costs, or distances between

each member of the first set to each member of the second set, the Earth Mover’s Distance represents the

cost of transporting mass from the first distribution to the second distribution, along the paths with the

specified costs. This algorithm also allows for partial matching, where the distributions have different

masses. This algorithm is well suited to comparing vary abstract dataset features, provided that the

similarity between each type of feature can be described mathematically. It is also easy to extend this

algorithm into a local window or region matching framework. The linear optimization algorithm on

this cost function is sometimes called “EMD”, but this is a misnomer.

B.4 Colour Histogram Intersection

Histogram intersection methods are useful for region matching because they are robust against objects

being in different orientations. Provided there is enough colour separation in the pixels, a histogram

intersection based feature measure can accurately match features which are rotated by 180 degrees in

the image plane, and is even fairly robust to small rotations about the principal axes, provided that all

parts of the feature remain visible (again, assuming good colour separation across features). The basic

histogram intersection equation is

H(I1) ∩H(I2) =
n∑
i=1

min(Hi(I1), Hi(I2)), (B.3)

where Hi is a function which counts the number of pixels in the image I which are in a certain range of

values. This is extensible to colour images. If the image region which is to be compared is small, the

buckets should be made large.

B.5 Mutual Information

Mutual information is an information theoretic measure of the similarity between data sets. Assuming

a random variable A, the entropy is calculated as

h(A) = −
∫
p(A) ln p(A)dA. (B.4)
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If there are two random variables A and B, the joint entropy is

h(A,B) = −
∫
p(A,B) ln p(A,B)dAdB. (B.5)

The mutual information of the two random variables is

I(A,B) ≡ h(A) + h(B)− h(A,B). (B.6)

It is clear that to use a mutual information measure it is necessary to assert some way of finding the

probability of a random variable (pixel value in a region), as well as the joint probability of two such

random variables (pixel values) in the data (image regions) are being compared. One method is to nor-

malize the pixel intensity co-occurrence matrix, so that it can be treated as a joint pdf. For an example

case study, see [118], where mutual information is used to register MRI data. The mutual information

must also be converted into some kind of probability value if it is to be used in a probabilistic pixel

match measure algorithm.



Appendix C

Thin plate splines

This appendix briefly describes the thin plate spline (TPS) interpolation method, which we use in our

synthetic data testing methodology to generate synthetic surface data to test the convergence character-

istics of the BRDF estimation algorithms. Given control points, (which in our scenario are randomly

generated from a cube in R3), the thin plate spline algorithm fits a surface to these points which mini-

mizes a specified bending energy. Although the idea was introduced in [28], we follow the formulation

of [30].

One seeks to construct an interpolating function f(x, y) which can generate smooth surfaces. The

bending energy of the thin plate spline surface is

I[f(x, y)] =
∫ ∫ 2

R
(f2
xx + 2f2

xy + f2
yy)dxdy. (C.1)

If the data comes in the form of a set of points {(xi, yi, zi)}Ni=1, the minimizing function can be written

as

f(x, y) =
n∑
j=1

ajE(||(x− xj , y − yj)||+ b0 + b1x+ b2y), (C.2)

where

E(r) = r2 ln(r2). (C.3)

The coefficients aj and bj are determined by requiring exact interpolation. This requirement implies

zi =
n∑
j=1

Eijaj + b0 + b1xi + b2yi, (C.4)

for 1 < i < n, where Eij = E(||(xi − xj , yi − yj)||). Writing this in matrix form,

~z = A~a+B~b, (C.5)
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where A = [Eij ] is an n× n matrix and where B is an n× 3 matrix, the rows of which are [1 xi yi].

An additional implication is that BT~a = −→0 . The two vector equations can be solved to obtain:

~a = A−1(~z −B~b) and~b = (BTA−1B)−1BTA−1~z. (C.6)

These coefficients can then be used for interpolation between the data points.



Appendix D

Levenberg-Marquardt function
optimization

In this appendix we summarize some nonlinear minimization methods, including Newton’s method, the

Gauss-Newton method, the basic gradient descent method and the Levenberg-Marquardt (LM) method.

We follow almost exactly the description of [49], Appendix 6. Assume we are given a functional

relation X = f(P) with X a measurement vector in RN and P a parameter vector in RM . However,

the measurement X is only an approximation of the true value X. The goal is to find a vector P̂ which

most closely satisfies this functional relation. We can pose this goal as one of minimizing an error ||ε||
in the equation

X = f(P)− ε. (D.1)

When f is not a linear function, the estimate of the function f is improved iteratively, under the assump-

tion that f is locally linear. If the initial guess for P is P0, then the error corresponding to this initial es-

timate is ε0 = f(P0)−X. It is further assumed that the function in the region around P0 is linearly esti-

mated as f(P0+∆) = f(P0)+J∆, where J is the Jacobian matrix calculated as J = ∂f/∂P. The next

point P1 is found by P1 = P0+∆, which minimizes the term f(P1)−X = f(P0)+J∆−X = ε0+J∆.

Finding ∆ to minimize ε0 + J∆ is a linear problem. At this point the normal equation is introduced:

JTJ∆ = −JT ε0, (D.2)

which is the general equation which is the basis for many gradient descent style minimization problems,

including the LM method.
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D.1 Newton’s method

In Newton’s method, the solution vector P is calculated iteratively according to Pi+1 = Pi+∆i, where

∆i minimizes J∆i = −εi, and where J is the Jacobian ∂f/∂P at Pi and εi = f(Pi)−X.

D.2 Gradient descent

The downhill gradient vector −gp where −gp = −εTP ε is the direction of the most rapid decrease in

the cost function. One of the key issues in gradient descent algorithms is the size of the step to take,

in the direction of −gp. The step size may be fixed, but some algorithms use a line search method in

the direction of −gp in order to minimize the cost function. In this case, the parameter increment ∆

is calculated from λ∆ = −gp (λ controls the step size). The key difference between this method and

Newton’s method is that the Hessian of Newton’s method is here replaced by λI , where I is the identity

matrix, with width and height equal to the size of the parameter vector.

D.3 Gauss-Newton

Suppose one is considering a function g(P). If one expands this function about P0 as a Taylor polyno-

mial, then

g(P0 + ∆) = g + gP∆ + ∆T gPP∆/2 + . . . . (D.3)

where the subscript P or PP indicates the order of the derivative. Since the goal is to find the minimum

of this function (ignoring the higher order terms), it is differentiated with respect to ∆, and equated to

zero, giving the equation gP + gPP∆ = 0, or

gPP∆ = −gP . (D.4)

Here, gPP is the Hessian matrix (matrix of second derivatives). Now if the function g(P) is in fact the

squared norm of the error function:

g(P) =
1
2
||ε(P)||2 = ε(P)T ε(P)/2, (D.5)

with ε(P) = f(P) −X, then the cost function matches the type of least squares minimization we are

considering.

The gradient vector gP = εTP εP , but if we note that εP = fP = J , then gP = JT ε. Now, if gP is

differentiated again, one obtains

gPP = εTP εP + εTPP ε. (D.6)
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The second half (εTPPε) vanishes since it is assumed that f(P) is linear.

gPP = εTP εP = JTJ. (D.7)

Finally, substituting the gradient and the Hessian in Eqn. D.4, then JTJ∆ = −JT ε, which is the

normal equation. When the Hessian is approximated with JTJ , the method is known as the Gauss-

Newton method.

D.4 The Levenberg-Marquardt algorithm

This method is an extension of the Gauss-Newton method, in which the normal equations are replaced

by augmented normal equations. Instead of JTJ∆ = −JT ε, then the augmented equations

(JTJ + λI)∆ = −JT ε. (D.8)

The value of λ can vary with the iterations of the algorithm, and is often increased steadily if proposal

values for Pi+1 are worse than the best previous minimum. The values are therefore varied to escape

local minima. The LM method in operation varies, depending on the value of λ, from behaving like the

Gauss-Newton method (for small λ), and the gradient descent method (for large λ), and in performance

is generally more efficient than either one of them.



Appendix E

Similarity results for posterior
distributions on parametric BRDFs

This appendix contains a subset of classification results consisting of matrices of similarities between

sample sets for each of the 48 different materials. The tables include results for the AGMMP and other

pdf similarity measures, including the Earth Mover’s distance and the correlation measure for samples

in their original positions evenly spaced in the BRDF parameter space.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1000 997.7 999.8 993.9 995.4 996.6 993.9 999.2 999.5 999.7 992.5 996.2 987.6 980.7 982.8 983.4
2 1000 997 998.6 993.3 999.2 992.4 999.8 997.1 995.9 998.3 993.2 997.9 994.8 995.7 994.8
3 1000 992.8 996.8 996 995.2 998.9 998.9 999.8 991.3 997.7 987.2 980.7 982.6 982.8
4 1000 962.5 988.4 960.6 999.6 995.1 990.6 999.9 972.6 999.1 998 998.4 997.8

5 1000 988 999.4 995.5 986.2 993.1 956.7 999.2 973 958.2 957.8 954.4
6 1000 985.7 998.3 995.5 995.1 985.9 990 994.3 988.2 987.8 984.7
7 1000 994 983.7 991.1 955.6 997.6 971.1 957.6 956.9 953.1
8 1000 999.1 998.8 999.6 996.8 999.9 999.6 999.7 999.5

9 1000 998.9 993.7 989.5 990.1 983.4 985.6 985.6
10 1000 988.6 994.9 983.6 974.8 977 978.5
11 1000 968.6 999.3 998.7 999 998.5
12 1000 975 961.5 962.5 961.8

13 1000 998.8 999.3 998.5
14 1000 999.9 999.9
15 1000 999.7
16 1000

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table E.1: Columns 1 to 16 of similarity matrix for parametric BRDF surfaces of real materials, using similarities
derived from the Mahalanobis distance, with PMC developed sample sets, calculated over 20 iterations. (The
data in this similarity matrix has been transformed linearly for better visibility; the ordering for similarities
between material pairs is preserved). These similarity values are derived from probabilistic distance measures on
parametric BRDF distributions corresponding to the target distributions of ePL3(X|θ) (Eqn. 6.62).
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17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 956.1 948 959.7 940 968.5 971.7 929.9 967.2 979 994.9 988.9 989.7 979.5 972.4 979.6 984.2
2 961.2 956.6 964.8 949.9 982.7 986.1 963.8 983.6 991.7 999.5 996.1 997.9 990.5 990.3 992.7 995.5
3 962.7 956.6 966.8 945 968 971.9 936 967.7 979.2 994 987.8 988.9 980.3 973.4 979.4 983.7
4 835.1 800.5 748.3 716.9 987.7 990.5 978.6 989.3 993.9 999.3 997.5 999.1 989.3 995.3 996.4 998

5 961.2 953.9 961.2 921.2 936.9 961.8 907.5 952.1 972.8 990.7 987.6 983.8 977.4 960.2 974 975.2
6 927.6 905.8 930.2 842.4 971.8 987.3 955.9 981.8 994.3 999.2 998.7 997.6 996.5 988.4 994 994.3
7 975.6 972.5 978.4 950.3 936.5 960.8 915.6 951.5 971.9 990.1 987.8 982.8 976.7 959.7 973.3 973.9
8 970.5 970.6 974.8 964.5 996.7 998.4 996.2 998.1 999.3 1000 999.7 999.9 998.8 999.4 999.5 999.7

9 904.1 883.3 896.3 866.6 971 974.6 934.9 970.8 981.3 994.8 988.3 990.8 979.9 976.2 982.2 986.3
10 926.7 911.1 926.5 903.3 963.3 967.6 916.5 962.2 975.4 992.9 986.9 987 974.5 967.7 976.6 981.4
11 823.2 782.7 712.6 674.7 989.4 992.2 981.9 991.2 995 999.3 998.3 999.4 989.7 996.6 997.5 998.8
12 946.3 934.6 944.3 910.8 945.4 962.6 908 954.3 972.8 990.3 986.2 983.6 976.8 961 973.3 975.5

13 895.8 869 889.4 821.7 988.2 992 972.5 990.2 996.5 999.6 999 1000 994.5 996.1 997.6 999.2
14 849.1 809.5 811.1 753.6 993.1 996.6 985.2 995.5 998.9 997.6 999.8 999.1 996.8 999.5 999.8 1000
15 852 809.9 814.6 729.5 992.3 995.9 983.6 994.7 998.5 998.2 999.8 999.5 995.8 999 999.5 1000
16 838.6 801.6 780.1 717 994.6 997.3 990.1 996.6 998.5 997.4 999.6 998.9 994.8 999.8 999.9 999.8

17 1000 999.7 998.5 998.2 813.6 884.7 768.1 859.6 905 955.2 952.8 935.3 923.8 861.8 908.7 902.1
18 1000 998.3 997.7 776.7 860.6 687 828.7 883.7 950.2 948.1 925 904 830.2 892.4 886.5
19 1000 990.8 735 878.4 647.9 839.5 903.4 958.9 956.2 938.6 928.5 839.1 908.8 900
20 1000 680 814.7 545.1 767.1 848.6 944.7 943.9 913 847.2 792.1 876.3 871.7

21 1000 998.3 1000 999 993.8 986.4 991.9 988.9 990.1 994.6 994 992.1
22 1000 997 999.8 998 989.8 995.6 992.5 996.8 997.7 997.5 995.5
23 1000 998.3 987 970.4 981.8 974.4 981.8 987 986.5 982.3
24 1000 996.7 987.7 994.1 990.6 994.6 996.8 996.4 994.2

25 1000 994.9 999.1 997 999.6 999.3 999.7 998.6
26 1000 998.2 999.5 993.7 994.3 996 998
27 1000 999.3 998.4 999 999.6 999.8
28 1000 995.6 996.8 998 999.4

29 1000 997.5 998.8 997
30 1000 999.9 999.1
31 1000 999.6
32 1000

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table E.2: Columns 17 to 32 of similarity matrix for parametric BRDF surfaces of real materials, using simi-
larities derived from the Mahalanobis distance, with PMC developed sample sets, calculated over 20 iterations.
(The data in this similarity matrix has been transformed linearly for better visibility; the ordering for similarities
between material pairs is preserved). These similarity values are derived from probabilistic distance measures on
parametric BRDF distributions corresponding to the target distributions of ePL3(X|θ) (Eqn. 6.62).
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33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

1 972 975.7 978.8 985.4 996.3 999.1 999.3 997.9 962.8 957.4 957.2 953.8 945.9 978.6 975.4 980.6
2 986.9 988.4 989.2 993.3 994.1 995.4 996.4 995 964.9 959.8 959.5 959.8 953.8 979.4 975.9 981.3
3 973 976.2 978.6 985 997.9 999.7 999.9 999 961.9 959.2 958 958.6 954.1 980.5 977.7 979.6
4 989.3 990.8 993.1 994.6 975.7 986.7 988.4 982.4 580.9 135.8 244.9 768.9 815.1 891.1 906.2 752.3

5 968.4 971.7 978.9 983.8 999.4 995.5 996.1 997.8 917.1 884.5 883.7 937.4 953.3 982.1 983.4 975.4
6 992.6 993.3 995.7 997.9 990.6 994.1 995.2 992.9 879.6 861.1 855.1 903 892.6 947.6 943.6 938.3
7 967.9 970.9 979.1 983.8 998 993.6 994.1 996.1 945.7 927.9 927.1 955.7 971.8 989.7 989.8 984.7
8 998.8 998.9 999.2 999.3 996.8 998.4 998.5 997.7 953.2 944.5 944.8 958.7 972.7 982.5 982.2 974

9 975 977.5 978.8 984.3 990.2 997 997.4 994.1 881.2 821.4 829.5 875.6 895.1 951.2 951.4 945.5
10 968.1 971.6 975.3 981.8 995 999.5 999.5 997.7 921.2 885.6 889.6 907.3 919.6 969.2 968.1 970.4
11 990.7 992.2 994.8 995.8 972.4 984.3 986.3 979.8 453.3 67.78 64.88 762.4 794 876.8 895.1 652.3
12 967.8 971.3 977.3 982.6 1000 997.3 997.8 999.3 922.5 896 896.2 927.3 940 977.7 979 973.6

13 992.6 993.7 994.7 997 975.9 980.6 983.5 980.2 823.7 802.7 794.7 877.8 863.4 925.5 916.1 886.5
14 996.9 997.5 998.6 999 963.4 970 974.4 969.2 746.9 632.7 645.8 816.6 817.3 898.4 895.3 844.7
15 996.1 996.8 998.1 998.7 964.5 972.2 976.2 971 678.1 613.7 596.7 826.2 809 891.8 887.6 791
16 996.3 997.2 999 998.9 964.2 973.9 977 971.1 576.5 410.6 400.2 801.3 807.3 883.4 889.3 731.8

17 896 910.1 935.8 947.2 959.5 936.8 950.1 945.4 991 984.4 984.6 994.2 999.5 996.6 997 996.1
18 869.6 889.4 925.1 938.6 950.6 921.7 938.2 934.1 991.9 985.2 985.3 994.7 999.9 996.8 997.7 997.4
19 892.5 911.8 939.2 951 963.2 937.5 953.6 947.1 970.4 933.7 936.6 985.5 998.4 998.6 998.4 995.1
20 821.7 845.9 909.4 922.3 929.7 910.3 921.4 923.3 994.2 986.5 986.5 997.3 997.1 988 990.9 993.8

21 994.4 995.2 995.4 993.7 948.2 958.5 961.7 955.6 427.2 148.5 114.9 771 782.3 859.1 869.2 629.4
22 998.9 999.1 998.8 997.6 963.8 965.8 969.4 967.4 795 765.1 756 865.7 856.1 913.6 903.1 867.5
23 989.4 990.9 989.1 986.6 913.7 910 923.7 919.9 371.4 109.2 74.23 736.7 686.4 819 808.9 579.3
24 997.7 998.1 997.8 996.3 955.6 959.3 963.5 960.5 707.4 656.6 640.5 836.5 826.2 893.6 884.3 810.7

25 999.4 999.5 999.8 999.9 974 974.5 978 976.6 857.2 831.6 827.9 889.5 877.8 932.8 922.3 914
26 990.8 991.9 992.7 995.9 991.1 992.4 993.5 992.2 960.1 951.9 952.3 952.8 947.6 975.9 971.8 978.7
27 996.9 997.3 998.1 999.3 987.3 986.9 988.4 988.3 959 949.7 950.4 950.6 944.6 974.1 969.6 978.1
28 993.3 994.3 995.1 997.5 984.5 986 987.9 986.4 933.2 921.6 921.6 929 921.5 959.7 952.3 959

29 999.3 999.3 999.5 999.8 979.8 976.3 981.1 980.1 829.8 812.7 800.2 899.8 884.6 938.5 918.1 894.4
30 997.8 998.3 999.5 999.4 962.2 964.3 969.2 966.5 784.8 682.7 696.7 830.3 837.2 908.9 902.6 873.9
31 998.4 998.7 999.4 999.7 974.1 975 977.9 976.7 896 866.3 869 894.6 892 941.6 932.4 936.4
32 996.1 996.7 997.8 998.8 975.9 979 981.3 979.2 876.1 811.9 823 874.2 892.2 941.4 936.1 934.1

33 1000 1000 999.7 999.1 969.5 967.8 972.4 971.9 819 783.4 776.7 877.5 860.1 923 910.1 891.4
34 1000 999.8 999.3 973.3 971.8 975.9 975 845.3 825.4 818.3 891.7 877.7 931.1 916.9 902.7
35 1000 999.6 979.8 976.7 980.1 980.1 932.7 927.5 925.9 932 916.3 955 943.3 952.3
36 1000 985.4 982.9 986 985.2 942.9 940.6 938.4 943.4 929.3 962.8 952.7 960.3

37 1000 997.2 997.8 999.3 952 946.7 945.3 947.5 950.8 980.9 980.4 978.5
38 1000 999.8 999.2 936.3 918.8 919.5 925.4 927.1 972.7 971.9 973.1
39 1000 999.4 948.8 943.1 942 942.3 936.7 974 971.8 973.7
40 1000 946.2 931 931.7 933.9 940.5 979.1 978.8 979.5

41 1000 997.5 996.8 999.6 987.9 976.1 986.5 965
42 1000 999.8 999.7 978.2 962.3 980.3 924.9
43 1000 999.5 978 961.7 979.7 915.8
44 1000 993.8 985.8 990.5 992.1

45 1000 996.7 997.5 997.1
46 1000 999.8 997.5
47 1000 998.9
48 1000

Table E.3: Columns 33 to 48 of similarity matrix for parametric BRDF surfaces of real materials, using simi-
larities derived from the Mahalanobis distance, with PMC developed sample sets, calculated over 20 iterations.
(The data in this similarity matrix has been transformed linearly for better visibility; the ordering for similarities
between material pairs is preserved). These similarity values are derived from probabilistic distance measures on
parametric BRDF distributions corresponding to the target distributions of ePL3(X|θ) (Eqn. 6.62).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 999.6 993.5 996.4 929.9 994.7 993.2 993.2 990.9 987.2 995.6 908.8 995.4 967.3 941.4 944.9 921.6
2 999.7 994.2 926.6 994.7 991.8 993.4 990.3 981 990.8 906.5 995 969.5 947.5 949.7 926.9
3 999.6 913.4 995 993.1 993.7 987.5 984 994.5 888.8 995.2 958.1 923.8 928.1 902.7
4 999.8 996.4 989.5 987.3 999.2 999.1 998.7 999.4 996.4 998.4 996.7 997.4 995.4

5 999.6 963.4 992.4 945.5 918.2 959.2 800.1 989.3 862.8 821 828.5 800.9
6 999.6 993 977.3 956.9 982.6 836.4 987.8 919.8 880.7 886.6 860.8
7 999.6 928.9 888.8 938.1 787.4 981.7 843.4 811 819.9 791.5
8 999.6 993.7 996.7 969.9 995.1 992.3 986.8 987.4 976.2

9 999.7 998.4 980.3 996.1 987.8 978.2 980 970.5
10 999.6 937 995.5 970.4 949.9 953 935.7
11 999.8 996.8 998.9 997.8 998.3 996.8
12 999.6 922.1 875.1 883.3 857.1

13 999.7 997.4 997.5 994.5
14 999.7 999.1 998.2
15 999.7 998.8
16 999.8

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table E.4: Columns 1 to 16 of similarity matrix for parametric BRDF surfaces of real materials, using the AG-
MMP measure with σ = 0.05, with PMC developed sample sets, calculated over 20 iterations. (The data in this
similarity matrix has been transformed linearly for better visibility; the ordering for similarities between material
pairs is preserved). These similarity values are derived from probabilistic distance measures on parametric BRDF
distributions corresponding to the target distributions of ePL3(X|θ) (Eqn. 6.62).
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17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 983.1 962.5 983.1 751 832.9 938.4 834 914.7 971.5 992.5 987.3 985.6 962.1 958.6 971.4 964.7
2 981 964.4 981.7 740.2 866.8 956.6 868.2 936.8 980.2 992.9 988.3 985.6 979.4 965.1 976.7 966.9
3 985.9 970.6 982.9 795.5 802.9 926.8 805.5 899 968.1 991.3 985.4 981.4 961.1 951.2 965.7 954.5
4 933.1 893 957.9 334.7 954.9 973.6 952.7 971.1 982.8 998.6 994.5 998.3 967.1 991.4 992.8 996.8

5 982.1 977.3 983.2 886.3 655.7 811.1 656.7 776.8 889.6 951.5 944.9 928 894.9 851.5 879.2 866.4
6 972.7 976.7 985.4 870.1 764.2 905 771 867.6 964.4 989.7 987.7 969.5 974 925.5 947.6 923.6
7 978.7 980.1 985.4 914.7 664.6 796.9 664 772.8 868.3 934.4 927 912.7 874.4 833.6 860.3 852
8 971.3 940 975.5 573.2 940.7 979.1 936.8 971.8 987.5 997 994.1 995.7 979.9 988 991.9 991.2

9 968.6 931.7 974.7 523.6 901.6 943.8 898.2 936.7 959.5 992.3 989 987.3 940.4 970.1 975.1 980.9
10 979.7 953.9 980.8 665.4 844.7 928.2 843.4 912.1 960.5 991.6 985.4 983.2 945.4 957.9 967 965.1
11 928.5 887.6 955.7 313.8 960.1 977.2 958.1 975 985.8 999 996 998.9 971.2 993.4 994.6 997.9
12 987.3 977.3 986 851.2 724.2 869.3 730.8 840.2 930.9 972.7 967.2 956.3 923.3 906.9 927.4 912.2

13 965.1 932.6 973.8 500.1 971.7 990 970 987.5 994.8 998.8 998.1 998.8 986.5 996.8 998.1 997.5
14 942.8 907.9 963.5 395.1 983.1 993.9 981.2 992.6 997 999.1 999.2 999.2 990.5 999 999.3 999.3
15 947.5 913.3 966.4 407.2 981.4 992.8 979.8 991.6 996.5 999.1 999.1 999.4 989.3 998.9 999.1 999.2
16 930.5 893.7 956.7 341.1 985.2 994.5 983.9 993.5 997.5 999.1 999.3 999.4 991.4 999.4 999.5 999.5

17 999.6 991.1 990.4 944.4 610 662.2 607.4 643.9 716.2 793.9 805.1 706 731.6 642.5 693.7 654.5
18 999.6 991.6 976.3 685.7 712 680.2 700.7 749.5 810 818.7 741.9 755.7 689.7 732.7 698.2
19 999.6 954.1 715.7 778.4 709.2 764.2 825.7 889.3 893.9 847.2 827.1 782 815.8 800.9
20 999.6 828.7 798.8 820.7 798.1 798.8 831.5 846.8 768.4 800.6 747.9 783 750.1

21 999.8 998.7 999.6 998.8 997.6 997.8 998.2 992.2 998.3 991.4 995.2 989
22 999.7 993.1 998.2 998.8 998.2 998.4 997 998.5 996.5 998.2 995
23 999.8 999.1 997.9 998.4 998.6 992.2 998.6 991.8 995.7 989.2
24 999.7 999 998.3 998.9 997.2 998.7 997.2 998.3 995.5

25 999.7 997.6 995.3 995.5 997.7 991.6 996.1 989.9
26 999.6 994.8 994.2 984.2 981.9 989 983.9
27 999.7 992.3 990.5 983.9 989.5 982.9
28 999.7 986.5 993.3 995.3 995.6

29 999.7 979.9 990 972.6
30 999.8 999.3 998.8
31 999.7 997.7
32 999.7

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table E.5: Columns 17 to 32 of similarity matrix for parametric BRDF surfaces of real materials, continued
from Table E.4.
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33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

1 956.5 961.8 972.5 986.4 996.3 996 996.3 996.2 231.1 169.8 201.9 176.2 842.7 928.8 919.3 378.3
2 973.9 976 982.1 990.8 994.5 992.7 995.1 995.3 212.5 156.1 181.5 164.2 838.7 934.4 921.6 363.6
3 952.9 958.3 970.8 985 995.7 995.5 995.8 995.6 290.1 216.5 260.3 231.3 871 942.7 927.4 446.8
4 971.1 973.7 984.8 992.5 991.3 999.1 997.3 998.2 24.29 27.92 13.62 22.85 568 789.2 785.2 31.23

5 861.4 873 899 938 986 969.2 978.6 984.4 564.5 496.4 525.7 475.1 928.7 961.3 948.2 666.5
6 953.5 961.4 968.6 985.9 983.3 980 983.1 988.5 465.3 396.7 435.6 396.1 918.3 956.6 946.2 601.6
7 836.6 851.3 879.4 916.8 976 951.8 966.3 975.2 639.1 581.9 612.4 557 948.9 971.7 960.7 731.4
8 980.8 982.9 989.8 993.5 994.8 997 996.9 997.1 65.91 30.34 48.2 46.13 724.9 881.5 873 142.9

9 943.1 947.7 963.3 990.4 995 998.1 997.6 998.1 21.63 2.934 10.94 18.33 690.8 865.9 855.4 100.2
10 943 948.4 962.8 986 995.9 997.3 996.9 996.8 151.4 104.6 134.1 120 788.2 906.1 895.6 270.9
11 975 977.3 987.5 992.9 990.5 999.1 997.2 998.2 27.75 2.819 16.25 25.58 554.8 781.8 776.1 35.46
12 907.5 915.6 934 966.7 993.4 987.5 990.8 993.4 415.6 352.7 389 356.1 911.1 961.2 945.4 573.3

13 988.9 990.3 995.7 996.6 995.3 998.6 997.9 998.2 35.84 4.576 24.12 31.85 685.7 865.5 860.5 70.24
14 992.7 993.8 997.9 998.3 993.3 998.8 997 998.2 39.54 8.406 29.93 38.71 610.2 815.7 814.3 31.62
15 991.5 992.7 997.3 997.8 993.9 998.9 997.4 998.3 39.42 7.597 29.62 37.28 623.5 825.4 822.6 25.82
16 993.4 994.5 998.3 998.4 991.3 999 996.9 998 41.7 9.778 31.86 39.5 573 792.7 789.1 33.06

17 698.7 717 721 769.6 725.4 692.4 730.6 750.7 739.7 699.1 719.6 700.9 972.1 979 974.2 828.8
18 727.5 744.3 754.1 784.1 746.4 712.9 748 768.8 868.2 826.1 853.6 835.8 987.3 984.6 983.4 913.2
19 798.9 815.5 831 877.1 873.9 843.3 869.6 885.2 784.4 743.5 768.5 737.2 974.5 985.8 981.6 858.9
20 792.6 801.7 800.3 809.5 739.2 705.5 746.2 766 978.6 942.9 968.5 970.7 994 992.6 993.5 986.5

21 998.5 998.4 998 998 970.3 976.6 979 988.7 44.32 38.35 43.2 44.15 539.9 774.3 771.7 40.7
22 999 998.9 998.9 998.9 986.3 989.8 988.4 994.3 43.12 27.93 38.02 40.04 659.4 848.8 846.5 53.64
23 998.8 998.7 998.5 998.4 970.7 977 978.9 989.5 44.14 38.47 43.24 44.22 545.8 780.6 775.4 39.65
24 999.2 999.2 999.2 999.1 984.4 989 987.6 994.5 43.33 29.74 42.5 43.11 610.8 818.2 815.9 30.27

25 997.9 998.1 997.5 998.3 990.8 992.9 992.1 994.5 81.19 53.28 73.7 66.66 752 899.1 895.5 192
26 982.3 985 990.1 994.5 994.8 995.6 996 996.2 123.3 72.06 102.1 90.2 773.9 900.5 888.5 231.1
27 988.7 990 993.3 996.4 991.6 993.7 993.6 995.8 128.5 88.02 105.9 99.27 716.6 869 853.8 189.8
28 987.4 989.1 994.5 996.3 995.1 997.6 997.3 997.5 61.57 26.74 49.32 48.31 690.8 860.7 853.7 92.98

29 997 996.6 996 998.1 986 985.7 986.4 993.4 194.7 161.2 181.1 169.5 848.7 944.1 941 367.4
30 996.7 997.2 999.1 998.9 991.9 998.3 996 997.3 46.01 15.51 36.22 42.73 605.4 813.5 809.7 39.32
31 995.6 996.4 998.6 998.7 992.4 997.2 995.9 997.2 43.74 15.74 38.94 42.2 640.7 835.8 829.1 70.32
32 991.7 992.8 997.5 997.9 993.4 998.4 996.9 998.1 42.02 11.54 29.8 38.17 619.9 820.4 814.8 48.45

33 999.7 998.2 998 998.6 986 986.7 986.9 993.9 111.4 87.48 102 97.27 775.3 911.1 907.1 233.1
34 999.7 997.9 998.5 987 988.5 988.3 993.9 78.15 56.28 70.87 65.17 759.6 904.4 899.4 205.8
35 999.7 998.4 989.6 992.7 992 995.3 68.2 40.4 58.18 56.54 699 867.2 861 131.5
36 999.7 989.6 989.8 990.2 994.4 143.5 107.8 117.7 112 789.5 913.4 905.6 267.2

37 999.6 990.8 992.3 993.6 427 348.9 401.1 349.3 920.5 955.6 944.6 582.8
38 999.6 995.3 996.1 303.7 249.2 285.2 270.4 831.3 920 910.1 415.8
39 999.6 996 245.7 178.5 219 189.3 863.6 941.1 926.5 411.5
40 999.6 290.1 230.9 263.7 228.8 859.9 934.7 922.2 433.9

41 999.7 989.6 993.2 997.1 992.5 989.4 990.8 985.7
42 999.8 998.8 998.2 994.9 980.2 982.6 958.6
43 999.8 998.2 994.1 980 981.5 957.7
44 999.7 993.2 982.8 986.1 975.7

45 999.7 991.4 991 971.5
46 999.6 991.9 946.5
47 999.6 969.5
48 999.6

Table E.6: Columns 33 to 48 of similarity matrix for parametric BRDF surfaces of real materials, continued
from Table E.5.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 0.6802 0.9668 0.4056 0.2939 0.4943 0.1619 0.5014 0.609 0.8714 0.1117 0.4266 0.04584 -0.03106 -0.03631 -0.04317
2 1 0.5658 0.5587 0.1644 0.5119 0.05721 0.5024 0.7217 0.6674 0.3497 0.2458 0.3397 0.06643 0.07705 0.06542
3 1 0.3408 0.2798 0.4371 0.1467 0.4608 0.4617 0.8333 0.04158 0.4513 -0.003521 -0.05843 -0.06132 -0.06557
4 1 0.05527 0.8777 -0.0452 0.8133 0.6572 0.3998 0.9398 0.1344 0.7405 0.7598 0.7546 0.7833

5 1 0.1979 0.8805 0.4188 0.09188 0.1857 -0.01895 0.6842 0.05047 -0.005583 0.002381 -0.01579
6 1 0.03585 0.9064 0.7522 0.4774 0.7985 0.3368 0.7139 0.7429 0.7329 0.7065
7 1 0.178 -0.01762 0.06712 -0.08759 0.3853 -0.01723 -0.06519 -0.05529 -0.0716
8 1 0.6191 0.4507 0.731 0.5925 0.5952 0.6484 0.6334 0.643

9 1 0.6609 0.5009 0.1535 0.5237 0.3354 0.3436 0.304
10 1 0.1469 0.2899 0.1748 0.0411 0.05074 0.03548
11 1 0.01683 0.7626 0.8748 0.8601 0.9058
12 1 0.08971 0.02468 0.03244 0.01511

13 1 0.7472 0.8293 0.7166
14 1 0.9738 0.9647
15 1 0.9426
16 1

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table E.7: Columns 1 to 16 of similarity matrix for parametric BRDF surfaces of real materials, using the
correlation measure (“corr”, Eqn. 8.9), with all samples in the sample set evenly spaced over the range (ρd ∈
[0, 1], ρs ∈ [0, 1], α ∈ [0, 0.5]) in parameter space. These similarity values are derived from probabilistic distance
measures on parametric BRDF distributions corresponding to the target distributions of ePL3(X|θ) (Eqn. 6.62).
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17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 -0.123 -0.139 -0.087 -0.138 -0.080 -0.074 -0.076 -0.075 -0.042 0.230 0.080 0.060 -0.007 -0.008 -0.016 0.071
2 -0.096 -0.111 -0.070 -0.116 -0.082 -0.078 -0.072 -0.079 -0.039 0.754 0.250 0.316 -0.007 0.081 0.021 0.184
3 -0.112 -0.125 -0.077 -0.126 -0.083 -0.079 -0.078 -0.079 -0.055 0.151 0.049 0.029 -0.0151 -0.029 -0.034 0.045
4 -0.199 -0.211 -0.150 -0.195 0.444 0.472 0.443 0.4541 0.554 0.578 0.497 0.5495 0.322 0.663 0.568 0.623

5 -0.221 -0.242 -0.147 -0.244 -0.0303 -0.021 -0.043 -0.022 0.009 0.088 0.058 0.048 0.02389 0.027 0.027 0.095
6 -0.228 -0.250 -0.163 -0.242 0.408 0.451 0.365 0.4306 0.595 0.473 0.476 0.480 0.342 0.660 0.609 0.627
7 -0.189 -0.212 -0.116 -0.223 -0.065 -0.058 -0.074 -0.0584 -0.035 0.014 0.011 -0.009 -0.002 -0.027 -0.020 0.034
8 -0.278 -0.294 -0.207 -0.272 0.405 0.433 0.390 0.414 0.514 0.447 0.407 0.412 0.296 0.573 0.502 0.535

9 -0.144 -0.161 -0.100 -0.161 0.114 0.138 0.08378 0.132 0.246 0.541 0.387 0.401 0.152 0.3547 0.310 0.4161
10 -0.106 -0.121 -0.066 -0.131 -0.032 -0.016 -0.039 -0.021 0.041 0.325 0.180 0.178 0.064 0.101 0.078 0.1738
11 -0.181 -0.192 -0.136 -0.177 0.577 0.602 0.572 0.5828 0.667 0.4941 0.487 0.533 0.377 0.741 0.646 0.6388
12 -0.170 -0.188 -0.114 -0.188 -0.005 0.002 -0.020 0.001 0.034 0.1304 0.086 0.0800 0.038 0.057 0.053 0.1239

13 -0.121 -0.140 -0.080 -0.153 0.175 0.235 0.152 0.205 0.581 0.675 0.780 0.85 0.417 0.821 0.759 0.891
14 -0.150 -0.169 -0.103 -0.172 0.577 0.673 0.527 0.625 0.872 0.260 0.506 0.469 0.533 0.885 0.842 0.728
15 -0.142 -0.160 -0.097 -0.165 0.474 0.556 0.432 0.510 0.86 0.329 0.611 0.586 0.582 0.928 0.894 0.821
16 -0.159 -0.176 -0.112 -0.174 0.679 0.734 0.654 0.704 0.852 0.268 0.499 0.466 0.513 0.864 0.796 0.694

17 1 0.964 0.728 0.777 -0.125 -0.1206 -0.129 -0.118 -0.116 -0.076 -0.073 -0.083 -0.066 -0.1231 -0.104 -0.1135
18 1 0.778 0.708 -0.140 -0.136 -0.141 -0.135 -0.135 -0.089 -0.08 -0.097 -0.079 -0.143 -0.122 -0.132
19 1 0.189 -0.079 -0.074 -0.090 -0.072 -0.074 -0.053 -0.04502 -0.064 -0.047 -0.083 -0.067 -0.072
20 1 -0.152 -0.150 -0.143 -0.149 -0.145 -0.101 -0.099 -0.1018 -0.079 -0.151 -0.133 -0.146

21 1 0.921 0.946 0.947 0.477 -0.060 -0.033 -0.046 0.093 0.339 0.241 0.089
22 1 0.817 0.981 0.603 -0.055 -0.021 -0.032 0.170 0.433 0.340 0.154
23 1 0.849 0.421 -0.042 0.011 -0.008 0.120 0.324 0.214 0.096
24 1 0.545 -0.057 -0.030 -0.039 0.104 0.3859 0.279 0.117

25 1 0.047 0.440 0.283 0.760 0.8774 0.909 0.664
26 1 0.55 0.739 0.040 0.341 0.2076 0.478
27 1 0.876 0.305 0.774 0.698 0.909
28 1 0.221 0.678 0.544 0.839

29 1 0.660 0.756 0.514
30 1 0.955 0.918
31 1 0.878
32 1

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table E.8: Columns 17 to 32 of similarity matrix for parametric BRDF surfaces of real materials, continued
from Table E.7.



E. Similarity results for posterior distributions on parametric BRDFs 170

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

1 -0.026 -0.033 0.151 -0.002 0.538 0.876 0.848 0.564 -0.107 -0.038 -0.060 -0.124 -0.146 -0.163 -0.197 -0.075
2 -0.031 -0.039 0.207 0.043 0.277 0.511 0.533 0.264 -0.095 -0.042 -0.051 -0.105 -0.123 -0.161 -0.173 -0.082
3 -0.030 -0.039 0.124 -0.018 0.578 0.943 0.887 0.644 -0.097 -0.033 -0.056 -0.113 -0.133 -0.156 -0.181 -0.063
4 0.367 0.422 0.567 0.517 0.119 0.303 0.320 0.110 -0.156 -0.074 -0.086 -0.192 -0.200 -0.285 -0.284 -0.24

5 0.0102 0.011 0.074 0.03403 0.7217 0.3079 0.5629 0.723 -0.1986 -0.09551 -0.1104 -0.2301 -0.243 -0.036 -0.278 -0.045
6 0.366 0.431 0.585 0.545 0.3128 0.4164 0.4939 0.2841 -0.1962 -0.09324 -0.1083 -0.2262 -0.2464 -0.3273 -0.348 -0.264
7 -0.017 -0.021 0.01 -0.008 0.4878 0.1588 0.3838 0.5763 -0.1828 -0.08728 -0.1017 -0.201 -0.2204 0.072 -0.206 0.038
8 0.331 0.3838 0.520 0.450 0.552 0.4686 0.5973 0.4953 -0.2186 -0.1079 -0.1211 -0.2735 -0.2753 -0.3115 -0.375 -0.270

9 0.130 0.1617 0.3644 0.295 0.134 0.385 0.439 0.085 -0.131 -0.061 -0.072 -0.143 -0.164 -0.231 -0.235 -0.175
10 0.041 0.042 0.231 0.099 0.372 0.859 0.781 0.371 -0.107 -0.043 -0.059 -0.105 -0.136 -0.179 -0.192 -0.093
11 0.434 0.505 0.581 0.576 -0.046 0.021 0.055 -0.075 -0.142 -0.070 -0.078 -0.174 -0.180 -0.265 -0.25 -0.246
12 0.026 0.0303 0.122 0.01 0.944 0.486 0.685 0.804 -0.153 -0.073 -0.084 -0.173 -0.19 -0.162 -0.257 -0.108

13 0.342 0.403 0.616 0.745 0.013 0.043 0.122 -0.017 -0.125 -0.045 -0.067 -0.110 -0.159 -0.224 -0.228 -0.172
14 0.613 0.697 0.713 0.754 -0.059 -0.039 -0.003 -0.085 -0.141 -0.063 -0.077 -0.138 -0.177 -0.256 -0.254 -0.225
15 0.582 0.667 0.742 0.824 -0.047 -0.032 0.009 -0.074 -0.135 -0.057 -0.074 -0.131 -0.170 -0.246 -0.244 -0.210
16 0.580 0.668 0.673 0.718 -0.064 -0.043 -0.013 -0.089 -0.141 -0.062 -0.077 -0.147 -0.18 -0.261 -0.254 -0.233

17 -0.076 -0.086 -0.108 -0.089 -0.167 -0.1216 -0.176 -0.184 -0.1286 -0.116 -0.144 0.141 0.554 -0.049 0.132 0.253
18 -0.088 -0.100 -0.126 -0.106 -0.184 -0.1351 -0.196 -0.201 -0.122 -0.110 -0.139 0.154 0.674 -0.032 0.181 0.305
19 -0.051 -0.055 -0.069 -0.055 -0.109 -0.08036 -0.114 -0.120 -0.217 -0.115 -0.126 -0.087 0.738 0.182 0.3534 0.560
20 -0.089 -0.106 -0.135 -0.117 -0.191 -0.1393 -0.204 -0.205 0.092 -0.056 -0.085 0.337 0.208 -0.260 -0.1087 -0.145

21 0.316 0.392 0.212 0.143 -0.080 -0.071 -0.062 -0.098 -0.126 -0.050 -0.069 -0.106 -0.158 -0.229 -0.227 -0.201
22 0.546 0.608 0.362 0.251 -0.069 -0.062 -0.046 -0.088 -0.124 -0.049 -0.066 -0.100 -0.157 -0.226 -0.225 -0.191
23 0.228 0.277 0.174 0.133 -0.085 -0.073 -0.073 -0.100 -0.116 -0.053 -0.064 -0.112 -0.148 -0.215 -0.212 -0.201
24 0.419 0.503 0.254 0.174 -0.071 -0.064 -0.050 -0.090 -0.124 -0.050 -0.067 -0.100 -0.155 -0.223 -0.223 -0.190

25 0.703 0.810 0.825 0.847 -0.034 -0.024 0.007 -0.057 -0.118 -0.045 -0.063 -0.101 -0.151 -0.214 -0.216 -0.177
26 -0.002 -0.003 0.251 0.228 0.106 0.174 0.237 0.075 -0.083 -0.035 -0.042 -0.095 -0.104 -0.143 -0.148 -0.083
27 0.090 0.134 0.432 0.696 0.054 0.082 0.134 0.029 -0.079 -0.032 -0.0408 -0.089 -0.100 -0.137 0.141 -0.087
28 0.082 0.101 0.356 0.546 0.045 0.072 0.131 0.020 -0.078 -0.021 -0.037 -0.086 -0.105 -0.146 -0.149 -0.105

29 0.628 0.705 0.830 0.777 0.007 0.016 0.041 -0.006 -0.062 -0.016 -0.0304 -0.061 -0.082 -0.113 -0.116 -0.091
30 0.555 0.641 0.780 0.904 -0.008 0.010 0.058 -0.035 -0.122 -0.046 -0.0649 -0.118 -0.156 -0.221 -0.223 -0.175
31 0.587 0.679 0.837 0.959 -0.009 0.002 0.046 -0.033 -0.107 -0.039 -0.056 -0.095 -0.138 -0.194 -0.196 -0.152
32 0.360 0.418 0.655 0.860 0.080 0.0897 0.157 0.056 -0.119 -0.045 -0.0630 -0.115 -0.148 -0.177 -0.195 -0.125

33 1 0.959 0.825 0.640 -0.011 -0.005 0.020 -0.0262 -0.071 -0.013 -0.034 -0.059 -0.09499 -0.135 -0.136 -0.108
34 1 0.849 0.699 -0.016 -0.010 0.018 -0.034 -0.085 -0.019 -0.042 -0.069 -0.112 -0.1598 -0.160 -0.125
35 1 0.874 0.088 0.150 0.190 0.069 -0.110 -0.039 -0.057 -0.105 -0.141 -0.193 -0.1996 -0.137
36 1 0.009 0.021 0.068 -0.013 -0.094 -0.029 -0.048 -0.083 -0.122 -0.171 -0.174 -0.1247

37 1 0.615 0.8 0.918 -0.154 -0.066 -0.086 -0.164 -0.195 -0.133 -0.252 -0.065
38 1 0.930 0.678 -0.113 -0.047 -0.062 -0.121 -0.145 -0.162 -0.196 -0.072
39 1 0.84 -0.167 -0.072 -0.092 -0.173 -0.210 -0.186 -0.278 -0.095
40 1 -0.165 -0.072 -0.091 -0.182 -0.209 -0.092 -0.249 -0.040

41 1 0.214 0.253 0.686 -0.144 -0.281 -0.238 -0.340
42 1 0.868 0.460 -0.087 -0.137 -0.127 -0.168
43 1 0.461 -0.101 -0.159 -0.143 -0.204
44 1 -0.056 -0.312 -0.229 -0.235

45 1 0.198 0.4683 0.444
46 1 0.900 0.843
47 1 0.846
48 1

Table E.9: Columns 33 to 48 of similarity matrix for parametric BRDF surfaces of real materials, continued
from Table E.8.
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