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Abstract

This work presents the development of a novel Automatic Photogrammetric

Camera Calibration System (APCCS) that is capable of calibrating cameras,

regardless of their Field of View (FOV), resolution and sensitivity spectrum.

Such calibrated cameras can, despite lens distortion, accurately determine vec-

tors in a desired reference frame for any image coordinate, and map points in the

reference frame to their corresponding image coordinates. The proposed system

is based on a robotic arm which presents an interchangeable light source to the

camera in a sequence of known discrete poses. A computer captures the camera’s

image for each robot pose and locates the light source centre in the image for

each point in the sequence.

Careful selection of the robot poses allows cost functions dependant on the cap-

tured poses and light source centres to be formulated for each of the desired

calibration parameters. These parameters are the Brown model parameters to

convert from the distorted to the undistorted image (and vice versa), the focal

length, and the camera’s pose. The pose is split into the camera pose relative to

its mount and the mount’s pose relative to the reference frame to aid subsequent

camera replacement. The parameters that minimise each cost function are deter-

mined via a combination of coarse global and fine local optimisation techniques:

genetic algorithms and the Leapfrog algorithm, respectively.

The real world applicability of the APCCS is assessed by photogrammetrically

stitching cameras of differing resolutions, FOVs and spectra into a single multi-

spectral panorama. The quality of these panoramas are deemed acceptable after

both subjective and quantitative analyses. The quantitative analysis compares
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the stitched position of matched image feature pairs found with the Shape Invari-

ant Feature Tracker (SIFT) and Speeded Up Robust Features (SURF) algorithms

and shows the stitching to be accurate to within 0.3◦.

The noise sensitivity of the APCCS is assessed via the generation of synthetic

light source centres and robot poses. The data is realistically created for a hy-

pothetical camera pair via the corruption of ideal data using seven noise sources

emulating the robot movement, camera mounting and image processing errors.

The calibration and resulting stitching accuracies are shown to be largely inde-

pendent of the noise magnitudes in the operational ranges tested. The APCCS

is thus found to be robust to noise.

The APCCS is shown to meet all its requirements by determining a novel com-

bination of calibration parameters for cameras regardless of their properties in a

noise resilient manner.

iii



With thanks to:

Dr Chantal Babb

for her support, advice, warmth, motivation and excellent example.

iv



Acknowledgements

I would like to thank the Council for Scientific and Industrial Research, specifi-

cally the Optronic Sensor Systems competency area within the Defence, Peace,

Safety and Security business unit, for their continuous support in terms of fund-

ing and access to equipment and facilities.

I would like to thank:

• Robert Jermy for many hours of capturing calibration data in the lab.

• Dean Aucamp for designing the embedded electronics for the both idealised

helmet tracker and the two camera arrays.

• Ipeleng Mathubula for designing the required mechanics for the idealised

helmet, to mount Light Emitting Diode (LED)s on the robot arm and to

mate the robot to the optical table.

• Yazeed Schloss for designing the mechanics of the demonstration prototype

camera systems.

• Bernardt Duvenhage and Asheer Bachoo for discussions on image process-

ing and mathematics.

v



Contents

Declaration i

Abstract ii

Acknowledgements v

Contents vi

List of Figures x

List of Tables xiii

List of Acronyms xv

Nomenclature xvii

1 Introduction 1

1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Camera calibration . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Photogrammetric camera calibration . . . . . . . . . . . . 3

1.1.3 Automated camera calibration . . . . . . . . . . . . . . . . 4

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contribution of this work . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature survey 13

2.1 Previous work by the author . . . . . . . . . . . . . . . . . . . . . 14

vi



CONTENTS

2.2 Non-linear numerical optimisation . . . . . . . . . . . . . . . . . . 14

2.2.1 Local optimisation . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Global optimisation . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Lens distortion correction . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Polar parametric methods . . . . . . . . . . . . . . . . . . 22

2.3.2 Cartesian parametric methods . . . . . . . . . . . . . . . . 24

2.3.3 Capturing data for lens calibration . . . . . . . . . . . . . 25

2.4 Pose estimation from observation of four points . . . . . . . . . . 27

2.5 Photogrammetric stitching . . . . . . . . . . . . . . . . . . . . . . 28

3 Mathematical fundamentals 30

3.1 Mathematical conventions definition . . . . . . . . . . . . . . . . . 31

3.1.1 Coordinate frame definition . . . . . . . . . . . . . . . . . 31

3.1.2 Notation definition . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Numerical optimisation . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Coarse global optimisation . . . . . . . . . . . . . . . . . . 36

3.2.2 Local numeric refinement . . . . . . . . . . . . . . . . . . . 39

3.2.2.1 One dimensional optimisation . . . . . . . . . . . 39

3.2.2.2 Steepest descent . . . . . . . . . . . . . . . . . . 41

3.2.2.3 Fletcher-Reeves conjugate gradient algorithm . . 44

3.2.2.4 Leapfrog algorithm . . . . . . . . . . . . . . . . . 45

3.3 Rotation formalisms . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Rotation matrix . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Angle axis . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.4 ABB IRB120 robot angles . . . . . . . . . . . . . . . . . . 50

3.3.5 Creating a rotation matrix from a set of orthogonal vectors 51

3.4 Fundamental operations . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 The difference between two rotation matrices . . . . . . . . 52

3.4.2 Creating a vector from an undistorted image coordinate . . 53

3.4.3 Determining the undistorted image coordinate of a point

relative to a camera . . . . . . . . . . . . . . . . . . . . . . 54

vii



CONTENTS

3.4.4 Determining the closest point of intersection of two Three

Dimensional (3D) lines . . . . . . . . . . . . . . . . . . . . 55

3.4.5 Finding the centre of an LED image . . . . . . . . . . . . 56

3.4.6 Applying Brown’s distortion model . . . . . . . . . . . . . 60

3.4.7 Tetrahedron pose determination . . . . . . . . . . . . . . . 62

4 Preliminary investigative research 67

4.1 Comparison of polar and Cartesian models . . . . . . . . . . . . . 68

4.1.1 Investigation into artificial neural networks . . . . . . . . . 68

4.1.2 Optimisation of artificial neural networks for undistorted

to distorted domain mapping . . . . . . . . . . . . . . . . 70

4.1.3 Polar versus Cartesian conclusion . . . . . . . . . . . . . . 71

4.2 Comparison of lens calibration accuracies . . . . . . . . . . . . . . 74

4.2.1 Purpose of comparison . . . . . . . . . . . . . . . . . . . . 74

4.2.2 Comparison methodology . . . . . . . . . . . . . . . . . . 75

4.2.3 Comparison results . . . . . . . . . . . . . . . . . . . . . . 77

4.2.4 Comparison conclusion . . . . . . . . . . . . . . . . . . . . 78

5 Calibration routines 79

5.1 Equipment description . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Close range versus goniometric calibration . . . . . . . . . . . . . 87

5.4 Calibration of the table . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Precision mounting jig calibration . . . . . . . . . . . . . . 89

5.4.2 LED translation offset determination . . . . . . . . . . . . 92

5.4.2.1 Determining stereo pair to robot orientation . . . 93

5.4.2.2 Triangulating the LED spatial offset . . . . . . . 95

5.5 Camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1 Lens distortion correction . . . . . . . . . . . . . . . . . . 98

5.5.2 Inverse distortion modelling . . . . . . . . . . . . . . . . . 102

5.5.3 Focal length determination . . . . . . . . . . . . . . . . . . 103

5.5.4 Mount pose determination . . . . . . . . . . . . . . . . . . 106

5.5.5 Camera mount pose offset determination . . . . . . . . . . 109

viii



CONTENTS

6 Application of photogrammetric calibration parameters 112

6.1 Photogrammetric stitching . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Photogrammetric registration . . . . . . . . . . . . . . . . 113

6.1.2 Blending different spectra . . . . . . . . . . . . . . . . . . 119

6.1.2.1 Thermal tinged greyscale . . . . . . . . . . . . . 121

6.1.2.2 Thermal based hue offset . . . . . . . . . . . . . 123

6.1.3 Quantitative measure of stitch accuracy . . . . . . . . . . 124

6.1.4 Stitching and fusion results . . . . . . . . . . . . . . . . . 128

6.1.5 Stitching conclusion . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Optical helmet tracking . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Simulation and calibration results 149

7.1 Creation of noisy LED centroids . . . . . . . . . . . . . . . . . . . 150

7.2 Design of experiment . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3 Results of experiment . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.4 Simulation conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 174

8 Conclusions 175

8.1 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.2 Research question assessment . . . . . . . . . . . . . . . . . . . . 178

8.2.1 Research question 1 . . . . . . . . . . . . . . . . . . . . . . 178

8.2.2 Research question 2 . . . . . . . . . . . . . . . . . . . . . . 179

8.2.3 Research question 3 . . . . . . . . . . . . . . . . . . . . . . 179

8.3 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Bibliography 182

ix



List of Figures

1.1 OpenCV checkerboard based camera calibration. . . . . . . . . . . 3

2.1 Gradient descent methods in an elliptical valley. . . . . . . . . . . 16

2.2 Matching distorted and undistorted images. . . . . . . . . . . . . 21

2.3 Brown distortion modes. . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Camera coordinate frame. . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Camera, robot and arm coordinate frames. . . . . . . . . . . . . . 33

3.3 Nomenclature: vector notation. . . . . . . . . . . . . . . . . . . . 34

3.4 Nomenclature: coordinate frame transformations. . . . . . . . . . 34

3.5 Genetic algorithm: breeding. . . . . . . . . . . . . . . . . . . . . . 37

3.6 Flow diagram of Powell’s interpolation algorithm. . . . . . . . . . 42

3.7 Leapfrog algorithm flow diagram. . . . . . . . . . . . . . . . . . . 46

3.8 Tetrahedron pose determination. . . . . . . . . . . . . . . . . . . 63

3.9 The cosine rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 ANN distortion corrected images. . . . . . . . . . . . . . . . . . . 73

4.2 Planar reference pattern, with reference points marked. . . . . . . 76

x



LIST OF FIGURES

5.1 ABB IRB120 robot arm. . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Newport Integrity 3 VCS optical table. . . . . . . . . . . . . . . . 83

5.3 Close-up of Newport M-BK-2A. . . . . . . . . . . . . . . . . . . . 84

5.4 Precision mount jig. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 CAD model of the PMJ. . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Circle of LED positions recorded during a LWIR camera calibration. 96

5.7 Lens distortion characterisation cost function. . . . . . . . . . . . 99

6.1 Distortion induced stitching errors. . . . . . . . . . . . . . . . . . 115

6.2 Inner camera array assembly of System 1. . . . . . . . . . . . . . 129

6.3 Partially disassembled structure of System 2 showing the cameras. 129

6.4 System 1 input images. . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 Visual stitch from System 1. . . . . . . . . . . . . . . . . . . . . . 132

6.6 IR stitch from System 1. . . . . . . . . . . . . . . . . . . . . . . . 132

6.7 TTGS fused visual and LWIR stitch from System 1. . . . . . . . . 133

6.8 System 1 SIFT matches. . . . . . . . . . . . . . . . . . . . . . . . 134

6.9 Stitching accuracy box plots for System 1. . . . . . . . . . . . . . 135

6.10 SIFT and SURF outlier feature pairs for System 1. . . . . . . . . 136

6.11 System 2 visual input images. . . . . . . . . . . . . . . . . . . . . 137

6.12 System 2 LWIR input images. . . . . . . . . . . . . . . . . . . . . 138

6.13 Visual stitch from System 2. . . . . . . . . . . . . . . . . . . . . . 139

6.14 LWIR stitch from System 2. . . . . . . . . . . . . . . . . . . . . . 139

6.15 Dual-band TBHO fused stitch from System 2. . . . . . . . . . . . 140

xi



LIST OF FIGURES

6.16 Dual-band TTGS fused stitch from System 2. . . . . . . . . . . . 140

6.17 System 2 SIFT visual matches. . . . . . . . . . . . . . . . . . . . 142

6.18 System 2 SIFT LWIR matches. . . . . . . . . . . . . . . . . . . . 143

6.19 Stitching accuracy box plots for System 2. . . . . . . . . . . . . . 143

6.20 SIFT outlier feature pairs for System 2. . . . . . . . . . . . . . . . 145

6.21 SURF outlier feature pairs for System 2. . . . . . . . . . . . . . . 145

6.22 Laboratory optical helmet tracker apparatus. . . . . . . . . . . . . 147

7.1 Stitching error due to robot movement errors. . . . . . . . . . . . 166

7.2 Stitching error due to mounting and pixel errors. . . . . . . . . . . 167

7.3 Resultant cost function and angular error distributions. . . . . . . 169

7.4 Resultant spatial and stitching error distributions. . . . . . . . . . 169

xii



List of Tables

3.1 Genetic algorithm parameters. . . . . . . . . . . . . . . . . . . . . 36

4.1 Initial ANN distortion results comparison. . . . . . . . . . . . . . 70

4.2 Comparison of optimised ANN distortion results. . . . . . . . . . 72

4.3 ANN versus Brown model frame rates. . . . . . . . . . . . . . . . 74

4.4 Distortion metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 RMS 3D error resulting from camera calibration patterns. . . . . 78

5.1 Calibration dependencies. . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Photogrammetric parameters required for stitching. . . . . . . . . 114

6.2 Values of factors used in fusion algorithms. . . . . . . . . . . . . . 121

6.3 Stitch system physical specifications. . . . . . . . . . . . . . . . . 130

6.4 Feature based stitch errors for System 1. . . . . . . . . . . . . . . 134

6.5 Feature based stitch errors for System 2. . . . . . . . . . . . . . . 141

6.6 Helmet tracker accuracy test results. . . . . . . . . . . . . . . . . 148

7.1 Robot movement sequences required for two camera simulation. . 157

xiii



LIST OF TABLES

7.2 Simulation error ranges. . . . . . . . . . . . . . . . . . . . . . . . 158

7.3 Comparison of robotic arms. . . . . . . . . . . . . . . . . . . . . . 158

7.4 Comparison of kinematic bases. . . . . . . . . . . . . . . . . . . . 159

7.5 Predicted simulation durations. . . . . . . . . . . . . . . . . . . . 160

7.6 Known robot movement error effects on stitching accuracy. . . . . 164

7.7 Unknown robot movement error effects on stitching accuracy. . . . 165

7.8 Camera mounting pose uncertainty effect on stitching accuracy. . 165

7.9 Centroid error effects on stitching accuracy. . . . . . . . . . . . . 166

7.10 Simulation calibration accuracy measures. . . . . . . . . . . . . . 170

7.11 Simulation parameter correlations. . . . . . . . . . . . . . . . . . 172

xiv



Acronyms

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

AHP Analytical Hierarchy Process

ANN Artificial Neural Network

APCCS Automatic Photogrammetric Camera Calibration System

BB Ball Bearing

BFROST Binary Features from Robust Orientation Segment Tests

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

CAD Computer Aided Design

CCD Charge Coupled Device

CF Coordinate Frame

CFR Cost Function Result

COG Centre of Gravity

CPU Central Processing Unit

CZ Chen and Zhang

DFOV Diagonal Field of View

DOF Degrees of Freedom

DU Distorted to Undistorted

FOV Field of View

GPU Graphics Processing Unit

HFOV Horizontal Field of View

HL Hidden Layer

xv



LIST OF TABLES

HSV Hue Saturation Value

HTS Helmet Tracker System

IO Input/Output

IR Infrared

LCD Liquid Crystal Display

LED Light Emitting Diode

LFA Leap Frog Algorithm

LM Luchesse and Mira

LMA Levenberg-Marquardt Algorithm

LSE Least Square Error

LWIR Long Wave Infrared

MTF Modulation Transfer Function

PC Personal Computer

PDF Probability Density Function

PMJ Precision Mechanical Jig

RADAR Radio Detection and Ranging

RGB Red Green Blue

RMS Root Mean Square

SEP Separation of the Extrinsic Parameters

SIFT Shape Invariant Feature Tracker

SURF Speeded Up Robust Features

TBHO Thermal Based Hue Offset

TTGS Thermal Tinged Gray Scale

UD Undistorted to Distorted

UV Unit Vector

VFOV Vertical Field of View

w.r.t. with respect to

ZAR South African Rand

xvi



Nomenclature

Coordinate Frame (CF)—A set of orthogonal axes obeying the right hand

rule. CFs are used as reference systems allowing the position of a point or pose

of a second CF to be meaningfully expressed. Section 3.1.1 defines the camera

CF.

Field of View (FOV)—Angle subtended by the image plane of the camera.

Accepted to mean the Horizontal Field of View (HFOV) if not specified as the

Vertical Field of View (VFOV) or Diagonal Field of View (DFOV).

Orientation—The three dimensional angular rotation of one CF relative to

another CF. Expressed as a triplet of Euler rotation angles but used in 3 × 3

rotation matrix format for calculation purposes. Sections 3.1.2 and 3.3 define

the notation and mathematical operations of orientations.

Point—An infinitesimally small space which has position but not orientation.

A point exists independently of any CF. Points are thus not synonymous with

a vector describing their position relative to a CF. The same point’s position

could be expressed relative to a second CF with a second vector.

Pose—The complete 6 Degrees of Freedom (DOF) description of one CF relative

to another CF. A pose thus consists of both orientation and position.

Position—The three dimensional translational offset of one point relative to

another point in a specified CF.

Vector—A delta position between two points or CFs. A vector is expressed in

a specified CF. Expressing the same vector in a different CF does not change its

xvii



LIST OF TABLES

magnitude, merely the relative magnitude of its projection onto the orthogonal

axes of the new CF. Section 3.1.2 defines the notation used for vectors and

Sections 3.3 and 3.4 detail their mathematical manipulation.

xviii



Chapter 1

Introduction

This chapter presents the problem: the automatic determination of camera pho-

togrammetric calibration parameters. After the problem definition, the primary

research questions are presented. Finally, the outline of this thesis is provided.

1.1 Problem definition

Cameras are an increasingly prevalent sensor in modern society. For scientific

purposes they have multiple benefits as listed below:

1. Cameras are sensitive in spectra beyond merely the visible portion of the

electromagnetic spectrum.

2. Cameras can operate in both extremely low and extremely high light levels.

3. Cameras can see to the limit determined by atmospheric conditions and

earth curvature, allowing remote measurements to be made.

4. Cameras can have high magnification allowing the study of minute details.

5. Cameras can operate/record continuously allowing for reliable measure-

ments for extended periods.

6. Camera recordings can be stored indefinitely and retrieved with perfect

recall for historical comparisons.

7. Cameras can operate in environmental conditions lethal to humans.

1



1.1. PROBLEM DEFINITION

8. Cameras have no political, cultural, or religious bias.

9. Cameras can simultaneously observe several items within their Field of

View (FOV).

In order to use a camera an accurate and repeatable measurement instrument it is

necessary to calibrate it. Camera calibration is a set of measurements performed

on a camera such that it can subsequently be used to make further measurements.

1.1.1 Camera calibration

Camera calibration is a core technology that is used in almost all electro-optical

equipment. There are two kinds of camera calibration:

1. Radiometric calibration is the process of equalising or characterising

the electrical response of the pixels, so that one can determine the optical

energy of the light that is falling on each pixel. Thereafter the image can

be equalised to give smooth outputs even if there is significant vignetting

caused by the lens. This is typically what is done on Infrared (IR) cameras

so as to obtain IR signatures of aircraft, missiles and items of military

interest. Willers’ extensive work [1] on radiometry can be consulted for

further information on radiometric calibration and systems.

2. Photogrammetric calibration encompasses all the geometric properties

of the imaging system. It entails the determination of all the parameters

such that an image coordinate can be converted into a vector in a chosen

reference Coordinate Frame (CF) and a point in the reference CF can be

converted into an image coordinate. This allows the direction to objects to

be determined. In certain circumstances this can then allow the size, dis-

tance and orientation of objects viewed by the camera/s to be determined.

2



1.1. PROBLEM DEFINITION

(a) Checker board input image. (b) Distortion corrected image.

Figure 1.1: OpenCV checkerboard based camera calibration.

1.1.2 Photogrammetric camera calibration

Photogrammetric camera calibration is useful for many purposes ranging from

autonomous navigation [2] of air, ground [3] and underwater vehicles, to aug-

mented reality and Three Dimensional (3D) modelling amongst others. Two ap-

plications are presented: real-time panorama stitching and optical helmet track-

ing.

Photogrammetry involves the determination of two sets of parameters:

1. Intrinsic calibration is the determination of the internal camera param-

eters that allow for converting back and forth between image coordinates

and 3D vectors expressed in the local camera CF (Section 3.1.1). These

parameters include the focal length of the lens, size and orthogonality of

the pixels, lens distortion parameters (and inverse distortion parameters if

desired) and the principal point.

2. Extrinsic calibration determines the pose of the cameras relative to each

other and the reference CF in all 6 Degrees of Freedom (DOF). These DOFs

are the translations along X, Y and Z axes as well as the yaw, pitch and

roll angles as defined in Section 3.1.1.

In many of the methods surveyed in literature (Section 2.3) camera calibration

3



1.1. PROBLEM DEFINITION

is performed manually using a checkerboard and a toolkit such as OpenCV [4]

to process images of the checkerboard. Figure 1.1 shows typical results. Such a

technique has several limitations:

1. The spectrum at which checkerboards are visible (or custom boards are

manufactured) is limited. For instance, a checkerboard in the Long Wave

Infrared (LWIR) would require adjacent tiles to have a step edge in tem-

peratures, which is impractical.

2. The calibration repeatability is severely compromised by the requirement

to manually present the board to the camera at different orientations in

the camera’s FOV.

3. The quality of the data can be affected by blur caused by motion of the

checkerboard during the camera’s image acquisition phase.

4. The throughput of such a process may be low due to the human involve-

ment.

5. It has been shown to have errors up to 20% larger when compared to high

order calibrations [5] which are presented later in this work.

6. Cameras in a single system but with differing sensitivity spectra cannot be

calibrated.

1.1.3 Automated camera calibration

It is clearly desirable to mitigate some of the effects of checkerboard based camera

calibration. One possible solution is to either use electronic checkerboards or to

create an Light Emitting Diode (LED) array or array of similar reference marks.

This method too has some limitations:

1. LED arrays are time consuming and expensive to create and to calibrate.

The wiring and individual control of several hundred LEDs is not a trivial

task. Measuring the 3D position of each LED (which is required) typically

involves deploying and aligning several theodolites, which then need to

each be manually aimed at each LED in order to triangulate its position.

To provide a single point of reference, it cost approximately 150k South
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African Rand (ZAR) to produce a custom 500 LED array in 2006 at my

former employer and the ABB IRB120 robotic arm, (which is an expensive

high precision robotic arm, see Table 7.3) used in this work cost 220k ZAR

in 2012. Taking the official South African Government’s 6% inflation figure

as guideline, the LED array and robot arm are priced equivalently, but the

former is a standard item with less lead time to procure/produce and is

more versatile as discussed below.

2. Changing the FOV of the cameras may require the creation of a new

checkerboard or LED array.

3. The system is still not easily able to handle cameras with different sensi-

tivity spectra.

4. There is limited ability to trade off calibration speed versus number of data

points captured.

5. Different camera resolutions can induce problems in differentiating between

adjacent densely packed LEDs or checker intersections.

An ideal Automatic Photogrammetric Camera Calibration System (APCCS)

would then have the following attributes:

1. The calibration process is automatic.

2. The data acquisition is repeatable.

3. The system caters for cameras of different sensitivity spectra.

4. The system caters for cameras with different FOVs.

5. The system caters for cameras with different pixel resolutions.

6. The trade off between calibration accuracy and calibration time can be

altered.

7. The system must determine all the required photogrammetric parameters.

8. The system can calibrate any number of cameras.

It was decided to solve this problem by using a precision mechanical device to

position a configurable light source at known positions in the FOV of the camera

being calibrated. This research investigates whether a system using a robotic

arm as the mechanical device can achieve the desired attributes stated above.

The small, 6 axis, 25 kg, 10 µm accurate ABB IRB120 robotic arm with a 3 kg
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payload was identified for use to develop and test the APCCS.

1.2 Research questions

The problem definition and context resulted in the following research questions:

1. Can an automated photogrammetric camera calibration system meeting

the criteria listed in Section 1.1.3 be created using a robotic arm?

2. Are the calibration parameters produced by such a system suitable for real

world applications?

3. Is a robotic arm based photogrammetric system sufficiently robust to mea-

surement and movement noise?

1.3 Contribution of this work

This work made several novel contributions to the body of scientific knowledge.

When the project description was formulated in 2010 there was no literature

available on using a robotic arm for photogrammetric camera calibration. How-

ever in 2011 Peters et al. [6] patented a system for the calibration of stereo

cameras.

The system of Peters et al. did not however fulfil all stated requirements for an

APCCS in Section 1.1.3. Their system cannot calibrate only one camera and not

all the required parameters were determined. Specifically systems calibrated by

the system of Peters et al. cannot perform absolute ranging as normalised units

and focal lengths are used.

The system proposed in this thesis, which fulfils all the stated APCCS require-

ments, is thus novel. So too is the application of the system to photogrammetric

stitching and the error sensitivity study of the system.
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This work has resulted in two papers [7, 8] and an international patent [9] re-

garding the APCCS. A further three papers on camera photogrammetric cali-

bration [5, 10, 11] and three more on improved photogrammetric stitching [12],

multispectral registration [13] and multispectral fusion [14] were also published.

The author of this thesis was the lead author of all the papers with the excep-

tion of the multispectral registration paper [13] which had a stronger emphasis

on feature based processing rather than photogrammetry.

1.4 Thesis overview

The primary aim of this research is to address the problem of photogrammet-

ric camera calibration. This chapter showed that current methods for repeatable

photogrammetric calibration of cameras with varying resolutions, FOVs and sen-

sitivity spectrums were lacking. A solution to this problem using a robotic arm

was presented. The complete photogrammetric calibration system, the APCCS

and its ideal characteristics were discussed. Research questions regarding the

feasibility, real world applicability and noise robustness of such a system were

presented.

A thorough literature review is undertaken in Chapter 2. The emphasis is placed

on the characteristics and suitability of methods for the APPCS, with the math-

ematics of the most suitable methods left to Chapter 3. The diverse fields of

numerical optimisation (Section 2.2), camera calibration (Section 2.3), camera

pose estimation (Section 2.4), and photogrammetric stitching (Section 2.5) are

explored in the literature review.

Chapter 3 provides the mathematical building blocks used in the APCCS. The

notation and axes definition is given in Section 3.1. Global and local numerical

optimisation algorithms are explained in Section 3.2. Section 3.3 presents the

required background on 3D rotations, including the usage of the non-standard

angles output by ABB IRB120 robot arm. The chapter ends with Section 3.4

providing the routines for processing LED images, converting between Two Di-

mensional (2D) image space and 3D coordinate frames and back, as well as 3D
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trigonometric algorithms to find line intersections and the camera pose via ob-

servation of a known tetrahedron.

Chapter 4 presents the initial work done to determine the direction followed to

develop the APCCS. Section 4.1 investigates whether explicit models or black-

box models as well as whether polar or Cartesian models yield superior calibra-

tion results. It is shown that explicit polar models yield the best results. Two

papers [10, 11] were published on the use of Artificial Neural Network (ANN)

to perform this black box modelling. Section 4.2 studies which polar models

and calibration patterns provide the best results in the context of monocular

3D spatial measurements. It was found that high order Brown models (when

stably fitted using appropriate numerical techniques) provide the best real-world

performance. These results were published [5].

Chapter 5 explains the algorithms for the robotic arm based camera calibration

and contains the primary novelty in this research. The novelty stems from the

unprecedented combination of capabilities of the APCCS, the ability to calibrate

a single camera, and the mathematics of several of the calibration algorithms.

A paper [7] providing an overview of the system and its application to stitching

and helmet tracking was published.

Sections 5.1 and 5.2 provide a physical description and high level overview of the

operation of the APCCS, respectively. The calibration dependencies and correct

order of calibration are also discussed.

Section 5.4 describes the system calibrations required before the APCCS is ready

to calibrate cameras. The calibration of the removable Precision Mechanical

Jig (PMJ) (which is the only item required to be calibrated externally) is also

described. Since the APCCS is designed to be easily adapted to new cameras

with different spectrums and FOVs, the ability to determine the position of new

light sources mounted on the robot arm is required. This determination uses two

mounts of the PMJ to form a stereo pair. Two sequences of robot movements

are observed from each mount. The first sequence has a constant orientation of

the end effector but varies the translation to allow the alignment of the stereo

pair’s CF and the robot arm’s CF to be determined. The second sequence has
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a constant translation but varying orientation of the end effector and allows the

light source’s spatial offset to be determined using the measured stereo pair to

robot orientation.

Section 5.5 provides the details of the camera calibration routines which are

the core of this research. For lens calibration in the Distorted to Undistorted

(DU) direction, the end effector moves the LED through a sequence of discrete

points forming a large 2D grid. The computer then determines the LED position

in the camera’s image and records this position together with the end effector

pose. The computer processes these results to find the best fit parameters for

a high order Brown model which yields corrected LED image positions that are

maximally collinear. These resultant corrected image points are then processed

to determine a set of Undistorted to Distorted (UD) parameters by finding the

high order Brown parameters that best map the corrected image positions back

to the original captured positions.

With the DU and UD calibrations complete, the focal length is determined by a

novel method of optimising a hypothesised focal length to result in the tightest

possible cluster of relative camera poses. These poses are analytically calculated

from observing the same set of tetrahedrons from two different mounting points.

This is possible because the robot moves the LED to the vertices of the tetra-

hedrons in a repeatable manner. This means that the vertices are known in a

common CF (the robot arm CF) and so the calculated camera pose from any

tetrahedron should be identical.

The APCCS allows the extrinsic position of the camera to be separated into two

poses to facilitate the easy replacement of cameras in a deployed end-user system

without repeating the calibration of the entire end-user system. This separation

is performed by the camera observing the same sequence of points (which formed

a 3D grid) from each of the purposefully misaligned mounts (whose relative poses

are known) on the PMJ. The system determines the pose of the the camera

with respect to (w.r.t.) the mounting interface and the pose of the PMJ w.r.t.

the robot. This simultaneous determination of the two poses is novel and allows

pose of the PMJ w.r.t. the robot arm to not be known a priori. This means that
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the PMJ can be moved on the table to the location most suitable for the current

camera being calibrated.

Chapter 5 ends with a description of the measurement of the mount pose w.r.t.

the robot arm. This entails a camera, whose pose w.r.t. its mounting interface

is already known, to observe a single sequence of LED positions constituting a

3D grid. From the determined LED image coordinates and end effector poses,

the pose of the camera w.r.t. the robot is determined. From this ‘total’ camera

pose, the pose of the camera w.r.t. the mount is ‘subtracted’ to yield the desired

pose of the mount w.r.t. the robot.

Chapter 6 investigates the applicability of the APCCS outputs to real world

applications. Photogrammetric stitching is extensively investigated in Section

6.1. The mathematics of the stitching process are optimised (Section 6.1.1)

for quicker throughput and decreased depth sensitivity of the stitch and were

subsequently published [12]. In order to verify that the APCCS can calibrate

cameras of different spectrums, arrays of cameras consisting of both visual and

LWIR cameras are evaluated. This requires a sensible method of simultaneously

displaying visual and LWIR images, on a visual spectrum only display. Section

6.1.2) present a novel application of (and extension to) the Analytical Hierarchy

Process (AHP) that is used to select the best fusion method. The results of

this fusion investigation were published [14]. A quantitative metric to assess the

accuracy of the stitching based on projecting matched Shape Invariant Feature

Tracker (SIFT) and Speeded Up Robust Features (SURF) image features in the

overlap regions onto the stitch surface is presented in Section 6.1.3. Subjective

pictorial results as well as quantified stitching errors for two camera systems (both

One Dimensional (1D) and 2D camera arrays) are then presented in Section

6.1.4 and found to be acceptable. This shows that the APCCS outputs are

both accurate and suitable for real-world use. The photogrammetric stitching is

found to work reliably and correctly even in situations of poor focus, lens flares

and brightness variations resulting from images caught in uncontrolled outdoor

conditions. The SIFT and SURF features are far less robust to these aberrations,

highlighting the unsuitability of feature based stitching for outdoor surveillance.
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Chapter 6 presents a brief overview of the results of using the APCCS outputs

for optical helmet tracking in Section 6.2. Details of a working prototype opti-

cal helmet tracking system are presented. It is seen that the laboratory tracker

provides helmet pose measurements whose accuracies are similar to systems cur-

rently in operational use. This further highlights the suitability of the APCCS

outputs to real world applications.

Chapter 7 investigates the sensitivity of the APCCS outputs to noise. Both the

inability of the end effector to move to the perfect pose or to perfectly report

the achieved pose are modelled. In addition, the non-perfect repeatability of

the camera mounting interface and the error in LED localisation in the image

are modelled. Section 7.1 shows how these errors are used to synthesise realistic

noisy robot poses and LED image positions for all the calibrations of Chapter 5.

The measurements synthesised are based on a physical equipment configuration

representative of that used to calibrate the cameras for the stitching accuracy

assessment of Section 6.1. These calibrations are used to determine the error

between the ideal image coordinate and the ‘as calibrated’ image coordinate

of the representative hypothetical two camera stitched system. This evaluation

covers the entire FOV of the cameras, not merely their overlap and is independent

of scene depth effects.

Section 7.2 describes the design of the simulation experiment. Multiple samples

of noise levels ranging from zero to beyond the expected system values are used

to synthesise the LED image coordinates and the robot pose data. This data

is used to calibrate the hypothetical camera pair and test the stitch accuracy.

Section 7.3 provides the result of the simulation runs. The stitching accuracy is

plotted versus noise levels and the correlation between noises sources, calibra-

tion accuracies and stitching accuracies is determined. It is seen that neither

the calibration nor the stitching accuracy deteriorate significantly over the noise

ranges tested. The system is thus deemed resilient to robot movement inaccu-

racies, camera mounting repeatability, and LED localisation noise. A simplified

version [8] of this simulation study was published.

Chapter 8 is the conclusion. Section 8.1 provides a review of the results and de-
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cisions taken throughout the research. The research questions are then revisited

and answered, in light of the results achieved, in Section 8.2. Section 8.3 presents

the key findings of the development and testing of the APCCS. Finally, Section

8.4 discusses further work that could be undertaken to continue this research.
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Chapter 2

Literature survey

This chapter contains an overview of the relevant research techniques and meth-

ods and their development. The methods and techniques are compared and their

relative benefits and best application are discussed. The mathematical details

are intentionally omitted from this chapter to better concentrate on the charac-

teristics of each algorithm. Chapter 3 contains the mathematical details of those

methods and techniques used in subsequent chapters.

Section 2.1 discusses previous research by the author that is relevant to this

thesis.

Section 2.2 provides an overview of numerical optimisation methods. These

methods are used extensively in Chapter 5 for camera calibration. Each calibra-

tion is posed as an optimisation algorithm by finding a cost function that, when

minimised, results in the desired calibration parameters.

Section 2.3 provides an overview of lens distortion calibration techniques. This

includes aspects of how the distortion is modelled and how the data for the

calibration data are obtained. This section thus is pivotal in the development of

the APCCS.

Section 2.4 discusses how the pose of the camera w.r.t. the object it’s viewing (or

vice versa) is determined. Pose determination is used in the camera focal length
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determination (Section 5.5.3) and is the primary mechanism of the helmet tracker

example application (Section 6.2).

Section 2.5 discusses stitching from a photogrammetry perspective. Stitching

is used extensively in later chapters both as an example application (Section

6.1) and as a real-world accuracy measure of the error sensitivity analysis of the

APCCS (Chapter 7).

2.1 Previous work by the author

The author has prior experience in photogrammetric camera calibration. His

master’s dissertation [15] entailed the precision modelling and correction of lens

distortion and the real time correction and resulted in two publications [16, 17].

Those publications serve as the basis of the lens distortion calibration aspects

of this research. Prior to commencing his doctoral work the author published

a paper on the fundamentals of photogrammetric image stitching [18]. The

photogrammetric stitching and fusion presented in this thesos are improvements

upon that original paper.

Some aspects of these previous works, where relevant, are included in the rest of

this literature study and in Chapter 3, which provides the mathematical back-

ground. These sections, while crucial to this work, do not constitute the novel

components.

2.2 Non-linear numerical optimisation

Non-linear numerical optimisation is the process whereby the parameter set that

yields the optimal output from a function is sought. The function being optimised

could be known in explicit mathematical form or it could be the output of a

black-box process. These latter are when no knowledge of the inner workings

are known, only the output resulting from a set of input parameters can be

observed. A significant delay may be associated with generating outputs. Such
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delays may be due to a large amount of processing required in a simulation or

physical limitations such as chemical reaction rates. Ergo it is typically desirable

to test the fewest number of parameter sets to determine the optimal parameter

set. Thus brute force searching is often unfeasible, especially as the number of

parameters increase.

For this work only continuous smoothly differentiable functions need be consid-

ered. There are two kinds of optimisation for such functions: local optimisation

(Section 2.2.1) and global optimisation (Section 2.2.2).

2.2.1 Local optimisation

Local optimisation attempts to find the best solution in the vicinity of a given

starting position. This solution is not guaranteed to be globally optimal due

to its dependence on the starting point provided. Local optimisation techniques

typically determine a search direction which reduces the problem to a one dimen-

sional problem and finds the minimum in that direction. Thereafter a second

search direction is chosen and the minimum in that direction is found. This

process is repeated until a minimum of the multidimensional function has been

found. The iteration ends either when the magnitude of the gradient is deemed

sufficiently close to zero, the difference between successive iterations drops below

a stipulated threshold or a maximum number of iterations is exceeded.

Both the method of choosing the search direction and the method of finding

the one dimensional minimum vary between local optimisation methods. Sny-

man [19] discusses the history of optimisation techniques. Burden and Faires [20]

provide both an overview of minimisation as well as several numerical recipes,

some of which were used in this work. Figure 2.1 shows an example of two

methods finding the minimum of an elliptical valley.

Steepest descent (Section 3.2.2.2) is the simplest method to choose a search di-

rection. At each point where a direction is required the negative of the gradient

vector (which is the direction of steepest ascent) is calculated. The side effect of

this method is that each subsequent search direction is orthogonal to the last.
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Conjugate
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Figure 2.1: Gradient descent methods in an elliptical valley.

This can result in subsequent iterations zigzagging down to the minimum. This

means that steepest descent can take longer to converge to a solution (theoreti-

cally infinite) but is guaranteed to always find a solution. Steepest descent does

not specify how to find the uni-dimensional minimum at each iteration. Typi-

cally either a brute force search or a bracketing method as described in Section

3.2.2.1 is used.

An improvement to steepest descent is to use the previous search directions to

better choose the next search direction. This can dramatically decrease the

number of iterations, as illustrated in Figure 2.1. These are called conjugate

gradient methods, the most popular of which are the Fletcher-Reeves [21] and

Polak-Ribière [22] variants. The Fletcher-Reeves method is used in this work and

is detailed in Section 3.2.2.3. Fletcher-Reeves is guaranteed not only to converge,

but to converge quicker than steepest descent. It is guaranteed to converge in

only N iterations for quadratic functions of N variables. Fletcher-Reeves also

does not specify a uni-dimensional search technique.

Newton’s original method was used to find the roots of a one dimensional func-

tion. At a given starting point the gradient is extended to where it crosses the

X axis. This means that no search is required, as the next guess of the zero is

found directly based on the local gradient information and the current height of

the function. To extend this method to find a minimum of a function, the roots
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of its first derivative are found. Similarly, the gradient vector can be used for

functions of more than one variable.

Newton’s method does not require a linear search as the next estimate of the

minimum is found based on the local Hessian matrix (the second order deriva-

tives) and function value. This means that Newton’s method can have extremely

rapid convergence. However, the calculation of the next step assumes that the

local gradient is a good estimate of the entire problem space. This assumption is

less true the more rapidly the function changes and the further away the starting

point is from the nearest minimum. Specifically there is an assumption that the

local area is quadratic (in N dimensions) when each iteration is performed. If

Newton’s method converges it does so with few iterations. However each iter-

ation requires significantly more computational effort in order to calculate the

Hessian matrix. If the Hessian matrix has to be estimated from function eval-

uations, a total of 2N2 + 2N function evaluations are required if the Hessian

matrix’s symmetry is exploited. Newtonian iteration can thus be undesirable if

the function evaluations take a long time, or the cost function is unlikely to be

approximately quadratic.

The Levenberg-Marquardt Algorithm (LMA) was independently discovered by

Levenberg [23] in 1944 and formulated by Marquardt [24] in 1963. LMA is a

damped Newtonian method: an interpolation factor biases each iteration closer

to either the Newtonian step or towards a steepest descent style gradient step if

the iteration is starting to become unstable and diverge. LMA is intended to be

the ideal cross between the fast convergence of Newton’s method and the guaran-

teed convergence of steepest descent. For this reason LMA is an extremely widely

used algorithm and is the de facto method used in many standard optimisation

suites including Mathworks’ Matlab [25]. Being a Newtonian method, LMA also

requires the derivation or estimation of the Hessian matrix with the associated

computational implications as already discussed. A side effect of biasing the it-

eration towards steepest descent is that the step size decreases. This can mean

that the iteration will falsely converge either because the step size drops below

the threshold or because the maximum number of iterations is rapidly depleted

by the small steps. Marquardt [24] stated that false convergence will happen in
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problems with highly correlated parameters.

The final and newest method considered is Snyman’s Leapfrog method [26] so

named after the iterative numerical integration method it uses. Leapfrog sim-

ulates the movement of a charged particle in an N dimensional electric field,

details are provided in Section 3.2.2.4. The particle experiences accelerations

induced by the gradient of the function being optimised. The particle gains both

velocity and momentum from these accelerations, meaning that it can go over

small humps and finds not merely the nearest local minimum, but the nearest

‘low local’ minimum to the starting point. Leapfrog does not make any explicit

line searches and is guaranteed to converge to a minimum. Leapfrog takes longer

to converge than conjugate gradient methods [19] but is robust to noise and

similar perturbations.

Since all the optimisations in this work are performed only once per calibration

(Chapter 5), Leapfrog was chosen for its superior robustness and ability to find

better local minimums.

2.2.2 Global optimisation

Local optimisation (Section 3.2.2) only finds the best solution in the vicinity of a

provided starting set of parameters. In contrast, global optimisation is the search

for the set of input parameters that result in the best solution over the entire

feasible region of the parameter space. Neumaier [27] provides an introduction

to global optimisation. He categorises the available algorithms by the degree of

rigour with which they find the global optimum:

1. Incomplete methods use heuristic based search techniques and have no

safeguards to avoid getting stuck at a local minimum.

2. Asymptotically complete methods will find the global optimal solution

given infinite run time but have no means of identifying when they have

reached the global optimum.

3. Complete methods will find the global minimum (assuming exact calcu-

lations) given indefinite run time but are able to discern when the global
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optimum has been found to within specified bounds.

4. Rigorous methods will find the global minimum to within specified tol-

erances with certainty even in the presence of rounding errors, except for

degenerate cases.

Neumaier further states that the first two categories are often the most useful for

large scale problems that have only black-box evaluations which do not provide

any global information. Within this category prevalent techniques are simulated

annealing [28] and multi-agent methods (discussed below). Simulated annealing

seeks to emulate how metals cool into crystalline structures with the lowest

possible energy state. Multi-agent techniques use heuristics to improve upon the

basic method of multiple random starting points for local optimisation.

Multi-agent searches differ primarily in how the search points in the next iteration

are derived from the current search points, based on the relative optimality of

each search point. Prevalent techniques in this category are particle swarm

optimisation [29], differential evolution [30], and genetic algorithms [31, 32].

Kennedy and Eberhart [29] created the particle swarm optimiser by adapting a

simplified simulation of the movement of a flock birds. Each bird (which orig-

inally has a random position and velocity) knows both the best position it has

personally encountered and the best position the flock has encountered. At each

iteration each birds’ velocity is simultaneously adjusted by a random scaling

of the vector directing it towards its personal best and second independent ran-

domly scaled vector towards the flock’s best position. These random scale factors

are in the range of zero to one. After all the velocity adjustments are made, each

bird’s position and potentially each bird’s and the flock’s personal best positions

are updated. Kennedy and Eberhar removed velocity matching amongst neigh-

bouring birds, this results in the flock behaviour being less synchronised. Hence,

the terms ’particle’ and ’swarm’ are used in the vernacular rather than ’bird’ and

’flock’ respectively.

Storn and Price [30] introduced differential evolution in 1997. Each new iteration

of solution sets is created from the previous iteration. A candidate solution for

the new iteration is first created by taking a linear combination of the parameters
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from three current solutions. Each parameter of this solution is then randomly

swapped with that of a fourth current solution. This new candidate is then

compared to the fourth solution and the better solution propagated to the next

generation. This is repeated until either a suitable minimum is found or the

maximum number of generations is exceeded.

Genetic Algorithms [31, 32] are based on the theory of evolution. Each solu-

tion is termed an ‘individual’ with the parameters of each solution being coded

into a ‘chromosome’. The quality of each solution presented by an individual is

evaluated and then normalised. The next generation is created by choosing, in

a fitness biased manner, two individuals and then either cloning them or com-

bining their ‘chromosomes’ to create two new individuals. New individuals are

repeatedly created until the next generation of individuals is fully populated.

Successive generations are created until either a suitably fit individual is found

or the maximum number of generations has been exceeded. The number of in-

dividuals per generation; the number of generations; the fitness biased method

of selecting individuals for procreation; and the manner in which offspring are

created from their parents all need to be defined for the specific problem being

addressed. Genetic algorithms are used in this research. Further details on the

implementation can be found in Section 3.2.1.

2.3 Lens distortion correction

Most optical lenses induce some amount of distortion in the images they cre-

ate, that is: the resultant images differ from what one would get with an ideal

pinhole camera in terms of the projection. In addition to the obvious aesthetic

degradation, this has severe consequences for any measurements calculated from

the image or for applications such as machine vision, photogrammetric stitching,

product defect detection, remote sensing and motion tracking. While it is possi-

ble to correct all or some of the distortion optically, this increases the size, mass

and price of the lenses considerably and so the correction is frequently done in

software. Figure 2.2 shows an example of a distorted image (Figure 2.2(a)) and
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(a) Distorted image. (b) Undistorted image.

Figure 2.2: Matching distorted and undistorted images.

its corresponding undistorted image (Figure 2.2(b)). The corrected image was

created using the APCCS’ DU and UD outputs.

The distorted image in Figure 2.2(a) is an example of barrel (or mild fish eye)

distortion. Barrel distortion is typical of many short focal length lenses. Points

are moved towards to the centre of distortion. The distortion centre and im-

age centre are normally close but not identical. The further away the points

are from the centre the more they are moved inwards. This results in straight

lines tangential to image radii appearing curved inwards. The curvature is due

the extreme points of the lines being further from the centre of distortion than

the middle of the line, and hence these extreme points are pulled closer to the

distortion centre. This gives rise to the name barrel distortion as rectangles be-

come distorted into barrel-like shapes. The correction of these images yields the

classical bow-tie outline as evidenced in Figure 2.2(b). The opposite of barrel

distortion is pincushion distortion where points are pushed outwards. This is

much less common and typically is only found in low-end telephoto lenses.

The causes of the lens distortion can be intentional, i.e. lens distortion is allowed

in the optical design as it can lead to smaller, lighter lenses with fewer opti-

cal elements and, crucially, fewer aspherical elements (which can be expensive).

Unintentional causes for lens distortion include manufacturing tolerances of the

lenses and the mechanical assemblies that house them, variations in the refrac-
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tive index of elements, and non-planarity or non-orthogonality of the image chip

relative to the principal axis of the lens.

The first person to correctly explain the distortion observed from spherical el-

ement lenses was Conrady [33] in 1919. Conrady’s model was based on the

analytical ray tracing of light through non-perfectly aligned lens elements. This

work lay largely ignored until Brown [34,35] demonstrated both its applicability

and a practical reformulation of the algorithm together with a means to deter-

mine the parameters. This became known as the ‘plumb line’ method. Brown’s

equation is given in Equation 3.25. This gave rise to the polar parametric models

described in the following section. A more complete description of the history

of lens distortion can be found in the works of Clark and Fryer [36] and de

Villiers [15].

2.3.1 Polar parametric methods

Brown’s plumb line method [35] is the basis for the majority of current lens

distortion correction techniques [15, 16]. De Villiers [15] provides a survey of

parametric lens distortion techniques in literature and lists the number of radial

and tangential terms of Brown’s model (Equation 3.25) used by each technique.

Figure 2.3 depicts the radial and tangential distortion components in a greatly

exaggerated scale.

Further examples of prevalent polar radial distortion models in literature include

the widely cited albeit disproven [16] work of Tsai [37]. Zhang [38] showed

that printed calibration patterns can work well and Stein [39] pioneered epipolar

geometry of free images.

De Villiers et al. [16] showed that by using the appropriate numerical optimisation

techniques (including appropriate parameter scaling [19]), not only could more

than 2 or 3 parameters be stably fitted to Brown’s model but that the extra

parameters significantly decreased the residual distortion error by up to 96%.

De Villiers et al. [17] further went on to show that by removing the implicit

radial symmetry assumption the residual error could be further decreased by
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Figure 2.3: Brown distortion modes.

5%, even for the Brown models with the most parameters.

The plumb line method is based on the maxim that straight lines in the world

should project onto straight lines in the image. Thus, data points known to be

collinear in world space are captured and identified in the distorted image. The

chosen number of parameters from the chosen distortion model are then manip-

ulated until the distortion-corrected image points are as collinear as possible.

Brown observed strings suspended in oil and held taut by suspended weights.

Current methods primarily involve repeated observations of an asymmetrical

checkerboard and using the checker intersections as accurately locatable points

known to be collinear. Two popular software items using checkerboards are the

Open Computer Vision project [4] and the California Institute of Technology’s

Camera Calibration Toolkit [40].

Section 2.3.3 provides more information on different calibration targets. Section

4.2 provides details on a comparison of these widely available photogrammetric

calibration suites with the work of de Villiers et al. [16] for real-world triangula-
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tion and localisation applications.

2.3.2 Cartesian parametric methods

Not all of the lens distortion models in literature assume radial symmetry, some

try to find a direct mapping between the input and output Cartesian coordinates

directly. Sagawa [41] directly calculated the Unit Vector (UV) from the distorted

positions. This was done by moving a physical reference placed at known posi-

tions relative to the camera and observing the image coordinates of the references

to generate a coarse mapping. Pixel positions between those directly mapped

have their UV created by interpolation of their nearest mapped neighbour’s UV.

Claus and Fitzgibbon [42] fitted two rational functions, one correcting horizontal

and one correcting vertical distortion. The numerators were independent but

the denominator was common. These numerators and denominators were full

second order polynomials of the horizontal and vertical ordinates with their cor-

responding 18 total parameters determined by epipolar geometry. Equation 2.1

illustrates:

hu =
a0h

2 + a1hv + a2v
2 + a3h+ a4v + a6

c0h2 + c1hv + c2v2 + c3h+ c4v + c6
, and

vu =
b0h

2 + b1hv + b2v
2 + b3h+ b4v + b6

c0h2 + c1hv + c2v2 + c3h+ c4v + c6
(2.1)

where:

(hu, vu) = the undistorted image coordinates,

(h, v) = the input distorted image coordinates,

a0 . . . a5 = horizontal numerator correction parameters,

b0 . . . b5 = vertical numerator correction parameters, and

c0 . . . c5 = common denominator correction parameters.

Candocia [43] was interested in preserving the scale of undistorted images to aid

image mosaicking. He did this by starting with Brown’s model and removing the

dependence of the vertical correction on the vertical ordinate, and then removing
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the dependence of the horizontal correction on the horizontal ordinate.

Similar investigations were performed during the investigative phase of this work.

Specifically, a variety of ANNs with varying activation functions and architec-

tures were trained via several different methods to determine their suitability to

model inverse distortion. Both separate ANNs for the horizontal and vertical

corrections as well as combined ANNs were evaluated. More information can be

found in Section 4.1.

2.3.3 Capturing data for lens calibration

Regardless of whether polar or Cartesian methods are used, reliable data with

which to perform the calibration are required. This typically takes the form of a

regular grid of easily and accurately locatable points.

One of the most common calibration target types are checkerboards. Both

OpenCV [4], and the California Institute of Technology camera calibration tool-

box [40] use checkerboards. Other examples in literature include Mallon and

Whelan [44] who model ‘undistortion’. Harguess and Strange [45] investigates

using visual checkerboards exposed to solar radiation to calibrate IR cameras,

with limited success. Techniques to accurately locate the checker intersection

leverage the non-perfect imaging resulting from limited lens Modulation Trans-

fer Function (MTF) and Charge Coupled Device (CCD) spatial sampling. These

techniques include the saddle point method of Lucchese and Mira [46] and Chen

and Zhang’s [47] Hessian matrix based method.

A similar family of calibration targets consist of a grid of non-touching squares.

Each corner of each square is an accurately locatable point. Jeong [48] and

Zhang [38] both make use of these grids.

A similar and very popular calibration target is arrays of circles, with the centre

of each circle an accurately locatable point. Examples include the works of Claus

and Fitzgibbon [42] and the rational function inverse distortion modelling work

of Silven [49]. Yu [50] used a circular grid to create an embedded solution for
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distortion correction. Methods to locate the circles’ centres range from simply

calculating the centroid of the thresholded images to ellipse fitting methods such

as that proposed by Redert et al. [51].

Using straight lines in the image is the classical method proposed by Brown [34,

35]. Other methods often assume that their accurately locatable discrete points

are collinear in order to use the ‘plumb line’ methods. Examples of using straight

lines in literature include the low level electronic implementation by Nijmeijer et

al. [52] as well as the so-called scale preserving model of Candocia [43].

Tsatsakis et al. [53] also use a grid of lines. Tsatsakis et al. automate the cali-

bration by changing the distance between the grid and camera to find when the

grid lines correspond to the analogue camera’s scan lines. Tsatsakis et al. then

directly compute a mapping from the pixel domain to angular vector domain.

Sagawa [41] observes structured light patterns created by a Liquid Crystal Dis-

play (LCD) that completely subtends the camera’s FOV to create another line

based automatic system.

Zhen et al. [54] use an array of circles on a four DOF ‘XY θZ’ platform to

automatically capture data throughout the camera’s FOV. Peters et al. [6] use

a robot arm to place a single LED in 3D relative to the cameras. This system

is unable to calibrate cameras to provide absolute measurements or to calibrate

only a single camera.

A comparison of the different calibration targets and methods to locate them

accurately in the camera image was conducted in the initial investigative phases

of this research (Section 4.2).

For the automation of the data acquisition a robot arm was selected similar to

Peters et al. [6]. Three additional requirements were added to address the short

comings of their system: the system must be able to calibrate a single camera, a

calibrated camera must be able to make absolute measurements, and the system

must be able to calibrate cameras in end user applications consisting of cameras

sensitive to different spectra.
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2.4 Pose estimation from observation of four

points

Pose estimation is the determination of the orientation and translation of the

camera relative to the scene that it observes. Equivalently the pose of the scene,

or some part of the scene, relative to the camera can be determined. Typically

this requires knowledge of the camera and lensing effects (i.e. the camera intrinsic

parameters), the resulting knowledge of the camera’s pose in the world is then

called the extrinsic parameters.

In this work it is assumed that four non-planar points (i.e. a tetrahedron) in

the scene are uniquely identifiable, accurately locatable in the image, and rigidly

located relative to each other in space. If the translations between these points

are known, then it is possible to uniquely determine the absolute pose of the

camera relative to the tetrahedron in a deterministic and analytical manner. The

procedure is outlined in an appendix of Fischler and Bolles’ [55] seminal work

on random sample consensus. Another formulation for solving this tetrahedron

problem is provided by Kniep et al. [56]. The detailed mathematics of this process

is discussed in Section 3.4.7.

This measurement of a tetrahedron’s pose relative to the camera is non-contact

and has many applications. Similar pose estimation techniques have been put to

such diverse uses as:

1. Aiding the mating of the nozzle and catchment parachute for air-to-air

refuelling [57].

2. Landing of probes on celestial bodies [58].

3. Maintenance of nuclear reactor components in environments unsafe for hu-

mans [59].

In this work pose estimation is used to determine a camera’s optimal focal length

(Section 5.5.3). It also forms the basis for the optical helmet tracking example

application (Section 6.2) of the APCCS outputs.

Helmet trackers provide two primary benefits: off axis target designation for
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weapon systems and presentation of space stabilised symbology on the pilot’s

visor for navigation, targeting, and other mission objectives. The two primary

variants are optical helmet trackers (as described here) and magnetic helmet

trackers. These latter typically use three orthogonal coils mounted on the hel-

met and a uniform electric field in the cockpit. They then measure the electric

currents induced in the coils by the movement of the pilot’s head. This provides

the change of pose of the helmet, which needs to be integrated over time to yield

the absolute helmet pose.

Optical helmet trackers provide an absolute pose at each measurement and so

do not require temporal integration. They are typically used in military applica-

tions. Some examples are Thales’ hybrid inertial optical tracker [60, 61] and the

Cobra helmet [62,63] used on the Eurofighter Typhoon and Saab Gripen aircraft.

2.5 Photogrammetric stitching

Photogrammetric stitching is the real-time creation of a panorama from an array

of outward staring cameras. Panoramas are useful for persistent surveillance

either of areas of high value or in the vicinity of strategic forces and assets, such

as large ships.

In the maritime environment these systems are used to detect small craft in

the immediate vicinity [64]. This is because small ships are hard to detect by

Radio Detection and Ranging (RADAR) since they have a small cross section

and are often made of materials such as wood, which has a low RADAR reflection

coefficient. In addition, the small crafts’ proximity means that their reflections

may be received while the RADAR is still emitting energy, thus complicating the

detection of their signal returns.

For this reason optical detection provides a complimentary solution to RADAR

to augment the close-in detection of possible threats. It is possible to do this with

a single rotating camera. Such a solution can generate extremely high resolution

imagery and use superior cameras which are not economically feasible to replicate

28



2.5. PHOTOGRAMMETRIC STITCHING

for a staring array. The disadvantages of a rotating system are that it has three

additional single points of catastrophic failure: the camera itself, the rotation

system, and the stabilisation platform on which the rotation system is mounted.

Aburmad [65] provides further information on the advantages and disadvantages

of different single and multi-aperture panoramic systems.

There are several advantages to photogrammetrically stitching multi-aperture

staring camera array outputs:

1. Low detail scenes are stitched correctly.

2. Objects and details are correctly registered even if observed by cameras

with vastly different sensitivity spectra (further explained in Chapter 6

and by Cronje and de Villiers [13]).

3. A single camera failing does not cause the misalignment of adjacent cam-

eras.

4. The panorama generation is deterministic.

For commercial reasons, companies offering panoramic systems tend not to di-

vulge the details of the workings of their systems. However, the following systems

are examples of those appear to use photogrammetric stitching similar to that

used in this work:

1. Immersive Media [66] who helped Google with their Street View project.

2. Point-Grey’s Ladybug [67] series of cameras.

3. Thales Gatekeeper close-in protection system [68].

In this thesis the output parameters provided by the APCCS are used to stitch

the outputs of two arrays of cameras with overlapping FOVs. Separate visible

and LWIR stitches are created and the correspondence between pixels in the two

stitches is determined from the known extrinsic parameters of the two camera

arrays. Chapter 6 shows how the registration and fusion is performed.
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Chapter 3

Mathematical fundamentals

This chapter details the basic mathematical procedures used as fundamental

building blocks in the rest of this research. This chapter is included for complete-

ness and reproducibility. With the exception of Section 3.1 it may be skipped in

a first reading.

Section 3.1 provides the mathematical conventions and the notation used. Axis

definitions, CFs, positive rotation directions, and the representation of matrices,

vectors, vector elements, and scalars are all defined.

Section 3.2 explains the numerical optimisation routines used to find parame-

ter sets which minimise a given cost function. These routines are crucial as

numerical optimisation is used for every calibration performed by the APCCS.

Where sufficient prior knowledge is available starting positions are created an-

alytically, otherwise global optimisation routines (Section 3.2.1) find suitable

starting points. These starting points are then refined by local optimisation

routines (Section 2.2.1).

Section 3.3 defines the concept of a 3D rotation and shows how to convert be-

tween different representations of 3D rotations. This is important as there are

typically 3 different CFs involved in each optimisation, with reference to Figure

3.2: the reference/robot CF, the end effector CF and the camera CF. The con-

version between rotation formats and correct 3D trigonometric operations are
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required to ensure the correctness of the calibration routines. These routines are

used throughout this text and so their individual uses are not discussed in their

sections.

Section 3.4 provides the basic 3D trigonometric and image processing routines

used. These routines are typically high level building blocks, all of the rou-

tines are used in at least one of the calibration routines (Chapter 5), example

applications (Chapter 6), or the stitch robustness assessment (Chapter 7). As

the routines’ significance are not immediately apparent from their derivations,

the explicit uses of each of these routines will be presented in their respective

sections.

3.1 Mathematical conventions definition

This section defines both the CF conventions and the CFs used in the APCCS.

The notation and conventions used for linear algebraic operations are also de-

fined.

3.1.1 Coordinate frame definition

Figure 3.1 defines the right handed CF used.

With reference to Figure 3.1:

1. The X axis is positive forward and for a camera based CF coincides with

the optical axis.

2. The Y axis is positive to the left and in a camera system is positive in the

negative horizontal direction in the inverted image plane when using the

standard convention of top left is the image origin.

3. The Z axis is positive upwards and in a camera system is positive in the

negative vertical direction in the inverted image plane when using the stan-

dard convention of top left is the image origin.
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Figure 3.1: Camera coordinate frame.

4. Positive azimuth or yaw is clockwise when looking in the positive Z direc-

tion.

5. Positive elevation or pitch is clockwise when looking in the positive Y

direction.

6. Positive roll is clockwise when looking in the positive X direction.

Figure 3.2 shows the relationship between the major CFs used in this work. The

robot CF acts as the primary or reference CF. The origin of the robot CF is

the stationary bottom centre of the robot arm where it is attached to the optical

table. The arm or end effector CF is attached to the end of the robot arm and

moves with the arm as it is commanded to various poses. The robot is able to

provide the pose of the arm CF w.r.t. the robot CF. The final CF is the camera

photogrammetric CF shown in Figure 3.1, its pose w.r.t. the robot CF is only

measurable photogrammetrically and is the focus of much of this work. All the

CFs remain right handed and use the same definitions for yaw, pitch, and roll.
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ŪZ,cam
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Figure 3.2: Camera, robot and arm coordinate frames.

3.1.2 Notation definition

The mathematical notation used in this work is as follows:

1. A 3D vector, expressed as V̄abc, is a vector from point a in the direction of

point b expressed in terms of its projection onto CF c. V̄abc is used when

the magnitude of the vector is unknown or unimportant. Refer to Figure

3.3.

2. T̄abc represents the straight line translation or displacement of point b rel-

ative to point a expressed in terms of its projection onto CF c. Refer to

Figure 3.3.

3. Ūabc is a UV pointing in the direction of point a to point b expressed in

terms of its projection onto CF c. Refer to Figure 3.3.

4. Rab is a 3x3 rotation matrix (see Section 3.3) expressing the rotation of
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orthogonal CF a relative to (and in terms of its projections on) orthogonal

CF b. Refer to Figure 3.4.

CFA

x̄

ȳ

CFB

x̄

ȳ

P1

P2

T̄P1P2

T̄P1P2A

T̄AP1A

T̄P1P2A.x

T̄P1P2A.y

T̄P1P2B
T̄BP1B

T̄P1P2B .x

T̄P1P2B .y

P3

T̄AP3A

ŪAP3A

V̄AP3A

‖ŪAP3A‖ = 1

‖V̄AP3A‖ = unknown

‖T̄AP3A‖ = displacement

‖T̄P1P2
‖ = ‖T̄P1P2A‖ = ‖T̄P1P2B‖

‖T̄AP1A‖ 6= ‖T̄BP1B‖

Figure 3.3: Nomenclature: vector notation.
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T̄BAB .x

Figure 3.4: Nomenclature: coordinate frame transformations.
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5. Individual elements of 3D vectors are referred to as x, y, or z whereas the

elements of the 2D vectors in the image plane are referred to as horizontal

(h) and vertical (v) to avoid confusion. Refer to Figures 3.1 and 3.3.

6. All matrix multiplications in this work are row-major pre-multiplications.

7. All vectors are column vectors.

8. The range of cos−1 is taken to be [0, π).

9. The range of sin−1 is taken to be [−π
2
, π
2
).

10. The range of tan−1 is taken to be [−π
2
, π
2
).

11. The symbol ‘•’ is used to denote the dot product of two vectors.

12. The symbol ‘⊗’ is used to denote the cross product of two vectors.

13. The expression ‘max(x0, x1, . . . )’ returns the largest of its parameters.

14. The expression ‘min(x0, x1, . . . )’ returns the smallest of its parameters.

15. The expression ‘argmin
x

[f(x)]’ returns the value of x which results in the

minimum value of f(x).

16. The expression ‘argmax
x

[f(x)]’ returns the value of x which results in the

maximum value of f(x).

3.2 Numerical optimisation

This section provides information on how the sets of parameters which yield

a minimum output of a given function are determined. Section 2.2 discusses

the attributes of the different algorithms discussed here and their application to

photogrammetric calibration. These functions typically have many parameters

and are not known explicitly, meaning that their derivatives can not be directly

computed but must be estimated.

If a near-optimal initial set of parameters is known, then these parameters can be

used as a starting point and intelligently perturbed to find the best set of param-

eters near to the initial set. If there is insufficient prior knowledge to determine

an initial parameter set then a global search must be performed. These tech-

niques are typically computationally expensive and do not yield high precision

results for black box cost functions. The results of global optimisation (Sec-
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Table 3.1: Genetic algorithm parameters.
Scenario

Lens distortion Pose estimation

Number of parameters 10 6
Population size 300 300
Generations 300 300
Tourney size 5 5

Breeding probability 0.8 0.6
Mutation probability 0.05 0.25

tion 3.2.1) are typically suitable for further refinement by a local optimisation

routines (Section 3.2.2).

3.2.1 Coarse global optimisation

This section presents the details of the genetic algorithm [31] used for global op-

timisation in this work. A broader overview of global optimisation is provided in

Section 2.2.2. For a genetic algorithm implementation the following parameters

need to be defined:

1. Parameter ranges. These are the valid continuous intervals over which

each parameter may vary and still constitute a feasible solution.

2. Mapping of a solution to an individual’s chromosome. In this work

only real valued problems are considered. An individual’s chromosome is

the list of real parameters. Each gene (the smallest unit manipulated by a

genetic algorithm) is a real floating point value.

3. Quantification of an individual’s fitness. The cost functions optimised

in this work all have a minimum possible value of 0.0. The fitness is an

inverse sigmoidal function such that a Cost Function Result (CFR) of zero

corresponds to a fitness of 1.0 and decreases to a fitness of 0.0 for a CFR

of ∞.

4. Fitness biased manner of individual selection for breeding. A

tournament selection strategy was used for this work. A specified number

(N) of individuals from the population are selected at random, thereafter

36



3.2. NUMERICAL OPTIMISATION
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Figure 3.5: Genetic algorithm: breeding.

the two fittest in that pool are used for breeding. Larger values of N favour

the fittest individuals but may adversely affect the searching of outlying

areas for potentially better minima. All individuals are returned to the

pool for possible future selection afterwards. Table 3.1 has the tourney

sizes used in this work.

5. Probability of breeding or cloning the selected breeding pair. Each

breeding pair is randomly either cloned or bred to create two new individ-

uals for the next generation. Table 3.1 has the breeding probabilities used

in this work.

6. Creation of new individuals via breeding. A splice point, i.e. a gene

number, was chosen at random for each breeding. The first child contains

genes from the first parent up to the splice point and genes from the second

parent after the splice point (vice versa for the second child). At the splice

point the average of the genes for the two parents is taken as illustrated by

Figure 3.5.

7. The chance and effects of mutation when breeding. Whenever a

breeding takes place each gene has a chance that it will be mutated. Mu-

tated genes are set to a random value in the valid range for that gene. This

serves to create outliers in the population which may find better solutions.
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Table 3.1 has the mutation probabilities used in this work.

8. Optimisations and modifications. Two modifications were used in this

work. The first was a standard technique called ‘elitism’ which prevents

regression by always copying the best individual, unaltered, to the next

generation. The second optimisation is an adaptation of elitism termed

‘dominance’ which implements basic hill climbing. The best solution is

recopied twice, once with a small positive value added to the first gene and

once with this small value subtracted from the first gene. Repeating this

for all M genes creates a total of 2M slightly varying offspring of the best

individual. At least one of these offspring will be an improvement if the

best individual is not at an exact minimum.

With the above genetic algorithm operations and parameters defined, one ran-

domly generates the first population using the specified valid ranges for the pa-

rameters. The fitness of each individual is then assessed and the next generation

seeded with the individuals obtained from elitism and dominance. Thereafter se-

lection and breeding/cloning/mutation are repeatedly performed until the next

generation has the required number of intervals. The original generation is then

deleted and the current generation used to create the next generation. This

process is repeated until either a suitably fit individual is found or the maxi-

mum number of generations is exceeded. No libraries were used for the global

optimisations, all routines are the author’s own work.

Table 3.1 shows typical parameters used for the genetic algorithms used. It was

seen that lens distortion, despite having many parameters, had a stronger min-

imum than pose optimisation. Thus a higher breeding probability and lower

mutation chance were used for distortion characterisation resulting in more indi-

viduals to clustering in the vicinity of the minimum and the search thereof. Con-

versely, mutations were encouraged in the pose estimation to stimulate searching

the entire problem space. This had the effect of having a superior fittest indi-

vidual but at the expense of significantly decreased average population fitness.
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3.2.2 Local numeric refinement

This section presents the mathematical workings of 5 mathematical algorithms: 3

classical and 2 more recent. All of the algorithms considered were gradient based

methods. A description of the characteristics of the algorithms are provided in

Section 2.2.1. No libraries were used for local optimisations, all routines used are

the author’s own original work. The formulations of the optimisation routines

are the author’s own conversions from typical algorithmic pseudo-code listings

to single equations for ease of reference.

3.2.2.1 One dimensional optimisation

In a 1D search for a local minimum, one needs either an interval in which to

expect the minimum, or a starting point and maximum step size per iteration.

In the case of a known interval, i.e. the minimum is in the interval (a0, b0), the

golden ratio (which is the limit of the ratio of successive numbers in the Fibonacci

sequence) search is near optimal [69]. The idea is to successively test whether

the minimum is in the left or right portion (as divided by the golden ratio) of

the interval. The relevant part of the interval is retain and subdivided again

according to the ratio. This iterative procedure is followed until either sufficient

iterations have passed or the interval is deemed suitably small. The midpoint

of the final interval is taken as the solution. Equation 3.1 provides the iterative

step:
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(3.1)

where

(ai, bi) = search interval at iteration i,

(a0, b0) = the initial specified search interval,

λi
j = golden ratio search point j at iteration i,
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λ0
1 = initial golden ratio search point 1: a0 + γ2(b0 − a0),

λ0
2 = initial golden ratio search point 2: a0 + γ(b0 − a0),

k = the current iteration number,

γ = the golden ratio:
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A =



















































































0 0 1 0

0 1 0 0

0 0 0 1

0 γ 1− γ 0













if f(λk
1) > f(λk

2),













1 0 0 0

0 0 0 1

1− γ2 0 0 γ2

0 0 1 0













if f(λk
1) ≤ f(λk

2).

If an interval is not known, then a heuristic method to find an interval bracketing

the minimum can be used. Powell’s quadratic interpolation, described below, is

an example of such an algorithm. This algorithm uses the three most recent

estimates to construct a second order polynomial, whose turning point is then

determined. If the turning point is too far from the current point to be trusted

with certainty (i.e. it is more than the specified maximum step size away) then

the next estimate is merely a step of the maximum size in the descent direction.

Equation 3.2 provides the initialisation of the algorithm by selecting three initial

points based on the maximum step size and initial point:

λ1 = λ0 + h (3.2)

λ2 =

{

λ0 − h if f(λ1) ≤ f(λ2)

λ0 + 2h if f(λ1) > f(λ2)

where

(λ1
1, λ

2
1) = the first search interval,

λ0 = the original starting position, and

h = the specified step size.
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Using the three latest points, the first and second derivatives are derived and

used to solve the turning point of the quadratic polynomial passing through the

points. This turning point is then a candidate point to be used in subsequent

iterations of Powell’s algorithm. Equation 3.3 shows this calculation of the next

estimate from the three latest estimates:

λk+1 =
f

′′†(λk−1 − λk)− f
′†

2f ′′†
(3.3)

where

f
′′† =

2

λk−2 + λk−1

(

f(λk−2)− f(λk−1)

λk−2 − λk−1
− f(λk−1)− f(λk)

λk−1 − λk

)

f
′† =

f(λk−1)− f(λk)

λk−1 − λk
.

Figure 3.6 provides the high level flow of the Powell’s algorithm using the ini-

tialisation and update steps provided by Equations 3.2 and 3.3 respectively. The

algorithm checks for and rectifies candidate points provided by Equation 3.3 that

are beyond the stipulated maximum distance from the current estimation of the

minimum. With regard to Figure 3.6 ‘H’ is the maximum step size and ‘λi’ is

the ith estimation of the minimum.

3.2.2.2 Steepest descent

Steepest descent is the oldest local optimisation routine. At each iteration the

direction of steepest descent is determined. Thereafter that direction is traversed

until a minimum is found. Then a new descent direction is determined and the

process repeated until either a suitable minimum is found or a maximum number

of iterations exceeded.

The direction of steepest descent is merely the negative of the vector of first

41



3.2. NUMERICAL OPTIMISATION

Compute λ0,
λ1 & λ2 as per
Equation 3.2.

Start

Compute λm as
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Is λm a
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Discard λ closest
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from λ with

lowest function
value in direction

of descent.

Find λn =
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Discard λ furthest
from λm. New λm
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|λn − λm|
≤ ǫ?
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max
min

yes

no

yes

no

Figure 3.6: Flow diagram of Powell’s interpolation algorithm.
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order partial derivatives:

▽C(x̄) =













δ
δx̄1

C(x̄)
δ

δx̄2
C(x̄)
...

δ
δx̄N

C(x̄)













(3.4)

where

x̄ = the point at which the gradient vector is sought,

C(x̄) = the cost function being minimised,

▽C(x̄) = the direction of steepest ascent,
σ

σx̄i

C(x̄) = the partial derivative of C w.r.t. parameter i at x̄, and

N = the number of parameters in the set being optimised.

Once a search direction has been chosen, the multidimensional problem has been

reduced to a linear one and the minimum can be found using the methods de-

scribed in Section 3.2.2.1. Typically the maximum step size that may be taken is

limited, due to uncertainty of the gradient vector. The entire steepest procedure

can be expressed mathematically as:

x̄k+1 = x̄k + αk′Ūk (3.5)

where

x̄k+1 = next refinement of the parameters,

k = the current iteration number,

x̄k = current parameters,

Ūk = unit direction in which to search,

=
−▽ C(x̄k)

‖ ▽ C(x̄k)‖
▽C(x̄k) = the gradient vector as per Equation 3.4,

C(x̄) = the cost function being minimised,

αk′ = the clipped distance to go in the search direction,
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=

{

αk if αk < αmax

αmax if αk > αmax
,

αk = argmin
α

[

C
(

x̄k + αŪk
)]

as per Section 3.2.2.1, and

αmax = maximum step size to be taken per iteration.

3.2.2.3 Fletcher-Reeves conjugate gradient algorithm

Conjugate gradient methods aim to improve the convergence speed of steepest

descent without resorting to second order derivative information. They do this by

trying to improve new search directions, based on the previous search directions.

This is because steepest descent search directions tend to slowly meander down

valleys to the minimum as explained in Section 2.2.1 and depicted in Figure 2.1.

The basic procedure is identical to that of steepest descent (Equation 3.5), except

that the search direction is not merely the negative of the normalised gradient

vector. For Fletcher-Reeves conjugate gradient determination, a multiple of the

previous search direction is added to the current search direction. This multiple is

set to either the ratio of the improvement in gradient magnitudes, or periodically

set to zero to avoid over compensation. Equation 3.6 shows how to calculate the

Fletcher-Reeves [21] search directions:

Ūk =
V̄ k

‖V̄ k‖ (3.6)

where

Ūk = the unit direction in which to search,

V̄ k =
−▽ C(x̄k)

‖ ▽ C(x̄k)‖ + βkV̄ k−1,

▽C(x̄k) = the gradient vector as per Equation 3.4,

βk = the coefficient of previous search directions

=

{

‖▽C(x̄k)‖2

‖▽C(x̄k−1)‖2
if k mod (N + 1) 6= 0

0 if k mod (N + 1) = 0
, and

N = the number of parameters in the set being optimised.
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3.2.2.4 Leapfrog algorithm

The Leap Frog Algorithm (LFA) uses the gradient information (i.e. Equation

3.4) to determine the acceleration induced by a particle for a specified time step.

The particle’s velocity and position are monitored. When the velocity decreases

(because the particle is going, i.e. away from a local minimum) its velocity is

decreased rather than zeroed. This is what gives LFA its ability to avoid shallow

local minima and find stronger minima. Heuristics are used to control the time

step from iteration to iteration to provide better resolution in determining the

minimum. The complete algorithm, redrawn from Snyman [19], is given in flow

diagram form in Figure 3.7.

3.3 Rotation formalisms

Rotation matrices are the default method of performing rotations used in this re-

search, due to their ease of use and manipulation with linear algebraic techniques.

The following subsections describe the properties of these matrices and how they

relate to other common methods used to express rotations. More information

can be found in Hartley and Zisserman [70].

3.3.1 Rotation matrix

A rotation matrix is a 3 × 3 matrix that, when used to multiply a 3 element

vector, changes the CF in which the vector is expressed. That is, the magnitude

of the vector is unchanged but its elements are changed. Stated in terms of the

notation defined in Section 3.1.2, a rotation matrix changes the third subscript

of a vector but does not change the two points whose spatial difference the vector

embodies. This is displayed graphically for T̄P1P2A and T̄P1P2B in Figure 3.3 where

the length of the vector is unchanged but it has different projections on the two

CFs.

Any given rotation matrix, Rjk, is orthogonal. From this orthogonality some
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Figure 3.7: Leapfrog algorithm flow diagram.
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important properties about the rotation matrix may be derived:

1. Rkj is the inverse matrix of Rjk and the inverse of a rotation matrix is

equal to its transpose:

Rkj = R−1
jk = RT

jk. (3.7)

2. The magnitude of each row and of each column in Rjk is exactly unity.

3. Each row of Rjk is orthogonal to every other row, i.e. their dot products

are exactly zero.

4. Each column of Rjk is orthogonal to every other column, i.e. their dot

products are exactly zero.

3.3.2 Euler angles

If the Euler yaw, pitch, and roll angles of one CF relative to another are known,

then a rotation matrix can be created from these angles (i.e. fEtoR) as per Equa-

tion 3.8:

Rjk = fEtoR (θy, θp, θr)

=







CθyCθp −CθySθpSθr − CθrSθy −CθySθpCθr + SθySθr

SθyCθp CθyCθr − SθySθpSθr −CθySθr − SθySθpCθr

Sθp CθpSθr CθpCθr






(3.8)

where

Rjk = the rotation matrix converting vectors from CF j to CF k,

θy = the yaw of CF j relative to CF k,

θp = the pitch of CF j relative to CF k,

θr = the roll of CF j relative to CF k,

Cθx = cos (θx) where: x ∈ [y, p, r], and

Sθx = sin (θx) where: x ∈ [y, p, r].

There are many different possibilities for Euler angles, as the final matrix given

above is the product of three rotations, each about a single axis. Any permutation
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of single axis rotations is viable so long as the same axis is not rotated about

consecutively. Thus one needs to know which axis each angle corresponds to and

in what order the single axis rotation matrices must be applied. This work uses

the most common approach. First rotation is performed around the Z axis, then

around the Y axis and then around the X axis using the yaw, pitch and roll

angles respectively:

Rab = RZ(θy)RY (θp)RX(θr) (3.9)

where

RX(θ) =







1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)






,

RY (θ) =







cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)






, and

RZ(θ) =







cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1






.

The Euler rotation angles can be obtained from a 3×3 rotation matrix as follows:







θy

θp

θr






= fRtoE (Rjk) =









tan−1
(

Rjk(2,1)

Rjk(1,1)

)

sin−1 (Rjk(3, 1))

tan−1
(

Rjk(3,2)

Rjk(3,3)

)









. (3.10)

It is not possible to directly add or subtract Euler angles or to directly use Euler

angles to directly rotate a vector. Euler angles may be used in calculations after

they have been converted in to a rotation matrix using Equation 3.8.
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3.3.3 Angle axis

Euler’s rotation theorem [71] tells us that any number of rotations of a rigid body

can be expressed as a single rotation around some axis. The magnitude of this

rotation and its corresponding vector can be calculated from a rotation matrix

using Equation 3.11:

(θ, ū) = fRtoAA (Rjk) (3.11)

where

θ = the angle of rotation

= cos−1

(

Rjk(1, 1) +Rjk(2, 2) +Rjk(3, 3)− 1

2

)

, and

ū = the UV around which to perform the rotation

=









Rjk(3,2)−Rjk(2,3)

2 sin(θ)
Rjk(1,3)−Rjk(3,1)

2 sin(θ)
Rjk(2,1)−Rjk(1,2)

2 sin(θ)









.

This concept is similar to quaternions. A rotation matrix can be created from

the angle-axis representation using Equation 3.12:

Rjk = fAAtoR
(

θ, Ū
)

(3.12)

=







Cθ + Ū2
x (1−Cθ) ŪxŪy (1−Cθ)− ŪzSθ ŪxŪz (1−Cθ) + ŪySθ

ŪxŪy (1−Cθ) + ŪzSθ Cθ + Ū2
y (1−Cθ) ŪyŪz (1−Cθ)− ŪxSθ

ŪxŪz (1−Cθ)− ŪySθ ŪyŪz (1−Cθ) + ŪxSθ Cθ + Ū2
z (1−Cθ)







where

θ = the angle of rotation,

Cθ = cos (θ) ,

Sθ = sin (θ) , and

Ū = the UV that is the rotation axis.
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3.3.4 ABB IRB120 robot angles

The ABB IRB120 robot arm [72] used in this work (Section 5.1) provides three

angles to quantify the orientation of the end effector relative to its base. Clearly

the correct interpretation of these angles is paramount for all the calibration

routines (Chapter 5), as they use the robot arm as a physical reference. However

the angles are referred to in the IRB120 user manual only as Rx, Ry and Rz. No

indication of which direction is positive and whether 0◦ is straight up or straight

down, or of the correct order of multiplication of the matrices was provided.

Preliminary observation confirmed the angles were provided in units of degrees.

The correct interpretation of these angles is necessary to assess whether the robot

arm has moved sufficiently close to the desired pose. Therefore, an experiment

to yield the correct interpretation of these angles was devised. The robot was

commanded to a sequence of poses well within the ranges of the joints and it

was ensured that no gimbal lock or other movement errors were reported. The

corresponding requested orientations (the position part of the pose was ignored)

and returned orientation in Rx, Ry and Rz format was recorded.

In total 10368 possible interpretations of the three values were tested. These

included all permutations of 3 angles, 3 axes of rotation, 2 possible positive

rotation directions, using either θ or 90◦−θ, 6 possible ways to order the rotation

matrices, and each matrix possibly being transposed. The determined correct

manner of interpreting the robot arm’s angles is given by Equation 3.13:

Rar = fIRBtoR (Rx,Ry,Rz) = RZ(Rz)RY (90
◦ − Ry)RZ(−Rx) (3.13)

where

Rar = rotation matrix converting from the arm CF to the robot CF,

RY ,RZ = single axis rotation matrices around the Y and Z axes

respectively as per Equation 3.9, and

Rx, Ry, Rz = the reported orientation of the arm.
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3.3.5 Creating a rotation matrix from a set of orthogonal

vectors

If Ūjxk is a UV known to point along the X axis of CF j but is expressed in terms

of its projection on CF k, and equivalent vectors Ūjyk and Ūjzk are known for the

Y and Z axes, then Rjk can be calculated from the three vectors. This rotation

definition is used in the PMJ (Section 5.4.1), LED offset (Section 5.4.2), and

focal length (Section 5.5.3) calibrations as well as the helmet tracker application

(Section 6.2). Equation 3.14 shows how to create the rotation matrix from the

vectors:

Rjk = fUVtoR
(

Ūjxk, Ūjyk, Ūjzk

)

=







Ūjxk.x Ūjxk.y Ūjxk.z

Ūjyk.x Ūjyk.y Ūjyk.z

Ūjzk.x Ūjzk.y Ūjzk.z






(3.14)

where

Rjk = rotation matrix to change vectors from being expressed in CF j to

being expressed in CF k,

Ūjxk = projection of CF j’s X axis on to CF k,

=
[

Ūjxk.x, Ūjxk.y, Ūjxk.z
]T

Ūjyk = projection of CF j’s Y axis on to CF k,

=
[

Ūjyk.x, Ūjyk.y, Ūjyk.z
]T

Ūjzk = projection of CF j’s Z axis on to CF k, and

=
[

Ūjzk.x, Ūjzk.y, Ūjzk.z
]T

.

3.4 Fundamental operations

This section details several mathematical building blocks which are used exten-

sively in subsequent chapters. All non-trivial mathematics required in subse-

quent chapters are presented in the form of a single equation which can easily

be referenced.
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3.4.1 The difference between two rotation matrices

The difference matrix between two rotation matrices which share a common

reference frame can be calculated by multiplying one of the rotations by the

inverse of the other:

Rjk = RT
klRjl (3.15)

where

Rjk = desired matrix to convert vectors from CF j to CF k,

Rkl = matrix to convert vectors from CF k to CF l, and

Rjl = matrix to convert vectors from CF j to CF l.

It is often required to quantify the similarity of two rotation matrices. An ex-

ample of this is the focal length calibration (Section 5.5.3) which needs to deter-

mine the similarity of many poses to find out when they are all maximally alike.

Determining the similarity between rotations involves first finding the rotation

difference matrix between the two rotation matrices and then either finding the

smallest possible rotation angle using Equation 3.11 or calculating the Euler

angles using Equation 3.10. Equation 3.16 portrays the former option:

θ = fRtoAA
(

mRT
jk

tRjk

)

(3.16)

where

θ = angular difference between the rotation matrices,

fRtoAA = as per Equation 3.11,

mRjk = measured rotation matrix of CF j w.r.t. CF k, and

tRjk = theoretical rotation matrix of CF j w.r.t. CF k.

Note that to calculate the angular difference between the matrices, the order of

multiplication and which of the two matrices is transposed is unimportant. This

is not true if one calculates the Euler angles of the difference matrix.
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3.4.2 Creating a vector from an undistorted image coor-

dinate

A vector pointing from the camera to an object in the camera’s FOV can be

determined if the intrinsic camera parameters (focal length, pixel dimensions,

principal point and skewness (assumed to be zero for modern imagers) of the

image axes) are known. This 2D to 3D conversion is required in the Cartesian

versus polar modelling (Section 4.1) and the calibration target (Section 4.2)

assessments. It is also used in calibrations of the LED offset (Section 5.4.2), the

focal length (Section 5.5.3), the camera w.r.t the mount pose (Section 5.5.5), and

the mount pose (Section 5.5.4). Finally the applications make use of this in the

stitching accuracy assessment (Section 6.1.3) and helmet tracking (Section 6.2).

Here it is assumed that lens distortion is either negligible or has already been

taken into account. The image coordinates are converted to 2D spatial values

relative to the principle point by using the pixel dimensions. It is important to

take into account the different positive direction conventions of the image and

and camera CF when doing the scaling (see Figure 3.1). In general it is not

possible to determine the distance of the object from its position in a single

camera’s FOV and so the vector is scaled to a UV. The third dimension is the

focal length of the camera. Equation 3.17 shows how this is done.

Ūcoc = fimg→vec
(

Īuo , P̄P ,FLen, pix w, pix h
)

(3.17)

= V̄coc/ ‖ V̄coc ‖
where

V̄coc = a vector ending in the inverted image plane pointing from the camera

to the object,

=







FLen

(P̄P h − Īuoh)pix w

(P̄P v − Īuov)pix h






,

Ūcoc = a UV pointing from the camera centre to the object,

Īuo = [Īuoh , Ī
u
ov
]T = the undistorted 2D image pixel position of the object,
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P̄P = [P̄P h, P̄P v]
T = the optical axis intersection pixel position,

pix w = the width of the pixels on the camera’s imager,

pix h = the height of the pixels on the camera’s imager, and

FLen = the equivalent pinhole model focal length of the camera’s lens.

Note that it is required that the focal length and pixel dimensions be specified

in the same units.

3.4.3 Determining the undistorted image coordinate of a

point relative to a camera

If a point is known in the camera’s CF, then it is possible to determine where

the point is in the camera’s FOV in the absence of lens distortion if the intrinsic

parameters of the camera are also known. This 3D to 2D conversion is required

in the photogrammetric stitching application (Section 6.1.1), the creation of the

synthetic data (Section 7.1), and accuracy assessment (Section 7.2) of the APCCS

sensitivity analysis.

The vector to the point is clipped to coincide with the image plane. Thereafter,

the Y and Z components are used to calculate the h and v pixel coordinates

respectively. This pixel conversion takes into account the top-left origin and

image positive h and v positive directions by scaling the clipped vector’s y and

z elements by the negative pixel dimensions and adding the pixel coordinates of

the principal point. Equation 3.18 shows this mathematically:

Īu = fP→U(T̄cpc, P̄P ,FLen, pix w, pix h)

≡ fP→U(T̄cpc, Īparams) (3.18)

=

[

Īuh
Īuv

]

=

[

P̄P h − FLen

pix w
× T̄cpc.y

T̄cpc.x

P̄P v − FLen

pix h
× T̄cpc.z

T̄cpc.x

]

where

Īu = the desired undistorted image coordinate,
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T̄cpc = translation of point w.r.t. camera in camera CF

P̄P = the optical axis intersection pixel position,

pix w = the width of the pixels on the camera’s imager,

pix h = the height of the pixels on the camera’s imager, and

FLen = the exact focal length of the camera’s lens.

3.4.4 Determining the closest point of intersection of two

3D lines

Two 3D lines in free space are unlikely to cross perfectly; instead they will have

a closest point of intersection. Determining this point is required for to calibrate

the LED offset (Section 5.4.2) and the camera offset w.r.t. its mounting interface

(Section 5.5.5).

At the points along each line where they are the closest, the line segment between

the two lines will be perpendicular to both lines. This is expressed in Equation

3.19:

0 =
(

T̄rp1r + c1Ūp1V1r − (T̄rp2r + c2Ūp2V2r)
)

• Ūp1V1r, and

0 =
(

T̄rp1r + c1Ūp1V1r − (T̄rp2r + c2Ūp2V2r)
)

• Ūp2V2r (3.19)

where

T̄rp1r = a point on line 1,

Ūp1V1r = unit direction vector of line 1,

c1 = distance along line 1 from T̄rp1r in direction of Ūp1V1r

where line 1 is closest to line 2,

T̄rp2r = a point on line 2,

Ūp1V1r = unit direction vector of line 2, and

c2 = distance along line 2 from T̄rp2r in direction of Ūp2V2r

where line 2 is closest to line 1.
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Simultaneously solving Equation 3.19 and then averaging the two lines’ closest

points yields the closest point of intersection of the lines:

T̄rpir = fint
(

T̄rp1r, Ūp1V1r, T̄rp2r, Ūp2V2r

)

=
1

2

(

T̄rp1r + c1Ūp1V1r + T̄rp2r + c2Ūp2V2r

)

(3.20)

where

T̄rpir = the position of the closest point of intersection,

c1 = (T̄rp2r − T̄rp1r) • Ūp1V1r + c2(Ūp1V1r • Ūp2V2r), and

c2 =
(T̄rp2r − T̄rp1r) • Ūp2V2r − (Ūp1V1r • Ūp2V2r)(T̄rp2r − T̄rp1r) • Ūp1V1r

(Ūp1V1r • Ūp2V2r)
2 − 1

.

3.4.5 Finding the centre of an LED image

This is a critical component in the camera calibration pipeline: all the process-

ing steps assume that the centre of the LED images are found accurately and

consistently. Determining the centre of an LED is required for the Cartesian

versus polar modelling and (Section 4.1) the calibration target (Section 4.2) as-

sessments. It is also used in calibrations of the LED offset (Section 5.4.2), the

DU calibration (5.5.1), the UD calibration (Section 5.5.2), the focal length (Sec-

tion 5.5.3), the camera w.r.t the mount pose (Section 5.5.5), and the mount pose

(Section 5.5.4). Helmet tracking (Section 6.2) also makes use of this building

block.

The first step is to threshold the image to find all pixels that have a higher

intensity than the background. This thresholding can either use a fixed value

or use a dynamic, adaptive threshold. Standard texts on image processing such

as Gonzales and Woods [73] can be consulted for further details on thresholding

methods.

After the image has been thresholded, a connected component analysis is per-

formed. This analysis groups all adjacent pixels above the threshold resulting in a

list of ‘blobs’ each with a list of its constituent pixels. This is typically performed

recursively but deterministic and parallel [74] variants also exist. Each blob is
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then checked for suitability before its centre is determined. The number of pixels

is checked to determine if the blob is large enough. This size check eliminates

small blobs caused by noise in the image and spurious stray light. Thereafter,

each blob is checked for symmetry as the blob should be fairly round if it is an

image of the LED. This symmetry is determined from the ratio of the lengths

of the projections of the blob’s pixels onto the best fit straight line and the line

perpendicular to it. If this ratio is above the stipulated threshold then the blob

is saved for further processing. Equation 3.21 expresses this mathematically:

Ks,th <
LP

LA

(3.21)

where :

Ks,th = minimum symmetry required for acceptance,

LP = projection length perpendicular to best fit line,

= LP,max − LP,min

LA = projection length along best fit straight line,

= LA,max − LA,min

LP,max = argmax
i∈((0,N−1)∩Z)

[

(P̄i − [0, c]T ) • ŪP

]

,

LP,min = argmin
i∈((0,N−1)∩Z)

[

(P̄i − [0, c]T ) • ŪP

]

,

LA,max = argmax
i∈((0,N−1)∩Z)

[

(P̄i − [0, c]T ) • ŪL

]

,

LA,min = argmin
i∈((0,N−1)∩Z)

[

(P̄i − [0, c]T ) • ŪL

]

,

P̄i = the coordinate ith pixel in the blob,

ŪL =
V̄L

‖V̄L‖
,

V̄L = [1,m]T ,

ŪP =
V̄P

‖V̄P‖
,

V̄P =

[

1
−1
m

]

,

57



3.4. FUNDAMENTAL OPERATIONS

N = the number of pixels in the blob, and

m, c = parameters of best fit line as per Equation 3.22.

Equation 3.21 requires the best fit straight line through the blob. This is calcu-

lated by fitting the Least Square Error (LSE) line to the blob’s pixels as follows:

x̄ =
(

ATA
)−1

AT B̄ (3.22)

where

A =













h0 1

h1 1
...

...

hN−1 1













, B̄ =













v0

v1
...

vN−1













,

(hi, vi) = ith pixel of the component,

i ∈ (0, N − 1) ∩ Z,

N = the number of pixels in the blob and

x̄ = [m, c]T

= the coefficients for the line v = mh+ c.

Once a blob has passed the acceptance criteria for size and symmetry, it is

processed to find its centre. Currently two methods for doing this are used. The

first method involves finding the centroid or Centre of Gravity (COG) of the blob

by finding the pixel intensity weighted average pixel coordinates:

HCOG =

∑N−1
i=0 hiI(hi, vi)
∑N−1

i=0 I(hi, vi)
, (3.23)

VCOG =

∑N−1
i=0 viI(hi, vi)
∑N−1

i=0 I(hi, vi)
,

where

I(h, v) = intensity of pixel located at (h, v),

(hi, vi) = coordinates of the component’s ith pixel,

i ∈ (0, N − 1) ∩ Z, and
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N = number of pixels in the blob.

The second method is to find the best fit ellipse to the centroid. This attempts

to find the smallest ellipse which simultaneously has:

1. the smallest area,

2. the sum of intensities of constituent pixels (or parts thereof) which most

closely matches the sum of intensities in the blob, and

3. the greatest difference between the sum of intensities within the ellipse

versus the sum of intensities in the vicinity outside the ellipse.

In this work the immediate vicinity is defined as the smallest horizontally aligned

square bounding box that does not have any pixels belonging to the ellipse within

k pixels of the edges of the box. All 2D ellipses have 5 DOF typically either

expressed as two foci and the sum of chords from them, or as long and short

axes with a specified centre position and the long axis at a specified angle from

horizontal. This work uses the latter formulation and minimises a weighted sum

of the three criteria listed above. The minimisation is performed by means of

the Leapfrog algorithm [26] described in Section 3.2. The cost function to be

minimised is given in Equation 3.24:

CE(a, b, Eh, Ev, θ) = c0πab+ c1(CS − ES ) + c2(WS − 2ES ) (3.24)

where

CE = cost function to minimise inorder to fit the ellipse,

(Eh, Ev) = centre of the ellipse,

a, b = major and minor axes of the ellipse respectively,

θ = angle of major axis from horizontal,

cn = the nth weighting term,

CS = centroid sum of intensities =
∑

N−1
i=0 I(hi, vi),

WS = window sum =
∑

I(h, v) ∀h, v ∈ W,

I(h, v) = image intensity at 2D coordinate (h, v),

ES = elliptical sum,
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=
∑

h,v∈W











I(h, v) if CR 6 ER,

αI(h, v) if ER < CR 6 ER + 1,

0 if CR > ER + 1,

CR = Cartesian radius,

= ‖ < h, v > − < Eh, Ev > ‖,
ER = elliptical radius,

=

√

a2b2

(b cos(θ − θC))2 + (a sin(θ − θC))2
,

α = (1− (CR − ER)),

W = h ∈ (Eh − (a+ k), Eh + (a+ k)),

v ∈ (Ev − (a+ k), Ev + (a+ k)),

k = size of border around ellipse for energy calculations, and

θC = Cartesian angle of pixel (h, v) from ellipse centre,

= tan−1

(

v − Ev

h− Eh

)

.

The initial parameters of Equation 3.24 that are used to seed the numerical

refinement are determined in the prior centroid and symmetry checking processes:

a = LA as per Equation 3.21,

b = LP as per Equation 3.21,

h = HCOG as per Equation 3.23,

v = HCOG as per Equation 3.23, and

θ = tan−1
(

m−1
)

with m as per Equation 3.22.

3.4.6 Applying Brown’s distortion model

De Villiers et al. [16, 17] showed that, using sufficient parameters in Brown’s

distortion model, the lens distortion effects in both the DU direction as well

as the UD direction can be effectively modelled. Separate parameter sets are
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required for each direction. Determining the DU and UD parameters is the sole

aim of Section 5.5.1 and 5.5.2 respectively. Once these parameters are known

they are used in every optical calibration of Chapter 5, both example applications

of Chapter 6 and throughout the sensitivity analysis (Chapter 7).

The basic Brown model takes the input pixel coordinate and expresses it relative

to the principal point. Thereafter the distance of the input point from the prin-

cipal point is used to add both radial and tangential offsets to create the output

pixel position. The radial and tangential offsets are in the form of polynomials

dependant on the distance of the input point from the principal point. It is the

coordinates of the principal point of coefficients of the radial and tangential poly-

nomials which constitute the distortion parameters. The mathematics is shown

in Equation 3.25:

P̄ ∗
h,v = fBrown(P̄h,v, P̄

C
h,v, R1 . . . RNR

, T1 . . . TNT
), (3.25)

≡ fBrown(P̄h,v, V̄params)

where

fBrown = Brown’s distortion model [34, 35],

V̄params = [P̄C
h P̄C

v , K1 . . . KNR
, P1 . . . PNT

]T ,

P̄ ∗
h = P̄h + (P̄h − P̄C

h )(

NR
∑

i=1

Rir
2i) +

(

(1 +

NT
∑

i=3

Tir
2i−4)×

(

T1(r
2 + 2(P̄h − P̄C

h )2) + 2T2(P̄h − P̄C
h )(P̄v − P̄C

h )
)

)

,

P̄ ∗
v = P̄v + (P̄v − P̄C

v )(

NR
∑

i=1

Rir
2i) +

(

(1 +

NT
∑

i=3

Tir
2i−4)×

(

2T1(P̄h − P̄C
h )(P̄v − P̄C

v ) + T2(r
2 + 2(P̄v − P̄C

v )2)
)

)

,

P̄ ∗
h,v = output image point,

P̄h,v = input image point,

P̄C
h,v = centre of distortion,

Rn = Nth radial distortion coefficient,
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Tn = Nth tangential distortion coefficient,

NR = number of radial parameters,

NT = number of tangential parameters, and

r =
√

(hd − hc)2 + (vd − vc)2.

Note that it is not possible to use one tangential parameter, either zero, or two

or more tangential parameters are required. Whether Equation 3.25 distorts or

undistorts an image point is dependent on what parameters are passed to it.

Throughout the rest of this work passing parameters to Equation 3.25 called

D̄U params will mean that the point will be converted from the distorted domain

to the undistorted domain. Similarly, the parameter vector ŪDparams will be used

to convert undistorted pixels coordinates to their corresponding coordinates in

the distorted domain.

3.4.7 Tetrahedron pose determination

Earlier in Section 3.4.2 it was stated that in general one cannot determine the

distance to a point from its position in a single camera’s FOV. However if at

least four non-coplanar points can be accurately found and uniquely identified,

and the displacements between the points in the real world are known, then not

only can the distance to each of the points be calculated but so can the pose

of the camera relative to the points. This optical pose measurement is used in

the focal length determination (Section 5.5.3) and the helmet tracker application

(Section 6.2).

Figure 3.8 shows the geometric setup of this scenario once all the four image

coordinates have been converted into UVs using Equation 3.17.

To solve the pose of the tetrahedron, one must first consider the basic cosine

rule given in Equation 3.26. The cosine rule expresses the length of one side of

a triangle as a function of the second and third sides and the angle opposite the
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T̄t1t

T̄t2t

T̄t3t

T̄t4t

Lc,1

Lc,2Lc,3

Lc,4

L1,2

L2,3

L1,3

Ūc2c

Ūc4c

Ūc1c

Ūc3c

Figure 3.8: Tetrahedron pose determination.

first side:

a2 = b2 + c2 − 2bc cos(θa) (3.26)

where

a, b, c = the lengths of the sides of a triangle, and

θa = the angle opposite side a.

Figure 3.9 illustrates the scenario applicable to Equation 3.26:

If one now considers the first two points of the tetrahedron (Figure 3.8) the dis-

tance between the two points is known, and the angle opposite the two points

is determinable from the two UVs pointing to those two points. This leaves us

with one equation and two unknowns. However, if we consider three points of

the tetrahedron in unison we have three equations and three unknowns. Equa-

tion 3.27 expresses this situation using the identity that the cosine of the angle
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B

C

A
θa

a

b

c

Figure 3.9: The cosine rule.

between two UVs is equal to their dot product:

L1,2 = L2
c,1 + L2

c,2 − 2Lc,1Lc,2(Ūc1c • Ūc2c) (3.27)

L2,3 = L2
c,2 + L2

c,3 − 2Lc,2Lc,3(Ūc2c • Ūc3c)

L1,3 = L2
c,1 + L2

c,3 − 2Lc,1Lc,3(Ūc1c • Ūc3c)

where

Li,j = distance between points i and j of the tetrahedron ∀i, j ∈ [1, 3],

= ‖T̄tjt − T̄tit‖,
Lc,i = distance from the camera to point i of the tetrahedron ∀i ∈ [1, 3],

= ‖T̄cic, ‖
T̄tit = the translation of point i in the tetrahedron CF,

T̄cic = the (unknown) translation of point i in the camera CF,

Ūcic = the UV pointing from the camera to point i of the tetrahedron,

= fimg→vec
(

fBrown
(

P̄ d
i , D̄U params

)

, Īparams

)

,

D̄U params = camera’s distortion parameters,

Īparams = camera’s intrinsic parameters,

fimg→vec = as per Equation 3.17 (parameters described in Section 3.4.2),

fBrown = as per Equation 3.25 (parameters described in Section 3.4.6) and

P̄ d
i = the LED centre (Section 3.4.5) of point i.
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The solution to Equation 3.27 is non-trivial due to the quadratic nature of the

three equations. Fischler and Bolles’ [55] and Kniep et al. [56] have both pre-

sented solutions. There are always four valid solutions to Equation 3.27, although

any complex solutions may be ignored. It is thus necessary to determine which

solution corresponds to the truth. This is done by calculating the pose of the

tetrahedron w.r.t. the camera for each solution and using that pose to calculate

the translation of the fourth tetrahedron point w.r.t. the camera. This vector

is then compared to the measured UV to the fourth point. The solution whose

calculated fourth point most closely matches that observed by the camera, is

selected. This is expressed mathematically as:

Rtc, T̄ctc = Rtc,i∗ , T̄ctc,i∗ (3.28)

where

i∗ = argmin
i∈Z,[1..4]

[

cos−1

(

Ū∗
c4c •

(

T̄c4c,i

‖T̄c4c,i‖

))]

,

T̄c4c,i = T̄ctc,i +Rtc,iT̄t4t,

Ū∗
c4c = the image based vector to the 4th LED,

= fimg→vec
(

fBrown
(

P̄ d
4 , D̄U params

)

, Īparams

)

,

D̄U params = camera’s distortion parameters,

Īparams = camera’s intrinsic parameters,

fimg→vec = as per Equation 3.17 (parameters described in Section 3.4.2),

fBrown = as per Equation 3.25 (paremeters described in Section 3.4.6),

P̄ d
4 = the 4th LED’s centroid (Section 3.4.5),

T̄ctc,i = translation of tetrahedron from camera in its CF for solution i,

= T̄c1c,i,

T̄cjc,i = translation of point j ∈ [1, 3] from camera in its CF for solution i,

Rtc,i = orientation of tetrahedron w.r.t. camera for solution i,

= fUVtoR
(

Ūtxc,i, Ūtyc,i, Ūtzc,i

)

(Equation 3.14),

Ūuxc,i = the tetrahedron’s X axis expressed in camera’s CF for solution i,
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=
T̄c1c,i − 1

2

(

T̄c2c,i + T̄c3c,i

)

‖T̄c1c,i − 1
2

(

T̄c2c,i + T̄c3c,i

)

‖ ,

Ūtyc,i = the tetrahedron’s Y axis expressed in camera’s CF for solution i,

= Ūtzc,i ⊗ Ūtyc,i,

Ūtzc,i = the tetrahedron’s Z axis expressed in camera’s CF for solution i,

= Ūtxc,i ⊗ Ū∗
tyc,i, and

Ū∗
tyc,i = a UV in the tetrahedron’s XY plane in camera’s CF for solution i,

=
T̄c3c,i − T̄c2c,i

‖T̄c3c,i − T̄c2c,i‖
.

The procedure to determine the pose of a tetrahedron w.r.t. a camera involves

the following steps:

1. Find the image coordinates of each point (Section 3.4.5).

2. Convert these image points to UVs (Section 3.4.2).

3. Construct and solve the simultaneous equations describing the distances of

three of the tetrahedron points (Equation 3.27).

4. Use the fourth tetrahedron point to discriminate between and select the

correct solution (Equation 3.28).

This is summarised in Equation 3.29:

(T̄tct,Rct) = ftet
(

Ūc1c, Ūc2c, Ūc3c, Ūc4c, T̄t1t, T̄t2t, T̄t3t, T̄t4t

)

(3.29)

where

ftet = is the solution to Equation 3.27, chosen via Equation 3.28,

T̄tct = the translation of the camera relative to the tetrahedron,

Rct = the rotation matrix converting from camera to tetrahedron CFs,

T̄tit = the translation of the ith point of the tetrahedron in its CF and

Ūcic = the UV pointing from the camera to point i of the tetrahedron.
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Chapter 4

Preliminary investigative

research

This chapter provides the results of some preliminary investigative research un-

dertaken in the early phases of the research. The aim of this chapter is to deter-

mine the best methods and practices for further development for the APCCS.

Section 4.1 provides a comparison of polar versus Cartesian lens distortion mod-

els. The aim of this section is to determine which kind of distortion modelling

is the most accurate. The best performing characterisation found in litera-

ture [16, 17] is a polar model and it provides a comparison to other models

both polar and Cartesian. This section then uses ANNs to act as improved

Cartesian models and compares these to models found in literature. This ANN

implementation was performed in two phases: an feasibility study followed by

an optimisation phase.

Section 4.2 compares different calibration methods, different calibration targets,

and different methods to locate the targets with sub-pixel accuracy. A com-

mon camera exhibiting significant distortion was used by all calibration methods

and targets. The results of all these calibrations are assessed using a common

database to determine the accuracy of monocular triangulation. This assessment

is then used to determine which calibration method, target and image processing
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routines should be used for the APCCS.

4.1 Comparison of polar and Cartesian models

The aim of this section is to evaluate the relative effectiveness of polar and Carte-

sian modelling methods and select one for further development and use in the

APCCS. ANNs were selected to model the distortion in the Cartesian domain

due to their detail-agnostic properties. The ANNs were trained to perform UD

mapping using the by-product matched pairs of distorted and undistorted image

coordinates created during the DU characterisation. This latter characterisation

was performed using the methods described de Villiers et al. [16,17]. This inves-

tigation was performed in two stages: first an initial investigation was performed

to assess the feasibility of ANNs for UD modelling. The results of this investi-

gation were published [10] in 2010. The second phase entailed the optimisation

of ANNs to determine how accurately they could be made to emulate the UD

correction. The results were presented [11] in 2011. These papers may be con-

sulted for details. What follows is a summary of the results and methods that

are pertinent to this work. No libraries were used for this work, all the code was

developed from first principles.

4.1.1 Investigation into artificial neural networks

This work looked at the feasibility of ANNs for UD modelling. ANNs have been

used for camera calibration before: Memon and Khan [75] trained an ANN to

triangulate the 3D position from matched stereo pair coordinates of a point.

Using ANNs, Do [76] modelled both a complete camera system as well as its

deviation from the pinhole model. Ahmed et al. [77] modelled the intrinsic and

extrinsic calibration parameters of a camera using an ANN, with the intentional

exclusion of lens distortion effects.

The following are key points for the initial ANN distortion modelling character-

isation:
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1. An Allied Vision GE1600 monochrome camera with an 82◦ Horizontal Field

of View (HFOV) 4.8 mm Schneider Cinegon lens was used. This provided

severely distorted images as seen in Figure 4.1(a). The initial distortion

was 16.7 pixels Root Mean Square (RMS) over the whole image.

2. The work of de Villiers et al. [16,17] was used to perform the DU calibration.

The results of the DU calibration were used as training data for the ANNs

to perform the UD calibration.

3. A standard fully connected feed forward layered architecture was used for

the ANNs.

4. The standard logistic function was used for the neuron activation function.

5. Backwards propagation [78] was used to train the networks.

6. Separate networks (each dependent on both the horizontal and vertical

coordinates) were trained to correct either the horizontal or vertical pixel

ordinates.

7. Differing numbers of Hidden Layer (HL) together with varying numbers of

neurons in each layer were tested.

8. The network architectures with the best average results had their weights

numerically refined using the LFA (Section 3.2.2.4) to optimise the RMS

results for the entire epoch (rather than considering only one Input/Output

(IO) pair at a time).

9. The quantification of line straightness was expressed in terms of microns

on the CCD, rather than in pixels to aid comparison to results in literature

in a fair and resolution agnostic manner.

The results are provided in Table 4.1 (adapted from the paper the author pub-

lished [10]). In order to provide context, the results are listed together with

results of de Villiers et al. [16] and Mallon and Whelan [44]. Mallon and Whe-

lan are one of the few UD works that provides sufficient information to convert

results from the pixel to micron domains. It can be seen that the locally opti-

mised ANNs performed comparably well to results in literature and thus merited

further investigation.
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Table 4.1: Initial ANN distortion results comparison.
Correction Resolution Pixel Pixel Micron

type Horiz Vert size (µ) error error

ANN 3 HL 1600 1200 5.5 6.78 37.3
ANN 2 HL 1600 1200 5.5 4.80 24.75

ANN LFA optimised 1600 1200 5.5 0.85 4.68
de Villiers et al. [16] 1600 1200 5.5 0.30 1.65

Mallon and Whelan [44] 1024 768 8.6 0.42 3.61
de Villiers et al. [16] 667 502 13.15 0.013 0.17

4.1.2 Optimisation of artificial neural networks for undis-

torted to distorted domain mapping

The initial ANN distortion modelling study (Section 4.1.1) showed promising

results and suggested some avenues for further improvement. The primary find-

ing of vastly improved results being obtained with refinement of the weights via

epoch wide numerical optimisation was carried over. The following additional

work was carried out using the same hardware:

1. The output scaling factor of the ANNs was changed so that only a subset of

the activation function’s finite range mapped on to the image. This allowed

the ANNs to not force theoretical pixels falling outside of the camera’s FOV

to be mapped onto the image.

2. ANNs with three HLs were shown to perform worse (Section 4.1.1) than

two HL ANNs, ergo only single and dual HL ANNs were evaluated.

3. The number of neurons per layer varied around the the optimal range

observed in the initial ANN investigation (Section 4.1.1).

4. In addition to the original logistic activation function, two different neuron

activation functions were investigated: hyperbolic tangent and arctangent.

5. ANN training speeds were improved by comparing single and dual precision

floating-point Central Processing Unit (CPU) processing, multi-threading

CPU processing and porting the epoch wide fitness evaluation to the

Graphics Processing Unit (GPU).

6. An investigation into having a single combined network for correcting both
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image coordinates versus separate networks for each image ordinate was

done.

4.1.3 Polar versus Cartesian conclusion

It was seen that the single precision results were noticeably inferior to the dual

precision results. Significant performance gains were achieved by multi-threading

and porting the training algorithms to the GPU. Having a single network cor-

rect both the horizontal and vertical offsets provided better results than two

networks each only performing one correction. This was true for both single and

dual HL ANNs. The dual layer ANNs took longer to train but yielded superior

results. The de facto logistic function was the worst performing of the activation

functions. The hyperbolic tangent function provided the best results on average

while arctangent yielded the best outright results. Conversely, for the single HL

ANNs, the logistic function was by far the best activation function. The final re-

sults of the comparison, adapted from the published paper [11], are presented in

Table 4.2. Figure 4.1 helps place the numerical results of Table 4.2 in context by

displaying distortion correct images obtained using the best performing ANNs.

The images in Figure 4.1 are all to the correct scale compared to the original

input image of Figure 4.1(a).

The final results of the ANN investigation show that ANNs achieve results as

good as any available in literature [11]. The ANNs also require less expert in-

tervention once an architecture and activation function have been selected: only

the IO scaling factors need to be altered for the resolution of the image. How-

ever, ANNs require many more parameters: the best performing ANN had 2

HLs of 8 neurons resulting in 116 weights and thresholds. This equates to 20

arctangent function calls, 120 additions/subtractions and 4 multiplications per

pixel being evaluated. By comparison, the 5 radial 3 tangential Brown model

used by de Villiers et al. [16] requires only in the order of 30 multiplications and

20 additions per pixel. Table 4.3 shows the full screen frame rates for correcting

a 1600× 1200 input image resulting in a 2600× 2200 image. It can be seen that

ANNs were slower than Brown’s model. This is due to the memory architecture
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Table 4.2: Comparison of optimised ANN distortion results.
Correction Hidden Resolution Pixel Pixel Micron

type layers Horiz Vert size (µ) error error

2 single-output logistic ANNs 1 1600 1200 5.5 1.07 5.89
2 single-output arctan ANNs 1 1600 1200 5.5 28.3 155
2 single-output tanh ANNs 1 1600 1200 5.5 2.83 15.6
1 dual-output logistic ANN 1 1600 1200 5.5 0.73 3.91
1 dual-output arctan ANN 1 1600 1200 5.5 3.70 20.4
1 dual-output tanh ANN 1 1600 1200 5.5 2.02 11.1

2 single-output logistic ANNs 2 1600 1200 5.5 0.60 3.30
2 single-output arctan ANNs 2 1600 1200 5.5 0.59 3.23
2 single-output tanh ANNs 2 1600 1200 5.5 0.45 2.48
1 dual-output logistic ANN 2 1600 1200 5.5 0.51 2.81
1 dual-output arctan ANN 2 1600 1200 5.5 0.31 1.71
1 dual-output tanh ANN 2 1600 1200 5.5 0.44 2.42

de Villiers and Nicolls [10] 2 1600 1200 5.5 0.85 4.68
de Villiers et al. [16] N/A 1600 1200 5.5 0.30 1.65

Mallon and Whelan [44] N/A 1024 768 8.6 0.42 3.61
de Villiers et al. [16] N/A 667 502 13.15 0.013 0.17
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(a) Original distorted image. (b) Image undistorted as per de Villiers et
al. [16].

(c) Two pixel error ANN corrected image. (d) Best initial ANN (4.68 pixel error).

(e) Best single HL ANN (0.57 pixel error). (f) Best dual HL ANN (0.31 pixel error).

Figure 4.1: ANN distortion corrected images.

73



4.2. COMPARISON OF LENS CALIBRATION ACCURACIES

of the GPUs.

Table 4.3: ANN versus Brown model frame rates.
Correction NVidia GPU used

type GTX460M NVS5200M GTX560

ANN map 199 85 420
Brown, 7
parameters

230 136 480

Brown, 10
parameters

225 145 500

Due to the marginally better performance provided by polar models in addition

to their lower processing requirements, it was decided that the APCCS would

use polar distortion models.

4.2 Comparison of lens calibration accuracies

The aim of this investigative comparison is to determine which distortion cali-

bration methods yield the best accuracies for real-world photogrammetric appli-

cations. The assessment considered the following aspects:

1. Different calibration patterns are compared.

2. Different image processing methods to accurately locate the calibration

pattern’s fiducial points in the images are assessed.

3. Different lens distortion correction models are investigated.

This comparison was presented as a paper [5] in 2011. The comparison is sum-

marised here as justification for the decision to use the work of de Villiers et

al. [16] as the basis for the APCCS.

4.2.1 Purpose of comparison

Several methods exist for lens distortion calibration and they use a variety of

calibration targets and methods to quantify the efficacy of their calibration. It
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is therefore not always obvious how to compare the calibration fitness of dif-

ferent calibration methods. This comparison aimed to use a single comparison

method to compare calibration results. Specifically, the accuracy of displace-

ments measured between high contrast targets on a planar surface that was

obliquely observed with a single camera were compared. These measurements

are then compared to ground truth displacements that were physically measured.

4.2.2 Comparison methodology

A single camera was used to create a common data set. Multiple views of a

planar pattern were captured and 10 feature points located by hand. Thereafter

the camera was calibrated according to all the different methods considered and

the common hand captured image feature coordinates used for evaluation. Fig-

ure 4.2 shows the planar reference pattern that were used. Figure 4.2(a) is an

example of one of the input images used. Figure 4.2(b) shows the same image

but undistorted and with the 6 feature points used for displacement measures

indicated.

Four checker intersections (Figure 4.2) were used to determine the pose of the

camera relative to the plane. Details of this pose determination are given in

Section 5.5.4. In total 9 images were used. Figure 4.2(c) shows the calculated

positions of the cameras and where their optical axes would have intersected the

plane.

Three distortion calibrations were performed: firstly the Brown lens model [34]

using five radial, three tangential parameters and an optimal distortion centre

was evaluated. A second Brown model with three radial, two tangential parame-

ters and an optimal distortion centre was also evaluated. The methods suggested

by de Villiers et al. [16] were used to fit these parameters. Finally, the popular

OpenCV Toolkit [4] was used and calibrations performed according to stated

best practices.

For the Brown calibrations an LCD was used to display either a single checker

intersection or single circle. This fiducial marker was then subsequently moved

75



4.2. COMPARISON OF LENS CALIBRATION ACCURACIES

(a) Distorted image. (b) Image undistorted as per de Villiers et
al. [16].

(c) Calculated camera positions relative to planar reference.

Figure 4.2: Planar reference pattern, with reference points marked.

in a regular grid such that over time a dense sampling of the entire FOV of

the camera was obtained. Two sizes of circle and three sizes of checkers were

tested. The circle centres were found using two methods (both described in

Section 3.4.5). Either the centroid or the centre of a fitted ellipse was used.

The checker intersections were found using the methods of either Luchesse and

Mira (LM) [46] or Chen and Zhang (CZ) [47].

Using the intrinsic parameters returned by the calibrations, unit vectors to the

four checkers and six logo points were calculated as per Equation 3.17. The four

checker vectors were used to determine the pose of the camera relative to the logo

plane as per Section 5.5.4. The vectors to the logo points were then extended
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until they intersected the plane and the distances between these vector-plane

intersection points compared to the ground truth. Please refer to the resultant

paper [5] for mathematical details of how this was done.

4.2.3 Comparison results

Table 4.4, adapted from the work of de Villiers [5], provides the residual distor-

tion calibration results. The results provided for the Brown models are as per

Equation 5.6 in Section 5.5.1.

Table 4.4: Distortion metrics.
Pattern Measurement Initial distortion Optimal distortion
type method (pixels RMS) (pixels RMS)

OpenCV calibration1 - 0.770
Circle, Centroid 347.645 0.081
size 10 Ellipse 347.785 0.088
Circle, Centroid 335.622 0.078
size 25 Ellipse 335.510 0.142
Square, LM2 386.059 0.256
size 15 CZ 3 340.954 0.082
Square, LM2 386.342 0.103
size 25 CZ 3 314.710 0.081
Square, LM2 386.695 0.099
size 50 CZ 3 251.682 0.060

1 Open Computer Vision [4] reprojection error, not Equation 5.6.
2 Luchesse and Mira [46]
3 Chen and Zhang [47]

Table 4.5 provides results for the single camera photogrammetric displacement

measurements in the planar surface. The value provided is the RMS error in

millimetres. Both the global results and the results for only the first 5 images

are provided. This is because the first images were less oblique (with regard

to the plane normal vector) and had noticeably different results due to better

localisation of all of the feature points.
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Table 4.5: RMS 3D error resulting from camera calibration patterns.
Pattern Measurement Images 1-5 Global
type method error (mm) error (mm)

OpenCV Calibration1 3.66 4.58
Circle, Centroid 3.36 4.29
size 10 Ellipse 3.26 4.28
Circle, Centroid 3.31 4.84
size 25 Ellipse 3.02 3.95
Square, LM2 2.84 4.11
size 15 CZ 3 3.13 3.98
Square, LM2 3.05 3.91
size 25 CZ 3 3.03 3.83
Square, LM2 3.08 4.01
size 50 CZ 3 3.11 3.88
1 Open Computer Vision Tool Box [4].
2 Luchesse and Mira [46].
3 Chen and Zhang [47].

4.2.4 Comparison conclusion

From Table 4.5 it can be seen that the ellipse centre provides better results than

the centroid when using a circle pattern. Chen and Zhang’s method [47] yields

superior results to Lucchesse and Mira’s method [46]. All of the circle and square

calibrations used the work of de Villiers et al. [16]. In general, these methods all

outperformed the OpenCV calibration. Thus it was decided to use the method

of de Villiers et al. [16] for the rest of this work.
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Chapter 5

Calibration routines

This chapter addresses the first and primary research question posed in Section

1.2: “Can an automated photogrammetric camera calibration system meeting the

criteria listed in Section 1.1.3 be created using a robotic arm?” This chapter

describes the algorithms developed for the APCCS, and constitutes the majority

of the novelty. By the time of submission the core idea of using a robot arm for

the calibration was no longer novel. However, the combinations of capabilities

(specifically the ability to calibrate a single camera) and several of the algorithms

to characterise specific parameters are novel. These algorithms are identified in

their descriptions.

Section 5.1 provides a detailed description of the APCCS. Essentially, the

APCCS consists of a robotic arm (an ABB IRB120) mounted on an optical

table which has some mounting points for cameras. A light source is attached to

the end effector of the robot. A Personal Computer (PC) controls both the arm

and the camera being calibrated.

A high level functional overview of the APCCS if given in Section 5.2. The PC

causes the camera to take an image of the light source and records the image

coordinates of the light source and pose of the robot arm. The robot movement

sequence is unique for each photogrammetric parameter. Processing the captured

data after the movement sequence is completed results in the photogrammetric
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parameter currently being calibrated. Section 5.2 also provides a thorough de-

scription of the dependencies of the calibrations on each other and provides the

correct order in which the calibrations must be performed.

Conceptually one may consider placing the camera on the robot arm and having

it observe a stationary light source. Section 5.3 discusses this in more detail as

well as the advantages and disadvantages of each configuration.

In total 6 calibrations are described in this chapter: 2 are required to calibrate the

APCCS itself and 4 are to calibrate the cameras. All the calibrations are optical

requiring no external equipment, with the exception of the calibration of the

PMJ mounting brackets. This complex and intricate set of calibration processes

is necessary to achieve all the goals of the APCCS. Specifically the complexity

is necessary to calibrate cameras of any spectrum and FOV. Calibrating in

different spectrums requires changing the light source, which means the position

of the light source w.r.t. the end effector can change. This is why the LED offset

needs to be determined. The rest of the complexity is to allow for the mounts

on which the cameras are placed to be moved to cater for different FOVs. None

of the calibrations make use of a known mount pose w.r.t the robot, this greatly

complicates the calibration procedures. The additional benefit of this complexity

is that a new APCCS can be unpacked and configured rapidly as only rough

measurements are required to ensure end effector is in the camera’s FOV.

Section 5.4 discusses the two routines necessary for calibration of the APCCS it-

self. Section 5.5 provides the mathematical details of the routines to photogram-

metrically calibrate a camera once the necessary APCCS calibrations have been

performed.

5.1 Equipment description

This section provides a detailed description of the apparatus that constitutes

the APCCS. The APCCS uses a robotic arm to place a LED at a sequence

of known positions, relative to the camera being calibrated. The movement se-
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quence can be updated to better measure different photogrammetric parameters

or for changes in camera FOV. The absolute pose of the camera during calibra-

tion is not required, but it is required to be stable and repeatable. The complete

calibration of a camera may require it to observe several different movement

sequences from several different vantage points.

The cornerstone of the APCCS is a robotic arm. The arm used has 6 rotation

joints which together allow for it to place the end of the arm (also called the

‘end effector’) at specified poses. The full 6 DOF pose (i.e. translation and

orientation) of the end of the arm can be specified. Of course there are physical

limitations as to where the end of the arm can be placed, but it is normally

feasible to find a camera mounting pose and movement sequence that falls within

the movement envelope of the robot. The robot outputs the pose of the end

effector, not the tip of any devices attached to the end effector. In this work an

ABB IRB120 robot and an IRC5 compact controller were used which together

have a claimed accuracy of 10 microns. The angular output format of the ABB

IRB120 is unusual and undocumented. Section 3.3.4 describes how the angles

received from IRB120 are converted to the robot CF. Figure 5.1(a) shows the

ABB IRB120 robot arm used.

The robot arm is used as a repeatable and configurable LED placement device

(Figure 5.1(a)). The LED is attached to the end of this arm via a repeatable

kinematic mount (Figure 5.1(b)). The mount allows the LED to be removed

and replaced without redetermining the spatial offset of the LED (Section 5.4.2).

The LED may be swapped with a different LED, to then calibrate a camera

with a different sensitivity spectrum (e.g. calibrating a visual camera followed

by calibrating a LWIR camera). The maximum extent of the envelope through

which the robot arm is moved can be altered to accommodate cameras of differing

FOVs that are being calibrated. The density of the sampling within the envelope

can be altered to trade off calibration accuracy versus calibration time. Figure

5.1(b) shows the Newport M-BKL-4 kinematic mechanically locking mounting

interface used on the robot for LED and helmet mounting. This mount has a

stated repeatability of better than 100 microradians [79].
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(a) Robot arm with LED. (b) Robot arm with kinematic mount.

Figure 5.1: ABB IRB120 robot arm.

The robot is placed on an optical table. In this work a 1.8 m by 2.4 m Integrity

3 VTS 12 inch table was used to minimise vibration effects of the moving arm

on the rest of the table. It also facilitated the convenient addition of mounting

brackets from which cameras can be calibrated. Figure 5.2 shows the table with

the robot, two camera mounting positions, and the PMJ.

The robot and optical table are placed in a temperature controlled room which

has had all of its windows boarded. The temperature control minimises the effects

of thermal variance during calibration. The light control allows long exposures

without incurring and stray light effects. The robot is programmed to pause at

each of the discrete locations until one or more images have successfully been

calibrated. These last two characteristics make the system resilient to different

camera integration and read-out strategies such as rolling versus global shutters,

and interlaced versus non-interlaced readouts. The immobility of the robot arm
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Figure 5.2: Newport Integrity 3 VCS optical table.

during image capture ensures there is no motion blur or tearing of the LED in

the camera images.

Cameras to be calibrated are placed on kinematic mounting locations on the ta-

ble. Figure 5.3 shows the Newport M-BK-2A magnetically locating mount that

was used. These mounts also have a stated repeatability of less than 100 mi-

croradians [79]. Placing the cameras on repeatable mounts allows the extrinsic

parameters to be split into two components. The split extrinsic pose allows faulty

cameras in an end user system to be replaced without repeating a calibration of

the entire end user system.

Some of the calibrations require the use of a PMJ. The PMJ is a removable set of

repeatable kinematic camera mounting interfaces whose poses are known relative

to each other. The PMJ, shown in Figure 5.4, is temporarily mated to the optical

table when required and removed when no longer needed. All the calibrations

that make use of the PMJ do not require knowledge of its pose relative to the

robot arm, merely knowledge of the relative poses of its mounts.

The optical table of a deployed APCCS will have a robotic arm with an LED

attached via a kinematic mount. This LED is observed by the camera being
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Figure 5.3: Close-up of Newport M-BK-2A.

calibrated, which is mounted on a repeatable kinematic mounting bracket. This

bracket is either part of a permanently attached mounting point or the temporar-

ily affixed PMJ.

The final component of the APCCS is the PC which controls the data acquisition,

processing and calibrations. The primary functions of the computer are to:

1. Command the robot to the next pose in the sequence and record its exact

resultant pose.

2. Capture the camera’s image of the LED at the current robot arm pose.

3. Process the captured image to determine the centre of the LED.

4. Process the captured LED centres, together with the corresponding actual

robot poses to determine the camera calibration parameters.

5. Store and report the results of the camera calibrations.

5.2 Functional overview

This section describes the procedure that is followed to calibrate a camera. Two

sets of calibration parameters are desired for a camera: intrinsic parameters and

extrinsic parameters. The intrinsic parameters allow image coordinates to be

converted into 3D vectors in the camera’s CF and 3D points expressed in the
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Figure 5.4: Precision mount jig.

camera’s CF to be mapped onto their corresponding image coordinates. This con-

sists of the DU parameters, the UD parameters and the pinhole equivalent focal

length. It assumed the pixel dimensions and the skewness (non-orthogonality of

CCD horizontal and vertical axes) can be obtained from the data sheet.

The extrinsic parameters consist of the camera’s pose relative to a chosen refer-

ence or world CF, allowing translation between the camera’s CF and the reference

CF. For operational ease of use this pose is split into two separate poses, the

pose of the camera w.r.t. a repeatable mechanical mount, and the pose of the

repeatable mechanical mount w.r.t. the reference CF. This allows a camera to

be replaced in a system without repeating the calibration of the mount poses.

Once the APCCS has been configured, the following calibrations are performed

per camera:
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1. The camera captures centroids of the robot arm moving the LED through

a large regular planar grid that subtends the camera’s entire FOV.

2. Analysis of the LED centroids is performed to determine the DU parame-

ters (Section 5.5.1).

3. Processing of the corresponding distorted and undistorted pixel coordinates

generated during the DU parameter determination is performed to yield the

UD parameters (Section 5.5.2).

4. The camera captures centroids of the robot arm moving the LED to the

vertices of several a priori known tetrahedrons.

5. Processing of the LED centroids, combined with the DU parameters and

robot poses results in the pinhole equivalent focal length (Section 5.5.3).

6. The PMJ is affixed to the table. For each of its mounting points the

camera captures centroids of the robot arm moving the LED through the

same series of 3D grids.

7. Simultaneous analysis of each of the set of centroids captured from each of

the PMJ’s mounts, combined with the DU parameters, focal length, and

known relative poses of the PMJ mounts yields the (irrelevant) PMJ-to-

robot pose as well as the (desired) camera-to-mount pose (Section 5.5.5).

8. The camera is placed on the operational mount and the camera captures

the centroids of the robot arm moving the LED through a series of planar

grids.

9. The centroids, together with the robot positions using the DU parameters,

focal length, and LED-to-arm offset are processed to determine the pose

of the camera relative to the robot arm. The pose of the mount on which

the camera is mounted is calculated from the camera-to-robot pose and the

camera-to-mount pose (Section 5.5.4).

The preceding list requires certain calibrations of the APCCS to have been per-

formed. Specifically, the relative poses of the PMJ’s mounts are required - these

are obtained via external measurements described in Section 5.4.1. Similarly, the

LED spatial offset relative to the robot arm is required. This offset is measured

optically and requires the PMJ to have been calibrated and a camera to have been

calibrated to determine its DU parameters, focal length and camera-to-mount
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Table 5.1: Calibration dependencies.
Calibration Dependencies

Number Description 1 2 3 4 5 6

1 Lens distortion correction - E E E E -
2 Focal length determination R - E E E -
3 Camera mount pose offset de-

termination
R R - E E R

4 Mount pose determination R R R - R R*
5 LED translation offset R R R E - R
6 Precision mounting jig

calibration
- - E E* E -

Legend:
- = No relation.
E = Directly enables.
E* = Indirectly enables, i.e. enables a calibration that this

calibration requires.
R = Directly requires.
R* = Indirectly requires, i.e. requires a calibration which in turn

requires this calibration.

pose. Section 5.4.2 describes how the LED spatial offset is measured. Note that

neither the PMJ calibration nor the LED spatial offset are required to be per-

formed for each camera, merely initially and then (potentially) at predetermined

set intervals.

Table 5.1 lists the calibrations just discussed and indicates the dependencies of

each calibration on the others.

5.3 Close range versus goniometric calibration

The calibration methods outlined in Section 5.2 and detailed in the rest of this

chapter are close range calibration methods, meaning that the cameras need to

be placed close the robot arm in order to have their full FOV covered. This

means that the camera needs to be focussed on the robot and so brings in to

question the applicability of these calibrations for long range photogrammetric
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calibrations. An alternative to close range calibration is the goniometer style of

calibration. Clarke and Fryer [80] provide a comparison of these two families of

camera calibration methods.

Goniometer calibrations place the camera on the moveable component and ob-

serve a stationary light source, typically through a collimator so the camera can

be focussed at infinity. This infinity focus makes the calibrations easier to apply

to long range applications. For a robotic arm based system there are several

disadvantages to such a set up:

1. Collimators typically have a narrow spectrum over which they operate, e.g.

visual collimators are opaque at LWIR wavelengths. Several collimators

would then be required.

2. Only cameras that fit within the mass and torque specification of the

robot arm may be calibrated, potentially eliminating heavy cameras such

as cooled IR cameras.

3. Similar to the above, the volume of the cameras can diminish the movement

envelope of the robot arm. This is because the camera may interfere with

the arm when the arm is in certain orientations. This effect is worsened if

an array of cameras has to be calibrated simultaneously.

4. The robot arm needs to facilitate the transport of the camera images to

the PC for processing. This entails either (expensive) high bandwidth slip

rings, or (potentially bulky) looms that have to be fixed to the arm, and

could thus hinder the robot arm’s movement and accuracy.

5. Providing power, sychronisation and control signals to the camera are sim-

ilarly made more difficult when the camera is mounted on the robot arm.

6. If the robot arm experiences a movement error, the camera may be dam-

aged. Light sources are typically less expensive than cameras of the same

wavelength.

In the APCCS to partially mitigate the effect of calibrating at close range, the

camera is focussed at the application’s operational range and the iris is stopped

down to bring the light source closer to focus. Here it is worth noting that

stopping down the iris causes the integration time to increase, but so would
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a collimator’s non-perfect optical transmission. Also to be noted is that it is

preferable to have the image of the LED not be perfectly focussed as this spreads

the energy over a few pixels. This spreading allowing the centroid and ellipse

fitting methods described in Section 3.4.5 to partially mitigate the effects of

discrete spatial sampling, quantisation and non 100% fill factor of the CCD.

Section 6.1 uses cameras calibrated by the APCCS in this manner in an outdoor

stitching application. The area of interest is effectively at infinity for the short

focal length cameras that are used. The favourable results of Section 6.1 provide

some evidence that the APCCS calibrations are applicable to both long and short

range applications.

5.4 Calibration of the table

This section describes the procedures necessary to calibrate components of the

APCCS so that it can then be used for camera calibration. Section 5.4.1 describes

the calibration of the PMJ, and Section 5.4.2 describes the determination of the

3D spatial offset of the LED relative to the end effector.

5.4.1 Precision mounting jig calibration

This section details the mathematics used to calibrate the PMJ. The PMJ is

required to determine the pose of the camera relative to its mounting interface

(Section 5.5.4). The top two mounts of the jig are also used to create a stereo

pair to determine the spatial offset of the LED relative to the robot arm (Section

5.4.2). A Computer Aided Design (CAD) model of the PMJ is shown in Figure

5.5.

The PMJ is made up of four Newport M-BK-2A kinematic mounts. Each in-

terface has three Ball Bearing (BB)s used for the repeatable mounting. The

kinematic mounts are labelled A to D, and the BBs are labelled 1 to 3 (Figure

5.5). The purpose of the methods in this section is to find the positions of each

kinematic mount relative to mount A. In all of the calculations, BB 1 of each
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Figure 5.5: CAD model of the PMJ.

mount is used as the origin of that mount’s CF.

Using a high accuracy mechanical measurement station (in this work a Faro

Arm Platinum portable contact measurement machine with a 1.2 m span) the

positions of each of the BBs on all of the mounts were measured. All of the

measurements made by the Faro arm were relative to its CF. It is therefore

necessary to change the measurements so they are in the CF system defined by

Figure 3.1. To do this, the poses of all four mounts relative to the Faro arm

were calculated with Equation 5.1. The poses of the mounts relative to the first

mount were then determined.

Note that it is critical that the mounts do not all have their CFs parallel: at least

two axes must be misaligned over the four mounts. This is to avoid ill-conditioned

matrices which yield no unique solution when separating the extrinsic parameters

into mount w.r.t. the reference and camera w.r.t. the mount. In this work, the

top two mounts are only misaligned in yaw (looking inwards) and the bottom

two in yaw and roll. This allows the top two to be used as a stereo pair. For

each mount the direction of its X axis is defined as from BB1 to the midpoint

between BB2 and BB3. The vector from BB2 and BB3 is used to define the
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XY plane of the mount’s CF. The vector cross product of these vectors yields

the Z axis. To ensure orthogonality, the vector cross product of the Z and X

axes yields the final Y axis. These three vectors are normalised and then used to

create a rotation matrix which converts from the mount’s CF to the Faro arm’s

CF. Equation 5.1 presents this mathematically:

RMiF = fUV toR
(

ŪMiXF , ŪMiY F , ŪMiZF

)

, and (5.1)

T̄FMiF = T̄FBi,1F

where

fUV toR = as per Equation 3.14,

T̄FBi,jF = 3D position of BB j of mount i,

ŪMiXF = the X axis of mount i,

=
1
2

(

T̄FBi,2F + T̄FBi,3F

)

− T̄FBi,1F
∥

∥

1
2

(

T̄FBi,2F + T̄FBi,3F

)

− T̄FBi,1F

∥

∥

,

Ū ′
MiY F = a vector in mount i’s XY plane,

=
T̄FBi,3F − T̄FBi,2F
∥

∥T̄FBi,3F − T̄FBi,2F

∥

∥

,

ŪMiZF = the Z axis of mount i,

=
ŪMiXF ⊗ Ū ′

MiY F
∥

∥ŪMiXF ⊗ Ū ′
MiY F

∥

∥

, and

ŪMiY F = the Y axis of mount i,

=
ŪMiZF ⊗ ŪMiXF
∥

∥ŪMiZF ⊗ ŪMiXF

∥

∥

.

The final desired output is the pose of each of the PMJ’s mounts w.r.t. the first

mount expressed in the first mount’s CF. Equation 5.2 shows how this is done:

RMiM1 = RT
M1F

RMiF , and (5.2)

T̄M1MiM1 = RT
M1F

(

T̄FMiF − T̄FM1F

)

where

RMiF , T̄FMiF = the pose of mount i w.r.t. the Faro arm as per Equation 5.1,
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RMiM1 = the rotation matrix of mount i relative to mount 1, and

T̄M1MiM1 = the translation of mount i from mount 1, in mount 1’s CF.

5.4.2 LED translation offset determination

Knowing the spatial offset of the LED relative to the end effector, allows the

actual position of the LED to be used in calculations. Without this knowledge

the orientation of the end effector of the arm has to remain constant so that the

unknown spatial offset of the LED is a constant vector in the reference frame.

This does not affect the accuracy with which a camera observing the LED posi-

tions has its pose determined, it merely has a spatial error equal to the unknown

LED spatial offset. This is acceptable for lens distortion characterisation (which

only corrects for straight line projection), Separation of the Extrinsic Parame-

ters (SEP) characterisation (which looks at the relative poses of the camera when

mounted on the PMJ), and focal length determination (which merely looks at the

tightness of the locus of determined camera poses, not their absolute positions).

All the other calibrations require knowledge of this parameter (Table 5.1).

The LED offset is determined via a stereo observation of the LED while the

position of the end effector remains constant, but its orientation is varied such

that the energy source moves in a circle. Before this, the orientation of the stereo

apparatus relative to the robot is determined.

The PMJ is used to create a temporal stereo camera pair by using the top two

mounting points. This is why both the camera’s offset w.r.t. mount and the

relative pose of the PMJ’s mounts are required for this calibration. The PMJ

is placed at an approximate position and securely fastened to the table. The

camera (already calibrated for lens distortion and focal length) is then placed on

the first mounting point and records the LED centroids as it observes the robot’s

movement sequence. Thereafter, the camera is placed on the second mounting

point without disturbing the pose of the PMJ w.r.t. the robot. The camera then

captures a second set of centroids as it observes the robot sequence from the new

vantage point.
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The robot movement sequence is divided into two parts. The first part is used

to determine the orientation of the PMJ relative to the robot (Section 5.4.2.1).

This is why the PMJ pose needs not be known a priori. The second part is used,

in conjunction with the results from the first section, to determine the LED offset

(Section 5.4.2.2).

5.4.2.1 Determining stereo pair to robot orientation

After the camera has been placed on the secured PMJ, the robot moves through

a sequence of points in the X direction of the robots CF. Thereafter it moves

in the Y and then the Z directions. This is repeated once the camera has been

placed on the second mount.

Using stereo vision the points along each axis are triangulated in 3D and the

best fit UVs (expressed in the stereo CF, which in this case coincides with the

PMJ CF) pointing along those lines is determined. Once UVs for each axis have

been found Equation 3.14 provides the rotation matrix of the robot relative to

the jig, which merely has to be transposed.

The identity Ū • V̄ = ‖Ū‖‖V̄ ‖ cos θ is used to fit a 3D line through a sequence of

points. If Ū is a UV then Ū • V̄ is maximised when Ū is parallel to V̄ , in which

case ‖Ū • V̄ ‖ = ‖V̄ ‖. Vectors are constructed based on the difference of the

points along the X axis from the first point. A system of simultaneous equations

is then constructed to find the best fit UV through these points. This UV is the

desired X axis UV of the robot in stereo pair’s CF (i.e. Usxrs). It is necessary that

the points were captured or subsequently sorted to be in increasing order from

the first point, i.e. ‖T̄spx,ms − T̄spx,0s‖ > ‖T̄spx,m−1s − T̄spx,0s‖∀m ∈ ([2, N) ∩ Z).

Equation 5.3 shows how the desired UV is obtained from the ordered points by

analytically finding the RMS best fit unit vector which maximises the length of

each vector in the set of simultaneous equations.

Ūsxrs =
V̄sxrs

‖V̄sxrs‖
(5.3)

where
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V̄sxrs =
(

ATA
)−1

AT B̄,

A =













T̄ T
px,0px,1s

T̄ T
px,0px,2s

...

T̄ T
px,0px,N−1s













,

B̄ =













‖T̄px,0px,1s‖
‖T̄px,0px,2s‖

...

‖T̄px,0px,N−1s‖













,

T̄px,0px,is = T̄spx,is − T̄spx,0s,

T̄spx,is = fint
(

T̄M1MaM1 ,RMaM1ŪCapx,iCa
, T̄M1MbM1 ,RMbM1ŪCbpx,iCb

)

,

fint = as per Equation 3.20 of Section 3.4.4,

ŪCapx,iCa
= fimg→vec(fBrown(P̄ d

i,a, D̄U params,a), Īparams,a),

ŪCbpx,iCb
= fimg→vec(fBrown(P̄ d

i,b, D̄U params,b), Īparams,b),

D̄U params,m = camera m’s distortion parameters,

Īparams,m = camera m’s intrinsic parameters,

fimg→vec = as per Equation 3.17,

fBrown = as per Equation 3.25 (Section 3.4.6 for parameter details),

P̄ d
i,j = the LED centroid (Section 3.4.5) of point i by camera j,

T̄M1MiM1 = translation of mount i of the PMJ (Section 5.4.1),

RMiM1 = orientation of mount i of the PMJ (Section 5.4.1),

a = the number of the first stereo mount position, and

b = the number of the second stereo mount position.

Equation 5.3 is then repeated using the Y and Z axis points to get Ūsyrs and

Ūszrs respectively, which can then collectively be passed to Equation 3.14 to get

the transpose of the desired orientation of the stereo pair relative to the robot.
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Equation 5.4 displays this with mathematical succinctness:

Rsr = RT
rs (5.4)

where

Rrs = fUV toR
(

Ūsxrs, Ūsyrs, Ūszrs

)

,

fUV toR = as per Equation 3.14,

Ūsxrs = robot’s X axis (from Equation 5.3) in the PMJ’s CF,

Ūsyrs = robot’s Y axis (from Equation 5.3) in the PMJ’s CF, and

Ūszrs = robot’s Z axis (from Equation 5.3) in the PMJ’s CF.

5.4.2.2 Triangulating the LED spatial offset

In order to calculate the LED spatial offset, the translation of the arm’s end

effector is kept constant whilst its orientation is changed to cause the energy

source to trace a circle in space. Typically the end effector is positioned between

the stereo pair, about 0.3m from the baseline and pointed directly towards the

centre of the cameras’ baseline. The circle thus traced by changing the end

effector’s yaw and pitch relative to this viewing direction is in a plane roughly

parallel to that of the cameras’ CCDs. Figure 5.6 shows the captured positions

of the LED centroid that were recorded from one of the stereo camera poses. The

robot arm is visible behind a Teflon shield used to mask the heat source, except

through a small central aperture which is at the top of the captured circle.

At each point the position of the energy source is triangulated. These points are

then converted to the robot CF using the axis rotation determined by Equation

5.4. The vectors between all the permutations of the points are then calculated.

These vectors and called T̄ S
pipjr

indicating they are the displacements from point

i to point j expressed in the robot CF and were determined from stereo vision.

Thereafter, a hypothetical 3D translation of the energy source relative to the

robot end effector is chosen. With this offset and the known robot orientations,

the hypothetical 3D position of the energy source is calculated for all the orien-

tations and the same vectors between all permutations is then created. These
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Figure 5.6: Circle of LED positions recorded during a LWIR camera calibration.

vectors and called T̄H
pipjr

indicating they are the displacements from point i to

point j expressed in the robot CF and were determined based on a hypothesised

LED offset.

The sum of squares of the magnitude of the difference vectors (between cor-

responding hypothesis based vectors and stereo vision based vectors) is then

determined. This sum will only be zero if the hypothesised LED 3D spatial off-

set is correct (and the stereo triangulation is accurate), it will be greater than

zero for all other LED offsets. Therefore this sum is used as a cost function

called CLP , and is minimised via a chosen numerical optimisation technique.

Leapfrog [26] was used to perform the minimisation due to its known robustness

to noise and ability to find a ‘low local minimum’. Refer to Sections 2.2 and 3.2

for the characteristics and mathematical workings respectively of the numeric

optimisation routines used. The mathematical derivation of the cost function is

given by Equation 5.5:

CLP (T̄H
ala) =

N−2
∑

i=0

N−1
∑

j=i+1

∥

∥

∥
T̄H
pipjr

− T̄ S
pipjr

∥

∥

∥

2

(5.5)

where
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CLP = the LED position cost function,

T̄H
ala = hypothesised LED translation w.r.t. the end effector

N = the number of points captured,

T̄H
pipjr

= hypothesis based delta vector between points i and j,

= RajrT̄
H
ala −RairT̄

H
ala,

Rair = orientation of robot arm at position i,

T̄ S
pipjr

= delta vector between i and j based on stereo triangulation,

= Rsr

(

T̄spjs − T̄spis

)

,

Rsr = orientation of PMJ w.r.t. the robot as per Equation 5.4,

T̄spis = fint
(

T̄M1CaM1 , ŪCapiM1 , T̄M1CbM1 , ŪCbpiM1

)

,

T̄M1CnM1 = camera position at mount 1 in PMJ CF,

= T̄M1MnM1 +RMnM1T̄MCM ,

ŪCnpiM1 = UV from camera at mount n to point i in PMJ CF,

= RMaM1RCM

(

fimg→vec(fBrown(P̄ d
i,n, D̄U params,n), Īparams,n)

)

,

fint = as per Equation 3.20,

D̄U params,m = camera m’s DU parameters,

Īparams,m = camera m’s intrinsic parameters,

fimg→vec = as per Equation 3.17,

fBrown = as per Equation 3.25 (Section 3.4.6 for parameter details),

P̄ d
i,j = the LED centre (Section 3.4.5) of point i by camera j,

RMiM1 , T̄M1MiM1 = pose of the PMJ’s mount i (Section 5.4.1) w.r.t. PMJ,

RCM , T̄MCM = pose of camera w.r.t. its mounting interface (Section 5.5.5),

a = the number of the first stereo mount position, and

b = the number of the second stereo mount position.
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5.5 Camera calibration

This section describes the algorithms used to calibrate a camera once the APCCS

has been calibrated. These algorithms then constitute the primary uses for which

an operational APCCS will be used. All the intrinsic and extrinsic parameters

will be measured with the exception of the pixel dimensions and their skewness.

The dimensions are assumed known from the data sheet, and the pixel skew-

ness is considered negligible with modern semiconductor foundry manufacturing

techniques.

Section 5.5.1 describes the DU characterisation required for calculation of true

UVs from camera imagery. Section 5.5.2 describes the reverse mapping (UD

characterisation) which is required for real-time photogrammetric stitching. Sec-

tion 5.5.3 describes how the focal length (matched to the determined distortion

corrections) is found. Section 5.5.4 describes how the pose of mount w.r.t. the

reference CF is determined by measuring the pose of the camera w.r.t. the refer-

ence and subtracting the camera w.r.t. the pose from it. Section 5.5.5 determines

how this pose of the camera w.r.t. the mount is calculated. SEP in this manner

allows the subsequent replacement of cameras in a system without repeating the

calibration of the mount poses, which maybe beneficial from both a cost and

time saving point of view.

5.5.1 Lens distortion correction

For lens distortion characterisation the maxim that straight lines in the real

world must project onto straight lines in the image space (after distortion has

been corrected) is used. To do this the robot (and its attached LED) is moved

in a series of straight lines, stopping at several points along each line for an

image to be captured. This results in N lines being captured each of which has

Mi, i ∈ (0, N − 1) points. These points are referred to as P d
i,j indicating the

original raw (i.e. distorted) image position of the jth point of the ith line.

Thereafter an arbitrary number of parameters for the Brown lens distortion
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Figure 5.7: Lens distortion characterisation cost function.

model (Equation 3.25) can be numerically determined. Any numerical optimisa-

tion routine can be used, although some (such as Levenberg-Marquardt [23,24])

perform worse due to their mathematical mechanics, the highly correlated na-

ture of the parameters, and the residual noise inherent in the measurement of

the input data.

A cost function is used to measure how straight a set of lines are. The cost

function determines the best fit straight line through the point of each captured

straight line using Equation 3.22. Thereafter the sum of the RMS distance of the

points from their straight lines is calculated. This cost function will only ever be

zero if all the points lie on straight lines, which is the aim of plumb-line based

distortion modelling. This cost function was shown by de Villiers [15] to yield

better results than alternatives such as minimising the coefficient of the second

order term of the best fit quadratic through each straight line’s points. This cost

function is illustrated in Figure 5.7 and given mathematically in Equation 5.6:

CD→U(D̄U
s

params) =

√

√

√

√

1
∑n<NL

n=0 Mn

n<NL
∑

n=0

m<Mn
∑

m=0

(

(P̄ u
n,m − [0, cn]T ) � d̄n

)2
(5.6)

where

CD→U = the DU characterisation cost function,

D̄U
s

params = sensitivity scaled distortion correction parameters,
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NL = the number of straight lines in the data captured,

Mn = the number of points along the nth line,

d̄n = unit direction vector orthogonal to the RMS line n,

=

[

1, −1
mn

]T

‖
[

1, −1
mn

]

‖
,

mn, cn = coefficient of best fit line n as per Equation 3.22,

P̄ u
n,m = the mth undistorted point on the nth straight line,

= fBrown
(

P̄ d
n,m, D̄U

u

params

)

as per Equation 3.25,

P̄ d
n,m = the mth distorted point on the nth straight line,

D̄U
u

params = column vector of unscaled DU parameters,

= D̄U
s

params (κ̄params)
T , and

κ̄params = column vector of scaling parameters as per Equation 5.7.

As indicated in Equation 5.6, scaling the parameters to normalise the sensitivity

of the gradient vector is required. These scaling parameters are in the pixel do-

main and so vary with camera resolution and field of view. In general each radial

term’s scaling factor is several orders of magnitude smaller than the previous ra-

dial term’s scaling factor. The same is true for the infinite series portion of the

tangential parameters. The first two radial parameters’ scaling values are the

same order of magnitude as the first radial scaling parameters and the principal

point scaling factors are inversely proportional to the resolution of the image.
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Equation 5.7 defines the scaling parameters vector:

κ̄params =



































κhc

κvc

κR1

...

κRNR

κT1

...

κTNT



































(5.7)

where

(κhc, κvc) = distortion centre scaling parameters,

κKi = scale factor for ith radial parameter,

κPi = scale factor for ith tangential parameter,

NR = the number of radial parameters, and

NT = the number of tangential parameters.

A starting vector is required for local optimisation (i.e. V̄ s). Three common ways

of determining this starting vector are:

1. Set all the parameters to 0.

2. Use prior knowledge to select approximate starting values.

3. Specify a range for each parameter and perform a coarse global optimisa-

tion, e.g. brute force or a genetic algorithm.

After initialisation the vector must be scaled so that the gradient is equally

sensitive to a constant size perturbation in each dimension. This allows for a

more accurate gradient estimation by the local optimisation procedure resulting

in better characterisations. With reference to Equation 5.7, Equation 5.8 shows

the scaling procedure:

D̄U
s∗
i = D̄U

s

i/κ̄i ∀i ∈ [0, N ] ∩ Z (5.8)

101



5.5. CAMERA CALIBRATION

where

D̄U
s∗

= the scaled starting parameter vector ready for numeric refinement,

D̄U
s
= the chosen initial starting parameter vector,

κ̄ = the desensitising scale vector as per Equation 5.7, and

N = the number of parameters being refined.

5.5.2 Inverse distortion modelling

This section describes how the UD characterisation is performed. The character-

isation is necessary to determine the image coordinate corresponding to a point

in space. An example of where this is required is each pixel in a photogrammet-

rically stitched image (see Chapter 6 and de Villiers [12, 18]).

The method used in this work is that described by de Villiers et al. [16] whereby

the matched sets of distorted and undistorted points produced during the DU

characterisation are used to fit the parameters of a Brown distortion model [34] in

the UD direction. This is performed by creating a cost function that measures the

RMS error (in pixels) between the original distorted point (as captured during the

robot movement sequence) and the redistorted point calculated by applying the

current UD parameters to the undistorted point obtained during DU calibration

(Section 5.5.1). Such a cost function will only ever achieve its minimum of zero, if

all the undistorted-and-then-redistorted points exactly coincide with the original

distorted points. This cost function is expressed mathematically as:

CU→D(ŪD
s

params) =

√

√

√

√

1

N

N
∑

i=1

‖P̄ d
i − P̄ d∗

i ‖ (5.9)

where

CU→D = the UD characterisation cost function,

N = the number of distorted points,

P̄ d
i = the ith distorted image point,

P̄ d∗
i = the ith undistorted and then redistorted image point,
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= fBrown
(

fBrown
(

P̄ d
i , D̄U params

)

, ŪD
s

params (κ̄params)
T
)

fBrown = as per Equation 3.25 (Section 3.4.6 for parameter details),

ŪD
s

params = the scaled reverse distortion correction parameters,

κ̄params = vector of scaling parameters as per Equation 5.7, and

D̄U params = the camera’s DU parameters as per Section 5.5.1.

The starting vector is given as either all zeroes or the negative of the DU param-

eters, with the exception of the distortion centre where the DU centre is used.

This starting point is then fed into a local optimisation algorithm. The Leapfrog

algorithm (see Section 3.2.2.4) is used due to its noise robustness and ability to

find superior local minima.

5.5.3 Focal length determination

The focal length determination makes use of the tetrahedron problem detailed in

Section 3.4.7 and summarised in Equation 3.29. Note that Equation 3.29 makes

use of Equation 3.25 (which is dependent on the distortion parameters of the lens

which are assumed to have already been calibrated via the methods described in

Section 5.5.1). Equation 3.29 also makes use of Equation 3.17 which makes use

of the focal length which is the subject of this characterisation.

The robot arm is used to place the LED in the FOV of the camera such that a

number of tetrahedrons are created. In this research 20 tetrahedrons were created

in four groups of five. Each group had the tetrahedrons centred at a different

location, with the groups’ central positions forming a ‘+’. At each location

the tetrahedrons were angularly offset such that the camera’s optical axis was

not normal to the base of the tetrahedron. The tetrahedrons in a group were

respectively angled to look up-to-the-right, down-to-the-right, down-to-the-left,

and up-to-the-left as seen from the camera’s point of view.

To determine the focal length the camera was placed in two positions to view

the tetrahedrons. The camera was rigidly placed in the first position and then
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viewed all the tetrahedrons, after which it was placed in the second position and

it again viewed the robot moving through the exact same tetrahedron sequence.

The camera was stationary at each position while viewing the tetrahedrons.

This means that the relative displacement of the camera was constant. Since the

robot arm was used to move the energy source to each subsequent position for

each tetrahedron, the translations of the tetrahedron points are known. If the

distortion parameters are already known, then the focal length remains the only

parameter required by Equation 5.10 via its dependence on Equation 3.17.

The orientation of the robot end effector is kept constant, while it is being moved

to each of the tetrahedrons’ vertices. This is to allow the focal length to be

determined even if the LED translation offset from the end effector is unknown.

This in turn allows a camera to be used to determine the LED spatial offset

(Section 5.4.2) once the focal length has been determined.

For an assumed focal length the position and orientation of the camera relative to

the robot reference (which is the CF in which the LED’s translations, i.e. the T̄icc’s

of Equation 3.29, are known) can be calculated. At the correct focal length, the

locus of calculated camera positions will be the smallest possible, theoretically

zero if there are no errors in the LED image position measurement and DU

characterisation. This can already be used as a cost function to determine the

ideal focal length. This sensitivity to focal length is increased by comparing

the relative position and orientation of the camera at the second position to

the camera at the first position for each tetrahedron. This is possible due to

the high repeatability [72] of the robot arm used (an ABB IRB120). For each

tetrahedron i, the pose of the cameras at each of the two mounts (mount a and

mount b) is calculated. A measure of the similarity between the two poses for

that tetrahedron (∆i) is then calculated. This measure is not expected to be zero

(as the camera is on different physical mounts) but it should ideally be constant

over all the tetrahedrons. The variation in the similarity measure is the cost

function that is minimised. This measure will reach its minimum of zero, when

the relative pose of the two camera is constant, which will only happen if the

DU characterisation is accurate and the focal length is correct. Equation 5.10
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provides the mathematics:

CF (FLen) =

√

√

√

√

1

Ntet

Ntet
∑

i=1

[∆2
i ]−

(

1

Ntet

Ntet
∑

i=1

[∆i]

)2

(5.10)

where

CF = the cost function to determine the focal length,

Ntet = the number of tetrahedrons observed,

∆i = pose dissimilarity of a and b for tetrahedron i,

= k1θi + k2‖T̄ca,icb,ir‖,
θi = fRtoAA(RT

ca,ir
Rcb,ir),

T̄ca,icb,ir = T̄rcb,ir − T̄rca,ir,

(T̄rca,ir,Rca,ir) = ftet
(

Ūca,ijca,i∀j ∈ [1, 4], T̄tijr∀j ∈ [1, 4]
)

,

ftet = as per Equation 3.29,

(T̄rcb,ir,Rcb,ir) = ftet
(

Ūcb,ijcb,i∀j ∈ [1, 4], T̄tijr∀j ∈ [1, 4]
)

,

Ūca,jica,j = fimg→vec(fBrown(P̄ d
a,i,j, D̄U params), Īparams),

Ūcb,jicb,j = fimg→vec(fBrown(P̄ d
b,i,j, D̄U params), Īparams),

i ∈ [1, Ntet] and denotes the tetrahedron number,

j ∈ [1, 4] and denotes tetrahedron vertex number,

fimg→vec = as per Equation 3.17 which is dependent on the focal length,

fBrown = as per Equation 3.25,

P̄ d
x,i,j = the LED image coordinates of tetrahedron i vertex j

seen from camera position x (Section 3.4.5),

Ūcx,jicx,j = camera’s UV from position x to vertex ith of tetrahedron j,

D̄U params = the distortion parameters (Section 3.4.6), and

Īparams = the intrinsic parameters, including the focal length

(Section 3.4.2).

Weighting values for Equation 5.10 of K1 = 10 and K2 = 1.0 were used. In order

to find the ideal focal length, a range centred around the lens’s claimed/designed
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focal length needs to be searched for the minimum value of Equation 5.10. This

can take the form of any line search technique such as Powell’s method (Figure

3.6) or the golden ratio search (Equation 3.1). Equation 5.10 is dependent on

the tetrahedron pose determination (Equation 3.29) which selects the best of up

to four possible real solutions (Equation 3.28). Equation 3.28 can potentially

choose a different solution of Equation 3.27 for small changes in the focal length.

This causes the cost function to be non-continuous, but still one dimensional.

Therefore a coarse-to-fine brute-force search was used.

No previous focal length calibrations based on the clustering of analytically de-

termined camera poses using hypothesised focal lengths were found in literature.

This method is thus considered to be a novel approach and successfully reduces

the dimensionality of the search space when the camera pose is determined in

Section 5.5.4.

5.5.4 Mount pose determination

Determining the pose of the mount relative to the reference CF requires knowl-

edge of the camera pose w.r.t. its mount and the global pose of the camera in

the reference CF. The determination of the camera pose offset is described in

Section 5.5.5. This section therefore concentrates on the determination of the

global camera pose.

The DU parameters and focal length are required to determine this global camera

pose. The focal length can either be determined as per Section 5.5.3 or added as

the seventh parameter being numerically refined (it affects the Ū1
cic vectors). The

spatial offset of the LED relative to the end effector is also required (the robot

reports the pose of the end effector, not of the attached LED). The knowledge

of the LED spatial offset is not required if the the orientation of the arm is kept

constant and the resultant constant spatial error (which is equal to the LED

spatial offset) is acceptable. The constant unknown spatial offset is irrelevant

when calibrating a stereo pair, as the determination of the relative positions of

the mounts will be correct since the two spatial errors in the mount pose relative
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to the robot will cancel.

The global position is determined by minimising the dissimilarity between two

bundles of vectors created by the camera observing the robot arm through a

sequence of positions. The first bundle, termed Ū1
cic, is based on the intrinsic

parameters and the captured LED centres during a robot movement sequence.

The second bundle, called Ū2
cic, is created by hypothesising a pose of the camera

relative to the robot arm and calculating the vector from this hypothesised pose

to each LED using the reported pose of the robot and (possibly) the LED spatial

offset. What is then desired is to maximise the similarity of the directions of the

corresponding vectors of the two bundles. This will result in finding the camera

pose that best explains the positions of the LEDs in the camera’s image. The cost

function used is the sum of the angles between all the corresponding vectors in the

two bundles. These angles are calculated from the inverse cosine of dot product

of the normalised corresponding vectors. The negative of the dot product itself

could be used as a cost function too, but is insensitive to small angular differences.

Equation 5.11 expresses the implemented cost function mathematically:

CEP (RH
cr, T̄

H
rcr) =

n−1
∑

i=0

(

cos−1(Ū1
cic • Ū2

cic)
)

(5.11)

where

CEP = the extrinsic parameter cost function,

RH
cr = hypothesised orientation of the camera w.r.t. robot arm,

T̄H
crc = hypothesised position of robot arm w.r.t. camera,

Ū1
cic = image processing based UVs,

= fimg→vec(fBrown(P̄ d
i , D̄U params), Īparams),

fimg→vec = as per Equation 3.17,

fBrown = as per Equation 3.25,

P̄ d
i = distorted LED centre (Section 3.4.5) at position i,

D̄U params = the camera DU parameters (Section 3.4.6),

Īparams = the camera intrinsic parameters (Section 3.4.2),
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Ū2
cic = UVs based on hypothesised camera pose,

= T̄cic/|T̄cic|,
T̄cic = (RH

cr)
T
(

T̄rlir − T̄rcr

)

,

T̄rlir = the LED position w.r.t. the robot CF,

= RairT̄ala + T̄rair,

Rair = orientation of the robot arm at pose i,

T̄ala = position of LED w.r.t. end effector, and

T̄rair = the position of the robot arm at pose i.

This cost function is then numerically optimised using a robust algorithm such

as Fletcher-Reeves [21] or (as in this work) Leapfrog [26]. This cost function is

slower to evaluate but more accurate than merely using the negative of the dot

product, due to the increased sensitivity to almost-parallel vectors provided by

the (computationally intensive) inverse cosine function. It should be noted that if

the focal length is being determined in conjunction with camera pose, and all the

LED positions lie in a single plane, then Equation 5.11 becomes ill-conditioned

as the camera angle relative to this plane approaches 90◦. When the camera

is perfectly orthogonal the focal length and displacement along the camera axis

cannot be uniquely determined, only their ratio can be found.

Once the global camera position has been calculated, one can simply determine

the pose of the mount w.r.t. the robot using the camera w.r.t mount offset:

Rmr = RcrR
T
cm, and

T̄rmr = T̄rcr −RmrT̄mcm (5.12)

where

Rmr, T̄rmr = the desired pose of the mount,

Rcr, T̄rcr = camera pose w.r.t. reference CF as per Equation 5.11, and

Rmt, T̄rmr = camera pose w.r.t. mount as per Equation 5.13.
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5.5.5 Camera mount pose offset determination

This section describes how the pose of the camera w.r.t. the camera’s repeatable

mounting bracket is determined. In terms of optics nomenclature the determined

pose is the orientation of the optical axis (with roll defined by the CCD) with the

translation of the entrance pupil all expressed w.r.t. the CF defined by the me-

chanical mounting interface of the camera. This calibration requires the outputs

of the DU and focal length characterisations. In this calibration it is explicitly

assumed that orientation of the end effector is kept constant, so that the LED

spatial offset may be ignored. This allows the results of this calibration to be

used to subsequently calculate the LED offset (Section 5.4.2). The PMJ is used

for this calibration. The PMJ’s pose w.r.t. the robot CF is not required to be

known a priori.

This calibration requires the camera to be placed on each of the mounting brack-

ets of the PMJ (whose relative poses are all known a priori) and to observe the

same sequence of LED positions. For each possible unique pair of mounts on the

PMJ, the position of each LED (w.r.t. the PMJ CF) in the movement sequence is

triangulated using stereo vision. The average of all these triangulated positions

is compared to the provided position of the end effector for the corresponding

position in the arm movement sequence. If the average triangulated LED posi-

tions exactly coincide with the positions reported by the robot then the poses of

the cameras on the mount must be correctly specified in the robot’s CF.

The stereo triangulation requires that the captured LED pixel position be con-

verted into a 3D vector. This pixel to vector conversion is why the camera DU

characterisation and focal length are required. However these vectors are calcu-

lated in the local camera CF, and the orientation of the camera on each mount

w.r.t. the robot is required. This camera to robot pose requires knowledge of

the PMJ pose w.r.t. the robot CF, knowledge of each mount’s pose w.r.t. the

PMJ (known from prior calibration: Section 5.4.1), and knowledge of the cam-

era pose w.r.t. the bracket. In addition to knowledge of the direction vectors,

triangulation requires knowledge of a point along the vectors, which in this case

corresponds to the camera position. This camera position is the summation of
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the PMJ, bracket and camera spatial offsets.

The cost function is thus dependent on both the pose of the PMJ w.r.t. the robot

and the pose of the camera w.r.t the mount. The cost function is the RMS error

(over all the points in the robots movement sequence) of the difference between

the average triangulated LED position and the reported end effector position (the

end effector pose is kept constant). Equation 5.13 provides the mathematics:

CMP
(

RH
jr, T̄

H
rjr,R

H
cm, T̄

H
mcm

)

=
√

√

√

√

1

Np − 1

(

Np−1
∑

i=0

∥

∥

∥

∥

∥

T̄rpir −
2

N2
m −Nm

Nm−2
∑

j=0

Nm−1
∑

k=j+1

T̄ S
rpi,j,kr

∥

∥

∥

∥

∥

)

(5.13)

where

CMP = the mount pose cost function,

RH
jr, T̄

H
rjr = hypothesised pose of PMJ w.r.t. robot CF,

RH
cm, T̄

H
mcm = hypothesised pose of camera w.r.t. mount expressed in the

mount’s CF,

Np = number of LED image coordinates found,

Nm = number of mounting points on the PMJ (4 in this work),

Rpir = Rpjr∀i, j ∈ [0, Np − 1],

T̄rpir = position of end effector as reported by the robot arm,

T̄ S
rpi,j,kr

= stereo triangulation of LED at position i as calculated using

cameras at mounts j and k,

= fint
(

T̄rcjr, Ūcjpir, T̄rckr, Ūckpir

)

,

T̄rclr = position of camera at mount l w.r.t. robot CF,

= T̄H
rjr +RH

jr

(

T̄jmlj +RmljT̄
H
mcm

)

,

Ūclpir = UV from camera at mount l to LED i in robot’s CF,

= RH
jrRmljR

H
cm

(

fimg→vec
(

fBrown
(

Īdi,l, D̄U params,l

)

, Īparams,l

))

,

fint = as per Equation 3.20,

fimg→vec = as per Equation 3.17,
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fBrown = as per Equation 3.25,

D̄U params,l = DU corrections parameters for camera l (Section 3.4.6),

Īparams,l = intrinsic camera parameters for camera l (Section 3.4.2),

Īdi,l = LED pixel centre i (Section 3.4.5) as seen from mount l, and

Rmlj, T̄jmlj = known pose of mount l w.r.t. PMJ (Section 5.4.1).

The cost function of Equation 5.13 is seeded with an initial 12 parameters

which are then refined using a local optimisation algorithm (in this research

Leapfrog [26] is used). The initial parameters can be determined with coarse

estimates obtained from a tape measure for the spatial parameters and rough es-

timates for the angular parameters. No previous work on separating the extrinsic

parameters into two poses based on only the relative, rather than absolute, poses

of several camera mounts could be found in literature. This calibration is thus

considered novel.

An alternative cost function based on first determining the pose of each camera

w.r.t. the robot using Equation 5.11 was also considered. In this scenario, the

hypothesised PMJ w.r.t. the robot pose, known mount w.r.t. the PMJ pose,

and hypothesised camera w.r.t mount pose are used to calculate hypothesised

camera w.r.t the robot poses. The two hypothesised poses are then numerically

refined until the resultant camera poses are maximally similar to those provided

by Equation 5.11. This was experimentally seen to provide worse results than

the cost function detailed above, possibly due to the lack of rigorous methods of

determining the similarity of two poses.
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Chapter 6

Application of photogrammetric

calibration parameters

This chapter aims to address the second research question proposed in Sec-

tion 1.2: “Are the calibration parameters produced by such a system suitable

for real world applications?” This chapter provides two examples of real-world

photogrammetric applications. Cameras are calibrated with the APCCS for each

application and the resultant accuracy of the application is used as a yardstick

to determine if the APCCS is indeed a useful practical system.

The primary example, photogrammetric stitching, is presented in Section 6.1.

This section shows how to both register and then blend images from cameras

with different resolutions, FOVs and spectrums to create a seamless false colour

panorama. Two different systems with different numbers of cameras arranged

in different physical configurations are evaluated. The accuracy of the stitching

is assessed both subjectively via the resultant panoramas and objectively via

analysis of the accuracy which image features visible to multiple cameras are

overlaid on the panorama.

The second example application, optical helmet tracking is presented with less

rigour in Section 6.2. The reason for the decreased rigour is due to the results

already being published [7], the sensitivity of such military related equipment,
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and to decrease the size and scope of this thesis. The section describes the

physical apparatus of a multi-camera Helmet Tracker System (HTS), the basic

mathematical principles of a HTS and the results obtained for a simple laboratory

system which was constructed for this test.

6.1 Photogrammetric stitching

Stitching is the creation of a panoramic image by assembling smaller images into

a larger image. All forms of stitching, which is also referred to as mosaicking,

consist of a registration step followed by a blending step. Registration determines

which pixels from the input images correspond to each pixel in the output stitch

(Section 6.1.1). Blending determines the relative weightings of each camera for

each pixel of the stitch. This is to equalise the variance in brightness and colour

balance between adjacent cameras, to create false colour images for multispectral

camera arrays, and to minimise any errors in registration. Section 6.1.2 discusses

blending in more detail. The quantitative measure of how accurately the stitch

was performed is given in Section 6.1.3. Section 6.1.4 provides both example

panoramas as subjective proof of the fidelity of the stitching algorithm as well

as the quantitative accuracy. Section 6.1.5 summarises the stitching work and

places its results in context.

Table 6.1 shows the number of parameters required for a typical multi-camera

staring array surveillance system. These parameters exclude blending parameters

and parameters not measured, such as the pixel dimensions which are obtained

from the data sheet.

6.1.1 Photogrammetric registration

The registration step of stitching entails determining the correct relative align-

ment, rotation, scaling and shear of the input images. Wide FOV cameras also

need to have their distortion corrected or the inward bending of objects will pre-

vent proper registration. Figure 6.1 shows an example where the door frame in
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Table 6.1: Photogrammetric parameters required for stitching.
Item Calibration Number of

parameters
Note

Camera Total 33 -
DU calibration 10 5 radial, 3 tangential,

distortion centre
UD calibration 10 5 radial, 3 tangential,

distortion centre
Focal length 1 -
Camera to
mount pose

6 3 angular, 3 spatial

Mount to refer-
ence pose

6 3 angular, 3 spatial

Stitching Geometry 5 Radius, plane normal
and plane distance (as
per Equation 6.1)

Resolution 6 Azimuth minimum,
maximum and step size.
Elevation minimum,
maximum and step size.

Complete
system

4 cameras 143 -

8 cameras 275 -
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Figure 6.1: Distortion induced stitching errors.

the overlap cannot be correctly aligned with the raw distorted images. The final

output of registration is the ability to determine which pixels from which images,

correspond to which pixel in the panorama (and to each other).

It is possible to stitch images together from non-calibrated cameras. This is

called feature based stitching and uses the content of each image to determine

the registration. Image features are found in each image. These are image

points that are repeatably and accurately locatable, as well as uniquely iden-

tifiable despite slight changes in magnification, rotation, illumination and per-

spective. Popular image feature algorithms include the seminal SIFT [81] and
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SURF [82]. These are floating point algorithms and tend to be slow and difficult

to parallelise. More recently simpler binary algorithms that are less robust but

more parallelisable have been developed, these include Binary Robust Invariant

Scalable Keypoints (BRISK) [83] and Binary Robust Independent Elementary

Features (BRIEF) [84]. Recent work has managed to combine much of the ro-

bustness of the floating point algorithms with the speed of the binary algorithms,

a preeminent example being Binary Features from Robust Orientation Segment

Tests (BFROST) [85].

Once the chosen features have been found, corresponding matching features in

the overlapping portion of each adjacent camera pair’s FOV are determined.

Thereafter, the transformations are applied to each image so that the matching

feature pairs coincide in the stitch image. This allows the relative camera motion,

changes to the FOV/magnification to be taken into account, and a single camera

to produce a panorama by changing its viewing direction over time.

Despite the advantage listed above, there are several disadvantages to feature

based stitching. Chief among them is that finding image features, matching

them across images and then determining the mapping between images to create

the panorama are all slow and typically nondeterministic processes. Further-

more, low contrast or poorly exposed images may not have enough detail to

find sufficient usable features with which to do the registration. Feature based

stitching also requires large overlaps of the camera FOVs and thus more cameras

per solid angle are needed. Finally, the stitch may not be created in a geomet-

rically representative manner. This would then not allow the effective intrinsic

parameters of the stitch to be determined.

Photogrammetric registration is the alternate to feature based stitching. By

calibrating the camera’s intrinsic and extrinsic parameters, the stitching process

can be made quicker, deterministic and create a known geometry that allows

the corresponding world vector of any stitch point to be easily determined. The

trade-off is that the stitching becomes sensitive to relative camera motion.

Photogrammetric registration works by ray-tracing each point of a theoretical

constellation of points onto each camera’s image. Each point in the constellation
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is uniquely associated with (or generated from the coordinates of) a pixel in

the stitched image. The translation of each point is calculated relative to each

camera and then projected into the camera’s virtual inverted image plane. This

spatial coordinate is then converted into pixel space to yield an ideal undistorted

pixel position for that camera. These undistorted pixel coordinates are converted

into distorted coordinates using each camera’s unique UD parameters. These

distorted coordinates are then used to look up the colour value for that camera

for that point in space.

For any physically realised system, the cameras will have a non-zero relative dis-

placement or baseline. This means that the stitch is depth sensitive, particularly

in the overlapping regions. Therefore, if the real world distance of an object

is not at the exact distance at which the hypothetical stitch position for that

pixel is calculated, then the incorrect pixel in the camera is used for that stitch

point. This causes blur in the overlap regions whose magnitude is dependent

on the difference between the object and the stitch distance. This can be min-

imised by attempting to alter the distance associated with each pixel to match

the expected scene. A multi-geometry stitch surface based on the intersection

of a plane and sphere was developed and presented at a conference [12] in 2013.

The multi-geometry stitch better simulated typical scenarios of camera arrays in

a terrestrial deployment and was shown to drastically improve the stitch fidelity.

In this research, the registration includes the biasing of each camera’s weighted

contribution such that for each pixel, the camera which has that point closest to

its centre is favoured. This has two effects: firstly, it causes a smoother transition

in the white balancing of adjacent cameras. Secondly, the weighting causes pixels

in a camera’s peripheral FOV, where distortion correction is typically the least

accurate, to contribute less to the stitch.

To create a Mercator projection, each stitch pixel is assumed to subtend a con-

stant angular width and height. Using the procedures described in the preceding

paragraphs to vary the distance of the stitch surface results in the modified
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Mercator projection used here. Equation 6.1 provides the mathematics:

Īs(r,g,b,i) (hs, vs) =

∑Ncam−1
j=0

[

Ī
(cj)

(r,g,b,i)

(

P̄
(cj)

(h,v)

)

W cj

(

P̄
(ci)
(h,v)

)]

δ +
∑Ncam−1

j=0

[

W cj

(

P̄
(cj)

(h,v)

)] (6.1)

where

Ncam = the number of cameras in the stitch,

P̄
(ci)
(h,v) = fBrown(fP→U(RT

cir

(

D∗Ūrsr(hs, vs)− T̄rcir

)

, Īparams,i), ŪDparams,i),

fBrown = as per Equation 3.25 (Section 3.4.6 for parameter details),

fP→U = as per Equation 3.18,

ŪDparams,j = camera j’s UD parameters,

Īparams,j = camera j’s intrinsic parameters,

Ī
(cj)

(r,g,b,i)(h, v) = colour quadruplet of camera j at coordinates (h, v),

Ūrsr(hs, vs) =







cos(Elmin + vs × El∆) cos(Azmin + hs × Az∆)

cos(Elmin + vs × El∆) sin(Azmin + hs × Az∆)

sin(Elmin + vs × El∆)






,

(Azmin, Elmin) = aiming angles of top left stitch pixel,

(Az∆, El∆) = horizontal and vertical angle each stitch pixel subtends,

D∗(hs, vs) = min(Ds(hs, vs), D
p(hs, vs)),

Ds(hs, vs) = distance from origin to stitch sphere, i.e. the stitch radius,

Dp(hs, vs) = distance from origin to stitch plane,

=
Dpr

Ūrsr(hs, vs) • Ūrpr

,

Dpr = distance of plane from stitch origin,

Ūrpr = outward pointing normal UV of plane,

W cj

(

P̄
(cj)

(h,v)

)

= weight of camera j’s contribution,

= max
(

0.0, P̄
(ci)
h (Rh − P̄

(ci)
h )

)

×max
(

0.0, P̄ (ci)
v (Rv − P̄ (ci)

v )
)

,

(Rh, Rv) = pixel resolution of camera j, and

δ = a tiny positive value to ensure a nonzero denominator.
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Equation 6.1 is a summary of the improved stitching algorithm [12], including

quicker blending and multiple geometry stitching. For a more detailed discussion

on each step of the stitch algorithm, implementation considerations, and timing

results the reader is referred to the two papers [12, 18] published that detail the

algorithm.

The next question that arises is that of choosing the stitching parameters. Some

of the parameters are fairly straightforward: the azimuth and elevation range

of the stitch should cover the combined FOVs of the cameras. The range may

be decreased slightly to clip the bubble like bowing at the top of the panorama,

which is due to projecting a rectangular FOV onto the inside of a sphere. The

azimuth and elevation step sizes are chosen based on a combination of several

criteria: the maximum allowable size of the stitch (constrained to 8192 pixels

per side in current GPUs), the resolution of the screen on which the stitch is

displayed, the effective angular resolution of the cameras used in the stitch, and

the size of the smallest object that is required to be detectable in the stitch. The

stitch radius is typically chosen according to the needs of the end application:

for instance a ground based system is unlikely to have long view lines and may

have multiple close objects, thus the stitch radius will be decreased. Conversely

an airborne system may have a large stitch radius as it is unlikely to encounter

any close objects. The stitching plane in most cases will coincide with the local

terrain. On level ground or calm waters, the stitching plane’s normal vector

will point downwards. The planar distance will be set to match the height of

the system above the ground. On a moving system, both the plane normal and

distance could be updated by inertial systems. On non level terrain the plane

normal and distance should be set to match the best approximation of the local

terrain.

6.1.2 Blending different spectra

Blending is the second stitching step. It entails the creation of an output colour

for each stitch pixel based on the corresponding input pixel/s in the set of input

images. The correspondence of input image pixels to output stitch pixels is the
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result of the registration step (Section 6.1.1). The blending needs to cater for

images with different exposures, white balances, and potentially even different

sensitivity spectra.

In this work the colour balancing and centre-bias weighting of each camera’s

contribution in overlapping portions of the FOV is performed by the primary

stitching algorithm (Equation 6.1). The output of the stitching algorithm is

assumed to be a colour quadruplet consisting of red, green, blue and LWIR

values for each pixel. The purpose of this section is the creation of false colour

images to display these 4 colour images on a typical 3 colour display. This is

referred to as image fusion.

Intuitively one is inclined to tint hotter objects red and colder objects blue. For

greyscale visual imagery this works well. However, for colour visual imagery this

results in ambiguities such as whether a red object in the fused image is red in

colour and of ambient real world temperature, or whether it is white in colour

and particularly hot in the real world. The solution to this problem seems to be

application specific.

An evaluation was performed for a surveillance scenario. Three algorithms as

well as the raw visual and raw IR panoramas were evaluated by a panel of

32 assessors. Four different scenarios were evaluated: three indoor scenes with

controlled lighting conditions ranging from dark to brightly lit, and one sunny

outdoor scene. The AHP [86] was used to determine the best algorithm for each

scenario. This entails directly comparing every possible permutation of pairs

of fused panoramas side by side. For each pair, each assessor independently

selects which fusion algorithm is better and quantifies by how much the preferred

algorithm is superior.

The full details of the comparison including the analysis methodology, mathe-

matics and details of all the fusion algorithms were published and can be found

in the paper [14]. This work only presents the results sufficient to show that

the panoramas created by arrays of visual and thermal cameras are created suc-

cessfully. This in turn shows that the APCCS can successfully and accurately

calibrate cameras of different spectra. Results for well lit scenarios, where the
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Table 6.2: Values of factors used in fusion algorithms.
Scene Algorithm αH1 αH2 αC1 αC2 κ1 κ2 κ3

Outside / TTGS 0.65 1.0 0.0 0.1
well lit TBHO 0.65 1.0 0.0 0.1 0.3 0.9 0.5

Thermal Tinged Gray Scale (TTGS) and Thermal Based Hue Offset (TBHO) al-

gorithms were found to provide the best results [14], are presented and explained

below. Both of these fusion algorithms use several weighting values and parame-

ters for hot and cold fuzzy membership functions. These values were empirically

tuned and are given in Table 6.2.

6.1.2.1 Thermal tinged greyscale

The TTGS algorithm creates a false coloured image based on a greyscale version

of the visual image. It intentionally discards the colour content in order to avoid

colour/temperature ambiguities and better retain the visual textural details.

The first four values in each row of Table 6.2 are used to determine to the extent

to which each pixel is deemed hot or cold. This is a fuzzy membership based

on two limits. Assuming normalised inputs with colour intensities in the range

of zero to one, all pixels whose LWIR colour component is less than αC1 are

deemed completely cold. Pixels with LWIR intensities between αC1 and αC2

are partially cold, linearly decreasing from cold at αC1 to not cold at αC2. All

pixels with LWIR intensities above αC2 are not cold. The hot fuzzy membership

function works similarly but swapped with pixels above αH2 being deemed hot

and below αH1 not being considered hot. Equations 6.2 and 6.3 express this

mathematically:

fH =















0 if Īs(r,g,b,i).i ∈ [0, αH1]
Īs
(r,g,b,i)

.i−αH1

αH2−αH1
if Īs(r,g,b,i).i ∈ (αH1, αH2]

1 if Īs(r,g,b,i).i ∈ (αH2, 1]

and (6.2)
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fC =















1 if Īs(r,g,b,i).i ∈ [0, αC1]
αC2−Īs

(r,g,b,i)
.i

αC2−αC1
if Īs(r,g,b,i).i ∈ (αC1, αC2]

0 if Īs(r,g,b,i).i ∈ (αC2, 1]

(6.3)

where

fH = the membership function for hot elements,

fC = the membership function for cold elements,

αH1 = the lower threshold for the hot element,

αH2 = the upper threshold for the hot element,

αC1 = the lower threshold for the cold element,

αC2 = the upper threshold for the cold element,

Īs(r,g,b,i).i = the normalised LWIR intensity of the pixel.

TTGS uses the fuzzy hot and cold memberships to create false colour images.

The visual colour triplet of the input pixels are converted to their greyscale equiv-

alents. The red component of the output pixel is the greyscale value amplified

by the hot fuzzy membership and the blue component is the greyscale value am-

plified by the cold fuzzy membership. The green channel is set such that the

geometric mean of the three channels is the same as the original greyscale value.

Equation 6.5 illustrates:

Is
′

rgb =









G (1 + fH)
G

(1+fH)(1+fC)

G (1 + fC)









(6.4)

where

Is
′

rgb = the output RGB pixel,

fH = as per Equation 6.2,

fC = as per Equation 6.3,

G = greyscale scale conversion of input RGB values,
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=







0.2126

0.7152

0.0722







T

·







Īs(r,g,b,i).r

Īs(r,g,b,i).g

Īs(r,g,b,i).b






, and

Īs(r,g,b,i) = the input colour quadruplet pixel from Equation 6.1.

6.1.2.2 Thermal based hue offset

The TBHO algorithm attempts to retain colour information while simultaneously

presenting thermal information. It first determines if the pixel is hot or cold by

comparing the normalised LWIR intensity to ranges defined by the α values

provided in Table 6.2. If the pixel is neither hot nor cold then the input RGB

intensities are used as the output values. Should the pixel be deemed either hot

or cold then each of the RGB values is first interpolated with the LWIR value

using the κ values of Table 6.2. Thereafter the pixel is converted from the RGB

colour space to the Hue Saturation Value (HSV) colour space. This conversion is

a standard procedure and can be found in many handbooks on image processing,

such as that of Gonzalez and Woods [73]. Once in the HSV space, hot pixels

are shifted towards ‘warmer’ colours and cold pixels shifted to the ‘cooler’ part

of the colour spectrum. Finally the resultant HSV pixel is converted back into

RGB format and output. This process in summarised in Equation 6.5:

Is
′

rgb =











fHtoR

(

T P̄HSVC

)

if Īs(r,g,b,i).i ∈ [αC1, αC2)

fHtoR

(

T P̄HSVH

)

if Īs(r,g,b,i).i ∈ (αH1, αH2]

Īs(r,g,b,i).rgb otherwise

(6.5)

where

Is
′

rgb = the output RGB pixel,

fHtoR = the function to transform HSV to RGB,

T P̄HSVH
= fRtoH

(

T ĪRGB

)

−







10◦

0

0






,
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T P̄HSVC
= fRtoH

(

T ĪRGB

)

+







8◦

0

0






,

fRtoH = the function to transform RGB to HSV,

T ĪRGB = an intermediate intensity in RGB format,

=







κ1Ī
s
(r,g,b,i).r + (1− κ1) Ī

s
(r,g,b,i).i

κ2Ī
s
(r,g,b,i).g + (1− κ2) Ī

s
(r,g,b,i).i

κ3Ī
s
(r,g,b,i).b+ (1− κ3) Ī

s
(r,g,b,i).i






, and

κn = the nth interpolation factor.

6.1.3 Quantitative measure of stitch accuracy

This section describes the quantitative measure of how accurately the stitching

algorithm performs. The measure uses image content in the form of image fea-

tures (Section 6.1.1). The standard implementations of SIFT [81] and SURF [82]

as implemented by OpenCV [4] are used for this evaluation. All matched fea-

tures that fell within the overlapped portions of the image and had matches of

sufficient strength as per Tables 6.4 and 6.5 were used.

The stitching accuracy measure (Equation 6.6) is the RMS angular error in the

stitch CF (over all pairs of matched image features) between the stitch positions

corresponding to each camera’s observation of the matched features. This angu-

lar error is calculated from the points on the multi-geometry stitch surface that

correspond to camera image coordinates of the feature in the cameras. This can

be expressed mathematically as:

Estitch =

√

√

√

√

1

N

N
∑

i=1

[

cos−1

(

T̄ a
rfir

• T̄ b
rfir

‖T̄ a
rfir

‖‖T̄ b
rfir

‖

)]2

(6.6)

where

Estitch = the RMS angular error between stitched points,

N = the number of matched feature points, and

124



6.1. PHOTOGRAMMETRIC STITCHING

T̄ j
rfir

= stitch point for feature point i in camera j as per Equation 6.7.

Equation 6.6 requires the 3D spatial coordinate that corresponds to a camera’s

pixel coordinate for a given image point. It is not normally possible to determine

the range to a single point given a single camera’s observation of it. We can

however determine which point on the multi-geometry stitch surface (Section

6.1.1) corresponds to that camera’s pixel coordinate. Conceptually it is easier to

think of the process in reverse: the pixel position is corrected for lens distortion

and then converted into a UV using the camera’s intrinsic parameters. Since the

camera’s pose is known relative to the stitch geometry (i.e the camera’s extrinsic

parameters), the UV can be extended until it intersects either the stitch plane

or the stitch sphere. This point is the 3D position required. In practice, such an

iterative procedure is not required as the distance to the plane and sphere can

be calculated analytically and the closer point selected. Equation 6.7 shows how

this is done:

T̄ j
rfir

= T̄rcjr +DcjfirŪcjfir (6.7)

where

T̄ j
rfir

= projection of camera j’s feature i onto the stitch surface,

Dcjfir = distance from camera j to feature i’s stitch surface projection,

= min(DS
cjfir

, DP
cjfir

),

DS
cjfir

= distance from camera j to the sphere for feature i,

= max

[(

−
(

T̄rcjr • Ūcjfir

)

±
√

(

T̄rcjr • Ūcjfir

)2 −(‖T̄rcjr‖2−D2
rsr)

)]

,

DP
cjfir

= distance from camera j to plane feature i,

=







Dpr+T̄rcjr
•Ūrpr

Ūcjfir
•Ūrpr

if
(

Ūcjfir • Ūrpr

)

> 0

2Drsr if
(

Ūcjfir • Ūrpr

)

6 0
,

Dpr = distance to the plane from the reference origin,

Drsr = distance from the reference to the sphere, i.e the stitch radius,

Ūrpr = outward facing normal UV of the plane,
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Ūcjfir = feature i’s direction vector in j’s CF in reference CF,

= Rcjrf
img→vec(fBrown(P̄ d

i,j, D̄U params,j), Īparams,j),

Rcjr = rotation matrix to convert CFs from j’s to the reference CF,

P̄ d
i,j = (distorted) pixel coordinate of feature i in camera j’s image,

D̄U params,j = camera j’s distortion correction parameters,

Īparams,j = camera j’s intrinsic parameters,

fimg→vec = as per Equation 3.17 (Section 3.4.2 for parameter description),

fBrown = as per Equation 3.25 (Section 5.5.1 for parameter details), and

T̄rcjr = position of camera j in the reference CF.

The calculation of the point on the stitch sphere corresponding to the (non-

centrally located) camera’s UV associated with its observation of that point, is

merely another application of the cosine rule. The three sides of the triangle are

the stitch radius, the camera translation from the stitch origin, and the unknown

distance from the camera to the stitch surface point. It is then possible to

calculate the angle opposite the radius from the camera’s UV to the point and

the translation vector of the camera. Equation 6.8 shows, with reference to

Figure 3.9, how this is done taking into account the necessary CFs:

a2 = b2 + c2 − 2bc cos(Â) (6.8)

where

a = the known stitch radius i.e Ds,

b = the magnitude camera displacement w.r.t. the stitch CF,

= ‖T̄cjrcj‖,
c = the desired distance of the stitch point from the camera,

= DS
cjfir

,

cos(Â) = cosine of the angle opposite side a,

= cosine of the angle between camera’s translation and feature vectors,

=
1

‖T̄cjrcj‖
T̄cjrcj • Ūcfic,
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T̄cjrcj = the displacement of reference origin from camera j,

Ūcjficj = the vector from camera j to feature i,

i = the feature number, and

j = the camera number.

Equation 6.8 can be rearranged to solve for c. The angle between T̄rcjcj and Ūcjficj

is equal to π− Â. However, since cos (π − θ) = − cos(θ) and T̄cjrcj = −T̄rcjcj , the

sign effects cancel. The resulting quadratic equation has real roots if the camera

is inside the stitch sphere. The positive root is where the camera’s ray intersects

the sphere in front of the camera. The negative root is where the ray intersects

behind the camera and can be ignored. Ergo the maximum is taken in Equation

6.7. Equation 6.7 also expresses T̄cjrcj and Ūcjficj in the reference CF.

Equation 6.7 uses the DU parameters to calculate the UV associated with a pixel

position, and Equation 6.1 uses the UD parameters to convert a vector to a pixel

position. Neither of the two mappings between the distorted and undistorted

domains in either direction is perfect. Thus converting from the distorted do-

main to the undistorted domain and then back to the distorted domain will not

perfectly result in the original point, i.e.

P̄ d 6= fBrown
(

fBrown(P̄ d, D̄U params), ŪDparams

)

. (6.9)

The same is true of converting from the undistorted domain to the distorted

domain and back. This means that the point on the stitch surface calculated by

Equation 6.7 will not result in the same pixel position for the feature when fed

through Equation 6.1. This may be countered by numerically refining the undis-

torted pixel position such that the resultant undistorted position does indeed

produce the original distorted position when corrected with the DU parameters,

thus providing a measurement of the stitch accuracy that better reflects how

the stitching is implemented in practice. This removal of the DU error does not

desensitise the stitch to the DU calibration, since the DU calibration was used to

determine the camera w.r.t. the mount and mount w.r.t. the reference poses as

well as the focal lengths. Equation 6.10 shows how the refined distorted position
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can be calculated to provide a better direction vector for each feature (i.e Ūcjfir)

in Equation 6.7:

P̄ u∗
i,j = argmin

P̄u
i,j

[

‖P̄ d
i,j − fBrown(P̄ u

i,j, ŪDparams,j)‖2
]

(6.10)

where

P̄ u∗
i,j = the refined undistorted pixel position corresponding to P̄ d

i,j,

P̄ u
i,j = estimate of undistorted pixel position corresponding to P̄ d

i,j,

P̄ d
i,j = the input distorted pixel position,

fBrown = as per Equation 3.25 (Section 3.4.6 for parameter details),

ŪDparams,j = camera j’s DU parameters,

i = the feature number, and

j = the camera number.

6.1.4 Stitching and fusion results

This section provides the pictorial and quantified accuracy (Section 6.1.3) results

of the stitching (Section 6.1.1) and fusion (Section 6.1.2) algorithms described

earlier.

Results are provided for two systems, details of which are given in Table 6.3.

The systems had different numbers of cameras with different resolutions, pixel

formats, and imager sizes. The FOVs differed between the systems both in

terms of the overall system FOV and the individual FOVs. System 1, shown in

Figure 6.2, had two visual cameras vertically displaced above two LWIR cameras.

System 2 was designed with berths for 5 camera pairs, each consisting of one

visual and one LWIR camera. However, for cost reasons only 3 LWIR cameras

were used (in the three central berths) resulting in only 8 cameras in the system.

The camera array of System is shown in Figure 6.3. The LWIR HFOV of System

2 is thus less than its visual HFOV, whereas the LWIR Vertical Field of View

(VFOV) is larger than the visual VFOV
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Figure 6.2: Inner camera array assembly of System 1.

Figure 6.3: Partially disassembled structure of System 2 showing the cameras.
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Table 6.3: Stitch system physical specifications.
System 1 System 2

Number 2 5
Format Greyscale Colour, Bayer

Visual cameras Resolution 1936× 1456 1280× 960
Focal length 8.0 mm 5.0 mm
Imager size 2/3” 1/3”

Number 2 3
Format Greyscale

LWIR cameras Resolution 640× 480
Focal length 10 mm
Pixel size 17 µm×17 µm

Total camera tally 4 8
Array format 2× 2 8× 1
Visual HFOV 100◦ 200◦

Visual VFOV 38◦ 30◦

LWIR HFOV 100◦ 120◦

System LWIR VFOV 38◦ 40◦

Stitch FOV 100◦ × 47.5◦ 220◦ × 49◦

Stitch radius 500 m 150 m
Stitch plane distance 20 2.5 m
Stitch plane normal (0, 0, -1) (0, 0, -1)
Stitch resolution 1600× 760 1800× 400

The pictorial results include the original distorted images (Figures 6.4, 6.11 and

6.12), visual stitches (Figures 6.5 and 6.13), LWIR stitches (Figure 6.6 and 6.14)

and fused stitches (Figures 6.7, 6.15 and 6.16) for the two systems. The quantified

accuracy results are the stitch accuracy for each overlapping adjacent camera pair

of the same spectral frequency. Inter-band statistics are not provided as image

feature matching across spectral bands were shown by Cronje and de Villiers [13]

to perform poorly. This is because the image content differs (thermal signature

versus visual texture). Even if the same object is identified as a feature in the

both the visual and LWIR images, its description is sufficiently different that

matching is impossible [13]. Statistics for the raw feature matching results as

(Equation 6.6) and the refined results (Equation 6.10) are presented for both

SIFT [81] and SURF [82] features. These statistical results are presented in both
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(a) Visual image A: left. (b) Visual image B: right.

(c) LWIR image A: left. (d) LWIR image B: right.

Figure 6.4: System 1 input images.

tabular form (Tables 6.4 and 6.5) and as box plots (Figures 6.9 and 6.19).

Figure 6.4 provides examples of raw images captured by System 1. These images

were manually captured synchronously. Severe vignetting induced by the lenses

is visible in Figures 6.4(a) and 6.4(b). Compared to Figure 6.4(d), the focus

of Figure 6.4(c) is noticeably softer. It was not possible to focus the LWIR

camera to infinity. The LWIR images had both a lower resolution (Table 6.3)

and wider FOV as indicated by additional carports being evident on the bottom

left of Figure 6.4(c) compared to 6.4(a) and more of the second building being

in visible in the right of Figure 6.4(d) compared to 6.4(b).

Figures 6.5, 6.6 and 6.7 provide visual-only, IR-only and fused stitches respec-

tively. There is slight blurring evident in the seam of the visual stitch (Figure
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6.5), as expected. Both the far and near sections of scene are stitched well. This

is due to the stitch plane coinciding well with the ground in the scene. The

visual-only and IR-only images show that cameras of the same spectrum can

successfully be stitched. Figure 6.7 shows that these stitches are of the same

scale, orientation, and displacement and that the corresponding points between

the visual and LWIR spectra are correctly registered. As the input images were

already greyscale, only the TTGS fused stitch is presented.

Figure 6.5: Visual stitch from System 1.

Figure 6.6: IR stitch from System 1.

In order to quantify the stitching accuracy, SIFT [81] and SURF [82] features were

found in the overlapping regions of the visual pair and the LWIR pair. Figure
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Figure 6.7: TTGS fused visual and LWIR stitch from System 1.

6.8 shows the SIFT features that were found and successfully matched. Only

‘strong’ features meeting the minimum Hessian for detection, and description

distances as defined by Table 6.4 are plotted. For the sake of brevity, the SURF

feature matches are not provided.

Each of the features detected by SIFT/SURF were projected onto the stitch

surface using the techniques described in Section 6.1.3. The error (in degrees) in

the stitched image between these points was then calculated. Table 6.4 provides

the results of the statistical analysis of these stitch errors for both the raw and

refined projections (see Section 6.1.3). Outliers were defined as points that lie

more than 2.5 standard deviations away from the mean, as calculated from the

inlier population. The values are very acceptable, showing both mean and median

values in he range of 0.085◦ to 0.1◦ for both the raw and refined results for both

sets of features.

Figure 6.9 visually depicts the statistical data given in Table 6.4. The box

plots extend from the 25th to the 75th percentiles with the median marked in

between. The whiskers are symmetrical about the mean and extend one standard

deviation from it. The points beyond the whiskers are the outliers. The outliers

are excluded from the statistical analysis. The box plots have a logarithmic

horizontal axis to facilitate the simultaneous visualisation of the tightly grouped
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(a) Visual matches between Figures 6.4(a) and 6.4(b).

(b) LWIR matches between Figures 6.4(c) and 6.4(d).

Figure 6.8: System 1 SIFT matches.

Table 6.4: Feature based stitch errors for System 1.
SURF SIFT

Raw Refined Raw Refined

Minimum Hessian 300 2000
Maximum descriptor distance 0.1 200
Valid features 122 37

Mean (degrees) 0.086 0.085 0.093 0.1002
Standard deviation (degrees) 0.028 0.031 0.048 0.060
25th percentile (degrees) 0.068 0.066 0.059 0.059
Median (degrees) 0.084 0.082 0.085 0.082
75th percentile (degrees) 0.103 0.105 0.110 0.127
Outliers 14 11 5 4
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10−1 100

SURF Raw

SURF Refined

SIFT Raw

SIFT Refined

Accuracy (degrees)

Figure 6.9: Stitching accuracy box plots for System 1.

inlier population and the distant outliers, which range in value from 0.15◦ to

0.35◦.

The stitch coordinates of the outlier pairs were plotted on the stitched image

in order to determine if the outliers were truly anomalous or indicative of an

underlying error. This is shown in Figure 6.10 where the combined refined out-

liers from both SIFT and SURF and both both the visual and LWIR spectrums.

There is no systemic nature noticeable in the outliers.

The outliers in the sky and the uniform grass areas in the middle of the image

are likely to just be erroneous matches. The same is true of the ones in the

tree, which has a repetitive texture. Finally, the two outliers on the left have

significant vertical components that are unlikely to be due to errors produced by

horizontally splayed cameras.

System 2 consists of two interlaced linear arrays, one array of 5 visual cameras and

another of 3 LWIR cameras. The LWIR cameras cover approximately the same

FOV as the three central visual cameras. Like the images of System 1, System 2’s

images were recorded simultaneously and so there is no time discrepancy between

the images. Figure 6.11 shows example visual images from left to right (w.r.t.

the cameras’ point of view). Figure 6.12 shows corresponding LWIR images also

ordered from left to right.

Of interest is the lens flares in Figures 6.11(d) and 6.11(e). Note how the contrast
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of the building in their overlap is different in the two images, and how the sky

appears different in these images compared to Figure 6.11(c). Of further interest

is the soft focus of the central LWIR camera shown in Figure 6.12(b). Note how

different the overlapped region of Figures 6.12(a) and 6.12(b) appears.

Table 6.1 provides the stitching parameters for System 2. Figure 6.13 provides

the visual stitch for System 2. Figure 6.14 provides the LWIR stitch. The

fused stitch images are provided by Figures 6.15 and 6.16 which show the colour

preserving TBHO algorithm and the greyscale TTGS algorithm fusion results

respectively.

Note how the extremely close container in the overlap between 6.11(d) and 6.11(e)

is stitched fairly well. Only a minor discontinuity is evident on the closer edge of

the roof (Figures 6.13 through 6.16) while the more distant building in the same

overlap is stitched with no apparent errors. This is due to the container being

significantly closer than the stitch distance. The shadows beneath the container

in the overlap of Figures 6.11(c) and 6.11(d) in the visual spectrum and Figures

6.12(b) and 6.12(c) in the LWIR spectrum are stitched fairly well, despite being

much closer than the stitch sphere radius. This is because they lie near the

stitch plane which was defined to closely coincide with the ground in the scene

(Table 6.1). In contrast, the window of the container is distinctly blurred. This

Figure 6.10: SIFT and SURF outlier feature pairs for System 1.
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(a) Visual image A: outer left. (b) Visual image B: inner left.

(c) Visual image C: centre. (d) Visual image D: inner right.

(e) Visual image E: outer right.

Figure 6.11: System 2 visual input images.
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(a) LWIR image A: left. (b) LWIR image B: centre.

(c) LWIR image C: right.

Figure 6.12: System 2 LWIR input images.

is because the window is both off the ground plane and much closer than the

stitch radius. The grass verge and rock in the overlap Figures 6.11(c) and 6.11(d)

are also stitched well despite their proximity to the cameras, because they too

lie near the predefined stitch plane.

It is also worth noting that despite the soft focus of the central LWIR camera,

lens flares and poor colour balancing of the two rightmost visual cameras, the

stitches were aligned correctly (in the far field). Lens flares and solar effects are

increasingly unavoidable as more cameras are added or as the solid angle that

the stitch subtends is increased. Thus the image content independence, which is

a characteristic of photogrammetric stitching, is vital.

Figure 6.17 shows the SIFT features (the SURF features are again not presented
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Figure 6.13: Visual stitch from System 2.

Figure 6.14: LWIR stitch from System 2.
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Figure 6.15: Dual-band TBHO fused stitch from System 2.

Figure 6.16: Dual-band TTGS fused stitch from System 2.
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Table 6.5: Feature based stitch errors for System 2.
SURF SIFT

Raw Refined Raw Refined

Minimum Hessian 300 2000
Maximum descriptor distance 0.1 150
Valid features 85 133

Mean (degrees) 0.203 0.201 0.273 0.272
Standard deviation (degrees) 0.137 0.138 0.139 0.140
25th percentile (degrees) 0.087 0.084 0.175 0.176
Median (degrees) 0.166 0.165 0.272 0.269
75th percentile (degrees) 0.347 0.347 0.375 0.376
Outliers 9 9 9 9

for brevity) for the four pairs of adjacent visual cameras of System 2. Figure 6.18

shows the SIFT features for System 2’s LWIR camera pairs. It is unsurprising to

note how the number of matched features decreases drastically when one or both

images has lens flares, poor colour balance, or soft focus. For instance compare

the number of SIFT features marked in Figure 6.17(a) and 6.17(b) to those

marked in Figures 6.17(c) and 6.17(d). This again highlights the potentially

fallibility of feature based methods in uncontrolled environments.

Table 6.5 presents the same statistical analysis results for feature pairing of

System 2 that Table 6.4 does for System 1. The mean and median values for

both the SIFT and SURF feature sets are on the order of 0.2◦ to 0.3◦. SIFT

found both more features and had a higher variance of errors. SIFT also had

fewer outliers despite having more points.

Figure 6.19 shows the box plots for the analysis of System 2. The interpretation

of Figure 6.19 is the same as that of Figure 6.9. It is evident that both SIFT and

SURF (for both raw and refined projections) had a cluster of outliers between 0.6◦

and 1.2◦. These outliers feature pairs were converted into the stitch coordinates

and plotted in Figures 6.20 and 6.21 for SIFT and SURF features, respectively.

Outliers drawn in blue are from visual cameras and red are from LWIR cameras.

It is apparent that the majority of the smaller outlier features (i.e shorter lines in

Figures 6.20 and 6.21) are in the near field of the stitch and are thus attributable
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(a) Matches between Figures 6.11(a) and 6.11(b).

(b) Matches between Figures 6.11(b) and 6.11(c).

(c) Matches between Figures 6.11(c) and 6.11(d).

(d) Matches between Figures 6.11(d) and 6.11(e).

Figure 6.17: System 2 SIFT visual matches.
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(a) Matches between Figures 6.12(a) and 6.12(b).

(b) Matches between Figures 6.12(b) and 6.12(c).

Figure 6.18: System 2 SIFT LWIR matches.

10−1 100

SURF Raw

SURF Refined

SIFT Raw

SIFT Refined

Accuracy (degrees)

Figure 6.19: Stitching accuracy box plots for System 2.
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to the known depth sensitivity. Several outliers are also clustered on the pal-

isade fence which could be due to incorrect matching between similar repetitive

features. The larger outliers may all be disregarded as they have a significant

vertical component which is unlikely to be caused by a horizontal linear array of

cameras and so are likely erroneous feature matches.

6.1.5 Stitching conclusion

Stitched panoramas were successfully created from cameras arranged in different

physical configurations as both 1D and 2D arrays. The cameras had different

resolutions, focal lengths, pixel sizes, CCD dimensions, FOVs, and sensitivity

spectra.

Subjective evaluation of the stitched panoramas suggests the stitching is per-

formed correctly for far field objects. This is evidence that the camera calibration

routines of Chapter 5 provide results with real world applicability and usefulness.

The near field objects were not stitched correctly, this is a consequence of the

stitching algorithm’s depth sensitivity and not of the camera calibration accu-

racy. Of course, if the stitch distances were decreased, the near field objects

could be stitched correctly, at the expense of the far field objects. The alignment

between cameras of the same spectrum and across spectrums is good.

The stitch sensitivity to depth was drastically improved by moving from a single

to a multi-geometry stitch, the details of this were published in 2013 [12]. The

remaining stitch sensitivity may then be exploited by performing the stitching

at different distances and choosing the best distance for each pixel. This method

is similar to the planes-sweep methods [87, 88] and is a planned future upgrade

to the current stitch systems.

A quantitative evaluation based on image features shows that the stitching errors

(Tables 6.4 and 6.5) are on the order 0.08◦ to 0.3◦ for the two systems. For both

systems, SIFT features were more abundant and yielded slightly worse results

than SURF features. At the stitch resolutions given in Table 6.3 these angles

equate to mean errors in the order 3.7 to 6.1 pixels for System 1 and 1.4 to to
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Figure 6.20: SIFT outlier feature pairs for System 2.

Figure 6.21: SURF outlier feature pairs for System 2.
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2.2 pixels for System 2.

It is worth recalling that the SIFT and SURF features are all found in the periph-

ery of the images (i.e. the overlapping regions) where the residual distortion error

is typically the highest [15]. This means that if the cameras had a higher overlap

the error would decrease. This statement is further supported by the subjec-

tively good alignment between the 100% overlapped LWIR and visual cameras.

Secondly, the blending system employed will mitigate the apparent effect of these

minor discrepancies as the camera which has the point closest to its centre will

have a higher weighting factor. It is thus reasonable to say that the quantified

analysis also supports the conclusions that the camera calibration routines of

Chapter 5 are suitable for stitching purposes.

The examples presented here were chosen to highlight the robustness of pho-

togrammetric stitching and to allow for quantification of the stitching accuracy.

The amount of overlap between adjacent images is excessive for photogrammet-

ric stitching (indeed no overlap at all is required) and was only made so large to

allow for sufficient image features to be present to quantify the stitch accuracy.

Similarly no effort was made at correcting the image exposure and focus of the

systems. While this is indisputably vital in a deployed system it has no bearing

(for telecentric lenses at least) on the photogrammetric aspects which are the

subject of this thesis. Xu [89] provides an overview of recent techniques to

perform sharpness and colour equalisation across multiple live overlapping video

feeds.
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6.2 Optical helmet tracking

A laboratory demonstration version of an optical helmet tracker was developed

to further prove the applicability of the APCCS. A summary of the work is

presented here, further details can be found in the paper presented in 2014 [7].

An ideal ‘helmet’ (from a tracking perspective) was created. The helmet was

cuboid in shape made from rigid metal and had a tetrahedral cluster of LEDs

on four sides. The fifth side contained a mounting interface to the robotic arm

and the sixth side (the one opposite the arm mounting interface) was left un-

populated. Figure 6.22 shows the “helmet” mounted on the robot arm. The

LEDs were controlled by an Arduino Uno using an “RGB LED Matrix Adapter

Shield” to provide independent current sources to control the brightness of each

LED. Communications were via a “Sparkfun Bluetooth Mate Silver” which is

visible in Figure 6.22. The 3D spatial positions of the LEDs on the helmet were

measured relative to the robot end effector using a method similar to that of the

calibration LED spatial offset described in Section 5.4.2.

Two cameras with different resolutions and lenses with different focal lengths

were used for the evaluation as seen in Figure 6.22. The red camera is a

3 megapixel AVT GT1920 with an 8 mm focal length Schneider Cinegon 1.4/8-

Figure 6.22: Laboratory optical helmet tracker apparatus.
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Table 6.6: Helmet tracker accuracy test results.
Measurement Unit System Camera 1 Camera 2

Mean 0.137 0.103 0.188
Angular Standard deviation degrees 0.053 0.028 0.038

RMS 0.147 0.107 0.192
RMS mrad 2.566 1.868 3.351

Mean 6.286 6.494 5.973
Translation Standard deviation mm 0.446 0.380 0.673

RMS 6.302 6.506 6.011

1902 lens. The blue camera is a 2 megapixel AVT GE1600 with a 4.8 mm focal

length Schneider Cinegon 1.8/4.8-0302 lens.

This simple system required 112 parameters to be determined: 33 parameters

per camera (Table 6.1) and another 48 parameters for the 16 3D positions of

the 4 tetrahedrons’ LEDs. After these parameters were determined the robot

presented the helmet to the cameras at a series of poses. At each pose, the LED

tetrahedrons were illuminated one at a time. When either of the cameras could

see a complete tetrahedron, Equation 3.29 was used to determine the position of

the end effector (since this is the CF in which the LED positions were known)

w.r.t. the observing camera. The camera’s extrinsic parameters were then used

to express this optical measurement of the end-effector pose in the reference CF.

The difference between the optical measurement on the end effector pose and

that provided by the robot arm itself was used as an accuracy measure for the

helmet tracker. Table 6.6 provides the resulting accuracies per camera and for

the system as a whole, for a test sequence of some 50 poses. The resulting system

angular accuracy of 2.6 milliradians is comparable to systems [61–63] currently

in operational use. This further demonstrates the calibration routines of Chapter

5 have definite real-world application.
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Chapter 7

Simulation and calibration

results

This chapter addresses the third of the three research questions posed in Sec-

tion 1.2: “Is a robotic arm based photogrammetric system sufficiently robust to

measurement and movement noise?” This chapter describes how the sensitivity

analysis was performed for the APCCS. Specifically, the resultant stitching error

(Section 6.1) caused by measurement errors in the calibration process is assessed.

The stitching error was deemed to be the difference between the correct pixel on

each camera’s CCD that corresponds to a given point in space and the pixel posi-

tion that was determined using the camera parameters as output by the APCCS.

Since for physically realised systems, it is not possible to ever perfectly know the

camera photogrammetric parameters, this sensitivity analysis is performed via

simulation.

The sensitivity simulation is performed by synthesising noisy LED centroids in

the format required by the calibration routines. The analysis simulates the

APCCS robot arm moving through its specified sequence of points and adds

errors with specified Probability Density Function (PDF) for each physical move-

ment or measurement made by the APCCS to create noisy centroids and robot

poses. A simplified version of this analysis was published in 2014 [8]. That sim-

plified analysis did not cater for known pose errors of the robot arm or provide
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the mathematics of how the noisy LED centroids were synthesised.

The method used to synthesise the LED centroids is described in Section 7.1.

This section includes the identification of the error sources and their contributions

to both the noisy end effector pose and the noisy centroids is discussed.

Section 7.2 describes the design of the simulation experiment. The range of each

of the noise parameters is presented as well are the combinations of the param-

eters to be tested. This section also includes the formal definition of the error

metric used to assess how well a simulated calibration stitches images together.

Section 7.3 presents the results of the simulated experiment. The statistics of

the results of the simulations are presented graphically and in tabular form and

are discussed. This is followed by a detailed analysis of the correlation of the

noise sources, individual calibration accuracies and stitching accuracies.

Section 7.4 places the results in context and presents the key findings of the

simulation.

7.1 Creation of noisy LED centroids

This section describes how noisy centroids are synthesised in a manner relevant to

the APCCS. Noisy LED centroids are simulated based on the physical set-up of

a typical APCCS calibration apparatus. The information required to determine

perfect LED centroids is:

1. The pose of the camera w.r.t. the robot CF (i.e. the camera’s extrinsic

parameters).

2. The pose of the end effector w.r.t. the robot CF.

3. Either the spatial position of the LED w.r.t. the end effector, or the relative

poses of the PMJ mounting brackets, if the LED spatial offset is to be

determined by the APCCS.

4. The camera’s focal length, principal point, pixel size, resolution, and UD

parameters (i.e. the camera intrinsic parameters).
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7.1. CREATION OF NOISY LED CENTROIDS

The first three points above allow the position of the LED in the camera’s CF

to be determined. The last point then allows this 3D position to be converted

into a 2D pixel position. In order to analyse the sensitivity of the algorithms to

typical measurement errors the following four error sources have been identified:

1. The robot arm is unable to move to the exact required pose, but moves

as close as it can to the requested pose and reports this resultant pose.

Most of the APCCS routines use the reported robot arm pose, but the DU

calibration (Section 5.5.1) assumes the points are along perfectly straight

lines. This error was modelled using separate angular and spatial compo-

nents (Equation 7.6).

2. The robot is unable to perfectly measure its resultant pose after each move-

ment. This results in an additional, unknown deviation from the non-

perfect pose described above. All the APCCS calibrations are affected

by this error. This error was modelled with separate angular and spatial

components (Equation 7.6).

3. The camera is not perfectly repeatably mountable on the kinematic mount-

ing interfaces. This affects the calibrations of the focal length, both extrin-

sic poses, and the measurement of the LED spatial offset from the end

effector. In contrast to the robot arm movement errors, which are assumed

independent for each LED centroid, this error only changed when the cam-

era was removed and placed on another mounting interface. This error was

modelled with separate angular and spatial components (Equation 7.6).

4. The LED image centroid was not found with perfect precision. This error

was a modelled as a spatial 2D error (Equation 7.6) in the pixel domain.

For a true reflection on the performance of a given APCCS, the PDF of the errors

just described should be based on the characteristics of the APCCS components.

These characteristics include physical effects such as thermal noise, pixel spatial

sampling, fill factors, digital quantisation levels, and internal reflections in the

lens. However the aim of this sensitivity study was not to determine the expected

performance of the APCCS using a particular robot arm, kinematic mount, and

camera. Rather the goal was to understand how the magnitudes of the errors

affect the performance of the APCCS, which can aid the selection APCCS com-
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ponents. Therefore, the errors were modelled using a simple Gaussian PDFs.

Angular errors are modelled using the angle-axis representation (Section 3.3.3)

of a 3D rotation. The axis is determined by generating a random UV whose end

point is uniformly distributed (according to surface area) on a unit sphere [90].

The angle of rotation about this axis is a zero-mean Gaussian variable with a

specified standard deviation. Equation 7.1 illustrates this:

Rr,x = fAAtoR(Ū r,3, frn(x)) (7.1)

where

Rr,x = the desired random orientation matrix,

fAAtoR = as per Equation 3.12,

Ū r,3 = a random UV (Equation 7.2), and

frn(x) = a zero mean Gaussian variable with standard deviation x.

3D spatial errors are simply modelled as scaled random UVs. The UV’s end

points are uniformly distributed on a unit sphere [90] and the magnitude is a

zero-mean Gaussian with a specified standard deviation. Equation 7.2 shows

how these vectors are calculated:

Ū r,3 =







cos(θP,r) cos(θY,r)

cos(θP,r) sin(θY,r)

sin(θP,r)






(7.2)

where

Ū r,3 = desired random 3D UV,

θP,r = cos−1(fru(−1, 1)),

θY,r = fru(−π, π),

fru(x, y) = uniformly distributed random variable between x and y.

2D spatial errors are calculated in a manner identical to the 3D vectors except

that the end point is on a unit circle rather than a unit sphere. Equation 7.3
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provides the details:

Ū r,2 =

[

cos(θr)

sin(θr)

]

(7.3)

where

Ū r,2 = desired random 2D UV,

θr = fru(−π, π), and

fru(x, y) = uniformly distributed random variable between x and y.

One of the requirements for generating noisy, distorted LED centroids is the abil-

ity to map undistorted pixel coordinates to distorted pixel coordinates. However,

the Brown model (like all models) does not necessarily capture all the complexi-

ties observed in modelling DU and UD parameters. Therefore in order to simulate

complexities beyond those that typical five to ten parameter Brown models can

capture, a very high order DU model was used. A 17 parameter model was fitted

to a dense 87 × 60 grid captured with a representative camera (the same used

in Section 4.2). Rather than fitting a UD model, with the associated additional

error, the DU model is used recursively with an optimisation algorithm such as

Leapfrog (Section 3.2.2.4) to determine which distorted pixel position is associ-

ated with a given undistorted position. Equation 7.4 provides the mathematical

details:

P̄ d = fIRD(P̄ u, D̄U
′
params) (7.4)

≡ argmin
P̄ d

[

‖P̄ u − fBrown(P̄ d, D̄U
′
params)‖2

]

where

P̄ d = the desired distorted pixel position corresponding to P̄ u,

P̄ u = the input undistorted pixel position,

fBrown = as per Equation 3.25 (Section 3.4.6 for parameter details), and

D̄U
′
params = the camera’s theoretical high order distorted to

undistorted parameters.
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The procedure to determine a set of noisy centroids is then the following:

1. Determine the noisy pose of the camera w.r.t. the robot CF by adding the

camera w.r.t. the mount pose to the mount w.r.t. the robot pose and then

adding an angular and spatial error of specified magnitudes as shown in

Equation 7.5:

Rn
cr = Rr,ncaRmrRcm, and

T̄ n
rcr = T̄rmr +RmrT̄mcm + frn(nct)Ū

r,3 (7.5)

where

Rn
cr, T̄

n
rcr = the noisy pose of the camera w.r.t. the robot CF,

Rcm, T̄mcm = the pose of the camera w.r.t. the mount,

Rmr, T̄rmr = the pose of the mount w.r.t. the robot CF,

r, nca = standard deviation of camera angular error,

nct = standard deviation of camera translation error,

Rr,nca = random orientation matrix with axis evenly distributed on a

sphere and zero mean normally distributed angle with a

standard deviation of nca as per Equation 7.1,

frn(x) = a zero mean Gaussian variable with standard deviation x, and

Ū r,3 = 3D UV evenly distributed on a sphere (Equation 7.2).

2. Set the end effector to the ideal pose as requested by the APCCS.

3. Corrupt the ideal pose by an error with a specified PDF to simulate the

robot arm not being able to move exactly to the required pose. This is the

pose used for further calculations by the APCCS routines.

4. Further corrupt this pose by noise with a specified PDF to simulate the

imperfect measurement by the robot arm of its own pose. This is the pose

used in the rest of the noisy LED creation process.

5. Use the noisy end effector pose of Step 4 and the LED spatial offset to

determine the spatial position of the LED in the robot’s CF.

6. Use the camera extrinsic parameters to determine the LED translation

w.r.t. the camera, in the camera’s CF.
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7. Use the camera’s intrinsic parameters to project the LED onto the image

plane and convert this to an undistorted pixel position.

8. Iteratively use the simulation’s high-order ideal DU parameters to find the

distorted pixel position that match the undistorted pixel position.

9. Corrupt this distorted pixel position by adding a 2D random error with a

specified PDF and magnitude to get centroid’s final position.

10. Save the noisy LED centre of step 9 and the noisy robot pose of step 3.

11. Go to step 2 and repeat for all required poses of the end effector.

This process is described mathematically in Equation 7.6:

P̄N
hv = fLED Sim

(

Rn
cr, T̄

n
rcr, ŪDparams, Īparams,Rar, T̄rar,

T̄ala, nrtk, nrtu, nrak, nrau, ncpu

)

(7.6)

≡ fIRD(fP→U(T̄ n
clc, Īparams), D̄U

′
params) + frn(ncpu)Ū

r,2

where

fLED Sim = function to create a synthetic noisy LED centre,

fIRD = iterative reverse distortion as per Equation 7.4,

fP→U = as per Equation 3.18,

D̄U
′
params,j = camera j’s theoretical high order DU parameters,

Īparams,j = camera j’s intrinsic parameters,

frn(x) = a zero mean Gaussian variable with standard deviation x,

Ū r,2 = a random 2D UV (Equation 7.3),

T̄ n
clc = noisy position of LED w.r.t. camera,

= (Rn
cr)

T (T̄ n
rlr − T̄ n

rcr),

T̄ n
rlr = T̄rar + frn(nrtk)Ū

r,3 + frn(nrtu)Ū
r,3 +Rr,nrauRr,nrakRarT̄ala,

Ū r,3 = 3D UV evenly distributed on a sphere (Equation 7.2),

Rr,n = random rotation created by a Gaussian rotation around

an evenly distributed random UV (Equation 7.1),

Rn
cr, T̄

n
rcr = noisy pose of camera w.r.t. robot CF (Equation 7.5),

Rar, T̄rar = pose of end effector w.r.t. the robot CF,
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T̄ala = position of LED w.r.t. the end effector’s CF,

nrtk = standard deviation of known robot translation error,

nrtu = standard deviation of unknown robot translation error,

nrak = standard deviation of known robot orientation error,

nrau = standard deviation of unknown robot orientation error, and

ncpu = standard deviation of unknown centroid pixel error.

7.2 Design of experiment

The physical apparatus simulated in this experiment is a simple two camera

splayed array. The cameras are based on those used in the preliminary research

(see Chapter 4) and have a 4.8 mm focal length lens with a 1600×1200 resolution

and 5.5 µm pixel pitch. This gives an approximate HFOV of 80◦ per camera.

Splaying the camera pair in azimuth by 60◦ results in an overlap of 20◦ and a

combined HFOV of 140◦. The multi-geometry stitching technique was used with

a radius of 300 m and a horizontal stitch plane 20 m below the cameras. This

simulates the cameras mounted on a building or ship.

While seemingly superficial this requires 66 independent parameters (33 per cam-

era as per Table 6.1) to be determined. Assuming the LED spatial offset w.r.t.

the robot end effector is unknown, Table 7.1 shows the robot movement sequences

that are required for each simulation. The ranges for each error source’s standard

deviation for this evaluation are provided in Table 7.2. The range for each error

was based on the published accuracies for several small robotic arms (Table 7.3)

and kinematic mounting bases (Table 7.4).

All of the robot arms only had specifications for their reach and spatial accuracy.

There was no indication of specify whether the accuracy value is the maximum

error, 3 sigma error or the mean error. The published errors are also a combina-

tion of the known and unknown translation errors. It is apparent that there are

two classes robots in Table 7.3 in terms of accuracy. The maximum standard de-

viation of 100 µm simulated for each of the known and unknown errors cater for
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Table 7.1: Robot movement sequences required for two camera simulation.
Item Calibration Number

of grids
Grid description

Camera 1 Total 8 -
DU & UD cali-
brations

1 3015 (67 × 45) points spanning
440 mm by 330 mm in 2D grid.

Focal length 2 2 observations of the same 80
point (20 tetrahedron) grid from
2 camera poses.

Camera w.r.t.
mount pose

4 Same 1323 (21 × 21 × 3) points
spanning 200 mm by 200 mm by
100 mm in a 3D grid observed
from 4 known mounting poses.

Mount pose 1 1323 (21 × 21 × 3) points span-
ning 500 mm by 300 mm by
200 mm in a 3D grid.

LED offset 4 2 cone and 2 axis movement
grids: one each from 2 known
mounting points.

Camera 2 Total 8 -
DU & UD cali-
brations

1 3015 (67 × 45) points spanning
440 mm by 330 mm in 2D grid.

Focal length 2 2 observations of the same 80
point (20 tetrahedron) grid from
2 camera poses.

Camera w.r.t.
mount pose

4 Same 1323 (21 × 21 × 3) points
spanning 200 mm by 200 mm by
100 mm in a 3D grid observed
from 4 known mounting poses.

Mount pose 1 1323 (21 × 21 × 3) points span-
ning 500 mm by 300 mm by
200 mm in a 3D grid.

Complete simulation 20 8 per camera and 4 for the LED
offset

the more accurate class of robot arms. If the values are the RMS, or maximum

3 sigma error then a zero mean, 100 µm standard deviation PDF should exceed

the expected range of accuracies of the robot arms.
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Table 7.2: Simulation error ranges.
Error Unit Minimum Maximum

Known robot spatial µm 0 100
Known robot angular µrad 0 100
Unknown robot spatial µm 0 100
Unknown robot angular µrad 0 100
Camera mount spatial µm 0 200
Camera mount angular µrad 0 100
LED centroid error pixels 0 0.5

The angular accuracy values in Table 7.3 are calculated as the arctangent of the

ratio of spatial error to the robot arm’s reach. The error range of the simulation

exceeds the range of the more accurate subset of robots.

Table 7.3: Comparison of robotic arms.
Robot Spatial Angular

accuracy Reach accuracy Mass
Manufacturer Model (µm) (mm) (µrad) (kg)

ABB IRB120 10 580 17.2 25
Denso VS-050 20 520 38.5 29

VP-6242G 20 432 46.3 15
Fanuc LRMate 200iD/4s 20 36.4 172 25
Kuka LBR iiwa 100 500 200 24

6 R700 FIVVE 30 706 42.5 50
ST R12-6 200 500 400 13

Robotics R17-6 200 750 267 21

Similar to the robot arms, the definition of the spatial accuracy for the kinematic

bases is undefined. The accuracy range simulated far exceeds the value for the

two mounts in Table 7.4 that have published spatial accuracies (particularly if

they are the RMS errors). The simulated angular errors of the kinematic bases

equals published accuracy of the Newport mount used in this work and exceeds

the published values of the Eksmo and Thor Labs kinematic mounts in Table

7.4.

The dimensionality of the simulation can be either 4 or 7. The former is obtained

by assuming the matching angular and spatial errors increase together and the
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Table 7.4: Comparison of kinematic bases.
Kinematic Repeatability

base Angular Spatial
Manufacturer Model (µrad) (µm)

Eksmo 850-0030 20 50
Newport M-BK-2A 100

M-BKL-4 100
Thor Labs KB1x1 30 30

KB3x3 80 30

latter assumes that all the errors are independent. Initial testing and develop-

ment was performed on a laptop with an Intel i7-740qm CPU. This CPU has 4

hyper-threaded cores, effectively providing 8 cores for processing. The simulation

and calibration algorithms were implemented in a multi-threaded fashion to take

maximal advantage of available processing power. On this development machine

the best case simulation time observed was 3 minutes and the worst case was

12 minutes when using 3015 point DU and UD grids. Table 7.5 provides the

estimated running times of the simulations, assuming that for statistical rigour

at least 10 simulations were run for each error combination. Different values are

provided for testing of each parameter independently of the others and for a full

correlated scenario.

Table 7.5 clearly shows that for all but the most trivial correlated scenarios

the duration quickly becomes unfeasible. This can be alleviated by using more

powerful CPUs (the i7-740qm has a benchmark of 3241 [91] versus over 17000

for the latest CPUs [91]) or more than one computer. However, these are linear

gains on an exponential problem. Therefore, a thorough independent analysis

was performed. The independent analysis used 7 parameters with 6 steps for

spatial noise sources, 5 steps for the angular sources and only every second point

in the DU grid.

In order to quantify the resulting stitch accuracy of each simulation run, the

stitches for the simulated and ideal calibrations are compared. For a set of

points on the stitch within the valid azimuth and elevation ranges of the stitch,

the corresponding pixel coordinates are calculated for each camera using both the
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Table 7.5: Predicted simulation durations.
Para- Steps Combi- Time†

meters nations Best case Worse case Units

3 12 6.000 24.00 hours
4, 5 20 10.00 40.00 hours

independent 7 28 14.00 56.00 hours
11 44 22.00 88.00 hours

3 21 10.50 42.00 hours
7, 5 35 17.50 70.00 hours

independent 7 49 24.50 98.00 hours
11 77 37.50 154.0 hours

3 64 32.00 128.0 hours
4, 5 1024 21.33 85.33 days

correlated 7 16384 0.935 3.740 years
11 4194304 2.394 9.576 centuries

3 343 7.146 28.58 days
7, 5 16807 0.959 3.837 years

correlated 7 823543 0.470 1.880 centuries
11 1977326743 112.9 451.4 millennia

† using all 4 hyper-threaded cores of a single Intel i7-740qm CPU.

simulated and ideal calibration parameters. This allows the stitching accuracy

to be assessed independently of the scene content, which affects the perceived

stitching quality if objects in the scene are far from the stitch surface. The

ideal calibration is known for the simulation as it is required to create the noisy

centroids for the simulation (Section 7.1). The RMS magnitude of the differences

between all the pairs of simulated and ideal pixel coordinates is calculated over

the entire stitch. As the stitch is iterated over, only cameras which can see that

stitch point contribute to the error. Equation 7.7 expresses this mathematically:

Estitch =

√

√

√

√

1

wsum

(

αmax
∑

α=αmin

βmax
∑

β=βmin

N−1
∑

i=0

(

‖P̄i(α, β)− P̄ ′
i (α, β)‖2wα,β,i

)

)

(7.7)

where

Estitch = the simulation stitch error,
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wsum = the sum of the binary weights,

=
αmax
∑

α=αmin

βmax
∑

β=βmin

N−1
∑

i=0

wα,β,i,

(α, β) = azimuth and elevation of current stitch vector,

[αmin, αmax] = the azimuth range of the stitch,

[βmin, βmax] = the elevation range of the stitch,

N = number of cameras in the stitch,

P̄i(α, β) = camera i’s image coordinate for the current stitch angles

using the simulated calibration (Equation 7.8),

P̄ ′
i (α, β) = camera i’s image coordinate for the current stitch angles

using the ideal calibration (Equation 7.9),

wα,β,i = binary weighting factor culling points outside camera i’s FOV,

=

{

1 if P̄ ′
i (α, β).h ∈ (0, Rh,i) and P̄ ′

i (α, β).v ∈ (0, Rv,i)

0 if otherwise
, and

(Rh,i, Rv,i) = the resolution of camera i.

Equation 7.7 requires the pixel position that corresponds to a given camera’s

view of a point on the stitch surface as determined with the simulated camera

calibrations. This is similar to the primary stitching algorithm given in Equation

6.1. The stitch point is expressed relative to the camera in question using the

camera’s total pose (i.e. the combination of camera w.r.t. the mount and the

mount w.r.t. the reference poses). This point is then clipped to the image using

the camera’s focal length. The position of the vector in the plane is then con-

verted to pixels using the camera’s intrinsic parameters to yield the undistorted

pixel position. The camera’s UD parameters are then used to determine the

distorted pixel position which is the desired pixel position of the camera corre-

sponding to the stitch point. The exact formulation used for the simulation is
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given in Equation 7.8:

P̄i(α, β) = fBrown(fP→U(RT
cir

(

D∗Ūrsr(α, β)− T̄rcir

)

, Īsimparams,i), ŪD
sim
params,i)

(7.8)

where

P̄i(α, β) = image coordinate calculated from simulated calibration results

at specified azimuth α and elevation β,

fBrown = as per Equation 3.25 (Section 3.4.6 for parameter details),

fP→U = as per Equation 3.18,

ŪD
sim
params,j = camera j’s simulated UD parameters,

Īsimparams,j = camera j’s simulated intrinsic parameters,

Ūrsr(α, β) =







cos(β) cos(α)

cos(β) sin(α)

sin(β)






,

D∗(α, β) = min(Ds(α, β), Dp(α, β)),

Ds(α, β) = distance from origin to stitch sphere, i.e. the stitch radius,

Dp(α, β) = distance from origin to stitch plane along Ūrsr(α, β),

=
Dpr

Ūrsr(α, β) • Ūrpr

,

Dpr = distance of plane from stitch origin,

Ūrpr = outward pointing normal UV of the plane, and

Rcir, T̄rcir = pose of camera i resulting from simulated calibration.

Equation 7.7 also requires the pixel position that corresponds to a given cam-

era’s view of a point on the stitch surface as determined by the ideal camera

calibration. Unlike the normal stitching algorithm (Equation 6.1) only the DU

lens parameters are known. Therefore numerical iteration is required to calcu-

late the distorted pixel positions corresponding to the undistorted pixel position

obtained from scaling the projection of the point on the stitch surface to the
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camera’s inverted image plane. In all other respects this process is identical

to that described for Equation 7.8. Equation 7.9 provides the mathematics for

obtaining the ideal stitch pixel position:

P̄ ′
i (α, β) = fIRD(fP→U(R

′T
cir

(

D∗Ūrsr(α, β)− T̄ ′
rcir

)

, Ī idealparams,i), D̄U
ideal
params,i) (7.9)

where

P̄ ′
i (α, β) = ideal image coordinate for azimuth α and elevation β,

fIRD = as per Equation 7.4 (Section 7.1 for parameter details),

fP→U = as per Equation 3.18,

D̄U
ideal
params,j = camera j’s ideal DU parameters,

Ī idealparams,j = camera j’s ideal intrinsic parameters,

Ūrsr(α, β) =







cos(β) cos(α)

cos(β) sin(α)

sin(β)






,

D∗(α, β) = min(Ds(α, β), Dp(α, β)),

Ds(α, β) = distance from origin to stitch sphere, i.e. the stitch radius,

Dp(α, β) = distance from origin to stitch plane along Ūrsr(α, β),

=
Dpr

Ūrsr(α, β) • Ūrpr

,

Dpr = distance of plane from stitch origin,

Ūrpr = outward pointing normal UV of plane, and

R′
cir
, T̄ ′

rcir
= ideal pose of camera i.

7.3 Results of experiment

This section discusses the results of the sensitivity study of the APCCS to the

identified noise sources. In total, 33 different noise combinations were tested,

with 10 simulations per sample to obtain an idea of the stochastic dependence of

the stitch accuracy with regard to the noise sources. Each noise source was tested

independently of the others. The magnitudes of the standard deviations that

163



7.3. RESULTS OF EXPERIMENT

were tested can be seen in Tables 7.6 and 7.7 for the known and unknown robot

pose error respectively. Table 7.8 shows the magnitudes that were evaluated for

the camera mounting pose error and, finally, Table 7.9 shows the error standard

deviations for the pixel evaluations.

Tables 7.6 to 7.9 also provide the minimum, mean, standard deviation and a

histogram of the distribution of the samples. To further visualise the resultant

stitch accuracy data, a box plot was created for each noise source/magnitude

combination. Figure 7.1 shows these plots for the known and unknown spatial

and angular errors made by the end effector in moving through its sequence of

points. Figure 7.2 provides the plots for the mounting angular and spatial errors

and the pixel centroid error. The box in each box plot extends from the 25th

percentile to the 75th percentile and the middle line represents the median value.

The whiskers extend to one standard deviation either side of the mean, which is

plotted over the box plots using red squares.

Table 7.6: Known robot movement error effects on stitching accuracy.
Known ang. noise Known trans. noise

(µRad) (µm)
0.0 25.0 50.0 75.0 100.0 0 20 40 60 80 100

Minimum 0.99 0.58 6.22 0.81 0.61 0.99 0.76 0.56 0.70 0.58 0.89
Mean 9.30 10.90 15.26 7.18 10.74 9.30 11.28 8.18 11.38 9.68 9.25

St. Dev. 5.62 8.48 5.08 4.99 8.97 5.62 7.98 7.50 8.41 8.75 7.35

Estitch < 1 1 3 0 1 2 1 1 2 1 1 1
1 ≤ Estitch < 3 1 0 0 2 0 1 0 1 1 2 1
3 ≤ Estitch < 5 1 0 0 1 3 1 3 2 1 2 1
5 ≤ Estitch < 10 0 1 2 2 0 0 1 1 2 1 4
10 ≤ Estitch < 15 6 2 2 3 0 6 2 2 1 0 0

15 ≤ Estitch 1 4 6 1 5 1 3 2 4 4 3
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Table 7.7: Unknown robot movement error effects on stitching accuracy.
Unknown ang. noise Unknown trans. noise

(µRad) (µm)
0.0 25.0 50.0 75.0 100.0 0 20 40 60 80 100

Minimum 0.99 0.59 0.59 0.63 0.56 0.99 0.63 0.77 0.57 0.97 0.72
Mean 9.30 7.28 10.37 7.81 8.95 9.30 8.88 8.97 11.81 8.20 12.67

St. Dev. 5.62 6.90 7.32 6.30 7.22 5.62 8.11 7.47 8.57 6.88 7.58

Estitch < 1 1 2 1 1 2 1 1 2 2 1 1
1 ≤ Estitch < 3 1 1 2 3 0 1 2 1 1 1 0
3 ≤ Estitch < 5 1 3 0 1 2 1 1 2 0 3 0
5 ≤ Estitch < 10 0 1 3 0 3 0 3 1 1 1 3
10 ≤ Estitch < 15 6 1 1 4 1 6 0 2 1 2 1

15 ≤ Estitch 1 2 3 1 2 1 3 2 5 2 5

Table 7.8: Camera mounting pose uncertainty effect on stitching accuracy.
Mount ang. noise Mount trans. noise

(µRad) (µm)
0.0 25.0 50.0 75.0 100.0 0 40 80 120 160 200

Minimum 0.99 0.70 0.65 1.42 0.68 0.99 0.60 0.57 0.61 0.75 0.57
Mean 9.30 9.28 8.39 11.93 13.21 9.30 6.06 8.20 6.64 12.76 7.89

St. Dev. 5.62 5.00 7.74 6.70 8.20 5.62 5.72 9.19 7.07 6.79 8.38

Estitch < 1 1 1 1 0 1 1 2 4 3 1 5
1 ≤ Estitch < 3 1 0 2 1 1 1 1 1 0 0 0
3 ≤ Estitch < 5 1 1 2 1 0 1 3 0 3 1 0
5 ≤ Estitch < 10 0 3 2 2 2 0 2 1 2 1 1
10 ≤ Estitch < 15 6 4 0 3 1 6 1 1 0 2 2

15 ≤ Estitch 1 1 3 3 5 1 1 3 2 5 2
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Table 7.9: Centroid error effects on stitching accuracy.
Centroid noise

(pix)
0.0 0.1 0.2 0.3 0.4 0.5

Minimum 0.99 0.56 1.04 0.99 0.96 1.05
Mean 9.30 8.25 12.71 13.25 11.14 7.92

St. Dev. 5.62 6.21 8.92 6.84 7.68 7.92

Estitch < 1 1 1 0 1 1 0
1 ≤ Estitch < 3 1 1 2 1 2 3
3 ≤ Estitch < 5 1 3 2 0 0 4
5 ≤ Estitch < 10 0 0 0 0 1 0
10 ≤ Estitch < 15 6 4 0 4 2 0

15 ≤ Estitch 1 1 6 4 4 3
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(d) Unknown translation error.

Figure 7.1: Stitching error due to robot movement errors.
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(b) Mounting translation error.
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(c) Pixel centroid error.

Figure 7.2: Stitching error due to mounting and pixel errors.
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A review of Tables 7.6 to 7.9 and Figures 7.1 and 7.2 show that the effect of

increasing the error in the ranges tested is minimal, with the exception of the

mounting angular error which shows an upward trend. There are signs of a

slight upward trend in both the mean and standard deviation for all the errors

and slightly fewer resultant stitch accuracies of less than 3 pixels. It is worth

recalling that the pixel error in this case is in the raw camera domain and not

that of the panorama. This means that these errors may not be discernible in the

output stitched panorama. It is also important to recall that the stitch accuracies

use the calibrated parameters resulting from the processes described in Chapter

5. These processes make repeated use of nonlinear optimisation algorithms.

Specifically, Leapfrog [26] was chosen to perform the optimisations because it is

known to be more robust to noisy data and provide ‘low local minima’ [19]. The

similarity of the stitch accuracy distributions over the noise magnitudes is thus

not overly surprising.

What is not apparent from Tables 7.6 to 7.9 and Figures 7.1 and 7.2 is why

many of the stitch accuracies had poor results of 10 pixels and higher. In all

circumstances accuracies of around 20 pixels were obtained. For the 1600×1200,

4.8 mm focal length, and 5.5 µm pixel pitch cameras simulated, 20 pixels equates

to approximately 1.3◦ of error. An analysis of the accuracies of each calibration

performed in the simulations was undertaken. Both the returned minimised CFR

as well as the error between the calibrated best value and the known correct value

were assessed.

This yielded 16 values per simulation in addition to the seven noise levels and

stitch accuracy for a total of 24 values. Table 7.10 lists and describes these 16

intermediate values in the order that their calibrations were performed.

Figures 7.3 and 7.4 show the global distributions of the parameters listed in

Table 7.10 as calculated over the entire simulation. The global distribution of

the stitching error is also shown. Their interpretation is the same as Figures 7.1

and 7.2. However, as disparate values are plotted alongside each other, no mean

trend line is drawn and every plot has its units indicated.

The results of the 330 simulations were processed to determine the correlations
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Figure 7.3: Resultant cost function and angular error distributions.
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Figure 7.4: Resultant spatial and stitching error distributions.
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Table 7.10: Simulation calibration accuracy measures.

Calibration Section
Number of
measures

Description of measures

DU 5.5.1 2
CFR and the pixel distance
between the determined and

theoretical centres of distortion.

UD 5.5.2 2
CFR and the pixel distance
between the determined and

theoretical centres of distortion.

Focal length 5.5.3 1
Error between determined and

theoretical focal lengths.

SEP 5.5.5 3
CFR and the angular and spatial
errors between the determined and

theoretical camera offsets.

LED spatial
offset

5.4.2 2
CFR and the spatial error between
the determined and theoretical

spatial offsets.

Mount 1 pose 5.5.4 3
CFR and the angular and spatial
errors between the determined and

theoretical mount poses.

Mount 2 pose 5.5.4 3
CFR and the angular and spatial
errors between the determined and

theoretical mount poses.

between the parameters listed in Table 7.10. The correlations of each parameter

to the noise sources were only performed over the 50 or 60 values where that noise

source was evaluated. This is because the noises sources were set to zero while the

other sources were evaluated and would have strongly affected the distribution

of the noise sources and skewed the correlation results. The correlations between

the parameters are given in Table 7.11.

A complete cross correlation table is symmetrical around the main diagonal which

has all unity entries (as these are the correlations of the parameters with them-

selves). To improve legibility the lower half of the table and the main diagonal

were not populated. Additionally, since the seven noise parameters were evalu-

ated independently the first seven columns are omitted. The calibration results

in Table 7.11 are listed in the order they are performed. Thus for each parameter
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values to the right of the main diagonal are the ones that it affects. Values above

the main diagonal are the effects of prior calibrations on that calibration.

Table 7.11 provides insight into the workings and co-dependencies of the APCCS

calibrations. Both known and unknown robot angular noises values seem, in

the ranges tested, to have little effect on the calibrations with the exception

of the LED offset. This effect would likely be increased if the LED offset was

larger. The spatial robot errors have a much larger effect, particularly on the DU

calibration. The unknown translation error has a much larger effect the known

error, particularly on the SEP calibration. Unlike the known error the unknown

error has a small but noticeable effect on all the extrinsic calibrations.

The DU calibration is strongly dependent on the centroid error and to a lesser

degree the robot translation errors. The centroid error also has the previously

stated strong correlation with the DU calibration, as well as with LED spatial

offset determination and a lesser effect on the SEP and extrinsic results. The

mounting angular error has little effect on either of the distortion calibrations,

which is expected, as the angle from which an LED grid is viewed does not

alter the collinearity of the points in free space. It has a noticeable effect on

the LED offset determination and all of the extrinsic calibrations. This result is

expected as the SEP determination requires multiple mountings of the camera

on kinematic bases, and the SEP error affects the mount pose determination, as

discussed below.

The stitch accuracy is strongly dependent on the determination of the poses of

the camera’s mounting points with correlations ranging from 0.81 to 0.97. This

is intuitive as any error in the camera pose immediately affects all the pixels for

that camera. For example, if the camera is 3◦ off from its measured position all

the calculations to create the stitch will be off by about 50 pixels. The stitch

accuracy is more dependent on the angular component of the mount orientation

than on the position, which is to be expected as the stitch surface is many orders

of magnitude further away from the cameras than they are from each other.

The only noise with which the stitch accuracy has any direct correlation is then,

expectedly, the mounting angular error.
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Table 7.11: Simulation parameter correlations.
Parameter 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 Known ang. noise -0.03 -0.09 0.02 -0.09 -0.04 -0.00 0.08 0.09 -0.53 -0.37 0.03 0.03 0.10 0.03 0.06 0.10 -0.02
2 Known trans. noise 0.26 -0.06 0.04 -0.06 -0.01 0.03 0.04 0.04 -0.14 -0.12 0.00 0.02 0.05 0.00 0.03 0.05 -0.01
3 Unknown ang. noise -0.04 -0.04 0.03 -0.04 0.00 -0.01 0.01 0.02 -0.52 -0.38 -0.00 -0.00 -0.02 -0.00 0.00 -0.02 -0.00
4 Unknown trans. noise 0.50 0.16 -0.16 0.16 0.10 0.24 0.22 0.14 -0.15 -0.03 0.21 0.18 0.17 0.21 0.18 0.15 0.12
5 Mount ang. noise -0.12 -0.20 0.21 -0.20 0.21 0.19 0.26 0.29 0.37 0.32 0.22 0.24 0.28 0.22 0.26 0.29 0.22
6 Mount trans. noise -0.03 -0.05 0.06 -0.05 0.08 0.07 0.08 0.08 0.12 0.05 0.07 0.10 0.08 0.07 0.10 0.09 0.08
7 Centroid noise 0.47 0.04 -0.04 0.04 -0.00 0.26 0.07 0.07 0.50 0.49 0.08 0.04 0.26 0.08 0.07 0.26 0.02
8 DU CFR - 0.91 -0.86 0.91 -0.19 0.26 0.16 -0.08 -0.06 0.02 0.18 0.07 0.10 0.18 0.06 0.00 -0.09
9 DU center error - -0.94 1.00 -0.28 0.15 0.09 -0.17 -0.12 -0.06 0.10 -0.01 0.01 0.10 -0.02 -0.09 -0.18
10 UD CFR - -0.94 0.49 0.07 0.10 0.37 0.19 0.11 0.12 0.22 0.16 0.12 0.23 0.25 0.40
11 UD center error - -0.27 0.15 0.09 -0.17 -0.12 -0.06 0.10 -0.01 0.01 0.10 -0.02 -0.09 -0.18
12 Focal error - 0.88 0.86 0.93 0.31 0.27 0.90 0.94 0.76 0.90 0.92 0.77 0.99
13 SEP CFR - 0.96 0.92 0.31 0.31 0.99 0.97 0.87 0.99 0.97 0.83 0.93
14 SEP ang. error - 0.96 0.28 0.29 0.98 0.98 0.92 0.98 0.99 0.89 0.91
15 SEP trans. error - 0.32 0.30 0.95 0.97 0.91 0.95 0.98 0.91 0.96
16 LED CFR - 0.84 0.29 0.30 0.46 0.29 0.31 0.51 0.31
17 LED trans. error - 0.29 0.29 0.50 0.29 0.30 0.54 0.28
18 M1 CFR - 0.99 0.88 1.00 0.99 0.85 0.95
19 M1 ang. error - 0.89 0.99 1.00 0.87 0.97
20 M1 trans. error - 0.88 0.91 0.99 0.81
21 M2 CFR - 0.99 0.85 0.95
22 M2 ang. error - 0.89 0.96
23 M2 trans. error - 0.81
24 Stitch error -
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It is unsurprising then that the stitch accuracy is also strongly correlated (0.83

to 0.99) with the SEP calibration accuracy. This is because the SEP accuracy

directly affects the accuracy with which the camera mounting points are known.

Indeed the correlation between the mounting bracket accuracies and the SEP

calibration ranges are all above 0.97 for the mounting point orientations and

above 0.83 for the mounting bracket translations.

The stitch accuracy, mount pose determination and the SEP are all strongly

dependent on the focal length. The correlations for the mounting bracket spatial

accuracies are 0.76 and 0.77. This dependence increases to approximately 0.90

for the angular components and 0.86 to 0.93 for the SEP calibration. The stitch

accuracy has a correlation of 0.99 with the focal length! This is the core finding

of the simulation: the sensitivity of not only the subsequent calibrations but of

applications of the APCCS outputs are strongly linked to the focal length.

The focal length error only shows dependence on the UD calibration accuracy

(correlation of 0.49) and slight dependence on the mounting angular error (0.21).

This is due to this calibration requiring the camera to be remounted four times.

The focal length’s dependence on the DU calibration is -0.19. In contrast, the UD

calibration is strongly linked to the DU calibration with a correlation of -0.86.

This negative relationship is unsurprising as the same number of parameters are

used for both the DU and UD calibrations. It has previously been shown [15,92]

that UD is more complex than DU and requires more parameters.

The UD calibration is seen to have a greater effect than the DU calibration. The

UD calibration has a correlation of 0.40 with the stitch accuracy! The weak

direct dependence of all the calibrations other than UD on the DU results is

initially surprising until one considers the highly non-linear nature of all the

calibrations. Each calibration does show strong dependence on the calibration

performed immediately prior to it. It is also worth noting that the majority

of resultant DU errors are better than a half a pixel RMS over the camera’s

FOVs, as evidenced by Figure 7.3. It is possible that at higher levels of residual

distortion error stronger relationships will become apparent.
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7.4 Simulation conclusion

The resultant stitch accuracies occupy a wide range of values from 0 to 20 pixels

of error. Figures 7.3 and 7.4 show this deviation exists within each noise band

and no strong trends emerge as noise levels are increased. Table 7.11 shows that

stitch accuracy is most dependent on the UD calibration and focal error (which

affects subsequent calibrations). Neither the focal error nor the stitch accuracy

have any strong dependence on any of the noise sources, except for the angular

mounting accuracy. The variation in accuracies is present even in the zero-noise

case which may be indicative that the globally optimal calibration solution is

not always being found. This may be due to a combination of the cost functions

being too insensitive, or due to the probabilistic nature of global optimisations

employed. Future research may address these concerns.

In conclusion, the posed research question of the calibration robustness with

respect to noise can be answered. Tables 7.6 through 7.9 show that for all noise

sources and magnitudes tested, the best accuracies achieved always fall in the

range of 0.56 to 1.42 pixels of error and the stitch error distributions do not

change significantly. It can thus be stated that the system is indeed robust to

noise.
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Chapter 8

Conclusions

This chapter places the work done in context. Firstly, a summary of the results

are provided in Section 8.1. The original research questions are revisited and

addressed in Section 8.2. Thereafter, key findings of the work are presented in

Section 8.3. Finally suggestions for future work are presented in Section 8.4.

8.1 Results Summary

This work focuses on the intrinsic and extrinsic photogrammetric calibration

of cameras and the use thereof for real-world applications. A summary of the

methods employed can be found in Section 1.4. This section focusses on the

results and research decisions that stemmed from each chapter.

In Chapter 1 the need for an adaptable versatile multi-spectral camera calibration

equipment is identified. The decision to base the APCCS on a robotic arm

is taken, with the proviso that the APCCS must have an extended range of

capabilities compared to the other automated calibration systems discussed.

Chapter 2 provides a review of the relevant literature regarding numerical optimi-

sation, camera calibration, camera based pose estimation, and photogrammetric

stitching. As the calibration is not required to be real time, robust algorithms
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which can be used for black-box functions are selected.

The mathematical building bocks on which the rest of the research are based are

presented in Chapter 3. The details of the chosen global and local optimisation

routines are presented as are the fundamental image processing, trigonometric

and photogrammetric algorithms that are subsequently used.

Chapter 4 provides the first research results from the APCCS development. The

goal of the chapter is to determine which distortion modelling methods and which

calibration targets and associated image processing routines provided the best

results. Section 4.1 investigates which distortion modelling method provides the

best characterisation. The author’s previous distortion modelling work [16, 17]

using high order Brown models, which already provided leading results, is used

as a benchmark. It is seen after a feasibility study (Section 4.1.1) and subsequent

optimisation study (Section 4.1.2) that ANNs could be trained successfully to

characterise distortion. The final ANNs produced results superior to all published

results with the exception of the benchmark. Two papers were published on the

ANN feasibility study [10] and the improved ANN modelling [11] respectively.

The analysis of calibration targets and image processing routines is presented in

Section 4.2. Circular and square calibration targets are presented together with

two image processing methods each. The results are processed using high order

Brown models [16, 17] and the popular OpenCV toolkit [4]. These results are

benchmarked using by triangulating real-world 3D points from images in a com-

mon dataset. It is seen that high order Brown models consistently outperform

OpenCV. Despite square patterns having better triangulation results overall, it

was decided to use circular patterns with ellipse fitting as these patterns are

more representative of an LED or other light source mounted on the robot arm.

A paper [5] was published on an expanded version of this study which included

linear calibration targets.

Section 5 contains all the algorithms developed for camera calibration with the

APCCS. Both the routines to calibrate the APCSS itself, as well as the routines

to calibrate cameras with the APCCS are presented in detail. Theses routines

satisfy all the requirements of an ideal calibration system as listed in Section
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1.1.3. This resulted in the APCCS being internationally patented [9] and a

paper [7] being presented on it. The novelty of the APCCS is both in its unique

combination of abilities and in several of the algorithms developed for calibration.

The method to measure the spatial offset of the LED w.r.t. the end effector and

the tetrahedral based determination of the focal length were deemed novel.

The assessment of the real-world applicability of the APCCS is dealt with in

Chapter 6. Section 6.1 looks at photogrammetric stitching using cameras cali-

brated with the APCCS. Sections 6.1.1 and 6.1.2 present the work on the im-

proved stitching algorithms and novel real-time blending algorithms respectively.

These sections resulted in one paper on the registration [12] and two papers on

the blending [13,14]. Thereafter, both subjective stitching results and quantified

errors based on photogrammetrically stitching image points found with feature

based methods are presented. Results for two multispectral systems show that

the stitching is accurate despite using cameras of different fields of view, spectra,

and resolutions. This shows that the APCCS is both versatile and applicable to

real-world applications.

Section 6.2 provides an overview of the results obtained for optical helmet track-

ing using cameras calibrated by the APCCS. The results obtained with a simple

laboratory prototype tracker provide helmet pose estimation with an accuracy

comparable to operational systems. This section provides further evidence of the

practical applicability of the APCCS. An overview of the APCCS and its use

for stitching and tracking was published [7].

Chapter 7 investigates the robustness of the APCCS to expected noises sources

in the calibration process. The identification and synthesis of artificially noise

corrupted data is presented in Section 7.1. Section 7.2 describes the design of

the experiment, including error ranges and the stitching based error metric. The

results of the simulation are presented and discussed in detail in Section 7.3. It

is seen that the spread of stitching accuracies does not vary considerably over

the noise ranges tested, thus showing the APCCS outputs are robust to noise. A

deeper analysis of the correlations of the stitching accuracies, APCCS calibration

outputs, and noise levels is also presented. In this analysis it is seen that the
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focal length calibration and camera angular mounting repeatability are critical as

they have a strong influence on the extrinsic parameter calibrations which then

directly degrade the stitching accuracy. A simplified version of this analysis [8]

has been published.

8.2 Research question assessment

This section looks at each of the original research questions posed in Section 1.2

and answers them in light of the work done.

8.2.1 Research question 1

Can an automated photogrammetric camera calibration system meeting the cri-

teria listed in Section 1.1.3 be created, using a robotic arm?

Yes. Chapter 5 provided the mathematical calibration routines. These routines

were able to determine the DU and UD lens characterisations, optimal focal

length and the pose of the camera. The pose was further split into two com-

ponents to aid deployments. Additional algorithms were derived to be able to

determine the offset of a light source from the end effector to allow light sources

to be swapped to calibrate cameras of different spectra. None of the calibrations

require knowledge of the pose of the mounting point relative to the robot arm,

thus allowing the mount to be moved to facilitate the calibration of cameras

with different FOVs. The number of positions in a robot movement sequence

is configurable in order to trade off calibration time versus calibration accuracy.

Multiple resolutions are supported by capturing the light sources’ image coordi-

nates one point at a time. The sequential capture allows small deltas in position

which would otherwise cause the light sources to overlap in the camera images.

Chapter 6 provides proof, in Section 6.1, that the above is true by presenting

stitch results for cameras of different resolutions, spectra, FOVs, and arranged

in both linear and 2D arrays. Additional proof is briefly presented in the context
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of helmet tracking in Section 6.2, where cameras of different resolutions and

FOVs are used. The helmet tracking application provided pose measurements in

millimeters and degrees thus showing that the APCCS calibration can be used

for absolute and not merely relative measurements.

8.2.2 Research question 2

Are the calibration parameters produced by such a system suitable for real world

applications?

Yes. Chapter 6 demonstrates in Section 6.1 that multi-spectral photogrammet-

ric stitching of cameras with different resolutions, spectra, and FOVs is possible

with the outputs. This is verified using two different physical systems and real

recorded data. Further evidence is proved in Section 6.2 where cameras of differ-

ent resolutions and multiple FOVs are used to create a laboratory helmet tracker

prototype.

8.2.3 Research question 3

Is a robotic arm based photogrammetric system sufficiently robust to measure-

ment and movement noise?

Yes. Chapter 7 modelled the expected primary sources of noise in the calibration

APCCS and used these values to create realistic synthetic data for the calibration

routines of Chapter 5. Multiple simulations were performed for different magni-

tudes of each noise source while the resultant calibration and photogrammetric

stitch accuracies were recorded. It was seen that while the spread of the resultant

stitch accuracies is wider than desired, the spread is largely independent of stitch

noise in the ranges tested. This shows that the system is indeed robust to noise.
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8.3 Findings

The following are results from the work done:

1. The APCCS is able to accurately determine all the photogrammetric pa-

rameters of cameras of multiple FOVs, spectra, and resolutions.

2. The APCCS calibration outputs were successfully used to photogrammetri-

cally stitch multi-spectral panoramas. Visual analysis showed the stitch to

be correct. Qualitative analysis, based on the projection of matched SIFT

and SURF features in overlapping regions of adjacent cameras, found the

stitch to be accurate to better than 0.3◦.

3. The APCCS calibration outputs were successfully used to create a labo-

ratory helmet tracker prototype which yielded accuracies comparable to

existing deployed systems.

4. The APCCS is found to be resilient to noise in the robot movement, camera

mounting and light source image localisation.

5. It is shown that explicit polar based models for lens distortion marginally

outperformed ANN based black box modelling of lens distortion.

6. The ANN based lens inverse distortion (i.e. UD) modelling outperforms

all the available models in literature except the author’s prior work on

precision calibration [16, 17].

7. The lens distortion modelling in this work significantly outperforms that of

OpenCV (the de facto standard) for monocular localisation and 3D mea-

surements.

8. Photogrammetric stitching, while sensitive to depth, is significantly more

resilient than feature based stitching for uncontrolled outdoor scenes.

9. The focal length characterisation is a key calibration which directly af-

fects the subsequent extrinsic calibrations and resultant stitching accuracy

performed using the calibrated parameters.

10. The camera angular mounting repeatability was found to be the noise

source with the greatest affect on calibration and stitching accuracy.
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8.4 Future research

The following is suggested to continue this research:

1. Development of an all optical method to calibrate the PMJ, thereby allow-

ing the APCCS to perform a complete self calibration.

2. Determine the principal point in conjunction with the focal length and use

this value for image to vector transformations (and vice versa) rather than

the DU and UD centres.

3. Find a better method to determine the similarity of two poses, this will

improve the focal length calibration.

4. Investigate optimal 3D movement sequences of the robot arm for each cal-

ibration.

5. Investigate calibration assessment routines to determine if reprocessing the

data may yield better calibration and stitching results.

6. Investigate better combinations of calibration cost functions and optimisa-

tion routines to yield a narrower spread of resultant calibration and stitch-

ing accuracies.

7. Investigate real-time image equalisation algorithms to mitigate the effects

of uncontrolled lighting conditions on the camera images. This will improve

the performance of image feature detection, description and matching al-

gorithms, and result in more aesthetically pleasing stitched panoramas.

8. Investigate exploiting the depth sensitivity of the stitching algorithm by

using a plane sweep to perform stereo passive ranging.
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