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Abstract Image matching in its simplest form is a two class decision problem. Based on the
evidence in two sensed images, a matching procedure must decide whether they represent two views
of the same scene, or views of two different scenes. Previous solutions to this problem were either
based on an intuitive notion of image similarity, or were modelled on solutions to the superficially
similar problem of target detection in images. This research, in contrast, uses a decision theoretic
formulation of the problem, with the image pair as unit of observation and probability of error in
the match/mismatch decision as performance criterion. A stochastic model is proposed for the image
pair, and the optimal test of match and mismatch hypotheses for samples of this random process is
derived. The test is written conveniently in terms of a statistic of the two images and a scalar decision
threshold. The analytical advantages of a solution derived from first principles are illustrated with
the derivation of hypothesis conditional probability distributions, optimal decision thresholds, and
expressions for the probability of error in the decision.

Two practical aspects of the optimal test are investigated. First, the error-rate performance is
evaluated over a wide range of conditions using Monte Carlo methods in conjunction with a procedure
for generating random image pairs. Even with deviations from the assumed model, the optimal
test exhibits a significant performance advantage over tests based on traditional similarity measures.
The optimal test performs poorly when the scene is occluded, however, and nonparametric similarity
measures from the literature prove to be more effective in this case.

Second, the computational complexity of the optimal test is addressed. It is established that
corresponding pairs of principal components from the two individual images provide an optimal com-
paction of the inter-image correlation structure under the proposed model. This knowledge is used
to reduce the dimensionality of the problem, thereby reducing the computation required by the test
statistic. Separable models provide alternative methods for reducing computation, and partitioned
images are used to calculate the test statistic of a large image pair by summing the statistics for

individual non-overlapping subimages.

The hypothesis testing approach is then extended to the sub-problem of image registration that is
referred to as block matching. This formulation of the problem incorporates a rejection hypothesis and
a prior for the position of correct register, where the latter is useful if there is a priori knowledge about
the mechanism that originally put the images out of register. Techniques are developed for performing
block matching efficiently for both the optimal test and for tests based on standard similarity measures.
Experiments using purely synthetic random images and real images with artificial noise illustrate once

again the error-rate performance benefits of an optimal test derived from first principles.
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Chapter 1

Introduction

Rapidly advancing fields of research frequently leave behind areas that lack rigorous theo-
retical attention. As researchers concentrate on topical and exciting new areas, the more
mundane questions are neglected until they restrict further progress. One such question in
the fields of computer vision and image processing asks what the optimal method is for deter-
mining whether two noisy images represent the same scene. Although the literature presents a
range of solutions that vary greatly in approach and sophistication, a rigorous formulation of
the problem in its simplest form is absent. This problem has new importance as applications
such as low-dose medical imaging begin to test the limits of algorithm performance.

The research presented in this dissertation addresses the problem of direct image matching.
Here a computer algorithm must decide whether the scenes represented by two distinct images
have in common a component of interest. The adjective “direct” is used to indicate that no
deterministic knowledge about the image content can be assumed and therefore a matching
algorithm must process the pixel values in the images and not a higher level model-based

representation of the scene.

1.1 Beyond Similarity and Detection

Methods in the literature often address the image matching problem by assessing the degree
of similarity (or dissimilarity) between images. This seems to be a natural approach to the
problem for reasons that perhaps go deeper than the obvious relationship between similarity
and match. As Tversky puts it, similarity “serves as an organizing principle by which in-
dividuals classify objects, form concepts, and make generalizations. Indeed, the concept of

similarity is ubiquitous in psychological theory” [1]. The emphasis on measures of similarity
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in image matching may be the result of a natural human predilection for this approach.
Viewed independently of the intuitively appealing concept of similarity, image matching
is nothing more than a decision problem where an observation of the physical world must
be classified as belonging to one of two categories. The observation is a pair of digitized
images and the categories are “match” and “mismatch”. In principle this problem is distinct
from the one of target detection in images, where the observation is a sensed image and
the categories are match and mismatch between this image and an idealized template of the
target in question. The superficial similarity between the problems of matching and detection,
however, is potentially misleading. It leads to formulations of the image matching problem
where the two images are treated as independent observations, whereas it is precisely the
relationship between them — their interdependence — that is the determinant of match.
The approach taken in this work is to suspend intuitive notions of similarity and parallels
with the classical detection problem, and to apply powerful results from decision theory
to recognize match or mismatch in image pairs. It is argued that a measure of similarity
should be a consequence of, rather than a starting point for, the design of an image matching
algorithm, and that the unit of observation should be the image pair. It is shown that this
perspective leads naturally to a useful formulation of the problem in that it supports more

rigour than previous approaches and delivers solutions with superior performance.

1.2 A Scientific Approach

The level of scientific rigour in computer vision and related fields has been a topic of debate for
some time. In the early 1990s a fascinating dialogue between several luminaries in computer
vision revealed that opinions differed on the level of scientific rigour evident and the relative
importance of theory and practice, but agreed on the importance of a scientific approach and
of proper experimentation [2, 3, 4, 5, 6]. More recent meetings of computer vision academics
and professionals still debate the issue of whether the field is a legitimate scientific discipline’.
A scientific approach to the problem of image matching requires that the phenomenon of
“match” is defined; that a model for the problem is developed; that a solution is derived on
the basis of this model and accepted performance criteria; and that this solution is tested

through rigorous experimentation. These elements are now explored further.

!For example, during panel discussions at the IEEE Computer Society Workshop: Vision Algorithms -
Theory and Practice, which was held in conjunction with the Seventh International Conference on Computer
Vision from 21 to 22 September 1999 on Corfu, Greece.
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Definition For the purpose of this research, match is defined in terms of the relationship
between the two scenes that the image pair captures. The nature of the relationship will
depend on the particular application. For instance, stereo correspondence algorithms could
consider matching scenes to be identical (barring sensor noise) and non-matching scenes to

be statistically independent.

Modelling The assumption that deterministic information is not available leaves the
option of modelling the image pair probabilistically. There is considerable precedent for the
use of statistical image models in the areas of image compression, image restoration and object
detection. Generally speaking, if the performance of an algorithm is measured over a large
ensemble of images for which a statistical model captures the essence of the image data, then

this sort of model is appropriate.

Derivation Given a definition of match and a statistical model for the image pair, the
derivation of the optimal matching procedure is an optimization problem that is guided by
performance criteria for the resulting algorithm. The fields of signal detection and pattern

recognition have developed powerful tools for tackling this sort of problem.

Experimentation If an ensemble of image pairs that conforms to the model can be
synthesized, then experimentation under ideal conditions is only limited by computational
resources. This sort of numerical experiment using random numbers belongs to the class of
Monte Carlo methods. In principle, the same results could be obtained analytically, but the
mathematics involved is often intractable. Since the model is rarely a perfect representation
of real images, further qualification of the algorithm involves experiments with real image

data that is representative of the problem at hand.

1.3 Objectives of the Research

A decision theoretic formulation of the image matching problem allows the derivation of
algorithms that are optimal with respect to the models chosen and the performance criteria
applied. The primary hypothesis of this research is that the optimal approach based on
parametric statistical models will outperform current techniques, which are based on ad-hoc
notions of image similarity and target detection algorithms adapted for matching purposes.

In order to test this hypothesis, the following objectives are set:
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1. To review the current approaches to the problem of direct image matching.

2. To develop a statistical model for image pairs and a procedure for synthesizing an

ensemble of images that conform to this model.

3. To derive the matching procedure that is optimal with respect to the aforementioned
model in that it minimizes the probability of error when making the match/mismatch

decision.

4. To compare the optimal procedure to existing sub-optimal procedures under the ideal

conditions of the proposed model using Monte Carlo simulation experiments.
5. To apply this knowledge to a common image processing problem.
6. To test the effectiveness of the optimal algorithm using experiments with real images.

7. To draw conclusions on the basis of the results and to propose a programme of further

research.

1.4 Outline of the Dissertation

A brief outline of the dissertation content is now given as an aid to the reader.

Chapter 2 reviews the literature on direct image matching. Early work in this area
evolved from correlation-type filters used in one-dimensional signal processing. The matched
filter and phase correlation are notable examples. Much of the work on direct image matching
is based on measures of image similarity, which generally fall into the categories of correlation-
based, difference-based, nonparametric and histogram-based measures. Some work has been
done on quantifying the performance of direct matching methods, but these results are either
experimental and specific to a set of test images, or analytical and restricted to the simplest
measures. Although the different approaches are each based on a sound rationale, there is no

evidence of measures that are derived from first principles using an image model.

Chapter 3 formulates the image matching problem in a decision theoretic framework.
Tools available in the fields of signal detection theory and pattern recognition are investigated
and the former are found to be appropriate for this problem. The high dimensionality of the

observations, the assumed availability of an analytical image model and the impracticality of
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unsupervised learning in this case support this decision. In order to illustrate the mechanics
of formulating matching in this way, the optimal test is derived for the trivial problem of
matching scalars. This has no practical significance, but shows some interesting characteristics

of the solution that would be obfuscated in higher dimensions.

Chapter 4 derives a model for the image pair that includes a parameter to control
the degree of match between the images. Multivariate normal models are almost unique
in their analytical tractability, but do not appear to capture the essence of typical image
ensembles. Simple techniques described in the literature, however, can transform typical
images so that they do resemble samples of a multivariate normal random process. It is
shown that reasonable assumptions about the image pair lead to a simple joint image model
where the degree of match is controlled by the linear correlation coeflicient between the ideal
(noise-free) components of the images. Finally, the chapter derives an efficient method for

synthesizing image pairs that are samples of the random process described by this model.

Chapter 5 derives the optimal likelihood ratio test for image matching, given the image-
pair model of the previous chapter and probability of error as the performance criterion. It is
shown that the test is conveniently written in terms of the normalized principal components of
the images, suggesting a two stage procedure for calculation of the test statistic: a whitening
transformation followed by calculation of the simplified likelihood ratio statistic for images
with identically distributed, spatially independent pixels. The probability density function of
the test statistic under match and mismatch hypotheses is derived, allowing optimal decision

thresholds and the probability of error to be calculated analytically.

Chapter 6 documents Monte Carlo experiments that compare the error-rate perfor-
mance of the optimal test and methods from the literature. These experiments reveal that
under the assumed model the optimal test is far superior, suggesting that there is scope for
significant improvement on the standard approaches to image matching. Experiments also
investigate the error-rate when the image data deviates from the assumed model, and where
there is occlusion. The optimal test is fairly robust under a wide range of conditions, but mea-
sures that are designed specifically to be robust under occlusion exhibit better performance

than the optimal test when this type of distortion is present.
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Chapter 7 addresses the high computational demands made by the likelihood ratio
statistic. It is established that under the assumed model the principal components of the
images correspond to the canonical variables of the image pair, making them an optimal
compaction of the inter-image correlation structure. An efficient (but lossy) strategy for
reducing the computational requirement only considers the subset of the canonical variables
that have the highest correlation coefficients. Computation can also be reduced by assuming
that row and column models are separable. If the image models can be approximated by
separable Markov processes for the rows and columns with one-step correlation approaching
unity, then the discrete cosine transform can approximate the whitening transforms for further
efficiency. Finally, large images can be processed efficiently by using a block partitioned

approximation of the test statistic.

Chapter 8 formulates the sub-problem of image registration known as block matching
in a hypothesis testing framework. It is shown that the optimal test derived previously for
matching is part of the resulting algorithm. Block matching is a highly computationally
intensive operation and methods for performing the search for matching blocks efficiently are
introduced. A method is also introduced for screening blocks that are unsuitable for matching,
thereby reducing the number of control points where block matching has to be performed, and
ensuring good registration performance from the control points that are selected. The error-
rate performance of different block matching algorithms is then analyzed using experiments
that range from Monte Carlo simulations with purely synthetic data to experiments that use
real images with synthetic noise. The performance advantage of the optimal approach based

on parametric statistical models is confirmed in the results of these experiments.

Chapter 9 concludes the dissertation. The key insights are summarized and the im-
portant results are highlighted in order to consolidate the contribution made by the previous
chapters. This work has only scratched the surface of the image matching problem and di-
rections for future research are suggested. The potential for using a similar approach to
formulate other problems, such as target detection using a reference image, is also pointed

out. Final remarks conclude the presentation.



Chapter 2

A Review of Direct Image

Matching

The task of establishing whether two images match each other or not is ubiquitous in the field
of image processing. Image alignment, indexing in image databases, the detection of changes
over time: these are all tasks where a decision must be made as to whether two images
represent the same scene. Given that equivalence in the scene itself is of importance, an
obvious strategy would be to reconstruct and compare the scene that each image represents.
If scene features can be identified in the images and used to establish the correspondence then
a complete reconstruction may not be required. However, the sort of a priori information
about scene content that is a prerequisite for this approach is often not available. In this
situation the correspondence has to be determined directly from the image pixel values, or
simple statistics of these values, by direct measures of image similarity. These measures make
few assumptions about the scene content, using only vague and uncertain a priori information

about the scene, sometimes embodied in a statistical model.

Advances in the measurement of image similarity have been reported in a diverse range
of fields. The medical imaging, remote sensing, computer vision and pattern recognition
literature are all represented in this review of image similarity measures. The review starts
with early work in image matching, where image processing researchers were influenced by a
more established body of signal processing research in the radar and communications fields.
Early applications of image registration also only required translational alignment. This fact,
together with the existing signal processing paradigm, lead to the classical filtering approach

for image matching, which is reviewed briefly in Section 2.1. Section 2.2 then summarizes



8 CHAPTER 2. A REVIEW OF DIRECT IMAGE MATCHING

the image similarity measures that have been reported in the literature. Evaluation and
comparison is essential given the variety of both applications and available measures. Section
2.3 collects work in this area. Observations on the current state of direct image matching are
made in Section 2.4.

Rather than reproduce each author’s individual notational preferences, a consistent nota-
tion is used throughout the review to facilitate the comparison of different approaches. An
image with m rows and n columns is either denoted as the mn-vector u, where the elements
are in row-column order, or the spatially discrete signal u (4, k), where j € {1,2,... ,m} and
k€ {1,2,... ,n}. Given image vector u, the notation u; refers to the i-th element of this
vector, whereas u (j, k) refers to the element corresponding to the pixel value at column j and
row k in the image. Here u; is equivalent to u (4, k), where ¢ = j 4+ n - k. Sometimes it will be
convenient to think of the image as a continuous function in two dimensions, in which case it
will be denoted as u (z,y). By convention, coordinates in the spatial domain will be denoted
(4,k) (or (z,y) in the continuous case) and coordinates in the spatial-frequency domain will

be denoted (w,v).

2.1 Image Correlation Filters

No review of image matching would be complete without covering the classical filtering ap-
proach to aligning images. These techniques are typically only applicable to translational
registration algorithms, but they do have general importance as the origin of many similarity

measures with broader application.

2.1.1 Matched Filters and Cross Correlation

The convolution filter kernel that maximizes signal-to-noise ratio (SNR) where a finite length
time-domain signal is embedded in additive white noise is the signal itself reflected about the
amplitude axis [7]. The same result holds for a digital, spatially quantized two dimensional
signal that is embedded in white noise [8]. Consider an m, X n, sensed image a (j,k) and a
known m, x n, template v (j, k), where m, < mg, and n, < ng, and the pixel intensity values
are real. The filter operation that maximizes SNR if a consists of instances of v embedded in

white noise can be written as

f (.7’ k) = a(]’k) * ’l_)(j’k)a (2'1)
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where * denotes linear convolution and v is equal to v rotated by 7 radians in the image
plane. This operation is also referred to as the correlation of a and v and has been used to
align two sensed images. In this context v is normally a subimage extracted from a second
sensed image.

The matched filter of equation (2.1) can also be written as the correlation function
FGR) =D a(+sk+t)-v(st), (22)
s t

where (s,t) are coordinates in v with the origin at its center and f is defined for coordinates
(7, k) where a and v overlap completely. This filter was derived for the detection of a (noise-
free) template in white noise, however, and is not as useful a measure for registering two noisy
images. For instance, the value of f (j,k) is dependent on the signal strength in @ and v. A

more practical approach in this respect is the normalized correlation function

dosdua(j+sk+t)-v(st)
2, Sat+s b+ [, 00 607

fn (Jak) = (23)

1/2°

which has been used for change detection [9] and template matching [10].
Anuta pointed out that it is more efficient to calculate image correlation using Fast Fourier
Transform (FFT) operations [11]. Since circular convolution in the spatial domain is equiva-

lent to multiplication in the spatial-frequency domain [12],
f (k) =FHA(w,v) VF (w,)], (2.4)

where F[] is the discrete Fourier transform (DFT), A and V are the DFTs of a and v
respectively, and V* denotes the complex conjugate of V. Note that if f is considered to
be the same size as a then there are so-called edge effects in the result of both (2.1) and
(2.4). For the former, the edge is undefined where v is translated to positions where there is
only partial overlap with a, and for the latter a similarly sized edge area consists of aliased
information because (2.4) is equivalent to circular convolution.

Given the importance of cross-correlation in communications and radar systems before
image processing even existed, it is not surprising that this matching technique has received
much theoretical and experimental attention. Several authors have investigated the statistical
properties of cross-correlation when used to detect a known signal in additive noise. The

probability density function (pdf) of the cross-correlator output for noise and ideal signal plus
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noise is derived by Green [13]. The pdf for the case where both the received and reference
signals are sampled and are corrupted by noise is derived by Roe and White [14]. Andrews
extends this analysis to allow non-zero correlation between the input waveforms [15]. These
results are of limited use in the analysis of the more general matching problem, because in
this case the signal is not deterministically known.

The shape of the correlation function peak has also received attention. Dvornychenko
establishes bounds for the normalized correlation of two signals that differ only by a relative

shift under noise-free conditions [16].

2.1.2 Phase Correlation

A peak in f indicates the presence of v at the corresponding position in a. This peak is
broad in practice, leading to inaccurate localization. Kuglin and Hines propose exploiting the
Fourier shift property [17, p. 45] by using phase correlation, which produces a narrow peak
and exhibits better performance in narrowband noise [18]. The phase correlation of a and v
is given by the inverse Fourier transform of the phase difference between two images:

A(w, )V (w,v)*
|A (w,v) V (w,v)"]

fo G, k) =F~* (2.5)

This technique is not restricted to the case where v is contained within a, and can be used to
find large relative displacements between two images of similar size. It is invariant to scaling or
offset in image intensities and tolerates spurious low-frequency background intensity variations
(e.g. illumination differences) very well, because these can be regarded as narrowband noise.

Variations on standard phase correlation have been proposed. Alliney and Morandi sac-
rifice performance for computational efficiency by using one dimensional phase correlation of
projections [19]. De Castro and Morandi extend the technique by using an iterative search to
cover rotational as well as translational differences between the images [20]. Pla and Bober
show how linear deformation parameters that are separable in j and k& can be estimated in a

phase correlation framework [21].

2.1.3 Whitening Filters

Kuglin and Hines note that rewriting (2.5) as

fp (k) = F~! [(QEZ:Z;) (\KEZ%)]
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suggests an interesting interpretation of phase correlation: A and V are normalized by their
magnitudes, which “effectively ‘whitens’ each image with respect to itself”, before the stan-
dard correlation operation is carried out [18]. Pratt uses a similar idea, but proposes explicit
whitening filters for a and v as preprocessing for the normalized correlation function [22].

Given two images, a and v, Pratt’s statistical correlation measure is defined as

Yos b (s, k+t)-D(s,t) (2.6)

fs (G, k) = |
R CEY [S

where d (j, k) = a (4, k) *Dg (j, k) and % (§, k) = v (4, k) * D, (4, k). The spatial filter functions,
D, (j, k) and D, (4, k), are chosen to decorrelate the image pixels (or “whiten” the images).
The whitening filters are equivalent to gradient operators if the rows and columns can be

modelled as separable Markov processes [22].

2.2 Image Similarity Measures

This section summarizes the literature on image similarity measures. Attention is restricted
to the task of image matching — measures of similarity that are used to evaluate image fidelity
after lossy image compression, for example, are not covered [23]. The specific definition of
“match” for u and v will depend on the particular application of the measure. The definition
of the term “similarity measure” is not restricted to measures that increase with the underlying
degree of match between the two images. Measures that decrease with increasing match, often

referred to in the literature as “distance measures”, are also included in the definition.

2.2.1 Classical Image Similarity

Correlation- and difference-based measures are classical in the sense that they were used by
the earliest image matching algorithms, but even recent literature compares new measures to

examples from one or both of these categories [24, 25, 26].

Correlation-Based Measures The filters of Section 2.1 can be thought of as a windowed
measurement of the local correlation between two images. The corresponding measures of

similarity between two images of the same size are made explicit here. The cross correlation
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of two m X n sensed images, u and v, is their inner product
R(u,v) = Z U;0;-
i
The normalized cross correlation is written as

F(uv) = 2
\ D “22 D UZ'Q

which is invariant to scaling of the pixel intensity values. A further modification aims for
both scale and offset invariance by using the normalized cross-correlation of the zero-mean

images, giving the correlation coefficient [27, p. 584]

r(u,v) = 2 (i =@ (v 7 0) 2.7)
Vi (i~ 0)? Y, (v — 0)?

where
1 P 1
u—Nz:uz an U—WZW
2 2

and N = mn is the number of pixels in each image. This measure has a statistical inter-
pretation. If corresponding pixel pairs, (u;,v;), can be regarded as samples of two random
processes, then r is their sample correlation coefficient [28, p. 328]. If these random processes
have a bivariate normal distribution with covariance matrix,
o poyoy
Koy = U
poOyuoy Oy

then r is the maximum likelihood estimate of p [29, p. 144]. Like the statistical correlation
coefficient, r is in the range [—1,1], where r = 1 represents positive correlation (identical
images, except for scale and offset), 7 = —1 represents negative correlation (identical images
with reverse “polarity”) and r = 0 represents totally uncorrelated signals (images that don’t
match). If some of the pixel values are outliers due to noise, then 7 can be a very poor
estimate of p. A potential solution can be found in the field of robust statistics, which

addresses the problem of estimating statistical parameters using data that is corrupted by
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outliers [30]. Brunelli and Messelodi compare several robust! estimates of p that outperform
r in the presence of noise [31].

Other measures of linear correlation are also used to measure image similarity. Radcliffe,
Rajapakshe and Shalev [32] calculate the x? statistic, which is the basis of a classical test of
independence between two data sets [28, p. 257], for a random subset of the corresponding

pixel-pairs.

Difference-Based Measures The most common image similarity measures are based on
differences between the intensity values of corresponding pixels. The simplest of these are the

sum of absolute differences
dl(uav) = Z |U’Z - Ui' ’
i
which is popular for template matching [33, 34|, and the sum of squared differences

da(u,v) = Z (ui —v;)”.
i
The subscripts in the notation of d; and do make reference to the fact that these measures
are related to the metrics induced by L; and L9 norms, respectively, on the space of images.
Svedlow, McGillem and Anuta claim that these measures have an advantage over cross-
correlation in the case of additive noise in that the values of the latter have no absolute scale,
whereas the values of d; and dy will depend on the statistical properties of the noise because
the noise-free components are cancelled in the difference (u; — v;) [35]. A statistical noise

model can then be used to specify a confidence interval for dy or dy in the case of a match.

The sum of squared differences is related to the correlation-based measures of the previous
section — Rosenfeld uses do as the starting point for a derivation of cross correlation as a
measure of match [36, p. 37]. Also, if G and V are zero-average images that have been
normalized to have a sample standard deviation of one, then dsy is related to the sample

correlation coefficient by

dy(d,V) = 2N [1 —r(u,v)]. (2.8)

L«Robust” here has a specific statistical interpretation, and not the general interpretation often used in
image processing for a procedure that maintains performance under a wide range of conditions.
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In this light r can be viewed as a variation on do that compensates for different offsets and
scaling in the pixel intensities of u and v. Another measure related to ds is the variance of

the differences,

2

1 1
(ui - Ui) ’

dy (u,v) = = (Ui—Ui)—N .

which was proposed by Cox and de Jager [37] for its insensitivity to pixel intensity offset
differences between u and v. It is equivalent to ds for two images where the sample mean has
been subtracted beforehand.

Although d; is less sensitive to noise than ds, neither tolerates pixel value outliers very
well [31]. Speckle noise, or even a single dead pixel caused by a malfunction of the image
formation device (common in charge coupled device (CCD) arrays), can cause otherwise
matching images to seem dissimilar according to these measures. With appropriate scaling,
dy can be thought of as an estimate of the mean absolute pixel difference. Considering that
the median is a robust estimator of the mean [38], an obvious robust alternative to d; is the

median absolute difference
dm(u,v) = med [|u; — v;] . (2.9)
Boninsegna and Rossi propose the mizture distance [39], which combines ds and d,, as follows:

di (u,v) = Z ex (ui,vi)?

(’U,,'—’Ui) if |ui—v,~\ <k
er (ui,v;) = therwi ,
m otherwise

where m is the median of the differences and the parameter 0 < k < oc controls the mixture.

Sequential Similarity Detection Barnea and Silverman propose the Sequential Similar-
ity Detection Algorithms (SSDAs) for speeding up image registration [40]. An SSDA includes
several elements that improve computational efficiency, but a simple example illustrates the
SSDA notion of image similarity between two images. The error between two corresponding

pixels at position (4, k) is evaluated with the absolute pixel difference

e(jak) = |U(],k)) _U(j’k”'
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A random, non-repeating series of pixel positions, (j,, ky), is generated. The overall match
error is then calculated by accumulating the individual errors in the order of this series. The

number of pixels N, for which

N
> el k) >T,
k=1
is used as the measure of similarity between the images, where T is a predetermined threshold.

Similarity, then, is based on the rationale that matching images will require more pixel-pairs

to exceed the threshold.

2.2.2 Nonparametric Similarity

A more recent trend in image similarity measurement is the use of nonparametric measures.
These should not be confused with the robust measures that were mentioned previously?.
Robust statistics is concerned with the effect of outliers on a procedure that was designed
with a certain model in mind. Examples of robust statistics in image similarity measurement
are Brunelli and Messelodi’s correlation coefficient estimators [31] and the mixture distance
proposed by Boninsegna and Rossi [39].

Nonparametric or distribution-free procedures, on the other hand, tolerate deviations from
a classical model or the lack of model knowledge by making no (or very few) assumptions
about the underlying statistical nature of the process that generates the input data. Where
robust procedures use parameter estimators that are insensitive to outliers, nonparametric
procedures ignore the parameters completely. Such procedures have largely had their origins
in the field of detection theory, where optimal approaches were seen to have limitations when

the model assumptions are violated [41].

Sign Change Measures Venot, Lebruchec and Roucayrol propose similarity measures
called sign change criteria for situations where there is significant obscuration that can impede
matching [42]. This approach is used predominantly for medical image registration [43, 44, 45].

Consider two m x n images u and v which differ only by additive noise. Their difference
image, e = u — v, will exhibit many sign changes between pixel pairs that are horizontally

or vertically adjacent in the image plane. Images that have differences significantly greater

2Much of the literature treats these as equivalent concepts, but this discussion follows Huber [38] in the
distinction made between robust and non-parametric procedures.
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than the mean of the noise will not produce many sign changes between adjacent pixels. This
motivates the use of sign change for measuring similarity between images. The nonparametric
advantage of this approach lies in the fact that the values of intensity differences are not taken
into account directly. Where an isolated outlier in either image would distort the value of a
parametric measure, it will not have any significant effect on the number of sign changes in
the difference image.

Formally then, define the function

0 >0
sgn(z) =
1 <0
and the stochastic sign change (SSC) measure of similarity is the number of sign changes
found when scanning the image row-by-row or column-by-column. For the row-by-row case
the SSC criterion is given by

n—1 m
ss,v) = 33 sgnle (k) - e (G + LK),
j=1k=1
which increases with increasing similarity between u and v.
The SSC relies on the presence of noise with a pdf that has zero median to supply sign
changes in the difference image [46]. If the noise is low compared to the precision of digitization
then this requirement is not satisfied. Venot, Lebruchec and Roucayrol deal with this case by

adding a periodic pattern to one of the images as follows

v(j, k) +q if j+Ek is even

(4, k) =
v(j, k) —q if j+k is odd

and then calculating the SSC as before. The result, sqg(u,v) = ss(u,V), is called the de-
terministic sign change (DSC) criterion. In image registration experiments that compare it
to the correlation function, correlation coefficient and sum of absolute differences, the SSC
(or DSC) criterion purportedly provides a narrower match peak, better registration accuracy,
and is more robust in the presence of obscuration [42].

The statistical properties of sign-change sequences can be used to specify the match thresh-
old according to a confidence interval [42]. In the nonparametric statistical theory of run tests,
it is known that if plus and minus signs are equiprobable, then the pdf of the number of sign

changes in a sequence is normal. Hence, for images u and v that are perfectly matched except
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for additive noise, the stochastic sign change has a 95% confidence interval of

VN

N
= 1.96——
5 — 1+ 196,

where N is the number of pixels in the sequence. The only restriction on the additive noise

is that its pdf is shared by both images and has zero median [46].

Coincident Bit Counting Chiang and Sullivan propose a measure of similarity based
on the number of coincident bits in the binary representation of corresponding pixels in two
images [47]. Define the function, bits(x), as the number of bits set in the binary representation
of the integer z. The coincident bit counting (CBC) measure of similarity can be formulated

as
c(u,v) =) bits(u;®v;),
%

where @ is an exclusive NOR operator. Like the sign change criteria, the CBC measure is
not proportionately affected by large pixel value differences and is therefore robust to pixel

outliers.

According to Chiang and Sullivan the CBC measure can be made less sensitive to noise
by excluding the lower order bits from its calculation [47]. The number of bits used can be
dynamically adjusted according to the noise in the images. Chiang and Sullivan also suggest
that in the case of template matching or image registration, a steeper peak in the match
surface will be obtained at the position of correct match if the higher order bits are also

omitted from the calculation of ¢(u, v), since these will probably be locally uniform [47].

Ordinal Measures An important class of nonparametric statistical tests is based on the
rank, or ordering, of sample values. Corrupt data or outliers only affect a statistic that is
based on rank if the incorrect data changes the relative ordering of the samples. Motivated by
this observation, Bhat and Nayar propose a similarity measure where pixel intensity is viewed
as an “ordinal variable” — that is, a variable drawn from a discrete ordered set [25]. Similarity

is then based on rank permutations of the intensities rather than on absolute intensity values.

Given the pixel intensity pairs (u;,v;), 7%, is defined as the rank of u; among the pixels

in image u, and 7rf) is defined as the rank of v; among the pixels in image v. A composition
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permutation s is defined as

The permutation s is an ordering of v with respect to u and when u and v match, s is the
identity permutation: (1,2,... ,N). A distance between m, and 7, is then defined according

to a distance measure between s and the identity permutation — the deviation
i
di, =i=Y J(s <i),
j=1

where J (B) is the indicator function

1 B is true
0 B is false.

J(B) =

The similarity of u and v is then defined as

2ma'xz'€{1,2,...,n} din
15 ’

which has the range [—1,1]. A perfect match is represented by x = 1, and kK = —1 represents

k(u,v)=1-

perfect negative correlation.

The nonparametric measure x has some desirable properties. First, it is invariant to linear
scaling and offsets in intensity. Second, it is not affected by monotonically increasing functions
on u and v (i.e. £(f(u),h(v)) = k(u,v), if f(-) and h(-) are monotonically increasing).

Third, it is not affected by arbitrary ordinal relabelling of the intensity values.

2.2.3 Histogram-Based Similarity

As an estimator of the joint pdf of image-pair pixel values, the joint histogram seems to be a
natural route to measuring similarity from an information theoretic point of view, since the
structure of the bivariate pdf will reflect the dependence between the values of corresponding

pixels. The correlation-based measures described previously implicitly model this as a linear
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dependence and histogram-based measures have the potential to use a more general model

for the relationship between two matching images.

Pairing Functions Garret, Reagh and Hibbs propose the pairing function A as the basis
of an image correlation measure [48]. Given images u and v with pixels quantized to G levels,
define the pairing function A/ as the G x G matrix where the entry Ny; represents the number
of times the pixel value k£ from image u pairs with pixel value [ in the corresponding pixel of
v. Note that exact pixel matches accumulate on the diagonal of /. One correlation measure

(or similarity measure) based on A is the simple sum

which is the total number of matches divided by the total number of possible matches. The
normalized cross correlation can also be written in terms of pairing functions as

G-1xG-1

k0 210 KNG (1, v)

¢cs = [ZE;OI kQUk (u)] 1/2 [ZlG:BI ZQVI (V)] 1/27

where

G-1
U (u) = Z N1 (u,v) the number of pixels with value k in u
=0
G-1
Vi(v) = Z N (u,v) the number of pixels with value of / in v.
k=0
Note that the pairing function itself is actually just the joint histogram of the pixels in u and

v. Figure 2-1 is a simple illustration of the pairing function concept.

One of the motivations for the pairing function concept is that the “easily calculated”
expected values of the N; allow one to calculate appropriate match thresholds [48]. Garret,
Reagh and Hibbs do this for G = 4, but following the same procedure for the large number
of intensity levels that are common in modern imaging systems is impractical. Of course, the
levels can be re-quantized to a manageable number, but this approach discards information

from the original image.
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(a) Subimage A of the ‘pep-
pers’ image.

(c) Subimage B of the ‘pep-
pers’ image.

(e) Subimage A with inten-
sity offset of 1 level.
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(b) N for two identical images: image (a). As expected, N is a

diagonal matrix.
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(d) NV for two dissimilar images:
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images (a) and (c).

diagonal elements are non-zero, indicating mismatch.

70 628 0 0
0 0 1026 O
0 0 0 2482
0 0 0 0
N=10 0 0 o
0O 0 0 0
0O 0 0 0
(o0 0 0o 0

OO O OO

3044
0
0

112 7
33
166
733
139
173
48
6

Off-

0
0
0
0
0
0

2817
404 |

(f) NV for images differing only by an intensity offset: images (a)
and (e). Non-zero elements are shifted one diagonal to the right

with respect to (b).

Figure 2-1: Pairing function matrices for 64 x 64 pixel subimages of the ‘peppers’ image

(quantized to 8 levels).
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Mutual Information Viola and Wells [49] propose mutual information (MI) as a measure
of fit between a model and an image in order to find the pose of an object. Maes et al. use the
same principle — that the MI of the image pair will be maximized when u and v match —
to register multimodal medical images [50, 51]. Consider the pixels in u and v to be samples
of the random variables U and V, respectively. A state of mismatch between u and v can be
modelled by statistical independence between U and V', where pyy (u,v) = py (u) -py (v). A
state of match can be modelled as maximal dependence, where py (u) = py (v) = pyv (u,v).
The MI, then, measures the degree of dependence between u and v by calculating a distance
between the estimated pdfs associated with the match and mismatch hypotheses. Maes et al.

use the Kullback-Leibler distance

U,

Another way of stating the rationale of using the MI in u and v as a measure of similarity is
that the amount of information u contains about v (and vice versa) will be maximal if they

match.

In practice pyy (u,v) is estimated by forming the joint histogram of the pixels in u and
v, denoted here as h (u,v). For convenience the pixel values in u and v are re-scaled to the
range [0, G, — 1] and [0, Gy — 1], where G, and G, are the number of histogram bins in each
dimension. The required pdfs are then estimated as follows:

_ h (u,v)
puv (u,v) = m

pu(w) = > puv(u,v)
pv(v) = D pov(u,v).

This measure makes no assumptions about the form of the pdfs or the nature of the
dependence between corresponding pixels, and its validity is therefore independent of the
process generating the individual pixel values. Note that the images do have to be large
enough to provide an adequate number of samples for the joint histogram. This rules out
MI for tasks like the matching of small blocks for motion estimation and it is more suited to

problems where large images from different modalities have to be registered.
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Difference-Image Histograms Buzug and Weese measure similarity using the entropy
associated with a histogram of the difference image e = u — v [52]. The G-bin histogram is

calculated and then normalized to satisfy

where py, (e) denotes the fraction of difference pixels that fall into bin k, where k € {1,... ,G}.
The entropy is given by

Mantropy (0,v) = 3 £ (pi (€))
k=1

where f () = —p (z) log p (z) is the entropy weighting function. The rationale behind the use
of entropy is that images that don’t match will produce a broad difference image histogram
(high entropy), and matching images will produce a “peaky” histogram (low entropy). The
measure is invariant to pixel value offsets.

The entropy measure is computationally expensive and Buzug et al. prove that a class of
strictly convex, differentiable functions, which are faster to compute, retain its properties as
far as similarity measurement is concerned [24]. Among these is the energy function, f (z) =

x2, which gives the similarity measure:

G

Menergy (u, V) = Zp% (e) :
k=1

2.2.4 Other Measures

Moghaddam, Nastar and Pentland propose a probabilistic measure for image matching in
situations where (1) there are reasonably well-defined image classes that can be described
by a Bayesian analysis of intra- and extra-class image differences and (2) training data are
available [53]. Their application is face recognition, where the set of intra-class differences,
Qr, models the variation in different images of the same person, and the set of extra-class
differences, {2, models the variation in images of different people. The similarity measure is
then the a posteriori probability of the differences d (u, v) between two images belonging to

the intra-class model, given by

S(u,v) =P (Q|d(u,v)).
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The differences are represented by a parameterized model of the deformation between u and
v, denoted here as U.

Using the maximum a posteriori (MAP) rule, two images of the same person’s face match

if P (Qﬂﬁ) >P (QE|fJ), or equivalently, if S (u,v) > 1/2. Bayes rule,

p (T10:r) P ()
p (T191) P() +p (TI92) P ()

P ([0) =

represents the a posterior: pdfs in terms of the class conditional pdfs, p (fJ|Q 1) and p (fJ\Q E),
which can be estimated from training data. The high dimensionality of U makes the estima-
tion impractical, but the authors overcome this problem by using the principal components of
U and an efficient technique for directly obtaining the pdf of these components from training
data.

Using this approach within the well-known Eigenfaces face recognition algorithm, Moghad-
dam, Jebara and Pentland were able to improve performance in tests using the FERET face

database [54].

2.3 Evaluation and Comparison of Similarity Measures

Many algorithms, such as stereo matching and motion estimation, depend on an early stage
of direct image matching for their success. The relative and absolute performance of different
similarity measures should therefore be of interest to the designers of these algorithms. This

section reviews work done in comparing similarity measures and analyzing their performance.

2.3.1 Similarity Measure Comparisons

Given the wide use of similarity measures in image processing, it is surprising that relatively
few broad comparisons of the different approaches can be found. Different similarity measures
have often been compared in the context of a very specific application, and the particular ad-
vantages of newly introduced similarity measures have often been demonstrated using limited
experimentation. These investigations are too numerous to mention, and have limited value
as the basis for a broad comparison of approaches to the problem of direct image matching.

There have been some attempts to assess similarity measures in a slightly broader context.

Svedlow, McGillem and Anuta compare classical measures and image preprocessing operations
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experimentally using multi-temporal images from the Landsat multispectral scanner over a
series of test sites [35]. They compare the correlation function, correlation coefficient and
the sum of absolute differences when used in translational image registration. Measuring the
percentage of acceptable registrations in a given number of registration attempts, they find
that the correlation coefficient is marginally better than the sum of absolute differences, but
that the latter is desirable for its computational efficiency. The effect of different preprocessing
methods — a gradient operator, a threshold operator and a combination of the two — is also
analyzed. They show theoretically that if registration is viewed as a matched filter operation,
then the gradient operator is the optimal pre-processor for image data that can be modelled
as a first order Markov process. This is confirmed experimentally, with the magnitude of the

gradient preprocessor producing the best overall results.

Aschwanden and Guggenbiihl compare a broader range of similarity measures under a
wider range of conditions [55]. Several variations of the cross-correlation, sum of squared
differences and sum of absolute differences are selected as the subject of the experiment on
the basis of their computational efficiency. Measures that involve preprocessing by gradient
operators, high-pass filters and band-pass filters are also included. Three images serve as the
source of the test data used in the experiments, representing various textures, various scenes
with high edge content and a real-world laboratory scene. These images are subjected to
varying degrees of illumination change, Gaussian noise, salt-and-pepper noise, image blur and
magnification to provide sequences of test images. The experiments investigate translational
registration in a region of interest around several pre-selected positions and use the deviation of
the match-peak coordinates from the known correct coordinates to compare the performance
of similarity measures. The authors conclude that the classical correlation-based measures
are robust in the presence of distortion, that the normalized and zero-mean measures show
the expected invariance to illumination changes, and that the performance of measures with

high-pass filter preprocessing deteriorate catastrophically under high levels of distortion.

Matched filters and phase correlation have importance as realizable operations in optical
processing systems. Horner and Gianino compare standard matched filters with amplitude-
only and phase-only matched filters and conclude that phase correlation is superior in most

situations [56].

Penny et al. compare the performance of six different similarity measures for registering
2D clinical fluoroscopy images to 2D radiographs that are reconstructed from 3D Computed

Tomography (CT) data [26]. Scene changes in the time between imaging with the two modal-
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ities, and differences in the image formation of the modalities complicate this matching task.
The normalized cross correlation, difference image entropy, mutual information, normalized
correlation in edge images, and two variations on difference image entropy called pattern
intensity and gradient difference, are compared. The CT scan and fluoroscopy image of a
spine phantom are used as test data and a “gold standard” correct registration is calculated
using fiducial markers. These images are made more realistic by adding features segmented
from clinical images such as soft tissue and interventional instruments. In experiments the
mutual information has the worst performance, the correlation-based measures are found to
be sensitive to the thin structure and large intensity differences created by the presence of
a medical instrument in the fluoroscopy image, and the entropy-type measures are found to
be sensitive to the slowly varying differences caused by soft-tissue. The pattern intensity and
gradient difference measures register the images accurately in the presence of both medical

instruments and soft tissue.

Meijering, Niessen and Vergiever provide a comprehensive review and qualitative compar-
ison of the similarity measures that have been used in the registration of digital angiography
images [57]. Aside from a general summary of the relative merits of different approaches,
they question the competence of the CBC measure, noting that it suffers from inconsistent
weighting of intensity differences and cannot live up to claims of noise insensitivity. They also
conclude that the energy of the histogram differences by Buzug et al. [24] (Menergy above) is

the best measure for the digital subtraction angiography application.

2.3.2 The Effect of Distortion on Matching

Mostafavi and Smith conduct a theoretical investigation into the effect of affine geometric
distortion on translational image registration with the correlation function, both with respect
to the probabilities of false and correct registration [58] and with respect to the accuracy of
registration [59]. The images are modelled as a reference image, w, (x) = u (x), and a sensor
image, ws (x) = v (x) + n(x), where the reference image is assumed to be a smaller part of
the image plane and x = (j, k) represents image plane coordinates. Notice that for the sake
of simplicity, only the sensor image is considered to contain noise, which, the authors claim,
does not have a qualitative effect on the results. Since the distortion is assumed to be affine,

the reference and sensor image are related by v (x) = u (Ax + tg). For the affine distortion
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the authors consider

cos@ sinf
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which consists of rotation by 6 radians and scaling by a factor of a. Image v (x) and noise
n (x) are modelled as independent, stationary, multivariate normal random fields.

In order to assess the probabilities of false and correct registration, Mostafavi and Smith
derive the peak-to-sidelobe ratio of the correlation function from the mean peak value and the
variance of non-peak values. Modelling the correlation function output as a normal random
variable, the probability of false acquisition Pgp is also analyzed as the probability of correct
acquisition is held constant at 0.99. For a given signal-to-noise ratio, a maximum peak-to-
sidelobe ratio and minimum Pry suggest the same optimum window size. This image size
is proportional to the image autocorrelation function, and is inversely proportional to the
degree of distortion between u (x) and v (x).

Mostafavi and Smith also investigate the deviation of the registration peak position from
the correct position that is caused by affine geometric distortion [59]. They show theoretically
that a first order approximation to this local registration error is proportional to the gradient
of the match surface at the position of correct registration, and inversely proportional to the
curvature at the peak. Both results are intuitively appealing: the gradient at a peak in the
match surface will be zero and will increase as one moves away from the peak, supporting the
former. For the latter, high curvature implies a narrower peak and more accurate localization.
One conclusion from this investigation is that, here too, there is an optimum window size
proportional to the width of the autocorrelation function and inversely proportional to the
amount of geometric distortion. In contrast with the result for probabilities of false and
correct registration, however, the window size minimizing local registration error is smaller

than the size that minimizes Pra for a fixed geometric distortion.

2.3.3 Metrics for Matching Performance

Similarity measures have not been evaluated or compared using a universally accepted per-
formance measure or set of measures. Most comparisons are based on a translational image
registration experiment. Svedlow, McGillem and Anuta classify acceptable and unacceptable
registrations manually and use the number of these as a relative performance measure in their

experiments [35]. When evaluating the effect of geometric distortion on matching, Mostafavi
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and Smith use the probability of correct and false registration as a performance measure
in one study [58] and the spatial registration accuracy in another [59]. Aschwanden and
Guggenbiihl base their comparison on the spatial accuracy of registration alone [55]. Venot,
Lebruchec and Roucayrol present results for a small number of specific cases, showing that
their measure outperforms others [42]. Radcliffe, Rajapakshe and Shalev perform registration
with translation, rotation and magnification and use deviations from all three of the known
correct values in controlled experiments to evaluate their algorithm [32]. Chiang and Sullivan
compare their measure to others using correct versus incorrect registration and a qualitative
comparison of the match surfaces [47]. Buzug et al. also analyze the match surface, using the
broadness of the peak and the extent of its “attractive basin” [24]. Bhat and Nayar compare
measures using the percentage of mismatches that occur in a set of registration experiments
[25]. Penny et al. use the RMS error between known correct registration parameters and the

actual values produced by experiment [26].

When matching is discussed in the context of a filtering operation, the concept of SNR
in the filtered image (match surface) is often used to evaluate matching performance. Kuglin
and Hines ratio the power of the match peak and the power of background peaks in the match
surface [18]. Horner and Gianino compare SNR for standard and phase-only matched filters

[56].

The abovementioned performance measures are only useful in a relative sense since they
are dependent on the experimental data. Sadjadi compares four separability measures that
have independently meaningful values since they are estimates of the probability of error
in the match/mismatch decision [60]. The first is the probability of error associated with
the optimal Bayes decision rule for the correlation function. The second and third are the
Chernoff and Battacharyya bounds on the Bayes probability of error, which are easier to

compute. The fourth is Fisher’s criterion

 (my —my)?
F= 2 2
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which is easiest to compute, but relies on the assumption that the similarity values are

normally distributed and is unpredictable if this assumption is violated.
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2.4 Discussion

The preceding review confirms that there are many different approaches to direct image
matching. Similarity measures estimate linear correlation and differences between corre-
sponding pixels, using classical, robust and nonparametric methods. More general measures
evaluate the structure of joint and difference image histograms in order to identify dependence
between corresponding pixels. The most common measures have been compared experimen-
tally and some have been analyzed theoretically regarding their performance under various
conditions of noise and image distortion.

Aside from very broad rules of thumb, however, the selection of a similarity measure in the
design of an image matching algorithm is not guided by well understood principles. Although
each of the available measures has a sound rationale, there is no guarantee that performance
will be optimized by any one of them in a new application. The published comparisons of
different measures are dependent on the data sets used in the experiments and there is no
way to predict matching performance for a new application without repeating the analyses
reported in the literature. There is also no systematic procedure for designing an application-
specific similarity measure, nor are any of the available measures the outcome of such an
approach. Finally, the upper bound on matching performance has only been investigated in
idealized conditions and for the most tractable measures.

The remainder of this dissertation addresses these deficiencies through a rigorous formu-

lation of the image matching problem.



Chapter 3

Formulating the Image Matching

Problem

Before formulating the image matching problem, it is necessary to define what is meant by
match and mismatch in the context of an imaging system. Consider the model of image
formation shown in Figure 3-1. First some phenomenon creates a physical scene (e.g. man
builds a production line, nature grows a lung). The scene is then irradiated, either by nature
(e.g. the sun) or by the imaging system itself (e.g. artificial lighting, an X-ray generator).
This radiation is then processed in some way by the scene and the result is transformed into a

digital image by the image capture system. For the purpose of this investigation, the following

Reflected/
| Transmitted/

Diffracted/

Radiation

Phenomenon ——Scene—» Scene Irradiation » Image Capture ——Images—»

Figure 3-1: Image formation model.

important distinction is made: match or mismatch is a characteristic of the scene, rather than
a characteristic of the captured images. The image-pair only contains evidence of match or
mismatch in the scene. The objective of this research is to find ways to make the best possible
use of this evidence and any available a priori information. To a large degree, the type of
a priori information determines the approach taken by the designer. This research assumes
that only vague information, typically described in terms of a stochastic model, is available.

No deterministic assumptions are made about the image content.

29
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The input data to the matching algorithm is a pair of images. Even if these images match,
they usually differ in at least one image formation parameter — the images may have been
formed at different times, in different orientations, by different image capture systems, or
using different imaging modalities. Whatever the situation, the problem is one of using the
evidence in the two images to decide whether they represent the same scene or not. Two fields
tackle the problem of designing a decision rule for an observed quantity, where the a priori
information about the source of the observation is expressed as a stochastic model: Detection
Theory and Pattern Recognition. There is a large degree of overlap in the early theoretical
foundations of these fields (both have their origins in statistical decision theory), but their
paths have subsequently diverged. Detection theory has developed into a specialization of
statistical hypothesis testing, whereas pattern recognition has become a branch of artificial
intelligence. Sections 3.1 and 3.2 outline the primary concepts in these respective fields,
and form the basis of a decision to formulate the matching problem in a hypothesis testing
framework that is described in Section 3.3. Section 3.4 explores this formulation by applying it
to the trivial problem of scalar matching. Section 3.5 concludes the chapter with a discussion

on the material covered.

3.1 Detection Theory and Hypothesis Testing

The two major areas of statistical inference are parameter estimation and tests of hypotheses
[61]. The former involves estimating a stochastic process parameter from an observation of the
process, whereas the latter involves making an assertion, or conjecture, about the distribution
of the stochastic process generating the data. This assertion is formulated as a hypothesis,
denoted H, which the analyst either accepts or rejects on the basis of a test, denoted 7, on
the observation. Many hypothesis testing problems involve two competing hypotheses. In
this case one of them is referred to as the null hypothesis Hy, and the other as the alternative
hypothesis H;. In some cases one of the hypotheses, normally Hi, is in some sense more
important than the other and is referred to as the emphatic hypothesis.

Detection theory is essentially an extension of statistical hypothesis testing that is spe-
cialized for the analysis of signals, particularly those that originate from communications and
biological systems [62, 63]. Kazakos and Papantoni-Kazakos view detection and estimation
as the search for the stochastic process that best describes a physical phenomenon, given
observations of that phenomenon [64]. The distinction between detection and estimation is

that the former searches a set of stochastic processes that has finite membership, whereas for
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the latter the set is infinite.

3.1.1 The Hypothesis Test

The test is a procedure for deciding whether to accept or reject the hypothesis Hy [61, p.
403]. Denote the sample space of observations as X and a single observation as x. The
nonrandomised, single hypothesis test rejects Hy if and only if the observation x € Cy, where
C is called the critical region of T and is a subset of X. The test procedure is to observe x
and check whether it falls inside the critical region C7, accepting Hj if it does. Design of the
test can be viewed as an optimization problem. Given a stochastic model for the observation

and a performance criterion, the optimal critical region must be found.

Models Models are generally described as well-known, parametrically known, or nonpara-
metrically described [64, p. 2]. Well-known models have pdfs of known form with no unknown
parameters. Parametric models have a pdf of known form, but include one or more unknown
parameters. Nonparametric models may include some knowledge of the pdf, but its form is
not completely specified. A hypothesis is described as simple or non-composite if the process
associated with it is well-known. Hypotheses that have parametric models are referred to as

composite.

Performance Criteria The performance criteria are related to the errors made by the test
[61, p. 405]. Two types of error are possible: The type I error, or false positive, occurs if Hy
is rejected when true. The type II error, or false negative, occurs if Hy is accepted when false.
The probability of these errors occurring is referred to as the size of the errors in some texts.
In some applications these error rates are part of a more general cost function that weights
type I and type II errors differently.

Instead of the hypotheses representing two separate processes, it is sometimes useful to
model them by disjoint subdivisions of the parameter space of a single parametrically known
stochastic process [64, p. 41]. Denote the parameter space as ©, © as the subspace associated
with the emphatic hypothesis H, and ©¢ as the subspace associated with the null hypothesis
Hy. The power function of the test T, denoted w7 (0), is defined as the probability that H;
is accepted as a function of the parameter § € ©. The power function is useful as a means of

comparing alternative tests. Note that the type I and type II errors can be written in terms
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of the power function as

Py = P (H; accepted|Hj true) =/ ol (‘)
S}

and

Prr = P (Hy accepted|H; true) =1 —/ w7 (0),
1

respectively. The test that minimizes type II errors with the probability of type I errors fixed
at « is called the most powerful test of size a. The size of a test is the maximum probability
of accepting H; when the true hypothesis is Hy. This can be written in terms of the power

function as supgcg, 77 (8)-

3.1.2 Tests of Simple Hypotheses

The appropriate test for two simple hypotheses will be either a Bayes test, minimaz test
or Neyman-Pearson test, depending on the a priori information available [64, p. 46]. The
Bayes test requires knowledge of the a priori probabilities of the hypotheses being true. If a
cost function is available, the Bayes test is designed to minimize this cost. If not, the test,
often referred to as the ideal observer test, minimizes the probability of error. If no a priori
probabilities are available, but a cost function is given, then a minimax rule is used. This
type of test essentially minimizes the cost function for the least favourable set of a priori
probabilities. With no a priori probabilities or cost function, the problem is solved by setting
an upper limit on the probability of an error in the non-emphatic hypothesis (type I error)
and minimizing the probability of error in the emphatic hypothesis (type II error). The result

is known as the Neyman-Pearson test.

It is often convenient to write the hypothesis test in terms of a statistic s(x) and a

threshold ), for example

Hy if s(x) > A

Hyif s(x) <A~ (3-1)

Accept {

Let the observation x be a random sample from the pdf p (x|Hp) or p (x|H1), conditioned on

whether Hy or H; is true, respectively. The likelihood ratio,

 p(xlH)
o) = )
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with an appropriate threshold is a common test. In fact, it has been proved that for two
simple hypotheses the optimum Bayes test, minimax test and Neyman-Pearson test can all
be written in terms of the likelihood ratio statistic and an appropriate threshold, which

together constitute the likelihood ratio test (LRT) [61, p. 410-418].

3.1.3 Tests of Composite Hypotheses

Consider now the situation where the hypotheses are composite and share a parameterized
pdf, p (x|@ € ©), with a disjoint subdivision of the space of the unknown parameter: 8 € Qg
for Hy and @ € ©; = © — Oy for H;. A common test for this scenario uses the generalized

likelihood ratio

_ SUPgeco, P (X|0)
SUPgco P (X\o)

and an appropriate threshold, and is called the generalized likelihood ratio test (GLRT) [65].
Unlike the likelihood ratio test for simple hypotheses, the GLRT is not optimal in any sense,
but has proved to be a good test in many (but not all) situations [61, p. 419]. A test is called
the uniformly most powerful test of size « if it is the most powerful test among all tests of size

« or less. This is a useful performance criterion for optimal tests of composite hypotheses.

3.1.4 Nonparametric and Robust Tests

The hypothesis testing schemes described in previous sections depend heavily on the accuracy
of the stochastic model of the underlying process, since optimum performance is only guaran-
teed for observations of the process described by this model. However, the model is only an
approximation of reality and where the approximation is inaccurate the performance might

deteriorate. This problem is addressed by robust and non-parametric statistical methods.

Robust Tests The robust approach is to view the observations as consisting of two com-
ponents — a well behaved component that can be described by a classical stochastic model
as before, and a corrupt component that introduces deviations from this model. Corrupted
observations are called outliers and robust tests are designed to tolerate these apparent anoma-
lies. Robust statistics originated as ad-hoc procedures for eliminating outliers before doing
statistical analysis, but has recently developed into a set of theoretical tools for designing
and evaluating hypothesis tests and estimation schemes that tolerate various types of model

contamination [38, 30]. Huber describes three desirable characteristics of a robust procedure:
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near optimal performance under the classical model, a small drop in performance for small
deviations from the model and non-catastrophic failure for larger deviations from the model
[38, p. 5].

The use of robust methods in the design of hypothesis tests can vary from the use of
robust estimators for unknown parameters, to the design of a test from first principles using
a robust formulation of the problem. The field of robust statistics has mostly addressed
univariate parameter estimation problems, making the former a more practical approach for
high dimensional detection problems.

Robust statistical theory considers neighbourhoods of parametric models and is therefore
a branch of parametric statistics [30, p. 9]. Another branch of statistical theory addresses the

lack of accurate information by making weak assumptions and using nonparametric models.

Nonparametric Tests Nonparametric tests are used when a complete statistical model
of the input data is not available or the underlying statistical process changes over time, or
if the optimal test is too complex for practical implementation [41]. These methods differ
from robust methods in that fewer modelling assumptions are made. Where robust methods
operate in the neighbourhood of a parametric model, non-parametric models discard the
parametric model completely. Tests are ad-hoc and based on empirical observations rather
than the solution of a formal optimization problem [64, p. 199]. The oldest and most widely
used class of nonparametric procedures are the sign tests, the simplest form of which identifies
an observation as belonging to one of two processes that differ only in their means, which are

symmetric around the origin [64, p. 200]. The test statistic in this case is

1 >0

s(x) = ngn (z;) where sgn(z) = 0 <0

i
Another common nonparametric approach uses the rank of observations, rather than their
values, which results in approaches that are tolerant of large absolute deviations in isolated
values and have useful invariance properties [64, p. 205].

Although ad-hoc, the nonparametric approach is the only way to arrive at practical tests in
many situations. However, the lack of rigour leads to difficulty in comparing different nonpara-
metric approaches analytically. The asymptotic relative efficiency (ARE), which measures the
performance of one test relative to another, was designed to overcome this problem. Specific

definitions differ, but the ARE generally measures the limiting ratio of the number of samples
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per observation that two detectors require to achieve the same performance, as the distance
between the hypotheses (or SNR) becomes infinitely small. Kazakos and Papantoni-Kazakos
define ARE to compare a nonparametric detector with a Neyman-Pearson parametric detec-
tor on observations from the same parametric model [64, p. 199]. Helstrom compares two
arbitrary detectors with fixed type I and type II error characteristics [62, p. 167]. Huber uses

ARE with respect to a classical procedure as the performance criterion for a robust one [38,

p. 5.

3.2 A Pattern Recognition Perspective

Pattern recognition also addresses the design of decision rules based on observations and
models of physical phenomena [66, 67, 68, 69], but has strong ties with the research topics
of computer vision and artificial intelligence. Many pattern recognition applications involve
developing systems that mimic an aspect of human decision making ability. Weather fore-
casting, character recognition, speech recognition, and image interpretation are examples [67,
p. 12].

Like detection theory, pattern recognition had its origins in statistical decision theory.
Many of the concepts in this field are shared with detection theory and hypothesis testing,
but the nomenclature and notation are, for the most part, completely different. There are also
many differences on a practical level, which is not surprising if one considers the fundamental
differences in their early application areas and the large differences in dimensionality and

statistical complexity of the problems tackled by these respective fields.

Analogue versus Discrete Origins Many detection theory concepts originate from early
work done in analog signal processing. Here signals were often sampled at fixed intervals to
provide the observations for a hypothesis testing procedure. These sequential tests included
both a stopping rule to recognize when enough data had been collected and a decision rule to
test the actual hypothesis [64, p. 37]. Pattern recognition, on the other hand, originated in
artificial intelligence research and early work attempted to classify a few heuristically selected
features that were sensed from some phenomenon of interest. Hence, where the data vector
in a detection theory problem is often a number of regularly spaced samples from the same
process, the elements of a feature vector in a pattern recognition problem routinely consists

of measurements of completely different physical phenomena.
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Dimensionality Designers using detection theory in signal processing applications are ac-
customed to high dimensionality, and are restricted to analytical design and limited estimation
of distribution parameters using training data. The pattern recognition community, on the
other hand, typically deals with low dimensional problems where on-line training of discrim-
inant functions is practical. Indeed, the “curse of dimensionality” is discussed in pattern

recognition texts [68, p. 7] for dimensions that are commonplace in detection theory circles.

Statistical Complexity Historically, detection theory has been applied in areas where
relatively simple fundamental models of the underlying physical phenomena can be developed
and validated. Pattern recognition, on the other hand, has tackled more unruly data, often
where explicit statistical modelling is not feasible. As a result, it can be argued that members
of the pattern recognition community have had to be more resourceful and less rigorous than
their detection theory counterparts.

More recently, with the increasing statistical complexity of the digital signals that are
routinely tackled by detection theory and the increasing dimensionality of pattern recognition
problems, a unification of these two fields seems appropriate. A brief overview of pattern
recognition fundamentals is now given, with references to the previous sections on hypothesis

testing where equivalent concepts or fundamental differences are identified.

3.2.1 Classes, Classifiers and Discriminant Functions

The pattern recognition equivalent to the detection theory hypothesis test is the classifier.
Classifiers are derived from models in much the same way as hypothesis tests, or are learned
from training data. They partition the observation space using discriminant functions, which
Duda and Hart refer to as “something of a canonical form for classifiers” [66, p. 17]. In
a similar fashion the hypothesis test statistic and decision threshold of Section 3.1 define a
critical region for the null hypothesis.

The ¢ distinct states of nature that the classifier must recognize, which are equivalent
to detection theory hypotheses, are called classes and denoted w;, where 7 € {1,2,... ,c}.
The observations are referred to as feature vectors, since they should encapsulate the salient
features of the underlying physical phenomenon. A feature vector, denoted here as x, is

assigned to class w; if

9 (x) > g (x) Vi#j,
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where g; (x) : ¢ € {1,2,...,c} are the discriminant functions. For the two class problem, a
single discriminant function, g (x) = g1 (x) — g2 (x), is used with the decision rule

wi if g(x) >0

Deci .
ecide {wg if g(x) < 0

Notice the similarity to the hypothesis test of (3.1).

The surface defined by g (x) = 0 partitions the feature space into two decision regions
and is referred to as the decision surface. Pattern recognition places more emphasis on the
decision surface than is the case in detection theory, which concentrates on characterizing the

hypotheses (classes) rather than the boundaries between them.

3.2.2 Supervised Learning and Numerical Optimization

Like the design of tests in detection theory, the design of discriminant functions often requires
that distribution parameters of the various classes are estimated from training data. This
is usually referred to as supervised learning in the pattern recognition literature [66, p. 44].
However, pattern recognition takes supervised learning further than just estimating distribu-
tion parameters, by using data to train discriminant functions directly. The most common
example of this approach is the neural network, a mathematical construct with many free
parameters that are specified by supervised learning, or training [68]. The data models are
developed within the neural network during the training phase and are limited only by the
flexibility of the network architecture and the extent to which the training data faithfully rep-
resents the problem. More recent supervised learning techniques, such as the support-vector
machine, use training data to build the decision surface directly [70].

In a sense, trainable discriminant functions like neural networks are just methods for solv-
ing the analytical optimization problem associated with deriving the optimal hypothesis test,
but do so numerically with training data. Instead of specifying models for the different classes
(hypotheses) and deriving the test using analytical optimization, a configurable discriminant
function with many free parameters is specified and the best set of parameters sought using
training data and a numerical optimization algorithm, such as back-propagation or a genetic
algorithm. As is the case with designing hypothesis tests, the performance criteria that direct
the optimization search are also based on the error-rate performance of the solution, or more
generally, a risk or cost function that has different weightings for different types of error.

Supervised learning and numerical optimization share a problem that is absent from ana-

lytical optimization methods: unrepresentative training data or an inadequate search can lead
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to a local, instead of global, maximum of the performance criteria. Although this problem is
absent from the analytical optimization stage of the detection theorist, it can be compared to
the problem of selecting a model for the data, since the supervised learning is, in a sense, both
selecting the model and performing the optimization. For example, a nonparametric model
may sacrifice performance in ideal simulations, relative to a parametric one, but the detection
theorist may select it so that the system will tolerate deviations from the parametric model in
real data. This designer will have effectively generalized better than the designer who chose

the parametric model for its superior performance in simulations.

3.2.3 Unsupervised Learning and Clustering

Pattern recognition takes learning another step further than detection theory. In unsuper-
vised learning, or clustering, the training set is unlabelled and the learning algorithm must
search for natural groupings, or clusters, in the data. Essentially, the designer is still solv-
ing an optimization problem, but is doing so having specified different initial information,
which could include the number of classes in the data and criteria that describe “good” clus-
ters. Unsupervised learning procedures include estimation techniques (e.g. Gaussian mixture
modelling [66, p. 190]), extensions of supervised techniques to unsupervised learning (e.g.
unsupervised Bayesian learning [66, p. 203]), clustering algorithms and neural networks that

identify classes during training (e.g. the Kohonen self organizing map [67, p. 162][71]).

3.2.4 Dimensionality Reduction

A common nonparametric procedure in pattern recognition is density estimation, where sam-
ple data are used to estimate the pdf of the feature vector. Nonparametric estimation meth-
ods, such as histograms and Parzen windows, have been developed, but a large number of
samples are required and this number grows exponentially with the dimensionality of the
feature space [66, p. 95]. This phenomena is referred to as the “curse of dimensionality” [68,
p. 7] and also applies to supervised and unsupervised learning techniques. Detection theory
has escaped this problem by rigorous analysis that provides parametric models, or where this
fails by bypassing the density estimation problem and going directly to suboptimal nonpara-
metric tests. The learning approach has been largely overlooked in detection theory, probably
because high dimensionality and available computing technology have made it impractical.
In pattern recognition the curse of dimensionality has been addressed by using feature ex-

traction or dimensionality reduction techniques, which preprocess the input data and extract
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only the most salient features. The simplest approach is to use only a subset of the available
features, chosen according to some set of criteria [68, p. 304]. A more general approach is
to map the input data into a lower dimensional space. A common method for doing this is
principal component analysis (PCA) [68, p. 310], which represents the n-dimensional data as
the coeflicients of a set of p principal components, where p < n. The principal components
themselves are the eigenvectors associated with the p largest eigenvalues of the covariance
matrix of the training data. A famous example of this approach in practice is the eigenfaces
face recognition algorithm, where PCA reduces the large number of pixels in a face image to

a more manageable feature vector [72, 73].

3.3 Problem Formulation

The previous sections in this chapter have given a brief overview of mathematical techniques
developed for automating a decision making process that is based on observations of the real
world. Attention now turns to formulating the decision making problem at hand — deciding
whether a pair of images are in a state of match or mismatch.

Consider the space, ¥, of all possible image pairs that the imaging system can generate,
and a particular image-pair observation, 1) € U. Based on the evidence in this observation, the
algorithm must decide whether the two images represent equivalent scenes. If it is assumed
that the algorithm makes a deterministic decision (i.e. the algorithm will always make the
same decision for a given image pair), then the algorithm must create a partition of ¥ into
image pairs that represent a state of match, 9 € ¥, and image pairs that represent a state
of mismatch, 1) € ¥y = ¥ — ¥;. The ultimate solution, then, to the problem of designing a
matching algorithm can be expressed very simply as the decision rule,

5(§) = Decide { P tyen (3.2)

mismatch if ¢ € ¥
that optimizes the matching performance criteria over all potential decision rules, and satisfies
any other requirements of a matching algorithm. Over and above being the optimal solution,

the following general requirements are deemed important:

1. The algorithm should make full use of the a priori information available.

2. The algorithm should tolerate minor deviations from any modelling assumptions made.
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3. The algorithm should be computationally feasible.

In practice, these requirements are in conflict, so any algorithm will be a compromise
between them. However, the compromise should be made explicit and should not be the
result of an ad-hoc approach to solving the problem.

Note that the decision rule of (3.2) suggests a formulation of the matching problem that
has not been previously explored in any detail: model the situation in terms of two stochastic

processes. Not one for each image, but one for each hypothesis:

1. A process that produces matching images, modelled with the multivariate pdf Py ({p|H 1)

and

2. a process that produces non-matching images, modelled with py, (fp\HO)

Since this model does not map directly onto a single physical imaging system it is rather
counter-intuitive, but it is also the natural decision theoretic formulation of the problem given

an observation (the image pair) and hypotheses that must be tested (match and mismatch).

3.3.1 Detection Theory versus Pattern Recognition

Superficially, detection theory and pattern classification both appear to be a natural frame-
work for the image matching problem: A random process generates two images, which are
the observation or feature vector. The hypotheses, or classes, are match and mismatch. The
problem of designing an algorithm for image matching is now one of designing a good test of
these hypotheses, or a good discriminant function to separate these classes. The preceding
sections in this chapter have outlined the detection theory and pattern recognition approaches
to this sort of problem. In summary, detection theory offers a more rigorous approach based
on analytical models, has an emphasis on the optimal nature of a solution, routinely deals
with highly dimensional observations and has been applied to problems where the observation
dimensions are samples of a single process. In contrast, pattern recognition has an emphasis
on unsupervised learning, rather than rigorous modelling of the underlying phenomena that
are the source of the data, has been developed primarily for fewer, less well-known dimensions,
and has been applied to a more diverse range of phenomena.

Given that the emphasis in this research is on the use of a priori stochastic models, the
detection theory approach is chosen as the starting point for developing algorithms for image

matching. This approach is also more suited to the high dimensionality of images and will
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exploit the analytical image models that have been successfully applied in other areas of image

processing.

3.3.2 Matching as Hypothesis Testing

In order to formulate the image matching problem as a hypothesis test, the following ingredi-
ents are required: an observation, a model of the physical process generating the observation

under each hypothesis and the performance criteria that will be used to assess the test.

Observation The observation 1 is a pair of digitized images, which can be represented as
the column vectors u and v, where the pixels are stored in row-column order. In future this

will be referred to as the image pair, denoted

Hypothesis Models The two hypotheses are match H;, and mismatch Hy, and the image
pair is modelled as two separate stochastic processes under these hypotheses. Note that unless

stated otherwise, match is the emphatic hypothesis. Four scenarios are identified:

1. Simple match: The two simple hypotheses are modelled as well-known stochastic pro-

cesses that share the pdf, py, (w|@), where H; <= 6 =0 and Hy < 0 = 6,.

2. Simple match with nuisance parameters: The two simple hypotheses are modelled as
parametrically known stochastic processes that share the pdf, pw (w|0, ), where H; <

0 =0, and Hy <= 6 = 6, and ¢ is a vector of unknown (nuisance) parameters.

3. Composite match: The two composite hypotheses are modelled as parametrically known
stochastic processes that share the pdf, pw (w|@), where H; <= 0 € ©; and Hy <=
0 € 0.

4. Composite match with nuisance parameters: The two composite hypotheses are mod-
elled as parametrically known stochastic processes that share the pdf, py (w[0, ),

where Hy <= 0 € ©1 and Hy <= 0 € O, and  is a vector of nuisance parameters.

Performance Criteria Type I and type II error rates will be used to compare the perfor-

mance of different tests. This will be expressed in terms of the overall probability of error, or
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as the size of a test with fixed type I error (false alarm) rate, where match is the emphatic

hypothesis.

3.3.3 Defining Image Similarity

Without any loss in generality, the two-hypothesis problem can be expressed in terms of
statistic of the image-pair, s(w), and a decision threshold, A, with the decision rule

Hy if s(w) > A

Hy if s(w) <X~ (3:3)

Accept {

Note that s(w) can be interpreted as a measure of similarity, or conversely, that the similarity
measures reviewed in Chapter 2, together with their decision thresholds, can be viewed as
tests of a match hypothesis. This suggests the following definition of an image similarity

statistic:

Definition 1 An image similarity statistic is defined to be any statistic that forms a test of

the match or mismatch hypothesis on an image pair in conjunction with a scalar decision

threshold.

3.3.4 The Hypothesis Tests in Previous Work

Having formulated the matching decision rule in terms of hypothesis tests on the image pair, it
is interesting to contrast this approach with the (sometimes implicit) decision rules in previous
approaches to the problem of direct image matching. Previous work has either reformulated
the matching problem as object detection and applied existing techniques, projected the
image-pair into a subspace where modelling was simpler, or considered only the marginal

pixel pdfs as the basis of comparison.

Matching as Object Detection Consider the image pair {u, v}. The design of many early
matching algorithms proceeded by regarding one image, say u, to be deterministically fixed
and formulating matching as the detection problem: H; <= v=u+mnand Hy <= v =7,
where 7) is noise. Although intuitively appealing this formulation is theoretically problematic
for a number of reasons. Among them are the facts that problem is not treated symmetrically
in u and v and the pdf of u is not part of the formulation. Matching algorithms based on

the matched filter and correlation function fall into this category [11, 59, 58, 10].
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Matching in a Subspace A very common approach in matching is to project the image
pair into a more manageable subspace and proceed from there. The most common example of
such a subspace is the difference between the two images, € = u — v. The hypotheses can be
formulated in terms of the shared pdf pe (€|@), where H; <= 6 € ©; and Hy <= 0 € O,.
A potential problem with this approach is that the subspace sacrifices some information. For
example, the joint image pdf, pu v (u,v), is collapsed into the difference image pdf, pe (e),
sacrificing the marginal pdfs, p, (u) and py (v). Examples of this approach include image

difference measures [39] and the sign change criteria [42].

Matching by Probability Density Estimates Measures like pairing functions [48] and
mutual information [51] base their match and mismatch hypotheses on the estimated joint pdf
of corresponding pixels and therefore fully exploit all of the information in individual pixel
pairs. However, they view the image as many observations of a univariate pdf rather than a
single observation of a multivariate pdf and by doing so the intra-image inter-pixel interactions
are ignored. Also, these are nonparametric approaches that do not exploit stochastic a priori

information. As a result, they do not provide the most powerful tests.

3.4 Scalar Matching Example

It is instructive to reduce the image matching problem to the one of matching scalars (or single
pixel images). Although there is very little practical use for a scalar matching procedure, the
derivation of an optimal test illustrates concepts that are applicable to the more interesting
problem of image matching, but without the intuitive obstacles inherent in results with high
dimensionality.

To give the discussion context, an imaginary application in automatic vehicle navigation
is considered: In order to recognize oncoming traffic at night, a system must distinguish
between the two headlights of a single oncoming vehicle and two headlights that belong to
separate vehicles, using the headlight intensity. The assumption is that variation in headlight
intensity is much greater between vehicles. In addition, the sensing of headlight intensity is

complicated by weather conditions, which can be modelled as additive noise.

3.4.1 The Optimal Test for Scalar Matching

An optimal test for deciding whether two scalars, which are corrupted by additive noise, are

in a state of match or mismatch is derived here.
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The Scalar-Pair Model

Consider the two scalars, u = ¢ + ¢ and v = b + v, which have ideal components a and b,
and are corrupted by additive noise components y and v. The ideal and noise components
are all assumed to be normal. The noise components are assumed to be independent of the

ideal components and of each other.

The joint pdf of the scalar pair, p,,(u,v), is now derived for this simple additive noise

model. Represent the scalar pair, ideal scalar pair and noise pair as the 2-vectors
a
W = ,C = and n = H ,

respectively. The bivariate pdf of the ideal pair can be written as

Pc (C) = ;2 exp [_% (C - mc)T K;I (C - mc) ’ (34)
(2m)" K|

which is characterized completely by the mean vector

Mg
mg =
mp
and the covariance matrix
2
o P Ta0p
K. = )
P 040 o

Hence the popular abbreviated notation: p (¢) = N (¢; m¢, Kc)!. The quantity, p € [-1,1], is
the correlation coefficient between the ideal components. Assuming that a and b are generated
by identical random processes, m = my, = m; and 02 = 02 = Jg, are defined. For the noise

components,

pn(m) =N (1;0,Ky)

!Strictly speaking, the notation N (m,K) is commonly used to represent the multivariate normal dis-
tribution with mean vector m and covariance matrix K, but the presentation here will also use the notation
N (x; m, K) to represent the associated normal probability density function, where x is the independent variable.
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where

a2 0
K,=| * )
0 o
The required pdf can now be written as
Pup(u,v]0) = pw (W) (3.5)

= N(w;m, K. +K,;) [see Appendix B.1]

= k(6)-exp [—%-f(u,vﬁ)],

where
0= {maaa OuyOvw,y p}a
1
k(6) =
27r\/04 (1—p?) + 0202 +020% + 0202
and

(u — m)? (62 +02) —2(u—m) (v —m) po? + (v — m)* (024—03)
ot (1—p?) + 0202 + 0202 + 0202 '

f(u,v,0) =

Hypothesis Models

In order to model the hypotheses it is necessary to model match and mismatch in the joint
scalar pdf (3.5). This can be done by a process of elimination, considering the available

parameters,

0= {maaa OupsOvy p}

and the fact that any parameters determining match or mismatch must involve the relation-
ship between the ideal components a and b. The noise is independent of a and b, so {o,,0,}
can be discarded. Since {m,o} are parameters in the marginal pdfs of a and b, they cannot
affect any relationship between them and they too can be discarded. The remaining parame-
ter is p, the correlation coefficient between a and b, which does indeed control the relationship

between them.
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Assuming that the other parameters are known, one possible model has the hypotheses
sharing a pdf p, ,(u,v|p) that is parameterized on the correlation coefficient, where the hy-
potheses are defined by H; < p=1and Hy <= p = 0. For p =1 the random vector ¢
degenerates to a single random variable and ¢ = b in all scalar pairs. For p = 0, a and b are

statistically independent. The probability of ¢ having a = b is

Pla=blp=0) = / Pa,b(a,blp = 0) dadb
a=b
= 0,

since the integration is over a set of measure zero. In practice the values are digitized and
P (a = b|p = 0) becomes a finite probability, but this is a consequence of the proposed model
that is consistent with the matching problem. For the vehicle navigation scenario, this mod-
els the unlikely, but plausible situation of two oncoming vehicles having identical headlight
intensity within the limitations of the measuring device. Notice that the mismatch hypothesis
does not guarantee that a # b, but the match hypothesis does guarantee that a = b. This

restriction is removed next.

For values of p, py and p;, where 0 < py < p; < 1, samples of the ideal components will
be, on average, more similar for p = p; than for p = p;. A more general hypothesis model,
then, has Hy <= p =p; and Hy <= p = p,. As before, the mismatch hypothesis does
not guarantee that a # b, but now the match hypothesis does not guarantee that a = b either.
Returning to the vehicle navigation problem, this model allows some deviation between the
intensities of a single vehicle’s headlights. The model just ensures that on the whole, scalars
that represent headlights of the same vehicle are closer together than scalars that represent

headlights from different vehicles.

Note that in terms of the definition in Section 3.3.2, this is a simple match hypothesis

model. Figure 3-2 shows an example of the match and mismatch hypothesis pdfs.

Deriving the Test

Assuming that the a priori probabilities of match, P;, and mismatch, Py, are known, the

ideal observer test

Hy if I (u,v) > X

Hy if I (u,v) < X7 (36)

Accept {
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p(u.v)

Figure 3-2: Hypothesis conditional pdf models (m = 50, o2 = 200, ai =02=25. H:p=1

(left) and Hy : p = 0 (right)).

where

(3.7)

is optimal for testing two simple hypotheses. A more convenient notation for (3.6) is now

introduced for the test (3.6):

Hy

I(u,v) 2\
Ho

Substituting the pdfs of the previous section into the likelihood ratio gives

I (u,v)

DPup (u,v|p = py)

Pup(u,v|p = po)

k (pl) exp |:f (uavapo) — f(’U/,’U,pl):|
(po) 2

El

Taking the (strictly monotonic) logarithm of both sides and re-arranging the test,

f(uavapO) - f (U,U,pl) % 210g

@m]
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where
B(0) = [o* (1= 2) + 0202 + a2 + 22) !
The test can now be written as
Hy

s(u,v) Z X

with the statistic

f(“a”apo) _f(uavapl)
= Aw—m)?+Bw—-—m)*+C(u—m)(w—m)

s (u,v)

and decision threshold

_ By [¢(po)
A=21 P ¢(Pl)]’
where
A = [p(py) — ¢ (p)] - (0° +07)
= [¢(po) — & (p1)]- (02 +072)
C = —I[po9(po) — 1 (p1)]- 20,

Several special cases are now considered.

Special Case 1 Shared noise model (07, = 02):

s(u,v):A[(u—m)2+(U—m)2]+C(u—m)(v—m)

A =2log

Py ¢ (po)
P\ ¢(p1)
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Special Case 2 Different noise models (07, # 07), p; = 1 and py = 0:

o2 (u— m)®  o%(v —m)?

s(u,v) = + —(u—v)?
( ? ) (02+Uz) (Uz_l_ag) ( )
\ = 20,2,02 + 0%02 + JZJ,% log Py oo +o2o® + o202
o? P\ (62+02) (02 +02)

Special Case 3 Shared noise model (0, = ¢2), p; = 1 and py = 0:

o2 9
$w0) = 5 s [ =m)” + (0= m)?] = (u— v)? (3.8)
N = 2@] By Vo3 (20° + ) (3.9)

o? P o?+ 02

3.4.2 Analysis of the Optimal Test

Scalar matching offers the opportunity of analyzing the proposed hypothesis testing approach
to matching without the high dimensionality of images. This may give some insight into the

more complex tests for image matching that are investigated later.

The Test Statistic

Note that the statistic (3.8) in special case 3 of the previous section is written with two
main terms. The second of these is the negated squared difference between the two measured
scalars, —(u — v)2. Tt is intuitively pleasing to have this term in the optimal test, since
it corresponds to the use of the squared difference as a measure of dissimilarity. The sum
of squared differences, or mean squared error, between corresponding pixels is a standard
measure for comparing two images for matching or for measuring image fidelity.

The first term,

o [(u —m)?+ (v — m)2] ,

(62 4 02)
effectively increases the statistic with decreasing likelihood of measuring the scalars u and

v. The fact that two scalars are close together holds more information about whether they

match or not if the individual scalars are unlikely. To illustrate this point with the night-time



50 CHAPTER 3. FORMULATING THE IMAGE MATCHING PROBLEM

navigation example, consider the situation where two headlights are detected with intensities
near the average of modern vehicles and difference §. Compare this with the situation where
two headlights are detected with intensities close to the average of a Model T Ford, but also
having difference §. Since it is so unlikely that two classic motorcars are approaching it seems
reasonable to decide that they belong to the same vehicle. In the first situation, on the other
hand, it wouldn’t be unlikely at all that two modern cars were approaching, and a decision

that they belong to the same vehicle is more risky.

Signal to Noise Ratio

Here the SNR of the scalar is defined as the ratio of the ideal component standard deviation

o to the noise component standard deviation o, that is

SNR= 2.

Oy

The statistic (3.8) can then be rewritten in terms of the SNR as

2

s(u,v) = (02(:_7”03)[(u—7n)2—l—(v—m)2]—(u—v)2
= m[(u—m)2+(v—m)2]—(u—v)2.

The effect of the SNR can now be investigated. If the noise is negligible (i.e. SNR — o0 )
then

s (u,v) = —(u — v)?

and the optimal test reduces to the squared difference. In the extreme situation of the signal

being drowned in noise (i.e. SNR = 0)

s(u,v) ~ [(u —m)*+ (v — m)2] — (u—v)?,

suggesting that the likelihood term has increasing significance as noise levels increase. Notice,
however, that the squared difference is significant for all SNR values. The squared difference,
the likelihood term and the overall test statistic are plotted against different SNR values in

Figure 3-3.



3.4. SCALAR MATCHING EXAMPLE o1

80

— - Squared Difference
— — Likelihood Term
—— Test Statistic

60F ! .

40 \ T

20

-40 . >
0 5 10 15
Signal to Noise Ratio

Figure 3-3: Relative importance of the squared difference and likelihood term as a function
of SNR.

This relationship between SNR and the form of the test supports the frequent use of
the squared difference test, or an equivalent measure, in many computer vision applications
where the sensor noise can be neglected and it is the complexity of the scene that provides
the challenge. However, applications such as low dose medical imaging that require the
maximum attainable image processing performance under demanding SNR conditions might

benefit from an optimal matching algorithm.

The Match/Mismatch Partition

Figure 3-4(a) shows the match/mismatch partition induced on (u,v) by the ideal observer
test of (3.8) and (3.9). The white area is the critical region, where the match hypothesis for
scalar pairs is accepted. Notice that for some SNR levels there are values of u for which the
scalar-pair will always be classified as mismatch, regardless of v, and vice versa. The partition
induced by a test based on the squared difference term is shown in 3-4(b) for comparison.
Note that the optimal ideal observer threshold, which is derived in Appendix B.2 for the
squared difference statistic, is used here too.

The obvious implication of Figure 3-4(a) when extending the optimal test from scalars to

images is that some images need not be tested for match with others. In an image registration
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application using block matching, for example, one might exclude image blocks on this basis.
The improbable image blocks, being the best candidates for matching, would be retained.
This approach is similar to the use of interest operators [74] for block selection in image

registration algorithms.

SNR =10 SNR =3 SNR =2

20 40 60 80 100

(a) Bayes test. P1 =0.2.

SNR =10 SNR =3 SNR =2

(b) Squared difference test. Py = 0.5.

Figure 3-4: The partition induced on (u,v) by scalar hypothesis tests.

The SNR has a lower bound for the situation where all scalars potentially have matching
counterparts. Since the most likely scalars in the aforementioned models have maximum

probability at their mean, this condition is satisfied if
s(m,m) > A,

or, since s(m,m) = 0, an equivalent condition is A < 0. Substituting (3.9), this condition
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implies that

Py /03 (20% + 03)

0<
P1 O'2+0',2/

<1

or, rearranging the inequality and writing it in terms of SNR, it implies that

V2-SNR?+1 P
—<_

0< .
SNRZ +1 2

This inequality can be used to find the lower bound for SNR as a function of P; that guarantees
potentially matching counterparts for all scalars. Figure 3-5 plots this lower bound and shows

that if P; > %, then all scalars potentially have matching counterparts, regardless of SNR.

15

10 b

SNR

0 L L L L L L L
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P

Figure 3-5: A lower bound for scalar SNR that guarantees potential matching counterparts.

3.5 Discussion

Having considered the theoretical machinery available for addressing decision-making prob-
lems, hypothesis testing has been selected as a suitable framework for the design of an image
matching decision rule. With the image pair as unit of observation, the essential elements

of the proposed formulation are separate stochastic models for the image pair under the
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match and mismatch hypotheses. The approach has been illustrated with the simple example
of scalar matching, which has very little practical significance, but reveals some interesting
aspects of the proposed formulation via the simplicity of only two dimensions.

Application of the hypothesis testing approach to image matching is now required in order
to establish whether it will satisfy the requirements set out for a matching algorithm in Section
3.3. First, however, attention is given to the aspect of image-pair modelling. Good models
are crucial for deriving effective algorithms, and image synthesis based on the models will

make it possible to do Monte Carlo experiments where an analytical approach is intractable.



Chapter 4

Modelling and Synthesis of Image

Pairs

The proposed approach to the image matching problem has its subjectivity in the selection
of the image-pair model. Aside from any compromises that are made for reasons of tractabil-
ity of derivation, or practicality of implementation, the derivation of the optimal test is a
mechanistic mathematical procedure. The model, on the other hand, is selected by the de-
signer, where the degree of subjectivity in the selection is determined by the quantity and
detail of prior knowledge about the physical phenomenon under consideration. The quality
of this selection is important, because the test is derived from first principles and is optimal
with respect to the model and appropriate performance criteria. The accuracy of the model,

therefore, determines how close the test is to optimal for the actual problem.

The first subjective decision made here is the one to model the image pair as a random
process. Stochastic models sometimes describe a process that is inherently random in nature,
but more often they provide a way of developing a model when knowledge of the underlying
phenomenon is incomplete or when the phenomenon is too complex to specify deterministi-
cally. For the matching applications considered here, specific information about the content
of the image at any given time is assumed to be unknown and therefore the option of deter-
ministic modelling is rejected. As Hunt and Cannon put it: “The world, as captured in an
image, is so complex that complete a priori deterministic and mechanistic models seem out of
reach” [75]. The stochastic modelling approach is common in the fields of image restoration
[76, 77, 78], texture analysis [79, 80, 81], image compression [82], and target detection [83, 84],

but has been applied less rigorously to the task of image matching.

95
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This chapter develops a stochastic image-pair model that will be used as the basis for de-
riving the hypothesis test for image matching. Section 4.1 outlines the modelling assumptions
that are made. Section 4.2 develops correlation-based and difference-based models for match
and mismatch in the image pair. Synthetic images will be required for testing purposes, and
Section 4.3 develops methods for generating random image pairs. Section 4.4 concludes the

chapter with a discussion.

4.1 General Model Assumptions

A stochastic model expresses the characteristics of an image pair in terms of the probabilities
associated with observing every possible image combination, but there are many different
models to choose from. Kazakos and Papantoni-Kazakos describe the “best” model as the
“simplest existing model that describes the phenomenon with satisfactory accuracy, with the
emphasis on simplicity” [64, p. 1]. General assumptions that provide this simplicity and

narrow the field of potential models for the image pair are provided here.

4.1.1 Stationary, Multivariate Normal Images

The requirement of simplicity for a stochastic model is normally embodied in the assumption
that a multivariate normal (MVN) distribution (or equivalently, a Gaussian random field) de-
scribes observations of the phenomenon under consideration. As Muirhead concedes, analysis
with other probability distributions is rarely tractable [29, p. 1]. The MVN pdf for n x n
image a is given by
1 1 T e 1
pala) = ————exp [} (@~ ma) K, (2 ma)
(2m)" [Kal

or, using the abbreviated notation, by pa (a) = N (a;m,, K,).

In image processing models, the additional assumption of ergodicity (and therefore spatial
stationarity) leads to easier analysis and more efficient algorithms. However, a cursory analysis
of typical images with natural or man-made scene content reveals that these assumptions are
unrealistic in general. Common violations are shown in Figure 4-1 — the pixel intensity
values are positive, their histograms are asymmetrical and have multiple modes, and spatial
averaging suggests that the stationarity assumption is questionable. Where the MVN and

stationarity assumptions cannot be made, solutions can be found in ad-hoc (nonparametric)
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(a) Medical radiograph - ‘Skull’.

A I
0 50 100 150 200 250

(b) Standard image - ‘LAX’ (subimage).

0 50 100 150 200 250

(c) Standard image - ‘Lena’ (subimage).

Figure 4-1: Local averages and histograms for three test images. The histograms are accom-
panied by the best fit normal pdf.
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approaches or in more sophisticated models. As examples of the latter, multiresolution models
[85, 86], mixture distributions [87], or generalized Gaussian models [78] have been reported.
Alternatively, the images can be transformed so that they better resemble samples from a
stationary MVN process. for example, Hunt and Cannon propose a model with additive
nonstationary mean and stationary residual components [75], Hunt proposes normalization
and spatial warping to enforce stationarity in the second order image statistics [88], and
Chapple and Bertilone propose a pointwise transform to make image pixel statistics better
resemble the normal distribution [89]. These methods can potentially overcome the non-
normal and nonstationary characteristics of images, and Appendix A investigates them in
more detail.

For the purposes of this research, then, the assumption is made that images can either be
adequately modelled as an MVN process or they can be transformed to better resemble the
samples of one. Normal marginal pdfs do not guarantee a normal joint pdf [29, p. 7], so the
fact that MVN models are adequate for the individual images does not imply that the same
is true for the image pair. Even so, for the tractability it offers, the additional assumption
is made that a linear model adequately represents the match/mismatch relationship between

the images. The resulting pdf for the image pair w! = [aT, bT} is given by

1 1 _
P (W) = e exp | ()G ) (1)
(2m)"" [ Kw|
where mL = [maT,mg] is simply a concatenation of the mean vectors for the individual

images. Ky is the joint image-pair covariance matrix, which can be written as

2
0:Ra 04,0pRab
Ky = ) ,
0q,0pRap oy Rp

where K, = 02R, and Kj, = 2Ry, are the covariance matrices of the individual images,

and o,0pR.p is their cross-covariance matrix.

4.1.2 Shared Intra-Image Correlation Structure

It is assumed that the images a and b share the same intra-image correlation structure, and
therefore R, = Rp, = R. In a matching application the two images will probably contain the
same sort of subject matter, making this a reasonable assumption in most cases. Applications

that require multi-modal matching are possible exceptions, although it should be noted that
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the model still allows the images to differ by a systematic offset (mean vectors m, and my,)
and overall scale (variances o2 and o2). The image-pair covariance matrix can now be written
as

agR 04a0pRab

Ky = . (4.2)
0.0sRab a%R

4.1.3 Additive Noise

The sensed image has two main components. First, there is information about the scene and
second, there is superfluous information that was added during the generation of radiation,
the irradiation of the scene and the image capture. This additional information is commonly
referred to as noise. Figure 4-2 illustrates the distinction made between scene information
and noise in a medical X-ray image: subfigure (a) is the original image, (b) highlights scene
information in the form of the vertebrae, (c) highlights statistical noise in a quiet part of
the image and (d) shows a structure noise artifact introduced by the line-scan operation of
the imaging system. For now it is assumed that image formation artifacts are either absent,
or that they can be removed by preprocessing that exploits their deterministic structure.

Assumptions must now be made regarding the nature of the statistical noise.

(a) Medical X-ray (b) Scene: verte- (c) Statistical (d) Structure arti-
image. brae. noise. fact.

Figure 4-2: Image model components.

A common assumption is that the noise in an imaging system can be modelled in terms of

additive (signal independent) and multiplicative (signal dependent) components [8, p. 268],
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implying the model
u=p,0a+p, (4.3)

where ® denotes the Hadamard product!, a represents the scene, . represents multiplicative
noise and p, represents additive noise. In the event that one of the noise components domi-
nates the other, the model can be further simplified by neglecting the smaller component. In
some situations, purely multiplicative noise can be made additive by taking the logarithm of
the image intensity values [17, p. 80], suggesting that the additive noise model, u = a + p,
can describe a wide range of imaging scenarios.

Further, it is assumed that the noise can be modelled as a zero-mean, stationary MVN
random process. Since most imaging systems accumulate signal at various stages of the
image formation process (e.g. scintillation, CCD camera integration and software summing
of image frames), the normal approximation can be justified at each stage using the central
limit theorem of statistics. Denoting the noise components of images u and v as u and v
respectively, their pdfs are given by p, (1) = N (p;0, K“) and p, (v) = N (v;0,K,). If the
noise is white, then K, = ozl and K, = o21.

Based on the rules governing sums of multivariate normal random vectors, the covariance
matrix of w is the sum of the covariance matrices of the scene and noise components (see
Mood, Graybill and Boes [61, p. 178] and Appendix B.1). Therefore, assuming that the noise

in separate images is statistically independent, K,,,, = 0, and

Ko — agR 0.0sRab N aiI 0
w =
0,0pRap UgR 0 o?,I

agR—I-UiI 0e0pRab

04,0pRap agR—I—a?jI

4.2 Models for Match and Mismatch

The model for the image pair is characterized by the mean vector m,, and the covariance
matrix Ky in equation (4.4). All of the quantities in the covariance matrix are characteristics
of the individual images except for the normalized cross-covariance matrix R,y. Since this

matrix governs the relationship between images u and v, it will be instrumental in defining

1a:b®cﬁa¢:bi-ci\ﬁ
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match and mismatch for the image pair. This section takes two approaches to the problem

of defining meaningful structure for R, in the situations of match and mismatch.

4.2.1 Correlation-Based Model

This model bases match and mismatch on the correlation coefficient between the scene pixels
of each image?. It makes the assumption that all corresponding pixel-pairs share a correlation
coefficient p,;, the value of which is specified differently in the separate models for match and
mismatch. For guaranteed identical® images p,, = 1, for statistically independent images
Pap = 0, and for values in-between the images exhibit varying degrees of correlation between
corresponding pixels. The match and mismatch hypotheses can be defined as H; <= p,, =
p1 and Hy <= p, = po, respectively, where 0 < py < p; < 1. The normalized cross-

covariance matrix is now given by

Pab 7

Pab

? Pab

where the off-diagonal elements are as yet unspecified. The following constraints limit the

form of the matrix:

1. For py = 0, mismatching images are statistically independent and R,p ‘pabzo =0.

2. For p; = 1, matching images are identical within a scaling factor and Rp ‘ pap=1 = R.

One valid structure for R,p with these constraints is Rap = p,pR. This is not a unique
solution®, but its simplicity is appealing. Adopting it for the image-pair model, the joint
covariance matrix for the correlation-based model becomes

agR—f—aZI 0a0bPap R

Kw = . (4.5)
0aoppp R 0iR+021

2Note that it is not the correlation coefficient between the pixels of the sensed images u and v (an estimate
of which is often used as a measure of similarity between images) that is of interest here, but rather the
correlation coefficient between the scene pixels of a and b.

3Identical, that is, to within the systematic offset and scaling factor determined by the respective image
mean vectors and variances.

*Another has elements p, R [i, j]°*, where R [i, j] is the element of R at (4, 5).
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4.2.2 Difference-Based Model

The second approach uses a scene difference image to model the inter-image relationship.
It is based on a hypothetical process that generates images with covariance matrices K,
and Kj, mean vectors m, and my,, and with control over an image difference parameter,
dqp- The process generates two zero-mean, unit-variance images a; and bi, that differ by
a random image d; with zero mean and standard deviation §,. For guaranteed identical
images, 4 = 0, for statistically independent images, &, = 1, and for values in-between the
images have differences of varying magnitudes. After the process has generated a; and by,
it scales and translates their pixel intensities in order to produce images with the required
mean vector and variance. For the matching problem there will be two processes: one that
generates matching images, where Hy <= d, = 01 and one that generates mismatching
images, where Hy <= {4 = dp. Note that 0 < §; < dg < 1. Figure 4-3 shows a schematic

of the process. The cross-covariance matrix it implies will now be derived.

Ga ma
N(O,R) a @azﬂéaH

(1_(5ab)2)1/2

a,
N(O,R) dlﬁidz@blﬁbzﬁibﬁ
[ Oy my,

Figure 4-3: Process for generating an image pair with control over a difference parameter.

Independent root images a; and d; are generated using a MVN random process with zero

mean and covariance matrix R. The output images can be written in terms of the root images
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as a =o,a; + m, and

b = O'bbl + my

= 0y (a3+d2) + mp

= 0y (Jabdl +14/1— (52ba1> + my,.

First, it is proved that the process in Figure 4-3 does indeed produce images with the

required marginal covariance matrices. For the covariance matrix of a:

Var[a] = E [(a —m,)(a— ma)T]
= o’E [alaﬂ

_ 2
= o.R,
as required. For the covariance matrix of b:

Var[b] = E [(b —my) (b— mb)T]

T
(5abd1 + 4/ 1-— (52ba1) (5abd1 + 4/ 1-— 5§ba1) ]

= o’b(s bE [dldT] + o, (1 — 6ab) [alal + 20b5ab\/ a1d1

U%E

Now E [dlle] = [alal] R, and a; and d; are independent by design, so £ [aldT] =0.
Therefore Var [b] = 02R as required.

A similar approach can be used to express the cross covariance matrix in terms of a; and

d; as follows:

Cov[a,b] = E [(a —mg) (b mb)T]
- FE [aaal (ab (6abd1 4 ma1>)T]

= 0,000 F [aldﬂ + 0405/ 1-— (Sng [alaﬂ
= o.0p\/1— 0% R,

since B [aldﬂ = () as before.
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The joint covariance matrix for the difference-based model is now given by

Ko — oaR+o71 oa0py/1— 64 R (4.6)
w = . .
0aopr/1 — 52bR agR—l—a%I

4.2.3 A Combined Model

Notice that covariance matrices of the correlation-based and difference-based models are ac-

tually the same, with the relationship
2 2
5ab =1~ Pab

between the difference parameter d,, and the cross-correlation coefficient p,,. Figure 4-4
includes both parameters and illustrates how these essentially equivalent models differ in

their controlling parameters.

oa ma
N(O,R) a @azﬁéaﬁ

pab

a,
NOR) m@aﬁ@}m@bﬁgw
[ Oy m,

Figure 4-4: Process for generating an image pair with control over either a correlation or a
difference parameter.

It is interesting to view the traditional correlation-based and difference-based similarity
measures in the context of the combined process of Figure 4-4: the correlation-based mea-
sures (cross-correlation, correlation coefficient) estimate p,;, and the difference-based mea-
sures (sum of squared differences, sum of absolute differences) estimate dq. Seen in the light
of the combined process these are essentially equivalent approaches, but differ with respect to

the practical considerations associated with estimators: variance, bias, robustness and com-
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putational economy. It should be noted that the proposed model suggests this interpretation
of the traditional measures, but was not the rationale for their development. For the most
part, authors considered the similarity measures to be a deterministic characteristic of the
image pair, rather than the parameter of a stochastic model that had to be estimated in order

to establish whether a match or mismatch model was in force.

To complete the image pair generation models under the match and mismatch hypotheses,

two random processes that generate white noise fields are added to the process in Figure 4-5.

N(0,0,21)
|
Ga ma u
N(O,R) a, @azﬂéaH@UH
Pab
a3
NOR) alﬁ%@bﬁ%bﬁ%bﬁw
\%
3, O m, |
N(0,0,2])

Figure 4-5: Process for generating an image pair with additive noise.

The hypothesis test for matching can now be based on a match and a mismatch model,
where the two models differ only in the choice of value for §,4 or p,,. From this point onward
the cross-correlation coefficient p,, will be used as the match parameter®. Some observations
are now made regarding the use of p,, in the fields of image matching and multivariate

statistics.

5The same procedure can be followed for the difference parameter 8, and an equivalent result will be
obtained.
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The Correlation Coefficient for Image Matching

If the elements of a are uncorrelated and the same is true of b, then R = I and the sample

correlation coefficient

Zi (ai _d) (bi —B) _ 1 - 1
r(a,b) = — whereaz—Zai andbz—Zbi
\/ZZ (ai _6)2\/21' (bi —b) "5 "5

is the maximum likelihood estimate of p,,. Since images typically exhibit high degrees of
spatial correlation, the form of (4.5) suggests that the sample correlation coefficient would
be a better measure of image similarity if it were preceded by processing that whitened the
image. Indeed, this sort of preprocessing has been motivated by several authors on both

theoretical and experimental grounds [22, 35, 55].

Canonical Correlation Analysis

Principal component analysis (PCA) is a method for reducing the number of variables required
to represent a correlated random vector while minimizing the loss of information incurred by
doing so. Multivariate statistics provides an analogous method for reducing the correlation
structure between two random vectors to its simplest possible form [29, p. 548]. This ex-
ploratory data analysis technique, canonical correlation analysis, provides an ordered set of
linear transformations to extract the variables with maximum correlation from two random
vectors.

Consider n2-vectors a and b. The first set of transformations p; = afa and ¢; = ,B?b give
the first canonical variables, which have maximal correlation and unit variance. The second
set of canonical variables, ps and g9, have maximal correlation and unit variance, subject
to the condition that they are uncorrelated with p; and ¢;. This continues on to the n2-th
set of canonical variables, which have the lowest correlation and are uncorrelated with the
n? — 1 previous sets of canonical variables. The i-th canonical correlation coefficient is the
correlation coefficient between the i-th pair of canonical variables and lies in [0,1).

Given the joint covariance matrix of the ideal (noise-free) image pair

Ka Kab
Kan Kp

2
o;R 0a0bPp R

2
0a0bPa R o, R
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the squares of the canonical correlation coefficients are the eigenvalues of K7 1Kang 'Kon

[29, p. 550]. Substituting (4.2),

. ) R-1 R-1
K 'KapK: Koy = (—— ) (02000usR) [~ ) (0a0s00R)
o2 o2
a
=yl

which has n? eigenvalues of p2,. The n? canonical correlation coefficients of {a, b} are therefore
pgb, confirming that all correlation between a and b is captured by the cross-correlation

coefficient parameter p,;,.

4.3 Image-Pair Synthesis

A procedure for generating artificial images can be used to analyze matching algorithms
numerically using Monte Carlo methods and to test them under controlled conditions with
unlimited test data. Such a procedure for an MVN random field is described next, followed
by the derivation of an efficient method for synthesizing correlated image pairs that are

realizations of the joint model developed in the previous section.

4.3.1 Simulating Stationary MVN Fields

A procedure for synthesizing MVN random fields by generating a white noise image and
transforming it to an image with the required covariance matrix is outlined by Johnson [90].
Conceptually, the procedure that generates a, a sample of an n x n MVN field with mean

vector m and covariance matrix K, is as follows:

1. Generate a zero mean, unit variance white noise image z.

2. Derive the unitary transform matrix G that diagonalizes covariance matrix K. Denote

the diagonalized covariance matrix K4, where

K, = GKG”.

3. Scale the pixels in the white noise image by the square root of the elements on the

diagonal of Ky:

2 :u')z-\/Kd(i,z') Viée {1,2,... ,n}
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This step transforms z to a sample of a process with covariance matrix K.

4. The unitary transform matrix G diagonalizes the covariance matrix K. If 4 is a sample
of a N (0,K) process, then G4& is a sample of a N (0,K,) process and vice versa, if Z
is a sample of a N (0,Ky ) process, then G™1% is a sample of a N (0,K) process [29,

Theorem 1.2.6, p. 6]. The inverse of real unitary matrix G is its transpose, so
4d=G"7
generates a sample with the required correlation structure.

5. Finally, the required mean is obtained by a = 4 + m.

In practice K can be embedded in a circulant matrix and diagonalized by the discrete
Fourier transform (DFT) in step 2. Complications not discussed here include non-trivial
embedding of some covariance matrices into a larger circulant matrix and the fact that the
inverse DFT in step 4 provides a complex output, when a real sample is sought [91]. Figure
4-6 shows samples from separable and nonseparable Markov random fields [8, p. 33-37] that

were generated using this procedure.

(a) Separable Model.

p=05

(b) Nonseparable Model.

Figure 4-6: Synthesized images based on Markov random fields.
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4.3.2 Image-Pair Synthesis Equations

Image pairs that are samples of the model developed in the previous section can be synthesized
for Monte Carlo simulation purposes. Generating independent white noise is trivial, but the
generation of correlated image pairs is more difficult. One possibility is to use a method that
generates image samples based on a known covariance matrix K, like the one discussed in
Section 4.3.1, but this approach suffers from the high dimensionality of K and does not exploit
the Toeplitz-Block-Toeplitz structure that is commonly used in stationary image models with

structured covariance.

ca ma
N(O,R) a, @azﬂéaH

Pap

mol4acs ke

(1-(Pp)H)"?

Figure 4-7: Process for synthesizing an image pair with specified cross-correlation coefficient.

A more realistic approach involves generating two images independently and transforming
these to a correlated image-pair with the desired correlation coefficient. The process developed
previously to illustrate the model (and repeated here in Figure 4-7) can be used for this
purpose. Two random N (0,R) images (a; and d; in Figure 4-7) are generated using the

procedure in Section 4.3.1. The expressions
a=o04a; + my
and

b =0y (paba1 + \/ pabd1> + my,,

which are based directly on the process in Figure 4-7, can then be used to generate the
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required images.

4.3.3 Example Image Pairs

Figure 4-8 shows examples of ideal image pairs synthesized with different match correlation
coefficients. The individual images are first order Markov random fields (MRFs) [8, p. 36]

with a one-step spatial correlation coefficient of p = 0.8.

(a‘) Pab = 0.0. (b) Pab = 0.2.

(C) Pab = 0.4. (d) Pab = 0.6.

(e) Pab = 0.8.

(8) pap = 0.95. (h) pap = 1.0.

Figure 4-8: Synthesized image pairs.
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4.4 Discussion

The topic of image modelling is popular in certain parts of the image processing literature,
and although many sophisticated models exist, a simple stationary multivariate normal model
was selected here for its tractability. In general, real images violate these assumptions, but
the use of an invertible transform to map the samples of nonstationary, non-normal random
fields to realizations of stationary, normal ones makes this simple model more broadly appli-
cable. Two other general assumptions were made: the (noise-free) scene components of the
individual images share the same intra-image correlation structure, and the sensed images
contain additive white noise.

The concepts of match and mismatch between images must be captured by the model
in order to formulate the matching problem. This has been achieved by developing a joint
probabilistic model for the image pair. It has been shown that an approach based on the
correlation between corresponding pixel-pairs and an approach based on a scene difference
image result in the same joint covariance matrix.

One of the benefits of having this model is that synthetic images can be generated for
Monte Carlo analyses and algorithm testing. Procedures for generating synthetic image pairs
efficiently have been developed for this purpose. The main reason for developing the model,
however, was for the derivation of optimal hypothesis testing procedures for image matching,

and this is the subject of the next chapter.
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Chapter 5

Hypothesis Tests for Optimal Image
Matching

Having proposed a linear model for the image pair in Chapter 4, attention now turns to the
problem of designing an optimal hypothesis testing procedure for image matching. Optimal
solutions realize the best possible performance if the model captures the nature of the observa-
tions accurately. Often, however, the model is an inadequate or incomplete representation of
the observations and the test is suboptimal. Even in this case, the model-optimal solution can
give insight into the important elements of a good test. The classic example of this situation
is the matched filter, which was designed to maximize detectability of a deterministic signal
in white noise, but is applied effectively on signals that deviate substantially from this model.
Also, if all of the available a priori information is exploited, then the theoretical performance
of the optimal solution on observations that conform to the model is the best performance
attainable. Robust or non-parametric approaches can be evaluated in an absolute sense by

comparing their model-theoretical performance to this maximum.

This chapter, then, aims to derive tests that optimize matching performance, to extract
general insights on matching from these solutions and to provide a model-theoretical upper
bound on matching performance that will be used to evaluate ad-hoc and intractable proce-
dures later. Section 5.1 introduces the likelihood ratio and other tests for image matching
that are based on the image-pair model of Chapter 4. The test is then simplified in Section
5.2, where a mathematically convenient representation for the test is developed on the basis
of an eigendecomposition of the image covariance matrices. Section 5.3 investigates the sta-

tistical properties of the test. The test statistic is found to be asymptotically normal and this

73
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fact is used to derive decision thresholds and analyze the probability of error. For the most
part, tests with simple hypotheses are considered, but Section 5.4 formulates a generalized

test with a composite match hypothesis. A final discussion concludes the chapter.

5.1 Hypothesis Tests Based on the Image-Pair Model

Chapter 3 formulated the image matching problem as several different hypothesis testing
scenarios. The parametric model developed in Chapter 4 can now be used to derive specific
tests. Given two random n X n images u and v, the proposed model represents the image

pair wl = [ ul V7T ] as an MVN random field, which has mean vector

and covariance matrix

2 2
oiR+04l oqoppR

K, =| 0 oo bp“”2 . (5.1)
0aTppp R oy R+01

The parameter @ = {p,;}, determines match or mismatch in the image pair. The pa-

rameters ¢ = {R,0%,07,02,02} are properties of the individual images. Different hypothesis
testing scenarios are distinguished by the a priori information available about p,;, under the

match and mismatch hypotheses, and by the extent of a priori knowledge about ¢.

5.1.1 The Likelihood Ratio Test

If @ and ¢ are well-known, then the hypotheses are simple and the optimal test is based on
the likelihood ratio statistic. Here the simple match and mismatch hypotheses share the pdf
Dw (W|pgp), where Hy <= pg = p; and Hy < p, = po, and the likelihood ratio test
(LRT) is

pw (Wlog =p1) $
I(w) = Z A, (5.2)
Pw (Wlpg = po) o
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where X\ is an appropriate scalar decision threshold. Given the MVN image model, the
likelihood ratio statistic can be written as

N (w;m,,Ky,)

N (w;mg,, Kw,)

1
Kwol? (W my,)  Kgi (Ww—my) (W —my)" Kgl (W —my)

l(w) =

1
Kw, |2 2 2

?

where H; — K,, = Ky, and H; <= K, = Ky,. Noting that the logarithm is a
monotonically increasing function, the test can be rearranged and expressed in terms of the

statistic s (w) and modified decision threshold A as

Hq

s(w) 24,
Hg
where
s(w) = (w—mw) Ky (w—my) — (W - my) K3 (w - my)
= (w-— mw)T (K;V(l) — K‘;i) (W — my,) (5.3)
and
Y |KW1 ‘)
A =log (,\2 : (5.4)
| Kw,|

The LRT, therefore, calculates the Mahalanobis distance between the sample image-pair and
the mean image-pair under both hypotheses. The difference between these distances is then

compared to a threshold. The decision threshold for the ideal observer LRT is given by

1-P

A P

where P, = P (p,, = p;) is the a priori probability of a match. The ideal observer test, then,
has statistic (5.3) and threshold

] 1-P ) ? Ky, |
A=lo L.
¢ <( P ) [Kuwl
The minimax and Neyman-Pearson tests are also based on the likelihood ratio, but differ in

the choice of threshold (see Section 3.1.2).
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5.1.2 Generalized Tests

The LRT assumes that all of the model parameters are well-known. In practice, this is rarely
the case, so implementation of the algorithm is preceded by an estimation stage (or train-
ing) that uses a representative set of data to establish what these parameters are. With
good estimates, the parameters can be treated as well-known from this point onward. Often,
however, the parameters will vary during the operation of the system. If a change in param-
eters is infrequent and can be detected, then the training can be repeated, but this requires
system down-time and there is the possibility that the incorrect parameters will cause sub-
optimal operation for some time before the change is detected. An alternative is to use a
nonparametric detection scheme that is not affected by parameter changes, but this approach
sacrifices performance in favour of weaker assumptions. An approach that makes better use
of the available a priori information might estimate the parameters on-line from the current
observation. One such approach is the generalized likelihood ratio test (GLRT).

Where the model is parametrically known, one or both of the hypotheses must be com-
posite. A distinction is now made between two types of parameters. The parameter pg,
determines match or mismatch and is therefore referred to as the match parameter. The pa-
rameters in ¢ are characteristics of the individual images and are referred to here as nuisance
parameters. It is now shown that an asymptotically optimal test where match or nuisance
parameters are unknown can be formulated as the LRT with maximum likelihood estimates

of the unknown parameters.

Match Parameter

The GLRT can be used when the behaviour of p,, is well-known under only one of the hy-
potheses. Consider the scenario where p,; is only well-known under the mismatch hypothesis.
Here the composite match hypothesis H; and simple mismatch hypothesis Hy share the pdf
Pw (W|pa), where Hy <= p,p, = po and H; <= p,, > po- One intuitively appealing spe-
cial case of this scenario is where images are assumed to be statistically independent under
the mismatch hypothesis and p, = 0.

The GLRT with a simple mismatch and composite match hypothesis is

pw (W|pay = po) ’§< A

lg(w) =
maxy , e (po,1] Pw (W]pap) m

where the denominator maximizes the joint probability over all possible values of p,,. The
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GLRT can also be written in terms of an estimate of p,; [92, p. 240] and then

_ Pw (W|Pab = pO) I;J
lG W, 0, = — < >\, 5.5
( o) Pw (Wpap = Pap) m (5:5)

where

Pap = rgmax [pw (W|pgp)]
Pab€(Pos1]

is the maximum likelihood (ML) estimate of p,. Note that p,, is an estimate based on
the observation w, and not on a set of training data. For the purposes of this discussion,
parameters that can be estimated beforehand using training data are treated as well-known.

The presentation will now depart from statistical tradition in two respects. First, Hy
will always refer to the mismatch hypothesis, regardless of the formulation. For instance, the
hypotheses for the scenario where the match hypothesis is simple and the mismatch hypothesis
is composite are Hy <= py, < p; and Hy < p,, = p;- In contrast, the statistical
literature normally treats the well-known hypothesis as the null hypothesis Hy. Second, the
generalized likelihood ratio will always be written so that the threshold is exceeded for the
match hypothesis. With this convention, both forms of the GLRT are simply the LRT where
Pab 18 replaced by its ML estimate in the composite hypothesis.

The GLRT with simple mismatch hypothesis in (5.5) is rewritten as

_ Pw (W|pab = /_)ab) I;I
o (W,pas) = 2\ (5.6)
P pw (Wlpay = po) o
The GLRT for the scenario with a simple match hypothesis and composite mismatch
hypothesis is now
_ Pw (Wl = p1)

Hq
lG (W,ﬁ b) - — % >‘7
“ Dw (W|Pab = pab) Ho

where

Pap = argmax [pw (W|pg)]
pabe[oapl)

Nuisance Parameters

The GLRT principle can also be applied if parameters other than p,, are unknown, or if they

cannot be reliably estimated from training data. Given the unknown parameter vector ¢, the
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GLRT is

H

_ Pw(Wpw =P =@1) 3
Pw (Wlpay = posp = @) my

lG (W, 9—0)

where @ is the ML estimate of ¢, and @, is the ML estimate of ¢ under Hj.
Note that the scenarios of unknown match parameters and nuisance parameters can be
combined. For example, the GLRT with well-known mismatch hypothesis, composite match

hypothesis, and nuisance parameters ¢ is

Hy

pW (W|pab = pab’ (P :_¢) 2 )\’ (5.7)
Pw (Wlpap = pos 0 = @9) o

lG (wapaba @) =

where @, is the ML estimate of ¢ under Hj.

The GLRT is asymptotically optimal with respect to the number of pixels in an image
under certain regularity conditions on the ML estimates [92, p. 262], which essentially require
that in the limit the estimates are as good as knowing the parameters. In practice there is

no guarantee of optimum properties, but the GLRT often provides a good test [61, p. 419].

5.2 A Convenient Representation for the Test

The LRT can be implemented directly using the test statistic and decision threshold given in
(5.3) and (5.4) respectively. However, these expressions are difficult to compute because of
the dimensionality of K, and give little insight into the nature of the optimal test. A more
convenient representation that uses an eigendecomposition of the individual image covariance

matrices is now introduced.

5.2.1 The LRT as a Function of Whitened Images

A simplified LRT for n x n images u and v is derived here. It is assumed that the simple
match and mismatch hypotheses share the pdf, pw (w|p,;) = N (w; m,, Kw), where H; <
Pap = p1 and Hy <= p,, = po- Recall that the composite hypotheses can be dealt with by
replacing the unknown parameter with the appropriate maximum likelihood estimate of that
parameter.

It is convenient to work with random images that have independent, identically distributed

(iid) pixels. Consider an image u with covariance matrix K,. The Karhunen-Loeve (KL)
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transform! is defined as [8, p. 163]
i=VTy,

where V is an orthogonal matrix with columns that are the eigenvectors of K. The resulting
vector has uncorrelated elements 4; with variance A}', where A" is the eigenvalue corresponding
to the i-th column-eigenvector in V. If A, is a matrix with these eigenvalues on the diagonal

and zero elsewhere, then the transformation,
1
i=Tyu=A2V!y, (5.8)

whitens the image in that the result has independent, identically distributed (iid) pixels with

unit variance (see Appendix B.3). The whitened image has the mean vector
_1
myg =Ag2Vim,.

Since K, and K, share the eigenvectors of R (see Appendix B.5), the corresponding trans-

formation for v is

1
v=T,v=A,2Vv.

Appendix B.6 shows that if the random images u and v with joint covariance matrix

K. — 0§R+UZI 0a0pP R
a0 R oiR+02I
are independently transformed to unit variance iid images, then the resulting image pair has

covariance matrix

- T
K. — Ty, O ogR—l-UiI Oa0pP R Ty, O
" 0 T, 0a0pPu R agR—i—U?jI 0 T,
I1 D
= (5.9)
D 1I

!The literature also refers to this as the Hotelling transform and the method of principal components.
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where D is a diagonal matrix with elements

D [i,i] = kipay = Ja7bPab % (5.10)
\/(ang- + aﬁ) (02w; + 02)

and w; is the eigenvalue of R associated with the eigenvector in the ¢-th column of V. This
result implies that the correlation coefficient between the i-th pair of corresponding pixels in

the whitened images is k;p4-

The LRT statistic of equation (5.3) is now simplified for the case of unit variance, iid
images with joint covariance according to (5.9). If the pixels in an image are independent of
each other, then the state-conditional image-pair pdfs can be written as the product of the
n? state-conditional pixel-pair pdfs. Consequently, the likelihood ratio is written in terms of

the whitened image pair as

n2 »
, Pw; (Wilpay, = p1)
I(W) = i\ : 5.11
1L e nlons = o) (511)

where w; = [ui,vi]T is the ¢-th pixel-pair. The pixel-pairs are unit variance with correlation

coefficient k;p,;, and therefore have the bivariate normal pdf

1
(1= ko) * lzkz-pab (i — ) (85— mg) — (s —ma,)® — (5 — mm)Zl
2 ’

2(1-k7p%)

Pw; (WZ) =

Substituting this pdf into (5.11), the likelihood ratio becomes

M1 k222 Bi (i — meyg;) (6 — mg,;) — i ((dz‘—mui)2+(ﬁz‘—mm)2)
L( ):H W €xp 9 )

k2 (02 — p3)
(1 —k7p5) (1 —KZp?)

o = (5.12)

and

ki (p1 = po) (1 + k7 popy)
B, =2 : 5.13
=2 k2 (L Kd) (513)
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Hy
Noting that the logarithm is a monotonically increasing function, the LRT, [ (W) z A, can
Ho
be rearranged and expressed in terms of the sufficient statistic
,n2
s (8,9) = D7 B (s — ma,) (6 — ma) — e (1 —ma,)’ + (6 —ms,)’) (5.14)
i=1
and modified decision threshold
" 1—k2p?
i=1 i P0

5.2.2 Performing the Test

The procedure for performing the LRT for images u and v now has three steps:

1. Whiten u and v using transformations, i = Tyu and v = Ty v, respectively (see (5.8)).

2. Calculate the LRT statistic for whitened images (see (5.14)).

3. Compare the LRT statistic to the decision threshold (see (5.15)).

Note that this formulation of the test does not require the inversion of the joint im-
age covariance matrix, but rather requires computation of the eigenvalues and eigenvectors
associated with K, and K, the covariance matrices of the individual images. The eigen-
decomposition is required in order to specify the whitening transforms T, and Ty, and to
calculate the weighting factors k;. The latter are a function of the scene correlation coeffi-
cient matrix eigenvalues w;, which can be calculated from the eigenvalues of either individual

image. Rearranging the result of Appendix B.4,

5.2.3 Special Cases

Three special cases of the statistic are now considered.
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Special Case 1: Mismatch Implies Independence

Here it is assumed that Hy <= p,, = 0. Substituting p, = 0 into (5.14) the statistic

n2

ﬂmﬂ=§jrﬁ%gPWFW%Mm—mm—mmam—mmﬁum—mmﬂ]
=1 ?

is obtained. This is likely to be the most useful version of the LRT statistic, because statistical

independence is a natural way to represent mismatch between images.

Special Case 2: Negligible Noise

If noise is negligible, then k; = 1 and

n2

s (1 9) = 37 [ i =) (6 = ma) = o (G = ma)* + (5 = ) |

where

P2 — p}
(1—p5) (1-p})

o =

and

ﬁ:(m—%ﬂﬂwwﬂ
(1= pg) (1= i)
Neglecting the noise does not trivialize the matching problem, because if p; is less than
unity, then the scene components of the images are in general not identical under the match
hypothesis. This is a useful approximation of the test if some phenomenon other than additive
noise, and that can be modelled by the match parameter p;, is the dominant source of

distortion in the matching problem (e.g. minor geometric transformations).

Special Case 3: Images with Independent Pixels

If the pixels in the individual images are spatially independent, then the eigendecomposition

1

of the images, and hence the whitening transform, is trivial. In this case T, (u) = o, 'u and

Ty (v) = o, 'v. The weighting factors are
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and the LRT statistic simplifies to

st (8,9) = Y [B (s —ma,) (6 — ma) — o ((d —ma)* + (i —ma)’) |, (5:16)

=1
where
o Kol —ri)
(1 —k%05) (1= k2p7)
and
5 2k (p1 — po) (1+ K*popy)

(1= K205) (1 = K2p1)

This version of the statistic is equivalent to an extension of the scalar matching test in Chapter

3 from scalars to images with independent pixels .

5.3 Properties of the Test

Figure 5-1 shows the results of a Monte Carlo simulation experiment that compares the pdfs
under match and mismatch hypotheses for the LRT and five other image similarity statistics.
The minimum error rate for equal a priori probability of match and mismatch in each case is
represented by the area of overlap between the pdfs. In this particular experiment the LRT
statistic is clearly superior to the others. A solution derived from first principles has another,
perhaps even more important advantage than performance however: since it is based on a
mathematical model, the LRT is more amenable to further analysis than might be the case
for an ad-hoc solution.

In this section an expression for the pdf of the LRT statistic is derived. This allows optimal
ideal observer and Neyman-Pearson decision thresholds to be found. The error rates can then
be investigated and the relationships established between performance and important system

parameters, such as image size and SNR.

5.3.1 PDF of the LRT Statistic

Since the LRT statistic is a function of two random images, it too is a random variable. The
pdfs of the statistic under the match and mismatch hypotheses are important because they

determine the error rates of the decision rule and can therefore be used to establish optimal
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Figure 5-1: Monte Carlo histograms under match and mismatch hypotheses for the LRT
and five other similarity statistics. The experiment used an ensemble of 10000 image pairs
generated using the procedure given in Chapter 4.
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decision thresholds. The approach taken here is to first derive the expectation and variance

of the statistic and then show that the pdf is asymptotically normal.

Expectation and Variance

Since the statistic of (5.14) has been written as a function of images with iid pixels, the pdf

can be written as

n2
= H Ps; (84)
=1

where
8 (3, ;) = By (4 — mg;) (0 — my;) — o ((ﬂi —mg;)” + (6 — mv’,-)2) :

To enhance the clarity of the presentation this is rewritten in terms of the zero-mean, unit
variance random variables z; = 4; — my, and y; = ¥; — my,. Note that from (5.9) and (5.10),
x; and y; have correlation coefficient p; = p,,k;, where k; is defined as before. Consider a
single random pixel s; = aiw? + aiyi? — 2B,x;y;. Noting that the random variables z; and y;

have the bivariate normal pdf

1 1

Paiy: (4,y) = —F—=exp | —7— (2° — 2p;zy +¢°
) = o )

the expectation and variance of s; can be found using the method of moment generating

functions (MGFs). The MGF of s; is given by

ms; (1) = E[expst] (5.17)

= E [exp [(Bizy — ciz® — ciy®) t]]
= / / exp ﬂzxy azl‘ — gy )t] " Dziy; (z,y) dz dy

=

= (1 — 4a?t2pi + ,B?thi + 4aft2 — ﬁ?tQ + 4oyt — 2pzﬂit)_2

The r-th moment of s;, E [s]], can be found by differentiating this MGF r times with respect
to t and taking the limit of the result as ¢ — 0 [61, p. 78]. Following this procedure yields

Elsi] = pif; — 20
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for the first and

E [312] =3 (piBi — 20%‘)2 + (1 - PzQ) (ﬂ? - 404?) (5.18)
for the second raw moment. The variance is then

Var[s;] = E|[s}] —(E [si])”

= 2(pBi —20)° + (1= p}) (B —40s) . (5.19)

The overall statistic is now
s(6,9) = si (i, 6) , (5.20)

which is the summation of n? independent random variables, s;, that have expectation and

variance according to (5.18) and (5.19) respectively. With the linearity of expectation

n2

Els|=ms =Y (pakiB; — 2cv) (5.21)
i=1
and using the rule governing the variance of a summation of independent random variables?

the variance of the statistic can be written as

n2

Var[s] = 02 = > (2 (puphkiff; — 200) + (1 = p2k?) (62 — 403)] . (5:22)
=1

Asymptotically Normal Distribution

The central limit theorem states that under certain conditions the distribution of a sum of
random variables ) s; is asymptotically normal [93, p. 214]. Sufficient conditions are that

[93, p. 219]

1. limy 00 > Var[s;] = 00

2. There exists a number p > 2 and finite constant ¢ such that [%_sPpy; (s) ds < ¢ < oo,

for all 1.

Var [ aix;] = Y a?Var[z;] [61, p. 178].
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The sum in (5.20) satisfies the first condition since the variance of each term is positive.
Using the moment generating function of (5.17) again, the third moment of each term is found

to be

E [5] = 3 (punhiB; — 205) [5 (pashiBB; — 200) + 3 (1 — p2yk?) (82 — 403)]

satisfying the second condition, since p,; is bounded. The pdf of the LRT statistic is therefore
asymptotically normal with respect to the number of pixels in each image.

The pdfs of the statistic under the match and mismatch hypotheses are obtained by
setting p,, = p1 and p,p = po respectively. Figure 5-2 compares the pdfs obtained by Monte
Carlo simulation experiment with the theoretical normal approximation. Even for relatively
small images the normal approximation is reasonable under both hypotheses. In Figure 5-3
the histogram reaches the normal approximation for larger image sizes than was the case in
Figure 5-2, illustrating that convergence to the normal approximation is dependent on the
image parameters. In particular, a high degree of spatial correlation in the images reduces
the amount of independent information that is conveyed by a single pixel. As a consequence,
larger images are required before the normal approximation becomes reasonable. If results
that depend on normality of the LRT test are used (such as the Neyman Pearson threshold
below), then the normality assumption under the expected image parameters can be tested

by Monte Carlo experiment beforehand.

5.3.2 Optimal Decision Thresholds

The decision thresholds for the ideal observer and Neyman-Pearson test are now specified.

Ideal Observer Test

The ideal observer test assumes that the a priori probability of a match P, is known and

minimizes the overall probability of error. In this case the LRT decision threshold is

") S (7).

where k; is defined as before (see equation (5.10)). For P, = 0.5, the values of A should

/i:2log(

correspond to the intersection of the match and mismatch pdfs, which is indeed the case in

Figure 5-2. Note that the ideal observer threshold does not rely on a normal approximation of
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Parameter
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Image size (n)

Mismatch correlation (p,)
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0
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(b) Simulation parameters.

Figure 5-2: Monte Carlo experiment illustrating asymptotic normality of the LRT statistic.
The experiment used an ensemble of 10000 image pairs generated using the procedure given
in Chapter 4.
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Image size (n)

Mismatch correlation (p,)
Match correlation (p,)
Scene one-step correlation (p)

SNR

Range [4,32]
0
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(b) Simulation parameters.

Figure 5-3: Monte Carlo experiment showing slower convergence to the normal distribution
where spatial correlation is high. The experiment used an ensemble of 10000 image pairs
generated using the procedure given in Chapter 4.
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the LRT statistic. Where the normal approximation is inadequate for 4 x 4 images in Figure
5-2, the threshold corresponds to the intersection of the Monte Carlo histograms under the

match and mismatch hypotheses.

Neyman-Pearson Test

The Neyman-Pearson test does not assume knowledge of P; and instead minimizes type II
errors with a fixed upper bound on the type I error rate®. Since the likelihood ratio and an
appropriately chosen threshold constitute an optimal test of simple binary hypotheses, the
Neyman-Pearson test can be specified by simply choosing the threshold for a given upper
bound « on the type I error rate. If the statistic under the mismatch hypothesis has the
normal pdf, ps (s|Hy) = N (s;myg,00), and the decision threshold is X, then the probability of
a type I error is given by (see Appendix B.7)

P = % (1 —erf [’\\/_i::)]) . (5.23)

The a priori probability of a mismatch, Py, is unknown so the threshold is chosen to minimize

the probability of a type II error, Pry, with the constraint that P; < «, or

P() )’\ — my
— [ 1—erf <

1 A—m
5 (1 —erf|: ﬁUOOD <a (5.24)

guarantees that Pr < a. Noting that the error function, erf[-], is monotonically increasing,

Since Py <1,

(5.24) can be rewritten as a constraint on the Neyman-Pearson threshold

A > V2ogerf™ 1 — 2a] + 4.

3Recall that type I errors occur when the test accepts a match hypothesis when the image-pair is in a state
of mismatch, and vice versa for type II errors.



5.3. PROPERTIES OF THE TEST 91

The probability of a type II error is (see Appendix B.7)

/i —ma
=), -

which is monotonically increasing in A. Therefore the threshold,

P,
P = 71 (1—i—erf

A= V20gerf™! [1 — 2a] + p,

minimizes Py; with the constraint P; < a. Substituting the mean (5.21) and variance (5.22)

of the asymptotically normal LRT statistic

A = V2ogerf M1 — 20 + pg

= 2 Z [2 (pakiBB; — 20:)* + (1—p%k2) (67 — 40422)] erf 1[1 —2q]
i=1

n2
+ 3 (pakiBi — 20) .

i=1
5.3.3 Probability of Error

Knowledge of the error rate as a function of image parameters is important for setting the
best decision threshold, and for comparing different matching techniques. It could also be
important for specifying design parameters such as minimum image size and SNR when
designing an imaging system. The error rate for the LRT can be calculated analytically
because the statistic has an approximately normal distribution for a useful range of image
sizes. In general, however, it will be difficult to find these pdfs analytically and numerical

Monte Carlo methods will be used later to make comparisons with other matching techniques.

Expressing the mean (5.21) and variance (5.22) of the LRT statistic as a function of the

match correlation p,,

n2

ms (Pay) = Z (PavkiB; — 20u;)

=1
and

n2

CHIEDY [2 (PaskiBB; — 204)? + (1 — plk?) (B — 40%2)] :
i=1
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Assuming the normal approximation is valid, ps (s|Ho) = N (s;ms () ;02 (py)) and ps (s|H1) =
N (s; ms (py) ,02 (pl)), and the probabilities of type I and type II errors are (see Appendix
B.7)

Py (py) = % (1 —erf [)‘_L(%)D (5.26)

20 2 (o)

and

>‘_m75(pl)]> _ (5.27)

P
P =—1 f
11 (p1) 9 ( ter 202 (1)

In (5.26) and (5.27) the error probabilities are written explicitly as a function of the inter-
image correlation coefficient under the match and mismatch hypotheses, p, and p;, but they
are also dependent on other factors, such as image size (n), the extent of the spatial correlation
in the individual images (p) and the SNR. Since the effects of these parameters are interrelated,
the analysis of error rate is difficult, but Figures 5-4, 5-5, 5-6 and 5-7 investigate a range of
parameter combinations in order to establish general trends. For these experiments, the a

priori probability of match is assumed to be P; = 0.5.

Figure 5-4 shows that, as would be expected, the error rate decreases as the image size
increases. Similarly, error rate decreases with increasing SNR and match correlation in Figures
5-5 and 5-7, respectively. Figure 5-6 shows that greater spatial correlation in the images leads
to more errors, since an image with greater spatial correlation conveys less information. In a

sense, increased spatial correlation is analogous to reduced image size.

5.4 The Composite Match Hypothesis

Suppose now that the value of p,, for matching images is an unknown parameter. In this

case the GLRT,

Pw (w|pab = pab) I;
= < Aa

lo(w) =
W) = e ¥1pw = po) o

must be formed with a composite match hypothesis. The test must be slightly reformulated

and an ML estimator for p,, derived.
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Figure 5-6: Probability of error versus one-step spatial correlation coefficient.
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Figure 5-7: Probability of error versus match correlation coefficient.
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5.4.1 Reformulating the Test

With one exception, the test statistic and decision threshold can be simplified in the same
manner as the test based on simple hypotheses in the previous section. There is a term in
the decision threshold that contains p,;, and since this quantity is no longer constant, it must

be brought into the test statistic. Doing so, the GLRT statistic is

n?

56 (6, %,0m) = I B (an) (s — ms,) (85 = ms,) — @ () (5 — ms)? + (6 — m,)?) |

i=1

nZ
- Z Yi (/_)ab) )
=1

where
L BE-R)
a; \p, = _ ’
) =) (- k%)
_ ki (Pap — po) (1 + k3 pop1)
B, =2 —
) =G Red) (- ki)
and

(J(Zzwi + 0%) (Ung' + 03) - (Uaabﬁabwz')2

Yi (Pap) =
L (02w; + 0%) (o2w; + 02) — (Gaoppow;)?

The corresponding decision threshold is

’

A =2log .

5.4.2 Estimating the Match Correlation Coefficient

The GLRT for a composite match hypothesis requires a ML estimate of the match correlation
coefficient p,;. For image matching the sample correlation coefficient between the pixels in u

and v, also referred to as Pearson’s r and defined as

2

s om0y = D3 (5.28)
(S, (s —m ) T2 (0 —m (v)’] g

Tuv =

D[
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is routinely used as an estimate of p,;. The presence of additive noise, however, biases the
mean of this estimate away from the true value. Consider the joint covariance matrix of the
image pair
2 2
o R+o,l ooppR

Ky = . (5.29)
2 2
gaobpe R ogR+oy,1

It is clear that (5.28) is estimating

Do = Ta0bPab
uv
V(@2 +02) (0} +02)

and not the desired quantity, p,;- As the additive noise increases, p,, diverges away from
Pap- 1f the parameters are assumed known at this stage, then the bias can be removed by

calculating

V(02 +02) (0} +02)

Pap — a0 Puv>s

but this estimator still treats the pixel pairs as independent. An ML estimate based on the
model represented by (5.29) will make better use of the a priori information about spatial

correlation that is captured in the image-pair covariance matrix.

Maximum Likelihood Estimate

A procedure for obtaining the match correlation coefficient ML estimate,

Pqp = argmax [pW (wlpab)] )
Pabe(ﬂml]
given an image-pair sample w is introduced here. With known mean and covariance matrix
for w, an optimization procedure can be used to find the p,, € (pg,1] that maximizes the
likelihood. However, the dimensionality of w makes this impractical for all but the smallest

of images and a simplified procedure is now derived.

The likelihood is given by

1 1 _
P (W) = x| (W — ) TR (= )
(21" [Ku
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where Ky, is given by (5.29). Now maximizing the likelihood of w over p,; is equivalent to

maximizing the likelihood of its whitened equivalent w. The latter has likelihood

1 1 _
o (W) = e exp |~ (w )R wom)] (530
(2m)™ Ky
where according to (5.10),
I D ;
Ky = , for D [i,i] = kipgy = TaTbPabts .
D I \/(ogwi + 03) (Ugwi + 0,2,)

In order to calculate (5.30) the inverse and determinant of Ky are required.

Inverse First, a special case of a property of partitioned matrices (see Muirhead’s text, for
example [29, Theorem A5.2, p. 580]) is introduced. If K is a nonsingular n X n matrix that

is partitioned into four 2 x 2 submatrices as follows:
p 2 2

I A
A1

K=

then the inverse, B = K~!, can be partitioned into four 5 X & submatrices,

Bii B
By By

B =

that can be expressed in terms of the submatrices of K as
B11 = B22 == (I - A2)71 and B12 == B21 =—-A (I - Az)il .

Using this property, the inverse of Ky can be written as

1 1

(I-D%)
-D (I-D?)"

I D (1-D?)°
i (1-p%)"

w

. (5.31)
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Determinant Once again, consider the partition of a matrix K into four equally sized

submatrices:

K11 Kig
Kio Koy

If Ky is nonsingular, then [29, p. 581]
det (K) = det (Ko2) det (K11 — K12K5, Kis) .
Using this property and (5.10)
det (Kyw) = det(I)det (I—D?)

2

= IO -KeG). (5.32)
1

3

i

Substituting (5.31) and (5.32) into the likelihood of (5.30), and rewriting in terms of the

individual whitened images 4 and v,

1
@2m)™ /9 (Pup)

Py (ﬁ’ “r|pab) =

1., .
€Xp |:_§f (ll,V, pab):| ;

where
n2 1
f (ﬁa"’a pab) = Z 1— k2p2 [(ul ’llq;)z + ({)Z - m'éi)2 — 2kipab (,L’I’Z - muz) (UZ mvz)]
i=1 i Fab
and

9 (pa) = [ (1=K 0%) -

i=1

The value of py, € (py, 1] that maximizes this expression for any given image pair is the ML

estimate p,;. Note that it is equivalent to maximize the log-likelihood

. . 1 1., .,
L (G, V|pg) = —5logg (Pab) — 3/ (4, V,pg) — n*log 2,
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or, dropping constant terms and dividing by common coefficients, the modified log-likelihood

L(6,v

Pab) = —10g g (pap) — f (4, ¥, pgp) -

Calculus can be used to find an expression for p, in terms of & and V. Alternatively,
L (%, V|p,;) can be maximized directly for given 6 and v using a numerical optimization

procedure.

Comparing Estimators

Figure 5-8 shows the result of a Monte Carlo experiment that evaluates the performance of
Pearson’s r and the ML estimator based on direct maximization. The result supports the
hypothesis that the ML estimator is unbiased. Pearson’s r, on the other hand, is a biased
estimator of p,, as long as the noise is not negligible, but the bias can be removed with
knowledge of the scene and noise variance. The ML estimate is asymptotically the minimum
variance unbiased estimator, and Figure 5-8 confirms that for increasing n, the ML estimate of

Pap does indeed have the lower variance. Although the variance of the Pearson’s r disqualifies

Image Size - 16x16 , p = 0.95

1 Image Size - 16x16 , p = 0.95
0.02 T T T T
0.9} —©- Pearsonsr
—k— ML Estimate
1
B¢
084 0.015F
0.7
06 - 0.01
0.5
0.4r 0.005
0.3f —©— Pearsonsr |4
— ML Estimate r
0.2 . . . n n 0 . . . . .
1 2 3 4 5 6 7 1 2 3 4 5 6 7
SNR SNR
(a) Bias of estimator. (b) Variance of estimator.

Figure 5-8: Performance of correlation coefficient estimators in the presence of additive noise
(true pg = 0.8).

it as an estimator of p,, for the GLRT, this does not imply that it cannot be used effectively
as a measure of similarity in many applications. The reason for this is that as a measure of

similarity, it is discrimination between match and mismatch that is important, rather than
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performance as an estimator of some joint parameter of the image pair. In the next chapter
Monte Carlo experiments will compare the discriminating power of Pearson’s r with that of

the optimal LRT and those of other similarity statistics.

5.5 Discussion

The hypothesis test for matching that is optimal with respect to a joint MVN model of the
image pair has been derived. The test statistic and decision threshold have been simplified
and are conveniently expressed in terms of the eigenvectors and eigenvalues of the correlation
coefficient matrix that is shared by the two images. Performing the test is a three stage
procedure. First the individual images are whitened. Then a likelihood ratio test statistic for
iid images is calculated. Finally, the result is compared to a decision threshold that is chosen
to optimize some performance criteria.

The fact that this statistic and decision threshold have been derived from first principles
makes it possible to do analyses that would otherwise be difficult, and possibly intractable.
Under the assumed model the test statistic is asymptotically normal and the mean and
variance have been derived. Together with the expression for the optimal decision threshold,
this facilitates the derivation of expressions for the error rates of the test. Knowledge of
theoretical error rates and their relationships with image parameters can then be used to
predict and optimize the performance of an image processing system.

However, assessing the performance of the LRT outside the assumed model, and deriving
the error rates for the traditional approaches to direct image matching in order to draw
comparisons, are tasks that are not as easy to perform analytically. The next chapter employs
Monte Carlo simulation techniques in conjunction with the image-pair synthesis equations of

Chapter 4 to analyze and compare the LRT error rate over a wide range of conditions.



Chapter 6

Error-Rate Performance of the

Optimal Test

The likelihood ratio test (LRT) for image matching is now compared with other direct image
matching methods over a range of imaging conditions. Both variation within the assumed
model and deviation away from it are considered. Pearson’s r (the sample correlation co-
efficient)!, cross-correlation, the sum of squared differences, the sum of absolute differences
and the stochastic sign change criterion are used as a basis for comparison (see Chapter 2 for
definitions of these measures). The criteria for this selection were (1) that these statistics are
widely used and (2) that they are useful over a wide range of image sizes. Table 6.1 lists the

pertinent test and similarity statistics along with their symbols.

In this chapter the nomenclature “Pearson’s r” will be used instead of the more common “correlation
coefficient” when referring to the sample correlation coefficient similarity statistic . This will reduce the po-
tential for confusion of this quantity with the match correlation coefficient p; or the spatial one-step correlation
coefficient p.

Name Symbol
Likelihood ratio test statistic ]
LRT statistic (noise-free approximation) SNF
LRT (independent pixel approximation) stP
GLRT with unknown parameters sa (6)
Pearson’s r r
Cross correlation R
Sum of squared differences d»
Sum of absolute differences di
Stochastic sign change Ss

Table 6.1: Test and similarity statistics investigated by Monte Carlo experiment.

101
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For the purpose of the experiments it is assumed that the scene component of the indi-
vidual images can be modelled as 2D, nonseparable, first-order Markov random fields. The
correlation coefficient matrix R is therefore parameterized on the one-step spatial correlation
coefficient p. It is also assumed that mismatch is conditioned on independent images, that is,
Hy <= p, =0.

Section 6.1 outlines experimental procedures. Section 6.2 presents the results of experi-
ments that analyze error rate as a function of parameters in the joint image model. The image
ensembles used here conform to the assumed model, but Section 6.3 investigates the effect of
deviations from the model on error rate. Section 6.4 closes the chapter with a discussion on

the material covered.

6.1 Monte Carlo Simulation

Monte Carlo methods, which comprise the branch of experimental mathematics that is con-
cerned with random numbers, are used extensively in areas such as nuclear physics [94]. They
can be categorized as either probabilistic, where random numbers simulate the random pro-
cesses of the original problem, or deterministic, where they are used to solve a problem that
is not random in nature. Methods in the former category, sometimes referred to as direct sim-
ulation methods [94, p. 43], are appropriate for the analysis of matching error rate. Image
formation has been modelled as a random process and equations that transform individual
random numbers into random image pairs were derived in Chapter 4. The Monte Carlo
procedure involves using a random number generator in conjunction with these equations to
generate a random ensemble of image pairs that conforms to the model. Matching techniques
can then be applied to the image pairs in the ensemble and the resulting error rates observed.

A crucial element of this procedure is the generation of random numbers, which should
conform to the desired probability distribution. Typically, a computer-generated pseudoran-
dom sequence is used, and the Gaussian random numbers used in this chapter’s experiments
were generated by the pseudorandom number generator provided in the MATLAB numerical

mathematics software library.

6.1.1 Experimental Procedure

The matching test consists of observing an image pair, calculating a scalar statistic of the

image pair data and comparing the statistic to a decision threshold. A simple Monte Carlo
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procedure for estimating the error rate associated with a particular matching test and a priori
probability of match P; (and therefore a priori probability of mismatch Py = 1 — Py) is as

follows:

1. Denoting as T' = T+ T} the overall number of Monte Carlo trials, generate an ensemble

of T = P;T matching images and an ensemble of Ty = PyT non-matching images.
2. Use the test to make a match/mismatch decision for each image pair.

3. Compare the decision with the true class for each image pair and count the number of

type I and type II errors, denoting them N; and Nj; respectively.

4. Calculate estimates of the type I and type II probabilities using Py = Ny - T~ ! and
Prp=Np-T7 L

This procedure is impractical for two reasons. First, if P; > Py then a very large number
of trials may be required in order to obtain good estimate of P; and likewise for Py > P;
and Pr;. This problem can be overcome by performing the simple procedure with equally
sized ensembles for match and mismatch and scaling the resulting error rates by P; and F.
Second, the procedure cannot be used as it stands if the decision threshold is as yet unspecified,
which rules out comparisons with the traditional direct image matching techniques since these
typically do not have a specified optimal decision threshold. Two methods for comparing error

rate performance without a specified threshold are now considered.

The Receiver Operating Characteristic

The receiver operating characteristic (ROC) [95] characterizes the error rate performance of
a test by the hypothesis conditional probabilities of match detection Py = Py - T - Tfl =
Ny -Tl_l, and match false alarm, Py = P;-T - TO_1 = Ny -To_l. The ROC plot is the locus of
{Py, Py} pairs for all possible decision thresholds. Figure 6-1 shows an example of an ROC
plot for three different tests. The superior test is the one closest to the top left corner of the
graph, where P; is maximized and Py is minimized. Note that the ROC plot does not require

knowledge of the a priori probability P;.

Minimum Error Rate and the Ideal Observer Test

In order to compare different test statistics and similarity measures it is convenient to repre-

sent the error-rate performance with a single value. One possibility is the overall probability
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Receiver Operating Characteristic

Y — Test1
0.1/ Test 2 |
— — Test3
0 . . . n
0 0.2 0.4 0.6 0.8 1

Probability of Match False Alarm
Figure 6-1: Receiver operating characteristic plot.

of error, or error rate, P (error) = P; + Py, which can be calculated using the simple proce-
dure outlined above. If there is no specified threshold, then the threshold that minimizes the
error rate can be used. Together with the test statistic, this threshold constitutes the ideal
observer test (see Section 5.3.2) and is the value for which normal hypothesis conditional pdfs

intersect.

6.1.2 Simulation Parameters and Default Values

The parameters in the assumed model are given in Table 6.2, together with the default
values that will be used in experiments that follow. Some motivation for the selection of
these particular values is in order. Jain suggests that for many classes of images a value of
p = 0.95 is appropriate for the Markov one-step spatial correlation coefficient [8, p. 37]. Most
experiments will be performed for two match correlation coefficients: p; = 0.6 models the
situation where matching scenes can have significant differences under the match hypothesis,
and p; = 0.99 models scene images that are nearly identical under the match hypothesis. The
mismatch correlation coefficient is assumed to be pg = 0, implying that non-matching images
are statistically independent.

In many applications the images in the pair will be generated by similar or identical
imaging systems. For this reason the scene and noise variance are assumed to be shared by

2 2 _

the two images and denoted as 0 = o = 2 2

2 2 _ _
abandan—a =0

i 2 respectively. Without loss of
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Name Symbol | Default Value
Image mean vector m 0
Mismatch correlation coefficient Po 0
Match correlation coefficient (low) P1 0.60
Match correlation coefficient (high) P1 0.99
Markov spatial one-step correlation coefficient p 0.95
Signal-to-Noise Ratio (low) SNR, 1
Signal-to-Noise Ratio (medium) SNR, 2
Signal-to-Noise Ratio (high) SNR 3

Table 6.2: Default values for model parameters in Monte Carlo experiments.

generality, scene variance can be set to unity and the noise variance specified via signal-to-
noise ratio, where SNR = o/0,,. Different imaging applications will exhibit widely different
SNR performance, so any choice of a particular default value will be somewhat arbitrary.
Depending on the experiment, values of SNR = 1, SNR = 2 or SNR = 3 are used in this

chapter. By default the image pixels have zero mean, that is my, = my, = 0.

In each experiment the number of Monte Carlo trials (7p and T3) is selected in order
to obtain an error in the result that is negligible in comparison with any trends reported

regarding differences between the error rates of the respective tests?.

6.1.3 Selection of the Competitors

The results of experiments reported in this chapter do not represent an exhaustive comparison
of the LRT with all other similarity statistics. FError-rate performance is compared with
standard correlation- and difference-based similarity measures and a nonparametric measure,
which is used for comparison where reality deviates from the assumed model. The chosen
measures, which are shown in Table 6.1, are widely used and are useful over a range of image
sizes. Measures that have a narrow range of applicability are not included. For example,
although histogram based measures like mutual information are popular, particularly for
multimodal image matching, they are ineffective where there are insufficient pixels to form

an adequate histogram.

2The satisfaction of this requirement was verified by assessing the repeatability of the result in multiple
experiments.
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6.2 FError Rate and Model Parameters

This section investigates the error-rate performance of direct matching techniques under
changes within the assumed image-pair model. Figure 6-2 shows ROC plots for three sets of
match correlation coefficient and SNR values, with default values used for the other model
parameters. Some deductions can be made from these graphs. First, as would be expected
for images generated under the assumed model, the LRT exhibits the best performance in all
six graphs. Second, the independent-pixel approximate LRT exhibits close-to-optimal perfor-
mance for low SNR and low match correlation (Figure 6-2(b)). Third, the best suboptimal
measure for low match correlation and high SNR is the correlation coefficient. Fourth, the
best suboptimal measure for high match correlation and low SNR is the sum of absolute
differences. Finally, the stochastic sign change criterion exhibits poor performance for low
match correlation.

In order to analyze performance over a wider range of parameter values, results are now
presented in terms of the overall probability of error associated with the ideal observer test.

It is assumed that the a priori probability of match is P; = 0.5.

6.2.1 Image Parameters

Here error rate is compared for parameters of the individual images. Image size, SNR, and
spatial correlation are investigated. Before discussing each experiment in more detail, some
general observations are made. As expected, the optimal LRT produces the best performance.
This is no surprise, since the test was derived from first principles to minimize error rate. What
is of more interest is the extent to which the optimal measure outperforms the suboptimal
measures, and indeed, the LRT does exhibit a large performance advantage in the results. For
example, in the range n € [15,25] in Figure 6-3(a) and the range SNR € [2, 3] in Figure 6-4(a),
the LRT error is almost an order of magnitude lower than that of the next best measure.
Among the suboptimal measures, Pearson’s r consistently produces better performance
than the sum of absolute differences when the match correlation coefficient is low. The oppo-
site is true when the match correlation coefficient is high. This can be attributed to the fact
that as the sample correlation coefficient, Pearson’s r is more sensitive to changes in the match
correlation coefficient p; even though it is not directly estimating this parameter. The better
suboptimal measure always outperforms the stochastic sign change (SSC) criterion, which is
to be expected, since a test based on the SSC criterion is nonparametric and makes few a

priori assumptions about the problem at hand. It should be less powerful than parametric



6.2. ERROR RATE AND MODEL PARAMETERS 107
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Figure 6-2: ROC comparison of the LRT statistic and common similarity measures. Graphs on
the left compare the LRT to its noise-free and pixel-independence approximations. Graphs on
the right compare the LRT statistic to other suboptimal similarity measures (Ty = 77 = 1000).
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measures in experiments based on parametric models. In this respect, a fairer comparison is
made in Section 6.3, where deviations from the parametric model are considered.

It is also clear from the majority of the results that the independence and noise-free as-
sumptions severely compromise the performance of the LRT when the images do not support
them. This is an indication of the potential for lost performance in other image processing
algorithms, where these common assumptions are often used to simplify the mathematics
of derivation or to reduce the computational complexity of the derived solution. This re-
sult would not surprise researchers in the field of robust statistics — Hampel, Ronchetti,
Rousseeuw and Stahel comment, for example, that the independence assumption is “apart
from systematic errors the most dangerous violation of usual statistical assumptions” [30, p.

8, sec. 1.1b].

Image Size

All of the statistics show better performance for larger images in Figure 6-3. This is expected,
since for larger images more information is available to discriminate between matching and
non-matching image pairs. One way of comparing the statistics is to find the image size that
is required to keep the error rate below a certain limit. For example, if the upper bound
P (error) < 0.1 is set in Figure 6-3(a), then the optimal LRT requires a 9 x 9 image, whereas

the next best statistic, Pearson’s r, requires a 21 x 21 image to match this performance.

Signal-to-Noise Ratio

Figure 6-4 is a good illustration of the difference between the optimal and approximate LRT
statistics. The penalty of the independence assumption is different for low and high match
correlation coefficient. For the former (Figure 6-4(a)), the penalty is greater for increasing
SNR, and vice versa for the latter (Figure 6-4(b)). In both cases the error rate of the LRT
with the noise-free assumption is high for low SNR, but approaches the performance of the
optimal LRT as the noise becomes less significant.

As with the image size experiment, the LRT outperforms the suboptimal measures by
a wide margin. One interesting point is that the SSC error rate reaches a minimum and
then begins to increase with increasing SNR. The SSC criterion relies on the presence of
noise to produce sign changes in the difference image and when the noise has lower amplitude
than other low frequency deviations between the images (due to the fact that p; < 1 in

this experiment), the performance deteriorates. This is where the deterministic sign change



6.2. ERROR RATE AND MODEL PARAMETERS
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Figure 6-3: Monte Carlo investigation of error rate versus image size (Ty = 11 = 5000).
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(DSC, see Section 2.2.2) would be a better nonparametric measure. The exact point that DSC

should be introduced is at the SSC error rate minimum on Figure 6-4, where SNR ~ 1.2.

Spatial Image Correlation

The effect of spatial correlation in the scene (non-noise) component of the images, represented
here by the one-step spatial correlation coefficient p, is investigated in Figure 6-5. All of
the measures, except the SSC, have increasing error with increasing spatial correlation. As
discussed in Section 5.3.3, this is due to the fact that high spatial correlation reduces the
information content in the scene component of the image and leaves the similarity statistics
little to work with. The performance of the SSC, on the other hand, is not dependent on the
information content in the scene in the same way: the more spatial correlation there is, the
more likely it is that the scene component will be subtracted perfectly, allowing the SSC to

better analyze the sign changes in the difference image and thereby reducing the error rate.

6.2.2 Match Correlation Coefficient

The effect of the match correlation coefficient p;, which represents the correlation between
corresponding pixels in the scene (non-noise) component of a matching image pair, is investi-
gated in Figure 6-6. All measures have an increasing error rate as p; decreases. The optimal

LRT has a significant performance advantage over the range: p; € [0.1,0.9].

The experiment of Figure 6-6 assumes prior knowledge of p,. The advantage of the LRT
is that it offers an opportunity to incorporate this knowledge, but in practice the value of p;
used to calculate the statistic is likely to be inaccurate. Figure 6-7 shows the results from an
experiment that investigates incorrect knowledge of p;. The LRT was used with a fixed value
for p, that did not change with the value used to synthesize image pairs over the range of the
experiment. In the graph on the left the LRT used p; = 0.2 and on the right it used p; = 0.8.

It is evident from the results that the LRT is relatively insensitive to inaccuracies in p;.

6.2.3 Unknown Parameters

This section investigates the situation where the a priori knowledge required by the LRT is

incomplete. This knowledge consists of the parameters in the joint image model, that is, the
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Figure 6-4: Monte Carlo investigation of error rate versus SNR (7 = 71 = 5000).
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Figure 6-5: Monte Carlo investigation of error rate versus spatial correlation (Ty = 71 = 5000).
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Figure 6-6: Monte Carlo investigation of error rate versus match correlation coefficient (T =
T = 5000).
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Figure 6-7: Monte Carlo investigation of error rate versus variable match correlation coefficient
with fixed LRT parameters (Tp = 77 = 5000).
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T . .
mean vector my, = [ma, mb] and the covariance matrix

K, = | “RFoul ol | (6.1)

oaoppp R oiR+021
Unknown parameters call for the use of the generalized LRT (GLRT) and experiments here
contrast the performance of the GLRT with the performance of the LRT that knows the
parameters. The unknown parameters are either characteristics of the individual images or
are the match parameter itself. The former are referred to as nuisance parameters, and the

latter leads to a composite match hypothesis.

Image Offset Nuisance Parameter

The parameters {ma,mb,ag,ag, P, ai,ag} are characteristics of the individual images and
can often be estimated with training data. If not, they can be estimated from individual
images, but only when the images are sufficiently large. Often it will be the case that illu-
mination levels vary from image to image, resulting in an unpredictable scalar offset to the
mean vectors m, and my,. This offset, which may be different for each image, can be treated
as a nuisance parameter. Figure 6-8 compares the error rate for the LRT where the offset
is known to the GLRT that uses an estimate. Results for Pearson’s r are also given, since
this suboptimal statistic removes an estimate of the mean in its calculation, thereby providing
some degree of offset invariance. The result shows that the GLRT sacrifices little performance

in this case.

Composite Match Hypothesis

In Section 6.2.2 an experiment showed that the LRT was relatively tolerant of inaccuracies
in the value of p; specified for the model. If this parameter is unknown, however, it may
be better to use a generalized test than to make an educated guess about its true value. In
Figure 6-9 the optimal LRT, the GLRT with an estimate of p;, two LRTs with fixed p; (0.3
and 0.9), and suboptimal statistics are compared for a range of image size and SNR.

In Figure 6-9(a) the true match correlation coefficient is p; = 0.6. Here the GLRT
is superior to the inaccurate guesses of 0.3 and 0.9 in both cases. The LRT with match
correlation coefficient fixed at a value lower than the true value has fewer errors than the
LRT with match correlation coefficient fixed at a value higher than the true value. For the

most part, all of the LRT variations outperform Pearson’s r.
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Minimum Error Rate versus SNR
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Figure 6-8: Monte Carlo investigation of the GLRT with image mean nuisance parameter

(To = T; = 5000).
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(b) High match correlation coefficient.

Figure 6-9: Monte Carlo investigation of the GLRT with composite match hypothesis (Tp =
T = 5000).
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In Figure 6-9(b) the true match correlation coefficient is p; = 0.99. The sum of absolute
differences is a better suboptimal measure in this regime and is therefore used for comparison
instead of Pearson’s 7. On the whole, the GLRT is once again superior, although for high
SNR, the LRT with p; fixed at 0.9 is marginally better than the GLRT. This is not entirely
unexpected, since 0.9 is relatively close to the true value of 0.99. Despite the proximity to
the true value, however, the guess of 0.9 has very poor relative performance for SNR 3 1.

In all results the GLRT is significantly better than the suboptimal statistic used for
comparison. In summary, these results suggest that if there is uncertainty about the true

value of the match correlation coefficient, then the GLRT should be employed.

6.3 Error Rate and Deviations from the Model

The previous experiments were performed on an ensemble of image pairs that conformed to
the assumed model. Real images rarely conform exactly to such a model and the effect of

deviations from the model are investigated in this section.

6.3.1 Sensitivity to Model Parameters

The performance of the LRT in the vicinity of the parameter values chosen for the image pair
model is an indication of the robustness of the test. The LRT statistic (5.14) and decision
threshold (5.15) summarize the parameters of the individual image models in the quantities

w; + SNR™!

7

where SNR = o2 /a%. The quantities w; are eigenvalues of R and are determined by the
one-step correlation coefficient of the Markov scene, denoted p. The model is therefore pa-
rameterized on SNR and p.

Figure 6-10(a) compares the error rate of the optimal LRT and several suboptimal statis-
tics with that of the LRT where SNR is fixed. The result is an indication of the LRT sensitivity
to inaccuracy in the SNR value used to calculate the test statistic and suggests that small
inaccuracies will not have a seriously detrimental effect on the error rate. Figure 6-10(b)
suggests that the same is true for small inaccuracies in the value of p used to calculate the
LRT statistic. These particular graphs also suggest that overestimating the SNR is more

detrimental than underestimating it, whereas it is better to overestimate p.

The experiment of Figure 6-10 explores the discriminating power of the test, but does
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(b) LRT with p fixed.

Figure 6-10: Monte Carlo investigation of error rate for the LRT with a fixed parameter
(To = T1 = 5000).
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not say anything abut the sensitivity of the decision threshold to inaccuracy in the model
parameters. This is the case because the minimum error rate is estimated from the hypothesis
conditional pdfs, and does not require that the threshold be specified. In practice, however,
the decision threshold must be specified beforehand and an incorrect threshold will increase
the error rate. Figure 6-11 shows the result of an experiment that used the theoretical ideal
observer threshold given in Chapter 5. The error rate of an LRT that knows the correct model
parameters is compared to an LRT with fixed model parameters. Once again, the test with
fixed parameters is reasonably insensitive to parameter inaccuracies. Overestimating SNR by
more than 0.5, however, might have a severe effect on the error rate.

Sensitivity to SNR (Fixed SNR = 2) Sensitivity to p (Fixed p = 0.8)
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Figure 6-11: Monte Carlo investigation of LRT decision threshold sensitivity to model pa-
rameter inaccuracies (7o = 77 = 5000).

6.3.2 Noise Deviations

The assumed model caters for additive white noise. Real imaging systems also generate other
types of noise and the effect of three common examples of these on matching performance are
investigated here. They are correlated noise (or coloured noise), salt-and-pepper noise and

multiplicative noise (or speckle).
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P, =0.1

(a) Additive noise of varying one-step correlation (SNR = 2).

) Salt and pepper noise for a range of noise density.

0—02 0—03 0—04

¢) Multiplicative noise for a range of standard deviation.

Figure 6-12: Synthesized images with varying degrees of noise.
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Correlated Noise

The proposed image-pair model assumes that the noise in distinct pixels is statistically inde-
pendent, but often imaging systems introduce noise with slight correlation between adjacent
pixels. Figure 6-12(a) shows examples of correlated noise, where it was modelled as a nonsep-
arable first-order Markov field with one-step correlation coefficient p,,. Figure 6-13(a) graphs
the error rate over a range of values for p,. The experiment shows that the error rate per-
formance of the LRT is not seriously affected by spatial correlation in the noise component.
For a noise correlation coefficient of p, Z 0.5, the noise-free LRT special case outperforms

the optimal LRT, but this degree of noise correlation is very uncommon in imaging systems.

Salt-and-Pepper Noise

Another common variety of image corruption is so-called salt-and-pepper noise, examples of
which are shown in Figure 6-12(b) for a range of noise density, d,,. Figure 6-14 shows the
error rate obtained from Monte Carlo experiments that were performed for a range of noise
density values. It is evident that the error rate advantage of the LRT disappears for d, 2 0.1.
As Figure 6-12(b) shows, however, values this high correspond to very extreme conditions of

salt-and-pepper noise.

Multiplicative Noise

Each individual pixel in the assumed model can be written as u = a + y where a is the scene
component and y is the noise component of the pixel intensity value. A more general model
that also incorporates multiplicative noise can be written as u = pya + p,, where u, is the
multiplicative noise component. A normal random variable with unity mean and standard
deviation oy is a reasonable model for y,. Figure 6-12(c) shows multiplicative noise for
several values of 0. Figure 6-15 graphs error rate performance for o € [0,1]. The LRT
maintains superiority for a reasonable degree of multiplicative noise — if the multiplicative
SNR is defined as SNRy = %, then superiority is maintained for SNRy Z 2. The results
also suggest that the SSC criterion is fairly robust in the presence of multiplicative noise.
This is particularly true for the high match correlation case, where it is almost impervious to

increasing noise variance.
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Figure 6-13: Monte Carlo investigation of error rate versus spatial noise correlation (T =
T, = 5000).
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Figure 6-14: Monte Carlo investigation of error rate versus salt-and-pepper noise density
(Th = T1 = 5000).
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LRT and Suboptimal Statistics
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Figure 6-15: Monte Carlo investigation of error rate versus the standard deviation of a mul-

tiplicative noise component (7y = 77 = 5000).
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6.3.3 Occlusion

A more serious deviation from the assumed model occurs when the scene is occluded by
another object in either or both of the images in the pair. Some similarity statistics, like
the SSC criterion, have been motivated by the need for robust operation in the presence of
this sort of deviation [42]. The experiments here characterize occlusion in terms of (1) the
fraction of image area occluded f,, (2) the occlusion-to-signal ratio (OSR), which is defined
as the ratio of the pixel intensity standard deviation in the occluded portion to the standard
deviation in the original image, and (3) whether the occlusion is opaque (reflected radiation
imaging) or additive (attenuated radiation imaging). Figure 6-16 shows examples of images
with different degrees of occlusion.

The results of experiments show that the LRT is the least robust method in the presence
of occlusion. Figure 6-17(a) graphs error rate for additive and opaque occlusion over the
occlusion fraction f,. The suboptimal measures outperform the LRT, with the nonparametric
SSC criterion proving to be the most robust statistic as should be expected. Over a range
of OSR in Figure 6-17(b) the same trend is observed. Here the true advantage of the SSC
criterion is observed — it is invariant to the increasing energy in the occluded part of the
image (i.e. the increasing OSR) because it does not take the pixel intensity values directly
into account.

Huber describes near optimal performance under the classical model as one of the de-
sirable characteristics of a robust procedure [38, p. 5]. Strictly speaking, the SSC criterion
is nonparametric rather than robust, but the same principle can be applied. So even if the
optimal LRT is unsuitable in a particular situation because of outliers, it can be used as a
benchmark for performance under the classical model. For example, the experiments in this
chapter suggest that although the SSC criterion is effective in the presence of occlusion, it
sacrifices significant performance in comparison to the optimal error rate without occlusion.
There would therefore appear to be scope for developing a test that exhibits close-to-optimal

performance under the classical model, but is robust in the presence of occlusion.

6.4 Discussion

This chapter has demonstrated the utility of Monte Carlo simulation methods for evaluating
matching techniques. Image-pair synthesis equations that were derived in Chapter 4 were

used to generate ensembles of matching and non-matching image pairs. The performance
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(b) Opaque occlusion for a range of occlusion-to-signal ratio.
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(c) Additive occlusion for a range of occlusion-to-signal ratio.

Figure 6-16: Synthesized images with varying degrees of occlusion.
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Figure 6-17: Monte Carlo investigation of the effect of occlusion on the matching error rate
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of the standard similarity statistics could then be compared with each other and with the
model-optimal LRT that was derived in Chapter 5. These comparisons were made on the
basis of the ROC plot and the minimum error rate of an ideal observer test.

The results for image pairs that conform to the model of Chapter 4 demonstrate the
superiority of the LRT, but since this test was derived to be optimal under the assumed
model, it is not surprising that it outperforms suboptimal approaches. The more significant
result is the extent of superiority over other tests that the LRT exhibits, which indicates
that there is much potential for improvement on current methods. Among the suboptimal
statistics, a general rule emerges: correlation-based statistics are better for image pairs with
low match correlation coefficient and difference-based statistics are better when the match
correlation coeflicient is close to unity.

Results also suggest that the LRT is relatively insensitive to inaccurate knowledge of the
model parameters. Where there is significant uncertainty about the true value of a parameter,
however, the GLRT provides better performance than the LRT that uses an educated guess
of the parameter value. Other deviations from the proposed model were also investigated.
For correlated, salt-and-pepper and multiplicative noise, the LRT retains its performance
advantage under normal imaging conditions. The LRT is very sensitive to occlusion, how-
ever, and it is here that the advantage of a nonparametric measure, such as the stochastic
sign change, becomes evident. Finally, it appears that the noise-free and independent-pixel
assumptions, which are widely used in analyses of image processing algorithms, seriously
degrade performance if they are not warranted.

On the basis of the results presented in this chapter, it appears that the LRT will be
effective under a wide variety of imaging conditions. The emphasis now shifts to the practi-
cal aspects of implementing the test, and the next chapter introduces efficient methods for

computing the LRT statistic.



Chapter 7

Efficient Implementation of the

Optimal Test

Chapter 5 developed an optimal hypothesis test for direct image matching that exhibits
markedly improved matching performance in terms of error rate, but has significantly higher
computational complexity than the standard approaches. This chapter introduces methods
that can reduce the computational requirements so that they are comparable to those of the
standard similarity statistics.

The LRT statistic is calculated in two stages: an O (n4) whitening transform on the
images and an O (n2) calculation of the LRT statistic for the whitened images. One strategy
for economizing on computation is to preprocess the images with the whitening transform.
In the case of an image database, the transformed image could be calculated for each new
addition to the database and stored along with, or, since the transform is invertible, instead of
the new image. Where the application is image registration, the subimages around all control
points and positions in the corresponding search area could be whitened before performing
local block matching!. This approach rearranges the calculations to enhance efficiency, but
still computes the exact LRT statistic. An alternative is to sacrifice optimal performance and
use an approximate statistic that significantly reduces computation. The “lossy” approach is
considered in this chapter.

The relationship between the optimal LRT statistic and the canonical inter-image corre-

lation structure inherent in the image-pair model is an important source of inspiration when

!This approach may require excessive storage if an exhaustive search is used, since the whitened subimage
around each position in the search area must be stored.

129
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finding efficient implementation strategies. Section 7.1 makes this relationship explicit and
discusses its consequences. The canonical variables are then used in Section 7.2 to reduce the
dimensionality required for testing match in the image pair. Section 7.3 reduces computation
in the whitening transform by using simplified image models, and Section 7.4 proposes a
practical method for calculating the LRT with large images. A general discussion closes the

chapter.

7.1 The LRT in Terms of Canonical Variables

Canonical correlation analysis was introduced in Chapter 4, where it was shown that if the
scene component of the image pair model, denoted here as ¢ = [aT, bT]T, has the covariance

matrix

2
o, R 0a0pPu R

2
OaTbPu R o R

then the correlation structure of the scene-pair can be reduced to n? canonical correlation
coefficients with values pgb. Recall that the canonical correlation coefficients of the n?-vectors
a and b are the correlation coefficients between a series of n? random variable pairs that are
obtained by orthogonal transformations of a and b. The first pair of transformations, say

p1 =alaand ¢ = ﬂlTb, give the first canonical variables, which have maximal correlation

and unit variance. The second set of canonical variables, py = ala and ¢, = BLb, have
maximal correlation and unit variance, subject to the condition that they are uncorrelated

with p; and g1, and so on.

It is now instructive to derive the canonical variables and corresponding canonical corre-
lation coefficients of the image pair with additive noise. Their relationship with the principal
components of the individual images is explained, and it is shown that the LRT of Chapter

5 is already conveniently represented in terms of the canonical variables.

7.1.1 Image-Pair Canonical Variables

Expressions for the canonical variables and the canonical correlation coefficients of an image

pair under the model of Chapter 4 are derived here. In Chapter 5 it was shown that a
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whitening transform on the individual images leads to the joint image-pair covariance matrix

I D
Ky = . (7.1)

D I
Now this happens to be a canonical form for Ky, under the group of transformations K, —
TK,,T [29, p. 550], where corresponding pixels in the whitened images are the canonical
variables and the squares of the diagonal elements of D are the canonical correlation coef-
ficients. Stated differently, it is evident that applying a whitening transform to each image
independently, transforms the image pair into a canonical form for the correlation structure

between the images.

Using the notation introduced in Section 5.22, the canonical variables are the correspond-
_1 _1
ing pixels in the whitened images G = A, >V u and v = A, 2VTv. The i-th pair of canonical
variables is therefore {1;,;}, where
1 1
di = A7V w and 6= (W) VI, (7.2

and [V], is the i-th column vector of V. The i-th canonical correlation coefficient is D? [i,i] =

p?, where

2.2 2 2
0a9pW; Pap

o2w; + Uﬁ) (a%wi + 03) ’

pi =k pay = ( (7:3)

One can also derive the canonical correlation coeflicients of the image pair from the joint
covariance matrix. This is now done for the sake of completeness. If the image pair has the

partitioned joint covariance matrix

K1 Kig
Ks Koo

Kw =

then the canonical correlation coefficients are the eigenvalues of K| K19Ko, Ka; [29, p. 550].

2Recall from Chapter 5, Section 5.2, that 'V is an orthogonal matrix with columns that are the eigenvectors
of R, the correlation coefficient matrix shared by images u and v. The diagonal matrices Ay and A, have the
eigenvalues of u, denoted A}, and the eigenvalues of v, denoted A, as their i-th diagonal elements respectively.
The i-th column vector of V is the eigenvector associated with A} and Aj.
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Noting that Ky = TwKng where

1 1
i T:! 0 VAZ 0 , A2VT 0
TW = u = v 1 and T& = v 1 y (74)
0 T,! 0 VA2 0 AVT

the joint image-pair covariance matrix can be written as

K, = T KyTL
1 1 1 1
VAZAZVT  VAZDAZVT
1 1 11
VAIDAZVT  VAIAZVT

The canonical correlation coefficients are then the eigenvalues of
11 _ 11
K 'KpKy Ky = (VALVT) ™ (VA%DA&VT) (VA, V)™ (VA?, DAaVT>

= VA_lA%,DAéA_lAé DAévT
= VD?*VT.

If A is a nonsingular square matrix and B = C ! AC, then A and B have the same eigenvalues
[29, p. 583]. Therefore, VD?V” and D? have the same eigenvalues. The eigenvalues of a
diagonal matrix are the elements on the diagonal [29, p. 550], and so the canonical correlation

coefficients, denoted pg, are the squares of the elements on the diagonal of D as required.

7.1.2 Principal Components and Canonical Variables

Principal component analysis (PCA) is an important technique in statistical data analysis
and has also found many applications in image processing. The principal components of an
image are the result of a coordinate transformation of the image vector that is based on the
image covariance matrix. This transform has optimal variance properties: the first principal
component is the linear combination of the image pixel values that has maximal variance. The
second principal component is the linear combination of the pixel values that has maximal
variance and satisfies the condition of being uncorrelated with the first principal component,
and so on for 7 € {3,4, e ,n2}. Statistical treatments of PCA are given by Anderson [96,
ch. 11] and Muirhead [29, ch. 9]. The optimal compaction of variance into a subset of
the principal components has made PCA useful in signal and image processing applications,

where it is often referred to as the Karhunen-Loéve (KL) transform [8, p. 163].
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Using the notation of the previous section, the KL transform of u is V7 u. The principal
components are therefore given by ; = [V]] u for i € {1,2,... ,n?}. Similarly, the principal
components of v are v; = [V]ZTV for 5 € {1,2,... ,n2}. Assume that V, Ay, and Ay are
constructed in such a way that 4; and v; are the i-th principal components of u and v (i.e.
they have the i-th highest variance among all the components). Then the eigenvalues of u and
v, A" and )}, which are the variance of 4; and 9; respectively, are ordered with decreasing

value for increasing 7. Writing the eigenvalues of R in terms of these quantities (see B.4),
wi =B or w; =T (7.5)

Note that both of the expressions in (7.5) enforce an ordering of w; with decreasing magnitude.

Referring to (7.2), it is seen that the canonical variable pair {7;,%;} can be written in

terms of the principal components as follows:

G = W72V u

and

= () 7 (7.7)

Inspecting equation (7.3), it is evident that p? decreases with w;, implying that ¢ orders the

canonical variable pairs by decreasing canonical correlation coefficient in (7.6) and (7.7).

This result reveals an important property of the image-pair model that was introduced
in Chapter 4: the i-th canonical variable pair consists of the ¢-th principal components from
each image, normalized to have unit variance. Furthermore, it follows from (7.1) that the i-th
canonical correlation coefficient in the image pair is the square of the correlation coefficient

between the i-th principal components of each image.
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7.1.3 Canonical Correlation Coefficients and the LRT

Repeating it here for convenient access, the optimal test derived in Chapter 5 has statistic

$(8,9) = D7 B, (i — ma) (6 —ma) — o (s —ma)” + (i —my,)?)  (1.9)

and decision threshold

2

XA =1log\? + ilog (1_7]%2/)%) (7.9)
i=1 1—king) .
where
k? (o7 — p5)
- , 7.10
S T k03) (- RA) (10
ki (p1 — po) (1 + K pop1)
=2 7.11
5= ) (- ) (10
and
ki =L
Pab

The statistic is written as a function of whitened images and therefore assumes a preprocessing

stage involving the KL transform and normalization of the pixels to unit variance.

Notice that the statistic can be written as a sum of independent terms that operate on the
canonical variable pairs {;, 9;}, where each term is weighted by a function of the associated
canonical correlation coefficient p?. It is possible for coefficients o; and $; to be uniform,
as is the case for noise-free images, where pz2 = pgb, but in general this will not be the case
and therefore some of the canonical variables will be emphasized when the LRT statistic is
calculated. The relationship between the LRT statistic and the canonical variables will be
investigated further in Section 7.2, where the weighting of terms in (7.8) will be exploited to

reduce the dimensionality of the calculation.
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7.2 Economy by Reduced Dimensionality

The motivation for using canonical correlations in exploratory data analysis is to identify the
variables that represent the most correlation between two random vectors and then reduce the
dimensionality of the problem by only considering these variables during further analysis of the
data. The previous section showed that each term in (7.8) is a function of a canonical variable
pair, {t;,7;}, and is weighted by a function of the associated canonical correlation coefficient
between ; and ¥;, denoted as p%. If there are large differences between the magnitudes of the
canonical correlation coefficients, then it is possible that some of the terms in (7.8) and (7.9)
can be neglected, thereby reducing the computation required by the LRT. This possibility is

investigated here.

7.2.1 Significance of Terms in the LRT Statistic

Without loss of generality, assume that the eigenvalues w; (and therefore the quantities k;)
are ordered with decreasing magnitude. Inspecting (7.10) and (7.11) reveals that «; and S;,
coefficients of the summed terms in the test statistic of (7.8), are now also ordered with de-
creasing magnitude. Figure 7-1 illustrates this point for the situation where R is nonseparable

Markov and the SNR is 2.

Since the pixels in the whitened images have unit variance, the effect of non-uniform
p; (and therefore the effect of additive noise, since for images free of noise, p; = py Vi €
{1,2,...,n%}) is to emphasize the contribution of certain pixels in the whitened images
when calculating the test statistic. Figure 7-2 orders the basis vectors of the whitening
transform by decreasing eigenvalue for 16 x 16 images with a nonseparable Markov covariance
matrix. Notice that the basis vector associated with the lowest canonical correlation coefficient
(corresponding to ¢ = 256 in Figure 7-2) represents the image component that has least spatial
correlation, which in the case of the proposed model and the Markov covariance matrix used
in Figure 7-2 is predominantly additive white noise. The optimal test, therefore, appears to

emphasize the contribution of image components with better SNR.

To summarize: for images with additive noise the significance of the terms in s decreases
with increasing 7 for two reasons. First, the whitened pixel-pairs are ordered with decreasing
correlation coefficient and second, the coefficients a; and f; are ordered with decreasing

magnitude. Chapter 5 showed that the expectation and variance of the terms in s are given
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Eigenvalues of Correlation Coefficient Matrix Canonical Correlation Coefficients
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Figure 7-1: Coefficients of the LRT statistic for 16 x 16 images (p = 0.8, p; = 0.8, SNR = 1.0).

E [si] = papki; — 204
and
Var [s;] = 2 (papkiBi — 204)° + (1 — p2,k?) (57 — 4a?),

respectively. Figure 7-3 plots the former to illustrate the decreasing significance of the terms
with increasing i. The variance of each term also determines its significance, and a dashed

line shows the one standard deviation confidence interval.
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(b) Basis vectors for bottom 15 eigenvalues.

Figure 7-2: Basis vectors associated with covariance matrix eigenvalues of 16 x 16 images.
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Figure 7-3: Significance of the pixel-pair terms in the LRT statistic when ordered with de-
scending canonical correlation coefficient (n = 16, p = 0.8, p; = 0.8, and SNR = 0.5). The
solid line depicts the mean of the terms. The dashed line delineates a one sigma confidence
interval around the mean.

7.2.2 An Approximate Test Based on the Canonical Subset

An approximate version of the LRT can be written with statistic

 (6,7) Z B (i — m) (6 — my) — i (i — m,)? + (6 — mg,)?) (7.12)
and decision threshold
{ 2, N\ 1- ’%'ZP%
i=1 i PO

where ¢ < n?. Note that the new notation, &;, ,@Z and k; indicates that these coefficients have
been ordered with decreasing magnitude for increasing .

The ¢ components of i and Vv used by (7.8) capture more of the correlation structure
between random images u and v than any other ¢c-component reduction of the joint image-
pair dimensionality. In other words, the property of the individual KL transforms on u and v
that ensures the optimal compaction of energy into ¢ components [8, p. 168] translates into an
optimal compaction of the correlation structure into ¢ component-pairs, w; = {1, 9; }, under

the proposed image-pair model®. Therefore (7.8) represents the most powerful test for match

3Note that the words “optimal compaction” are used here in a mean squared sense. In other words, the
compaction is optimal over the population of possible image pairs, rather than for a single image pair.
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between u and v given the restriction of using only ¢ components of the original images.
The ¢ pixel-pairs used to calculate (7.12) and (7.13) are now referred to as the c-component
canonical subset of the image pair.

Figure 7-4 shows the pdf obtained under the match and mismatch hypotheses in a Monte
Carlo experiment with 16 x 16 images and unity SNR. In this case the pdf of the approxi-
mate LRT statistic that uses a 50% canonical subset of the 256 whitened pixel-pairs is almost
indistinguishable from the pdf of the full LRT statistic. Looking at the overlap of the hypoth-
esis conditional pdfs, it is evident that the approximate LRT using a 10% canonical subset

outperforms Pearson’s r for the ideal observer test.

7.2.3 Probability of Error

The expression for the expectation and variance of the approximate statistic is identical to
that of the full statistic, except that the sum is only taken over the terms that are in the

canonical subset. As a function of p,;, and the number of terms ¢, the mean and variance are

Cc

mg (paba C) = Z (pabkiﬁi - 2dz)

=1
and
2 ) = 3 2 (i —200) 4 (1 k) (B —102)]

=1

respectively. The pdf of the statistic is asymptotically normal with respect to ¢. Therefore
for large enough c the probability of type I and type II errors in an ideal observer test can be
calculated analytically using expressions similar to (5.26) and (5.27) of the previous chapter.

These expressions, which are now a function of ¢, are

Pr (py;¢) = % (1 —erf [A_L(p@’c)])

203 (p01 C)

and

P
Prr(py,c) = 71 (1 + erf

5\ — Mg (plac)]>
20% (plac) ,

Figure 7-5 graphs these theoretical error rates for 16 x 16 images over SNR and the

respectively.
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(a) Monte Carlo histograms.

Parameter Value
Image size (n) 16
Mismatch correlation (p) 0
Match correlation (p;) 0.8
Scene one-step correlation (p) | 0.8
SNR 1

(b) Simulation parameters.

Figure 7-4: Monte Carlo histograms under match and mismatch hypotheses for the canonical
subset LRT statistic, the full LRT statistic, and two suboptimal statistics. The experiment
used an ensemble of 10000 image pairs.
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degree of spatial correlation in the images. A nonseparable Markov model was assumed for
the shared correlation coefficient matrix R. This matrix is parameterized on the one-step
correlation coefficient p. Each graph plots the error rate for approximate tests that use a 90%

(¢ =231), 30% (c = 77) and 10% (c = 26) canonical subset.
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Figure 7-5: Probability of error versus SNR and spatial correlation for different size canonical
subsets.

Increasing SNR has the predictable effect of lowering the error rate. The effect of different
levels of spatial correlation is more interesting, with the error rate decreasing to a minimum
and then increasing. This is the result of two competing effects relating to the effective de-
crease in scene information that an increase in p represents. A decrease in information makes
the approximate representation of the correlation structure less “lossy” and the approximate
test is closer to the full LRT. This effect dominates for lower p and causes the initial decreas-
ing trend in error rate. The second effect was mentioned in the previous chapter with regard
to the error rate of the full LRT: less information in the scene component of the image leads

to lower discriminating power in the test. For the higher values of p this effect is dominant.

7.2.4 Principal Components and Image Matching

At this point a comparison of the canonical subset and the role of principal components in
other image matching algorithms is appropriate. Face recognition is one area in particular
where PCA has been applied with some success. Since many systems store one face image
as a reference and then compare a later face image to determine whether they do indeed

represent the same person, it can be argued that this is a matching problem as it was defined
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in Chapter 1 — a decision must be made as to whether two observations of the real world
(the face images) represent the same scene (a particular person’s face). The use of principal
components for this problem originated in work by Sirovich and Kirby that sought to find
an ideal representation for face images [97, 98]. Turk and Pentland subsequently used this
representation in a pattern recognition framework for face recognition in a scheme called

eigenfaces [73].

There are several variations on the theme [72, 53, 54], but in essence the eigenfaces algo-
rithm can be summarized as follows: use a training set of faces to estimate a linear model
for the face population that is characterized by a mean vector m and covariance matrix K.
Define the eigenfaces as the eigenvectors (denoted h;) that are associated with the N largest
eigenvalues (denoted A;) of K. Represent the training face associated with each person in
the original data-set as the set of weights obtained when the mean, m, is subtracted from
the face image and it is projected onto the eigenfaces. In order to classify a new face image,
subtract the mean face m and project the result onto the eigenfaces. Then calculate the
Mahalanobis distance between the eigenface representation of the new face and that of each
of the known faces. If any of the distances fall below a predefined threshold, e, then this
indicates a potential match. The new face is recognized as belonging to the same person as

the training face with the smallest distance in the list of potential matches.

For matching new face u to training face v, this procedure effectively uses the image

distance measure

2
dEIG (u,v) = Z |:\/1)\—hz . (u - V):| . (7.14)

=1

As a representation the eigenfaces approach is optimal in that, given a simple linear model
for the images, it minimizes error in a mean square sense if the dimensionality is constrained.
This, however, does not guarantee that the eigenfaces recognition algorithm is optimal with
respect to the probability of recognition error. In contrast, the optimal LRT does guarantee

optimal matching given the joint image model proposed in Chapter 4.

Figure 7-6 serves to underscore this last point. Under the proposed model the LRT
statistic outperforms the eigenfaces difference measure in an ideal observer test, even when
the dimensionality is constrained to 20% of the full number of pixels. The advantage is
particularly evident for low SNR. Error rates for Pearson’s r are given to provide additional

context and it is evident that r is more tolerant of high noise levels than the eigenfaces
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distance. It is interesting to note that for SNR 5 2, the eigenfaces distance using 20% of the
eigenfaces (Figure 7-6(b) and 7-6(d)) has a lower error rate than the eigenfaces distance based
on the full set of eigenfaces (Figure 7-6(a) and 7-6(c)). This is because noise predominates in
the eigenfaces associated with the lower 80% of the eigenvalues, which are discarded in the
eigenfaces distance of Figure 7-6(b) and 7-6(d). Using 20% of the eigenfaces is effectively a
crude approximation of the weighting of important canonical variables that is inherent in the

LRT statistic.

7.3 Economy by Model Simplification

Certain simplifications of the image model result in whitening transforms with significantly
better computational economy. Two of these are mentioned here. The first uses the simple
efficiency inherent in a separable image model and the second exploits an approximation of

the KL transform for images with high spatial correlation.

7.3.1 Matching with a Separable Model

In the optimal test the images are whitened with a transformation of the form 4 = A_%VTu,
where the columns of V are the eigenvectors of the ideal scene correlation coefficient matrix
R, and the elements on the diagonal of A are the associated eigenvalues. If the scene model is
separable, then R can be written as the Kronecker product of the row and column correlation
coefficient matrices: R = R, ® R,. The eigenvector matrix associated with R can then be

written in terms of those associated with R, and R, as V=V, ® V, [8, p. 30], and
’ _1 T
G=A"2(V.®V,) u (7.15)

If U denotes the image u written in matrix form, then (using the properties of Kronecker

products [8, p. 30]), the operation in (7.15) can be written as
6= A" zvec (VIUV,),

2 vector with the elements

where vec (-) denotes the operation that takes a n x n matrix to an
in row-column order. Here VIUV, is an O (n3) operation, in contrast with the O (n4)

operation required for (V. ® V,)” u in (7.15). Usually the row and column models are the
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(b) Experiment using the top 20% of the eigenfaces (dric) and a 20% canonical subset in the
partial LRT (spg).
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Figure 7-6: Monte Carlo error-rate comparison of the LRT statistic and the eigenfaces distance
(10000 trials).
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same and the whitening transformation can be written as
4= A 3vec (VIUV,), (7.16)

where V, =V, =V,.

Now consider the overall whitening transformation. Assume that @ = vec (VI UVj) is
calculated first. Note that although the remaining operation, A~ 2, is written as an O (n*)
matrix-vector multiplication, A2 is diagonal and therefore A~2{ can be computed with an
(0] (n2) operation. The overall separable computation of (7.16) is then O (n3), whereas the
overall computation of (7.15) is O (n4). This represents a substantial reduction in computa-
tion.

This section has assumed that a separable model is adequate for the problem at hand.
Another situation is the one where a nonseparable model is known to be the better option, but
a separable solution must suffice because of limited computational resources. In this situation
the separable approximation to the KL transform can be used to reduce computation and the

whitening transformation can be written as

i =~ AgZpvec (VIUVY), (7.17)

which uses diagonal matrix Aggp instead of the matrix of eigenvalues. In order to best

approximate the nonseparable case
Asep = diag [(Vs © V) Ky (V, & Vs)] , (7.18)
where K,, is the nonseparable covariance matrix of the original image u and diag [A] is A

with non-diagonal elements set to zero.

7.3.2 Matching with the Discrete Cosine Transform

If the row and column models are separable, stationary, first order Markov sequences with
one-step correlation coefficients approaching unity, then the discrete cosine transform (DCT)
is a good approximation of the KL transform [8, p. 153]. Assuming the approximation is

adequate, then (7.16) can be rewritten as

TS AgéTvec (DCT {U}T) ,
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where Apcr replaces the eigenvalue matrix, is diagonal, and ensures that the elements of

are unit variance. If the DCT is written as the matrix transformation:
DCT {U} = cuc?,
then
Apor = diag [(c ® C) Ky (C® C)T] , (7.19)

where K, is the covariance matrix of the original image u. Computation is therefore reduced
by replacing the O (n3) separable KL transform with the O (n2 logs n) DCT. Figure 7-7
shows a comparison of the time taken to compute V,UV?! and DCT {U} in the MATLAB

programming environment.
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Figure 7-7: Comparison of computation times for direct and DCT-based calculation of the
separable whitening transform.

The approach based on the DCT has the additional advantages that the whitening trans-
formation is independent of the exact image model (except for calculating the weightings in

(7.19)) and that no eigendecomposition of the covariance matrix is required beforehand.

7.3.3 Monte Carlo Experiments

The error-rate performance of the separable and DCT-based tests is now compared to that

of the optimal LRT using Monte Carlo experiments. The results of two experiments are
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presented (with Pearson’s r for context) in Figure 7-8(a). In order to show small differences the
results are also presented as an error rate relative to that of the LRT statistic. It is apparent
that the separable and DCT approximations sacrifice very little error-rate performance. As
expected, the former is the better of the two, but only by a very small margin.

Figure 7-8(b) shows a result where the model that generated the images was nonseparable,
whereas the covariance matrix used in (7.18) and (7.19) to calculate the weighting of the
whitened components was assumed to be separable. This inaccuracy increases the error
rate, illustrating the utility of calculating (7.18) and (7.19) using the known nonseparable
covariance matrix, even when the separability assumption is being made in order to use the
KL or DCT transform for their better efficiency. This last result suggests that it is not the
exact KL transform, but rather the correct weighting of the transformed components that is

important in retaining the error-rate properties of the LRT.

7.4 A Practical Test for Large Images

The LRT statistic is based on the covariance matrix of the images in the image pair. For an n x

2 x n?, which, even for relatively small images and today’s

n image, the covariance matrix is n
ever improving computing resources, is sometimes impractical to manipulate. Consider a 32 x
32 image: the full covariance matrix is 1024 x 1024 elements and the eigenvector/eigenvalue
decomposition is a significant computational task. The simplification of a separable model
reduces the problem to two 32 X 32 covariance matrices, which is manageable. But if large
images (say 512 x 512 pixels and larger) must be processed, then even the separable model
is impractical. One could argue that in time computing resources will advance to a point
where 512 x 512 images will not be problematic, but when this is true there will undoubtedly
be applications that deal with still larger images. A simple, but suboptimal solution to this
problem is to break the images into smaller blocks, process these blocks individually and then

combine the results to form the overall LRT statistic of the image pair. This approach is

investigated here.

7.4.1 The Blockwise Partitioned LRT

Figure 7-9 shows a larger image partitioned into smaller, non-overlapping blocks. For full
n X n images u and v the ny X ny, subimage blocks are denoted u’ and v* for i € [1, 2,... ,ng] .

If the simplifying assumption is made that the blocks are statistically independent, then the
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(b) Nonseparable image model and separable weighting.

Figure 7-8: Monte Carlo investigation of error rates for the separable and DCT LRT approx-
imations (10000 trials).
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Figure 7-9: Block partitioned image.

pdf of the full image-pair can be written in terms of the block-pair pdfs as

n
Pu,v (11, V) = Hpui,vi (uz,vz)
i=1
and the match log-likelihood ratios are related by
n
L(u,v) =) Ly, (v, v'), (7.20)
i=1
where L (-) and Ly, (-) are the log-likelihood ratios of the full image-pair and the block pair,
respectively. Using (7.20) and the expression for the LRT statistic derived in Chapter 5, it

can be shown that the statistic for the full image can be written as the sum of the statistics

Sy, for the individual block pairs as follows

g
s(a,v) = anb (6", ¥") .
=1
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Recall that 4’ and Vv* are the whitened versions of u® and v* respectively. Similarly, the

corresponding decision threshold is

Tl2
; ; 1-P 2 1—k2p?
A=n2- )\, =n’ 210g< )—i— log;<7Zl
where ;\nb is the decision threshold for an individual block.

7.4.2 Monte Carlo Experiments

Figure 7-10 shows the result of an experiment that compares the block partitioned approxi-
mation with the full LRT for a range of SNR values. The image size is 16 x 16 and both 8 x 8
and 4 x 4 approximations are compared. In this experiment the performance of the 8 x 8 block
partition is very close to that of the full LRT, while the 4 x 4 approximation fares significantly
worse. In both cases the block-independence assumption is violated at the block edges, but
for larger blocks there are fewer edges overall and the effect is lessened. But even the 4 x 4
approximation, where the block independence assumption is grossly violated, exhibits better
performance than the suboptimal statistics. This is to be expected, since any partitioned
LRT with blocks larger than a single pixel in size incorporates information about the spatial
correlation in the image, which is arguably what the suboptimal statistics are lacking. The
error-rate for matching larger 64 x 64 images using the block partitioned statistic is shown in

Figure 7-11 and similar trends are observed for a range of block sizes.

7.5 Discussion

The optimal test expressed as an operation on whitened images has significance beyond that
of being a mathematically convenient representation. The pixel-pairs in the whitened images,
which correspond to the pairs of image principal components, are actually the canonical vari-
ables of the image pair. What is more, the ordering of the principal components by variance is
equivalent to the ordering of the canonical variable pairs by canonical correlation coefficient.
There is therefore an optimal compaction (in a mean square sense) of the correlation between
the two images in pairs of corresponding principal components from the individual images.
This optimal compaction leads to a natural method for reducing the dimensionality of the
matching problem by forming an approximate test that uses only a subset of the canonical

variable pairs. Two mechanisms ensure that the computation required of optimal LRT statis-
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(b) High match correlation coefficient.

Figure 7-10: Monte Carlo results that compare the full LRT with the block partitioned LRT

approximation (500 trials).
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Statistic Order
Pearson’s r 0 (n”)
Sum of squared differences O (n?
LRT statistic (0] §n4j
LRT statistic (canonical subset with ¢ basis images) 0] (cn )
LRT statistic (separable) O (n®)
LRT statistic (DCT) O (n®logn)
LRT statistic (ny x np partitions) O (n’n3)

Table 7.1: Algorithm order for similarity statistic calculation with n x n images.

tic can be significantly reduced with very little compromise in error rate: (1) the whitening
transform compresses the essential correlation structure into fewer pixel-pairs, and (2) the
LRT statistic weights the contribution of these pairs more heavily than the other pixel-pairs.

Another method for improving the economy of the LRT computation uses simplified mod-
els. If the row and column models of the image are separable, then the whitening transform
is reduced from an O (n4) toan O (n3) operation. If the separable model has one-step spatial
correlation coefficient approaching one, then the KL transform aspect of the whitening trans-
form is approximated well by the DCT, making the further improvement to an O (n2 log n)
operation. The error introduced by the separability assumption when the images are actually
nonseparable is reduced by calculating the weightings of the principal components using the
original nonseparable covariance matrix.

A third method is targeted at large images, for which even the separable covariance
matrices are difficult to manipulate. The strategy is to simply partition the image into
separate non-overlapping blocks and to sum the LRT statistic from each block to obtain the
overall statistic. The underlying assumption is that the blocks are statistically independent
and although this is not strictly true, experiments show that the method is effective and does
not sacrifice significant error-rate performance if the blocks are not made too small. The
order of the algorithms that calculate two standard statistics and five variations on the LRT
statistic are given in Table 7.1.

The optimal test for image matching has now been derived, compared to other methods
and implemented efficiently. The next chapter formulates a classic image processing problem
— translational image registration — using a hypothesis testing procedure. This problem is
arguably one of the most important applications of the similarity statistic and it is therefore

important that the principles of the LRT are applied here too.



Chapter 8

Hypothesis Tests for Image

Registration

Image registration is the task of finding a mapping between two images that represents scene
equivalence, where this problem is non-trivial due to spatial misalignment or geometric distor-
tion of scene information in the images, image intensity differences caused by inconsistency in
the irradiation of the scene or the image acquisition system, or changes in the scene itself [99].
Typical applications include scene reconstruction from stereo images, comparative analysis of

medical images and change detection.

This chapter considers the registration sub-problem that is commonly referred to as block
matching. Block matching in two images proceeds by extracting the subimage, or block,
around a control point in the first image and comparing this subimage to a region, or search
area, in the second image to find the corresponding point. This point is chosen to be the one
that maximizes some similarity measure between the block and the search area. A mapping
from one image to the other is established by following this procedure for a number of control
points. Early work in image registration was based on block matching alone [11, 40], but
modern approaches are far more sophisticated, operating on multi-modal image sets [100, 50]

and catering for complex spatial distortion [101, 102].

Although translational block matching is not the state of the art in image registration
algorithms, many sophisticated algorithms depend on it in an early stage of their processing
(e.g. [103]) and can therefore benefit from improved accuracy and efficiency in the search for
matching blocks. Section 8.1 formulates this procedure as a hypothesis testing problem that

exploits the LRT matching statistic developed in Chapter 5. Efficient implementation of the

153
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search algorithm is considered in Section 8.2. In order to register two complete images to one
another, block matching must be performed across the image to find a set of local mappings,
and Section 8.3 proposes methods for selecting the set of control points that will provide
the best result. Section 8.4 evaluates the block matching performance of different techniques
using Monte Carlo simulation and experiments with real images. Section 8.5 concludes the

chapter.

8.1 Formulating the Block Matching Problem

The following registration sub-problem is now considered: given the n x n' block v and the
ns X ns search area s, where n < ng, find the position p = (i, j), if there is one, where the scene
content of the n x n subimage of s centered on p corresponds to the scene content in v. The
coordinates of p are discrete, have their origin at the center of the search area, and take on
values that represent an integer number of increments in the translational exhaustive search.
In most cases this increment is the pixel size, but for subpixel accuracy it will be smaller. Call
p the position of correct register between v and s. Now p € {py: k € {1,... ,N,}} where N,
is the number of possible positions in s.

Denote the n x n subimage of s centered on an arbitrary position py as ug. The problem
is then one of finding out which subimage u; € s, if any, corresponds to v, where k €
{1,2,... ,Np}. It is not assumed that there is one unique match between v and one subimage
u; € s, and therefore the registration problem is not equivalent to finding out which subimage
uy, matches v. There are potentially up to N, subimages in s that match v, but there is at
most one position of correct register. This distinction between match (the two scenes look
the same) and registration (they are views of the same scene) is an important one, because
it introduces the possibility of scene ambiguity into the image registration model.

The search is depicted in Figure 8-1. If only the positions where v and s completely
overlap are considered to be candidates for registration, then N, = (ng —n +1) (ns —n+1).
If the reference point of the n x n image v is defined to be its center at (|2 |, |2 ), then

2
the candidate positions in the search area are given by

o=t {15 o (2 s {5 e L)

!The extension to non-square images is trivial.
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Figure 8-1: Block matching schematic.

8.1.1 The Search as a MAP Test

The decision of which position constitutes registration of v with the search area s is now
formulated as a hypothesis test. The test that chooses the hypothesis with maximum a
posteriori probability, the so-called MAP test, minimizes the overall probability of error.
Denoting Hj, as the hypothesis that p; is the position of correct register and as Ry, the event

that this is correct, this test can be written as

Accept H, <= P (R.|u.,v) > P (Rg|ug,Vv) Vk. (8.1)

This test, however, does not address the situation where the position of correct register is
not in the search area. This can be a consequence of the fact that the images have finite
extent and each image will have some unique scene content where they do not overlap. It
may also happen when the correct position is outside a search area that has been truncated
for practical reasons (see Section 8.1.3.) In either case, the decision rule should have a reject
option and this can be provided in the form of a no-registration, or rejection hypothesis, Hy.

A lower limit, denoted AR, is specified for the a posteriori probability of correct registration,
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giving the decision rule with rejection hypothesis:

Accept H. <= 3Jcs.t. P(R¢|ue,v) > P (Rg|ug,v)Vk and P (R.|uc, V) > AR
Accept Hy Otherwise.

(8.2)

8.1.2 The Registration Statistic and Rejection Threshold

In order to specify the test it is necessary to derive the a posteriori probability P (Rg|ug, V).

The following information is available to the designer:

1. The image data s and v and their associated statistical models.

2. Defined states of match and mismatch for the scene (noise-free) components of the image

data, where M} denotes the event that the pair {u, v} match.

3. The fact that registration implies matching images: Ry —> Mj. Note that the converse

is not true in general because of potential scene ambiguity..

4. The a priori probability of correct register for each position py, denoted P (Ry).

A Posteriori Probability of Registration as a Function of Match Likelihood
By Bayes’ theorem,

P (Ri|ug,v) - P (Mg|Ry,ug, V)

P (Ry|Mp,ug,v) =

P(Mk|uk,v)
Since Ry = My, P (My|Ry,ux,v) =1 and
P (Rg|ug, v)
P (Ry| M = 8.3
( k“ kaukav) P(Mk|uk,v) ( )

Also, P (Ry|My,ug,v) = P (Ry|Mjy), since the only information that ux and v have to
offer in this formulation of the problem is their state of match or mismatch. Making this

substitution and rearranging equation (8.3)
P (Rglug,v) = P (Rg| M) P (Mg |ug, V).

Now, using Bayes’ theorem once again,

P (Ry|My) = P(Rk; (1;’\;];7\)@\319) = 11;’((}\12))’
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since P (My|Ry) = 1 (registration implies match), and therefore

P (M|ug, v)
P (My)
B p (ug, v|My)
= P p(ug,v)

P (Rglug,v) = P(Ry)

Now, using the laws of conditional probability,
p(ug,v) = P (My)p (ug, v|My) + P (My) p (ug, v|My)

and

D (uka lek)

P(Rk|uk’v) = P(Rk) P (Mk)p(uk,lek;) +P (Mk)p (uk,V|Mk) .

Dividing the numerator and denominator by p (ug, v|My) the result is

l(ukvv)
P(Mk) l (uk,v) + P (Mk)’

P (Rg|ug,v) = P (Ry) (8.4)

where

p (ug, v|My)

e Y) = Vi)

is the likelihood ratio with respect to a match or mismatch event at position py. If the models
for match and mismatch in the image pair {uy, v} are taken from Chapter 4, then [ (ug, v) is

equivalent to the match/mismatch likelihood ratio introduced in Chapter 5.

A Priori Probability of Match

The a priori probability of a match event at position pg, denoted P (M), is as yet unspecified.
Using the laws of conditional probability, this probability can be written in terms of P (Ry)

P (My) = P(Ry) P (M|Ry) + P (Ry) P (My|Ry),

where R}, is the event that py is not the position of correct register and P (Mk\Rk) is the
probability that u; and v match anyway. P (M;C |Rk) is essentially the probability of a match

occurring by chance (the scenes look the same, but are not the same scene) and is denoted
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Pi. Now, since P (My|Ry) = 1 (registration implies match) and P (Ry) =1 — P (Ry),
P (Mk) =P (Rk) (1 - Pl) + P;.

In most applications the probability of a chance match between the ideal (noise-free) scene

components is very low (P, <« 1) and
P(My) =~ P (Rg) + Py (8.5)

will be a good approximation.

Simplified Rejection Threshold

The registration test chooses the position that has maximum a posteriori probability of correct
registration ¢f this probability exceeds a rejection threshold, denoted Ag. Using the expression

for P (Rg|ug,v) in equation (8.4), the condition that must be satisfied is

l(ukav)
P (Mk) l (uk,v) + P (Mk)

P(Rk) > Ag-

This condition can be rearranged and written as

ArP (M)
P (Ry) — ArP (M)

[ (ug,v) >

Substituting (8.5), the condition is I (ug,v) > A, where

Ar(1—P(Ry) — 1)

P (Ry) — Ar (P (Rg) + P1)
AR (1 — P (Ry))

P (Ry) — Ar (P (Ry) + P1)

Q

[since P < 1].

Since the logarithm is monotonically increasing, the condition can be written as L (ug,v) >
log A, where L (ug, v) is the log-likelihood function for match between u; and v. From Chapter
5,

1 1 Kw
L(uk,V):ES(uk,V)—§10g<| 1|>7

where s (ug, v) is the LRT statistic for image matching, and Ky, and K, are the image-pair

covariance matrices under the match and mismatch hypotheses, respectively. The condition
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can now be written as s (ug, v) > Ag, where

) K.
)\Rzlog(:K 1:>+2log)\, (8.6)
wo

is the rejection threshold for the LRT statistic of the image pair. Making the further assump-
tion that the a priori probability of correct register at any point py in the search area is far
greater than the general a priori probability of a chance match, then P, < P (Ry) and it can
be shown that equation (8.6) simplifies to

1 P(Ry)
P (Ry)

. | Kw, | AR
=1 21 21
Ar = log (|Kw()| + 2log 1= n + 2log

Simplified Registration Statistic

Combining (8.4) and (8.5), the a posteriori registration probability for position py can be

written as

l(ukav)

P (My) 1 (ug,v) + P (My)
l(ukav)

(P (Rg) + P1)l(ug,v) +1°

P (Rglug,v) = P(Rg)

= P(Ry)

(8.7)

Instead of maximizing (8.7) directly, a simplified, but equivalent statistic can be derived. Mak-
ing the assumption that probability of registration should be far greater than the probability
of a chance match in the search area, P; < P (Ry), and

P (Ryg)l (ug,v)

P ~ .
B ¥) ™ B R 1 (ap,v) + 1

In this expression, the k that maximizes P (Ry) [ (ug, v) will also maximize P (Ry|ug,v) and
therefore the former is equivalent to the latter as a registration statistic. The logarithm is

monotonically increasing, so

1 1 Ky
g P () I (ug.¥) = Tog P () + g e, v) — 5 1o (021 ) (5.8)
W0

is also equivalent in this respect. Assuming spatial stationarity in the search area, the final

term in (8.8) can be dropped because it is common to all positions, and therefore

t(ug,v) = s (ug,v) +2log P (Ry)
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is a simplified registration statistic that is equivalent to the a posteriori registration proba-
bility for position py.

The result of calculating a statistic for each position in the search area is now referred
to as the match surface. Figure 8-2 shows an example of the match surface calculated for
random Markov images with the matching block at the center of the search area. Different
values of the rejection threshold are shown as a horizontal plane above the surface. Notice in
this case that for A = 0.01 there are several false hits, whereas for A\g = 0.5 even the correct

position is rejected.

(a) Rejection threshold shown above the likelihood ratio surface.

Parameter Value
Image size (n) 8
Mismatch correlation (p,) 0
Match correlation (p,) 0.9
Scene one-step correlation (p) | 0.7
SNR 1

(b) Simulation parameters.

Figure 8-2: Rejection thresholds and likelihood ratio match surfaces.

8.1.3 Prior for the Position of Correct Register

P (Ry), the a priori probability of p; being the position of correct register, must still be
specified. This prior can be expressed in terms of the expected translational distortion,
d = (z,y), where the coordinates z and y are distances from the center of the search area
with units of the horizontal and vertical search increment. Given a pdf for d, P (Ry) is the

probability that distortion d corresponds to a translational offset to position py, and is given
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by

P(Ry) = /A pa(d) dd,

where Ay is the area around position py on the search grid. For a one-pixel search increment,

Ay = 1. A first order approximation is given by

P (Ry) = A - pa (Pk) -

The pdf of d may follow from knowledge of the mechanisms at work in a particular
application. Where detailed knowledge is not available, the prior can be based on the Bayesian
definition of probability as a “subjective degree of belief” [104]. The information that is
available can then be used in conjunction with a maximum entropy argument to specify the
pdf [104]. For example, if the only information available are limits on d, then a uniform pdf
is the maximum entropy prior. In the most general case the size of the images could provide
the limits of distortion in z and y. However, this could result in an impractical algorithm,
and it may be necessary to arbitrarily truncate the extent of the search area.

Alternatively, if the covariance matrix of d is known (or can be estimated), entropy is
maximized by a multivariate normal prior [104]. Assuming that this model is appropriate,

and that the components z and y are statistically independent, the marginal pdfs p,(z) =

2

;) completely describe the random translation. For a

N(z;mg,02) and py(z) = N(z;my,o
search increment of one pixel,
(i — mz)2 (Jk — my)2

P = - _
(Rk) €Xp [ 20_% 20_5 ;

where pr = (ig,jx). It is interesting to note that previous authors have proposed a similar
approach on the basis of a rather more ad-hoc argument by applying a Gaussian weighting
function to the response of the similarity statistic in the search area (e.g. Mori, Kidode and

Asada [105]).
8.1.4 Search Algorithm Summary

The search algorithm can now be summarized for search area s and n X n block v as follows.

1. Extract the n x n subimages of s, uy for k£ € {1,2,... , N}, where N, is the number of

search positions in s.
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2. Find the position p,, in the search area that maximizes the registration statistic, where

m = arg max [t (ug, V)] -

3. Accept this as the position of correct register if s (uy,,v) > /iR. Then p = py-

Having developed a search algorithm based on hypothesis tests, attention now turns to

its efficient implementation.

8.2 Efficient Block Matching Implementation

Methods for the efficient calculation of the match surface are now considered. Core oper-
ations are identified and strategies for their efficient implementation are proposed. Block
matching with the LRT statistic and standard similarity measures are then formulated as a

computationally efficient combination of these operations.

8.2.1 Core Operations

Calculating the match surface for search area s and block v can be viewed as an (often
nonlinear) filtering operation on s. The most computationally expensive part of this operation
typically involves a calculation in one of two forms. Reverting to non-vector notation for
images, the first is the cross-correlation function of ny X ny image s with a smaller n X n

image v:
n on
f(z'+2 1]—}— ) N os(i+k—1,j+1-1)v (k). (8.9)
k=11=1
The second is the summation of image intensities in a n x n sliding window:
f(z' ~1Lj+3 ~1) = ZZ G+k—1,j+1-1). (8.10)

k=11=1

Note that in both cases n is assumed to be even and f (7, j) is only defined for

26{2 _5} andje{z ”s_g}'

Methods for performing these simple calculations efficiently using the Fourier transform

convolution theorem and by eliminating redundant calculations are investigated here. The
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results are then applied to the LRT and other similarity statistics. Alternative methods, such
as the three-step search [106] and coarse-fine matching [107, 34, 10], can speed up the search,

but these approaches only approximate the exhaustive search and are not considered further.

Cyclic Convolution using FFTs

The Fourier transform convolution theorem is a well-known result that is routinely used for
efficient calculation of the cross-correlation function [11]. If (8.9) is viewed as a discrete cyclic
convolution operation of s with v rotated by 180° as the convolution kernel, then f is the

non-cyclic part of the result:
f=F sV

where F~! denotes the inverse Fourier transform, S is the Fourier transform of s, V is the
Fourier transform of v padded to the size of s with zeros, and * denotes complex conjugation. If
the fast Fourier transform (FFT) algorithm is used, this calculation is O (n?logn?) compared
to O (nZ (ns — n)2) for the direct calculation.

Depending on where the origin is defined to be in the Fourier transform result, f must be
rearranged to obtain the cross-correlation function. Typically the quadrants must be swapped
diagonally and the non-cyclic part of the result extracted, as demonstrated in Figure 8-3. The
valid cross-correlation function, denoted f’, is an n!, x n!, image, where n, = ny —n.

Barnea and Silverman claim that this technique can only be used to speed up calculation

of the numerator in the normalized correlation function

f(2+g_1,]+g—1): ZZ:IE?:IS(i_‘_k_laj_zl_1)U(kal) -
\/22212?:13(i+k—1,j+l—1) \/22:12?:17)(’9,1)

and that calculation of Y ) ;s (i +k,j + 1)? is still a time consuming windowed operation
[40]. This is not true, since by letting ¢ (i,7) = s (i,7)* and defining a as the n x n kernel
of ones, this operation can be written as the cross-correlation of ¢ with the kernel a, which
can be computed using FFTs. In fact, since the FFT of s need only be calculated once,
calculating the denominator in this way requires only one additional inverse FFT operation
if the FFT of a is computed beforehand. As the next section shows, however, it is possible

to do this sort of windowed summation even more efficiently using cumulative sums.

The vector notation X (s, v) is now defined for the cross-correlation of image s with kernel
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f(i,7) f'(0,9)
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Figure 8-3: Extracting the valid cross-correlation function from the FFT convolution result.

2

% row-column image vector that has valid cross-correlation values

v, where the result is a n

stored at positions corresponding to the center of the sliding kernel.

Fast Cumulative Sums

A method is now introduced for eliminating redundant calculations when calculating the
summation of image intensities in a n x n sliding window. This is the calculation

n—1n—1
FO) =D s(+kj+1),Vije{l,2,. .. ,n,—n+1}, (8.11)
k=0 1=0
where each result is recorded at the top left of the window (rather than its center) for nota-
tional convenience. Calculated directly, an O (nQ (ns — n)2) operation is required to compute
f. A more efficient algorithm uses cumulative sums to reduce the number of operations re-
quired. For the sake of simplicity, consider the one dimensional signal vector s with ng
elements. In this case the vector of windowed sums f is given by
i+n—1

fi= Y spVie{l,2,... ,ng—n+1}, (8.12)
j=i
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which requires n (ns — n) calculations. Define the cumulative sum vector a as
i
a; = ZSj, Vie{l,2,...,ns}.
i=1

This vector can be calculated efficiently with the initial condition a1 = s; and the iteration
a;=a;—1+s; Vie{23,...,ns}. (8.13)
The windowed sums can then be calculated by setting f; = a, and iterating
fi=aizn-1—a;i—1 Vi€e{2,3,... ,ns—n+1}. (8.14)

The alternative method now involves calculating a using (8.13) and then using (8.14) to
calculate the window sums. The algorithm requires only (2n; —n — 1) calculations, but
requires additional storage for the cumulative sums. Note that storage is only required for

(n + 1) cumulative sums if a circular buffer is used.

Returning to two dimensional images, the situation is more complicated. Two buffers are
now required for the cumulative sums. The first of these, denoted here as a, stores cumulative

sums for all rows in the image:
i
aij =Y sik, Vij €{1,2,... ,n},
k=1

which can be calculated efficiently using

a;1 = S; Vie{l,2,...,n
2,1 2,1 { s} (8]_5)
aij=a;j 1+s; Vi€{l,2,...,ns} and j €{2,3,... ,ns}.

The second buffer, b, accumulates column sums of the n-pixel cumulative row sums in a:

biy = 2221 Ak,n Vie{l,2,...,ns}
bij = k1 (@hjint —akjo1) Vie{1,2,...,n,} and j € {2,3,... ,ny —n+1},
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which can be calculated efficiently using

big=ai,
bij = a1 j4n-1 = @151 Vije{2,3,... ,ns—n+1}
bij =bi—1; + (@ij4n—1—aij—1) Vie{2,3,...,ns} and j € {2,3,... ,nys —n+1}.
(8.16)
The n x n pixel window sums are then calculated using
fl,j:bn,j Vj6{1,2,...,ns—n+1}
fij =bign—1,;—bi-1; Vie{2,3,...,ng—n+1}andje{1,2,... ,ny,—n+1}.
(8.17)

The efficient algorithm calculates the buffer (8.15), then the buffer (8.16) and then calcu-

lates the n x n window sums using (8.17). The algorithm requires a total of

equation (8.15) equation (8.16) equation (8.17)
1 \J 1
Neumulative = ns(ns — 1) + (2ns—1)(ns—n) + (ns—n+1)(ns—n)

— 2 2
= 4n; —4nn —ns+n

operations (excluding assignments), as opposed to the
Niirect = n’ (ns —n+ 1)2

operations required of the direct calculation of equation (8.11). For example, if ny, = 1024
and n = 32, then the efficient algorithm is approximately 300 times faster than the direct
calculation. If storage is limited, full image buffers for a and b are not required — the

algorithm can use a buffer of size n, for a and a (ng (n + 1)) size circular buffer for b.

For clarity of presentation, the vector notation S, (s) is defined for the operation that

2

< row-column

calculates sums in a sliding n X n window of image s, where the result is a n
image vector that has the sums stored at positions corresponding to the window centers and

zeros elsewhere.
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8.2.2 [Efficient Filtering with the LRT Statistic

The block matching algorithm requires that the LRT statistic s (ug, v) be calculated for each

position in the search area s. Define the match surface as the image of similarity statistics
fify =s(ug,v) VEe{1,2,... ,Ny}.

where the subimages uy, are extracted from s in row-column order. The calculation of s (ug, v)

consists of two stages. First the images are whitened using
U= Tyu; and v="T,v

and second the statistic of the whitened images

5 (6,9) = 3 B (s — ) (65 — ) — e ((ing —ma,)” + (55 — me,)?)

is calculated. For the purposes of this discussion the coefficients «; and 3; are constants
determined by the image-pair model.

Since V is only calculated once, the whitening transform on the N, subimages uy is the
computationally demanding part of the calculation. Each pixel in the whitened image 1y
is the projection of u; onto a basis image of the transformation T. Pixel 7 ; corresponds
to the basis image that is the i-th column of T?. Denoting this basis image as the column
vector t%, 1y; = t%, - ux. Now the i-th whitened pixel can be calculated for all subimages in
the search area by computing the cross-correlation of s and t?.. Using the vector notation

introduced for cross-correlation in Section 8.2.1, this can be written as
§ =X (s,t).
The k-th pixel in the match surface for s and v can now be written as
n2
/i , /i 2 , 2
fe = Bi (8 —ma;) (6 —my,) — i ((3% —mg,;)” + (6 —mg,) ) :
i=1

where sfc is the corresponding pixel in §¢, the i-th basis expansion of the search area.

An efficient method for the search algorithm can now be summarized as follows:

1. Compute the whitened transform v = Tyv.
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2. Perform the cross-correlation of search area image s and each basis image t?,, giving

§' = X (s,t).

3. Calculate the match surface contribution associated with each basis image:
. . i , . 2 ,
£ 5 fi = By (5 — ma) (8 — ma) — o (8 — ma)” + (8 — ma)?) .

4. Sum these contributions to obtain the match surface: f = Z;‘il fe.

Most of the computation in this procedure is found in the (1 + 2n2) FFT operations on
ng X ng images that are required to compute the cross-correlations of the search area with the
basis images. The algorithm is therefore O (n2n§ log, ns) as opposed to O <n2 (n2 + 1) (ns — n)2)
for the direct calculation.

Note that computation can be further reduced by using the lossy canonical subset of
Chapter 7. If the whitened pixel pairs are ordered with decreasing canonical correlation
coefficient, then f = Y77 | f? is the optimal approximation of the match surface that uses
only ¢ < n? basis images. Another lossy strategy from Chapter 7 uses the DCT as an
approximation of the whitening transform, reducing block matching with the LRT statistic

to an O ((ns —n)?n?log, n) algorithm.

8.2.3 Efficient Filtering with other Similarity Statistics

Efficient algorithms are now proposed for computing the match surface for other similarity
statistics. In each case the computation will be expressed in terms of cross-correlation and
windowed summation operations. Calculating the inner product of every subimage u; with
v is equivalent to performing cross-correlation of the search area s with v. Likewise, the sum

of the pixels in every subimage uy corresponds to windowed summation in the search area s.

Formally
,n2
f=X(s,v) < fk:Zuk,ivi‘v’kE{l,Z,... s Np} (8.18)
i=1
and
,n2
F=8,(s) < fr=) uwVEhe{l,2,...,N}, (8.19)
i=1

respectively. These two operations are the basis of the efficient calculations presented here.
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The Sum of Squared Differences

This statistic can be expanded as follows:

7L2

dz (up,v) = Y (ugi— i)’

i—1
7L2 n2
2
= Z Ug; — 2 Zukzvz + Ey,
i=1 i=1

where
7’!.2
Z 2
E’U = Ui
i=1

and need only be calculated once. Using (8.18) and (8.19) the match surface can now be

written as a function of the search area as follows,
f=38, ([s]z) —2X (s,v) + By,

where [s]? denotes a vector that has elements s2. The FFT operation in the cross-correlation
term dominates the computation and therefore this method is O (nf log, ns) as opposed to

0 (n2 (ns — n)2> for the direct calculation.

The Correlation Coefficient

The sample correlation coefficient (Pearson’s r) is given by

2

v) = D iz (Ui — m (ug)) (vi —m(v))
VIR (ks —m (w)? X2 (0 — m (v))?

2
1 n
r (ug, , where m (u) = - Zuz
=1

The match surface is now expressed in terms of a numerator x and denominator y as

f:fi="tvVEke{l,2,...,N,}.
Yk
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Denoting v = v — m (v), the numerator of 7 can be expanded to
Tl2

n? n?
Z (uk,i —m (uk)) f)i = Z uk’iﬁi —m (uk) Z ﬁi
i=1 =1

=1
n2 TL2
= E uk,if),' [since E f)i =m (V) = 0],
i=1 i=1
which corresponds to the search area operation

x =X (s,9). (8.20)

The square of the denominator of r can be written as

2
n2

n? n? n?
§ : . 1
(’U/k,i —m (l_lk))2 E ’[)1-2 = E{, . E ’U/%’Z' — E E Uk, i (82]_)
1=1 i=1 i=1

=1

where Ej; is the once-off calculation

Using (8.21) the denominator of the sample correlation coefficient corresponds to the search

area, operation

y= \/E : (sn (is°) - % [Sn (s)]2), (8:22)

where the square root is taken element by element.

The element-by-element ratio of (8.20) and (8.22) now provides the match surface for the
sample correlation coefficient. The FFT operation in the numerator dominates the computa-
tion and therefore this method is O (ng log, ns) as opposed to O <n2 (ns — n)2) for the direct

calculation.

8.3 Selection of Control Points

The previous sections of this chapter developed an efficient hypothesis testing procedure for

matching the block v from a single position in the first image to a search area s in the second
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image in order to find the subimage uy that represents registration of the two images at
that position. The full registration procedure must perform this task for all positions in the
first image. This is normally impractical from a computational point of view, however, and
a subset of the image positions are selected as control points. Aside from computational
economy, this approach can also improve the error-rate by not using blocks that typically
provide an unreliable registration result. For images with isolated edges separated by large
flat areas, for example, it is blocks containing the former that will support reliable registration.
Researchers have proposed the use of interest operators for the task of finding areas of the
image with information that supports registration (for example, the approach of Barnard and
Thompson [74]). This section seeks to formalize this practice within the framework of the

hypothesis testing procedure derived earlier.

8.3.1 Control Point Screening with an Absolute Condition

Chapter 3 derived optimal tests for matching scalars to give insight into the more complex
problem of image matching. One observation made there was that the partition induced
by the test on the space of scalars (u,v) sometimes leaves certain values of u and v with
no potentially matching counterparts. The critical regions in Figure 8-4 for SNR = 2 and

SNR = 3 are examples of this scenario. This observation is also relevant for images and can

SNR =10 SNR =3 SNR =2

Figure 8-4: Critical regions for optimal scalar matching.

be used to select control points — if some images have no potential matching counterparts
in the partition induced by the rejection hypothesis test, then using them for registration is
pointless. This condition can be used to screen control points according to whether the blocks
around them have potential counterparts in the second image.

Blocks v fall into this category if the rejection hypothesis is supported for all possible
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counterparts u and positions k, that is, if s (u,v) < ming Ag for all u, where

AR
1-Ar

1-P (Rk)]
P (Ry)
1-— maxy P (Rk)
maxy P (Ry)

. X ‘le‘ .
Ar = 1 21 21
n}cln R og <|Kw0\ + 2 log + mkln og

‘KW1‘ )‘R
1 21 21
og (|Kw0\ + 2log - n + 2log

An equivalent statement of this condition is

max s (u,v) < mkin)\R,

or, written in terms of the LRT statistic for whitened images % and v, it is

max s (1, V) < min Ag.
a k

Now the statistic can be written as the sum of n? statistics on the individual pixel pairs

where
si (i, 63) = B (i =) (6 — ) — i (s = ma)” + (6 — ma,)?)

and where «; and 3, are defined in Section 5.2. Since the statistic is a sum of independent
pixel-pairs, the pixel values 1; that maximize s ({4, V) can be found separately using elementary
calculus. First, taking the derivative of s; (1;,9;) with respect to ;:

PR (i, 0;) = B; (05 — my;) — 20 (U — my;)
0

Equating the result to zero and solving for 4;, it is seen that

= Pi

Uy = 90 (’131' — mvz) + my,
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maximizes s; (4;,9;). Using the definitions of «; and §; this maximum is

o (B , 2
m’axsi(ui,vi) = - T Oy ('Ui_méi)

Pl—Po(, 2
= —— (6 —my,)".
pitp b

Combining the independent maxima, the overall maximum of s is seen to be

n2
max s (4,V) = AL= o (6; —mg,)?
@ pr+po
and therefore the condition that v must satisfy in order to ensure that it has a potential

counterpart is

n?
’

PLPONT (4 —my,)® > A (8.23)
—_— i R- .
prtp=

For convenience the screening procedure for image v is written as the test g (V) < Ay with

the test statistic
. , 2
g(¥) = (6 — my)
i=1

and decision threshold

p1+ po |: ('KW1|> AR 1 — maxy P (Rk)
Ag = lo +2lo + 21lo
9 = | 8\ Kuw,l 51Tk & max, P (Ry)

8.3.2 Effectiveness of Absolute Screening

From the point of view of computational efficiency, the effectiveness of the screening procedure
will depend on the number of blocks that it can eliminate. This is related to the probability
of eliminating a random block, which is derived here. If the random variables z; are normal

with mean m; and variance a%, and are independent of each other, then

=y ()

has a chi-square distribution with &k degrees of freedom [61, p. 242]. Hence, noting that

the whitened pixels 9; have unit variance, the screening test statistic g (¥) has a chi-square
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distribution with n? degrees of freedom. The probability that an image will be discarded is

then

<

Ag Ag
P(g(v) <Ag) = Py2 (z) dr = py2 (z) dz,
0

where p, > () is the chi-square pdf. This probability depends on the threshold )y, which is a
function of the match and mismatch hypothesis conditional image-pair covariance matrices,
the rejection threshold Ag, and the maximum a prior: probability of correct register for all
positions in the search area — maxy P (Ry).

Figure 8-5 plots the probability of eliminating a randomly chosen block over Ar. Recall
that Ag is the minimum a posteriori registration probability that is accepted by the rejection
hypothesis. It appears that this screening procedure will only be effective for eliminating
blocks in the extreme case of small images. An effective procedure for larger images must
be based on a stricter condition, or one that is not absolute, but rather based on a relative

comparison of registration suitability amongst the available control points.

1 07 0.07
0.9
06 0.06
0.8
07 05 0.05
306 @ =
H o4 £o0.04f
= = £
EO05 E £
= = c L
s o3 L0.03
03 0.2 0.02
0.2
0.1 0.01
0.1
0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 0.2
)\F\' )\F\' )\R
(a) 4 x 4 blocks. (b) 5 x 5 blocks. (c) 6 x 6 blocks.

Figure 8-5: Probability of elimination for a block screening procedure (p = 0.95, SNR = 3,
P11 = 06, Po = 00, 04 = 20)

8.3.3 Relative Control Point Comparison

The quantity max, s (u,v) can also be used to assess the registration suitability of v in a

relative sense. If maxy, s (u, vi) > maxy s (u,ve), then it can be argued that vy is more likely
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than vy to find a good match in any search area, since s (u,v) is monotonically increasing
with the likelihood of match between u and v. Figures 8-6 and 8-7 show the screening statistic
for each position in a real and a synthetic image, respectively. The blocks with the maximum
and minimum statistic are extracted and displayed alongside these images, illustrating that
the former contain more useful information for matching purposes.

A simple procedure for selecting control points on the basis of this information would
select a well-spaced group of points that report high values for the screening statistic in their
vicinity. Figure 8-8 shows the result of registration performed for two identical scenes with
additive noise (SNR = 2). Subfigure (a) shows the result for a uniform grid of control points,
whereas in (b) the best control points were chosen for local areas using the screening statistic.
Since the scenes are identical, the correct result for each control point is zero translation.
It is clear that choosing control points using the screening statistic reduces the number of
registration errors — the only two significant errors for the best control points are obvious
examples of ambiguity in the scene (see the two erroneous displacement vectors on the brim
of the hat in Figure 8-8). This improvement is achieved by avoiding areas that do not have

distinguishing features, such as the forehead in Figure 8-8.

8.4 Monte Carlo Experiments

The block matching procedure based on hypothesis testing is now analyzed and compared to
the standard methods using Monte Carlo simulation experiments. Three types of experiment
are performed. The first computes the average match surface of a similarity statistic over
many trials, which provides a qualitative indication of matching performance. The second
experiment analyses the registration errors in simulated block matching for a quantitative
measure of matching performance. The third adds two different samples of a synthetic noise
field to a single real image in order to produce an image pair, and performs block matching

for randomly selected control points.

8.4.1 Match Surfaces

Figure 8-9 compares the match surfaces of several registration statistics that have been aver-
aged over 1000 trials. The surfaces have been normalized to make them comparable. Denoting
the variance in peak amplitude as 0?, and the mean and variance of the background level as my

and 0% respectively, the normalized match surfaces f are calculated from the original match
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(a) Original image. (b) Screening statistic.

Best block Worst block

) Blocks.

Figure 8-6: Control point comparisons for a real image.

(a) Original image. (b) Screening statistic.
Best block Worst block
) Blocks.

Figure 8-7: Control point comparisons for a synthetic image.
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(a) Uniform grid of con- (b) Best control points ac-
trol points. cording to the screening
statistic.

Figure 8-8: Control point selection in a registration experiment.

surfaces f using

f—my -1
=

\/ o5+ 0}

The values of m; and ag are obtained from separate Monte Carlo trials where no match for

f=

the block is present in the search area.

The results given in Figure 8-9 indicate that the optimal registration statistic has a more
prominent peak than the suboptimal measures do. Phase correlation is investigated for the
first time in this experiment, and exhibits poor performance for low SNR in Figure 8-9(a).
This is expected, since the images are corrupted by additive white noise, whereas phase
correlation is purportedly effective in narrowband noise [18]. One might expect that this
technique would be effective for high SNR and low match correlation coefficient, because
the difference between matching images for p; < 1 could be viewed as narrowband noise.
Even in this case, however, phase correlation is no better than the correlation coefficient in
Figure 8-9(c), and is excluded from further experiments. The next section provides more
quantitative evidence of the optimal test’s superiority over standard similarity statistics in

the block matching application.
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Correlation Coefficient Sum of Squared Differences Phase Correlation

Likelihood Ratio Test

(a) SNR = 2.

Likelihood Ratio Test Correlation Coefficient Sum of Squared Differences Phase Correlation

(b) SNR = 3.

Likelihood Ratio Test Correlation Coefficient Sum of Squared Differences Phase Correlation

(c) SNR = 10.
Parameter Value
Image size (n) 8
Mismatch correlation (p) 0
Match correlation (p,) 0.6
Scene one-step correlation (p) | 0.95

(d) Simulation parameters.

Figure 8-9: Normalized Monte Carlo match surfaces for various similarity statistics.
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8.4.2 Block Matching Registration Error

Registration errors fall into two categories. First, there is the minor misalignment caused
when the match surface peak is positionally inaccurate. Second, there is the miss, or com-
pletely spurious position of correct register. The former is inaccuracy of correct registration,
whereas the latter leads to incorrect registration with an arbitrary position in the search area.
In the experiments it is necessary to distinguish between these two types of error. For ex-
ample, Svedlow, McGillem and Anuta regard any “substantial deviation” as an unsuccessful
registration attempt [35], and Bhat and Nayar assume that any error greater than pixel-size
constitutes a miss [25]. The latter approach is used here to count the number of registration

misses in an experiment. Accuracy of correct registration is not investigated.

Standard Block Matching

This is the simplest form of translational image registration. The block is translated to every
position in the search area and the position that reports the largest registration statistic is
chosen as the position of correct register. Each Monte Carlo trial simulates this scenario with
the true position of correct register at the centre of the search area. A random ng X ng search
area s is generated. An n X n block is extracted from the centre of the scene component of the
search area and used in conjunction with the image pair synthesis equations and the specified
match correlation coeflicient to create the matching block v. The match surface is generated
for s and v using each similarity statistic and the position of the peak is stored in each case.
After T trials, the number of misses is counted and used to calculate the probability of a miss
for the block matching algorithm based on each similarity statistic. The registration statistics
compared here are the optimal registration statistic ¢, the correlation coefficient r, and the
sum of squared differences ds.

Figures 8-10 and 8-11 show the distribution of horizontal offsets from the correct position
that were reported by the chosen registration statistics for a range of SNR and match corre-
lation coefficients. Hits at any position other than zero offset represent registration errors,
or misses. The block matching algorithm based on the optimal statistic is clearly superior
in these results, with fewer misses in every case. A more concise comparison of the different
methods is obtained by plotting the number of misses that were reported during a series of
Monte Carlo trials. Figures 8-12 and 8-13 show the miss-rate against block size and SNR
respectively. It is evident that for low match correlation coefficient (p; = 0.6) the optimal

hypothesis test is orders of magnitude better than procedures based on the standard statis-
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(a) Optimal block matching.
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(b) Correlation coefficient.
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(c) Sum of squared differences.
Parameter Value
Image size (n) 16
Mismatch correlation (p) 0
Match correlation (p;) 0.6
Scene one-step correlation (p) | 0.95

(d) Simulation parameters.

Figure 8-10: Distribution of horizontal offsets from the true position of correct register for a

range of SNR values.
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(a) Optimal block matching.
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(b) Correlation coefficient.
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(c) Sum of squared differences.
Parameter Value
Image size (n) 16
Mismatch correlation (p) 0
Scene one-step correlation (p) | 0.95
SNR 3

Figure 8-11: Distribution of horizontal offsets from the true position of correct register for a

(d) Simulation parameters.

range of match correlation coefficients.
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tics. For match correlation coefficient approaching unity the advantage is less prominent, but
still significant. These conclusions are also supported by the results of an experiment that
investigates miss-rate as a function of match correlation coefficient in Figure 8-14. Figure 8-15
shows the miss-rate as a function of the degree of spatial correlation in the images. The trends
here are similar to those that were reported for the image matching experiments in Chapter
6 in that the miss rate increases with increasing spatial correlation. Again the performance

advantage of the optimal test is most prominent for low match correlation coefficient.

Block Matching with a Rejection Hypothesis

The value of a test with the rejection hypothesis is investigated in this section. Figure 8-16
shows the horizontal offset distribution of positions chosen by the optimal test. Figure 8-16(a)
shows the hits accepted and rejected by the rejection hypothesis when the true position of
correct register is in the center of the search area. Here the hits with non-zero offset are
false alarms elsewhere in the search area. Figure 8-16(b) shows the same information for the
case where there is no position of correct register in the search area. Here all of the hits are
false alarms. In both (a) and (b) the distributions are given for a range of Ag, the rejection
threshold for the a posteriori probability of correct registration.

These results show that the number of false alarms can be significantly reduced by using
the rejection threshold. Consider, for example, the column of results for Az = 0.3 in Figure
8-16. In (a), where the position of correct register is the center of the search area, the number
of false alarms is reduced to a fraction of its former value at the cost of approximately one
third of the true hits obtained without using Ar. In (b) the false hits are reduced to a few
percent of the number that would be obtained without using a rejection hypothesis.

In Figure 8-16 the rejection hypothesis at Agp = 0.5 almost eliminates false hits, at the same
time sacrificing one third to one half of the true hits. In an image registration application,
this strategy will yield fewer registered control points, each with a greater likelihood of being

correct.

Block Matching with a Positional Prior

Prior knowledge about the mechanism of translational distortion in a block matching appli-
cation can be incorporated into the test by specifying P (Ry), the a priori probability that
Pk is the position of correct register. Up to this point it has been assumed that P (Ry) is

uniform across valid positions in the search area. An alternative is to use another pdf for the
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Figure 8-12: Monte Carlo investigation of miss rate versus block size (7' = 500).
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Figure 8-14: Monte Carlo investigation of miss rate versus image match correlation coefficient
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expected translation, such as the separable bivariate normal pdf proposed in Section 8.1.3.
Assuming that the translation is separable and has equal variance in z and y, and that the
most probable position is the center of the search area, the positional a priori probabilities

can be written as

P (Ry) = (8.24)

2%03
where pg = (ik, jk)-

Figure 8-17 compares the results of a test that uses this positional prior (statistic denoted
tpp) to one that does not do so (statistic denoted ¢). Instead of putting the position of correct
register at the center of the search area, the Monte Carlo trials chose a random position in
the search area according to the prior of (8.24). The result shows that there is a marked
improvement in error-rate after incorporating this knowledge into tpp. Although this degree
of accuracy in the prior knowledge of the distortion is unrealistic, the result does indicate
that there is potential to improve block matching performance by incorporating a positional

prior into the registration test.

8.4.3 Real Images with Synthesized Noise

It is difficult to obtain conclusive results for real image data without targeting a specific
application. It is also unrealistic to expect that experiments with a small number of images
will provide information about matching performance for images in general. Rather, the
intention here is to give some indication of what can be expected when applying the approach

based on hypothesis tests to real images.

Experimental Procedure

An individual Monte Carlo trial in the block matching experiment consists of the following

steps:

1. Generate two random noise fields with variance 0727.

2. Add these to the original image to produce an image pair where the images differ only

in the noise component.

3. Select a randomly positioned control point in the first image.
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4. Perform block matching in a search area around the position of this point in the second

image.

5. Establish whether the trial resulted in successful registration. Since the images were
identical to start with, the correct registration offset is (0, 0) and if the result is not this

position or one of its four immediate neighbours, then it is counted as a miss.

The scene variance o2 and spatial one-step correlation coefficient p were estimated from
the image data using standard ML estimators?. Experiments were performed for a range of

noise variance (and therefore a range of SNR).

Images

The experiment was performed with two images: a photographic image of a crowd outdoors
and an X-ray radiograph of a human head. In both cases the experiment was conducted for

the original image and three other images:

1. Gradient image Several authors have found, both theoretically and experimentally,
that a gradient preprocessor improves registration performance with the standard simi-
larity statistics (e.g. Pratt [22], and Svedlow, McGillem and Anuta [35]). The gradient
image used here is the combined magnitude result of preprocessing with both horizontal

and vertical Sobel edge operators [17, p. 332].

2. Stationary image In order to better approximate an image with stationary first order
statistics, local averages in 32 x 32 image windows were subtracted from the original
image. Hunt and Cannon propose this simple procedure for enforcing stationarity [75]
(see Appendix A for a discussion of this approach). A pointwise transform on this image
can provide pixels that better resemble samples from a normally distributed random
process (see Appendix A). This procedure, proposed by Chapple and Bertilone for
simulating infra-red imagery [89], provides images that are empirically better samples

of an MVN process.

3. Markov equivalent image since the Monte Carlo experiments in this and previous

chapters were based on a synthetic Markov image, it is interesting to compare the results

It should be mentioned that the issue of estimating the model parameters has been neglected in this
research. Clearly, good estimates of the SNR and spatial correlation coefficient are desirable. This, however,
is a topic all of its own that (in this author’s opinion) has not received satisfactory attention in the literature
and deserves further investigation.
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for the stationary image to those obtained for a synthetic Markov image with the same

image parameters.

Results

Figures 8-18 and 8-19 both provide block matching results for the original image, the station-
ary approximation and the synthetic equivalent. The optimal statistic reported the lowest
error-rate in all of the experiments save one — the original ‘skull’ image. For both scenes,
however, the best performance in the unaltered original image is significantly worse than
that of the stationary image. Performance for all statistics is best in the synthetic equivalent
image. In fact, the difference in error rate between the stationary image and the synthetic
equivalent for both scenes is clearly an indication that the assumed model is inadequate. The
ordering of different measures according to error-rate is the same, however, suggesting that
qualitative aspects of the experimental results for synthetic images may still carry over to

real images.

8.5 Discussion

The block matching sub-problem of image registration has been formulated as a hypothesis
testing procedure and the test has been derived. The test includes a rejection hypothesis
and can incorporate a prior for the expected displacements between images. The registration
statistic incorporates the LRT statistic for image matching that was derived in Chapter 5.

Block matching is computationally expensive whether the optimal test or the standard
similarity statistics are used. It is shown that the standard approach to speeding up cor-
relation operations using FFTs can be extended and — together with a fast algorithm for
calculating the pixel intensity sums in local image windows — used to develop fast algorithms
for computing the match surface. Both the LRT and the standard similarity statistics can
benefit from this approach.

An insight gained from the scalar matching test derived in Chapter 3 — that some scalars
have no potential matching counterparts — was used to derive a screening test for identifying
blocks that have no chance of finding a match in any search area. These blocks can be
eliminated before registration begins, thereby reducing the required computation and reducing
the number of registration misses. This absolute condition for selecting control points is only

practical for very small images, and a more generally applicable strategy selects the best
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Histogram Miss Probability versus SNR

Original Image
0.7
==t
0.64 o
> 9

P(miss)

-5 0 5
8
E
‘ T
||||IIII||I|--. L
-10 -5 0 5 10
8
E
‘ ‘ |
.-III|||‘ ‘|||III-.
-5 0 5
8
E
o
-5 0 5

Figure 8-18: Monte Carlo matching results for real ‘crowd’ images corrupted by artificial noise

(n =8, ny =32, T = 500).
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control points using relative comparisons of the screening statistic for the blocks that surround
them.

Monte Carlo experiments show that the block matching search based on hypothesis testing
has the same performance advantage that was found for the LRT and image matching in
Chapter 6. This advantage is carried over to experiments with real images that are corrupted
by synthetic noise. Working with real images does reveal, however, that the success of the

tests will depend on the adequacy of models and the accuracy of model parameter estimates.



Chapter 9

Conclusion

Direct image matching is one of the oldest image processing problems, and one for which
the literature proposes many and varied solutions. A single unifying formulation of the
problem, however, is absent. The work presented in this dissertation proposes a strategy for
formulating the problem — hypothesis testing based on a probabilistic joint image-pair model
— and follows this strategy through for the simple multivariate normal case. The results are
image matching and registration algorithms that are demonstrably superior to other solutions
in terms of probability of error under a wide variety of conditions.

The research is now consolidated and future directions contemplated. Section 9.1 sum-
marizes the contribution made. This work is only the beginnings of a rigorous approach to
image matching and Section 9.2 suggests directions for further research that may be fruitful.

Final remarks are made in Section 9.3.

9.1 Summary of the Contribution

The contribution made in the dissertation is summarized here in terms of the key insights
and their consequences, the main theoretical results, the implementation strategies developed,

and the results of experiments conducted.
9.1.1 Key Insights
The following key insights are the foundation of this research:

1. Matching in a decision theoretic framework The matching problem is one of

classifying an observation of the real world into one of two classes, match or mismatch.

193
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On this basis it is deduced that the concept of similarity between images is a diversion.

The fields of detection theory and pattern recognition provide a wealth of literature
on the topic of making decisions based on observations of the real world. In order to
formulate image matching as a decision problem, performance criteria must be specified
for the solution and a representation must be found for the observation. For most
problems the probability of error, or a more general cost function, will suffice as the
performance criterion. The requirement for representing the observation leads to the

next key insight.

2. The image-pair as unit of observation The unit of observation in the image match-
ing problem is the image pair. Although there are examples of previous work where
the rationale for a direct image matching solution includes an implicit reference to the
image pair, in these examples the rationale came first. This “rationale” is, in fact, evi-
dence of the designer introducing subjectivity into the form of the solution. By contrast,
the research presented in previous chapters made no assumptions regarding the solu-
tion, but rather embodied the assumptions in a model of the observed image pair. The

subjectivity in the design is thus restricted to the model and the performance criteria.

As a consequence of this perspective, a joint image-pair model must be developed in
order to proceed. If the a priori information is assumed to be probabilistic, then this

model is simply the joint pdf of all pixels in both images.

9.1.2 Theoretical Results

The important theoretical results that have emerged from this research are now summarized.

1. The image-pair joint covariance matrix The simplifying multivariate normal as-
sumption reduces the problem of specifying the image-pair pdf to one of specifying the
joint image-pair mean vector and covariance matrix. Assuming that the image pair is
multivariate normal, that the individual images share intra-image correlation structure
to within a scaling factor, and that the images are corrupted by additive white noise,

then a covariance matrix of the form

B aiR—l—aiI Ta0pPup R
w =

0P R a%R-I—a?,I
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is shown to describe the image pair w. Both a correlation-based and a difference-based

model of the image pair lead to this result.

. The optimal test for image matching The optimal test for match in an image pair

w = [uT, vT] consists of the likelihood ratio and a decision threshold, written as the

likelihood ratio test (LRT)

Ho

I(w) 2\

Hy

Equivalently, the LRT can be written in terms of a modified statistic and decision

threshold as

A more convenient representation is obtained if the images are whitened beforehand.
Ho

In this case the equivalent LRT for whitened images 4 and ¥ is s (4, V) = A, where
Hy

for

k3 (b1 = p}) and g, — 27 (2= o) (Lt Kipop1)
(1= Kfpf) (1 = kZp?) b (- kep) L Kp)

a; =
and
n’ 1— k22
A= log \? + log (7’1) .
210 (1

The quantity A is specified according to whether the ideal observer or the Neyman-

Pearson test is to be used.

. The optimal compaction of inter-image correlation structure in the image

pair In the same way that the top n principal components of u are an optimal com-
paction of the information in u (in a mean-square sense), the top n whitened pixel pairs
{4;,%;} (ordered by decreasing magnitude of their correlation coefficient) represent an

optimal compaction of the correlation structure between u and v. This is the case be-
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cause {4;,?%;} are the canonical variables of {u,v}. Furthermore, 4; and ©; are the i-th

(normalized) principal components of u and v, respectively.

In summary, under the proposed model, the principal components of u and v capture

the most important information regarding match and mismatch between them.

. The optimal test for block matching in image registration Block matching

is the process of translating a subimage block from one image over a search area in
another, searching for the position that correctly registers the subimage to the second
image. Although this is one of the oldest image processing operations, it is still an
important part of many contemporary algorithms. Given multivariate normal image
models, the optimal test for the position of correct register p is the one that maximizes
the a posteriori probability of correct register over the k € {1,2,... ,Np} positions in
the search area, and that exceeds a rejection threshold with this maximum. If the n xn
block is represented by vector v and the k, n X n subimages of the search area are

represented by ug, then p = p,, is the position of correct register if
m = arg max [t (ug,v)] and s (um,v) > Ag,
where % (-) is the registration statistic and s (-) is the LRT statistic for image matching.
The registration statistic and rejection threshold are given by
t(ug,v) = s (ug,v) + 2log P (Ry)

and

respectively.

Note that the registration statistic is written in terms of the optimal LRT statistic
s (ug,v). The test also incorporates the a priori probability of registration for each
position in the search area P (Ry), which can be specified using prior knowledge about

the mechanism causing translational differences between the two images.
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9.1.3 Implementation Strategies

Efficient implementation strategies have been developed for the proposed methods.

1. Fast computation of the LRT statistic The theoretically optimal test for matching
involves the computationally expensive calculation of a statistic based on the image-pair
covariance matrix. Three methods have been proposed for reducing the computation
required. First, the optimal compaction of the correlation structure in the canonical
variable pairs and the fact that the statistic is expressed in term of these variables
suggests a strategy of using only a subset of the canonical variables to calculate the
statistic. Second, a separable model can be used for images that are nonseparable with
little compromise in error rate. Further economy is gained if the spatial correlation in
the images is high, since in this case the whitening transform can be approximated using
the DCT. Third, large images can be partitioned into non-overlapping blocks and the
LRT statistic calculated for each block-pair. An approximation of the LRT statistic for
the full image pair is then simply the sum of the block-pair LRT statistics.

2. Fast filtering with the LRT statistic For the purposes of translational block match-
ing, it is necessary to calculate the similarity statistic between an image and overlapping
positions in the larger search area of another image. This filtering of an image with
a smaller image using a similarity statistic is a computationally intensive operation.
It has been shown that the LRT filter can be performed more efficiently by viewing
the basis expansion of the whitening operation at each position in the search area as a
correlation operation, which can be performed efficiently over the entire search area for
each basis image using FFTs. The component of the filter output associated with each
basis image (and therefore associated with each pixel in the whitened smaller image) is

calculated in this way and they are all summed together to provide the overall result.

3. Fast filtering with standard similarity statistics It is well known that filtering
with the correlation function can be performed efficiently using FFT operations, and
some authors have claimed that this is an advantage of the correlation function over
other, more complicated measures such as the correlation coefficient. It has been shown
in this dissertation, however, that the windowed calculation of other similarity statistics
can also be decomposed into FFT-based operations. A new method for calculating win-
dowed sums efficiently has been introduced and is used in conjunction with FFT-based

correlation operations to speed up the calculation of match surfaces for the correlation
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coefficient and the sum of squared differences.

4. Selection of control points for block matching A statistic for evaluating the
suitability of blocks for image registration has been derived. The statistic can be used
in an absolute sense to eliminate blocks that have no matching counterparts (i.e. they
are not represented in the critical region for matching image pairs under the optimal
test), but this is only practical for very small images. In a more generally applicable
strategy, the same statistic can be used to make relative comparisons of registration
suitability amongst image blocks. The control points can then be selected according
to the suitability of the image blocks in their vicinity. This approach can be used to
reduce the number of control points required (and therefore the computation), but can

also improve overall registration performance by eliminating unsuitable blocks.

9.1.4 Experimental Results

The availability of a stochastic model for the image pair makes it possible to do extensive ex-
perimentation using Monte Carlo simulation methods. The important results are summarized

here.

1. Monte Carlo matching experiments The error-rate superiority of the optimal test
over the standard similarity statistics under the assumed model suggests that there is
significant scope for improving on current methods. With respect to the standard meth-
ods, a general rule emerges: difference-based statistics (e.g. sum of squared or absolute
differences) are superior when the scenes are identical under the match hypothesis,
whereas the correlation-based methods (e.g. correlation coefficient) are superior when

the scenes are not identical under the match hypothesis.

The LRT shows a reasonable degree of insensitivity to model parameter inaccuracies and
deviations from the assumed noise model, but is very sensitive to occlusion compared
to the standard approaches. Here the advantage of a nonparametric measure, such as

the stochastic sign change criterion, becomes evident.

2. Monte Carlo registration experiments Monte Carlo experiments show that the
block matching search based on hypothesis testing has the same performance advan-
tage that was found for the LRT and image matching. The facility to incorporate a
prior for the position of correct register and a rejection hypothesis are shown to en-

hance registration performance. Experiments with real images and synthetic noise also
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demonstrate the superiority of the approach based on hypothesis tests, but working
with real images does reveal that the success of the tests will depend on the adequacy

of models and the accuracy of model parameter estimates.

9.2 Directions for Further Research

There are several avenues of further research that could follow from the work summarized in

the previous section.

9.2.1 Image-Pair Models

The proposed approach to the image matching problem has its subjectivity in the selection
of the image-pair model. In comparison to this modelling stage, the derivation of the actual
test, although challenging, is a mechanistic mathematical process. A relatively simple model
was chosen for this research, but there is almost unlimited potential for using more sophisti-
cated models. Some options in this regard are generalized Gaussian and higher order models
that relax the assumption of normality, and multi-resolution models such as scale-space and
wavelets. These models may reflect the characteristics of real images more accurately and if
this is the case, solutions based on them will be closer to optimal for the actual images.

As important as the ability to develop a representative model for the image pair is the
ability to accurately estimate the free parameters in such a model from real image data. Even
with the relatively simple multivariate normal image model used in this dissertation, this issue
emerges when one deals with real images. Further research, therefore, is required on the topic

of model parameter estimation in image pairs.

9.2.2 Robust Tests for Matching

Robust statistical methods are designed to operate in the vicinity of a parametric model
that describes most of the data. Outliers with respect to this model are tolerated and do not
compromise performance to the extent that they would for a purely parametric method. With
the borderline applicability of the multivariate normal model to image data, it seems that a
robust test, designed to be effective in the vicinity of this model, might be an improvement over
the parametric test proposed in this dissertation. Care would have to be taken, however, that
the data considered to be outliers in this formulation do not contain important information for

discriminating between match and mismatch. As Hampel, Ronchetti, Rousseeuw and Stahel



200 CHAPTER 9. CONCLUSION

put it: “Not all outliers are ‘bad’ data caused by gross errors; sometimes they are the most

valuable datapoints in the whole set” [30, p. 12].

9.2.3 Image Matching Applications

The effectiveness of the proposed approach must be confirmed in its application to a real-
world problem. One possibility is face recognition, where one of the most effective algorithms
is already based on a linear model and principal component representation of the images [73].
It may be that the optimal weighting of principal components and the facility to specify a
degree-of-match parameter, both of which are provided by the proposed test, will improve
the recognition rate.

Another potential application area is medical imaging. Digital subtraction angiography
(DSA) [108], for example, is improved if the images taken before and after the administration
of a contrast medium are registered for accurate subtraction [57]. The dangers associated with
radiation dose have increasingly become a source of concern among medical practitioners [109]
and new international standards for radiation safety have emerged during the last decade
[110]. Minimizing dose, however, compromises the image quality in terms of contrast and
SNR, emphasizing the importance of optimal matching algorithms. It should also be noted
that recent developments in low-dose digital radiography systems have revived interest in the
2D modality — a new low-dose full-body X-ray scanner, for example, is undergoing medical

trials at the Groote Schuur Hospital in Cape Town, South Africa [111].

9.2.4 Combined Detection and Matching

There are many applications where a reference image is used to aid the detection of a target
in a more recent image of the same scene. In lung cancer screening, radiologists use previous
images of the same lung as a point of reference. In subtraction angiography, a reference image
is subtracted in order to see more clearly the contrast media that is present. In both cases
there is (1) the problem of matching the two images, and (2) the problem of detecting a
certain target in one of them. The image-pair model proposed in this dissertation offers a
way of formulating the problem that combines these two sub-problems.

Considering the multivariate normal image pair w’ = [ ul VT ] , v can be viewed as the
reference and u can be viewed as the current image that might contain the known deterministic
target p. The presence of target p in image u can be modelled as a component in the mean

vector, and in this case my, = m, + p. If the target is not present, then m, = m, as
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before. The combined matching and detection problem has the hypotheses shown in Table

9.1. The optimal test for this scenario selects the hypothesis with the maximum a posteriori

Images mismatch Images match
(Pab = Po) (Pap = P1)
Target not present H, { my, = m, o, { m, = m,
(my = m,) Pab = Po Pab = P1
Target present Hs { m, =m,+p H, { m,; =m,+p
(my = m, + p) Pab = Po Pab = P1

Table 9.1: Hypotheses for a combined matching and detection problem.

probability.

The framework of Table 9.1 encapsulates common image matching and detection problems.
Image matching, the topic of this dissertation, is concerned with hypotheses Hy (mismatch)
and H; (match). A detection scheme using correlated reference images that is proposed by
Margalit, Reed and Gagliardi [112] is concerned with hypotheses H; (matching reference
images with no target present) and Hs (matching reference images with target present). A
DSA registration algorithm that must cope with the presence of contrast media might use
hypotheses Hy (mismatch with no contrast media present), H; (match with no contrast media

present), and [Hy OR Hs] (contrast media present).

9.3 Final Remarks

The problem of direct image matching has been approached in a new way, viewing the observed
image pair as a unit, developing a statistical model for this unit, and deriving the optimal test
for making the match versus mismatch decision. This test has been evaluated using Monte
Carlo simulation techniques and is seen to compare favourably with the similarity measures
that are commonly used. Methods have been developed to allow efficient computation of the
test statistic. The hypothesis testing approach has also been applied to the block matching
sub-problem of image registration and, here too, the results are compelling. Several potential
avenues for further research have been identified.

The success of the proposed matching technique in practice will depend on the adequacy
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of the multivariate normal image model in any particular application. Where this model
is inadequate, alternative models can be used within the same general decision theoretic
framework to derive an alternative test of the match and mismatch hypotheses. In either
case, the solution will be based on explicit assumptions and will be optimal with respect to
the assumed model. It is hoped that this emphasis on the modelling aspect of the problem

will facilitate future advances in image matching research.



Appendix A

Simplified Random Field Models

for Images

Much statistical analysis of images relies on the assumption of ergodicity. Without it, a rep-
resentative ensemble of images is required in order to estimate the parameters of a statistical
image model, and obtaining this ensemble is impractical in many applications. Even if the
ensemble were available, dropping the ergodicity assumption also sacrifices the assumption of
spatial stationarity. Stationarity simplifies the mathematics and leads to efficient, spatially
invariant algorithms.

Another common assumption is that the image can be modelled as a multivariate normal
(MVN) random field. The normal pdf has very convenient mathematical properties — analysis
using other distributions generally leads to intractable problems [29, p. 1].

Although these two assumptions are often violated by real-world images, some authors
have shown that relatively simple methods can be used to overcome this problem by designing
a transform 7 (u), such that the statistics in @ = T (u) are approximately stationary and
MVN. Optimal algorithms can then be designed for . Some of these methods are now

discussed in more detail.

A.1 Nonstationary Mean

The MVN pdf for the n X n image u is

pu(u) = _ exp [—% (u— mu)T K;l (u—my)|, (A.1)

n2
(2m)" Kl
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which is characterized completely by the mean vector, my, and covariance matrix, K. Hence
the popular abbreviated notation: p, (u) = N (u;my, Ky,)!. An ergodic model forces the
mean, my, to be a constant vector. Hunt and Cannon point out that the image ensemble
of a particular class of images will not have a stationary mean in most applications and
propose a model that has a nonstationary mean component and a stationary MVN component
fluctuating around the mean [75]. Typically, an ensemble of images is not available, and so
the ensemble mean is approximated by using a spatial “blurring” filter on the single available
image. Hunt and Cannon use a Gaussian point-spread function, but Margalit, Reed and
Gagliardi have subsequently used simple windowed averaging [112]. The mean in (A.1), my,

is estimated using
my=ux*h,

where * denotes convolution and h is the blurring filter kernel. The MVN component is then
given by 4 = u — m,. Experiments reveal that the histogram after removing the ensemble
mean estimate is indeed more symmetrical than the histogram of the original image and it
was this observation that was the initial motivation for the MVN model of the stationary com-
ponent [75]. Figure A-1 shows histograms of the stationary component of a lung radiograph
where the mean image was calculated using a range of kernel sizes. A question remains: how
does one select the best kernel size? Margalit, Reed and Gagliardi use the size that minimizes
the magnitude of the skewness of the pixel intensities in the modified image, since this should
be zero for data under a normal distribution [112].

At this point a concern must be raised with this approach. It is not satisfactory that a
technique for enforcing stationarity by estimating the ensemble mean is optimized using the
skewness of the resulting distribution. With the possibility of stationarity being sacrificed in
favour of a low third moment, the validity of the ensemble mean estimate comes into question.
Even if the kernel size is optimal, it is questionable whether there is enough data in the image
for an adequate estimate of the ensemble mean, particularly in regions where the ensemble
mean is changing quickly. If the “blurred” image is not an adequate estimate of the ensemble
mean, then valuable information will be lost when it is subtracted from the original image

to produce the stationary component. To reinforce this last point, consider the MVN pdf of

!Strictly speaking, the notation N (m,K) is commonly used to represent the multivariate Normal dis-
tribution with mean vector m and covariance matrix K, but the presentation here will also use the nota-
tion N (x;m,K) to represent the associated Normal probability density function, where x is the independent
variable.
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Original Image 128X128 64X64 32X32
400 600 800 50 0 50 40 20 0 20 40 -20 0 20
16X16 8x8 4x4 2%2
10 0 10 -10 0 10 -10 0 10 5 0 5

Figure A-1: Histograms for the stationary component of a lung radiograph for a range of
kernel sizes.

(A.1). The procedure uses estimate m, to approximate the ensemble mean vector m,, which
is a constant feature of the ensemble and therefore has no image specific information. The
image-specific information is now assumed to be in the stationary component 4, which has

the pdf

—5 (@)K (4) ] (A.2)

Detection or matching algorithms now only need consider 4 and its pdf. However, if the
estimate m, is not an ensemble mean, then valuable image specific information will be lost

when it is subtracted from u. The algorithms based on 1 will be suboptimal.

Figure A-2 uses the ‘LAX’ image as a pathological example of this problem. Figure A-2(a)
tabulates the magnitude of the skewness for a range of kernel sizes and suggests that a kernel
size of 2 x 2 is optimal. Figure A-2(b) confirms that the 2 x 2 kernel provides a pdf that
is more symmetrical than the original histogram, but the nonstationary component contains
little of the information in the original image. Figure A-2(c) shows the results for a 16 x 16

kernel. The pdf is clearly skewed, but the image captures more scene information.

This procedure, therefore, should be viewed purely as an approximate decomposition into
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N 2 4 8 16 32 64
Skewness | 0.1898 | 0.8286 | 1.1801 | 1.3026 | 1.3225 | 1.3469
(a) Skewness of the stationary component.
|||| ||I
-200 0 200
(b) Ensemble mean estimate, stationary component and histogram - 2 x 2 kernel.
~200 0 200

(c) Ensemble mean estimate, stationary component and histogram - 16 x 16 kernel.

Figure A-2: Skewness as a basis for kernel size selection.



A.2. NONSTATIONARY VARIANCE 207

stationary and nonstationary image components. The utility in the decomposition is that
white noise is almost completely contained in the stationary component. This could be the
basis of an approach that uses statistical models to good effect on the stationary component
and noise-sensitive deterministic approaches on the nonstationary component. If it turns out
that the stationary model has a non-normal pdf, then this can be dealt with as a separate

issue (using, for example, the methods outlined in Section A.3).

A.2 Nonstationary Variance

Hunt has also investigated enforced stationarity of the covariance matrix, by normalizing the
standard deviation in local windows and using a spatial warp in local areas to standardize the
correlation structure [88]. Margalit, Reed and Gagliardi model the image as a random field
that is piecewise stationary — the image is divided into smaller subimages and the maximum

likelihood estimate of the covariance matrix is calculated for each subimage [112].

A.3 Non-MVN Distributions

Although MVN models are convenient, they are rarely accurate models of the information
in an image scene, as the examples in Figure 4-1 illustrate. However, having extracted a
stationary component using the method described in Section A.1, it is possible to transform
the image in such a way that the result approximates a realization of a stationary MVN
random field. Chapple and Bertilone propose the use of such a transform for simulating
stationary, non-normal infrared imagery [89]. Given a positivity constraint, it can be shown

that transforming the samples x of the non-normal random field by
T
F(z) = V2erf! [2 / po(#)d — 1] (A.3)
0

yields samples of a new random field with normal marginal pdfs. Given sample image data (a
single image or an ensemble of images), Chapple and Bertilone transform the image intensities
of the original images using (A.3) and treat the resulting images as MVN random fields. They
then generate synthetic images using MVN parameters estimated from the transformed real
images. Since F' is an invertible transform, realistic test images can now be generated by
applying the inverse transform, F~!, to the synthetic MVN images. This method is simpler

and more computationally efficient than direct methods of simulating non-normal random
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fields [89] and has also been used to simulate synthetic aperture radar images [113].

The same approach can simplify the derivation of detection and matching algorithms based
on non-normal models. The image pixels can be preprocessed using the transform in (A.3)
and then treated as MVN samples. In practice p,(z) is approximated by the histogram of the
original image, with points between histogram bin centers approximated using interpolation.
This method was used on the stationary component of the ‘LAX’ image that is shown in
Figure A-2(c). First the pixel values were given a constant offset in order to satisfy the
positivity constraint. A histogram with 100 bins was used to approximate p,(x). Figure A-3
shows the skewed histogram of the original image, the pointwise transform and a histogram

of the result after using this transform on the pixel values.

Histogram before Pixel intensity transform Histogram after
0.04 5 0.5
0.03 0.4
< 0.3
~~ B3 <
Z0.02 0 2
= > 0.2
0.01 01
- 0
50 100 150 200 250 0 100 200 300 -4 -2 0 2 4
X X y

Figure A-3: Pointwise MVN transform.

Standard tests are available for establishing whether the resulting marginal pdf is indeed
normal [28, p. 254]. It should be noted that although the transformed images are treated
as MVN random fields, only the marginal pdfs of the individual pixels are actually normal.
Strictly speaking, this is not a sufficient condition for the joint pdf to be MVN [29, p. 7], but
in practice this distinction is often ignored.

This fairly ad-hoc procedure for transforming images so that they better resemble realiza-
tions of a MVN random field is not intended to be rigorous. There are no guarantees that it
will be successful with images in general, but the empirical evidence suggests that the trans-
formed images are far better approximations of stationary MVN random field realizations
than the original images were. The use of this procedure in any specific application, however,
must be preceded by experiments that confirm its effectiveness with a representative sample

of test images.



Appendix B

Mathematical Derivations

In order to maintain the flow of the main text in the dissertation, several mathematical

derivations have been placed in this appendix.

B.1 Covariance Matrix of the Sum or Difference of Two Ran-

dom Vectors

Consider two random column vectors x and y, which have the covariance matrices Kx and

Ky, respectively. The covariance matrix of their sum z = x +y, is given by
K, = Kx + Ky + 2Ky,

where Ky is the cross-covariance matrix between x and y.

Proof. Since the sum of the mean vectors of x and y is simply the sum of the individual

elements
my; = My + my
is the mean vector of z [61, p. 178]. The covariance matrix is defined as
K,=FE [(z —my) (z — mz)T] .

209
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Substituting z = x + y and manipulating

K, = E|(z-m,)(z-m,)

((c+y) = (my + my)) ((x+y) — (i + 1) |

((x = m) + (y = my)) ((x = ma) + (y — my))]

(x = my) (x — m)” | + B [ (y — my) (v~ my)" | + 2B [(x - my) (y - my)”]
= Kx+ Ky +2Kyy

E
E
E
E

as required. m

It can be shown in the same way that for the difference, z = x — y,
K, = Kx + Ky — 2K,y .
Note that if x and y are uncorrelated, then

Kty = Ke + Ky

B.2 Optimal Threshold for the Scalar Squared-Difference Test

Consider the random scalars u = a + p and v = b + v, where ¢ and b are NV (m,az), and
where noise scalars y and v are N (O,Ui) and N (0,012,) respectively. The optimal decision
threshold for deciding between match and mismatch of a and b using the scalar squared

difference statistic,
2
s(u,v) = —(u—wv)7,
is derived here. The pdf of the difference

d(u,v) = u—v

= a—-b+p—v
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is given by

pa(d) = N (d;0,20” (L — p) + 0% +07) .

Given a normally distributed random variable z, where

(z) = N (2;0,02%) = #exp [—x—Q]
pl‘ A I \/27_{_—0_% 20'52,; 9
the pdf of the random variable y = z2, is given by [114, p. 108]
1 Yy ]
=———exp|—=—| Vy >0.

The pdf of the squared difference, conditioned on p, is therefore given by

1 S

B exp Vs<O.
\/—27r3 (202 (1 —p)+ 0% +02) l? (202 (1= p) + 0%+ 02)

s (s)

For the match hypothesis H; <= p = 1 and the mismatch hypothesis Hy <— p =0,

the ideal observer test is
and by re-arranging this expression, the condition for a match is seen to be

s (u,v) > A,

where the RHS of this inequality is the optimal decision threshold for the squared difference

)\:2(oi+a,2,) (202+03+0,2,) o o2+ o Py
202 &\ 202 1 o2+ 02 Py
If ai = 02, then the threshold becomes
o2 P
o2+ o2 Py

test, given by

B 40% (02 + 0,2,)
- 2

A log

g
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B.3 The Whitening Transform

The random image x with covariance matrix K can transformed to a random image with

independent, identically distributed (iid) pixels using the transformation
1
Tx = A VT, (B.1)

where V is a matrix with columns that are the eigenvectors of K and Ak is a matrix with
the corresponding eigenvalues on the diagonal.
Proof. Since K is a real symmetric matrix, it can be diagonalised by the similarity

transformation
VKV = Ak, (B.2)

where V is a matrix with columns that are the eigenvectors of K and A is a matrix with the
corresponding eigenvalues on the diagonal [115, p. 269]. Since V is an orthogonal matrix, it
follows that K = V Ag'VT. Substituting this into the pdf for x it is seen that % = A;(% VTx
is a unit-variance, random vector with iid elements, as required. m

Equation B.1 is referred to as a whitening transform on x, and % itself is referred to as
the whitened image.

B.4 Eigenvalue Relationships in the Image Covariance Matrix

If random image x has the covariance matrix
K =0’R+071, (B.3)
then the eigenvalues of K are related to those of R by
Ak = o?AR + 0'7271,

where the elements in the diagonal matrices Ax and Ag are the eigenvalues of K and R
respectively.

Proof. If the n x n matrix A has eigenvalues Ay, ..., A,, then [29, p. 584]

1. The matrix KA has eigenvalues kAq,... ,k\, and
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2. the matrix A — kT has eigenvalues A1 — k,... , A\, — k.

Combining these properties, the matrix aA + bl has eigenvalues aX; + b,... ,a)\, + b.
Applying this new property to (B.3), the eigenvalues of K, denoted )\;, are seen to be

2 2
Ni=o0 wi + oy,

where w; are the eigenvalues of R. Writing the eigenvalues of K and R as the diagonal

elements of diagonal matrices Ax and A respectively, the required result is obtained. m

B.5 Shared Covariance Matrix Eigenvectors

The covariance matrices Kx = 03R+0i1 and Ky = 02R+021 share the eigenvectors of R.

Proof. The characteristic polynomial of Ky is
px (A) = det (Kx — AI).

The i-th eigenvector of Ky is the solution of p; (AY) = 0, where A} denotes the i-th eigenvalue

of K. Using the result in Section B.4,
A = o2w; + oi, (B.4)

where w; is the i-th eigenvalue of R. Substituting (B.4) into the characteristic polynomial

and manipulating,

px (AY) = det (Kx — (oﬁwi + O'i) I)
= det (02R+ai1 - (aZwi + ai) I)
= det (azR — ngil)

= o2det (R —w;l).

So a vector that solves det (R — w;I) = 0 also solves px (AY) = 0, and therefore the i-th eigen-
vector of Ky is the i-th eigenvector of R. Similarly, it can be shown that the i-th eigenvector
of Ky is the i-th eigenvector of R. It follows that Ky and K, share the eigenvectors of R,

as required. m
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B.6 Block Diagonalizing the Image-Pair Covariance Matrix

Denote the pair of images x and y as w! = [XT, yT]. Let the joint covariance matrix be

Ky ny
K.y Ky

Ky, =

agR—I—aiI Ta0pPu R

i 0P R a%R-i—o,%I

If independent whitening transforms! are applied to the images x and y then the joint

covariance matrix will have diagonal partitions according to

I D
Ky = *
Dyy I
where Dy has the diagonal elements
Ta0bPapWi

Dy [i,i] =
™ \/(Ugwi + UZ) (ogwi + 012,)

and is zero elsewhere.

Proof. The whitening transforms on x and y are given by (see Section B.3)
_1 _1
Tx =Ax’VT and Ty = Ay > V7

where V is a matrix with columns that are the eigenvectors of R (Kx and Ky share the

eigenvectors of R — see Appendix B.5). Using the result of Section B.4,
Ax = 02ARr + aiI and Ay = 0iAR + 021 (B.5)

respectively.

Performing the independent transformations ¥ = Tyx and y = Tyy is equivalent to the

!The result of a whitening transform on x is an image vector with statistically independent pixels that have
unit variance.



B.6. BLOCK DIAGONALIZING THE IMAGE-PAIR COVARIANCE MATRIX 215

transform

w = Tyw, where Ty = ,

on the image pair.

If a random vector z with covariance matrix K, is transformed by B, then the covariance

matrix of the transformed z is BK,B” [29, p. 6, Theorem 1.2.6]. The covariance matrix of

the transformed image pair is therefore

Ky = TwK,TL
Ki: Kgy
K Ky
_ T
B Tx O oiR—l—aiI 0a0pPp R Tx O
0 T, oaobpp R oiR+021 0 T,
| ATRT 402TTE  0400p, TxRTY
0a0bPe TyRTL U%TyRT$+U,2,TyT)T,

By the property of the diagonalizing transform

Ki; =Ky =L
The cross covariance matrix Kgy, is
Kiy = 040paTxRTY
Xy a0bPap L x y
_1 _1
= 040pPapAx 2VTRVA, 2

_1 _1
= 040pPpAx *ARAy *.
Using (B.5) and denoting the eigenvalues of R as w;, Kgy is the diagonal matrix Dxy, with

diagonal elements

0a0bPapWi _
\/(agwi + aﬁ) (02w + 02)
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Similarly, Kyx is also equal to Dxy and

Ko I Dy
Dgy 1

as required. m

B.7 Type I and Type II Error Probabilities for Normal Hy-

potheses
In a binary hypothesis testing problem a false positive, or type I error occurs when H;
is accepted erroneously. The false negative, or type II error occurs when H; is rejected
erroneously. Given that the test statistic has the following hypothesis conditional pdfs:

p(s|Ho) = N (s;mg,00) and p (s|H1) = N (s;m1,01), where m; > myp; and given that the
decision threshold is 5\, the type I error probability is given by

P o= Pl-P(s < 5\|H1)

b
= Pl/ N (s;mq,01) ds
—0oQ

P A 1(s — my)?
_ _h / exp |- EZm) | g
\/27'('0’% —o0 2 o1

1+ erf (%{j)] .

The type II error probability is given by

il
2

Py = PP (s > 5\|H0)

- B (1—P(s<5\|H0))

A
= B <1—/ N (s;mg, 00) ds)
—0Q0
1 A 1 (s —my)?
= Bl1- exp |—————| ds
0 ( 27‘(’0’% /—oo P [ 2 0'%

& 1—erf m0—5\
2 V2 '
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