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Abstract

Stereo vision attempts to reconstruct the 3D structure of a scene given two im-
ages. The main difficulty with stereo vision is the correspondence problem. Local-
matching stereo algorithms are an attractive solution to this problem because they
have a uniform structure and can be paralellized. This makes them applicable in
real-time systems because they can be implemented on graphics processing units
(GPUs) and field programmable gate arrays (FPGAs). This thesis closely analyses
local-matching algorithms and explores two issues.

The first issue is that of using temporal seeding in stereo image sequences. In a
stereo image sequence, finding feature correspondences is normally done for every
frame without taking temporal information into account. Reusing previous compu-
tations can add valuable information. A temporal seeding technique is developed
for reusing computed disparity estimates on features in a stereo image sequence to
constrain the disparity search range. Features are detected on a left image and
their disparity estimates are computed using a local-matching algorithm. The fea-
tures are then tracked to a successive left image of the sequence and by using the
previously calculated disparity estimates, the disparity search range is constrained.
Errors between the local-matching and the temporal seeding algorithms are analysed
on a short and long dataset. Results show that although temporal seeding suffers
from error propagation, a decrease in computational time of approximately 20% is
obtained when it is applied on 87 frames of a stereo sequence.

The second issue is that of developing a confidence measure for local-matching stereo
algorithms. A confidence measure is developed and applied to individual disparity
estimates in local-matching stereo correspondence algorithms. It aims at identifying
textureless areas, where most local-matching algorithms fail. The confidence mea-
sure works by analyzing the correlation curve produced during the matching process.
The measure is tested by developing an easily parallelized local-matching algorithm,
and is used to filter out unreliable disparity estimates. Using the Middlebury dataset
and the developed evaluation scheme, the results show that the confidence measure
significantly decreases the disparity estimate errors at a low computational over-
head. Furthermore, the confidence measure is used to improve start-up disparities
in temporal seeding. Results show that the measure does not succeed in filtering
out features producing high errors.
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Chapter 1

Introduction

Computer vision is the field of study that concerns extracting descriptions of the
world from images or sequences of images. This field is attractive because passive
imaging sensors such as cameras are relatively cheap compared to alternative sensors
such as laser range finders. We are interested in the stereo vision aspect of computer
vision.

In stereo vision we attempt to reconstruct the 3D structure of a scene given two
images. The main difficulty with stereo vision is the correspondence problem stated
as follows: given two images of the same scene from slightly different viewpoints,
find corresponding pixels and the disparity, the distance by which the pixel in one
view is translated relative to its corresponding pixel in the other view. Solving the
correspondence problem results in a 2.5D representation of the scene as shown in
Figure 1.1. To recover the 3D coordinates, the corresponding pixels are triangu-
lated.

The process of retrieving 3D data from stereo cameras may appear simple at first,
because as humans we have two eyes and we are able to perceive 3D data natu-
rally. It turns out that for a computer this is a complex task, and determining
correspondences between pixels is a challenging problem. Some of the challenges
are caused by image variations between the two views of the scene. These differ-
ences might be caused by occlusions of objects, specular reflections and sensor noise.

A large number of stereo algorithms have been proposed to solve the stereo cor-
respondence problem. However, the problem is ill-posed and a satisfying solution
has not yet been reached [2, 3]. Nevertheless, many algorithms exist and can be
useful depending on the application.

The fact that stereo vision uses cameras, which are passive sensors, makes it an
attractive solution to capturing 3D data. While other sensors are available to cap-
ture 3D data, cameras are comparatively less expensive and produce a large volume
of information. Applications for stereo vision include mobile robotics where a robot
perceives the environment in order to navigate itself while avoiding obstacles [4].
In such an application, stereo vision is normally used for Simultaneous Localisation
and Mapping (SLAM) [5]. In SLAM the robot builds a map and localises itself
within the map while building it. Other applications include augmented reality [6]
where virtual objects may be inserted into real world scenes, and human computer-
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(a) Left image. (b) Right image.

(c) Ground truth disparity map where objects
closer to the camera are represented by the
bright color (white) while objects further away
are represented by the dark color (black).

Figure 1.1: Two images used in stereo-vision with the ground truth disparity map.
The images are from the Middlebury dataset [1].

interaction [7] where a computer needs to recognize the pose or gesture of a subject.

1.1 Background

The aim of a stereo vision system is to retrieve depth information of a scene from
two images which are taken from slightly different viewpoints. Figure 1.2 shows a
block diagram of a stereo vision system. It consists of five main steps: (1) calibrat-
ing the cameras; (2) acquiring stereo images; (3) rectifying the stereo images; (4)
finding pixel correspondences; and (5) triangulating the pixel correspondences.

The camera calibration stage is two-fold. Firstly, the two cameras are calibrated
independently to find their intrinsic and extrinsic parameters. Secondly, the two
cameras are calibrated with each other to find the geometric relationship between
them.

After calibrating the cameras, images of the real-world can be acquired. The ac-



1.2. Stereo correspondence 3

Figure 1.2: The block diagram of a stereo vision system consisting of five steps: im-
age acquisition, calibration, rectification, stereo correspondence and triangulation.

quisition of stereo images requires the two images to be captured at the same time.
This means that the two cameras have to be synchronized.

Image rectification is a pre-processing step for stereo correspondence. This stage
makes use of the calibration between the two cameras and epipolar geometry to
transform the images so that their scanlines are aligned. This simplifies the stereo
correspondence search from 2D to 1D.

The stereo correspondence stage is concerned with finding corresponding pixels be-
tween the two stereo images. After finding the corresponding pixels, the disparity
of a pixel is determined. Stereo correspondence is a challenging problem in stereo
vision. This problem will be given a fair amount of attention.

The last stage is triangulation. The corresponding pixels in the two stereo im-
ages are used to find the depth of the scene points by triangulation. Furthermore,
the Euclidean coordinates of the scene points can be determined.

1.2 Stereo correspondence

As mentioned before, stereo correspondence is a challenging problem. Many algo-
rithms exist to solve this problem [2]. In this section, different stereo correspondence
algorithms which form building blocks for much more complex algorithms are ex-
plained and compared.

1.2.1 Local-matching stereo algorithms

The earliest attempts into solving the stereo correspondence problem involve the
use of local-matching algorithms [8, 9]. These algorithms generally use some kind of
statistical correlation between colour or intensity patterns in local support windows.
By using the local support windows, the image ambiguity is reduced efficiently while
the discriminative power of the similarity measure is increased. A common local-
matching algorithm is the sum of squared differences (SSD) algorithm.
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The SSD algorithm takes a window of size m × n centered at a pixel of interest
in the left image and searches in the right image, along a scanline, for a window
with similar intensities. This is shown in Figure 1.3.

 

 

m

n

(a) Left image.

d

(b) Right image.

Figure 1.3: Stereo images showing the local-matching process.

At each step of the search, the difference E of the two windows is calculated us-
ing the equation

E =
∑
m,n

(IL(m,n)− IR(m,n− d))2, (1.1)

where IL and IR are the intensity values of the left and right images respectively
and d is the current disparity offset. The pixel in the right image corresponding to
the disparity value with the lowest E is then nominated as the best match for the
current pixel in the left image.

In this type of approach finding the correct match can be challenging, especially
in weakly-textured areas where there is very little information to distinguish one
pixel from the next. It has been shown that by breaking down the algorithms and
optimizing the components, they can produce high quality disparity maps [10]. One
advantage of these algorithms is that they can be parallelized and implemented
on Graphics Processing Units (GPUs) [11] or Field Programmable Gate Arrays
(FPGAs) [12] to achieve real-time speeds. This makes these algorithms useful in
applications such as mobile robotics.

1.2.2 Global optimization

Global optimization methods [13, 14, 15, 16] work by defining an energy function
for the whole image. The problem then is to find a disparity d that minimizes some
global function. The most commonly used energy function is the Potts model [17],

E(d) = Edata(d) + Esmooth(d). (1.2)
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The data term, Edata(d), measures how well the disparity function d agrees with
the input image pair. The smoothness term Esmooth(d) encodes the smoothness
assumptions made by the algorithm. Once the global energy has been defined, a
variety of algorithms can be used to find a (local) minimum. One common algorithm
is graph cuts (GC).

Using graph cuts, the stereo correspondence problem now becomes that of trying
to find the maximum flow through a 3D graph. G = (V ;E) is defined as a directed
graph, where V is the set of vertices and E is the set of edges. The set of vertices
is based on the set of all possible matches and is defined as

V = L ∪ {s, t}, (1.3)

where s is the source and t is the sink. L is defined as

L = {(x, y, d), x ∈ [0, xmax], y ∈ [0, ymax], d ∈ [0, dmax]} , (1.4)

where xmax and ymax correspond to the width and height of the images and dmax

to the range of disparities. The set of edges is defined as

E =


(u, v) ∈ L× L : |u− v| = 1

(s, (x, y, 0)) : x ∈ [0, xmax]

((x, y, dmax), t) : y ∈ [0, ymax]

 . (1.5)

Figure 1.4 represents the outline of such a graph. The graph is six-connected except
at the extremes, s and t, and each vertex has a cost associated with it. Every edge
of the graph has a flow capacity calculated as a function of the costs of the vertices
it connects. The capacities limit the flow from the source to the sink.

A cut through the graph separates the set of vertices V into two parts, the set
containing the source s and the set containing the sink t. The problem now be-
comes that of finding the cut through the graph with the highest flow capacity from
the source to the sink. The capacity of a cut is the sum of the edge capacities that
define the cut. The minimum cut through the graph represents the maximum flow
from the source to the sink. The disparity labels leading to a minimum cut are
assigned to the pixels.

1.2.3 Dynamic Programming

Stereo matching through dynamic programming (DP) [18, 19, 20] can be considered
a semi-global method. It finds the global minimum for independent scanlines in
polynomial time. The stereo problem in this context becomes that of finding the
minimum cost path, or path of least resistance, through a cost matrix such as the
one shown in Figure 1.5. This matrix is constructed by calculating the differences
of all the pixels in the reference scanline and all the pixels of the corresponding
scanline over a range of disparity levels.
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Figure 1.4: Image of the graph used in graph cuts.

Figure 1.5: Stereo matching using dynamic programming taken from [2]. The letters
(a−k) represent the intensities along each scanline. The uppercase letters represent
the path selected through the matrix. M represents a match, L and R represent
partially occluded points corresponding to points only visible to the left and right
images, respectively.

The name dynamic programming comes from a mathematical process through which
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a problem is solved by breaking it into smaller pieces. The smaller problems are
solved first and the collection of all the smaller problems is equivalent to the problem
as a whole. The process is used to find the minimum cost path through a cost matrix
derived from the image scanlines. First the possible paths through the cost matrix
are defined using some constraints. The main constraint used in DP is the ordering
constraint [21]. The cost of a point is defined in a similar manner to the cost in
Equation 1.2 but instead of the smoothness term Esmooth(d) there is an occlusion
term Eocclusion(d) to penalize occlusions:

E(d) = Edata(d) + Eocclusion(d). (1.6)

The minimum cost to reach a particular point is then calculated and used to calcu-
late the minimum cost of reaching the next point of any path that moves through
the first point.

One advantage of global and semi-global methods is that, to a certain degree, they
are insensitive to weakly-textured areas. In DP the path will not stray far from the
disparities at the edges of the textureless area, because that would increase the cost
of the path.

1.2.4 Cooperative optimization

Cooperative methods [22, 23] firstly use colour or grayscale information to segment
the captured images, and then obtain the initial disparity estimate of the scene by
using a known matching algorithm. Finally, a disparity fitting technique is employed
to perform the task of disparity refinement for each region. Label-based optimiza-
tion is used. Furthermore, the algorithms reduce the number of labels by clustering
regions in the parameter space of the disparity plane before optimization.

These forms of algorithms are amongst the best performing according to the Middle-
bury evaluation. However, their main drawback is that they are iterative in nature,
making them very slow and inapplicable to real or near real-time systems. Thus,
we only discuss them briefly.

1.2.5 Comparison

Figure 1.6 shows the depth maps obtained from the Middlebury Tsukuba dataset
for the three different approaches described above. The implementation comes from
[2]. For local-matching algorithms results of the SSD approach are shown, for semi-
global matching results from the DP algorithm are shown, and for global matching
results from the GC optimization algorithm are shown.

The SSD algorithm performs the worst out of the three with most errors occur-
ring on the boundaries of the objects, which appear to be bigger than they actually
are. This problem is due to the design of local-matching algorithms. Approaches
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exist to address this problem [24, 25] at an extra computation cost. The DP al-
gorithm produces better results than SSD but because the scanlines are optimized
independently, the algorithm suffers from the streaking effect. The algorithm in [26]
has been developed to address this problem at extra computational cost. Amongst
the three algorithms, GC performs the best with few errors compared to the other
two approaches. The advantage of using global reasoning is effectively demonstrated.

(a) Ground truth disparity map. (b) Disparity map produced by using the SSD
algorithm.

(c) Disparity map produced by using the DP
algorithm.

(d) Disparity map produced by using the GC
algorithm.

Figure 1.6: Comparison of results obtained by SSD, DP and GC on Tsukuba dataset.

Table 1.1 shows the values for the percentage of bad pixels produced by the al-
gorithms on the Middlebury dataset when using the Middlebury evaluation scheme.
The table agrees with the observations of the disparity maps. SSD gives most erro-
neous results while GC gives the least erroneous results. DP falls between the two
other algorithms.

Table 1.2 shows the computation times of the different algorithms on the Mid-
dlebury dataset. On average, SSD is the fastest followed by DP and GC has the
heaviest computational load. This demonstrates that there is a compromise between
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Table 1.1: Table showing the percentage of bad pixels of the SSD, DP and GC
algorithms on the Middlebury dataset.

SSD DP GC
% of bad pixels 15.7 14.2 11.4

quality and speed in stereo correspondence algorithms. A simple algorithm such as
SSD produces the most erroneous results at a low computational cost while a more
complex algorithm such as GC produces fewer errors at a relatively higher compu-
tational cost.

Table 1.2: Computation times of the SSD, DP and GC algorithms on the Middlebury
dataset.

Tsukuba Sawtooth Venus Map
Time (seconds)

SSD 1.1 1.5 1.7 0.8
DP 1.0 1.8 1.9 0.8
GC 23.6 43.8 51.3 22.3

1.3 Objectives

In this study, we firstly aim to understand the different stereo algorithms available.
Then we choose to closely analyze local-matching stereo algorithms to explore the
following:

1. Temporal seeding in stereo image sequences
In a stereo image sequence, finding feature correspondences is normally done
for every pair of frames without taking temporal information into account.
Current imaging sensors can acquire images at high frequencies resulting in
small movements between consecutive image frames. Since there are small
inter-frame movements, the frame-to-frame disparity estimates do not change
significantly. We explore using previously computed disparity estimates to
seed the matching process of the current stereo image pair.

Most conventional stereo correspondence algorithms contain fixed disparity
search ranges by assuming the depth range of the scene. This range stays con-
stant throughout a stereo image sequence. By decreasing the disparity search
range the efficiency of the matching process can be improved.
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2. Confidence measure for local-matching stereo algorithms
Local-matching stereo algorithms generally fail in textureless regions. One
way of dealing with these regions is to perform colour segmentation as a pre-
processing step [27]. However, this adds a significant overhead on the stereo
algorithm which is undesirable for real-time applications.

A method of assigning a confidence to a disparity estimate for local-matching
algorithms is explored. This approach is expected to give low confidences
to disparity estimates in textureless regions, where many local-matching algo-
rithms fail. While this approach is similar to a number of previously developed
confidence measures [28, 29], in that the confidence of a disparity estimate is
a by-product of the matching process, the analysis focuses on the basin of
convergence (refer to Figure 6.2) of a disparity estimate. Furthermore, high
confidence points are expected to work well in temporal seeding.

1.4 Overview of Thesis

This section provides a brief summary of the work being reported on by outlining
the contents of the rest of the thesis.

In Chapter 2, the geometry of a canonical camera is briefly discussed. A second
camera is introduced and it is shown how to infer depth information. Epipolar ge-
ometry and triangulation are also covered.

In Chapter 3 the literature concerning the stereo correspondence problem is covered.

In Chapter 4 local-matching stereo algorithms are discussed in detail. The algo-
rithms are separated into their components and the different design considerations
are discussed.

In Chapter 5 temporal seeding on a stereo image sequence is explored. It is shown
how previously computed disparity maps can be used to aid the matching process
in local-matching stereo algorithms.

In Chapter 6 a confidence to a disparity estimate is assigned and used to filter
out errors in local-matching stereo algorithms. Furthermore, the confidence mea-
sure is used in temporal seeding.

In Chapter 7 the findings are discussed. Possibilities for future research are men-
tioned and concluding remarks are made.



Chapter 2

Stereo Geometry

Stereo geometry refers to the geometric relationship between two cameras. In this
chapter the objective is to reach a point where depth information can be inferred
given stereo images. The journey begins by describing how to mathematically repre-
sent the geometry of a single ideal camera. A second camera is then introduced and
the relationship between two camera views is described by using epipolar geometry.
The process of image rectification is described and used to simplify epipolar geom-
etry. The chapter is concluded by describing how to use triangulation to determine
depth information from stereo images.

This chapter forms a basis for this thesis. Terms commonly used in stereo vision
and notation used throughout the document are introduced.

2.1 Single view geometry

This section provides a brief summary of the geometry of a single camera.

2.1.1 Homogeneous coordinates

Homogeneous coordinates are useful in computer vision and they form a basis
for the projective geometry used to project a three-dimensional scene onto a two-
dimensional plane. A point (x, y) in 2-D space is represented in homogeneous co-
ordinates by the triple (kx, ky, k). Given a homogeneous point (kx, ky, k), one can
transform to the original coordinates by dividing by the scalar k. There are two im-
portant properties of homogeneous coordinates. Firstly, scalar multiples of a point
represent the same point, so (kx, ky, k) is same as the point (x, y, 1) for any non-zero
value of k. Secondly, points at infinity are represented by the point (x, y, 0), because
when transforming the homogeneous coordinates back into the original coordinates
we have to divide by zero.

2.1.2 Pinhole camera model

The process of mathematically representing a physical system usually begins with
constructing an ideal mathematical model. The model is then extended by including
deviations which occur in the real world. The most commonly used camera model
is the pinhole camera. This model describes the relationship of a 3D point in space
to its 2D projection on the image plane.
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Figure 2.1: Pinhole camera geometry. Projection of a 3D point X onto point x on
the image plane using a pinhole camera model.

The model assumes that every light ray entering the camera passes through a single
point called the camera center, C. The canonical camera center is taken as the
origin of the Euclidean coordinate system. The image is produced as the light rays
intersect the image plane which lies at a specific distance f from the camera center.
This distance f is known as the focal length of the camera. A point X = (X,Y, Z)T

in R3 is projected onto a point x = (x, y)T on the image plane in R2 where the
ray emanating from X and passing through the camera center intersects the image
plane. Referring to Figure 2.1 it can be shown using similar triangles that

(X,Y, Z)T 7→
(
fX

Z
,
fY

Z
, f

)T

. (2.1)

If the world and image points are represented by homogeneous vectors, the projec-
tion can be expressed as a linear mapping and can be written as

X

Y

Z

1

 7→

 fX

fY

Z

 =

 f 0 0 0

0 f 0 0

0 0 1 0




X

Y

Z

1

 . (2.2)

Now, if the world point X is represented as a homogenous 4-vector (X,Y, Z, 1)T and
the image point x is represented as a 3-vector, Equation 2.2 can be written as

x = PX, (2.3)

where P is a 3× 4 homogenous camera projection matrix.

2.1.3 Extension of the pinhole camera model

In order to better model a real camera, the pinhole camera model is extended [30].
These extensions include the following.

1. Principal point offset
This takes into account the fact that the origin of the camera coordinates
might not lie on the camera center.
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2. Distortion correction
A pinhole camera is not ideal for making images because it does not gather
enough light for rapid exposure. In order to gather more light, cameras use
lenses. The disadvantage of using lenses is that they introduce distortions.
The two main lens distortions are radial distortions and tangential distortions.
These distortions are modelled and corrected on the images.

3. Pixel shape
The pinhole camera model assumes that the image coordinates are Euclidean
coordinates having equal scales on both vertical and horizontal directions. In
the case of CCD cameras, there is the additional possibility of having non-
square pixels. If image coordinates are measured in pixels, then this has the
effect of introducing unequal scale factors in each direction.

4. Extrinsic parameters
Extrinsic parameters are the external parameters, which are the position and
orientation of the camera in the world coordinates. The camera and world
coordinates are related by a Euclidean transformation which gives a rotation
and translation.

After extending the pinhole camera model, Equation 2.3 now becomes

x = PX = K[R|t]X, (2.4)

where P = K[R|t]. The matrix K contains the intrinsic parameters of the camera
and is called the intrinsic parameter matrix or the calibration matrix. R and t are
the rotation and translation that relate the world coordinate frame to the camera
coordinate frame.

2.1.4 Camera calibration

Camera calibration is used to estimate P . One of the most used methods for cam-
era calibration is by Zhang [31]. This process uses a checkerboard pattern of known
dimensions, as shown in Figure 2.2. Many calibration toolboxes exist that have the
necessary steps for calibration built in. Some of the most common ones include
OpenCV [32] and the Bouguet camera calibration toolbox [33].

To calibrate a camera, multiple views of the calibration object are taken at dif-
ferent orientations and angles as shown in Figure 2.3(a). The corners of the pattern
are then detected using a corner detector such as the Harris corner detector [34] and
their estimated locations are refined to sub-pixel accuracy. Figure 2.3(b) shows a
typical result of the corner detection process.

An advantage of this pattern is that the corners of the checkerboard can be de-
tected very accurately up to sub-pixel accuracy. Furthermore, the corners form a
regular grid in a matrix form which means that errors in the detection of the corners
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Figure 2.2: A picture of the checkerboard pattern used for calibration.

can be resolved by enforcing the grid shape. Also, accurate world coordinates are
easily measured and specified for this pattern.

2.2 Binocular view geometry

A second camera is introduced to complete a stereo vision setup. This section details
two-camera geometry necessary for stereo vision.

2.2.1 Stereo calibration

A second camera is now introduced in order to move a step closer to achieving the
main objective namely inferring depth information from two cameras. Introducing
a second camera arbitrarily would be of no use. For the second camera to be useful,
one needs to know the spatial relationship between the two cameras. This means
that the two cameras have to be calibrated to each other. This process is called
stereo calibration [33]. Stereo calibration works in a similar way to single-camera
calibration except that now there are two cameras. In stereo camera calibration
we seek a single rotation matrix Rs and a translation vector Ts that relate the two
cameras.

For any given 3D point X in world coordinates, single-camera calibration is used to
map the point into the two camera coordinates

x = R1X+ T1

and
x′ = R2X+ T2.
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Calibration images

(a) Multiple images taken from different viewpoints for calibration
using the Bouguet camera calibration toolbox.
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(b) Image showing the checkerboard corners extracted on
the first image in (a) using the Bouguet camera calibration
toolbox.

Figure 2.3: Images showing stages of the calibration process.

The two views of X are then related by

x = RT
s (x

′ − Ts). (2.5)

The three equations mentioned above can now be used to solve for the rotation and
translation separately as

Rs = R2(R1)
T , Ts = T2 −RsT1. (2.6)

The stereo camera calibration process requires one to capture images of the same
checkerboard with both cameras at the same time. Furthermore, to relate the point
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correspondences from the two cameras, the checkerboard has to be clearly visible in
both images.

2.2.2 Epipolar geometry

The epipolar geometry [30] between two views is essentially the geometry of the
intersection of the image plane with a pencil of planes having the baseline as the
axis, where the baseline is the line joining the camera centers.

Suppose a point X in 3-space is imaged in x in the first camera view and x′ in
the second. We seek to find the relationship between the corresponding points x

and x′. As shown in Figure 2.4, the image points x and x′, the space point X, and
the camera centers C and C′, are all coplanar. Denote this plane by π. The rays
back-projected from x and x′ intersect at X and the rays are coplanar, lying on π.
It is this latter property that is most significant in searching for a correspondence.

C C /

 π

x x

X

epipolar plane  

/

Figure 2.4: Point correspondence geometry. The two cameras are indicated by their
centers C and C′ and image planes. The camera centers, the point X, and its images
x and x′ all lie on a common plane π.

Suppose now only x is known and we ask how the corresponding point x′ is con-
strained. The plane π is determined by the baseline and the ray defined by x, as
shown in Figure 2.5. The ray corresponding to the (unknown) point x′ lies in π,
hence the point x′ lies on the line of intersection l′ of π with the second image
plane. This line l′ is the image in the second view of the ray back-projected from
x. It is the epipolar line corresponding to x′. In terms of a stereo correspondence
algorithm the benefit is that a search for a point corresponding to x need not cover
the entire image plane, but can be restricted to the line l′. It turns out that one can
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Figure 2.5: Epipolar geometry. The camera baseline intersects each image plane at
the epipoles e and e′. Any plane π containing the baseline is an epipolar plane, and
intersects the image planes on corresponding epipolar lines l and l′.

further simplify the correspondence search using image rectification. This process
is described next.

2.2.3 Rectification

Given a pair of stereo images, rectification [33] determines a geometric transforma-
tion of each image plane such that pairs of conjugate epipolar lines become collinear
and parallel to one of the image axes (usually the horizontal axis). Effectively this
means that we have to define a new rotation Rn and a new intrinsic parameter
matrix Kn. The rectified images can be thought of as acquired by a new stereo rig,
obtained by rotating the original cameras. The important advantage of rectification
is that computing stereo correspondences is made simpler because the search need
only be done along the horizontal lines of the rectified images.

If P1 and P2 are the camera matrices corresponding to the two images, the new
intrinsic parameters can be chosen to be

Kn =
(K1 +K2)

2
. (2.7)

The objective is to have the two images coplanar, meaning that the Z axis of the
new orientation Rn has to be perpendicular to the baseline (the line joining C and
C′). This does not ensure that the image scan lines are aligned. For the alignment,
the scan lines need to be parallel to the baseline. The first unit vector u1 is chosen
to be along the baseline. This unit vector corresponds to the X axis of the new
orientation and is expressed as

u1 =
(C−C′)

||(C−C′)||
. (2.8)
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In order to define the Y axis the unit vector of the principal ray of the old image,
n is used. The Y axis has to be perpendicular to u1, therefore

u2 = n× u1. (2.9)

The last unit vector, u3, corresponding to the Z axis has to be perpendicular to
both u1 and u2, so

u3 = u1 × u2. (2.10)

Now the new rotation can be written as

Rn =

 uT
1

uT
2

uT
3

 (2.11)

The images may be remapped by defining the transformations S1 and S2 as

S1 = MnM
−1
1 , S2 = MnM

−1
2 (2.12)

where Mn = KnRn and Mi = KiRi for i = 1, 2. The image points x and x′ of the
original images can now be mapped to the rectified image points xrect and x′

rect as
follows:

xrect = S1x, x′
rect = S2x. (2.13)

The effect of this mapping can be illustrated in Figure 2.6, where the image scanlines
are aligned.

Figure 2.6: Image rectification. The two images are calibrated and rectified. By
rectifying the images the scanlines of both images are aligned which restricts the
correspondence search.
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2.2.4 Triangulation

At this point, enough has been described to be able to find the 3D coordinate of a
point given undistorted and rectified stereo images. This is done by using triangu-
lation. It is assumed that the image coordinates x and x′ of the feature coordinate
X in the left and right images respectively are known. Then X can be calculated
by using similar triangles as follows: If x = (u, v), where u and v are the row and
column of the image, and x′ = (u′, v′) are the image coordinates of the left and right
images respectively, then the disparity d is defined as d = v− v′. Given the baseline
B and the focal length f of the left camera, the depth Z of X can be determined
by using similar triangles as illustrated in Figure 2.7 as

Figure 2.7: Triangulation of X using similar triangles. The depth Z is triangulated
using the disparity d of the two image coordinates of X.

B − d

Z − f
=

B

Z
, (2.14)

Z =
fB

d
.

The depth of a point is inversely proportional to the disparity. In order to visualize
this relationship one can plot the disparity versus the depth as shown in Figure 2.8.

The figure illustrates that for small values of d, the estimates of the depth based on
d become more inaccurate. This point is important to note as the work progresses.
Next, one needs to find the X and Y coordinates of the world point X. Using
the left image of the stereo camera pair, similar triangles can be used to find X as
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Figure 2.8: Depth vs. disparity for f = 1000 (measured in pixels) and B = 12cm.
The image shows that for large disparities, the depth resolution is high and decreases
as the disparities become smaller.

follows:
X =

(u− pu)

f
Z (2.15)

where pu is the vertical offset of the principal point. Equation 2.15 can be written
in terms of B and d by substituting for Z as follows:

X =
(u− pu)

f

fB

d
=

(u− pu)B

d
. (2.16)

Similarly,

Y =
(v − pv)B

d
, (2.17)

where pv is the horizontal offset of the principal point. Homogeneous coordinates
can be used to neatly encapsulate the whole process of triangulation. The matrix
Q can be defined such that 

WX

WY

WZ

W

 = Q


u

v

d

1

 , (2.18)

with

Q =


1 0 0 −pu
0 1 0 −pv
0 0 0 f

0 0 1
B 0

 . (2.19)

Now one needs to find corresponding pixels in a stereo image pair. This is called
the stereo correspondence problem and is described in the next chapter.



Chapter 3

Literature review

Stereo vision is one of the most actively researched fields in computer vision. A large
number of stereo correspondence algorithms have been developed. In order to gauge
progress in the area, Schartein et al. [2] wrote a paper which provides an update on
the state of the art in dense two frame stereo correspondence algorithms under known
camera geometry. The algorithms produce dense disparity maps which are useful
in a number of applications including view synthesis, robot navigation, image-based
rendering and tele-presence. For researchers in stereo vision one of the most useful
outputs of the paper is a quantitative testbed for stereo correspondence algorithms
available, from vision.middlebury.edu/stereo. The testbed allows an on-line
evaluation of developed stereo correspondence algorithms and rates the algorithms
according to their depth map quality relative to the ground truth. Because of
the quantitative on-line evaluations the testbed is widely used in the stereo vision
community. This section reviews stereo correspondence algorithms mostly which
have received attention in the Middlebury evaluation [1].

3.1 Review of stereo correspondence algorithms

Top-performing stereo correspondence algorithms make use of colour segmentation
techniques. The mean-shift [35] algorithm is popular for performing colour segmen-
tation. Currently, the best performing algorithm in the Middlebury evaluation page
is based on inter-regional cooperative optimization [22]. The algorithm firstly seg-
ments the images into homogeneous regions. Secondly, a local-matching algorithm is
used to compute the initial disparity estimate. Thirdly, a voting-based plane fitting
technique is applied to obtain the parameters of a disparity plane corresponding to
each image region. Finally, the disparity plane parameters of all regions are iter-
atively optimized by an inter-regional cooperative optimization procedure until a
reasonable disparity map is obtained. The algorithm in [23] is similar to [22] but
instead of using inter-regional optimization, it uses belief propagation to determine
the optimal plane parameters. The iterative nature of this algorithm makes it very
slow and thus not suitable for real-time implementations.

A slightly different approach to solving the stereo correspondence problem can be
found in [36]. Pixels are classified as either stable, unstable or occluded. Occluded
pixels are those which fail the left-right consistency check [37, 38]. The distinctive-
ness of the correlation measure peak is then used to classify the pixels which passed
the left-right consistency check into stable and unstable pixels. Information from
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the stable pixels is then propagated to the unstable and occluded pixels by using
colour segmentation and plane fitting. Hierarchical belief propagation in a global
energy minimization framework is then used to iteratively improve the plane fitting
results. Instead of classifying pixels as in [36], [39] uses an outlier confidence model
to measure how likely a pixel is occluded. Because there is no direct labelling, the
model has more tolerance for errors produced in the occlusion detection process.
The model then uses a reliable colour refinement scheme to locally infer the possible
disparity values for the outlier pixels. Belief propagation is used to minimize the
energy function.

Segmentation-based stereo correspondence algorithms work well in textureless re-
gions because they assume that depth varies smoothly within regions of homoge-
neous colour, and that depth discontinuities coincide with depth boundaries. The
algorithm in [40] takes into account the drawback of this assumption: depth discon-
tinuities may not lie along colour segmentation boundaries, resulting in segments
that span depth discontinuities. In order to overcome this effect, the algorithm in
[40] jointly estimates image segmentation, depth, and matting/depth information
for mixed pixels, which span two objects at different depths. An over-segmentation
approach is used to represent the scene as a collection of fronto-parallel planar seg-
ments. The segments are then characterized by their depth, 2D shape and colour.
These parameters are jointly estimated by alternating the update of segment shapes
and depths. The segment shapes are updated using a generative model that ac-
counts for mixed pixels at the segment boundary as well as the depth and shape
probabilities. Segment depths are updated by defining a pairwise Markov random
field and belief propagation is used to minimize the energy.

In [41], an explicit treatment of occlusions is carried out. The visibility constraint,
which requires that an occluded pixel must have no match on the other image and
a non-occluded pixel must have at least one match, is exploited. This results in
a symmetric stereo model that can handle occlusions. The visibility constraint is
embedded in an energy minimization framework. The energy is minimized with
an iterative optimization algorithm that uses belief propagation. In [42], a near
real-time stereo correspondence algorithm which explicitly deals with textureless
regions is developed. Instead of having strong planarity constraints in the envi-
ronment, which tend to force non-planar objects onto planes, the algorithm uses a
compromise approach. Depth estimates are preferred while in textureless regions,
the estimates can be replaced with planes. A near real-time colour segmentation
algorithm is used and planes are fitted in textureless segments. The planes are
refined using consistency constraints. Loopy belief propagation is used to correct
local errors and improve the algorithm. The algorithm in [43] uses a window-based
algorithm to obtain initial depth estimates. Instead of halting the process after
the initial depth estimation, the process is taken one step further using a technique
called disparity calibration. For disparity calibration, an appropriate calibration
window is selected for each pixel using colour similarity and geometric proximity.
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By using these calibration windows, a local disparity calibration method is designed
to acquire accurate disparity estimates.

In [44], an extension of semi-global matching is used to solve stereo correspondence in
a structured environment. In order to handle untextured areas, intensity consistent
disparity selection is proposed. Holes caused by filters are filled in by discontinuity
preserving interpolation. One of the main advantages of this algorithm is its low
complexity and runtime. The algorithm in [45] is based on scanline optimization
(SO). The algorithm embodies a function based on variable support. Low-textured
regions are handled by the SO framework and the variable support helps to preserve
accuracy along depth borders. A refinement step based on a technique that exploits
symmetrically the relationship between occlusions and depth discontinuities on the
disparity maps obtained, assuming alternatively as reference the left and the right
image, allows for accurately locating borders.

A similarity measure called the Distinctive Similarity Measure (DSM) is proposed in
[46]. The DSM resolves the point ambiguity based on the idea that the distinctive-
ness, not the interest, is the appropriate criterion under the point ambiguity. The
distinctiveness of a point is related to the probability of a mismatch. Also, the dis-
similarity between image points is used since it is related to the probability of a good
match. The algorithm in [10] uses a local algorithm based on adaptive weights for
cost aggregation. The algorithm includes information obtained from a segmentation
process in order to improve aggregation. The algorithm in [47] combines the strength
of the region-based approach and the 2D DP optimization framework. Instead of
optimizing a global energy function defined on a 2D pixel-tree structure using DP,
a region-tree built on over-segmented image regions is used. The resulting disparity
maps do not contain any streaking problems as is common in SO algorithms because
of the tree structure.

The algorithm in [48] is a local-matching algorithm which uses varying support
weights for cost aggregation. The support weight in a given support window is
based on colour similarity and geometric proximity to reduce the image ambiguity.
The algorithm produces surprisingly good results for a local-matching algorithm.
The algorithm in [49] solves the stereo correspondence problem by formulating the
problem as a large scale linear programming problem. The match cost function is
approximated by a piecewise linear convex function. The resulting problem is solved
using an interior point method and the associated Newton steps involve matrices
that reflect the structure of the underlying pixel grid. The algorithm in [50] aims to
improve sub-pixel accuracy in low-texture regions. The algorithm preserves depth
discontinuities and enforces smoothness on a sub-pixel level. A stereo constraint
called the gravitational constraint is presented. The constraint assumes sorted dis-
parity values in a vertical direction and guides global algorithms to reduce false
matches, especially in low-texture regions.
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The algorithm in [51] is a semi-global algorithm which uses mutual information
for pixel-wise matching. The calculation of mutual information is performed hierar-
chically. A global cost calculation is approximated and can be performed at a time
that is linear in the number of pixels. The algorithm in [52] uses fast converging
hierarchical belief propagation to achieve a real-time stereo correspondence algo-
rithm on a graphics processing unit (GPU). A novel approach is used to adaptively
update pixel costs since belief propagation is linear in the number of iterations,
making it unfeasible for practical applications. The algorithm in [53] is a two-step
local stereo correspondence algorithm, initial matching and disparity estimation,
which employs segmentation cues. The initial matching uses a raw matching cost
with the contrast context histogram descriptor and two-pass cost aggregation with
segmentation-based adaptive support weight. The disparity computation consists of
two parts: narrow occlusion handling and multi-directional weighted least-squares
fitting for the broad or large occlusion areas.

A near real-time local stereo correspondence algorithm is developed in [27] based
on segmentation. The algorithm uses effective cost aggregation and finds a compro-
mise between cost aggregation and computational time. The algorithm in [54] is a
local stereo correspondence algorithm which uses the anisotropic local-polynomial
approximation-intersection of confidence intervals technique in order to define an
appropriate window size. The method performs the entire disparity estimation and
refinement within the local high-confidence voting framework. The algorithm in [55]
uses a combination of binocular and monocular cues for initial match candidates.
The matching candidates are then embedded in disparity space, where perceptual
organization takes place in 3D neighbourhoods. The assumption is that correct
matches produce salient, coherent surfaces, while wrong ones do not. Matching
candidates that are consistent with the surfaces are kept and grouped into smooth
layers. The projections of the refined surfaces on both images are used to obtain
disparity hypotheses for unmatched pixels. The final disparities are selected after
a second tensor voting stage, during which information is propagated from more
reliable pixels to less reliable ones.

The algorithm in [56] is a real-time DP based algorithm on a GPU. The algorithm
reduces the typical streaking artifacts by aggregating the per-pixel matching cost in
the vertical direction. The algorithm in [57] uses DP in a tree structure instead of
on the individual scanlines. The nodes on the tree represent image pixels, but only
the most important edges of the 4-connected neighbourhood system are included.
The algorithm becomes a global optimization method because a disparity estimate
at one pixel depends on the estimates at all other pixels.
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Local-matching stereo algorithms

The aim of stereo correspondence is to find corresponding pixels between two images
of the same scene taken from slightly different viewpoints. This means that for a
pixel in the left image, every pixel in the right image can be scanned to find which one
corresponds. This would be very computationally expensive. Recalling from Section
2.2.3, the search space for finding pixel correspondences can be significantly reduced
by calibrating and rectifying the images. This simplifies the stereo correspondence
problem significantly. The problem can now be phrased as: given two images of the
same scene taken from slightly different viewpoints, for a pixel in the left image, find
a corresponding pixel in the right image along the same scanline and the distance
by which the pixel in the left image is translated relative to its corresponding pixel
in the right image. Mathematically, if x = (u, v) is the left image pixel coordinate
where u is the image row/scanline and v is the image column and x′ = (u′, v′), is
the right image pixel coordinate, then the correspondence problem can be written
as:

u = u′, v = v′ − d, (4.1)

where d is the disparity. If we compute d for every pixel in the left image, a dense
disparity map is obtained.

The earliest attempts into solving the stereo correspondence problem involve the
use of local-matching algorithms [8, 9]. These algorithms generally use some kind of
statistical correlation between colour or intensity patterns in local support windows.
By using the local support windows, the image ambiguity is reduced efficiently while
the discriminative power of the similarity measure is increased.

Generally, stereo correspondence algorithms can be broken down into components.
These components allow us to separate the different design considerations of a par-
ticular algorithm. By separating the algorithms into their components, they can be
evaluated thoroughly and the inner workings can be easily understood. The four
steps generally performed by a stereo correspondence algorithm are:

• Matching cost computation
A matching cost is defined and used to measure pixel similarity.

• Cost (support) aggregation
A support region is defined to spatially aggregate the matching cost.
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• Disparity computation / optimization
The best disparity hypothesis for each pixel is defined to minimize a cost
function.

• Disparity refinement
The disparity estimates are post-processed to remove outliers and/or perform
sub-pixel estimation.

A particular algorithm might perform all four steps or a subset of the steps. The
sequence in which they are applied depends on the algorithm. Our interest lies in
local-matching algorithms that perform all the above-mentioned steps.

In this chapter a basic local-matching stereo algorithm is described by decompos-
ing it into the different steps described above. It is then shown that by breaking
down the algorithm we can look at the different design considerations and improve
it. The improvement is demonstrated by implementing a state-of-the-art variant of
local-matching algorithms.

4.1 Simple local-matching algorithm

A simple local-matching algorithm is implemented. The algorithm is broken down
into its components and the different design considerations for the algorithm are
covered.

4.1.1 Matching Cost

In order to find corresponding pixels we need some way of quantifying how similar
they are. To achieve this a matching cost e(x,x′) is defined, where x and x′ are
the pixel locations in the left and right images respectively. By using the intensity
values at the specific image locations I(.), a matching cost can be defined using the
absolute differences of the pixel intensities as follows:

e(x,x′) = |IL(x)− IR(x
′)| (4.2)

where IL(.) and IR(.) represent the intensity at the specific image locations in the
left and right images respectively.

Pixels that are similar will give a low score and ones that are different will give
a high score. An extension of the above mentioned matching cost would be Birch-
field and Tomasi’s sampling insensitive matching cost [58]. The reader is referred to
[59] for a comprehensive study on the performance of matching costs under different
radiometric changes of the input images. Since now there is a way of determining
the similarity of pixels, the only part left is the process of searching and choosing
the corresponding pixels.
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4.1.2 Ordering Constraint

Recalling that the images are calibrated and rectified, the search for corresponding
pixels is limited to a single scanline. In order to find correspondences, a pixel in
the left scanline compared to every pixel in the corresponding scanline of the right
image. It turns out that the search for a corresponding pixel can be reduced by
using an ordering constraint [21].

Considering the two-camera geometry, the ordering constraint can be phrased as
follows: pixels A and B are on the left image and their matches on the right image
are A′ and B′ respectively. If pixel A is on the left of pixel B in the left image,
A′ has to be to the left of B′ in the right image. This constraint does not always
hold: it is violated by thin objects which are close to the camera as demonstrated
in Figure 4.1. However, it can be assumed that most objects in the scene are large.
The ordering constraint restricts the search for correspondence of a pixel in the left
image scanline to be to the left of the same pixel in the right image scanline.

Figure 4.1: The ordering constraint violated if features are thin objects close to the
camera.
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4.1.3 Disparity computation

The ordering constraint allows to restrict the correspondence search to a certain
direction. The search can be further reduced by choosing the disparity range to
be d ∈ [dmin, dmax]. Using Equation 4.2 and the ordering constraint, the matching
costs between the pixel of interest in the left image and the candidate pixels in the
right image can be computed. The computation produces a correlation curve as
illustrated in Figure 4.2.
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Figure 4.2: Correlation curve produced by calculating the pixel simmilarity between
the pixel of interest and candidate matching pixels.

The disparity of the pixel is then selected using a Winner-Takes-All (WTA) method
without considering global reasoning as

d = argmin(e(x,x′(d))) = argmin(|IL(u, v)− IR(u
′, v′ − d)|). (4.3)

This algorithm gives a disparity map as shown in Figure 4.3.

Although the disparity map in Figure 4.3 is very detailed, it suffers from noise.
This is due to the fact that the similarity measure is done pixelwise. To reduce this
noise one can support the pixels of interest with their neighbouring pixels as shown
in the next section.

4.1.4 Cost Aggregation

Using the raw matching cost gives noisy results as shown in Figure 4.3. In order to
combat this problem, a support region is defined to spatially aggregate the matching
cost. A number of aggregation strategies exist [60]. The matching cost can be
aggregated by using an n×n window centered at the pixel of interest. Then Equation
4.2 becomes

E(x,x′) =
∑

xa∈NL,x′
a∈NR

|IL(x− xa)− IR(x
′ − x′

a)|. (4.4)
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(a) Ground truth disparity map. (b) Disparity map produced by using absolute
differences as a matching cost.

Figure 4.3: Results of using the absolute differences as a matching cost for stereo
correspondence.

where NL and NR represent the support windows centered on pixels x and x′ re-
spectively. xa and x′

a are the pixels within NL and NR respectively. Aggregation
of this form assumes a constant disparity across the support window. Figure 4.4
shows the resultant disparity maps obtained while varying the support window size.

It is observed that increasing the window size reduces the noise in the disparity
maps. Furthermore, the resolution of the disparity map is decreased. Because every
pixel of interest has a support window associated with it, the computational time of
the disparity map is increased. An artifact called the fattening-effect is introduced
at the object boundaries. Choosing the optimal window size becomes an important
consideration in the design of a stereo algorithm. There have been several studies
into addressing the choice of window size [25].

Three observations can be made from the resulting disparity maps. Firstly, local-
matching stereo algorithms fail in weakly-textured regions because there is not
enough information to reliably match the pixels in that region. Secondly, if a pixel
is occluded, visible in one view and not visible in the other view, the algorithm
will give incorrect results because it does not penalize these occurrences. Thirdly,
because the disparities are calculated as discrete values, the algorithm suffers from
the discretization effect [2]. The next section describes how some of these problems
can be addressed.

4.1.5 Disparity refinement

In this section, some of the post-processing steps used in stereo vision are discussed.
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(a) Ground truth disparity map (b) Disparity map produced by using the sum
of absolute differences with a 3 × 3 window
size.

(c) Disparity map produced by using the sum
of absolute differences with a 9 × 9 window
size.

(d) Disparity map produced by using the sum
of absolute differences with a 15× 15 window
size.

Figure 4.4: Disparity maps obtained by varying the support window size.

4.1.5.1 Left-right consistency check

The left-right consistency check [37, 38, 61, 62] is used to detect inconsistencies in
the matching process. The check works by reversing the roles of the left and right
images. Firstly, the matching pixel of the left image in the right image is determined.
Then the roles of the images are reversed and there is a check if the right image
pixel matches the left image pixel. This check is very useful especially when a pixel
is occluded.

4.1.5.2 Sub-pixel refinement

The disparity computation gives discrete disparity values. To remove the dis-
cretization effects, one can perform sub-pixel estimation based on quadratic poly-
nomial interpolation [63]. dsub is approximated between three discrete variables,
f(i) = E(x,x′ − d), f(i+1) = E(x,x′ − (d+1)) and f(i− 1) = E(x,x′ − (d− 1)) as

dsub = d−
{

f(i+ 1)− f(i− 1)

2
(
f(i+ 1) + f(i− 1)− 2f(i)

)}. (4.5)
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4.2 Pseudo-code

The different design considerations of a local-matching stereo algorithm have been
covered. The algorithms can be summarized in pseudo-code shown in Algorithm 1.

Algorithm 1 Stereo algorithm
INPUT: Stereo images, window size, disparity range.
OUTPUT: Disparity map.

for each pixel in the left frame do
set support region around the pixel (left frame)
set search window in the right frame
for each pixel in the search window (right frame) do

set correlation window around the pixel
correlate support region with correlation window

find best match
calculate disparity
refine disparity

4.3 Adaptive weights for cost aggregation

The algorithm implemented is found in [10]. For a matching cost the algorithm uses
truncated absolute differences. The cost is expressed as

e(x,x′) = min(|IL(x)− IR(x
′)|, T ), (4.6)

where T is the truncation value that controls the limit of the matching cost. The
intensity values used in this algorithm are based on the Lab color space which closely
represents the human visual system. The main contribution of the algorithm is in the
aggregation step. Similar to the simple matching algorithm, a square window is used
for aggregation but with some additions. The approach taken in this algorithm is
based on the observation that pixels in a support region are not equally important
for support aggregation. Every pixel within a window is given a support weight
based on the gesalt grouping [64, 65]:

w(p, q) = f(∆cpq,∆gpq), (4.7)

where pixel p is the center pixel of the window which is at position (u, v) according to
the previous description. Pixel q is a pixel neighbour of p within the support window.
∆cpq and ∆gpq represent the colour difference and spatial difference between pixel
p and q. By regarding ∆cpq and ∆gpq as independent events, f(∆cpq,∆gpq) can be
written as

f(∆cpq,∆gpq) = fs(∆cpq)fp(∆gpq), (4.8)
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(a) Ground truth disparity map. (b) Disparity map produced using adaptive
weights for cost aggregation.

Figure 4.5: Results produced by using adaptive weights for cost aggregation.

where fs(∆cpq) and fp(∆gpq) represent the strength of grouping by similarity and
proximity. These groupings are modelled as

fs(∆cpq) = exp

(
−∆cpq

γc

)
(4.9)

and
fp(∆gpq) = exp

(
−∆gpq

γp

)
, (4.10)

where ∆cpq represents the Euclidean distance between two colors, cp = [Lp, ap, bp]

and cq = [Lq, aq, bq]. ∆gpq is the Euclidean distance between p and q in the image
domain. γc is a factor used in the strength of grouping by similarity and γp is
the radius of the window size. The support weight based on the strength of the
groupings then becomes

w(p, q) = exp

(
−
(
∆cpq
γc

+
∆gpq
γp

))
. (4.11)

Using Equation 4.11, the dissimilarity between pixels becomes

E(x,x′) =

∑
q∈Np,q̄d∈Np̄d

w(p, q)w(p̄, q̄)e(q, q̄d)∑
q∈Np,q̄d∈Np̄d

w(p, q)w(p̄, q̄)
. (4.12)

The disparity computation used is the same as in Equation 4.3. The results of the
extensions to the simple local-matching stereo algorithm are shown in Figure 4.5.
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Temporal seeding in stereo image
sequences

The previous chapter dealt with obtaining a dense disparity map from static images.
In this chapter, the temporal domain of a stereo image sequence is explored. In a
stereo image sequence, finding feature correspondences is normally done for every
pair of frames without taking temporal information into account. Current imaging
sensors can acquire images at high frequencies resulting in small movements be-
tween consecutive image frames. Since there are small inter-frame movements, the
frame-to-frame disparity estimates do not change significantly. We explore using
previously computed disparity estimates to seed the matching process of the cur-
rent stereo image pair.

Most conventional stereo correspondence algorithms contain fixed disparity search
ranges by assuming the depth range of the scene as in Equation 4.3. This range
stays constant throughout a stereo image sequence. By decreasing the disparity
search range the efficiency of the matching process can be improved. This can be
seen in [66], where the probability of an incorrect stereo match is given by:

P T ∝ P a + P b + P c,

where P a is the probability of mismatching a pair of features when neither feature
has its correct match detected in another image, P b is the probability of mismatch
when one feature has had its correct match detected, and P c is the probability of
mismatch when both features have had their correct matches found in the other
image. The probabilities, P a, P b and P c are all proportional to the mean num-
ber of candidate matches and thus P T is proportional to the disparity search range
of the stereo correspondence algorithm. Therefore by reducing the disparity search
range, P T is reduced assuming that the correct match remains in the reduced range.

A method of using temporal information in stereo image sequences to decrease the
disparity search range so as to decrease the probability of a mismatch is developed.
A local-matching stereo correspondence algorithm is implemented on KLT (Kanade
Lucas Tomasi) features and the disparity estimates obtained are used on the con-
secutive stereo image frame to seed the matching process. Local-matching stereo
algorithms have a uniform structure, as demonstrated in Chapter 4. This allows the
temporal seeding method to be used across different variations of these stereo algo-
rithms. The method is expected to be at the least as accurate as the local-matching
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algorithm at a lower computational expense when using a small number of frames.

Errors in both the local-matching algorithm and the temporal seeding algorithm
are quantified. The algorithms are run on two successive stereo images and an error
comparison is carried out. Furthermore, the algorithms are run on 87 frames of a
different dataset and temporal seeding is evaluated.

This section is structured as follows. Section 5.1 covers the related literature. Sec-
tion 5.2 defines the problem to be solved. Section 5.3 discusses the feature matching
and detection process. The local-matching stereo correspondence algorithm im-
plemented is discussed in Section 5.4. Section 5.5 discusses the temporal seeding
process. Section 5.6 discusses the experiments and results.

5.1 Related work

There have been successful implementations of enforcing temporal constraints for
depth estimation in successive stereo image frames. The work in this chapter is
directly related to approaches that combine motion and stereo.

Algorithms such as those in [67, 68, 69] can be classified as pseudo-temporal stereo
vision algorithms. They aim to solve the stereo correspondence problem for a wide
baseline. The input to such algorithms is a monocular sequence of images produced
by a camera undergoing controlled translating or rotating motion. Stereo image
pairs are produced by selecting and pairing different images from the input sequence.
The algorithms initially start by finding correspondences in a short baseline stereo
pair and use these correspondences to bootstrap the stereo correspondences of a
wider baseline stereo image pair. The propagation of disparity values from one set
of frames to the next helps to improve computational efficiency and reliability of
stereo matching.

The work in [70] and [71] also takes into account temporal information to solve
for depth from triangulation. These methods extend support aggregation from 2D
to 3D by adding the temporal domain. These algorithms can be viewed as exploiting
temporal aggregation to increase matching robustness.

The work in [72] uses previous disparity estimates by analyzing their local neigh-
bourhood to decrease the disparity search range of the current stereo image frame.
The computational load and robustness of using temporal information are demon-
strated. Although this algorithm performs well, it suffers from start-up problems.
Research from [73] addressed the start-up problem and was successfully used on a
wide baseline stereo sequence.

The work in this chapter is similar to that in [72] but instead of analyzing the local
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neighbourhood of the previous estimate to decrease the search range, the search
range is decreased according to the shape of the correlation curve in the successive
image frame given an initial disparity estimate.

5.2 Problem statement

The problem to be solved can be defined as follows.

The input is a set of calibrated and rectified stereo image pairs, {Lt,Rt}Nt=0, each
pair acquired at time t = 0, ..., N . Lt and Rt denote the left and the right images
taken at time t. An image coordinate, xt = (ut, vt) ∈ F , represents a pixel location
of a detected feature in the set of features F at row ut and column vt in the left
image, while x′

t = (u′t, v
′
t) represents the corresponding pixel on the right image. If

d(a) is the disparity estimate of pixel a, then our goal is to determine a disparity
estimate d(xt+1) when given d(xt) as a prior. The different aspects of the problem
are discussed in the following sections.

5.3 Feature detection and matching

This section discusses the feature detector and tracker used in determining and
tracking the features F .

5.3.1 KLT (Kanade-Lucas-Tomasi)

The Kanade-Lucas-Tomasi (KLT) feature tracker is based on the early work by Lu-
cas and Kanade (LK) on optical flow in [74]. The LK algorithm attempts to produce
dense disparity estimates. The method is easily applied to a subset of points in the
image and can be used as a sparse technique. Using the LK algorithm in a sparse
context is allowed by the fact that it relies on local information extracted from some
small window surrounding the point of interest.

LK works on three assumptions:

• Brightness consistency
The appearance of a pixel does not change with time. This means that the
intensity of a pixel denoted as I(.) is assumed to remain constant between
image frames: It(xt) = It+1(xt+1).

• Temporal persistence
The movement of the image frames is small, so a surface patch changes slowly
over time.

• Spatial coherence
Neighbouring pixels that belong to the same surface patch have similar motion
and project to nearby image points on the image plane.
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The KLT tracker [75] is a frame-by-frame temporal tracker for a single video sequence
which is applied at a set of corner points that change throughout the tracking. Good
features [76] are selected by examining the minimum eigenvalue of each 2 × 2 gra-
dient matrix. The features are then tracked using a Newton-Rhapson method of
minimizing the differences between two image patches. Figure 5.1 shows an image
with 313 detected KLT features.

Detecting the features solves for F and tracking the features on successive frames
estimates xt ↔ xt+1.

Figure 5.1: Features detected in the image. 313 KLT features are detected on this
image.

5.4 Stereo correspondence

Chapter 4 described in detail how to solve the stereo correspondence problem. Now
the problem is viewed at in the context of temporal seeding. Given an image pair
that is calibrated and rectified, {Lt,Rt}, a set of detected features F in the left
image, and corresponding pixels xt ↔ x′

t, the objective is to determine d(xt).

5.4.1 Stereo algorithm

The stereo algorithm used in this section is similar to that in Section 4.1 with
the main difference being the matching cost used. Birchfield and Tomasi’s (BT’s)
sampling insensitive matching cost [58] is used. This matching cost e(xt,x

′
t) is

formulated as follows:

Il(x
′
t) =

1

2
(IR(x

′
t) + IR(u

′
t, v

′
t − 1))
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is the linearly interpolated intensity to the left of pixel x′
t and, analogously,

Ir(x
′
t) =

1

2
(IR(x

′
t) + IR(u

′
t, v

′
t + 1))

is to the right of pixel x′
t, then Imin(x

′
t) and Imax(x

′
t) are computed as follows:

Imin(x
′
t) = min(Il(x

′
t), Ir(x

′
t), IR(x

′
t)),

Imax(x
′
t) = max(Il(x

′
t), Ir(x

′
t), IR(x

′
t)).

The matching cost is then computed as

e(xt,x
′
t) = max(0, IL(xt)− Imax(x

′
t), Imin(x

′
t)− IL(xt)). (5.1)

To aggregate the cost a square window is used, as in Section 4.1.4, and computing
the disparities is the same as in Section 4.1.3. Furthermore, sub-pixel interpolation
is performed for disparity refinement as in Section 4.1.5.2. In order not to confuse
this section’s stereo algorithm with the previously described algorithms, from this
point it will be called BT’s stereo algorithm.

5.5 Temporal seeding

The main contribution of this work lies in the way the computed d(xt) is reused
as a prior to determine d(xt+1). In order to achieve the objective, some important
assumptions have to be made and justified.

5.5.1 Assumptions

The fact that the local structure of successive stereo disparity maps does not change
significantly is noted. This means that one can assume that the shape of the cor-
relation curve of a tracked feature point at time t + 1 does not change by much
compared with the feature point’s correlation curve at time t. This assumption is
made feasible because of the LK algorithm’s three assumptions, as stated in Section
5.3.1. Figure 5.2 shows shows an example where the assumption holds. The shapes
and positions of the two correlation curves are almost identical despite the frame-
to-frame movement.

5.5.2 Seeding

The disparity estimate d(xt) is used as an initial disparity estimate for d(xt+1). The
new disparity estimate is found by the local minimum around the initial estimate.
This local minimum is then assumed to be the global minimum of the correlation
curve. A technique similar to gradient descent is used to determine the local min-
imum. The gradients to the left and to the right of d(xt) are determined. If the
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Figure 5.2: Correlation curves for a feature point in F at time t and t+ 1.

gradients on both side of d(xt) are negative, then we move a single step towards the
descending slope until the gradient changes the sign from negative to positive. This
signals the local minimum around the initial point. A similar process is carried out
if the gradients on both side of d(xt) are positive.

5.6 Experiments and results

This section discusses the experiments carried out to evaluate the temporal seeding
algorithm.

5.6.1 Ground truth

Since features are tracked along the left images of a stereo sequence, one needs
ground truth disparity estimates to evaluate the implemented stereo correspondence
algorithm and the potential of temporal seeding. Ground truth is determined by
first using the simple local-matching algorithm, as discussed in Section 4.1, on each
feature point of a stereo pair. The disparity estimates are then refined to sub-pixel
accuracy by using the LK optical flow method.

5.6.2 Experiments

Tests on BT’s stereo algorithm and the temporal seeding algorithm are carried out
on two successive stereo image pairs. Figure 5.3 shows the dataset used for the
experiments. On the first stereo pair, feature points are detected and the disparity
estimates of the features are calculated with BT’s stereo algorithm. The disparity
search range used is [0, 19]. Features are then tracked on the left images of the
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sequence and temporal seeding is applied to determine the disparity estimates in
the range of [0, 19] on the successive stereo image pair.

(a) Left image of the first stereo image frame. (b) Right image of the first stereo image
frame.

(c) Left image of the second stereo image
frame.

(d) Right image of the second stereo image
frame.

Figure 5.3: Dataset used in the experiments.

Table 5.1: Table showing the Root Mean Square Error (RMSE) and computational
times on 313 KLT features for BT’s stereo algorithm and the temporal seeding
algorithm using chosen stereo parameters.

Frame
number

Window
size

Disparities BT
RMSE

Temporal
RMSE

BT time
(s)

Temporal
time (s)

1 13× 13 19 2.35 - 0.603 -
2 13× 13 19 1.69 1.69 0.5694 0.3903

Our approach is quantitatively evaluated by computing the root mean square error
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(RMSE) of the detected feature’s disparity estimates as follows:

RMSE = 100×
√

1

Nf

∑
f∈F

(df − dg(f))2, (5.2)

where f is a detected feature point in the set F , Nf is the number of detected
feature points, df is the estimated disparity of a feature, and dg is the ground truth
disparity of the detected feature.

The computational time of a local-matching algorithm is directly proportional to
the window size as discussed in Section 4.1.4. We experimented on different window
sizes on the temporal seeding algorithm and analyzed the error. Figure 5.4 shows
the effect of different window sizes used for temporal seeding. The results show that
the optimal window size is 13× 13 because it gives the lowest RMSE. The window
size is similar to BT’s stereo algorithm’s optimal window size.
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Figure 5.4: Plot of window size versus RMSE for temporal seeding.

Table 5.1 shows the results obtained on the stereo frames in Figure 5.3 on 313
detected KLT features. The first column shows the frame number of the stereo
sequence. The second and third columns show the window size and the number of
disparities used in the experiment. The fourth column shows the RMSE for BT’s
stereo algorithm while the fifth column shows the RMSE when using temporal seed-
ing. The sixth and seventh columns show the computational times for BT’s stereo
algorithm and the temporal seeding algorithm respectively. The results show that
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our temporal seeding approach yields the same error as a fully exhaustive disparity
search. The computational complexity of a stereo algorithm is directly proportional
to the disparity search range, so decreasing the search range decreases the compu-
tational cost as shown in Table 5.1.

The quality of the startup disparity estimates are assumed to be accurate. This
means if the initial disparity estimates are incorrect, then the temporal seeding al-
gorithm might give inaccurate results. Therefore the algorithm suffers from error
propagation. Nevertheless, the assumptions made in Section 5.5.1 give good results.

5.7 Further experiments

In this section a different dataset is used to further evaluate temporal seeding. The
dataset used is the Microsoft i2i chairs dataset [77] which consists of a stereo video
of an indoor scene with chairs and tables. Figure 5.5 shows a stereo image pair of
the dataset.

(a) (b)

Figure 5.5: First stereo image pair of the Microsoft i2i chairs dataset.

The experiments carried out on this section are on 87 successive stereo image frames.
Similar to Section 5.6.2, features are detected then tracked on the left images of the
sequence. The disparity range selected for the stereo algorithm is d = [0, 20]. To
quantitatively evaluate the results, the RMSE is computed using Equation 5.2.
The temporal seeding algorithm is initialised by the disparity estimates of BT’s
stereo algorithm on the first frame of the image sequence. Temporal seeding is then
performed on the successive frames. Seed values for frame number k are taken from
frame number k − 1.

Figure 5.6 shows the number of features which were successfully tracked along the
stereo sequence. Features which were not successfully tracked are replaced by new
features. Although some features are replaced, features which lie close to the border
of the image are removed. Further, features with a low reliability of being tracked
are also removed. This causes the number of features to drop as the number of
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frames increase.
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Figure 5.6: Number of frames versus the number of features in temporal seeding.

Figure 5.7 shows the RMSE for every stereo frame in the sequence. The results
show that the error increases as the number of frames increase. This means that
temporal seeding suffers from error propagation. The results also show that the
error propagation rate decreases as the number of frames increase. This might be
caused by the fact that features which cannot be tracked are replaced by new fea-
tures. As the sequence progresses, more features fall away because parts of the
scene fall out of the field of view of the camera. Furthermore, the lighting of the
scene changes because of the change in viewpoint. Some of the features which fall
away are erroneous and are replaced with new features which have not suffered from
error propagation. The computational time when using temporal seeding on the
stereo sequence is approximately 20% less than that of BT’s stereo algorithm. The
improvement in speed is achieved because the developed temporal seeding approach
does not always do the full disparity search. It only searches for a local minimum
around the initial estimate.
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Figure 5.7: Number of frames versus RMSE in temporal seeding.





Chapter 6

Confidence measure

A method of assigning a confidence to a disparity estimate for local-matching al-
gorithms is presented. The confidence measure is expected to give low confidences
to disparity estimates in textureless regions, where many local-matching algorithms
fail. While the measure is similar to a number of previously developed confidence
measures, in that the confidence of a disparity estimate is a by-product of the match-
ing process, our analysis focuses on the basin of convergence (refer to Figure 6.2) of
a disparity estimate.

To evaluate the confidence measure, a local-matching algorithm is implemented.
The confidence measure is expected to be applicable across the different variations
of these algorithms because of the uniform structure of the local-matching process.
The algorithm is applied on the widely-used Middlebury dataset [1] in order to
evaluate the performance of the confidence measure using the developed evaluation
scheme.

The remainder of this section is structured as follows. Section 6.1 briefly covers
the related literature. Section 6.2 discusses the local-matching algorithm implemen-
tation. Section 6.3 discusses the confidence measure and it is used for disparity
refinement. Section 6.4 discusses the evaluation methodology and the results of
experiments. In Section 6.5 the confidence measure is used in temporal seeding.

6.1 Related work

In stereo vision research, there have been several approaches to assign a confidence
to a disparity estimate. The left-right consistency constraint [37, 38, 61, 62, 78] has
traditionally been used to characterize pixel ambiguity. This constraint checks a left
image disparity estimate and compares it to the inverse mapping of a right image
disparity estimate. The approach is successful in detecting occluded regions. There
have been approaches that analyze the matching score of the disparity estimate
[79, 80]. The confidence of a pixel is based on the magnitude of the similarity
value between the pixel in the left image and the matching pixel in the right image.
Other approaches analyze the curvature of the correlation curve [28, 29] and assign
low confidences to disparity estimates resulting from a flat correlation curve. Our
approach is similar, as we also analyze the correlation curve. Approaches such
as [81, 82] estimate the confidences of pixels with two similar match candidates.
Research has also been conducted in determining pixel confidence based on image
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entropy [83, 84]. Low confidence scores are assigned to low entropy points in the left
image. Recently, a new approach has been developed that extrapolates confidence
a posteriori from an initially given and possibly noisy disparity estimate [85].

6.2 Stereo algorithm

For our purposes the same stereo algorithm presented in Section 5.4 is used. The
left-right consistency check is also performed in order to detect occluded regions
and filter out the erroneous pixels. The dense disparity map produced by the stereo
algorithm for the Tsukuba image pair with a 5 × 5 aggregation window and 15
disparities followed by a 5 × 5 median filter is shown in Figure 6.1. It should be
noted that the algorithm implemented is to be used as a testbed for the confidence
measure and is not meant to be compared with the state of the art.

(a) Ground truth disparity map (b) Disparity map obtained using Birchfield
and Tomasi’s sampling insensitive cost with
the left-right consistency check

Figure 6.1: Dense disparity map of the Tsukuba image pair using Birchfield and
Tomasi’s sampling insensitive cost.

6.3 Confidence measure for local-matching stereo algo-
rithms

The confidence measure is calculated as a function of (u, v, d), where (u, v) are the
image coordinates and d is the disparity. A typical correlation curve is shown in
Figure 6.2. Local-matching algorithms aim to find the disparity that minimizes the
error represented by this curve. Given a disparity d, we propose computing the
confidence of a disparity estimate as follows:

Cd =
B(d)

dmax − dmin
. (6.1)
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Here Cd is the confidence for a given disparity, B(d) is the basin of convergence
(refer to Figure 6.2) of the disparity estimate d, and dmax − dmin is the disparity
range as in Section 4.1.3. It is expected that in textureless regions the correlation
curve will have multiple local minima with small B(d) values, and since Cd is pro-
portional to B(d) we expect low confidences. A high confidence value would have
few local minima in the correlation curve and a fully confident disparity estimate
would arise where the local minimum is the global minimum of the correlation curve.

The value of B(d) is determined by using an approach similar to gradient ascent.
Given a disparity estimate d, the gradient to the right of d is expected to be positive
and the gradient to the left of d is expected to be negative. The algorithm takes
single steps on both sides of d until the sign of the gradient changes on both sides.
This represents the local maxima on the left and on the right of d. The disparity
range covered by the two local maxima is defined as the basin of convergence B(d).
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Figure 6.2: Correlation curve and the basin of convergence.

6.3.1 Disparity refinement

After computing confidences for all the disparity estimates, a threshold T which
gives the lowest errors compared to the ground truth is selected to create a mask of
acceptable and unacceptable estimates. Acceptable disparity estimates are defined
as those satisfying Cd > T . The refined disparity map for T = 2

15 is shown in
Figure 6.3. One can visually see that most of the noisy estimates arising from the
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local-matching algorithm are successfully filtered out.

(a) Disparity map before refinement. (b) Disparity map with disparity estimates of
Cd > 2

15

Figure 6.3: Disparity map with disparity estimates of Cd > 2
15 . Estimates which do

not satisy the condition, Cd > 2
15 are filtered out.

6.4 Experiments

The Middlebury stereo benchmark provides a testbed to quantitatively evaluate
stereo algorithms. Although the testbed is widely used in the computer vision
community, it requires a dense disparity map. Generally algorithms that perform
disparity refinement would also include a hole-filling step. Our algorithm does not
perform hole filling because of the errors it might introduce, which leaves a sparse
disparity map. Evaluating the sparse disparity map on the Middlebury stereo bench-
mark would not be appropriate because most errors would arise from the filtered-out
disparities. Thus our own evaluation scheme is used.

Pixels are classified as containing no information, unreliable information, or good
information. Occluded pixels are defined as containing no information, pixels with
Cd ≤ T as containing unreliable information, and the rest of the pixels as containing
good information. In this evaluation only pixels containing good information are
considered.

The root mean square error (RMSE) is calculated as follows:

RMSE = 100×

√√√√ 1

Np

∑
(u,v)∈p

(d(u, v)− dg(u, v))2,

where p is the set of all pixels containing good information, Np is the number of pix-
els in p, d(u, v) is the estimated disparity at pixel (u, v), and dg(u, v) is the ground
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Table 6.1: RMSE with a chosen window size, number of disparities, and threshold
T = 0 for the Middlebury dataset.

Image pair Window size Number of disparities T RMSE

Tsukuba 5× 5 15 0 7.56
Venus 5× 5 19 0 29.84
Teddy 9× 9 59 0 37.43
Cones 9× 9 59 0 30.13

Table 6.2: RMSE for a chosen window size, an empirically selected T value and
the percentage computational overhead for the Middlebury dataset.

Image pair Window size T RMSE Computational overhead (%)
Tsukuba 5× 5 2

15 6.56 2.33
Venus 5× 5 4

19 21.94 18.35
Teddy 9× 9 2

59 32.79 19.23
Cones 9× 9 6

59 23.38 17.60

truth disparity at pixel (u, v).

The Middlebury dataset is used for evaluation. The results for this dataset on
the different image pairs with T = 0 are shown in Table 6.1. This table shows the
image pair used from the Middlebury dataset in the first column. The second and
third columns show the window size and the disparity search range used. The last
two columns show the T values and the RMSE. Table 6.2 shows results where the
value of T is empirically selected based on a value giving the lowest RMSE. The
table also shows the percentage computational overhead. This is the extra percent-
age of computational time required for a chosen value of T compared to a value of
T = 0.

In the experiments it is noted that the RMSE starts increasing after a certain
value of T for a selected window size. This is due to the errors introduced by the
window size. Local-matching stereo algorithms assume constant disparity through-
out the aggregation window, so errors known as the "foreground fattening" effect
[2] arise. Also, since the images have pixel resolution, a window size greater than a
pixel affects the resolution of the disparity estimates. Errors are introduced where
the image details are smaller than the window size. Since the algorithm does not
filter out these errors, they are fixed with a changing value of T . The larger the
value of T , the smaller the value of Np while the errors remain fixed. A plot showing
the relationship between T and Np with a 5× 5 window size for the Tsukuba image
pair is shown in Figure 6.4.



50 Chapter 6. Confidence measure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7
x 10

4

Threshold, T

nu
m

be
r 

of
 p

ix
el

s

Figure 6.4: Number of pixels Np versus Threshold (T ) with a 5× 5 window size for
the Tsukuba image pair.
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Figure 6.5: Threshold T versus RMSE for varying window sizes.

To show the effect of the window size on the evaluation, Figure 6.5 contains a plot
of T versus RMSE for varying window sizes. Different window sizes tend to shift
the curve up or down. As the window size increases, the curve shifts downwards
until a point where a larger window introduces more errors, causing the curve to
shift upwards.

6.5 Confidence measure in temporal seeding

In Chapter 5 temporal seeding is applied on a stereo image sequence. The startup
disparities for temporal seeding are calculated using a full disparity search on the
KLT features of the left image in the first stereo image frame. In this section, the
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confidences of the detected features in the first stereo image frame are determined.
The features are then selected according to their confidences and used as the startup
features. Temporal seeding is then applied and the results are evaluated as in Chap-
ter 5.

The results of the experiments are shown below. Figure 6.6 shows the number
of features which satisfy a particular confidence. For the same reason as in Section
5.7, the number of tracked features decreases as the number of frames progresses.
Also, the number of startup features are high for low confidence values and low for
high confidence values.

Figure 6.7 shows the RMSE for every frame when using startup disparities with a
particular confidence. The results show that the shapes of the Figures 6.7(a)-6.7(e)
are similar meaning that the confidence measure is not removing enough erroneous
points in temporal seeding. The peak error becomes higher as Cd increases. This
might be caused by the fact that features with a higher Cd value are tracked for
longer in the image sequence. This means the error is propagated longer in the
sequence leading to a higher peak error. Figure 6.7(e) appears to have more noise
compared to the other plots. This is due to the low number of features which have
a confidence value of 1.
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Figure 6.6: Number of features detected on the stereo image sequence which have a
chosen confidence.
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Figure 6.7: RMSE versus the number of frames for different confidence values.





Chapter 7

Conclusions

Section 7.1 summarizes the main topics and the results of this work. Section 7.2
discusses possible future work.

7.1 Conclusions

There are two main objectives of this work. The first objective is to investigate
temporal seeding in stereo image sequences. This is discussed in Chapter 5. The
second objective is to develop a confidence measure for local-matching stereo algo-
rithms discussed in Chapter 6.

The stereo vision problem is discussed sequentially. It is pointed out that the main
problem with stereo vision is the stereo correspondence problem. Relevant literature
for this problem is discussed and the solution chosen to be explored is the use of
local-matching stereo algorithms. These algorithms have a uniform structure and
are applicable in real-time systems. They can also be broken down into components
which allows us to highlight the different design considerations. The usefulness of
breaking down the algorithm into its components is discussed in Chapter 4. In or-
der to meet the objectives, a central part in the stereo correspondence formulation
in local-matching algorithms namely the correlation curve was investigated. The
analysis of this curve provided interesting and useful information.

7.1.1 Temporal seeding

Chapter 5 presents a way of reusing computed disparity estimates of KLT features
in a stereo image sequence. The temporal seeding approach developed makes use
of the correlation curves of tracked KLT features. Two experiments are conducted.
Firsly, only two stereo image frames are used. The results for this experiment show
that temporal seeding produces the same error as the implemented stereo algorithm
but does improve the computational overhead by approximately 30%.

The second experiment is done on 87 frames of a stereo image sequence. Fea-
tures are tracked throughout the sequence and features which cannot be tracked
are replaced by new ones. The temporal seeding is evaluated and the results show
that the RMSE increases as the number of frames increase. This is caused by error
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propagation. This means that the quality of the initial disparity estimates has to be
high to avoid error propagation. The error propagation rate decreases as the number
of frames increase. A possible cause for this is the fact that features which cannot
be tracked are replaced with new features. The computational time of the temporal
seeding algorithm is approximately 20% faster than Birchfield and Tomasi’s stereo
algorithm.

7.1.2 Confidence measure

Chapter 6 presents a confidence measure to detect textureless regions for local-
matching algorithms. The confidence measure is formulated by analysing a property
of the correlation curve called the basin of convergence. The effectiveness of this
approach is demonstrated by implementing a local-matching algorithm and filtering
out unreliable depth estimates. The quantitative evaluation demonstrated that the
confidence measure decreases the disparity estimate errors at a small computational
cost.

Further experiments involve using the confidence measure in temporal seeding. The
detected KLT features are selected based on their confidence. These features are
then used as start-up features for temporal seeding. The results show that the con-
fidence measure does not succeed in removing features which produce high errors.

7.2 Future work

The main problem with temporal seeding is error propagation. This can be overcome
by performing the temporal seeding process for a certain number of frames then us-
ing the stereo algorithm to determine new start-up disparities. Also, the temporal
seeding approach is done on KLT features which means that a sparse disparity map
is obtained. Ultimately, it would be very useful to have a denser disparity map.
Instead of using the confidence measure on KLT features, one might consider using
it as a feature detector. This would provide denser results for temporal seeding.

The temporal seeding approach developed is for local-matching stereo algorithms.
Developing a temporal seeding approach for slower algorithms such as graph cuts
will aid in decreasing the computational time in the hope of making the algorithm
run in real-time.

Since the temporal seeding approach is used in a sparse context, it may be use-
ful in applications such as motion estimation. Exploring such an application might
result in a faster algorithm.
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