An Investigation into Feature Selection
Techniques for Reducing Input
Dimensionality in Pattern Recognition
Applications

prepared by
Willem Andries Jacobus Nel

Submitted to the Department of Electrical Engineering
in partial fulfilment of the requirements for the degree of

Master of Science in Engineering
at the
UNIVERSITY OF CAPE TOWN
October 1998

© University of Cape Town 1998



11



Declaration

I declare that this dissertation is my own work. It is being submitted in partial fulfilment of
the requirements for the degree of Master of Science in Engineering at the University of Cape
Town. It has not been submitted before for any degree or examination at this or any other

university.

W.A.J. Nel

iii






Acknowledgements

The work presented herein would not have been possible without the help of many people
and the financial support of two institutions. Therefore I would like to express my gratitude

towards:
e My supervisor, Professor Gerhard de Jager, for his support, guidance and enthusiasm
during the project period.

e Fred Nicolls, for the many discussions on problems pertaining to pattern recognition,
for proof reading the work presented here, for enlightening me in the ways of UNIX and

for directing me to several relevant sources of information.
e Dr. Brendt Wohlberg for proof reading this document.

e My fellow students of the Digital Image Processing Laboratory for the stimulating,
interesting and enjoyable working environment. In particular I would like to thank

Praven Reddy, Yon Rosenthal, and Marc Servais for their support and friendship.
e My family, for their love and support during the past two years.
e The Foundation for Research and Development, for their financial assistance.

e DebTech, for their financial assistance and the provision of seriously needed processing

power.






Abstract

Pattern recognition systems can suffer from problems of high-dimensionality when inferring
decisions from a finite number of data samples. Methods are needed to reduce the input
dimensionality of such systems. This thesis investigates the use of feature subset selection

techniques to address problems pertaining to high-dimensionality in classification systems.

An investigation into the origins of the “curse-of-dimensionality” is given and a detailed
survey of the literature on feature selection techniques are shown. Three methods aimed at
addressing the problem of finding the most important features for use by a classifier are iden-

tified and investigated.

Mutual information techniques allow testing of the relevance of features on the output variable
as well as other features. This allows a ranking of features in order of their importance to the

classifier.

The Gamma Test method allows the evaluation of the utility of different subsets. The output
of this method is shown to correlate well with expected classifier error rates. This allows the

method to be useful for feature selection as well as other areas of application.

A fast neural network technique is employed as third feature selection method. This technique

addresses several problems regarding feature selection as applied to neural networks.

The three methods are evaluated and compared on standard data sets from the Machine Learn-
ing literature. It is shown that all three methods have different strengths and weaknesses. The
techniques prove to be able to reduce the dimensionality of the data sets significantly. It is
shown that the use of these techniques in pattern recognition problems can possibly even give

rise to higher classification rates.
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Chapter 1

Introduction

The question of whether we can make computers think and react to problems in the same
way humans do is a long standing one. Much effort has been put into understanding the way
humans approach problems of perception and analysis. As human beings we find it very easy,
for example, to look at a picture of an outdoor scene and tell the difference between the trees,
a house and, in fact, most any other object in the scene. Without thinking about any of this,

we use the measurements of our five senses with cunning accuracy. We easily recognise

a tune heard before on the radio,
the faces of hundreds of people we know,
different makes of cars,

the type of food being cooked in the kitchen.

The list of things seems infinite, yet we do all of this by using only a few inputs and a vast

network of interconnected brain cells.

A multitude of these tasks are concerned with classifying into different categories those objects
which we perceive with our senses. The field of study that tries to imitate or model this task
is called pattern recognition/classification. As stated by Ripley [46] the aim is, in essence, to

solve the following problem:

“Given some examples of complex signals and the correct decisions for them,

make decisions automatically for a stream of future examples”

In order to perform such a pattern recognition task, the first step then is to find from the
problem those inputs or signals that would allow the machine to make these decisions. A major

problem, however, is that there exists no simple way of knowing which inputs would allow

1



2 INTRODUCTION

the pattern recognition system to yield the desired results. The designers of such systems,
therefore, have to use some of their own knowledge and experience to extract features from
the process which, according to them, would give the classifier a decent starting point for

doing the pattern recognition.

Pattern classification systems can be grouped into two main streams of designs. The one
stream is that of supervised learning. Here, a human being first classifies all the observations
made from the problem, and assigns the correct “class labels” to each of these observations.
The classifier is then allowed to “learn” from these examples and aims to find a general
solution which, when given new samples from the problem, is able to tell what the correct

class labels for these new samples must be.

The second stream, that of unsupervised learning, desires that the classifier learns, by itself,
which of the input observations are alike, and assign similar class labels to these inputs. The
learning system must then be able to classify future inputs into the classes which the system
itself created from the original data. In most cases these classes or groupings must be assigned

in such a way as to make sense to human understanding of the problem.

Be this as it may, the one thing these methods have in common is that it is up to the designer
to select signals as inputs for these classification systems. The approach used by most classifier
designers are to extract, using their knowledge of the problem, as many descriptive features

as possible.

The philosophy behind this approach is that every feature added to the input of the classifier
adds some new information not yet contained in some of the other inputs. This should allow

the classification system to make better estimates of the exact output class of the inputs.

This method does not however paint the full picture of classifier design. A major problem
with this approach is that it does not take into account the manner in which classification
systems build estimates of the class labels. Every feature added to the system increases
the dimensionality of the space in which these estimates are made and, lacking ample input

examples, the space might become too vast for a robust classification system to be built.

It has been observed that classification systems can sometimes suffer from what is known
as the curse of dimensionality. The classification results become better as more features are
added, but beyond a certain point classification results worsen, giving rise to a counter intu-

itive effect: more information is given to the system, but the system performance decreases’.

Thus there exists a need to find ways of decreasing the input dimensionality in classification
systems by finding the most informative features. With this background stated, a typical

classification system can then be represented by the schematic shown in Figure 1.1.

LA more detailed discussion of this effect is given in Chapter 2.
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Features chosen
by designer Final set of features
used by classifier
Dimensionality cl
Sensors ] Classifier By
Reduction labels

Figure 1.1: The stages of a classification system

In conjunction with the aim of building more robust classifiers, there exist other reasons, not
yet mentioned, for reducing input dimensionality. Some of these considerations result from
engineering constraints such as limited bandwidths of the channels carrying information from
the process being measured to the classification system. The complexity and speed of the
designed classifier might also have a direct relationship with input dimensionality, and it is
therefore important to use only the most discriminatory features when designing and building

classification systems.

The work presented herein belongs to this area of dimensionality reduction techniques. The
reduction in the input space are normally achieved in one of two ways. Feature Selection,
which is the focus of the work presented in this thesis, aims to decrease dimensionality by
finding those subsets of the input feature set which contain the most relevant information to

the output.

The second related method is known as feature extraction. This technique aims to find analytic
transformations of the input space that give rise to lower dimensional sub-spaces which still

contain most of the information from the original space.

Contrary to first impressions, these two methods do not always stand in opposition to each

other, but have different roles to play in the whole process of dimensionality reduction.

1.1 Aim of the work presented here

The first intention of this work was to address issues concerning the curse of dimensionality
in pattern recognition systems. It was necessary to seek a deeper understanding of how the
dimensionality problem affects pattern recognition systems, and in what ways these effects
manifest themselves in different types of classifiers. Of importance here was to find out, either
by experimentation or from previous literature, whether all types of classifiers are affected by

problems of high dimensional input spaces.

A secondary aim of this investigation was to perform a background study of the area of
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feature selection as a means of addressing the problems of dimensionality. Several methods
from literature had to be investigated and evaluated in order to obtain an idea of which types
of approaches to the problem had shown success in the past. Some problem areas in the
previous literature were identified, and solutions to some of these problem areas had to be

investigated.

The final aim of the work was to investigate and compare some techniques for doing feature
subset selection more thoroughly, and point out their strengths and weaknesses. As will be
explained later, the thesis focuses primarily on feature selection as a means of reducing input
dimensionality for neural network type approaches, but this does not restrict these methods
to this purpose alone. To highlight this fact, the effects of the methods are also compared on
the simple k-Nearest Neighbour classifier?.

In the work presented it was also decided to focus more deeply on the different criterion
functions for feature selection rather than concentrating on the search strategies involved
in all selection systems. The correspondence between criterion function and goodness of
feature subsets were taken to be of primary importance. If the criterion function does not
correspond well to the goodness of a specific subset, then no search algorithm would be able to
perform well. However, the search function was not totally ignored, and the background study
investigates some previous search algorithms from the literature. Portions of the practical

experimentation involved using some of these search functions.

In order to restrict the space of possible methods?® for consideration, and also as a means of
addressing problems specifically relevant to the pattern recognition field, it was decided to
investigate only feature selection methods that are able to handle continuous range, noisy
features. These are the types of features mostly found in machine vision and standard signal
processing applications. This restriction was not seen as a disadvantage since most of the
discreet non-noisy feature selection methods form a subset of the continuous noisy case. This
does imply however, that some methods used for the discreet non-noisy feature case would

not be directly applicable to the work presented here.

Lastly, the problems on which the methods were tested and explained focussed only on the
two-class problem in classification. This constraint is however not as harsh as it sounds, since

the methods discussed are extendable to multi-class problems.

2See Chapter 2 for details on different classifiers.
3Tt will be seen from the literature survey that a multitude of feature selection methods exist.
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1.2 Layout

In Chapter 2 the reader is presented with the background on pattern recognition and classi-
fication theory. This leads directly to a discussion of the problem of dimensionality and how
it manifests itself in different types of classifiers. The last section of the chapter is concerned
with explaining different types of search strategies. These strategies address a primary prob-
lem in feature subset selection techniques when the number of features becomes too high for

exhaustive searches of all subsets.

Chapter 8 goes on to discuss some background on the major types of techniques used for
feature space reduction. Firstly, two of the main extraction techniques are described. Some
of the advantages and disadvantages of the two techniques are discussed, and it is shown that
a need for feature subset selection does indeed exist. The next section of Chapter 3 describes
some of the basics of feature selection, and details a literature survey of work done in this
field. From this survey two promising methods are identified, and a need for work in the field

of feature selection for neural network classifiers is shown.

Chapter 4 details how the information theoretic concept of mutual information can be applied
to the feature selection problem. Some implementation details are also discussed, and a simple

example problem is shown to illustrate the concepts.

In Chapter 5 the reader is introduced to the Gamma Test. This technique has some interest-
ing theoretical origins, and has been used previously on feature selection in other scenarios
of neural network applications. The method is discussed and applied to some explanatory

examples, allowing a deeper understanding of the concepts involved.

The last method to be evaluated is also the only wrapper* technique applied to the problem.
The Random Artificial Neural Network is introduced in Chapter 6 as a neural network method
that is fast enough to handle many evaluations of the feature selection criterion function, and
is thus well suited to address the needs identified in Chapter 3.

Chapter 7 discusses the experiments and comparative tests that were performed using the
three different methods. Each experiment is explained and a discussion follows the tabulated

results of every experiment.

Instead of giving a code listing as appendix to the thesis, it was decided to make the code
that was used available on a CDROM. Therefore, Appendiz A details the directory structure
of the CDROM, and highlights some of the more important files. The CDROM also contains,

in PostScript format, many of the papers referenced in the thesis.

4See Chapter 3 for details on wrapper techniques.
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Chapter 2
Background

This chapter highlights some of the background theory and ideas required for understanding
the concepts used in later chapters. An overview of some classification theory is given In
Section 2.1. A few different types of classifiers are also described. The next section discusses
the problem of the curse of dimensionality in more detail. The section considers some of the
ways in which this problem manifests itself in different classifiers and also references some

literature concerned with this subject.

The last section of the chapter reviews some standard search algorithms. These algorithms are
used in many feature selection techniques when the number of features become exceedingly
high. The search techniques employed in some of the experimental work of Chapter 7 are

pointed out.

2.1 Classification Theory

Since the early beginnings of the fields of pattern recognition and decision theory, many dif-
ferent techniques have been developed to automate the process of classification. The different
methods all have their own angle of attack to the problem, but have the same goal in mind:
to classify mew examples not yet seen by the classifier with the highest possible degree of
accuracy. Unfortunately, there does not exist a perfect measure for the accuracy of classifi-
cation systems, especially since the degree of accuracy is supposed to be measured on unseen
examples. However, it is widely accepted that there does exist a method which, if imple-
mentable, can build the optimal classifier for any problem. This technique, which also forms
a solid basis for understanding the key concepts in classification theory, is discussed first. The
drawback of the method however, is that it is almost impossible to implement perfectly and

therefore can serve only as a guideline for the obtainable accuracies of classification systems.

7



8 BACKGROUND

2.1.1 The Bayesian Basics

The field of probability theory brought to the problem of classification an approach called
Bayesian inferencing. This approach is based on the assumption that the problem can be
posed in purely probabilistic terms, and that the probabilities of all the different events are

known.

The Bayesian approach will be demonstrated by an example with notation similar to that of
Duda and Hart [18]. Suppose we want to predict whether tomorrow will be a sunny or rainy
day. Because of the random nature of this prediction, we let the random variable w denote
this state of nature. Next, define w; to represent the class of sunny days and ws that of rainy

days.

In the Bayesian approach we assume that we have some a priori knowledge about the prob-
ability of occurrence of these two classes. Let the a priori probability of class w; be P (w1),
and that of class wg, P (w92). The a priori probabilities could have been gathered by recording

the occurrences of sunny and rainy days during the last year.

Suppose now that we want to make a prediction about tomorrow’s weather. The most logical
decision rule (knowing nothing but the a priori probabilities we collected) would be to say that
tomorrow would be sunny if P (w;) > P (w2) and that it would be rainy if P (wg) > P (w1).
At this point, we would now be choosing the class of highest probability for all consecutive

days, even though we know that both sunny and rainy days occur.

To improve upon this situation, we could try to make some measurements about the current
climate conditions in order to make our forecast. Suppose we gather daily the three mea-
surements of highest temperature, average humidity and average wind direction. Considering
this measurement vector (feature vector) to to be a random vector x we can now use this
information to find p (x|w;);_; 5 for both classes. This is known as the conditional probability
density functions of the classifier. In the example, these densities represent the probability

that a certain measurement vector occurs, given the day is sunny or rainy.

Knowing this information allows us to use Bayes’ Rule:

p (x|w;) P (w;)

P (wi|x) = p(X)

(2.1)

where )

p(x) =) p(x|wi) P (wi). (2.2)

=1

P (w;|x) is called the a posteriori probability.

It can be shown [18] that the minimum average error decision rule can now be created by
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choosing w; when P (w1|x) > P (w2|x) and vice versa.

This explains the basic principals of Bayesian inferencing. It is generally agreed that the
Bayesian classifier is the optimal classifier that can be built for any given problem with known
priors and conditional densities. If other risk factors have to be built into the classifier, it can
be done by scaling the a priori probabilities in the correct manner. The resulting classifier is

then called the minimum risk classifier.

The practicality of the Bayesian approach is however very disputable. This dispute is caused
by the fact that almost no real-life problems have well-defined or well-known conditional
densities and a priori probabilities. In most cases it is very difficult, if not impossible, to

obtain this information perfectly from the data gathered for the problem.

In an attempt to overcome this problem, many different techniques have been developed.
These techniques either base their decisions on estimates of the conditional or a posteriori
density functions, or try to avoid making these estimates at all. The methods developed to
overcome the unknown density problems have, in the literature, been categorised into two
main categories, namely parametric and non-parametric techniques. The following sections

will discuss some of these different techniques.

2.1.2 Parametric Techniques

The fact that the optimal classifier cannot be built in most cases has the implication that
the designer of a classification system has to estimate, in some way, the unknown density
functions. In parametric classification techniques, this is done by first choosing an analytic
form for the distributions, and then estimating the parameters describing these distributions
from the data being used. The choice of which exact form of distribution to use is made
based on samples drawn from the distributions and on the experience of designer of the
system. Another choice that has to be made by the designer is whether to try and model the
a posteriori density functions or the conditional density functions. A discussion on this can
be found in [46].

In most cases the choices of the forms of the density functions are kept as simple as possible,
and standard distributions like the multivariate normal distribution are assumed. Returning
to the previous example, the conditional probabilities for the measurements of average daily
humidity, maximum daily temperature and average wind-direction might be considered to
be normally distributed, each having some mean value, and some variance. If we denote

2 2
Ttemp a0d 0g;., We

the mean values as [ipymid, btemp and pgir, and the variances as a,%mm-d,
would know have twelve parameters describing the conditional densities (six per class). These
parameters would then be estimated using techniques like the maximum likelihood estimate

[46, 22].
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After the gathered data is used for estimating these values, we would then plug the estimated
conditional distribution into equations 2.1 and 2.2, and again use the decision boundaries

from that procedure to do the classification.

By only estimating the variances of each feature and not finding covariances between the
different features it has in this example implicitly been assumed that the features were inde-
pendent. These correlations might adversely affect the accuracy of our models, and corrupt
our final decisions. There could for example be a high degree of correlation between our
measurements of temperature and humidity, and this would not be reflected in the model of

the system.

Model complexity is one of the big issues in the design of all classifier systems. In many
real cases models are kept very simple, even though the designer of the system knows this
assumption to be far from the truth. The rationale behind this apparent disregard for the
complexity of the problem comes from a trade-off in estimation techniques. This trade-
off involves the number of estimated parameters and the accuracy with which they can be
estimated, and is known in the parametric estimation literature as the bias/variance trade-off.

It will be discussed in a bit more detail as part of Section 2.2.

From the above discussion it can be seen that classification methods using parametric tech-
niques are in many cases very dependent on the type of data being looked at, and require a
lot of expert knowledge and interaction in designing and setting up these classifiers. Other
objections that have been lodged against these methods are that the simplistic models used
in these methods sometimes oversimplify the problem, giving bad results in real applica-
tions. Further difficulties arise when the techniques discussed here have to be applied to very
high-dimensional problems, because humans are not very well adapted to visualising data in
such high-dimensional spaces. This brings about problems in deciding the exact forms of the

different distributions.

The factors mentioned above do not imply that there are not a vast community of statisticians
that use them daily to design classification systems. However, these factors have come into
consideration in deciding what type of classifiers to use in the work presented here. As will
be seen from the literature review, most feature selection techniques require that computer-
human interaction be kept as low as possible during the search for feature subsets. The fact
that some of the other techniques, like neural networks, allow much easier adaptation to

problem situations, make them more suitable for use in feature selection systems.

2.1.3 k-Nearest Neighbour Classifiers

In non-parametric techniques, the classifier does not explicitly make an attempt to determine

the unknown probability density functions, but rather to estimate good decision boundaries
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directly from the data. This is done by using the collected samples in some manner in order

to decide where the decision boundaries should be placed.
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Figure 2.1: Illustration showing simple k-nearest neighbour classification

One such type of classifier, illustrated in Figure 2.1, uses only the nearest neighbours of
the new measurement to decide to which class this measurement should be assigned. This
technique is known as k-Nearest Neighbour classification. In this technique the class label w
assigned to a feature vector is based on the class occurring most frequently in the k£ nearest
neighbours of this vector. The nearest neighbours are found from points that were already
labelled by the designer of the system. In the figure it is seen that, if using a 3-nearest
neighbour technique, the new point would be classified as belonging to class 2, since two of

the three nearest neighbours to this point were labelled as class 2.

The basic idea on which the success of this classification technique is based, is that measure-
ments lying close in input space in most cases have the same class. It therefore makes sense
to use some kind of distance measure in the input space, finding the closest neighbours to
the point to be classified, and basing the class decision on the labels of these neighbours. In
many cases the distance measure is based on the Mahalanobis distance (see [18]) instead of
normal Euclidean distance, in order to remove the dependence of the distance measure on the

variance differences in the different features.

One of the problems in k-nearest neighbour techniques is to estimate a good value for k.
Basing the decision boundaries on too few neighbours cause too much local variation in the
decision boundaries. On the other hand, having too many neighbours prevent the decisions

from being adaptive to local changes in the data.

Although the k-nearest neighbour technique does not explicitly estimate density functions,
the method does in fact build a piecewise constant model of the posterior distributions. Ripley

[46] illustrates this fact through some examples, and it is also shown in Duda and Hart [18].

It has been proven [18] that nearest neighbour approaches are close to optimal when the
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number of labelled training data points become very high. In fact, it is proven to be no
worse than twice the minimum Bayes error as the number of such points tend to infinity [18].
This has made nearest neighbour approaches one of the standard techniques with which other

classifiers are compared.

There exist some arguments that nearest neighbour classifiers are highly affected by input
dimensionality problems. This was seen in some of the experiments conducted in this work,

and will also be discussed in Section 2.2.

2.1.4 Artificial Neural Networks

A second classifier approach historically falling into the mould of non-parametric classification
techniques is that of Artificial Neural Networks (ANNs). In recent years these types of
classifiers have gained mixed support from scientists working in the field of classification
theory. Newcomers to the field often use these classifiers as quick-fix answers to the problem
at hand and expect them to perform miracles. Like all classifiers, ANNs do however suffer
from some drawbacks. They can be highly susceptible to over-fitting and are not transparent

to the user, thus making their performance for unknown data somewhat unpredictable.

The ANN was inspired by the chemical functioning of neurons in the brain, but has since
grown into a field that is not highly related to its biological origins. The first ideas on ANNs
were developed in the early 1960’s by Widrow & Hoff and Rosenblatt (for references see Ripley
[46]). In the mid 1980’s the field was revived and suddenly started receiving attention from,

and finding application to, many areas of research.

The main ANN in use today is known as the feed-forward ANN. According to Ripley [46,
p.143] it consists of a network of units each of which has one-way connections to other units
in the network. Each unit takes as input some value, performs a function on this input, and
outputs the calculated value. The units are arranged in layers so that each unit is connected

only to units in a later layer. A sample network is illustrated graphically in Figure 2.2

Every unit in the network takes the sum of all its inputs to form a total input z. The unit
function f is applied to z which forms the output y. This is propagated through the output
connections by multiplying the output y with the weight wy of each connection on the output

of the neuron. In many networks each node is provided with a constant (bias) input.

The network shown in Figure 2.2 can thus be represented by'

yr = fr (ak + Z Wik fj (aj + Zwuwz)) (2.3)

'Here i, j, k denotes entities in the first, second, and third layer respectively
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Figure 2.2: The feed forward artificial neural network structure.

The input units to the network are normally just used to distribute the input data and there-
fore have linear transfer functions. The second layer of the network are normally called the
hidden layer and mostly have either linear, sigmoid or hyperbolic tangent transfer functions.
The output layer can sometimes contain a step function (especially when used in the context

of classification theory) but this is usually not shown explicitly in the model.

The general model can be extended in several ways not discussed here. These include different

transfer functions, feedback connections, inhibitory connections, and more.

Artificial neural networks have the ability (when given enough hidden neurons, even with only
linear transfer functions) to approximate any function arbitrarily well (see Ripley [46, p.147]
). The purpose of an ANN in classification theory is therefore to find some function that
forms a well-suited decision boundary between the different classes of the problem. Using
non-linear transfer functions, these networks can sometimes give surprisingly good results on
some data sets. This has led many people to blindly use neural networks for every problem
at hand.

In order to find the decision function that suits a particular problem well, the idea is to adjust
the weights w;; and wj;, in order to minimise some criterion function (typically Minimum
Mean Square Error). Many algorithms have been developed for doing these adjustments of
the weights. The first rather successful approach was that of back-propagation. After this
many other algorithms and modifications ware made, and at present a multitude of these
algorithms can be found in most neural network software packages. A discussion on some

algorithms can be found in Ripley [46] and Haykin [24], and some implementations of these
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algorithms are found in [15].

It must be stated that many of these algorithms take a very long time to find a solution
to the problem, and even then, these solutions do not imply optimality (a local optimum is
mostly found). Furthermore, ANNs suffer from what is known as over-fitting: The decision
boundary created by the neural network might be very good at separating the training data
classes, but when new data is presented to the classifier it struggles to generalise. This is a
problem very similar to the over-fitting problem in function estimation by polynomials: If the
degree of freedom of the polynomial is too high, the fitted function represents the data well,

but does not interpolate smoothly between points.

It is therefore necessary to search not only for the optimal weights, but also for the opti-
mal network structure when designing ANN classification systems. The number of inputs
and number of hidden neurons jointly determine the number of parameters that has to be
estimated in building the classifier?. This implies searching for both the optimal number of
hidden neurons and the best inputs to use with the network. Thus, it is seen that neural net-
works also call for some method of feature subset selection to decrease the number of inputs,

and thereby (perhaps?) the number of parameters to be estimated.

A major problem in searching for different network topologies is that it is very difficult to
train neural networks very quickly. This will be discussed further in the next chapter as well
as in Chapter 6.

2.1.5 Other Techniques

The field of pattern recognition has, of late, become a vast field with many new ideas being
added in recent years. The techniques for classification mentioned thus far are not at all
a full representation of all the available methods. Many of the feature selection algorithms

discussed in the literature survey of the next chapter use other classification techniques.

Of these, the two outstanding classification techniques worth mentioning here are that of
decision tree classification and fuzzy logic inferencing. Decision tree classifiers use a rule
based approach for finding different classes from the data. The computer sets up these rules
automatically by building, from the training data, a decision tree structure that, if followed

for new examples, will hopefully give the correct class for the data. These algorithms are

%It can be seen that the terms parametric and non-parametric classifier are not totally apt for distinguishing
between the different classification techniques. In a sense, neural networks are also parametric in that they
have many parameters to estimate. The different classifiers should rather be categorised to show whether they
estimate density explicitly or not.

3Decreasing the number of inputs might, in some cases, lead to a more difficult problem which needs more
hidden nodes to solve. This will, however, only be apparent after investigating the effect feature subset selection
has on the network.
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best suited to cases where the input variables are discreet, non-noisy inputs. Some of the
techniques have however been extended to continuous cases. This field of recognition is also
known as syntactic pattern recognition. A interesting discussion on these types of classifiers

can be found in Ripley [46].

The use for these types of classifiers is most common in areas where human understanding
of the classification approach is essential. The path followed to every decision through the
decision tree can be reconstructed, and thus erroneous classification can be ascribed to certain

nodes in the decision tree.

The reason so many feature selection systems in modern literature use these tree based classi-
fiers seems to be the fact that different features can be tested by pruning of the decision trees,
and the effects of including certain features can easily be investigated. The work presented
here, however, does not include the use of these classifiers, due to the fact that many of these
methods cannot handle noisy continuous features* (features that can have many values for
the same class, and also show class overlap in the input space) and that recent comparisons

amongst these methods already exist in the machine learning literature.

Another field of classification techniques is that of Fuzzy Logic Inferencing [26, 35]. The
idea behind these systems is to use fuzzy reasoning in order to find appropriate class labels.
Classes might be labelled by the degree to which they belong to that class instead of using
hard labelling. Inputs are also made to indicate the degree of membership to a certain rule.

A summary of fuzzy logic pattern recognition falls beyond the scope of this introduction.

Implementing all of the classification schemes for every problem would be an impossible task.
However, many people are of the opinion that applying a different technique normally does
not imply a sudden leap in the classification accuracy. For this reason it was decided to use
only the neural network and k-Nearest Neighbour techniques in the experiments presented
here. At the end of Chapter 3 and in Chapter 6, other reasons for investigating the neural
network approach are pointed out. The k-Nearest Neighbour approach is used as a reference

for comparing the results obtained using the neural network technique.

2.2 The Curse of Dimensionality

Although there exist such a multitude of different classification techniques, one thing that
stays common to all is the fact that they must infer knowledge from the same inputs if used

in the same situation. This inherently leads to an underlying fact that all of these methods

4This does not mean that there do not exist extensions to some of these algorithms which are able to handle
noisy features. It implies simply, that most of the feature selection methods reported in the machine learning
literature do not handle noisy features.
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are affected in some way by the dimensionality in which the knowledge inferencing is done.

In many practical situations it is found that a large number of input measurements are made
from the process that needs to be categorised or classified. As was stated in the introduction,
the reason for this is the human instinct to think that more information leads to more accurate

decisions.

Looking at the Bayesian approach to classification, there are some theoretical results that
support this intuition. One such result stated in [18] comes from the two-class multivariate
normal problem. Assume that the input features are statistically independent, and the con-
ditional density function p (x|w;) is normally distributed with mean p; and covariance matrix

Y. If the a priori probabilities are equal, it can be shown [18] that the average probability of

1 o0 1,2
P(e) = —= 2%d 24
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error is

where r is the Mahalanobis distance

r? = (1 — )" B (1 — o) - (2.5)

From this it can be seen that P (e) decreases as the distance r increases, approaching zero
as r approaches infinity. For the case of statistical independence between features, 3 is the

diagonal matrix with the variances 02,03, ...,02 along the diagonal.

This then changes the Mahalanobis distance to
g —pp
1= Mf2
r2=3" <7f L ) (2.6)
f=1 gf

From Equation 2.6 it can be seen how each feature contributes to the probability of error.
The most useful features have large differences in mean relative to the standard deviations.
It can also be seen that, for this multivariate normal case, adding any independent feature
which has a difference in mean for the two classes will reduce the probability of error slightly.
Thus repeating this procedure indefinitely will allow the designer to make the probability of

error as small as necessary.

By this and many other observations, it has been argued that adding any feature to the
optimal Bayes classifier can only improve the performance of the classifier. Features adding
no new information will just be ignored, and those that add information will help to decrease

the error rate of the classifier.

®The Mahalanobis distance measure is sometimes used instead of normal Euclidean distance. Mahalanobis
distance is used because it normalises distances according to the variances along the different dimensions,
thus taking out effects of variance differences amongst different features. The distance measure also has the
advantage of taking correlation amongs variables into account.
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In practice however, a different picture has been found. It has been observed in many problems
that beyond a certain point, the inclusion of more features causes a performance decrease
rather than increase. This problem has been observed in many fields of study. Kittler [28]
refers to it as the peaking phenomenon. The field of density estimation calls it the curse of

dimensionality [49] and Duda and Hart refer to it as “Problems Of Dimensionality” [18].

Several attempts have already been made to try an explain how and why this counter intu-
itive effect occurs. In statistical estimation theory, it is sometimes related to the so-called
bias/variance trade-off [21, 22, 46]. It has been shown that for fixed data size, there exists
a trade-off between the accuracy with which parameters can be estimated, and the number
of parameters estimated. In pattern recognition, this has an effect on the size of the input
space that can be handled, since every feature that is added to this input space brings with it
more parameters to estimate. In the parametric methods the covariance matrices that have
to be estimated grow rapidly in size. In neural networks, more weights have to be calculated
from the available data. In Bayesian techniques, the estimation of the probability density
function has to be carried out in higher-dimensional spaces, also adding more parameters to

be estimated.

The k-Nearest Neighbour approaches are another set of classifiers prone to suffer from dimen-
sionality problems. This can be seen by looking at the distance between any two points in
feature space. If we consider adding another feature, then under most distance metrics the
distance between the two points can only increase (or at best stay constant) after adding this
new feature. If this feature contains a high degree of noise, it will affect the distance measure

between all points in the space. Many such features will eventually sow havoc in the classifier.

It is believed that all modern day classifiers suffer in one way or another from this curse of
dimensionality. The book by Duda and Hart [18] has an interesting discussion of the problem:
They include a result from earlier authors describing an analysis pertaining to the class of
all classification problems, and show that if the number of samples for any given problem is
fixed, there exists some point after which increasing the number of features has a negative

effect on the error rate of a classifier.

According to Jain and Chandrasekaran [25], for the two-class multivariate normal problem
there exists a condition that can indicate whether the peaking phenomenon will occur. They
show that, to avoid peaking, the minimum Mahalanobis distance between two classes should
increase more than a certain threshold every time another feature is added. This threshold is
proportional to the number of samples in the data set, the number of features already present,
and the within-class scatter added by the feature. In a sense this implies that the new feature
should, on average, add more distance between the classes than it adds to the within-class
scatter. This result has not been extended to non-normal cases, and it has to be pointed out

that estimation of the normal densities is also erroneous if the number of available samples
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is too small, thus making the result somewhat impractical. Jain and Chandrasekaran also

discuss some of the effects of the peaking phenomenon on k-Nearest Neighbour classifiers.

The effect of dimensionality has also been studied in some detail in the field of density
estimation. Scott [49] contains a whole chapter illustrating some of these effects on probability
density estimates. It is argued that kernel density estimation techniques cannot be used in
high-dimensional spaces with a high rate of success. This is mostly due to the sparseness of
data in high dimensions. The effects of this problem on some simple examples from the field
of density estimation is also investigated. Another interesting example is found in Fukunaga
[22], where it is shown that the sampled multivariate Gaussian density function shows some

peculiar behaviour in high-dimensional spaces.

One of the biggest hurdles to understanding this problem is that it mostly does not occur in
simple two dimensional cases, and it becomes very difficult to visualise in higher-dimensional
spaces. However, the existence of this problem is one of the main thrusts for research such as
the work presented here, that aims to reduce the effects of the problem of high-dimensional

spaces on pattern recognition tasks by reducing the input dimensionality.

2.3 Search Algorithms

Most feature selection algorithms have to employ some method of searching the space of input
features. When the number of features becomes exceedingly high, exhaustively testing all
combinations of inputs becomes computationally expensive, causing the required run-time of
tests on all subsets to become prohibitive. For this reason many selection search routines have
been developed, some specifically for feature selection, and some from general formulations

of search algorithms for optimisation.

2.3.1 Greedy Search Methods

Many “greedy” search methods have been developed in the field of feature selection. These
techniques find good, but non-optimal sets of features. The methods are sometimes called
“greedy” methods because they prevent access to some points in the search space and mostly

find only sub-optimal solutions.

Forward Selection and Backward Elimination

Forward Selection starts out by assuming the empty set as the starting set of features. Next,

the best feature according to some criterion is added to this set. This process is continued
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until a preselected number of features has been reached, or some other stopping criterion has

been satisfied.

In Backward Elimination the above process is reversed. Starting with the full set of features,
the worst feature in the set, according to some criterion, is removed. The process is continued
until the stopping criterion is reached, which can again either be a pre-specified number of

features, or some other evaluation function.

Plus 1- Take Away r Search (+1—r)

These methods are based on that of Forward Selection and Backward Elimination, but were
designed to improve some of their bad characteristics. The problem with strictly sequential
methods are that some of the nodes in the search space becomes hidden after a selection has
been made. Representing the chosen features with a 1 and non-chosen ones with a zero, it can
be seen for example that after selecting 0100 as the first node with Forward Selection, any
nodes containing a zero for the second feature cannot be visited. This has the adverse effect
that complex interactions between features cannot be investigated, which is particularly bad

in the case of non-independent features.

In the 4+ — r method, higher orders of interaction are considered by allowing features to be
added to, and removed from, the currently selected set. For example, if the process is started
with the empty set, the first step is to add the [ best features according to some criterion, and
then to remove r of these features by investigating some interactions in the newly selected
ones. This process is then repeated until the needed number of features is reached, or some

other stopping criterion is met®.

2.3.2 Branch-and-Bound Technique

The branch-and-bound technique [41, 28, 22] is a search technique developed for exploiting
monotonicity in criterion functions. The technique was specifically formulated for selecting
the optimal subset of known size s from a feature set of size F. The method is guaranteed
to find the optimal subset of this known size for criterion functions that adhere to the set

inclusion monotonicity principal described below (see also [22]).

If we denote a candidate feature set that contains s features as y;, then the monotonicity

criterion implies that for nested sets related by

X1 C X2 C ... C Xs C ... C XF (2.7)

5The process can also be reversed by starting with the full set of features.
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the criterion function J (xs) used for selecting the features must satisfy

J(x1) < J(x2) < ... <J(xr)- (2.8)

The branch-and-bound algorithm works by excluding from the evaluations all subsets of x;

once this set was found to be worse than the previous best set.

In many cases even using this technique might become computationally expensive. For exam-
ple, if the size of the feature subset is not known beforehand, the test must be performed for
a number of different sizes. Another difficulty is that many criterion functions do not satisfy
the criterion of Equation 2.8. This is true especially for the “Wrapper” approaches discussed

in the next chapter.

2.3.3 Stochastic Search Methods

The field of stochastic optimisation brings to feature subset selection yet another technique
of searching for the optimal set of features. Stochastic search techniques are based on the
notion that, in many search spaces, the optimal set lies close to other sets that also perform
well. The basic idea then is to randomly span the search space with evaluations, and then

search more closely in areas that contain the most promising results.

Genetic Algorithms

One such stochastic technique comes from the field of Genetic Algorithms (GA’s). These
algorithms were developed by J. H. Holland in the 1970’s. They stem from the concept of
natural selection, the biological process by which stronger individuals have a better chance
of survival in a competing environment. A short description of how these algorithms can be

used in feature selection follows. For a more detailed discussion on GA’s see [38].

Again, we represent a trial solution to the problem as a binary number, with a 1 representing

a selected feature and a 0 representing a discarded feature.

The algorithm starts by randomly selecting a population of such binary numbers of length 7
F. Each member of the population is then evaluated using the criterion function. The next
step is to select from these solutions a number of “parents” that will be used in finding new
trial solutions. These “parents” are selected so as to represent the “best” solutions to the

problem found in the current population.

Next, the “parents” are used in a recombination process to rebuild the population. This

"As before, F' denotes the number of features in the full set.
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Figure 2.3: The single-point cross-over process used in standard genetic algorithms

is done by using the “parents” in pairs, and building new solutions as combinations of the
“parents”. An example of such a recombination shown in Figure 2.3 serves as a description of
this process. The cross-over point is normally selected at random during the recombination

process.

After recombination, a process called mutation is sometimes performed. This has the effect

of altering, with a certain probability, some of the bits in the encodings.

The newly created population is then evaluated on the criterion function again, and the “best”
members of the whole process forms the new population. From here the process starts afresh
and is normally performed until the population has converged to some individual considered
to be the optimal solution for that run. This solution is not necessarily the optimal solution

for the test function, but forms a “good” solution to the problem?.

Population Based Incremental Learning

In recent years a lot of criticism has been lodged against Genetic Algorithms, and other
algorithms which stand in opposition to the GA have been developed. Much of this criticism
come from the fact that the recombination operators used in GA’s have certain biases which

cause the search to be biased towards particular areas of the search space.

Efforts have therefore been made to remove the genetics from genetic algorithms. One such
algorithm is Population Based Incremental Learning (PBIL) [4]. This algorithm takes a more
probabilistic approach to the problem.

The algorithm as described in [5] is:

8 As previously stated, the description of the GA given here serves only for illustrative purposes. For more
detail on the exact algorithm see [38].
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1. Initialise the probability vector to its equal state.

The probability vector is a vector that contains, for every feature, a value stating the
probability that the feature should be included. For example, if we have ten features

then the initial probability vector will be:
Py ={0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5}

2. Generate a population using the probability vector and evaluate each member using the

criterion function
3. Find the best solution xpest in the population

4. Move the probability vector towards this best solution by adjusting the probability

vector as follows:
Pf(z) :Pf(i)+(1'0_a) + Xbest * O
For example, if the best feature set found in the first population of the ten feature

example was 1101010110, and the learning rate was o = 0.1 then the new probability

vector after the first execution would be

Py = {0.55,0.55,0.45,0.55,0.45, 0.55, 0.45, 0.55, 0.55, 0.45}

5. return to step 2

The algorithm works by searching with a higher and higher probability in the space around
some good solution, and in the end converges when the probability vector contains only values

very close to 1 and 0.

This algorithm has been shown to perform very well on problems for which genetic algorithms
should have been more suited [5]. For this reason an implementation of PBIL is used in some
of the feature set searches conducted on the criterion functions in this study”. However,
it must be stated that the main content of the work presented here was not focussed on
finding optimal search algorithms, but rather on finding applicable criterion functions for use
in feature set evaluation. For this reason, many of the problems were chosen to have few

enough features to be able to do exhaustive searches on the subsets.

The next chapter reviews some of the previous work done in the field of dimensionality

reduction and introduces the standard ideas used when performing feature subset selection.

9More detail on the exact form of the algorithm can be found on the attached CDROM.



Chapter 3

Feature Extraction and Selection

The introduction and background have shown that the need exists for finding a lower dimen-
sional representation from a set of input features. This representation should contain only
the most relevant information needed for classification purposes. In this chapter some of the

previous work from the literature on lowering input dimensionality is investigated.

Section 3.1 gives a brief introduction to the field of feature extraction. Standard methods are

discussed and their advantages and drawbacks are shown.

Owing partly to some of the disadvantages of feature extraction and partly to engineering
constraints, the next section discusses the need for feature selection techniques. It is shown
that in some cases feature extraction is not an ideal solution. Feature selection techniques

can then be used to build more robust classification systems.

Section 3.3 first presents a system diagram of the standard feature selection techniques, fol-
lowed by a survey of previous work in the area of feature selection. Instead of being a
fully chronological discussion of the different methods, the section first gives some historical
details and then divides the methods into several different categories, depending on the ap-
proach employed in each method. The first broad categorisation is that of wrapper and filter
approaches (as proposed by [30]). Wrapper approaches are those approaches that use the
apparent error-rate of the classifier for determining the best subsets. Filter approaches use
some other measure of class distance or separability to determine the best subsets. Both of

these methods have their advantages and disadvantages, some of which are discussed.

The chapter ends of with a discussion of some of the properties considered to be important
for the work presented here. This discussion leads to the three methods that were finally

chosen for deeper investigation.

23
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3.1 Feature Extraction

The field of feature extraction is concerned with analytic methods for finding transformations
of the input space that lower dimensionality and improve classification accuracy. As will be
shown in the next two sections, there exists a subtle difference between finding transforma-
tions that represent a certain data set well, and finding transformations that discriminate
well between different classes. When trying to find transformations for pattern recognition
purposes, they should be selected not to represent the data well, but to keep the discriminative

information of the data intact.

In literature, however, both methods using representative biases and those having discrimi-

native biases are used to build classifiers with smaller input dimensionality.

3.1.1 Principal Component Analysis

One method for finding reduced dimensionality input spaces that only contains the most
expressive features is that of Principal Component Analysis (PCA) [27, 22, 56]. The analysis
can be performed using a transformation known as the Karhunen Loéve transform (KLT)
[36].

If we represent the feature vector as a random vector x, the KL-transform of the input space

is defined as the solution to the eigenvalue problem
A =3T5d (3.1)

where ¥ is the covariance matrix of the random vector x!', ® is the eigenvector matrix of ¥

and A is the corresponding diagonal matrix of eigenvalues.

In PCA an approximate solution to this problem is found. Only those eigenvectors corre-
sponding to the n largest eigenvalues are chosen. The new random feature vector can then

be written as
y = ol'x (3.2)

Here x = x — x is the mean-normalised input feature vector and ®,, is a sub-matrix of ®
containing only the eigenvectors corresponding to the n largest eigenvalues. The value of n

must be determined by the engineer. Several criteria for choosing n exist, some of which are

- the mean-square-error in representing the data

- using only eigenvectors of eigenvalues that are larger than some percentage of the of the

maximum eigenvalue.

!The covariance matrix is calculated from the combined data of the different classes.
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Principal component analysis can therefore be seen as a linear transformation y = 7 (x) of

variables to find the vectors that have the most influence on expressing the data.
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Figure 3.1: An example illustrating the use of principal component analysis and linear dis-
criminant analysis on a simple two feature problem.

Figure 3.1 shows the first principal component that would be extracted using this method
on a simple two-dimensional problem. From the figure it can be seen that the first principal
component is that vector which accounts for most of the variance in the data. However, if the
data is projected onto this principal component, it can be seen that it is impossible to find a
point along this vector which would allow complete discrimination between the two classes.
Thus the principal component does not necessarily give the best transformation of the data
if the aim is to discriminate between the two classes. The procedure presented in the next
section allows the optimal discriminatory features (in the sense of linear transformations on

unimodal normal distributions) to be found.
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3.1.2 Linear Discriminant Analysis

In Linear Discriminant Analysis (LDA) [18, 22, 56], the emphasis is shifted from finding repre-
sentative features, to finding discriminatory features. By using the within-class, between-class
and mixture scatter matrices, transformations can be found that maximise the discriminatory

value of a feature projection according to some criterion.

Define ¥ as a projection matrix which projects a feature vector x; into the most discriminating
subspace yielding the new vector w; = U¥'x;. To calculate ¥, first define the within-class

scatter matriz of the input data x as

c n
Swe =D (xj —mj) (x; —my)’ (33)
i=1j=1
Here, m; represents the mean-vector of the i-th class and n is the number of training samples
in the data.

Also define the between-class scatter matriz as

Cc

She = Z (m; — mg) (m; — mg)° (3.4)
=1

where m represents the grand mean vector?.

In order to find ¥ it is now necessary to assign a number to these matrices which, in some
way, will maximise the between-class distance whilst minimising the within-class distance.

One such example [56] is the criterion function

det Spe
det Sye

(3.5)

This ratio can be maximised by using as the row vectors for ¥, the eigenvectors of S!Sy,

with the largest eigenvalues.

Figure 3.1 shows the best discriminating feature found in this way for the simple two-
dimensional data set. From the figure it can now be seen that a projection of the data
onto this feature yields a set of points for each of the two classes which are completely sep-
arable. The linear discriminant vector therefore allows a single thresholding function to be
able to discriminate between the two classes. On this simple problem, and many other prob-
lems found in real life, linear discriminant analysis is much better than principal component

analysis at finding projections that allow the classifier to discriminate between classes easily.

2The vector of means containing the mean value of every feature, regardless of class, over all data, that is
mgy = F (x)
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This discussion points out a fundamental difference between dimension reduction techniques
used in pattern recognition, and compression techniques used in other signal processing appli-
cations. In most other applications, the aim is to find those values,parameters or projections
that have inherent ability to describe the data, with as few numbers as possible. In pattern
recognition, the aim is to find those features that best discriminate between the different
classes contained in the data, possibly even discarding information that is common to all

classes.

3.1.3 Other Methods

LDA is by far not the only method used in the literature for finding discriminative feature
transformations. Other methods include the use of non-linear analysis, and some methods use
no parametric approaches whatsoever. In one such method, Lee [34] uses the decision bound-
aries created by any classifier as a means of obtaining the necessary feature transformation,
and then builds a more optimal classifier using his newly designed features. An extensive

discussion on some other methods can also be found in Fukunaga [22].

3.2 The Role of Subset Selection

In view of the fact that there exist transformations which have the ability to effect substantial

reduction of input space dimensionality, a question that can arise is:
“Why then is there a need for feature subset selection?”

Although feature extraction techniques are good for finding discriminative feature sets, these
methods are still a far cry from being perfect for all problems. With LDA, the first restriction
is that the method only finds linear transformations, and that non-linear ones make the
approaches very difficult to optimise. LDA also relies on using estimates of the means and
variances of the data, thus implicitly assuming a unimodal distribution for each class in the
n-space of the inputs. This assumption might not be true and can thus yield very misleading
results. (See, for example, some of the cases in Fukunaga [22] where it is shown how LDA

can “misbehave”.)

Some other problems from the engineering point of view are that LDA does not allow the
classification engineer the luxury of still having the original meaning of the input features.
Also, if cost and speed is a consideration in the design of the system, these methods have

even more drawbacks:
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- the reduced dimensionality comes at the cost of having more processing in the pre-

classifier stage

- no single feature can be omitted totally from the inputs. This means that all the sensors
that were used in the experimentation stage of the system design must still be used when

the system is put to use.

Some of the present-day classifiers can also be considered to have, as their first stage, an
implicit feature extraction phase. This is particularly true of almost any type of artificial
neural network classifier. Sometimes using feature extraction can actually hamper the feature

extraction stage of a neural network classifier.

Feature Selection techniques do not suffer from some of these disadvantages. The original
meanings of features are retained, since only the irrelevant ones are eliminated. During
operation, there are no extra burdens on the computational side (the selection is done only in
the design stage of the classifier). The cost of the system is kept to a minimum by removing
transducers that are not necessary for the classification task. A further advantage is that many
feature selection algorithms do not make assumptions about the modality and distributions

of the input data.

Feature selection techniques can sometimes also be employed before doing feature extraction.
This is invariably necessary if the designer of the system does not have an idea of the relevance
of every feature that was extracted from the problem domain. The interplay between different
features may also result in peculiar results, where two features might seem to be irrelevant

by themselves, but used together they form a good sub-space for classification.

These, and other, considerations show the necessity in classifier design, to evaluate and con-
sider different subsets of the extracted feature set. Not only may this lead to higher classi-
fication rates, but perhaps also cost reduction in the implementation stage and more robust

classification.

3.3 Feature Selection in the Literature

The field of feature subset selection has been studied widely for many years. References in
the classical pattern recognition as early as the 1960’s can be found (see for example the
references contained in [28]). The subset selection problem shows a combinatorial increase in
complexity as the number of features is increased, i.e. the number of subsets to search equals
2" — 1 where n is the number of features in the feature set. This fact made the problem
very difficult to analyse in these early days due to the unavailability of high speed processing

power.
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Before discussing the literature, the different components of most feature selection methods
should be pointed out. A block diagram showing the components and their interactions is

shown in Figure 3.2.
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Figure 3.2: A block diagram illustrating the layout of most feature subset selection routines.

The two main components of most of the subset selection techniques are the search algorithm
and the criterion function. The search algorithm successively generates the next subset to be
evaluated, while the criterion function gives an indication of how suitable a specific subset
is for use in the pattern recognition system. In many of the early systems, the desired
dimensionality also formed an input to the feature subset selection system. In later research,
however, this practice was changed since it is thought that the subset selection algorithm

should be able to output the best embedding of any size.

The earliest methods were mostly concerned with using non-optimal selection/search strate-
gies such as forward selection, backward selection, and floating selection methods® [28, 22].
Furthermore, they were mostly concerned with the parametric classification methods, us-
ing Gaussian distributions and some model-based distance measure as criterion function. A
good introduction to these types of methods is found in Kittler [28]. In this article Kittler
presents a comprehensive summary of the earliest work done in this area. He discusses some
of the standard approaches, and categorises the different methods into sub-classes based on
the criterion function used (often some kind of distance measure) and the search technique
employed. The distance measures included probabilistic distance measures such as the Cher-
noff, Bhattacharya, Matusita and Patrick-Fisher distances, entropy measures and interclass

distance measures.

The problem of minimising the search space was addressed by methods that use monotonic

criterion functions and applied branch-and-bound [41] techniques. The branch-and-bound

3These were discussed in Chapter 2. The name floating selection is used sometimes to refer to the +1 — r
selection techniques.
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technique (as discussed in Chapter 2) was developed by Narendra and Fukunaga, and allows
the search space to be considerably reduced when a criterion function satisfying the set
inclusion monotonicity property exists. It was, however, soon realised that these methods
are not able to deal with the problem of the so-called peaking phenomenon, where the full
set of features does not give the highest value to the criterion function (and thus breaks this

monotonicity assumption).

With the advent of high speed computing power and the immense increase in the size of
databases, a more recent field of study, that of Machine Learning, also reached the stage
where feature subset selection techniques became essential. This lead to renewed research in
the area of subset selection, this time coming more from the area of soft computing. A survey

of techniques from this area can be found in Dash and Liu [14].

Many of the methods presented in [14] are however not totally applicable to the problem of
classification from the engineering point of view. These methods use a boolean perspective
on the problem, and only work with features that have non-noisy binary, discrete, or nominal
values. The survey in [14] shows many such examples. These methods include those that use
boolean consistency measures such as Focus [2] and methods which uses probability estimation
using binary histogram binning such as Lovell [37]. In fact, in the survey by Dash and Liu, it

seems as though only two of the evaluated methods are able to handle noisy continuous data.

With this historical background stated, some of the relevant methods will now be discussed

under the categories of wrapper and filter approaches as introduced by Kohavi in [30].

3.3.1 Wrapper Approaches

In the wrapper approach to feature selection, the apparent error rate of a classifier is used as
a criterion function for the feature subset being tested. The apparent error rate is calculated
by using a training sample from the data. The reason for the name “wrapper” approach
comes from the fact that the whole selection process is now wrapped around the classifier,
and almost becomes a little black box to be used (and abused) by anyone. Thus, instead of
the criterion function being some invented measure of goodness for every subset, the apparent

error rate is used to measure the performance of a specific subset.

The wrapper technique is the most intuitive and easily implemented method for doing feature
subset selection, and has therefore been studied widely in literature. The biggest problem
with wrapper methods are that they are very time consuming. The classifier must be trained
or rebuilt for every subset being tested. If the selection strategy then needs to perform an
exhaustive search of the feature space, it quickly becomes impossible to search more than
about 10 or so features (which already implies building 1023 different classifiers). For this

reason many of the wrapper approaches uses a search strategy other than exhaustive search
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in obtaining the best feature set.

The wrapper approach does however have a distinct advantage in that the technique guaran-
tees that the biases of the evaluation function and those of the final classifier being used are

the same. Filter techniques (as discussed later) do not have this advantage in most cases.

A discussion of methods employing different search techniques follows.

Greedy Search Selection Techniques

Most selection techniques from the Machine Learning field employ instance based decision

tree structure classifiers and greedy selection algorithms.

Caruana [10] employs a method that uses a hill-climbing search strategy and two decision tree
type classifiers to find more optimal feature subsets. The search methods employed include
forward selection, backward selection and floating selection techniques. It is widely known
that these selection techniques might sometimes wrongly occlude a part of the search space

because each step does not have access to all possible feature interactions.

Frasca [19] shows how Rough Set Theory can be applied to the problem. His method uses
a different induction algorithm than that of Caruana but compares results to the ones used
in Caruana. On data sets containing discrete features the results are better, but results
appear significantly worse on data sets containing continuous features. This suggests that
the method would not be suitable for continuous input pattern recognition problems such as

those investigated here.

Aha and Bankert [1] show yet another implementation of a case-based decision tree type clas-
sifier and a greedy selection algorithm. They argue that non-parametric case base classifiers
are good classifiers to use during wrapper tests because they do not need hand tuning of any
parameters during the search. They also support the argument of Kohavi in [29] that wrapper
approaches are superior to filter approaches because the inherent biases of the classifier to
be used are taken into consideration. Sommerfield [54] uses notions of strongly and weakly
relevant features also introduced by Kohavi in [29] and applies them to a best first search
strategy using decision trees. He then extends the search strategy using compound operators

that increase the chance of finding the optimal subset.

Decision tree induction algorithms are not the only induction algorithms used for feature
selection. Thawonmas [57] describes a method in which a fuzzy logic classification system
is used as the classifier being optimised. The number of exception regions contained in the
classifier is used as the optimisation function. According to [57] this can be directly related to
the increase in classifier recognition rates. A backward selection technique is employed, and

selection is stopped when a significant increase in error rates would occur, where significance
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is a user input to the system. The approach is novel in that it is the only one found in the
survey which uses fuzzy classification as a method of finding the best feature subset. The

employed backward selection search method does not ensure optimal subsets.

A reference on finding more optimal greedy search methods for feature set selection can be
found in Pudil et al. [45].

Stochastic Search Techniques

Quite a few references exist on using stochastic search algorithms in finding subsets better
than the full set. These techniques do not promise to give optimal results, but are ideally

suited to the problem due to the binary nature of the search space.

Vafaie and de Jong [61] explore the use of Genetic Search strategies in finding optimal feature
subsets for texture recognition problems. They develop an intuitive hypothesis explaining
the brittleness of Greedy Search Methods. Using a rule-based classifier called AQ15 and
Genetic Search they show that results more optimal than Sequential Backward Selection can

be obtained. A similar example can be found in Cherkauer and Shavlik [12].

In Smith, Fogarty and Johnson [53], the use of genetic algorithms is shown in building k-
Nearest Neighbour Classifiers. It is argued that sub-optimal criterion functions of much less
complexity can be used in the feature selection problem, as long as the biases are the same

as those of the final classifier being used.

The use of neural network classifiers as the criterion function is restricted by the long time
taken to train most of these classifiers. Stochastic search techniques usually require a few
thousand evaluations of the criterion function, which restricts the usage of neural networks as
the black box in the wrapper approach. Yang and Honavar [63] was the only paper found in
this survey which directly addresses this problem. They propose a neural network approach
using a network construction technique that limits the training time of the network and

present some promising results.

Other work showing the application of Genetic Algorithms to feature selection is that of
Gaborski et al. [23], Schlosser et al. [48] and Whitley et al. [62].

Other Approaches to the Problem

As was stated earlier, artificial neural networks are mostly too slow to use in the wrapper
search approach to feature selection. A different approach can however be taken. Instead of
searching through the input space, the input weights of the neural networks can be used to

find the importance of certain features. Setiono and Liu [50] show how the input weights of a
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neural network can be used to select features. Related methods can also be found in Messer,
Kittler and Kraaijveld [40] and in Kohavi, Langley and Yun [33]. A problem with many of
these approaches is that features with low input weights cannot always be considered to be
irrelevant. It must also be remembered that many neural network approaches implicitly use a
search strategy (such as back-propagation) in the weight space to find the best set of weights.
This implies that the set of weights is not optimal in most senses, since convergence to the
optimal set cannot be guaranteed. The larger the size of the input space given to the network,
the larger the size of this search space, thus making it even more difficult to find a measure

of importance of any feature from the weights of a neural network.

Cherkauer and Shavlik [11] propose another approach that uses the model built from the data
to decide which features are important. Their method uses a measure of the number of leaves
built by a decision tree algorithm. They argue that this method captures the “transparency”
of an input embedding, where “transparency” refers to the average complexity of accurate

models under a specific embedding.

Another novel approach to the problem is that of doing Context-Sensitive feature selection.
Here an extra degree of freedom is added, in that a feature is not merely added or deleted
from the best set, but that different features are used depending on the region of feature space
where the training example is found. The earliest work found is that of Turney [59]. He first
defines a definition of context-sensitivity and argues that many real world problems such as
medical diagnosis contain context-sensitive features. He defines five different ways of handling
context-sensitivity and explores three of these methods on some real-world problems. Several

types of classifiers are investigated and compared.

A second reference on context sensitivity is that of Domingos [17]. Domingos argues that many
“lazy-learners” are affected by the problem of context-sensitivity. “Lazy-learners” are used to
describe methods that delay the decision process by storing the learning samples instead of
building models from them. Domingos develops a learning algorithm using a clustering-like
approach that takes into account context of features during the learning phase. Promising

results are obtained, but not compared to other classification methods.

Perhaps an appropriate end to the list of wrapper approaches to feature subset selection would
be the comprehensive paper of Kohavi and John [30]. They compare different methods under
different circumstances, and show several interesting examples on feature relevance. It is
shown that the optimal feature subset does not always have to contain only relevant features,
and that all features that are relevant do not have to be in the optimal subset. The paper
also contains a rather detailed literature survey that might include references not mentioned

here.
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3.3.2 Filter Approaches

For classifiers that require a substantial number of parameters to be estimated or designed,
the wrapper approach to feature selection is not a viable option. For these types of classifiers,
the usual practice is to find some other criterion function that (hopefully) correlates well
with the obtainable classification rates. These feature selection techniques then either use
the same types of search strategies as discussed for the wrapper approaches or, if possible,
more optimal search strategies are implemented that do not have to search the whole space
of possibilities. This is especially true if the criterion function adheres to the set inclusion

monotonicity property.

A distinct advantage of these methods is that many of them are designed to be quite fast,
and full searches of the whole feature space can therefore be made to find the optimal subset

according to the criterion imposed.

Many of these methods date back to the late 70’s and early 80’s, but new methods have also
been added to those through the years. The work presented in Kittler [28] is a good reference
on the early methods. Kittler classifies the different methods into five different categories
and discusses each of these. Most of the methods require in some way the estimation of
the underlying probability density functions of the input distributions. Different distance
measures are then used to decide how well a specific feature subset can distinguish between
the different classes. Some of the more recent filter approaches will now be added to that of

the study given by Kittler.

Information Measures and Probabilistic Distance Measures

The methods coming from the field of information theory and from probabilistic distance
notions are closely related. Both these areas use some measure of the density functions of
the inputs to find distances in probability space between different distributions, and then use
these distances to give some measure of how easy it will be for a classifier to separate the

classes.

The method on which the first filter approach, presented in the next chapter, is based is that
of Battiti [6]. He uses the concept of mutual information to find the relationship between the
output variable and the input features. The paper first defines how the whole notion of mutual
information is applicable to the problem, and then goes on to discuss the practical problems
of implementing mutual information measures in practice. These problems are mostly related
to the problem of estimating densities in n-dimensional space. An approximate solution is
then suggested which is similar to the concept of forward selection, but which also looks at

the dependence of already chosen features to features being added next. The work of Battiti
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was later extended by Bonnlander and Weigend [9] and finally presented by Bonnlander in
his doctoral thesis [8]. He argued that the method used by Battiti for estimating the density
functions was incorrect and proposes using non-parametric kernel density estimation tech-
niques. He also makes the assumption that the number of training instances are “plentiful”,
and argues that the only method of finding the best subset when features are not independent

is either a full search, or some heuristic search approach.

Lovell et al. [37] present a method called Expected Attainable Discrimination in which the
Receiver Operating Characteristic Curves are used to find a measure of attainable discrimi-
nation for two-class problems. Their method is designed specifically for the area of nominal
variables such as those obtained by questionnaires and is not suited to the problem of con-
tinuous random variables such as is found in the types of classification problems investigated

here.

Novovicova, Pudil and Kittler propose a method in [43] that is based on the Kullback J-
divergence measure. This divergence measure is similar to the notion of mutual information.
They employ a method of estimating the density functions by finite mixtures of parameterised
densities. The method is in a sense similar to neural network techniques for finding the optimal
features by analysing the input weights of the classifier. In selecting the feature being used,
the method also yields the desired decision boundaries for doing the classification of future

examples.

In their work, Koller and Sahami [31] also investigate a method based on information theory.
As a distance measure they use the Kullback-Leibler distance. They argue that information
measures are better than divergence measures in high-dimensional spaces. They then present
from the field of probabilistic reasoning a Markov-blanket criterion which, according to them,
removes the need for a full search of all subsets. They argue that their approach has the
ability to find, by backward selection only, the most necessary features for classification.
Unfortunately the concept of the Markov-blanket is a difficult one to implement in practice
and several approximations have to be made which reduces the effectiveness of the method.
It is argued that their method is well-suited to very large input spaces (in the order of 1000
features) where, according to [31], most wrapper approaches become too computationally

expensive.

Methods using Separability Criteria

In his work with determining optimal embeddings for neural networks used in control applica-
tions, Koncar [32] uses a method called the Gamma Test which reportedly gives an estimate of
the variance of the model when building a continuous model from a sample data set. The idea

was first published by Stefinsson, Konéar and Jones [55]. In their work, they do not directly



36 FEATURE EXTRACTION AND SELECTION

apply the problem to classification, which in the end builds a continuous model, but discretise
the output. Application of this method to classification problems is analogous to methods
that uses within-class and between-class distance/separability measures. The method utilises
the average distance between nearest neighbours both in input space and in output space, and
uses a linear model derived from this as a measure of goodness for any particular embedding.
The method is similar to earlier interclass distance methods proposed in [28], but differs in

the respect that it does not directly use within-class and between-class measures.

In the technical report by Scherf and Brauer [47] a method similar to that of Stefinsson et al.
is used. This method, called EUBAFES, is based on a similar distance metric of inter-class
and intra-class distances. They argue that the normal inter- and intra-class methods fail to
find relevant features in problems of the XOR-type, and propose using a nearest neighbour
approach to solve this problem, which is very similar to the approach in [55]. However the
connection between model variance and the output of the Gamma Test is not found explicitly
in the work by Scherf and Brauer. In the work presented in Chapter 5, it is argued that if
this relationship does indeed exist, it would have profound effects, not only on feature subset

selection, but as a method for finding stopping criteria for artificial neural network training.

3.4 Discussion

The advent of high-speed computing has brought to the feature subset-selection problem the
advantage (or disadvantage) of a multitude of methods. The number of combinations between
evaluation criteria and search functions are endless. This makes it very difficult for anyone

working in the field to decide which methods to focus on.

The field of pattern recognition on noisy continuous variables does however bring with it
criteria that eliminate some of the methods. Methods based on discrete, non-noisy data
can not be used directly, and this disqualifies much of the work done in recent years by the

Machine Learning community.

The advantage of having a measure of the expected worth of features is one that is both
intuitively appealing and highly necessary. In many pattern recognition problems features
are designed by hand, and methods of knowing when the information provided by them is
enough to handle the problem would be of great assistance. This was one of the criteria used
upon deciding which types of feature selection methods to investigate. The fact that the
concept of Mutual Information satisfies this criterion makes it an obvious choice for finding
not only optimal subsets, but also an idea of the relative worth of different features. The

concept of mutual information feature selection is therefore investigated in Chapter 4.

Another method from the literature that seems to satisfy the above criteria is the Gamma
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Test method employed by Koncar in his work on feature selection for neuro-control. If proven
to be correct, his method does not only allow a measure of the usefulness of any specific
feature, but would give an estimate of the expected error incurred in building a continuous
model classifier when using a specific input embedding. This would be directly applicable
to most types of classifiers used in the literature. For these reasons, Chapter 5 investigates
the application of the Gamma Test procedure to the problem of feature subset selection for

classification.

The fact that most of the approaches seen do not explicitly allow the search of input spaces
for artificial neural networks is another area that calls for investigation. The scarceness of
literature on these methods is due partly to computational costs of training these neural net-
works, and partly to some other considerations such as the availability of applicable stopping
criteria and network size. In Chapter 6 it is shown that there does indeed exist a form of the
neural network which is applicable and has training speeds high enough to do full searches of

a number of features.

Comparisons between these different methods are made, and the suitability of every method to
the problem of feature selection is investigated. Similar to most other literature, the methods
are first shown to work on some hand created (and very easy) data sets, and are then applied

to real data sets from standard Machine Learning problems.
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Chapter 4

Mutual Information

In this chapter it will be shown how the information-theoretic concept of mutual information
can be applied to the feature subset selection problem. The work presented here is based in

part on work by Battiti [6] that was later extended and used by Bonnlander [9].

The mutual information method was chosen for investigation since it was one of the few
methods found in recent feature selection literature on filter approaches that seem to have
sound theoretic background. The method also has an intuitive appeal for the feature selection
problem. In the early literature [28], similar information-theoretic methods were applied to

parametric classifiers for the multivariate normal case.

Section 4.1 describes the theoretical concepts of mutual information. Thereafter some con-
siderations when implementing these concepts in the practical case are highlighted. This is
followed by a description of the mutual information feature rating algorithm. Before conclud-

ing, a simple example is given to illustrate the concepts discussed in the chapter.

4.1 Applicability of Mutual Information to Feature Selection

The concept of mutual information (MI) was developed in the field of information theory
(although some very similar probabilistic distance measures were also developed in the field of
statistical estimation theory). The derivation of the equations that describe how to calculate
MI is developed from the concept of entropy. It will be derived here using similar notation to

Cover and Thomas [13], but with the same emphasis on classification concepts as in Battiti
[6].

Starting with a discrete random variable X over an alphabet X, the entropy H(X) of this

variable can be defined as:

39
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- > p(z) log p(z) (4.1)

reX

with p(z) being the probability mass function defined on x € X'. This measure represents the

average uncertainty of the random variable X.

Also of interest here is the definition of conditional entropy. If another discrete random
variable Y is used as a measurement to reduce the entropy of the random variable X, the
definition of the conditional entropy H(X|Y'), which represents the uncertainty in X given
Y, is defined as

HX|Y) = = py)HX|Y =y) (4.2)
yey
= = py) D p(=zly) log p(=z[y) (4.3)
yey TEX
= > > »lz,y) log p(zly) (4.4)
yeY zeX

Adapting this to the process of classification, the random variable X can be viewed as the
class label and each event as being a different class label. If we denote this new random

variable with C' and write (4.1) for the two-class problem it becomes

2
H(C)=—)_p(c) log p(c) (4.5)
c=1

where the sum is now taken over the events of the two class labels!.

H(C) is now a measure of the uncertainty of the class label. By extracting features from
the process, an attempt is made to decrease the uncertainty about the class label. Let f
represent the vector of features that is extracted from the process, and Ny denote the number

of samplings made. We then have (from Equation 4.3)

H(C|F) = Zp (ZP(CIf) log p(CIf)> (4.6)

c=1

which represents the average uncertainty about the class label given the measurements f.

(Here, p(c|f) represents the conditional probability for class ¢ given the input vector f.)

The reduction of the uncertainty of the class label C' that is obtained by making the mea-

! Although only the two-class problem is discussed, the derivation would clearly be extendable to the multi-
class problem.
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surements f is given by

I(C;F) = H(C) — H(C|F) (4.7)

This reduction in uncertainty is also the definition of the mutual information I(C; F') between
the class label ¢ and the measurement vector f. The equation for the mutual information

between the class label and the input feature vector can now be written as

I(C;F) = H(C)—H(C|F) (4.8)
2
= = p(c) log p(c ( Zp (Z (c|f) log p(c|f))> (4.9)
c=1 c=1
2 Ny 2
= Z Zp ¢, f) log p(c) + (Zp (Z (c|f) log p(c|f)>) (4.10)
c=1f=1 c=1
e 2D
_ PSR JC)
ERARALFEr (412

If the input feature becomes a continuous random variable, the sum on the feature vector f

becomes an integral.

I(C;F) =Y / p(c,£) log Z%df. (4.13)

Some interesting properties of mutual information can also be derived (see [13] for complete
derivations). One property of interest here is that of symmetry; after some manipulation [13]
it can be shown that for two random variables X and Y, the mutual information measurement

is symmetric, i.e.

YY) = I(Y: . P(zy)
I(X;Y)=1(V;X) = %p ,y) log (@) ()’ (4.14)

A qualitative explanation of mutual information is that it can be thought of as a measure of
the “lumpiness” of the joint probability density function of ¢ and f. From Equation 4.13 it
can be seen that the contribution to the integral would be large if the distribution p(c,f) is
uneven. In this case, the product of the marginals is not equal to the joint density function,
and therefore the class is not independent of the measurements made. The more dependent
the measurement and the class becomes, the higher the mutual information measure. This
makes mutual information a good measure to determine which features of the input feature
set have the greatest effect on output entropy. If a vector has little relevance with the output,

the mutual information between the two will be very low. On the other hand, if they are
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mutually informative then the measure will be high.

4.2 From Theory to Practice

Although the concept of mutual information looks like a novel idea in theory, some problems
arise in obtaining the estimates of I(C; F') in practice. These problems mostly arise because
the underlying density functions of the input vectors (the a priori and conditional information
from the Bayesian classifier) are not known, and only a finite amount of data is available from
which to estimate these density functions. This prevents us from making estimates of mutual
information in high-dimensional spaces, since the number of data points needed grows very

rapidly with the dimensionality of the space?.

To overcome these problems, Battiti [6] suggests an approximation for the feature selection
case. Instead of calculating MI from the joint density functions in the N;-dimensional space,
he reduces the dimensionality by calculating it between only two vectors at a time. Firstly, MI
calculations are made between each input feature and the desired output vector i.e. I(C, f;).
This gives a indication of the relationships of each feature vector with the output. Secondly,
the MI is calculated between different features i.e. I(fj, fx)j-x- This second measure is
used in an attempt to remove highly mutually dependent features from the feature set. It is
argued, and also well-known, that the mutual information between features and output alone
is not able to take into account dependencies between different features. It could happen, for
example, that two highly correlated features have high mutual information with the output
class. Including both these features at the cost of some other feature which is uncorrelated
with the first two (but which has only slightly less mutual information with the output) would
result in a less optimal feature subset. In such a case, it would probably be better to use only

one of the two correlated features, and then use the third independent feature as well.

In Bonnlander [9] it is argued that this method will still be suboptimal, and that the joint
density calculations have to be made in the correct dimensionality to take into account depen-
dencies between different features. However, it is agreed here, and has been shown in many
cases [49, 51], that the number of required data points for estimating the density functions is
exceedingly high when the number of feature becomes large. Bonnlander aims his method at
problems were sample data size is very large (more than 10000 points). The data sets tested
in the work presented here do not fall into this class of problems, since most of these problems
have a sample size of less than than a thousand points. For this reason it was decided to

follow Battiti’s method, but with some changes in the density estimation technique.

Battiti uses a method introduced by Fraser [20] for obtaining the necessary density estimates.

*Refer to Section 2.2 for more details. A standard reference on density estimation will also give deeper
insight into this problem e.g. [51, 49].
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This method is a form of equal mass histogram binning which, according to Battiti, can
greatly reduce the time needed to make the density estimates. For details of this method,
the reader is referred to the original paper by Fraser [20] and the appendix in the paper by
Battiti [6].

Bonnlander points out a simple example case where Fraser’s density estimation technique does
not give correct results. Initial experimentation in the work here also supported this view.
Fraser’s method is based on a partitioning of the space into equi-probable areas (thus the so
called equal mass binning). The fact that Fraser’s method breaks the regions into rectangular
areas of equal probability, using a x? test as criterion for further splitting, has some serious
disadvantages. This can easily be seen when applying Fraser’s method to normally distributed
data, where the form of the binnings would now be rectangular rather than curved in shape.
Bimodal data with a main mode and some less probable second mode is another example
that would not be handled well by Fraser’s method. It was decided to opt rather for a density

estimation technique that has more support in the density estimation literature.

In most of the literature, density estimation is done either by some form of histogram binning,
or through the use of some kind of kernel density estimation technique. Both of these methods
have their advantages and disadvantages. In histogram binning, the number of bins used in
the estimation is of critical importance. Having too many bins will cause some of them to be
void of data points. If the number of bins is too few, the estimated function would not show

local changes in density very well.

For the case of kernel density estimation, a similar trade-off is used. Here, the density esti-
mation is done by placing a kernel function, which decreases monotonically from its centre
points, at every data point in the space. The width of the kernel then determines the approx-
imation of the density function. If the kernels are made too wide the local structure is lost,

and if the kernels are very narrow the density function will have numerous unwanted peaks.

In Bonnlander’s initial work [9] he uses a method similar to that of Fraser and argues that
it is more optimal than kernel density estimation. However, in the final work on his doctoral
thesis two years later, this method is not discussed at all, and he argues that a kernel density
estimation technique would suffice for performing the density estimates. The conclusion drawn
from his sudden change in perspective can be that some problems in using equal mass binning

must have convinced him to use kernel density estimation techniques instead.

Kernel density estimation has some advantages over histogram binning. If the kernel used
has infinite support, then even open spaces that contain no data will in the end have some
(very small) probability of occurrence. This is more desirable than having areas with zero
probability which is commonly found in histogram binning (unless, of course, it is believed

that the true nature of the density function is such that it only has compact support). The
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fact that most of the features considered in this work are of continuous nature, supports a
choice of kernel density estimation. In theory it is possible to show that both histogram
binning and kernel density estimation tends to the correct density as the number of samples

increase [18].

With all of these factors taken into consideration, it was decided to use kernel density esti-
mation techniques, since the number of samples considered in our case would be ample but

not abundant, and the estimates would only be made in two-dimensional space.

The estimation was done using kernel density estimation software for Matlab obtained from
Beardah [7]. This software was created using theory partly from the book by Silverman [51],
and uses a method reported in Silverman for adaptively determining the width of the kernel.
The method is based on multivariate normal data, but seemed to give rather good results on
the data used here.

A point that must be mentioned is that the precise mutual information measurement is not of
critical importance in this work, as long as the relative information content stays ordered in
the same way. This concept was addressed by Battiti, and forms another supporting reason
that precise kernel width is not important when comparing mutual information measurements.
The fact that the measurements are not to be used as stand alone, precise, measurements but
rather in an comparative study, alleviates the need for accurate determination of the kernel
width.

4.3 The Mutual Information Ranking Algorithm

The algorithm used to rank the features in order of importance using the mutual information
technique are discussed below. This algorithm differs from the work by Battiti in the fact that
no pre-specified value for the number of features have to be chosen. Rather, if it is possible,

the evaluation of the different subsets created as features were added, are encouraged.

Let C represent the desired output, f the kth input feature, n the number of features and
Fr an empty feature set, which in the end will contain the ranked set of selected features. To
find the ranking of the features using the mutual information method, the following algorithm

was used:

1. Append to F, that fy which maximises I(C, fi) for k = 1..n
2. Find I(f;, fi);2« for all features not yet contained in F,
3. Append to F; the f; that maximises I(C, f;) —a Xy cx I(fj, fs)

4. if F, does not yet contain all features jump to 2.
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This algorithm ranks features in their order of importance. Features with high information
content about the output obtain better rankings, but are penalised if they show too much
common information with already selected features. The constant « yields the importance
of not selecting features which have high mutual information with already selected features.

Battiti suggests that in practice a value for & somewhere between 0.5 and 1 must be used.

This algorithm falls into the class of forward selection techniques. Battiti [6] demonstrates
that using either forward or backward selection does not yield vastly different results on
final classification rates. It was decided in this work to first test the forward selection method
against other selection techniques, and if the method hinted at superior performance compared

to other methods, to investigate this matter further.

4.4 An Illustrative Three Feature Example

As a first example of how mutual information can be utilised as a feature selection crite-
rion, it was decided to test the mutual information method on a simple tri-variate two class
problem. A simple data set was created that contained two features drawn from normal
distributions with differing means for the different classes, and a third feature which was

distributed uniformly over all classes.

A plot of the data set is shown in Figure 4.1. From the plot it can clearly be seen that the
inclusion of feature 3 into the set could have bad effects on the possible classification accuracy.

The final problem however, still is almost linearly separable.

Figure 4.2 shows the mutual information measurements obtained during this test. As ex-
pected, results for the experiment show that features 1 and 2 have high information content
with the output while feature 3 has a very low MI value. It can further be seen that features
1 and 2 have a high information content with each other. The final ranking obtained for these

features was in the order: feature 1 first, feature 2 second and feature 3 third.

4.5 Other Experiments and Conclusion

The experiments to validate whether mutual information can be used for doing feature selec-
tion, as well as seeing how the mutual information method compared to other techniques are
shown in Chapter 7.

The next chapter discusses another filter approach found in the literature, which can be
applied to the problem of feature selection. This method seemed rather promising and also

has some relevant theoretical background.
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Figure 4.1: The three feature example data. Projections onto different planes are also shown.
Features 1 and 2 are normally distributed and have differing means for the two classes. Feature
3 is drawn from a uniform distribution.
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Chapter 5

The Gamma Test

A reasonable assumption when working with most classification problems, is to assume that
when two points are close in the feature space, they probably should have the same label.

This is the basis on which simple nearest neighbour techniques base their classification!.

In this chapter a feature selection method called the Gamma Test based on this intuitive
idea is discussed. The method was not originally developed for use in feature selection for
classification purposes, but it is shown here to be very similar to other selection techniques

used previously in literature (with some distinct advantages as well).

In the first section of the chapter, the theoretical concepts and origins of the Gamma, Test will
be described. Next, the applicability of this method to pattern recognition is discussed and it
is shown that the method indeed can be used for feature selection in this case. An explanation
of the inner workings of the test follows, which should give the reader good insight into why
the method works the way it does. Section 1.4. discusses several illustrative examples, and the
chapter concludes with some ideas on the similarity of, and differences between, this method

and other methods of its class.

5.1 Theoretical Concepts

The Gamma Test [32] is a simple statistical test to find a data-derived estimate of the variance
of the error in fitting a smooth model to any continuous mapping. It was developed by Koncar

as part of his doctoral thesis on optimisation techniques for neuro-control systems.

Suppose (x,y) is a data sample with x denoting the input data and y representing the output

data. Suppose, furthermore, that the data was generated by a suitably smooth process with

!Nearest neighbour techniques can be shown to converge to no more than twice the optimal Bayes classifi-
cation rate as the number of data points are increased [18].

49
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bounded first and second derivatives. This input-output mapping can be defined as y = F(x),

and can be written as the expression

y=f(x)+r (5.1)

with 7 denoting the indeterminable/noisy part. The noise may be pure noise, or may be due

to a lack of representation ability of the functional mapping.

The Gamma Test was designed to derive a data based estimate of the variance of r, and thus
an estimate of the ability to build a good model using any particular set of input vectors.

The assumptions under which this estimate holds is discussed in [32].

From the data sample x, we now find the sample (x’,y'), which has the property that it
minimises |x’ — x| (this is the sample of nearest neighbours of x). The Gamma Test can then
be defined as
1 & V2
T=35m Z':1(3/ (1) —y(2)7, (5.2)

where M is the number of data points in the sample.

According to [32] it can be shown that this value tends to the variance of the error r as the
nearest neighbour distances tends to zero. In order to make these distances tend to zero, the
ideal solution would be to make the data size M tend to infinity. Since we cannot always
increase data size in order to investigate the Gamma value as the nearest neighbour distances
decrease, an approximation must be used in order to find the estimate on practical data sets.
Thus, due to the availability of only a finite number of samples the effect of letting M tend

to infinity in the above equation is approximated using the following technique.

We have (x(i),y(¢)) with ¢ ranging from 1..M where M is the number of samples, and x(i) =
(21(7), ...,z (¢)) with f being the number of input features. We now let x(N(i,p)) represent
the pth nearest neighbour to x(7) and define

M) = 3 37 (N ()~ x() (53)
and
1& 1 & - 2
M) = Y o7 NG ~ v (5.4
j=1 i=1

To understand Equation 5.3, evaluate the term inside the sum over ¢ first. This forms the
square of the distance between x(7) and its jth nearest neighbour. The normalised sum over 4
forms the mean of this squared distance for all points in the data sample. A(p) then represents

the average nearest neighbour distance up to the pth nearest neighbour for all sample points.
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From Equation 5.4, I'(p) is an estimate of the statistic in (5.2) based on these 1..p nearest

neighbours.

The next step, is to build this estimate for different values of p. Thus, let p be the range
of integer values from 1..P,,,, where Py, has to be chosen. By forming the coordinates
(A(p),'(p)) and plotting these estimates for increasing values of p, a curve of the values of
A(p) and I'(p) is obtained. It is argued [32] that if enough data samples are present, this
curve would be of linear nature. Performing a least squares linear fit to this curve we find
I' = aA + v with «y representing the estimate of the value of (5.2) as the nearest neighbour

distances approach zero. An example of the technique is given later in the chapter.

5.2 Applicability to Pattern Recognition

The question arising out of this analysis would now be why the variance of the error is at
all useful. It is shown and discussed in [32] that the variance of the error can be used to
form a bound on the error rates of a neural network modelling system. It is further shown
that the neural network, used in modelling a continuous mapping from input to output, is a
bounded first and second order system, and that the Gamma Test theory therefore applies to
these types of networks. Furthermore it is known, and has been discussed in Section 2.2, that
variance in estimation techniques has specific relationships with the expected error bounds of
these techniques. Any method that has the ability to quantify the variance of the error would

therefore be able to give bounds on the expected attainable performance of the system.

A problem in applying this method to classification and pattern recognition arises from the
fact that these recognition systems normally have an output stage which does not have
bounded first and second order partial derivatives, since a threshold function is used to dis-
cretise the output to one of many fixed class values. Koncar discusses this issue briefly and
states that even though the final output might not be bounded in its derivatives, the input
mapping produced by the neural network or other classification system is mostly a continuous
model, and thus the bound found in this way can still be applied to the problem of pattern
recognition. This fact, though dubious and certainly not proven here at all, is investigated by
some experimentation. The fact that other techniques found in the feature selection literature
use methods similar to this, coupled with some of the results obtained in our experiments,

definitely shows that this method deserves some more theoretical work.

The next question to ask then, is how to use this test in order to perform feature selection,

and what other properties of this method makes it attractive for feature selection systems.

The Gamma test method can be implemented in O(M log M) time, and thus is much faster

than most wrapper approaches to the feature selection problem. Should this method be
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found to have high correlation with classification accuracy it would be very useful as a filter
technique for feature selection. The speed of the test enables it to exhaustively scan through
all different input embedding combinations for up to 20 features. The best subsets found in
this way can then be tested to find the optimal subset for use with a particular classification
system. Another attractive property is that the method does not require density estimation
techniques which can be very time consuming and also very prone to error (especially in

high-dimensional spaces).

5.3 The Inner Workings of the Gamma Test

To employ this method in a pattern recognition case, it must first be decided how the distance
in the output space is to be handled. For the two-class problem the easiest solution is to just
assign some integer value to the one class and another to the second class. The distance in
output space is then simply calculated as the difference between the labels. This was the

approached followed in the work here, where only two-class problems ere dealt with.

In the case of multiple labels, a different measure will have to be used, since a difference
between more than two output labels cannot be expected to correspond in any way to distance
in input space. An acceptable technique would be to use a difference of 0 for similar class

labels, and a 1 otherwise (also called the discrete metric).

Taking a closer look at the equations of the Gamma Test yields some insights into the ideas
behind the test, and why it can be expected to work in pattern recognition problems. Shown
in Figure 5.1 is a plot created using the Gamma Test algorithm?. The figure shows both the
nearest neighbour average distances in input and output space, as well as a linear approxi-
mation to this. The data used was the WDBC data set from the UCI data repository [60].

The z-axis represents values calculated using Equation 5.3 and the y-axis the Gamma, values
from Equation 5.4. Investigating Equation 5.3, it can be seen that it represents the average
distance between nearest neighbours of a certain degree®. This distance is monotonic on the
degree. As the degree of the neighbour used for the distance calculation is increased, so too
must the distance between points in the input space. (It might not be be strictly monotonic,
since neighbours of differing degrees can have the same distance, but it is highly unlikely that
a data set would have nearest neighbours which on average did not increase as the degree of

neighbours increased.)

2 An optimised implementation of the Gamma Test was written by Steve Margetts [39] as part of the work
by [32]. The code is implemented in C and has sufficient flexibility for almost direct application to any problem.

3The closest point is a neighbour of the 1st degree. The second closest point is a neighbour of the 2nd
degree and so forth.
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Figure 5.1: The Gamma Test regression estimate for one of the data sets

If the premise of closeness in input space yielding likeness in output label is applicable, it
can be expected that most of the output values between neighbours will have the same label.
However, at the borders of the classes, there will be some points which very quickly start
adding to the output difference measure of Equation 5.4. If the data is not multi-modal then
this distance too would be expected to increase monotonically as the nearest neighbour degree

1s increased.

In the Gamma estimation technique, the input distance and output distance are now plotted
against each other. The monotonicity of both of these variables imply that this plot will be a
monotonic function under the assumptions made above. This can be seen in Figure 5.1. The
plot also shows the linear approximation made on this data. This approximation is made by

fitting a line to the graph utilising the criterion of minimum mean square error?.

It can be seen from the graph that the linear model for the approximation of the cut-off seems
relevant. Other experiments were also performed to investigate this approximation. These

experiments are detailed later in the chapter.

To select the best subsets using the Gamma Test now becomes a simple matter of finding that
subset for which the Gamma Test yields the lowest value. As a safeguard against estimation
error, the alternative of finding a number of best subsets and then using some other criteria
to decide on the best of these can be used. The test is normally fast enough to handle a
exhaustive search of up to 20 features. If more features than this have to be tested, some

other sub-optimal search routine must be used. The speed of this method far exceeds most

4As discussed in Section 5.1.
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of the wrapper approaches using neural network classification error as criterion function.

5.4 Initial Experiments

5.4.1 An illustrative Example

As an initial and informative experiment on the Gamma Test, it was decided to investigate
the effects of difference in class mean on a simple bivariate normal two-class example. The
first class was centred on the origin of a two-dimensional feature space. The second class
had its mean shifted from the origin by some distance, and the effects on Gamma value were

investigated as this difference in mean was changed.

Figure 5.2 shows the data set in one of its positions. The estimated Gamma values as the

distance changes are shown in Table 5.1

Feature 2

-4 -2 0 2 4 6
Feature 1

Figure 5.2: The illustrative data set plotted with the mean between the two classes shifted
by a distance of 3 units in the direction of feature 1 and 3 units in the direction of feature 2

As expected, the Gamma, estimate becomes smaller and smaller as the two classes become
more and more separable. This indicates that the Gamma measure may, in some way, be
related to the expected error rate of the classifier. The negative result for the last value in
the table might be unexpected, but in fact is a result of estimation error in performing the
straight line fit.

This does, however, raise a question about how to handle negative values. Another factor
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Table 5.1: The Gamma estimates as the distance between the two classes are increased.

Difference in Mean | Gamima value
2.82 165 x 103
4.24 12.7 x 1073
4.95 4.90 x 1073
5.65 1.29 x 1073
6.36 0.116 x 1073
7.07 —0.040 x 1073

that might sometimes lead to negative estimates is when the gradient of the line becomes
very high, and the average output distance is very low. The work by Koncar [32] does not
indicate with certainty whether bigger negative values can be treated as indicating an even
more separable data set, or whether these values should just be taken to indicate zero variance
and thus perfect separability. In the comparative experiments of Chapter 7, the estimate of
the Gamma value was used as part of a criterion function for rating different feature sets,
and more negative values were used to indicate better subsets. However, the experiments
were performed over multiple tests, so as to minimise the effects of estimation error in the
estimates, and, as is explained in Chapter 7, a number of the best subsets were evaluated to

finally find the optimal subsets.

5.4.2 The Three Feature Example

The same three feature example that was used in testing the mutual information method was
also applied to the Gamma Test. Results of the test on the different subsets are shown in
Figure 5.3. From the figure the method clearly indicates that inclusion of the third feature
has bad effects when only one of the other two features is used. This is shown by the high
cut-offs of the linear approximation estimates. However, it can be seen that the method does
not indicate that the inclusion of feature 3 would have a bad effect if both features 1 and 2
are used. The estimated cut-off point is only slightly less when using features 1 and 2 then
when using all three features. Although this might be seen as a negative effect in the sense of
feature selection, it need not be. The fact is that this dataset is still almost linearly separable
using all three features and the noise in the third feature does not yet increase the error rate
of the classifier too much. This fact however supports the idea that the Gamma Test by itself
might not be sufficient to discriminate between different subsets that show similar ability to
separate the classes. The method must therefore be supported by a second stage of comparing
a few of the best subsets found (as in Chapter 7).
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Figure 5.3: The Gamma Test regression estimate for the three feature example

5.4.3 Effects of Unexpected Structure

One of the areas in which it can be expected that the Gamma Test would not perform well
is when there exist multiple modes or strange structure in the data, and these modes are
separated by another class. In this case the monotonicity of the distances would inevitably
not hold, and the average output distance would first increase and then start decreasing as
the number of nearest neighbours is increased. The output distance would first include many
samples of the same class. This would gradually increase as samples of the other class start
to appear in the distance measure. However, when the number of neighbours used becomes
too many, the output labels would start corresponding again and thus the output distance
would start decreasing. This invalidates the monotonicity assumption discussed earlier, and

thus cripples the linear approximation used in the Gamma Test technique.

To illustrate this, a two-class problem was created in which one class is surrounded by two
modes of a different class. This specific dataset might never occur in practice, but serves well

to illustrate the problem. The data set is shown in Figure 5.4(a).

A plot of the Gamma estimate is shown in Figure 5.4(b). From the plot it can be seen how the
problem manifests itself. The strange structure of the data causes the linear approximation to
be invalid. This can clearly be seen by the s-shape of the curve. The problem discussed here,

however, would be the exception to the rule, especially if the number of nearest neighbours
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Figure 5.4: Problems with unexpected structure in a data set

used to find the estimates are kept at a minimum?®. This example thus serves as a warning
that the test should not be blindly applied to any data set and used without any investigation

into possible multi-modality in the data set.

In this sense, however, the method can actually serve a useful purpose, since any strange
structure in the plot of the Gamma distances could serve as an indication of unexpected
structure or multi-modality in the data, which might then be used to build better estimates
of the underlying density functions, or might be used as knowledge in the classifier. If such
structure is found in the data set the method can also be adapted to it by changing the model
fitted to the data, and using some other function estimation technique instead of a simple
linear model. In the practical data sets investigated in the work here, this problem was not

really encountered, and the regression estimates seemed valid in these cases.

5.5 Similarity to Other Methods

The feature selection literature has shown many approaches in which some heuristic measures
of class separability have been used to find the “optimal” feature sets [28]. Many of these
methods cannot be backed at all by any theoretical background. In this sense the Gamma

Test has some advantage, and it might be worth thoroughly proving these theoretical grounds.

®The linear approximation would be valid for points with input distance between 0 and 10.
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Some of the comparable methods use measures of inter-class and intra-class distances in the
input space. These methods, however, work strictly on a per-class basis. The Gamma, Test,
on the other hand, allows the use of both input and output distance simultaneously. One
method which notably compares with the Gamma Test method is that of Scherf and Brauer
[47]. A problem with the method they present is that it is based on heuristic ideas of class

separation.

The two approaches discussed so far have both been filter approaches to the problem. Next
a wrapper approach for neural network classification techniques is discussed. This technique
is novel in the specific application of this type of neural network, and has not, to the author’s

knowledge, been used for feature selection before.



Chapter 6

The Random Artificial Neural
Network

The two methods presented in the previous chapters do not take into consideration at all
the type of classifier that would be used for the final classification of the data using the
selected feature sets. It is therefore not known whether the biases that these methods impose
coincide with the biases that a specific classifier imposes. For this reason it was decided to

also investigate a wrapper (classifier based) approach to the problem.

It was mentioned in Chapters 2 and 3 that many classifiers are either too complicated, take
too long to train, or require too much user interaction for use in a wrapper approach to feature
selection. Parametric techniques sometimes require a lot of user interaction, especially if the
densities are of non-standard form, and might not have enough adaptivity to be used as a
criterion function in the feature search. Techniques that do have high adaptivity to the prob-
lem situation without the necessity of user interaction at every step, such as neural networks,
suffer from other disadvantages. For example, most neural network classifiers require lengthy
training processes in order to set the weights of the network. Another problem found in these
networks are that they suffer from over-training, and thus have to employ some form of early

stopping criterion. These stopping criteria can sometimes be problematic.

This chapter focuses on one method that addresses some of the problems of feature selection
for neural network systems. Many other efforts have been made to reduce the input dimen-
sionality of neural network classifiers. These method do so by pruning the inputs that have
low weights (see for example [50]). This becomes in effect a type of greedy search strategy
which, as pointed out in Chapter 2, has some drawbacks. The removal of a single feature
prevents any subset containing that feature from being evaluated later on, thus implying

sub-optimal performance. If this fact is not taken into account in the pruning algorithm, the
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performance of the feature selection algorithm can be erratic.

As in the previous two chapters, the theory behind the RANN is presented first. This is
followed by a discussion of some practical implementation issues. The use of the RANN in
feature selection is discussed in Section 6.3. To be consistent with the previous two chapters,
the method is also tested on the simple 3-feature example. As conclusion to the chapter, some
remarks about the validity of using classifier training error as a measure for feature selection

are made.

6.1 The Theory

There exists a form of the neural network capable of rapid training and evaluation without
much user interaction and, without the need to specify early stopping parameters. This
network was presented by Anderson [3]. The structure of the network, which is the same as

most fully-connected feed-forward neural networks, is shown in Figure 6.1

Hidden Layer

output weights trained

layer of weights
set up with random
numbers

Figure 6.1: The structure of the random neural network.

The biggest difference between this network and other ANNs is that it does not make use
of back-propagation or one of its variants for training. Instead a method similar to linear

regression is used to train the network.

Like other networks, this one too is initialised to have random or quasi-random valued input
weights. Training is then done by performing a matrix inversion to obtain the outputs of
the hidden layer. This neural network has been shown to perform almost as well as most
back-propagation methods [3], and its method of training is fast gaining recognition in the

neural network community.

Using matrix notation, the Random Artificial Neural Network (RANN) can be described as
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follows:

Let X, [N x F] denote the inputs of a classifier!, and Y, [1 x N] the class labels of every
observation. The matrix of input weights are represented by W, [F x H] where H is the

number of neurons in the hidden layer.

It was seen in Chapter 2 that the neural network hidden nodes normally have some non-linear
transfer function. In this case, the tanh function is used. Thus every hidden node takes the

sum of its inputs? and passes it through a tanh function.
The output of a hidden node in the network is thus given by
F
yj = tanh (Z xiwi]-> (6.1)
=1

where, z; refers to the i-th input of every hidden node, w;; refers to the weight between input

node 7 and hidden node j and y; refers to the output of the j-th hidden node.

Using matrix notation, the output O of the hidden layer can be written as
O = tanh(X W) (6.2)

with O an [N x H| matrix.

To obtain the solution for the output weights of the network, a linear approximation to the
problem is formulated. Representing the output weights by V, [1 x H], the problem for which

a solution is sought can now be defined as
vVOo=Y (6.3)

This forms a general set of linear equations that can be solved by finding a matrix inverse

and post-multiplying. The solution for the output weights V then becomes

V=Y0! (6.4)

Since the matrix O would be (in most cases) non-square and thus not invertible, an approxi-
mate solution can be found using the pseudo-inverse or any other known technique for finding

inverses of non-square matrices [3].

!N denotes the number of data points, and F the number of features. Thus the matrix is arranged with
each feature represented in a different column and every sample from the data as a another row.
%A bias input is assumed to be added for every hidden node.
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6.2 Practical Implementation

The problem of inverting matrices is, in a sense, an art in its own right. There do however
exist several packages which use different techniques, such as singular value decomposition,
in order to solve the problem quite effectively without too much computational cost. This

does, of course, depend on the size of the training data.

In the experiments conducted here, the calculations were performed using the Matlab package,
which provides the necessary tools for the problem. Training of these neural networks can be
done under the Matlab environment in a sufficiently short time to allow exhaustive search of
up to 18 features using up to 30 hidden neurons®. This process is usually more than an order
of magnitude faster than most back-propagation routines, and also has the advantage of being
less susceptible to over-training. This is due partly to the fact that no stopping criterion for

the training process has to be specified, since training is done as a one-off process.

The RANN has been tested widely in the literature, and performs well on some standard
problems* that are known to be difficult for even the best modified back-propagation algo-

rithms.

6.3 Using the RANN for Feature Selection

Due to the speed and low user interaction requirements of the RANN, it can be used directly
as a feature selection criterion function. In most of the tests done in the work presented
here the method was fast enough to perform an exhaustive search of the input space using
the RANN classification rate on the training data as a indicator for whether a certain subset
performs well or not. The error rate of the classification can be used directly since, if the
classifier is not over trained, this error rate would correspond closely to the error rate of the
classifier on test data. The fact that the network is not trained until the mean-square-error
reaches some user-specified value, as in other neural networks, cause these networks not to be
over-trained. To appreciate this, the training and testing errors on some of the tests showed

in Chapter 7 can be investigated.

Previous work by the author on the subject of classifier optimisation using this method [42]
on a simple rotation-invariant character recognition problem showed promising results, and

even yielded highly increased classification performance on that problem.

When the number of inputs become too high to handle exhaustive searches of the input space,

other sub-optimal search techniques have to be resorted to. As mentioned in Chapter 2, the

3 Again, this depends on the amount of training data as well.
4For example, tests on the difficult two-spiral problem [3] have shown the network to be very effective.
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search strategy that was employed in this case was that of PBIL. It is expected that this
search strategy would suffice for feature sets up to 100 or so features. When the number
of features becomes much higher than this, the probability of finding a solution close to the
optimal solution will become exceedingly small, and this could have the effect of not even

reaching a very good local optimum.

6.4 The Three Feature Example

The RANN method was evaluated on the simple three feature example. It would be expected
that the classifier would find a very good approximation to the data even using only single
features for classification, and that almost perfect classification can be expected when using
only features 1 and 2. The results of the experiment indicated that this was in fact the case.
The uniform noise feature yields a classification close to 50% as expected, and decreases the

performance of this classifier when added to the problem.
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features input to the random neural network with 10 hidden nodes

Figure 6.2: The classification results on all subsets of the three feature problem

6.5 Concluding Remarks

One of the assumptions made when using the training error rate as an indication of the

usefulness of a particular subset is that this value is actually correlated to a high degree with
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the expected error rate of the classifier. If the RANN method is to be used as a general
feature selection tool for other types of neural networks or other types of classifiers, then the

validity of this assumption would have to be tested.

It is known that most neural network techniques suffer from the problem of over-fitting, and
that the training error rates of these classifiers do not correlate well with the final expected
error. The RANN however, does not suffer from this problem. This is one of the main

advantages of this type of neural network classifier above other neural network approaches.

From the experiments discussed in Chapter 7 it will be seen that this correlation between
training error and test error of the RANN holds to some degree. Chapter 7 also compares

the classification rates of this classifier to that of the k-Nearest Neighbour approach.



Chapter 7
Experiments and Results

In order to investigate each of the three methods described in the previous chapters, several
tests and experiments were carried out. This chapter details these experiments and discusses

some of the results obtained.

The chapter begins by discussing the data sets that were used in performing the experiments.
The reasons for using these specific data sets are given, and details pertaining to each set are

discussed.

Next, some initial experiments are reported that investigate the correlation between mutual
information measurements, Gamma Test values, and apparent classification rates. The initial
experiments were followed by a detailed search for the “best” feature subsets of the different
data sets using all three selection methods. This is reported in Section 7.4. The tests use a
complete search of the possible subsets for the Gamma Test and the RANN method!. The
section that follows, shows how the PBIL approach can be used when the number of features
becomes too high to allow a complete search of the input space. Finally, the chapter ends of

with a discussion of the presented results.

7.1 The UCI data sets

Most of the tests and experiments were performed using data sets from the UCI Machine
Learning Data Repository [60]. These data sets were chosen since they have enough data
points to make probability density estimates in two dimensions valid to some extent. Fur-
thermore, these data sets have also been used in other literature on feature selection and

classification. This allows for the comparison of results on the work presented here and those

!The mutual information method never does an exhaustive search. This was explained in Section 4.3 and
is elaborated upon in Section 7.3.2.
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previous methods that used the same data sets. The data sets are briefly described below:

e The Pima-Indian diabetes (PIMA) data set has the goal of identifying whether a certain
patient of Pima-Indian origin has diabetes or not. The majority class (no diabetes) in
the data set has an occurrence of 65.10%. The set contains 768 data points and has 8

different input features.

e The Wisconsin Database on Breast Cancer (WDBC) is aimed at diagnosis of breast
cancer. The data set contains 569 data points and has 30 input features. The majority
class is 62.74% (no breast cancer). For some of the tests this data set was divided into
2 random partitions of the feature-space. These are called WDBC1 and WDBC2 and
each of these data sets contain 15 features?. The partitioning was done in order to allow
full searches of the feature-space on these sets. Strangely enough, the subdivisions made
on the input-space still have the ability to give very high classification rates. Tests using
the full WDBC data set and a PBIL search for the best embedding were also performed.

e The BUPA Medical Research Liver (LIVER) database contains 345 instances of 8 mea-
surements each indicating whether a patient suffers from liver disorder or not. Majority
class is 57.97%.

e The Ionosphere radar returns database (ION) contains 351 instances of classifications
made from radar returns from the ionosphere. 34 features are present and the majority
class label has an occurrence of 64.10%. This data set was used only in the PBIL search
methods of Section 7.4.

Another reason for using these particular data sets is that all of the sets form two-class prob-
lems containing mostly continuous features. Before performing the different tests, the features
were all scaled to range between values of -1 and 1. This scaling is normal practice when using
neural network techniques, and does not degrade separability of the data significantly. More
information on the data sets and the meanings of every feature can be found by downloading
the information from [60] and also by looking at the data provided on the attached CDROM.

7.2 Correlation between Feature Selection Techniques and Clas-

sification

In order for any feature selection criterion to perform well, it must be highly correlated

with the true obtainable error rate of the classifier. However, in most practical cases, the

2The WDBC1 data set consists of features 4,5,7,8,9,10,11,14,15,21,22,25,27,28,29 randomly chosen from the
full set.
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true obtainable error rate cannot be calculated. This leads to the approximation of using
apparent classifier error rate as a measure of whether a particular selection criterion performs
well or not. For this reason, it was decided to test the mutual information method and the
Gamma Test method against the apparent classifier error rates of the RANN and k-Nearest

Neighbour techniques.

7.2.1 Correlation between Mutual Information and the Random Artificial
Neural Network

This experiment was aimed at testing correlation between mutual information values obtained
from feature-to-output measurements of the different data sets, and the classification of these
features using a RANN technique. The RANN was employed to infer the class labels of every
data set using only a single feature at a time. The classification obtained in this way was

then correlated with the mutual information content between every feature and the output.

The RANN was trained using different training and test sets chosen on a standard % training,
% validation principle. The training set was also used in every case to determine an “optimal”

number of neurons for each feature®.

Mutual information was calculated by using only the training samples. This was done in
order to make the tests as close to the real scenario as possible where, in general, the training
set would represent the labelled data, and the test set would represent the new data not yet
seen by the selection method. Thus, neither the mutual information measurements nor the
training of the RANN was based on the test data.

The tests were performed twenty times on differing training and testing samples and the
correlations between the mutual information values and the classifier estimated error rates on
the test sets were calculated for each test. The average correlation was then calculated, and
is reported in Table 7.1. Plots of these tests on the WDBC1, WDBC2, PIMA and LIVER

data sets is shown in Figures 7.1 and 7.2.

The classification rates as well as the mutual information measurements were also averaged
over all test runs for every data set. These mean values are plotted as solid lines in Figures

7.1 and 7.2. The correlation of these mean values are shown in the third column of Table 7.1.

From Figures 7.1 and 7.2, and from Table 7.1 it can be seen that for the data sets with
high classification rates on single features, the mutual information method shows almost per-
fect correlation with the classification accuracy. On the data sets for which the classification

accuracies on the single features become very low however, the correlation between mutual in-

3This was done by again using several (between 30 and 50) search and evaluation sample sets obtained from
the training data. The number of neurons that reported the highest classification results on the evaluation
sample sets was then used to perform final classification.
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Figure 7.1: Comparison of mutual information with classification accuracy on single features
from the WDBC1 and WDBC2 data sets using the RANN classifier.Plots on the left show clas-
sification accuracy and plots on the right show mutual information measurements. Points were joined with
dotted lines to highlight the general tendency. The vertices of the dotted lines show the measured value. The
solid line in every graph indicates mean values.
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Figure 7.2: Comparison of mutual information with classification accuracy on single features
from the LIVER and PIMA data sets using the RANN classifier.Plots on the left show classification
accuracy and plots on the right show mutual information measurements. Points were joined with dotted lines
to highlight the general tendency. The vertices of the dotted lines show the measured value. The solid line in

every graph indicates mean values.
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Table 7.1: The Correlation values obtained between mutual information measurements and
RANN classification accuracies on single features from different data sets.

Data set | Average correlation between | Correlation of average MI
MI and classification and average classification.
WDBC1 0.97 0.99
WDBC2 0.95 0.97
LIVER 0.18 0.72
PIMA 0.61 0.74

formation measurements and RANN accuracies are much lower (see, for example, the LIVER
data set plots in Figure 7.2). This might suggest either that the mutual information tech-
nique performed poorly on these data sets, or that the classifier was not able to find consistent
decision boundaries using only single features from the data sets. The mutual information
measurements seem to be more consistent than the classifier error rates (as indicated by the
lower per feature variance of the mutual information plots). This might indeed indicate that

classifier inconsistency gave rise to these low correlations.

Another interesting observation is that the mutual information measurements show a general
tendency to decrease as the classification rates decrease. This can be seen from the fact
that the data sets that have high classification rates on the single features have much higher

mutual information values, on average, than the ones with the lower classification rates.

The fact that three of the average correlation values from column two in Table 7.1 were
above 0.6 is encouraging. The high correlation in these cases, coupled with the general
tendency discussed in the previous paragraph are empirical justification that the mutual
information method might have some inherent correspondence to classification rates obtained
by a classifier. In previous tests, the RANN classifier has shown high correspondence in
classification rates to other neural network classification methods, and thus this result might

be generalisable to most neural network techniques®.

Another encouraging result is that the mutual information estimates seem to be consistent
over different samplings from the data sets. This means that the mutual information measure
is not very badly affected by the different samplings made form the data, as long as these
samplings contain enough data points from both classes to allow estimation of the underlying

densities.

“The generality of this result is not investigated here. Investigation of this issue would entail detailed study
and comparison of whether the correlation holds for many different classifiers. The aspect was therefore left
for future research.
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Table 7.2: Correlation between mutual information measurements and £-NN classification on
single features from the UCI data sets.

Data set | Average Correlation between MI | Correlation between average
and classification MI and average classification
WDBC1 0.97 0.99
WDBC2 0.95 0.98
LIVER 0.32 0.59
PIMA 0.56 0.72

7.2.2 Mutual Information and the k-Nearest Neighbour technique

To investigate whether the discrepancies in the correlation between the RANN classification
results and the mutual information estimates for the LIVER and PIMA data were due to
inabilities of the RANN classifier, it was decided also to experiment with the correlation
between mutual information and k-Nearest Neighbour techniques. If the k-Nearest Neighbour
technique was to indicate high variance on these data sets, it would support the theory that

the single feature data do not allow good separation of the classes.

The k-Nearest Neighbour classifier was implemented using a leave-one-out strategy on the
training data to find the best number of neighbours to use for every evaluated feature®.
Thereafter the k-Nearest Neighbour classifier was used to classify the test data. Mutual

information measurements were made as discussed in the previous section.

The test was repeated over twenty training and testing samplings from the data. The reported
correlation values were obtained by averaging over the different correlations found in each
test. Plots of the results of this experiment are displayed in Figures 7.3 and 7.4. The
average correlation values for every data set are shown in Table 7.2. As was done in the
previous experiment, the measurements were also averaged over the different test sets, and

the correlation between the averaged values was calculated.

These experiments on the correlation of mutual information and k-Nearest Neighbour clas-
sification error yielded results much similar to that of the tests on the RANN. The mutual
information estimates were again more consistent than the classification accuracies. The sim-
ilarity of the results could indicate that the inconsistencies in the classification rates of the
RANN were not solely due to inabilities of the neural network, but that using the single
features on the LIVER and PIMA data sets does not lend itself to consistent classification of

different data samplings.

®The range of neighbours considered were odd numbers between 1 and 11. Testing many more of these
values makes the technique very computationally intensive.
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Figure 7.3: Comparison of mutual information with classification accuracy on single features
from the WDBC1 and WDBC2 data sets using the k-NN classifier.Plots on the left show clas-
sification accuracy and plots on the right show mutual information measurements. Points were joined with
dotted lines to highlight the general tendency. The vertices of the dotted lines show the measured value. The
solid line in every graph indicates mean values.
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Figure 7.4: Comparison of mutual information with classification accuracy on single features
from the LIVER and PIMA data sets using the k-NN classifier.Plots on the left show classification
accuracy and plots on the right show mutual information measurements. Points were joined with dotted lines
to highlight the general tendency. The vertices of the dotted lines show the measured value. The solid line in

every graph indicates mean values.
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The fact that the mutual information calculations are based on a single feature premise, makes
it difficult to investigate whether the method correlates with classification if more than one
feature is used. It remains to be seen whether the heuristic approach of the mutual infor-
mation ranking algorithm that uses only the feature-to-output and feature-to-feature based
measures would suffice for handling inter-dependencies between different features. Section
7.3 investigates this more deeply by comparing the mutual information technique with the

Gamma Test and RANN feature selection techniques.

7.2.3 Correlation between Gamma Test and Classification

To investigate whether there exist correlation between the Gamma Test estimates and the
RANN and k-Nearest Neighbour classifier error rates, it was decided to undertake experiments
similar to those presented in the previous two sections. The fact that the Gamma, Test is based
on a nearest neighbour technique could make it more suited to the biases of the k-Nearest

Neighbour classifier.

The Gamma Test takes any embedding as input (not just feature-output pairs like the mutual
information calculation), and it was therefore decided to use 20 random embeddings from
every data set to calculate correlation with both the RANN and the k-Nearest Neighbour
classifier. The method used for classification was similar to that of the previous two sections
except that the single features were now replaced with different subsets from each data set.
Correlation was drawn between the Gamma estimate of every subset and the classification
accuracy of the subset. An ideal correlation value of -1 was expected since the Gamma, value

should be small when the classification rate is high and vice versa.

The classification values were correlated with the Gamma estimates for every test sampling.
The average values of these are reported in the second columns of Tables 7.3 and 7.4. As
with the tests of the previous two sections, the classification rates and Gamma values were
also averaged over the different test samplings and then correlation of these averaged values
were calculated. This is reported in the third column of each of these tables. Plots of the
different data sets are shown in Figures 7.5, 7.6, 7.7 and 7.8.

The results of the experiments confirm that the Gamma Test is negatively correlated with
the classifier apparent error rate for the RANN and k-Nearest Neighbour classifiers. On the
WDBCI1 data set the k-Nearest Neighbour classifier showed inconsistent performance over the
different samplings made from the data for some of the feature sets. This is the cause of the
very small negative correlation values obtained here. However, the WDBC2 data set showed
surprising high correlation values. This was due to the fact that the last subset contained

only three features®, resulting in significantly worse classification when compared to the other

A list of the different subsets used in these tests can be found in Appendix B.
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Figure 7.5: Comparison of Gamma, Test with classification accuracy on random feature subsets
from the LIVER and PIMA data sets using the RANN classifier.Plots on the left show classification
accuracy and plots on the right show Gamma estimates. Points were joined with dotted lines to highlight the
general tendency. The vertices of the dotted lines show the measured value. The solid line in every graph
indicates mean values.
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Table 7.3: Correlation between Gamma Test and RANN classification on random feature
subsets from the UCI data sets.

Correlation between
average Gamma, estimate and
average classification

Data set | Average correlation between
Gamma estimate
and classification

WDBC1 -0.35 -0.72
WDBC(C2 -0.87 -0.97
LIVER -0.55 -0.85
PIMA -0.82 -0.92

Table 7.4: Correlation between Gamma Test and k-NN classification on random feature
subsets from the UCI data sets.

Correlation between
average Gamma, estimate and
average classification

Data set | Average correlation between
Gamma, estimate
and classification

WDBC1 -0.25 -0.57
WDBC2 -0.89 -0.97
LIVER -0.34 -0.81
PIMA -0.81 -0.96

tested subsets. The high Gamma Test value for this subset clearly indicates that this set
would not result in high classification results. The absolute correlation between the mean
Gamma Test values and mean classification values (column 3 in Tables 7.3 and 7.4) were all
above 0.5, indicating that the Gamma Test, on average, seems to be related to classifier error

rates, and as such would be useful as a feature selection criterion function.

In comparing the correlation values for the k-Nearest Neighbour classifier and the RANN
technique, it is seen that the values do not differ significantly. This indicates that the method
is consistent for different types of classifiers, and confirms that the Gamma estimates capture
some inherent properties of the data which allow the estimates to be related to classifier
performance. For this reason, the Gamma Test method would be usable as a general filter

feature selection tool.

In the next section, the three methods are used as feature selection techniques on the different

UCI data sets, and the resulting subsets are compared.



80 EXPERIMENTS AND RESULTS

7.3 Comparison between the methods: Selecting Features on
the UCI Data Sets

The three methods were tested using complete search on four of the data sets from the UCI
data repository. This section details the experimental method for these tests and reports and

discusses the selection results obtained.

7.3.1 Experiments on the Gamma Test

The aim of this experiment was to find, using the Gamma Test, those subsets that were
expected to give the best classification on the UCI data sets. The subset found would then
be tested on a classifier to see whether they really perform well. The classification values
for every subset are also compared to those of the full set, to investigate whether any of the

subsets actually outperform the whole data set.

The four data sets were each partitioned into 10 sample sets of training and testing data. Each
of the training sample sets was then tested using a maximum number of nearest neighbours
(Paz from equation 5.4) varying in steps of 5 from 20 to 50. This test was performed over

all subsets of features for every training data sample from each data set.

From every specific value for Py,,;, the best ten embeddings were found by choosing those
subsets that resulted in the lowest estimates of the Gamma values. This was done for each
different training sampling that was made for every data set’. The embeddings were then

ranked according to

K 31 (7.1)
Tan~kembedding = .
k=1 01 + v

where freq is the number of times a specific embedding was placed amongst the top 10

embeddings.

Thus, embeddings that occurred more frequently amongst the top ten in the 70 tests were
considered to be better, but embeddings occurring the same number of times were rated
according to the average estimate of the v value. The embeddings found were then subjected

to rigorous classification tests using the RANN classifier.

For the above mentioned classification, the training set was first used to estimate the best
number of neurons needed to classify the data for every embedding. This was done by sampling
the training data into %, % partitions again, and training the classifier with a different number

of neurons each time on the % partitioning of the training data while testing the performance

"Thus there were 70 evaluations done for every subset of features from a specific data set: 10 for the different
training samples and, on these, 7 for each value of Pyq,-
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of the classifier on the % test portion®. Once the best number of neurons had been decided
on, a classifier using this number of neurons was trained, and then used to classify the final
test set associated with that training set. The top five subsets for every data set found in this
experiment are reported in Table 7.5, ranked in order of best results on the final test sets.
The full embedding is also added for comparative study. The average Gamma estimate that

was obtained for each set is also shown.

Table 7.5: Top 5 embeddings obtained using the Gamma Test.

Data Features Rank % avg. Std. dev % avg. Std. dev | Avg. v
set used training of test set on estimate
performance | training % | performance | test sets x1073
101111 205.22 73.19 2.40 73.19 2.49 181.49
L 011111 114.38 73.21 2.05 73.19 3.72 203.53
I 001111 236.65 73.07 2.45 72.87 3.16 183.09
A% 101110 203.44 72.77 2.13 71.70 3.30 202.18
E 000111 222.17 71.57 2.42 70.41 3.47 178.83
R 111111 n/a’ 72.96 1.69 71.82 2.85 212.29
11100111 53.49 78.90 1.40 76.48 2.57 142.4
P 11101111 54.65 79.14 1.40 76.37 2.58 126.5
I 11001111 35.10 79.26 1.81 76.22 2.56 140.1
M 11000111 39.50 78.89 0.98 76.05 2.73 143.1
A 11000101 39.52 78.07 1.10 75.06 1.10 142.5
11111111 36.00 78.55 1.51 75.99 2.19 142.2
w 001011111111001 | 130.21 96.89 0.72 96.49 1.64 4.66
D 101011111111001 | 111.52 96.93 0.49 96.32 1.65 -5.09
B 001011101111001 | 110.9 96.99 0.66 96.25 1.34 4.90
C 110011111111101 | 126.37 97.18 0.77 95.97 1.68 -9.23
110011101111001 | 135.42 96.35 0.51 95.74 1.73 -10.76
1 111111111111111 n/a 97.37 0.87 96.04 1.78 9.20
\W% 010011111110101 72.46 97.61 1.06 95.62 1.14 10.05
D 010010111110101 72.52 97.35 0.70 95.40 1.24 9.33
B 010010011110101 | 214.04 97.08 0.77 94.93 1.21 10.46
C 011011110111111 84.62 96.54 0.59 94.45 1.23 13.04
010111011110111 74.15 96.67 0.71 94.44 1.12 5.59
2 111111111111111 n/a 96.89 1.06 95.22 1.29 14.32

From Table 7.5 some interesting observations can already be made. It is seen that in most
cases the sets provided by the Gamma Test, performs equally well or better than, the full set
of features. This happens even though in some cases a much smaller number of features are

utilised by the classifier.

A second observation confirming the ideas of Chapter 5 is that the average gamma values tend
to decrease as the classification rates increase. This can be seen by comparing the Gamma

values for every data set with the classification rates of the data sets. The tests therefore

8These tests were carried out 30 times for every hidden layer size. The hidden layer sizes ranged from 5 to
50 neurons.
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supports the notion that the Gamma value is in some way related to classification error.

However, the tests were not without hick-ups. The average Gamma values for the WDBC1
data set show some negative values. The sets showing these negative averages however do
not seem to perform better then the other data sets. As was discussed in Chapter 5, these
negative values are due partly to regression error in estimating the straight line fit, and partly
due to finite data sample size, giving rise to non-linear effects in the curves from which the
estimation must be made. The results obtained here might indicate that negative values for
the Gamma Test should just be treated as zeroes, possibly indicating that the subset should
allow perfect classification. Another aspect that could shed some light on the problem might
be to investigate the slope of the line as well and include this in the ranking criterion, since a
set with high slope indicates big class difference with small input distance change, and thus

less separability in the data. This was not investigated here and is left for future research.

Comparing the Results to a k-Nearest Neighbour Classifier

In comparing the classification obtained in the previous section to the k-NN technique, the
training set was first used to estimate the best value of £ to use for every embedding. This was
done by using a leave-one-out strategy on the training data and searching through increasing

values for k from a predefined set of values'”.

Using the best value found in this way the
classifier was then used to classify the unseen test data to estimate the classifier error for the

subset data.

The whole process was done for each of the top 5 sets obtained in the previous section in order
to compare the performance of the two types of classifiers. Results are reported in Table 7.6.

The full embedding is again added for comparative study.

It is clear that the subsets found by the Gamma Test do not only perform well on the RANN
but also performs well on the k-Nearest Neighbour approach. In a sense this could have been
expected, since the basis of the Gamma approach is closely related to the k-NN technique. A
surprising fact is that for the LIVER data set, the k-NN technique shows very high increases
in classification rates when using the Gamma, Test feature sets. This supports arguments of
Chapter 2, that the k-NN classifier can be highly affected by noisy features or inconsistency

in features.

Another interesting observation is that the RANN classifier seems to outperform the k-NN
technique on almost all of the sets reported. This seems to indicate that the RANN classifier
can, on average, outperform the k-NN technique. For the RANN, the drop in classification

rate from training to test data are also not significant, indicating that the RANN classifier

10 A5 in previous sections, the different values for k were odd values ranging between 1 and 11.
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Table 7.6: Top 5 embeddings from Gamma Test, evaluated on the k-NN classifier.

Data Features % avg training Std. dev % avg test Std. dev

set used performance of training % | performance | of test sets
101111 65.27 1.32 65.53 2.29
L 011111 66.17 2.46 66.58 3.39
I 001111 67.05 1.57 67.57 2.37
A% 101110 66.66 2.48 68.52 2.09
E 000111 63.61 1.52 62.97 3.08
R 111111 63.31 2.42 62.97 3.44
11100111 76.60 1.60 74.96 2.76
P 11101111 76.80 1.69 74.20 3.03
I 11001111 76.84 1.85 75.35 2.23
M 11000111 77.03 1.54 74.64 3.12
A 11000101 76.64 1.54 73.52 2.40
11111111 75.97 1.64 74.22 2.54
w 001011111111001 96.77 0.75 96.05 1.67
D 101011111111001 96.83 0.82 96.43 1.58
B 001011101111001 96.83 0.80 95.94 1.60
C 110011111111101 96.62 0.51 95.88 1.31
110011101111001 95.85 0.94 95.09 1.53
1 111111111111111 96.88 0.62 95.81 1.33
w 010011111110101 94.23 0.68 93.44 1.68
D 010010111110101 93.96 0.75 93.53 1.46
B 010010011110101 94.66 0.72 93.58 1.76
C 011011110111111 95.33 0.65 94.39 1.22
010111011110111 94.16 0.32 92.63 1.79
2 111111111111111 95.35 0.43 93.79 1.49

was not affected too much by over-fitting problems!!.

7.3.2 Tests Using Mutual Information

For the mutual information tests, it was decided to use a value for « similar to that used
by Battiti. The value used in the tests are 0.5. The fact that the tests are carried out
over multiple data samplings combined with the experimental method used, made the subset

selection a bit more immune to the particular choice of this value.

The mutual information ranking algorithm was applied to all 4 of the different data sets.
Each ranking was performed on every one of the 10 different training samplings made for
every data set. This resulted in ten rankings of feature importance for every data set. From
these ten (possibly different) rankings the subsets used for evaluation on the RANN and £-NN

classifiers were then chosen by selecting from the rankings all subsets of 2 features up to all

"'The reader might be interested to know the number of neurons used for the RANN classifier. This cannot
be easily reported, as the number of neurons varied in most of the test runs as was explained earlier. In most
cases however, the number of neurons would not have exceeded 40.
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subsets of n — 1 where n is the number of features in the data set. Thus for example, if a
ranking of 5,2,6,1,3,4 was obtained in one of the runs, the subsets for evaluation would be
{5,2},{5,2,6},{5,2,6,1} etc. If the rankings differed amongst the ten different samplings, then

those subsets would be added to the ones found previously.

The subsets found by the above method were then tested on the RANN classifier using the
same tests as described for the Gamma test. The results of the 5 subsets with the highest

classification rates on the RANN tests are shown in Table 7.7.

Table 7.7: Top 5 embeddings obtained using mutual information measurement ranking, and
RANN classification.

Data Features % avg Std. dev % avg Std. dev
set used training of test of test
performance | training | performance | test sets
L 111011 69.10 4.87 67.83 3.52
I 010010 65.22 3.79 63.25 3.25
Vv 110111 65.73 2.57 62.91 4.87
E 110011 68.93 1.99 62.08 3.64
R 100010 64.08 2.44 61.21 3.23
111111 74.08 4.63 73.25 4.42
01000111 78.17 1.38 76.55 2.58
P 01000101 78.32 0.99 76.36 2.24
I 01001111 78.48 1.27 76.34 1.92
M 11101111 78.62 1.37 76.32 2.34
A 01101111 78.69 1.74 76.24 2.60
11111111 78.92 1.70 76.44 2.25
w 111011111011011 97.08 0.83 96.96 1.09
D 110011111011111 97.04 0.71 96.60 1.31
B 111011101011011 96.91 0.72 96.60 1.26
C 110011011011011 96.95 0.55 96.52 1.29
110011101010011 96.86 0.48 96.52 1.63
1 111111111111111 97.02 0.58 96.57 1.52
w 110011001111011 96.59 0.54 95.50 1.30
D 110111011111001 96.59 0.52 95.34 1.17
B 010000000001001 96.17 0.66 95.21 1.00
C 110011011111111 96.64 0.43 95.19 1.76
110111011111011 96.59 0.81 95.12 1.50
2 111111111111111 96.45 0.67 94.80 1.53

The mutual information method was not always able to find subsets that performed as well
as the full set of features. In the case of the LIVER data set, this is particularly clear. The
highest classification rates of the mutual information method is more than 6% lower than that
of the full set. The problem can probably be ascribed to the fact that the mutual information
method uses a heuristic ranking of features, and does not allow a full search of all subsets.
In the case of the LIVER data set, this resulted in the fact that none of the subsets found in

the previous Gamma Tests, were ever evaluated on the classifier.
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In order to investigate whether the poor classification accuracy of the mutual information
subsets on the RANN was not due to inability of the random weights of the RANN, it was
again decided to compare the classification of the subsets from Table 7.7 to the k-Nearest
Neighbour technique. As previously this was done by first finding good values for k£ on the

training set, and then classifying the test sets using these values.

Table 7.8: Classification of Top 5 embeddings from Table 7.7 on a k-Nearest Neighbour
classifier.

Data Features % avg Std. dev % avg Std. dev
set used training of test of test
performance | training | performance | test sets
L 111011 63.50 1.50 62.26 3.52
I 010010 61.40 2.37 59.75 2.67
v 110111 61.09 2.21 61.35 4.75
E 110011 61.52 1.99 59.23 2.60
R 100010 62.50 2.20 60.05 6.16
111111 63.31 2.42 62.97 3.44
01000111 77.98 1.19 76.39 2.41
P 01000101 77.58 1.41 74.88 2.28
I 01001111 77.81 1.19 76.44 2.25
M 11101111 76.80 1.69 74.20 3.03
A 01101111 77.95 1.15 77.24 1.56
11111111 75.97 1.64 74.22 2.54
w 111011111011011 96.08 0.66 95.50 1.44
D 110011111011111 95.58 0.74 94.09 1.50
B 111011101011011 95.90 0.72 95.20 1.56
C 110011011011011 95.19 0.71 94.49 1.44
110011101010011 95.69 0.63 94.81 1.55
1 111111111111111 96.88 0.62 95.81 1.33
\W% 110011001111011 94.89 0.66 93.88 1.65
D 110111011111001 94.91 0.68 93.20 1.45
B 010000000001001 95.54 0.66 94.78 0.81
C 110011011111111 95.36 0.61 94.40 1.44
110111011111011 94.75 0.59 93.52 1.25
2 111111111111111 95.35 0.43 93.79 1.50

The k-Nearest Neighbour technique showed that the subsets chosen by the mutual information
algorithm for the LIVER data set do not perform well. None of the chosen sets outperforms
the full-set, which happened to significant extent for most of the Gamma Test subsets on the
LIVER data set. For the other data sets, the two methods showed much similar results.

An interesting fact is that the methods do not seem to find the same subsets for the data
sets, yet these subsets seem to perform well. At first glance, this appeared strange, but it was
soon realised that the none of these data sets had any known significantly optimal value. In
most data sets from real life problems this would be the case, and the problem does not end
up to be that of finding the optimal solution, but that of finding a solution that is acceptable.

This notion might lead the reader to believe that that any random choice of features would
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be good. However this is not correct. From the fact that the mutual information method
showed subsets that performed significantly worse than the full set on both the k-NN and the
RANN classifiers, even though they contained almost all features, it can be gathered that a
simple random selection of features would not be acceptable. However, the notion of random
search is one worth investigating, and is performed later in the chapter by using the PBIL

stochastic search approach.

7.3.3 Wrapper Experiments using the RANN

In using the Random Artificial Neural Network to select feature subsets, the method followed
was to classify each of the training sets using a network that had a low number of hidden nodes
and employ the classification rate obtained as the criterion function for selection. Because
a search for the optimal number of nodes for every subset would be too time consuming, it
was decided to keep the number of hidden nodes low so as to prevent over-fitting of the data,

giving a false estimation of how easy the embedding would be to classify on'?.

From these sets, the 10 ones that on average performed best on the training data were then
selected for further testing on the final classifier. Each of these sets, as with the Gamma test,
were then tested to find the best number of neurons for the classification and finally used to

classify the test sets. The top 5 embeddings found this way is reported in Table 7.9.

From Table 7.9 it can be seen that the technique of using the training error of the RANN
classifier as the criterion for feature selection shows some merit. The training rates of the
classifier and the final test errors do not show perfect correlation, but at least the subsets
found in this way never show significantly poor performance. The fact that the RANN does
not need a stopping criterion in the training stage, serves to its advantage, and makes it
useful for feature selection for artificial neural networks. If the training error of a normal
back-propagation network was to be used, this method would be very difficult to implement,
since the back-propagation method could be allowed to over fit the data, and thus end up

having close to 0% error on the training set.

Comparing the above results with that obtained by the Gamma Test and the mutual informa-
tion method on RANN classification, it can be seen that the RANN selection technique did
not vastly outperform the other two methods. The fact that the RANN wrapper technique
had included to it the biases of the classifier, proves not to be such a big advantage over
the other methods. This indicates that the Gamma Test, and mutual information techniques

does capture some of the inherent properties in the data that makes a specific subset either

2Typically a value of 20 hidden neurons or lower was used. When the number of features become very
high this technique would have to be adapted since it might become impossible to build descriptive decision
boundaries with so little neurons.
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Table 7.9: Top 5 embeddings obtained using the RANN training error rate in a wrapper

approach.

Data Features % avg training | Std. dev % avg test Std. dev

set used performance of training | performance | of test sets
001111 73.63 1.63 73.35 2.60
L 101110 72.40 1.88 72.74 2.87
I 011111 74.94 2.21 72.41 4.93
Vv 001110 70.57 1.80 72.12 2.96
E 101111 73.95 2.07 72.01 3.10
R 111111 74.20 1.65 74.68 3.11
11101110 78.00 1.72 76.96 2.89
P 01101111 79.33 1.47 76.84 2.29
I 11111110 78.00 1.43 76.82 2.47
M 01000111 78.03 1.59 76.72 2.98
A 11100110 77.84 1.50 76.71 2.96
11111111 78.55 1.28 75.99 2.17
%% 101101110111011 97.42 0.54 96.55 1.56
D 001101110111001 97.23 0.60 96.54 1.71
B 100101100111011 97.23 0.67 96.53 1.51
C 001111110111010 97.65 0.57 96.45 1.62
100000011110010 97.18 0.49 96.43 0.93
1 111111111111111 97.37 0.58 96.04 1.46
w 010000001111101 96.883 0.51 95.89 0.87
D 110000011111111 97.088 0.66 95.63 0.66
B 010100001111001 96.431 0.48 95.51 1.03
C 110000101101110 97.198 0.72 95.50 1.24
110000001111001 96.597 0.61 95.47 0.63
2 111111111111111 97.07 0.51 95.03 1.39
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good or bad for classification. Furthermore, it confirms the high correlation values obtained
in Sections 7.2 and 7.2.3.

To be consistent with the previous tests and for comparative reasons, the top five subsets of
Table 7.9 was again tested using a k-Nearest Neighbour technique. Results from these tests
are tabulated in Table 7.10.

Table 7.10: Classification of top 5 embeddings from Table 7.9 using a k-Nearest Neighbour
technique.

Data Features % avg training | Std. dev % avg test Std. dev

set used performance | of training | performance | of test sets
001111 67.05 1.57 67.57 2.35
L 101110 66.66 2.48 68.52 2.09
I 011111 66.17 2.47 66.58 3.39
A% 001110 68.87 1.92 69.94 2.26
E 101111 65.27 1.32 65.53 2.29
R 111111 63.31 2.42 62.97 3.44
11101110 76.41 1.25 75.56 2.30
P 01101111 77.95 1.15 77.24 1.56
I 11111110 75.21 1.29 72.64 3.01
M 01000111 77.98 1.19 76.39 2.41
A 11100110 76.66 1.37 75.57 2.32
11111111 75.97 1.64 74.22 2.54
\W% 101101110111011 96.88 0.45 95.94 1.55
D 001101110111001 97.04 0.60 96.58 1.64
B 100101100111011 97.14 0.38 96.00 1.22
C 001111110111010 96.83 0.53 95.92 2.10
100000011110010 96.70 0.41 96.35 1.10
1 111111111111111 96.88 0.62 95.81 1.33
W | 010000001111101 95.77 0.57 94.70 1.05
D 110000011111111 95.51 0.48 94.66 1.23
B 010100001111001 95.04 0.59 93.96 1.37
C 110000101101110 95.07 0.76 94.13 1.26
110000001111001 95.44 0.57 94.75 1.18
2 111111111111111 95.35 0.43 93.79 1.50

The results from Tables 7.9 and 7.10 is seen to be much similar to the Gamma Test method.
The k-NN neighbour classifier again performed worse than the RANN. The subsets selected
by the RANN was however also able to find good discriminatory features for the LIVER data
set. Again it is seen that the k-NN classifier performs poorly when too many features of this
data set is used. For the other three data sets, this problem does not seem to affect the k-NN

classifier that much.

The fact that the RANN method is able to select, using only the apparent error rates from
the training sets, good features for final classification is encouraging. For both the RANN
classifier, as well as the k-NN classifier the results on the final test sets support the theory

that this classifier do not suffer so much from over-training, and that therefor it would be



EXPERIMENTS AND RESULTS 89

useful to use a feature selection tool.

7.3.4 Summarising Discussion of the Full Search Selection Results

The experiments on the different techniques using the full search method resulted in some
interesting observations. The Gamma Test and RANN selection techniques were both able
to find subsets that, on average, performs as well or better than the full set. This is true for

using both an RANN and k-NN classifier to generate final test set error estimates.

The mutual information ranking technique method performed worse than the Gamma Test
and RANN technique on these data sets. This was especially true for the LIVER data set,

where the mutual information subsets never performed nearly similar to the full embedding.

The results of this chapter also confirms that the RANN classifier is able to outperform the
simple k-NN technique on most of these data sets. This makes the RANN a good classifier to
use in situations where training speed is of importance, since training of these networks are

much faster than that of the normal back-propagation feed forward neural networks.

The fact that some of the subsets selected by the selection techniques contains less than two
thirds of the full feature set, shows that for these standard data sets, classification results
could be based on much less information than was extracted from the problems. This lower
dimensionality might also be more robust in that the distance measures used in these classifiers

are less affected by noise in the input features.

The next section investigates selection of features on larger subsets. For these cases the

Gamma Test and RANN technique are not able to perform full searches of the input space.

7.4 Data Sets with More Features

7.4.1 PBIL Search on the Gamma Test and RANN Technique

The ION data set and full WDBC data set contains too many features to allow full searches of
the input space. For this reason it was decided to use the PBIL search algorithm of Chapter
2 to find “good” subsets for these data sets'®.

The PBIL routine was only suited for use with the Gamma Test and RANN technique be-
cause these techniques allow criterion evaluations for any subset. For these techniques, the
experiment was again performed by dividing the data sets into ten different samplings of

training and testing sets. The PBIL routine was used to generate subsets for evaluation. For

13For implementation Al details of the PBIL optimisation routine, refer to the CDROM.
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each training sampling, the top subsets emerging from the the PBIL routine was found. This
was repeated ten times on each training set, to allow the routine to possibly report different
local maxima'®. In this way, the PBIL tests on every training sampling ended up reporting
the top ten values found for a specific training sampling. From this the best solution was

selected, yielding the top ten solutions on all training samplings of a specific data set.

The next step was to evaluate these ten solutions using the RANN and k-NN classifier. In
a similar manner to the tests of the previous section, these best sets were first evaluated by
searching for the best number of hidden neurons to use in the RANN classifier, and then
final classifying the left-out test sets using the different subsets. The best 5 subsets found by
this experiment for both the Gamma Test routine as well as the RANN selection technique
is reported in Table 7.11.

Table 7.11: Top 5 embeddings obtained on RANN classifier using the PBIL search selection
technique

selection | data feature % avg training | std. dev % avg test std. dev
method set subset performance of training | performance | of test sets

1111011101000001000000010001000101 93.38 1.07 90.17 2.97

R 1 0011111110000111011000010100010001 94.57 1.63 89.06 2.91
A O 1110100100000101000010010010100000 92.95 2.43 88.72 2.22
N N 1000100101010010000111000000001001 93.38 1.90 88.55 1.49
N 1110100110110100001101000000000000 91.11 2.09 88.38 2.65
1111111111111111111111111111111111 91.58 2.94 86.32 1.87
011111010010010010001111001000 97.92 0.44 97.00 1.03

R w 110100100010110111100101100100 97.55 0.78 96.05 1.27
A D 100010110011100110110110101011 97.36 0.85 96.00 1.38
N B 110111011110011100010111100111 97.44 0.39 95.79 0.91
N C 010110110000000100001110101000 97.44 0.46 95.74 1.34
111111111111111111111111111111 97.55 0.75 96.37 1.06
1010110100010101010001110101010000 92.82 2.23 88.46 2.33

G 1001110101100101010101101101010101 93.85 1.66 87.69 2.24
A I 1011111100010101010101010001000101 93.89 2.46 87.26 2.69
M O 1101111110101001010110110000011101 93.25 2.32 87.18 3.61
M N 1101111111010101010101111101010100 93.68 1.51 87.18 2.99
A 1111111111111111111111111111111111 91.62 2.19 86.84 1.09
010100011011011110110100001001 97.36 0.62 96.05 1.09

G W 011010001011111111110100001001 97.55 0.66 96.00 1.62
A D 010010011111111010110010100001 97.31 0.74 96.00 1.13
M B 111110101110101110110011110001 97.10 0.66 95.89 1.17
M C 011010101100111111110000011011 97.23 0.72 95.84 1.26
A 111111111111111111111111111111 97.89 0.58 96.16 1.18

Similar to previous experiments, the comparative study of classification using the k-NN tech-

nique was also performed and these results are reported in Table 7.12.

14The routine does not guarantee an optimal subset, but due to the random nature of the search routine,
different evaluations runs might return different local maxima in the search space



EXPERIMENTS AND RESULTS 91

Table 7.12: Classification of subsets from Table 7.11 on a k-NN classifier selection technique

selection | data feature % avg training | std. dev % avg test std. dev
method set subset performance of training | performance | of test sets

1111011101000001000000010001000101 89.10 2.10 89.32 2.45

R I 0011111110000111011000010100010001 85.51 1.46 87.01 3.22
A O 1110100100000101000010010010100000 91.62 1.00 90.43 1.61
N N 1000100101010010000111000000001001 88.93 1.07 87.86 2.29
N 1110100110110100001101000000000000 88.89 1.63 88.03 1.71
1111111111111111111111111111111111 85.90 0.88 85.98 1.84
011111010010010010001111001000 97.10 0.26 96.37 0.76

R w 110100100010110111100101100100 97.39 0.40 96.37 1.23
A D 100010110011100110110110101011 97.47 0.43 96.79 1.04
N B 110111011110011100010111100111 97.60 0.34 95.79 1.10
N C 010110110000000100001110101000 97.55 0.24 97.16 0.82
111111111111111111111111111111 97.57 0.48 96.63 1.06

G 1010110100010101010001110101010000 89.70 1.25 89.74 1.25
A I 1001110101100101010101101101010101 88.55 1.81 88.55 1.81
M O 1011111100010101010101010001000101 90.85 0.96 90.26 0.96
M N 1101111110101001010110110000011101 89.74 1.55 90.68 1.55
A 1101111111010101010101111101010100 87.86 1.73 88.63 1.73
1111111111111111111111111111111111 85.90 0.88 85.98 0.88

G 010100011011011110110100001001 96.99 0.54 95.37 1.12
A %% 011010001011111111110100001001 96.65 0.76 95.47 1.11
M D 010010011111111010110010100001 96.78 0.44 95.58 1.72
M B 010010011111111010110010100001 97.39 0.48 96.47 1.15
A () 111110101110101110110011110001 96.20 0.50 95.00 1.09
111111111111111111111111111111 97.57 0.48 96.63 1.06

Using PBIL, both the Gamma Test and the RANN selection technique where able to find
feature subsets that reduced the dimensionality of these data sets tremendously without
decreasing, or even by substantially increasing, the classification rates of both of the classifiers.
For the ION data set, subsets are found that contain only a third of the features of the whole

set yet still increasing the final classification rate of the data set.

The TON data set are also the only data set come across in this study, where the RANN
classifier suffered significantly from the peaking phenomenon. Classifier error was decreased
by 33% for this classifier using the best subset.

It is seen that the Gamma, Test technique in this case performed marginally worse than the
RANN technique when using the RANN classifier in the final tests. However, on the k-NN
technique the top 5 subsets of the Gamma Test still contain subsets that perform as well
as the RANN technique. The fact that the Gamma Test found good subsets for the RANN
classifier without any knowledge of the classifier to be used, again shows empirically that the
Gamma Test as a filter approach has inherent properties well suited to the task of feature

selection.
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7.4.2 Mutual Information Tests

In the case of the mutual information method, finding a decent experimental procedure was
more difficult. This came about from the fact that the mutual information procedure does
not by itself give the specific number of features to use, but just ranks the features according
to their importance. This problem is common to all forward/backward selection techniques.
For the data at hand, this would imply that for every sampling made from the data, the
mutual information method would find possibly different rankings, resulting in a multitude

of possible subsets to evaluate.

An heuristic solution for this problem might be to use the mutual information measurements
in some way to find a stopping criterion for adding features. This criterion might be to stop
when features that are left have only e.g. 5% of the information contained in the best feature

(Here, the specific value chosen might have a huge impact on the number of features selected).

In previous research this problems was mostly addressed by simply choosing a specific number
of features to select. However, this is also just an heuristic solution, and it seems as though

a remedy for this problem has not yet been found.

For the ION and WDBC data sets it was decided to first find the different subsets resulting
from the ranked sets before making decisions on the path to follow. This was done by building
these subsets in a manner similar to that discussed in Section 7.3.2. This approach resulted
in the need to evaluate 254 subsets for the ION data set and 181 subsets for the WDBC data
set.

Although this entailed huge computational power, it was decided to train and evaluate all
the different subsets on the two different data sets. Thus each of these subsets were used to
train a RANN in a manner similar to previous experiments'® and then to classify the testing
datal®.

From these tests, the best 5 subsets are reported in Table 7.13. For more detail, Appendix
C reports the 40 best embeddings obtained. Similar to the previous section Table 7.14 shows

the comparative results for the k-NN classifier.

Similar to previous experiments, the comparative study of classification using the k-NN tech-

nique was again calculated, and the results are reported in Table 7.14.

For the ION data set the mutual information method displayed very interesting results.

Firstly, it is seen that only 6 of the features are used in the subset that performs the best on

15 Again the best number of neurons to use was first found by using a repeated search and evaluation
approach.

18The tests took several days of parallel evaluation on 8 CPU’s to complete, and would not be possible if
the classifier was a normal feed-forward network trained with back-propagation.
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Table 7.13: Top 5 embeddings obtained on RANN classifier using subsets found by the mutual
information selection technique

data features subset % avg training | std. dev % avg test std. dev

set performance of training | performance | of test sets
0111100000000000000000000011000000 93.16 0.66 90.60 2.26
I 0110100100000000000000000011000000 93.25 1.34 90.43 2.70
(0] 1110100100000000000000000011000010 92.14 0.90 90.34 2.02
N 1111100001000000000000000011001001 92.48 1.41 89.83 2.34
1110111011000000000000010011101100 92.14 1.00 90.00 1.95
111111111111111111111111112111 1111 92.82 2.24 87.86 3.37
110010001111111111110101110111 97.18 0.959 96.11 1.16
w 110010000011001100100100000111 97.15 0.484 96.11 1.29
D 110110011111111111110101111111 97.15 0.781 96.05 1.44
B 110000011011001000110100100011 97.39 0.559 95.95 1.20
C 110010011111101111110101111111 97.52 0.690 95.95 1.33
111111111111111111111111111111 97.31 0.633 96.32 1.63

the RANN classifier. Furthermore, the classification rate seems to decrease when the number
of features are made more or less then this number. A more detailed table of the 40 best
feature subsets given in Appendix C clearly shows this relationship. From the Table in the
appendix it is seen that some of the subsets containing a very small number of features still
perform very well. This would mean that for this data set at least, dimensionality can be
reduced to 20% of the original size and still robust classification (and even better classifica-
tion) can be obtained. In the case of the k-NN neighbour classifier, a significant decrease
in classification results result when using the full subset of features rather than the best set

found by evaluation of the mutual information generated subsets on the ION data set.

From the results however it can be seen that the problem does not manifest itself in all data
sets. For the full set of the WDBC data set, the final classification rates seem to be better
when using almost the whole set of features. This was true for the PBIL tests on this data

set as well, and thus the dimensionality problem seem to be very data dependent.

7.5 Summary of Experimental Work

In this chapter several comparative experiments were performed to investigate the success of
the three different selection techniques. These results and experiments are now elaborated

upon for each of the three different techniques.

In Section 7.2.1 it was shown that there exist high correlation between the measurements
made with mutual information and classification rates of a classifier when using only single

features. A problem with the mutual information strategy is that it cannot be used to directly
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Table 7.14: Classification of subsets from Table 7.13 on a k-NN classifier

data features % avg training | std. dev % avg test std. dev

set subset performance of training | performance | of test sets
0111100000000000000000000011000000 91.54 0.74 90.17 1.59
I 0110100100000000000000000011000000 91.37 1.03 89.74 1.75
O 1110100100000000000000000011000010 91.03 1.13 91.03 2.07
1111100001000000000000000011001001 89.53 1.07 87.86 2.32
1110111011000000000000010011101100 89.66 1.18 90.00 1.91
1111111111111111111111111 111111111 85.90 0.88 85.98 1.84
110010001111111111110101110111 96.33 0.36 95.47 1.00
W 110010000011001100100100000111 96.15 0.39 94.42 1.38
D 110110011111111111110101111111 97.20 0.43 95.68 1.12
B 110000011011001000110100100011 96.33 0.53 94.53 1.81
C 110010011111101111110101111111 97.04 0.56 95.58 1.18
111111111111111 1111111112111 97.57 0.48 96.63 1.06

evaluate any subset due to problems of density estimation in high dimension. However, the
high correlation and low variance in the mutual information estimates makes the method

suited as an approach to decide whether any particular feature on its own is relevant or not.

The heuristic selection strategy of finding inter-feature mutual information seemed not to
give very good results in the experiments of Section 7.3.2. It was found that for the LIVER
test data set this method performed poorly when compared to the other selection techniques.
In the previous section it was seen that the mutual information technique can however be
useful when the number of features are to be kept very low, and the full subset contains many
features. In these tests the best subsets found by the mutual information tests contained

surprisingly little features in the case of the ION data set.

Correlation between classification rates and the Gamma Test values were also investigated.
The experiments of Section 7.2.3 in particular, but also the correlation between error rates in
all the different tests and Gamma values for these tests indicated that the test indeed seems
to be highly related to classifier error. The subsets found by the test were generally as good
as or even better than the RANN wrapper technique and mostly outperformed the mutual
information technique. The fact that this test can be performed on any subset in a very short

time, makes this method very attractive.

Another interesting observation was that subsets found by the Gamma Test selection tech-
nique performed equally well on the two different classifiers. This was very encouraging, since
a drawback of most filter approaches to the selection problem is that they are sometimes not
able to capture the biases of the classifier, and thus end up selecting subsets that are not
ideal for the classifiers use. In the tests here however, this seemed to have little affect on the

performance of the different subsets.
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The RANN wrapper approach to the problem also performed very well. In most of the tests,
subsets found by this technique also performed well on the k-Nearest Neighbour classifier.
The fact that the evaluation time of this technique is short enough to allow fast testing,

makes it one of only a few neural network methods suitable to vast input space searching.

Even though the data sets chosen for these experiments were not chosen because they were
known to be particularly affected by dimensionality problems, some of these data sets showed
significant increase in classification rates when using less features than the full set. The
experimentation also confirms ideas discussed in Chapter 2 that the k-Nearest Neighbour
classifier could be very badly affected by having too many input features. This was especially
the case in the ION and LIVER data sets.

However, the experiments performed did not indicate the three techniques to be perfect.
Although the RANN technique are very fast in terms of other neural networks, it still takes a
very long time to perform a full search of the subsets of 15 input variables. Another problem
with the approach is that the number of hidden neurons to be used is somewhat heuristic,
and a search for the best number of neurons for every different subset would be impossible

when the number of features become more than 8 or so.

The most serious drawback of the mutual information technique is that it does not give the
user an idea of when to stop adding features, thus making it difficult to implement in practice
when a very large number of inputs are available. The method are also prone to error due to
the fact that a heuristic selection technique is applied and in the experiments done here, was

the only method that did not yield good results on all tests.
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Chapter 8

Conclusions

The problem of high dimensionality in pattern recognition systems is a very real one. In the
work presented here, some origins of this problem were discussed and some previous work on
countering the effects of this problem was highlighted. The background study showed that
most classifiers are affected by the problem, and experimentation on some standard data sets

confirmed this hypothesis for two different classifiers.

The three feature selection techniques that were chosen for investigation all seemed to be able
to reduce the dimensionality of some standard machine learning data sets significantly. The
experimental results showed that the application of these three selection techniques was able
to find subsets that perform equally well, or even better than, the full set of features on two

different types of classifiers.

Of particular interest for the neural network feature selection problem is the use of the RANN
selection technique. This method was shown to have the ability of searching through a large
number of subsets in significantly less time than most feed-forward artificial neural networks.
This could make the method particularly suited for use in neural network approaches since it
might have the same inherent biases as other neural network techniques. It was argued that
the RANN has a distinct advantage above other neural networks because it does not need
the explicit definition of a stopping criterion, which makes other neural networks difficult to

use in direct application to feature selection.

The Gamma, Test values showed surprising correlation with classifier error rates, and were
able to select feature subsets that performed very well. The method was also able to pick
up subsets that indicated the peaking phenomenon in some of these standard data sets. The
number of features selected by the Gamma Test was sometimes more than those selected
by other methods. However, the Gamma Test is aimed at finding the best subset in which

to perform classification and is not therefore biased toward finding the minimum number of
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features This bias could however be included as part of the PBIL selection routine criterion

function.

The mutual information method was the only method that did not perform well in all cases.
This indicates that, as explained in Chapter 2, the forward selection technique in feature
subset selection might sometimes occlude important parts of the search space. Due to the use
of the forward selection technique, the mutual information method also has the disadvantage of
requiring a stopping criterion which, usually, is found by heuristic techniques. To circumvent
the problem all different subsets generated by the test was evaluated in this work, but for

more than 30 or so features, this method would soon become too computationally expensive.

An important realisation was that most data sets contain more than one particular subset
that performs well. This casts the problem into that of finding a “good” local maximum
rather than an optimal value. This fact makes selection by using stochastic search approaches

attractive when the number of features become too high for exhaustive search.

The work presented here indicates a distinct need for feature selection and input dimension-
ality reduction in pattern recognition systems. Although all systems might not suffer from
these problems, the use of feature reduction techniques on data sets with many features and

only a small number of data points, might lead to improved classification results.

Areas for Future Work

The high correlation found between the Gamma Test and classification rates might have some
other uses in the neural network field. The problem of finding a stopping criterion for neural
network training techniques might be addressed by finding an analytic relationship between
the Gamma test value and expected classifier error. Research into finding this relationship

might have profound effects in this area.

The problem of intrinsic dimensionality is one that is not addressed in this work. There
exist methods in the statistics literature to estimate (though not perfectly) the intrinsic
dimensionality of a specific data set. This might be used as a method for deciding on the
number of features to select when using a forward selection technique such as was used by

the mutual information method.

The idea of including the cost features in the selection test is one that is not addressed here.
The cost of some medical tests for example might prohibited it to be used if a number of other
features with much lower cost can find a solution to the problem. Other promising extensions
to the standard feature selection technique that was not investigated here, is that of using
context sensitive feature selection techniques. These techniques might prove to be even more

effective in cases where features are very dependent on each other.
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Appendix A

CDROM

This appendix details some of the files residing on the CDROM. These files include the
commented code used for some of the experiments of the previous chapter. Details are also

given for the indexing of the PostScript files containing papers referenced in the thesis.

A.1 PostScript Files

The CDROM contains many of the papers referenced in the thesis. These files are stored in
the /papers directory. The files are named by the first author from the references. If more
than one paper of the same author is present, the files are distinguished by the reference

numbers from the bibliography as well.

The directory /theses contains the theses by Bonnlander [8] and Koncar [32].

A.2 TUCI Data Sets

The directory /uci-data contains the input data and associated class labels for all of the data
sets used in the thesis in Matlab format. Data are always arranged with features represented

by columns, and rows representing subsequent data points.

A.3 Matlab Code

The directory /matlab-code contains commented Matlab code for most of the experiments of

Chapter 7. Of particular interest might be the the following:
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CDROM

mutualinfoselect_kde.m showing the implementation of the mutual information ranking
routine.

mi_kern.m that calculates the mutual information between two vectors of values.
compare_mi_classRANN.m which shows the experiment for performing the correlations
between the mutual information technique and the RANN classification.
compare-mi_classknn.m which shows the experiment for performing the correlations
between the mutual information technique and the k-NN classification.
compare_gamma-classRANN.m used for finding correlation between the Gamma Test
and the RANN.

compare_gamma_classknn.m used for finding correlation between the Gamma, Test and
the k-Nearest Neighbour classifier.

makegamma.m which converts Matlab data to a format readable by the Gamma, Test
programs.

miprand.m showing the implementation of the random artificial neural network.
mliptest.m that classifies new data after training a random neural network.
classifyonl.m,classifyonallsets.m and mip_class_embed.m which classifies using a RANN
all single features, all subsets of features and any specific embedding respectively.
mlp_final_embed.m which classifies (using RANN) a certain set of embeddings using
a very thorough method of searching for the best number of hidden neurons to use.
pbiloptimise.m which shows the PBIL optimisation routine used.

gammafitnessfunc.m and mlipfitnessfunc.m that were the fitness functions used for the
gamma, tests and the RANN tests respectively.

pbilgammafindtop1.m which performs a PBIL search using the Gamma Test method as
criterion function.

pbilrannfindtopl.m that performs a PBIL search using the RANN wrapper technique.
create_3_feature_exampledata.m that creates data for the simple three feature example
used in Chapters 4,5 and 6.

classknn.m and classknn_test.m showing the implementations of the k-Nearest Neigh-
bour classifier for a leave-one-out training evaluation and a new test data evaluation.
knnclass_gammaranntopd.m,knnclass_miranntopd.m and knnclass_rannranntops.m which
were used to test the 5 best sets reported in the different tests of Section 7.3. on a k-
Nearest Neighbour classifier.

partitiondata.m which divides a data set into a random 2/3 training, 1/3 testing parti-

tioning.

Most of the Matlab files contains a short header of information stating the purpose of the

program.
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A.4 Gamma Test Binaries

The Gamma Test binaries resides in the directory /gammatest. These binaries were obtained
from Steve Margetts (S.MargettsQcs.cf.ac.uk). The directory contains binaries running under
Solaris 2.4, Windows N'T/95 and DOS.

A.5 Kernel Density Estimation Software

The kernel density software obtained from [7] is found in /kdetoolboz. The toolbox contains

its own documentation. For more information see the website at [7].

A.6 Electronic version of this document

Lastly an electronic version of this thesis can be found in the /document directory.

A.7 A Note on the Matlab Code

Some of the code used in this work might make use of the Matlab Neural Network Toolbox.
Unfortunately this toolbox is Copyrighted by Mathworks, and the files used could not be
included on the CDROM.
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Appendix B

Feature Sets used in Section 7.2.3

The 20 random feature sets that were chosen for the tests in Section 7.2.3 is tabulated below. It
can be seen that for the LIVER data set, subsets four and five are the same. It was decided to keep
these values equal in order to see whether the different techniques performed consistently in these
cases. Furthermore, it is seen that the same subset masks were used for the two 15 feature data sets
(WDBC1 and WDBC2).

Table B.1: Random feature subsets chosen for experiments in Section 7.2.3. The leftmost bit
indicates the first feature, the second bit from the left indicates the second feature, and so forth. In the Matlab
code the first feature was always placed in the first column of the data matrix.

feature | LIVER PIMA WDBC1

subset and

number WDBC2
1 101001 11101001 | 101010100011001
2 101101 | 01011101 | 000001111011101
3 000001 | 11000001 | 101001100100001
4 000111 10100111 | 000101010100111
5 000111 | 00100111 | 010101010100111
6 110110 | 01001110 | 110001111001110
7 000110 | 00100110 | 010010110100110
8 101001 | 00011001 | 110010110011001
9 001111 | 01101111 | 001101011101111
10 011011 10111011 | 101110001111011
11 101101 | 01011101 | 011111111011101
12 011010 | 10111010 | 010111101111010
13 001011 | 00101011 | 001110110101011
14 111110 | 10000001 | 110010101000001
15 100111 10010111 | 110010001010111
16 111000 | 10000100 | 010001101000100
17 010110 | 11010110 | 011100000110110
18 100111 | 01010111 | 100110111010111
19 111011 10000111 | 011011001000111
20 000011 | 11000011 | 000000000100011
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Appendix C

Mutual Information Selection on
the ION Data

The Table below is used in Section 7.4.2 to point out some effects of dimensionality taking place in
this specific data set.

Table C.1: Best 40 feature subsets from ION data found by RANN evaluation of the mutual
information tests in Section 7.4.2. It is interesting to see how the final test set error seem to decrease
when more than/or less than 6 features are used. Also note that there seem to exist a subsets of only 2 features
that give comparable performance to the total of 34 features.

‘ feature Avg. training Std. dev Avg. test set Std. dev on
subset set classification on training sets classification test sets
0111100000000000000000000011000000 93.16 0.66 90.60 2.26
0110100100000000000000000011000000 93.25 1.34 90.43 2.70
1110100100000000000000000011000010 92.14 0.90 90.34 2.02
1110111011000000000000010011101100 92.14 1.00 90.00 1.95
1111100001000000000000000011001001 92.48 1.41 89.83 2.34
1111100001000000000000001001000011 90.64 1.71 89.74 1.91
1111100011000000000000000011000011 91.79 1.21 89.66 3.47
0100100000000000000000000011000000 90.90 0.60 89.57 1.42
0101100000000000000000000000000000 90.43 0.88 89.57 1.94
0001100000000000000000000000000000 90.43 0.88 89.57 1.94
1111100001000000000000001011000011 91.92 1.45 89.57 2.29
1110100111000000000000000011000110 92.09 1.71 89.49 2.78
1110101111000000010000011011000110 92.26 1.27 89.49 1.99
1111100001000000000000000011000011 92.69 1.11 89.32 2.30
1111101011000000010000011011000110 91.97 1.63 89.32 1.59
1111101111000000110000010011101101 93.12 1.14 89.32 2.10
1110101111000000000000011011000110 93.03 1.22 89.06 2.12
1111101011000000000000010011001001 92.14 0.72 89.06 2.64
1111101111111100010000011111111111 92.31 2.16 88.89 3.03
1110111011000000000000010011001100 91.79 1.01 88.80 1.89
1111101011000001000000011011001111 92.61 1.87 88.80 2.43
1111111111111100010000011111111111 93.93 2.38 88.72 2.64
1111101111110100010000011111111111 93.29 2.33 88.63 2.45
1111101111010000010000011011100110 92.74 1.68 88.63 2.89
1111101011110001000000011011101111 93.16 2.07 88.55 2.92
1111111111110000010000111111111111 93.50 2.39 88.55 2.79
1111111111111100010000011111111111 93.85 1.90 88.46 2.14
1111101111111100110000011111111111 93.25 1.62 88.38 2.14
1111111111111001011000111111111111 93.21 1.49 88.38 3.25
1111101111100000110000010111101101 92.82 1.50 88.29 3.04
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