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Abstract

This dissertation focuses on the problem of locating features in frontal views of upright human
faces. The dissertation starts with the Active Shape Model of Cootes et al. [20] and extends
it with the following techniques:

(1) selectively using two- instead of one-dimensional landmark profiles
(2) stacking two Active Shape Models in series
(3) extending the set of landmarks
(4) trimming covariance matrices by setting most entries to zero
(5) using other modifications such as adding noise to the training set.

The resulting feature locater is shown to compare favorably with previously published meth-
ods.
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Chapter 1

Introduction

This dissertation evaluates some variations of the Active Shape Model of Cootes et al. [20],
as applied to monochrome front views of upright faces with neutral expressions. We will see
that although Active Shape Models are well studied, there is still room for improvement.

The reader is assumed to be familiar with basic image processing and linear algebra. Fa-
miliarity with Active Shape Models is not assumed; these will be described from the ground
up.

1.1 The problem

The problem under investigation is this: given an image of a face, find the position of a
number of landmarks on the face. A landmark represents a distinguishable point present in
most of the images under consideration. An example landmark is the location of the left eye

Figure 1.1: A face with correctly positioned landmarks.
All printed faces in this document are from the BioId set [44], except where noted.
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Figure 1.2: Results of an unsatisfactory ASM search.
Note the misplacement of nose and other landmarks.

pupil. Figure 1.1 on the previous page shows a face with landmarks in their correct positions.

Locating landmarks on faces is equivalent to locating facial features, because landmarks mark
out facial features.

This project investigates solutions to the problem using the Active Shape Model (ASM) of
Cootes et al. [20]. Some variations of the ASM will be presented and evaluated. We look only
at variations that stay within the “iterate the profile model and shape model” strategy of the
ASM, with separate profile and shape models. (Chapter 2 explains what this means.) An
example variation under the scope of the project is using a two- instead of a one-dimensional
search template around a landmark.

We look for improvements to the ASM because it is often inaccurate and sometimes fails
completely. Figure 1.2 above shows the results of a search that is only partially successful.

1.2 Not the problem

Here are several related problems and techniques that are not part of this project.

1. Locating landmarks in features in images other than faces. Only faces are considered.

2. Finding the overall position of face. The ASM does a local search for facial features.
The overall position of the face itself must first be approximately located before the
ASM kicks in. Figure 1.3 on the next page shows the results of a face detector. This
project for the most part uses the Rowley face and eye detector [58], but the Viola Jones
detector [67] is also considered.
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Figure 1.3: An image with face and eyes located.
The face and eyes were located by the Rowley global face detector and the ASM search can
now begin.

3. Dealing with all varieties of faces. This project limits itself to front views of upright
faces with neutral expressions.

4. Recognizing the face i.e. “saying who it is.”

5. Recognizing the facial expression e.g. smiling, frowning. There are many schemes
(a few derived from the ASM) to deal with this and the previous problem. We are
concerned only with locating landmarks.

6. Using 3D image information. We restrict ourselves to a 2D approach.

7. Using color during search. We use gray images.

8. Consolidating multiple images using motion clues, etc. We search for landmarks using
a single image.

9. Using Active Appearance Models (AAMs). The AAM is derived from the ASM
and is described in Cootes et al. [13]. This project sticks to the ASM.

1.3 Layout of this document

This document is laid out as follows. Chapter 2 describes ASMs. Chapter 3 gives a brief
history and reviews the literature. Chapter 4 looks at general aspects of model building and
evaluation, and includes descriptions of the face databases used in this project. Chapter 5
works through some variations and parameters of the ASM. Chapter 6 summarizes results
and compares them to published results. Chapter 7 discusses possible future research and
wraps things up.



Chapter 2

Active Shape Models

This chapter first describes shape models in general. It then gives a description of the classical
Active Shape Model (ASM).

The classical ASM (my terminology) is that presented in Cootes and Taylor [20] Chap-
ter 7. In brief, the classical ASM is characterized by its use of the Mahalanobis distance on
one-dimensional profiles at each landmark and a linear point distribution model. Training
determines the characteristics of the profile and point distribution models. What this all
means will be explained shortly.

The account skips over aspects of the ASM that are not re-examined in this project. Cootes
and Taylor [20] is the best comprehensive description of ASMs. Please refer to it where further
details are needed.

2.1 Shapes and shape models

This section describes two-dimensional shapes and shape models in general. This theory
forms the foundation on which the ASM is built.

1

2

3
               x    y

Point1  0.0  0.0
Point2  3.0  1.0
Point3  2.0  2.0

0.0
3.0
2.0
0.0
1.0
2.0

Figure 2.1: Left a simple shape, with three points.
Middle the same shape as an array.
Right the shape as a vector.
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input set of unaligned shapes

1. Choose a reference shape (usually the first shape)
2. Translate each shape so that it is centered on the origin
3. Scale the reference shape to unit size. Call this shape x̄0, the initial mean shape.
4. repeat
5. Align all shapes to the mean shape
6. Recalculate the mean shape from the aligned shapes
7. Constrain the current mean shape (align to x̄0, scale to unit size)
8. until convergence (i.e. mean shape does not change much)

output set of aligned shapes, and mean shape

Figure 2.2: Aligning shapes.

2.1.1 Shapes

For our purposes, a shape is just an n×2 ordered set of points i.e. an array of (x,y) coordinates
(Figure 2.1 on the previous page). The points are related to each other in some invariant
sense. If you move a shape, it is still the same shape. If you expand or rotate it, it is still the
same shape. Edges between points are not part of the shape but are often drawn to clarify
the relationship or ordering between the points.

In practice it is convenient to represent a shape not as an n × 2 array of (x,y) coordinates,
but as a 2n× 1 vector: first all the x- and then all the y-coordinates. This representation is
used for the equations in this report.

The distance between two points is the euclidean distance between the points. The distance
between two shapes is the sum of the distances between their corresponding points. The
Procrustes distance between two shapes x1 and x2 is the root mean square distance between
the shape points

√
(x1 − x2).(x1 − x2) after alignment (alignment will be described shortly).

The centroid x̄ (also simply called the position) of a shape x is the mean of the point
positions. The size of a shape is the root mean square distance between the shape points and
the centroid.

There are other measures of distance and size but they are not used in this document.

2.1.2 Aligning shapes

A shape can be aligned to another shape by applying a transform which yields the minimum
distance between the shapes. For our purposes, allowed transforms are scaling, rotating, and
linear translation. A transform that does all three (but nothing else, such as shearing) is a
similarity transform. The similarity transform T which rotates the point (x,y) by θ, scales it
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Figure 2.3: An ASM search.
Each picture shows the shape after correction by the shape model. Not all intermediate shapes
are shown.

by s, and translates it by xtranslate and ytranslate is

T

(
x
y

)
=
(
xtranslate

ytranslate

)
+
(

s cos θ s sin θ
−s sin θ s cos θ

)(
x
y

)
. (2.1)

Cootes and Taylor [20] Appendix B gives methods to align two shapes by using a least-squares
procedure. Accurate alignment may be deemed more important for certain points than for
others, and points can be weighted accordingly during alignment.

A set of shapes can be aligned using an iterative algorithm reminiscent of k-means clustering,
as shown in Figure 2.2 on the previous page. The constraint in line 7 is necessary to prevent
the estimated mean shape from wandering around or shrinking.

Scaling and rotating shapes during alignment introduce non-linearities. These can be be
minimized by projecting shapes into a tangent space ( [20] section 4.1), but tangent spaces
are not used in this project.
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input image of a face

1. Generate the start shape by locating the overall position of the face
2. repeat
3. Suggest a new shape by profile matching around each shape point
4. Adjust the suggested shape to conform to the Shape Model
5. until convergence (i.e. until no further improvements in fit are possible)

output shape giving the (x,y) coordinates of the face landmarks

Figure 2.4: ASM search algorithm for faces.

2.1.3 Shape models

A shape model defines an allowable set of shapes. In this document, shape models have a
fixed number of points and a matrix formula which specifies the relationship between the
points. We will use Point Distribution Models, which learn allowable constellations of shape
points from training examples and use principal components to build the model. A concrete
example will be presented shortly.

2.2 Overview of the Active Shape Model

This section gives an overview of Active Shape Models. The following two sections then
describe the two sub-models of the ASM: the shape model and the profile model. The phrase
“active shape model” is sometimes used in a more general sense, but not in this document.

The ASM is first trained on a set of manually landmarked images. By manually landmarked
we mean that somebody had to mark all the images by hand. This is done before training
begins.

After training we can use the ASM to search for features on a face. An example search is
shown in Figure 2.3 on the previous page. The general idea is (1) try to locate each landmark
independently, then (2) correct the locations if necessary by looking at how the landmarks
are located with respect to each other. To do this, the ASM is constructed from two types of
sub-model:

1. a profile model for each landmark, which describes the characteristics of the image
around the landmark. The model specifies what the image is expected to “look like”
around the landmark. During training, we sample the area around each landmark across
all training images to build a profile model for the landmark. During search, we sample
the area in the vicinity of each tentative landmark, and move the landmark to the
position that best matches that landmark’s model profile. This generates tentative new
positions for the landmarks, called the suggested shape.
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input image of a face

1. Generate the start shape by locating the overall position of the face
2. repeat
3a. for each shape point
3b. for each offset (i.e. look in the area around the point)
3c. Build a profile by sampling the area around the offset
3d. Measure the fit of the profile against the Profile Model
3e. Move the point to the offset of the best profile match
4. Adjust the suggested shape to conform to the Shape Model
5. until convergence (i.e. until no further improvements in fit are possible)

output shape giving the (x,y) coordinates of the face landmarks

Figure 2.5: ASM search algorithm for faces, with expanded profile matching step.

2. a shape model which defines the allowable relative position of the landmarks. During
search, the shape model adjusts the shape suggested by the profile model to conform to
a legitimate face shape. This is needed because the profile matches at each landmark
are unreliable. For example, the shape model will shrink the nose if the suggested face
has a nose like Pinocchio.

The algorithm iterates for a solution using both sub-models as shown in Figure 2.4 on the
previous page and in more detail in Figure 2.5 above.

The algorithm combines the results of the weak profile classifiers to build a stronger overall
classifier. It is a shape constrained feature detector: the shape model acts globally; each
profile matcher acts locally.

2.3 The ASM Shape Model

The job of the shape model is to convert the shape suggested by the profile models to an
allowable face shape. Before building the shape model, the training shapes are aligned. Then
the shape model consists of an average face and allowed distortions of the average face:

x̂ = x̄ + Φb (2.2)

where

x̂ is the generated shape vector (all the x- followed by all the y-coordinates). The hat on x̂
reminds us that it is generated by a model.

x̄ is the mean shape: the average of the aligned training shapes xi, defined as

x̄ =
1

nshapes

nshapes∑
i=1

xi . (2.3)
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Figure 2.6: The mean face (black) with variations of the first principal component (gray).

Φ is the matrix of eigenvectors of the covariance matrix Ss of the training shape points

Ss =
1

nshapes − 1

nshapes∑
i=1

(xi − x̄)(xi − x̄)T . (2.4)

Using a standard principal components approach [45, 62], we order the eigenvalues λi of Ss,
and keep a limited number of the corresponding eigenvectors in Φ. The retained columns of
Φ are the eigenvectors corresponding to the largest eigenvalues of Ss.

In this project, empirical testing determines the optimum number of eigenvectors to retain.
We want to capture important aspects of the training shapes but ignore noise.

2.3.1 Generating shapes from the shape model

We can use Equation 2.2 to generate different shapes by varying the vector parameter b. By
keeping the elements of b within limits we ensure that generated faces are lifelike.

Figure 2.6 shows three faces generated by setting b1 to −3
√
λ1, 0, and +3

√
λ1, with all other

bi’s fixed at 0 (where b1 is the first element of b and λ1 is the largest eigenvalue).

2.3.2 Understanding the shape model

It is easier to gain an intuitive understanding of the shape model if we use rectangles instead
of complicated face shapes. Figure 2.7 on the next page shows an example. To specify the
four points of any of these rectangles, we need eight numbers: four x- and four y-coordinates.
But the rectangles are centered and symmetrical about the origin. Thus we can actually
specify a rectangle by just two parameters: its width and its height.

Now we use Equations 2.3 and 2.4 to generate the shape model x̂ = x̄ + Φb from the given
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Figure 2.7: A simple shape model.
Top a set of rectangular shapes, symmetrical about the origin.
Left the mean shape and two variations created by adding a multiple of the first eigenvector.
Right two variations created by adding a multiple of the second eigenvector.

rectangles, which becomes1

x̂ =


23 12
−23 12
−23 −12
23 −12

+ b0


12 4
−12 4
−12 −4
12 −4

+ b1


−4 12
4 12
4 −12
−4 −12

+ . . . .

The sorted eigenvalues of the covariance matrix Ss are 3778, 444, 2, 0.1, . . . . There are
eight eigenvalues altogether. The first two are much larger than the rest. (The remaining
eigenvalues represent noise in the form of numerical errors.) Thus the process has discovered
that the shapes can be parameterized by just two parameters, b0 and b1. The first parameter
varies the contribution of the first eigenvector and, in this example, chiefly changes the size of
the generated shape. The second parameter varies the contribution of the second eigenvector,
which mainly adjusts the aspect ratio of the shape.

What is the advantage of this shape model over the “obvious” model where the two parameters
simply specify the width and height? The advantage is that the first eigenvector captures as
much variation as possible. If you had to specify a shape using just a single parameter, you

1The 8x1 vectors are reshaped into 4x2 matrices for clarity. The left column of each matrix shows x values;
the right column shows y values.
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Figure 2.8: Operation of the shape model.
Left landmarks located by the profile matcher.
Right the same landmarks conformed to the shape model. The landmark that was stuck on
the collar is now better positioned.

would on the whole get closer to your desired shape by adding a multiple of the first eigenvector
to the mean shape, rather than by just changing the width. The second eigenvector captures
as much of the remaining variation as possible, with the constraint that the eigenvectors are
orthogonal.

For face shapes there will be many eigenvalues and no abrupt cutoff point. The relative
size of the eigenvalues tells us the proportion of variation captured by the corresponding
eigenvectors. We can capture as much variation of the input shapes as we want by retaining
the appropriate number of eigenvectors.

2.3.3 Representing a given shape by the shape model

In the reverse direction, given a suggested shape x on the image, we can calculate the param-
eter b that allows Equation 2.2 to best approximate x with a model shape x̂. We seek the b
and T that minimizes

distance(x, T (x̄ + Φb)) . (2.5)

T is a similarity transform which maps the model space into the image space. The transform
is needed because the face shape x could be anywhere in the image plane, but the model
works off scaled upright shapes positioned on the origin. Cootes and Taylor [20] section 4.8
describes an iterative algorithm for finding b and T .

After calculating b, we reduce any out-of-range elements bi to ensure that the generated
x̂ conforms to the model, yet remains close to the suggested shape. We defer details to
section 5.4.3.

2.3.4 An example

Now for an example of the Shape Model at work. The left side of Figure 2.8 above shows
four landmarks, one of which is mispositioned by the profile matcher — it has snagged on
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Figure 2.9: The “mean face” (yellow) positioned over a search face at the start of a search.
The white lines are “whiskers”, along which the image intensity will be sampled to form
profiles. In this example it so happens that the nose and mouth are already positioned quite
accurately by the global face detector. The eyes are badly positioned.

the collar. The right side shows the landmarks after correction to the shape model. As a side
effect of the correction, a misplaced landmark may pull other landmarks slightly away from
their (possibly correct) positions. This effect is not visible in the figure.

2.4 The ASM Profile Model

The job of the profile model is to take an approximate face shape and produce a better sug-
gested shape by template matching at the landmarks. We start off the search with the mean
face from the shape model, aligned and positioned with a global face detector (Figure 2.9).

This section describes the one-dimensional (1D) profiles used in the classical ASM. Later we
will look at 2D profiles (section 5.5).

2.4.1 Forming a profile

To form the profile vector g at a landmark, we sample image intensities along a one-dimensional
whisker. The whisker is a vector at the landmark which is orthogonal to a shape edge (Fig-
ure 2.10 on the next page). The profile vector is formed as follows:

1. Set each element of the profile vector to the gray level (0...255) of the image below it.
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Figure 2.10: A one-dimensional profile.
The yellow line is the shape boundary. The gray line is the whisker, orthogonal to the bound-
ary. The landmark is at the intersection of the shape boundary and the whisker. The inset
shows the image intensity along the whisker. In practice, the ASM uses the normalized gra-
dient of the image intensity.

2. Replace each profile element by the intensity gradient. This is done by replacing the
profile element at each position i with the difference between it and the element at i−1.

3. Divide each element of the resulting vector by the sum of the absolute values of all
vector elements.

Using normalized gradients in this manner is intended to lessen the effect of varying image
lighting and contrast.

2.4.2 Building the profile model during training

During training, we build a model for each landmark by creating a mean profile ḡ and a
covariance matrix Sg of all training profiles (one from each image) at that landmark. The
assumption is that the profiles are approximately distributed as a multivariate Gaussian, and
thus can be described by their mean and covariance matrix.

If the length of the profile is 7 (as in Figures 2.10 and 2.11), ḡ will have 7 elements. and Sg

will be a 7× 7 matrix. If there are 68 landmarks then there will be 68 separate ḡ’s and Sg’s.

2.4.3 Searching for the best profile

During search, at each landmark we form several search profiles by sampling the image in the
neighborhood of the landmark. Each search profile is centered at small positive or negative
displacements along the whisker. We typically form profiles at offsets up to about ±3 pixels
along the whisker. Figure 2.11 on the next page shows this process.
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Figure 2.11: Searching for a profile match.
The top profile is the model mean profile ḡ. The remaining profiles are profiles generated
during the search by sampling the image around the current position of the landmark. The
best match happens to be at offset 1.
In practice, we use the Mahalanobis distance of the normalized intensity gradient rather than
the simple skyline match indicated here.

The distance between a search profile g and the model mean profile ḡ is calculated using the
Mahalanobis distance

Distance = (g − ḡ)T S−1
g (g − ḡ) . (2.6)

(Some people call this the squared Mahalanobis distance, since it simplifies to the square of
the euclidean distance when the covariance matrix Sg is an identity matrix.) One of the
search profiles will have the lowest distance. It is the position of the center of this profile
(which is an offset along the whisker) that is the new suggested position of the landmark.

This process is repeated for each landmark (as shown in step 3 in Figure 2.5) before handing
control back to the shape model.

2.5 Multi-resolution search

There is one more wrinkle. Before the search begins, we build an image pyramid, and repeat
the ASM search (Figure 2.5) at each level, from coarse to fine resolution. Each image in the
image pyramid is a down-scaled version of the image above it (Figure 2.12 overleaf). This
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Figure 2.12: An image pyramid.
Each image has a quarter of the resolution of the image above it.

is a simple pyramid — more sophisticated pyramids (not used in this project) can be found
in [1] and [37].

The start shape for the first search (which is on the coarsest image) is the shape generated
from the global face detector. The start shape at subsequent levels is the best face found by
the search at the level below.

We need to decide when convergence has been reached so we can move to the next level, or,
at the top level, announce the search complete. Techniques for testing convergence will be
presented in section 5.4.2.

The shape model is the same across all pyramid levels (apart from scaling), but a separate
profile model is needed for each level.

Using this multi-resolution approach is more efficient, more robust, and converges correctly
to the correct shape from further away than searching at a single resolution.



Chapter 3

History and Literature Review

This chapter places Active Shape Models (ASMs) in the context of related methods for finding
image features, and along the way gives an overview of the literature. This is just a short
review — more complete histories can be found in, for example, Hjelmȧs and Low [42] or
Stegmann [65].

In our case, image features are facial features. Finding features in faces has an immediate
appeal, but much of the research in this field has been in the context of medical imaging,
where features could be vertebrae or the shape of a lung.

The two face detectors used in this thesis are the Rowley [58] and the Viola Jones [67]
detectors. Section 4.4 gives details.

3.1 Image segmentation

Basic feature location methods fall under the general category of “image segmentation”. A
simple approach is to move a canonical or “golden” image over the image looking for matches.
Variability of image textures and features make this method inadequate. There are a host of
other techniques such as edge and line detection which are described in most image processing
text books, for example Gonzalez and Woods [37]. These techniques form the basis of the
profile model which is one leg of the ASM.

3.2 Deformable models

Unlike these basic methods, ASMs belong to the class of models which, after a shape is
situated near an image feature, interact with the image to warp the shape to the feature.
They are deformable models.

A well known deformable model is the snake, also called the Active Contour Model [46].
Snakes iteratively minimize the sum of “external energy” and “internal energy”. External
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energy is minimized as the snake assumes the shape of the desired image feature. Internal
energy constrains the snake shape, typically by penalizing curviness.

A problem with snakes is that they can hitch onto the wrong feature. Also, snakes do not
like to bend and thus have difficulties locating sharply curved features. As you might expect,
people have modified snakes to deal with these issues. The eye locater of Yuille and his
colleagues is an an example [68]. They handcrafted a deformable template model which
incorporates global information about eyes. The trouble with such an approach is that you
have to manually design a new model for each application.

Another approach is to use finite element methods to represent prototype shapes, for example
Pentland and Sclaroff [53]. This approach takes a single shape and treats it as if it were made
of elastic material. However, the “modes of vibration” used to deform the shape may not
represent the actual variations of the feature being modeled.

Staib and Duncan presented a method of modeling based on Fourier descriptors [63]. (Early
papers on Fourier descriptors are [54, 69].) Different shapes are generated by varying the
parameters of a Fourier series defining the coordinates of the shape perimeter. Unfortu-
nately these models cannot easily describe all shapes, especially sharp curves, and choosing
parameters for the Fourier series is tricky.

3.3 Point distribution models

Independently of computerized image analysis, and before ASMs were developed, researchers
developed statistical models of shape [30]. The idea is that once you represent shapes as
vectors, you can apply standard statistical methods to them just like any other multivariate
object. These models learn allowable constellations of shape points from training examples
and use principal components to build what is called a Point Distribution Model. These have
been used in diverse ways, for example for categorizing Iron Age broaches [61].

3.4 Active Shape Models

Ideal Point Distribution Models can only deform in ways that are characteristic of the object.
Cootes and his colleagues were seeking models which do exactly that — so if a beard, say,
covers the chin, the shape model can “override the image” to approximate the position of
the chin under the beard. It was therefore natural (but perhaps only in retrospect) to adopt
Point Distribution Models. This synthesis of ideas from image processing and statistical shape
modeling led to the Active Shape Model.

The first parametric statistical shape model for image analysis using principal components
of inter-landmark distances was presented by Cootes and Taylor in [12]. Building on this
approach, Cootes, Taylor, and their colleagues, then released a series of papers that cumulated
in what we call the classical Active Shape Model [15–17,21,22].

Apart from better performance at the time than other facial feature locaters, ASMs had the
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advantage that they did not require a handcrafted model, although the training images had
to be manually landmarked. ASMs build models by training on a set of reference images,
which means that they mechanically extract important characteristics of the training set. In
practice, hand tuning is still needed to get best results for a specific application — this thesis
is an example.

3.5 Active Appearance Models

Cootes, Edwards, and their colleagues subsequently developed the Active Appearance Model
(AAM) [13, 32]. AAMs merge the the shape and texture model into a single model of ap-
pearance. Texture is measured across the whole object i.e. the whole face. An optimization
technique which pre-calculates residuals during training is used when matching image texture
to model texture.

AAMs extend ASMs to a degree that excludes them from this thesis. Nevertheless, we can
learn something about ASMs by comparing them to AAMs.

AAMs use the texture across the entire object; ASMs use image texture only in the area of the
landmarks — thus ASMs do not use all the available information across the face surface. One
can debate whether this is a disadvantage, since landmarks are logically located on areas of
interest which carry most important information, and thus ASMs naturally prune irrelevant
information.

On the other hand, ASMs search in regions around the landmarks and thus have a larger
capture range than AAMs, which only uses the image directly under the current shape.

AAMs need a smaller number of landmarks because of the extra information provided by the
texture model.

ASMs for faces can be trained in a few minutes, making it easy to experiment; training AAMs
takes much longer.

Cootes et al. [14] report that landmark localization accuracy is better on the whole for ASMs
than AAMs, although this may have changed with subsequent developments to the AAM.

3.6 Extensions to ASMs

Many extensions to the classical ASM have been proposed. This section mentions just a few.

Cootes et al. [11, 18] use a shape model which is a mixture of multivariate Gaussians, rather
than assuming that the shapes come from a single multivariate Gaussian distribution as in
the classical ASM.

Romdhani et al. [57] use Kernel Principal Components Analysis [59] and a Support Vector
Machine [8]. This trains on 2D images, but models non-linear changes to face shapes as they
are rotated in 3D. The idea is to project non-linearities into a higher-dimensional linear space.
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Rogers and Graham [52] robustify ASMs by using robust least-squares techniques to minimize
the residuals between the model shape and the suggested shape. A classical ASM, in contrast,
uses standard least-squares which is susceptible to outliers.

Van Ginneken et al. [36] take the tack of replacing the 1D normalized first derivative profiles
used in the classical ASM with local descriptors calculated from “locally orderless images” [47].
Their method automatically selects the optimum set of descriptors. They also replace the
standard ASM profile model search, which is based on a Mahalanobis distance, with a k-
nearest-neighbors classifier.

Zhou et al. [70] present the Bayesian Tangent Shape Model. This estimates shape and pose
parameters using Bayesian inference after projecting the shapes into a tangent space.

Al-Zubi [2] proposes the Active Shape Structural Model, which combines ASMs with a model
of the structural aspects of the object under consideration. He uses them to analyze hand
drawn sketches, an important application for user interfaces, in [3].

Li and Ito [48] build texture models using AdaBoosted histogram classifiers.

A fun example of the ASM at work is described in the paper by Chen et al. [9], which presents
a scheme to generate computerized sketches of people’s faces. It analyzes subjects’ faces with
an ASM which uses 2D profiles on the eyes and mouth.

The Active Appearance Model mentioned above has many descendants, which could be con-
sidered the grand-children of the ASM. A history of these would take us too far afield but an
example is the succession of models developed by Cristinacce et al. [23–29].



Chapter 4

Model Building and Evaluation

This chapter looks at general aspects of model building and evaluation before we dive into
actual model building in the next chapter.

A “model” is a facial landmark locater embodied in a piece of software and associated pa-
rameter files. “Model evaluation” means comparing models by using them to find landmarks
in face images. The term “parameter” is used here in a very general sense: it encompasses
things such as the values of constants, but also includes different algorithms.

4.1 The face data

In this project we use three manually landmarked datasets. Table A.1 in the appendix lists
all landmarks and their names. Table 4.1 on the next page lists some characteristics of the
databases.

1. The AR face database [50]

The AR dataset contains about 4000 768x576 color images of 126 faces. The images are
frontal views with different expressions and illumination, and with a flat background.
The database is free for academic use and cannot in general be reproduced.

Only a subset of the AR database is used in this project: this is the subset of of 508
images that has been manually landmarked with 22 points [55]. The subset consists
of images with a neutral expression, or a smile, or an angry expression (usually very
mild), or with the left light on. (These are the sets labeled 1, 2, 3, and 5 in the AR
documentation — the faces obscured by sun glasses or scarves are not used.)

Figure A.2 in the appendix shows a landmarked AR face.

2. The BioId face database with FGnet markup [44].

The BioId dataset consists of 1521 384x286 pixel monochrome images of 23 different
subjects. The images are frontal views with a variety of backgrounds and face sizes. The
background is an office interior. The faces are manually landmarked with 20 points. The



4.1 The face data 25

AR BioId XM2VTS

Number of landmarks 22 20 68

Number of images 508 1521 2360

Faces with eyes found by Rowley 87.2% 75.2% 82.2%

Faces found by Viola Jones 98.6% 95.7% 99.2%

Clean faces 155 826 1272

Clean faces percent of all 30% 54% 54%

Clean faces found by Rowley 100% 100% 100% by definition is 100%

Clean faces found by Viola Jones 100% 96.0% 100%

Mean search time Rowley (ms) 3600 1100 3600 on 1.5 GHz Pentium

Mean search time Viola Jones (ms) 120 70 120 on 1.5 GHz Pentium

Table 4.1: Database and face detector statistics.
Note added 29 Oct 2007: table may be slightly inaccurate after recent tweaks to face attributes.

data set is freely down-loadable and it seems that the faces may be reprinted without
legal issues. Figure A.3 shows a landmarked BioId face.

All printed faces in this document are from the BioId set except where noted.

3. The University of Surrey XM2VTS database, frontal sets I and II [51].

The XM2VTS frontal image sets contain 2360 720x576 color images of 295 subjects.
The pose and lighting is uniform, with a flat background. The faces are manually
landmarked with 68 points. The XM2VTS data must be purchased and cannot in
general be reproduced. Figure A.1 shows a landmarked XM2VTS face.

4.1.1 Face attributes

Each image is tagged with zero or more of the attributes shown in Table 4.2 on the next
page. A few attributes used internally are not shown. See the source file atface.hpp for
full details. Attribute tags were generated as part of this project and the data will be made
publicly available.

Attributes are useful in many ways — for example, we may want to compare the quality of
landmark searches on faces with or without eye glasses.

In this document, the term clean faces will be used often. Clean faces have no attribute bits
set.

Filenames in the image databases include a number which specifies the individual in the image.
For this project, filenames were extended where necessary to include the individual’s number.
Thus the BioId file B0694 08.bmp is an image of individual number 08, and B* 08.bmp specifies
all BioId files of that individual.
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BadImage 0x01 image is bad in some way (blurred, side view of face, etc.)

Glasses 0x02 face is wearing specs

Beard 0x04 beard including possible mustache

Mustache 0x08 mustache

Obscured 0x10 face is obscured (usually by edge of image or subject’s hand)

EyesClosed 0x20 eyes closed (partially open is not considered closed)

Expression 0x40 strong expression on face

NnFailed 0x80 Rowley face detector failed (can use as an indication of face "quality")

Table 4.2: Face attributes.
In the text, the term clean faces means faces with no attribute bits set.

Figure 4.1: Some BioId faces with their attributes.

4.1.2 Extending the data by mirroring

We can double the number of landmarked face images by using mirror images. This is not
as redundant as it sounds, because lighting effects and small differences in pose and facial
symmetry usually make the image texture on one side of the face quite different from the
other — in fact, often more so than the texture across two images of the same individual.

Later we will extend the data in another way: by adding extra landmarks (section 5.6).

4.1.3 Issues with the data

The generalization ability of the detector is determined by the range of faces in the training
data. From this perspective, the three datasets are not completely satisfactory. The dataset
faces are of working adults in the Europe and the USA and exclude children and elderly
people. Most of the people in the images are Caucasian. It should also be said that the image
sets exclude anyone with unusual looks (very overweight, etc.).

For effective training and testing we need a sufficient number of samples of uncorrelated data.
This is not entirely possible with the given datasets because of strong correlations between
the images. For example there are only only 23 different individuals in the BioId set, and the
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Figure 4.2: Inconsistent manual landmarks on upper eyelid.
This is a detail from XM2VTS images 000 3 1 and 001 1 2.

lighting is uniform for most images in each dataset.

Manual landmarking is not a perfect process and a close examination of the data reveals some
discrepancies. For example, look at the inconsistency in the position of the landmark on the
upper eyelid in the two XM2VTS images in Figure 4.2. (Note also the uniformity of lighting
shown by the similarities between the highlights in the two eyes.)

4.2 Partitioning the data

This section discusses how we partition the data in order to estimate the performance of
different ASM models. First we review model assessment in more general terms. Hastie et
al. [40] chapter 7 gives a more complete description.

The general strategy for selecting parameters is

1. for each model parameter
2. for each parameter value
3. train on a set of faces
4. evaluate the model by using it to locate face landmarks
5. select the value of the parameter that gives the best model
6. test the final model by using it to locate face landmarks.

Two processes are going on here

1. model selection which estimates the performance of different models in order to choose
one (steps 2-5 above)

2. model assessment which estimates the final model’s performance on new data (step
6 above).

For both of these processes we need data independent of the training set. We want to measure
the generalization ability of the model, not its ability on the set it was trained on. Any
statistical model captures both systematic structure and random variation in the training
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data. To compare two models we want to compare how well they capture systematic structure
and ignore random variation. We do this best by testing against independent data. Evaluating
against the training data does not separate the random from systematic variation, and will
give optimistic results. Furthermore, the test data must be distinct from the validation set
so when we adjust model parameters we are not optimizing for the test set.

We thus need three independent datasets:

1. a training set for step 3 above

2. a validation set for step 4 above

3. a test set for step 6 above.

The training set should be the largest, because the training set defines nearly all characteristics
of the model. The validation and test sets should be big enough for the variance of the
measured results to be acceptable. The unknown ideal sizes for these sets depend on the
unknown complexity of the underlying function and amount of data noise. In practice, it
would not be unusual to see a size ratio of 8:1:1 for the training:validation:test sets.

There are analytic methods (Akaike Information Criteria and the like) that approximate
the validation step using just the training data ( [40] section 7.5). These methods require
likelihood estimation and are not used in this project.

We also do not use N-fold cross validation, because there is enough raw data, and cross
validation makes model building very time consuming ( [31] section 9.6).

We now look at two (of the many) possible ways of generating these three sets from the
available face data.

4.2.1 Partitioning the data: a not-so-good way

This project started with just the XM2VTS set; the other two databases were discovered
later by web searches. The initial strategy used just the clean faces in the XM2VTS set and
divided them into into three fixed subsets: a training set (1172 faces), a validation set (50
faces), and a test set (50 faces). Clean faces have no face attribute bits set (Table 4.2). The
idea at the time was to limit this project to clean faces; later it was realized that this was
needlessly restrictive.

The problem with this approach is there is duplication between the training and test sets
(and the same is true for the validation set). Although the same images do not appear in
both sets, there are some images in both sets of the same face, photographed under identical
conditions. This amounts to replication of data. Testing against the test set therefore does
not actually test the generalization capability of the classifier.

Another problem is that because of the limited amount of data, the validation and test sets
are quite small. Measurements on a small dataset exhibit high variance, and say more about
the random nature of the set than the differences between one model and another.
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4.2.2 Partitioning the data: a better way

We work around the problems mentioned above by training on the XM2VTS set, validating
on the AR set, and doing final testing on the BioId set. The XM2VTS set is used for training
because it has the largest number of images and the largest number of landmarks (section 5.1).
Using the BioId set for testing allows us to compare results against other published results in
Chapter 6.

This strategy is better but not perfect. When a model goes through a long series of refinements
based on measurements against a fixed validation set, it is in effect training on the validation
data. In this case, we are optimizing the model for the AR data. We minimize this overfitting
by using different subsets of the AR data at different times. Most of the tests in this document
are done against a set of 200 images randomly sampled without replacement from the AR
dataset.

4.3 Software

Software was built to evaluate the techniques in this dissertation. The software itself is not
part of the thesis per se, although this document occasionally refers to source files. The
software and associated data are available at www.milbo.users.sonic.net/stasm.

For the record, the code is written in C++ for Microsoft Visual C 6.0. A GNU gcc port is
underway. The code uses the GNU Scientific Library [34], with an added class to allow easy
manipulation of matrices. The R language [66] was used for analysis of results.

4.4 The face detectors

The ASM search starts with a start shape: the start shape is the model mean shape aligned
to the overall position and size of the face found by a global face detector. This project uses
two global face detectors:

1. The Rowley detector [58] uses a committee of neural networks. The Rowley detector
provide eye positions in addition to the face position. We will see that it leads to better
landmark searches (section 6.4) although it is has a worse detection rate and is slower
than the Viola Jones detector. This thesis uses code from Henry Rowley’s web site [58].

2. The Viola Jones detector [67] uses a method which accumulates the results of many
weak classifiers, each of which looks for a very simple image feature. This thesis uses
the OpenCV implementation [56] which is based on a Viola Jones detector extended by
Lienhart and Maydt [49].

www.milbo.users.sonic.net/stasm
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Figure 4.3: Examples of the me17 measure.

The OpenCV Viola Jones settings used are the “slow but accurate” settings:

SCALE_FACTOR = 1.1

MIN_NEIGHBORS = 3

DETECTOR_FLAGS = 0

MIN_FACE_WIDTH = ImageWidth/4 (reduce number of false positives)

RETURN_MOST_CENTRAL_FACE = 1
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me17 15,18,21,24,27,29,31,32,34,36,46,47,48,51,54,57,67

Face 0...67

Jaw 0...14

Nose 37...47, 67

Mouth 48...66

Eyes 27...36

LEye 27...31

REye 32...36

Table 4.3: Landmarks used in me17 and other fit summaries.
The landmarks are numbered using the XM2VTS scheme in Table A.1

4.5 The me17 measure

Results in this document are presented in terms of the me17 measure. Following Cristi-
nacce [23] section 6.1.4, the me17 is calculated as follows:

1. Average the euclidean distances between each of 17 points located by the search and
the corresponding manually landmarked point. The 17 points are the internal BioId
landmarks (see Table 4.3).

2. Divide the result by the distance between the eye pupils. In this document, the inter-
eye distance is calculated from the reference image (not from landmarks located by the
search).

3. If there is more than one image, take the mean me17 over all images.

Figure 4.3 on the previous page shows examples of specific me17s.

By using the me17 common subset of points, measurements can be made on all three databases.
We rely on the fact that the images are landmarked in the same way across the three databases.
The measure is to some extent arbitrary (it ignores points on the face perimeter and gives
more weight to faces with close set eyes, for example), but is about as good as any other
for measuring model quality. The me17 is a sum-of-squares criterion, thus minimizing it
chooses the maximum likelihood model if the errors are independent and identically normally
distributed.

Another approach is to take the median instead of the mean in step 3 above. We use means
in this document because we want to see the degradation in total fit caused by outliers
(medians are less affected by outliers). The me17 distributions tend to have long right tails,
consequently the median is usually less than the mean.

All results in this document are presented in terms of the me17 measure, unless
otherwise stated. On occasion, more detailed measurements are needed. An example would
be Eyes which measures the fit on the eyes only (Table 4.3).
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Parameters are param1, param2

Model AR BioId XM2VTS Time

Ref 0.0 0.0 0.0 0

17,1 4.1 -2.0 -1.7 1

17,2 -2.5 -5.5 -5.2 2

17,3 -4.0 -7.0 -5.3 1 <chosen, lowest AR

17,4 -2.4 -8.6 -2.0 -3

...

Table 4.4: Example evaluation table.
The table shows performance as a percentage relative to a reference model.

4.6 Tables for comparing models

Evaluation results in the next chapter are presented in the format shown in Table 4.4.

The very top line specifies which parameters are being adjusted — in this case
param1,param2. The parameters will be discussed in the text accompanying each table, and
in general are defined in the source files masmconf.hpp and mascmconf.cpp.

The Model column specifies the values of the parameters. Thus the entry 17,1 means that
param1=17 and param2=1.

The filetype headings refer to the three datasets (AR, BioId, XM2VTS). In practice, we will
display only one or two filetypes, not all three as in the example.

The reference model is usually the first row of the table. All its entries are zero.

The cell entries are percentages and give me17 performance relative to the reference model,
averaged across all images. More precisely each cell is
100% * (mean me17 - mean reference me17) / mean reference me17.
Since this is an error measurement, good models have low values. Since it is a relative measure,
values that are better than the reference are negative.

An optional Time column measures search time relative to the time taken by the reference
model, in percent. This measures search time once the global face detector has found the face
i.e. the time does not include the time taken to find the face. Once again, this is a relative
measure, so times faster than the reference time are negative.

The <chosen note, often with a brief comment, specifies which model was chosen.

4.7 Graphs for comparing models

The table format described in the previous section is good for concise comparison of many
models. Often we want more details though, and use graphs. A standard way to do this is to
plot an Empirical Cumulative Distribution Function (ECDF, conveniently pronounced “eck
diff”). Given a vector of me17 error measurements errs, the pseudo code (in actual fact, R
code [66]) to plot an ECDF is
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Figure 4.4: Graphs for comparing models.
Left cumulative distributions of the fit for hypothetical models A, B, and C.
Right the relative cumulative distributions for the same three models.

x <- sort(errs)
y <- (1:length(errs)) / length(errs) # length returns the number of of elements
plot(x, y).

The code is repeated for each model to give a graph like that on the left side of Figure 4.4.
The quicker the S curve starts and the faster it reaches the top, the better the model. The
horizontal gray line shows the median values. In the example graph, the probability of getting
an me17 of say 0.05 or less is about 0.42. Overplotting may make it hard to compare similar
models in ECDF plots.

Relative Empirical Cumulative Distribution Function (RECDF, “reck diff”) plots focus on the
relative performance of the models and reduce overplotting. See the right side of Figure 4.4.
Here we plot quantiles relative to a reference model, in this case model A. Given vectors of
measurements ref errs and errs, the code to plot a RECDF is

assert(length(ref_errs) == length(errs))
x <- (1:length(errs)) / length(errs)
y <- sort(ref_errs) - sort(errs)
plot(x, y).

The code is repeated for each model except the reference model. The graph for the reference
model is merely a horizontal line (black in the figure). The vertical gray line shows the median
values. The higher a model’s curve, the better the model.

In the example, models B and C start off badly but end up being better than A. In other
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words, B and C’s best case performance is worse on the whole than A; B and C’s worst case
performance is better than A. Given this, and the fact that C has the lowest median value,
C would be considered the best model in this example. But the models are very similar and,
taking into account measurement variance, there is not much to choose between them.

I have not seen RECDFs described elsewhere, but they are surely a reinvention. They are
similar in spirit to QQ plots, except that the reference distribution is drawn as a horizontal
line (for QQ plots, see for example [45] section 4.6). They are also related to Tukey mean-
difference plots but RECDFs allow more than two models to be compared ( [10] section 2.2
or [6]).

4.8 Hazards of parameter selection

Generally, for each parameter we select the parameter value that yields the lowest mean me17
on the AR validation set. This holds especially if the lowest me17 is at the bottom of a basin
of low values. If models are similar then other factors come into play, like complexity and
execution speed.

Statistical fluctuation may cause misleading results. A model may appear to be better than
another model just because it happens by chance to have a lower error on that particular
validation set. Thus when we say that we choose such and such a parameter value because it
results in the lowest error, what we are really saying is that the odds are that the parameter
value results in a better model. A formal statistical approach (not used in this project)
would take into account the variance of the measurements, typically with a paired t-test.
The standard formal approach is “don’t accept a value unless it is statistically significant”,
which may throw away potentially good results. On the other hand, not using the standard
approach increases the chance that we accept a parameter value or procedure that in fact
does not improve the model.

The best setting for a parameter depends on the context. If other parameters are changed
then the best setting for the parameter could change. We are optimizing a model with many
parameters, with an error hyper-surface in many dimensions. It is not feasible to find the
global error minimum. The strategy in this project is to move forward in a sequence of
build-evaluate steps, adjusting a new parameter at each step (section 4.2). This is essentially
greedy descent, with descent directions constrained to the axes of the parameter space. The
best we can hope for is that our model building exercise finds a good minimum. It is unlikely
to be the best. This is not to argue that this is a bad strategy, but that we should be aware
of its limitations.

In practice, to sort the wheat from the chaff, lots of experiments were tried in “random”
order to build a good initial model. In the next chapter we then start again. Using the
initial model as a base, we will build and document a model using the parameter evaluation
sequence laid out in the chapter. A different evaluation sequence would result in somewhat
different parameter values.
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4.9 Summary

The points to remember are:

1. We will train on the XM2VTS set, evaluate on the AR set, and test on the BioId set
(section 4.2.2).

2. Results will be presented as me17s and times relative to a reference model, expressed
as a percentage (section 4.6).



Chapter 5

Model Parameters and Variations

A thousand things advance;
nine hundred and ninety-nine retreat:

that is progress.
Henri Frederic Amiel [4]

The previous chapter described the general approach to model building used in this project.
Now we systematically work through some variations and parameters of the Active Shape
Model. Readers who are not interested in the details of parameter selection may go directly
to Chapter 6, where all the important results are summarized.

We will train on the XM2VTS set and evaluate against the AR set, with a few exceptions, as
motivated in section 4.2.2. The format of the graphs and tables in this chapter was described
in sections 4.6 and 4.7. It is important to remember that the figures in the tables are me17s
and times relative to a reference model, expressed as a percentage (section 4.6).

5.1 Number of landmarks

A straightforward way to improve the fit is to increase the number of landmarks in the model.
The error decreases approximately quadratically as the number of landmarks increases.

Figure 5.1 on the next page shows fit versus number of landmarks. The vertical axis is the
me17, normalized so the error is 1 for 68 points. The black line is a loess fit with degree=2
and span=0.75 [10]. The blue line is a quadratic fit.

We pay a price in search time because search time is proportional to the number of landmarks.
But perhaps we should be grateful that time increases only linearly with the number of
landmarks — for most extensions to the ASM, search time is worse than linear in the number
of landmarks (e.g. [32, 36]).

All models up to section 5.6 in this chapter are built using all 68 XM2VTS points. So we
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Figure 5.1: Number of landmarks.

will train and fit models with 68 points but use just the subset of seventeen me17 points for
evaluation. In section 5.6 we add more landmarks, and thereafter use an 84 point model.

5.1.1 Details

Each point on the graph was generated from a classical 1D ASM, built by randomly choosing
the given number of landmarks from the 68 available in the XM2VTS set. This was repeated
10 times for each value of nLandmarks, to give 10 points for each value of nLandmarks.
For a given number of landmarks, certain landmark sets are better than others, causing
scatter among the 10 points. The decrease in scatter as the number of landmarks increases is
expected because the total number of observations per graph point increases as the number
of landmarks increases.
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In detail, the graph was created as follows:

TrainSet = a random selection of 1200 clean faces in the XM2VTS set
TestSet = remaining clean faces in the XM2VTS set (72 faces)
for nLandmarks = 3 to 68

repeat 10 times
LandmarkSet = randomly select nLandmarks landmarks in TrainSet
train on LandmarkSet
measure mean fit on TestSet --- result is one point on the graph
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Model AR XM2VTS

AlignToRefShape 0.0 0.0

Face 4.3 7.0

FaceAndEyes 0.7 7.4

FaceAndEyes_RealignEyes -0.7 5.8 <chosen

Table 5.1: Method used to generate the start shape.
The figures are relative me17s expressed as percentages (section 4.6).

5.2 Generating the start shape

Before the ASM search begins, we use a global face detector to locate the approximate position
and size of the face. We then generate a start shape by using this position and size to position
and scale the model mean face. For now we confine ourselves to the Rowley face detector
(section 4.4).

The quality of the start shape is important. It is is unlikely that an ASM search will recover
completely from a bad start shape.

Four methods of generating the start shape are considered:

1. AlignToRefShape Align the mean shape to the reference (i.e. the manually land-
marked) shape.
For real searches the reference shape is not available, but during testing this method
provides a reference to compare the methods below.

2. Face Scale and align the mean shape to the face position determined by the face detec-
tor.

3. FaceAndEyes Scale and align the mean shape to the face and eye positions determined
by the face detector.

4. FaceAndEyes RealignEyes Start off as above (FaceAndEyes) to generate an initial
StartShape. Then generate another start shape, StartShapeEyes, by aligning the mean
shape to the eye position found by the face detector (ignoring the overall face position
found by the face detector). If the inter-eye distance in StartShapeEyes is very different
from StartShape, then blend the eyes in StartShapeEyes into StartShape. Use the
resulting StartShape as the start shape. See startshape.cpp for details.
The net effect is to use eye positions to correct start shapes that are too big.

Table 5.1 gives measurements and shows that the best results are obtained from Face-
AndEyes RealignEyes. The AR figure for the chosen model is an anomaly because it is
less than the figure for AlignToRefShape, a supposedly impossible-to-beat number. This is
presumably due to statistical variation.
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Model AR XM2VTS

AdHocScaling 0.0 0.0

width 140, nearest-pixel 16.4 1.8

width 140, bilinear 11.5 2.9

width 160, nearest-pixel 13.5 1.0

width 160, bilinear 11.3 0.1

width 180, nearest-pixel 1.9 1.2

width 180, bilinear 0.0 0.0 <chosen, lowest AR

width 200, nearest-pixel 2.5 0.4

width 200, bilinear 1.3 0.2

width 220, nearest-pixel 1.1 1.1

width 220, bilinear 1.2 1.7

width 240, nearest-pixel 1.3 0.8

width 240, bilinear 2.2 -0.2

Table 5.2: Scaled face width, 1D profiles.
Here we prescale all faces to the given width before training and searching (except for AdHoc-
Scaling)
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Figure 5.2: Face width, with regression lines. 1D profiles.
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5.3 Face size scaling

Profile models would work better if all faces were the same size. Reality is not so kind, but
we can instead prescale the faces to a common pixel width before using them. Table 5.2 on
the previous page shows the results.

The reference model AdHocScaling was the first implementation for this project. This does
no rescaling during model building. During search, it doubles the size of the face if the width
is less than 120 pixels. If the width of the face is greater then 350 it resizes the face to 280
pixels. The idea is to minimize the amount of non-integral scaling of the image. This method
appears effective on the available data but was rejected because it is too messy.

The subsequent models simply prescale the faces to a fixed width before both model building
and searching. We scale using either nearest-pixel or bilinear interpolation. The best results
are with bilinear scaling to a width of 180 pixels.

Figure 5.2 on the previous page shows me17 plotted against face width. The linear regression
lines show that the fit improves as original image face size increases, within the range of
widths in the databases.

5.4 Models with 1D profiles

This section looks at the several basic parameters of the classical ASM using one-dimensional
(1D) profiles. 1D profiles were described in section 2.4.1.

5.4.1 Profile model search parameters: nProfWidth and nPixSearch

During profile matching, we search in the vicinity of each landmark for the best profile match.
In this section we look at two parameters:

1. nProfWidth is the number of pixels in the model profile for each 1D landmark. This
width is always an odd number: the middle pixel plus an equal number of pixels on
each side of the center pixel. For example, nProfWidth=11 means a middle pixel and 5
pixels on each side.

2. nPixSearch: During search, we sample the image at displacements of -nPixSearch to
+nPixSearch pixels along the whisker

Table 5.3 on the next page gives measurements.
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Parameters are nProfWidth, nPixSearch

Model AR XM2VTS

Ref 0.0 0.0

9,1 8.6 3.2

9,2 4.9 1.8

9,3 4.2 2.5

9,4 8.7 2.9

9,5 16.2 9.5

9,6 16.2 11.1

9,7 27.1 17.5

11,1 4.9 1.2

11,2 0.0 -0.2

11,3 1.4 -0.8

11,4 1.2 3.1

11,5 5.2 5.0

11,6 14.5 7.7

11,7 15.1 13.9

13,1 4.3 -0.5

13,2 -1.3 -3.3

13,3 -0.2 -2.3

13,4 0.1 -0.1

13,5 4.9 0.9

13,6 14.5 4.2

13,7 18.5 6.6

15,1 4.2 -1.7

15,2 -2.0 -4.6

15,3 -0.8 -4.2

15,4 0.1 -2.2

15,5 4.7 0.4

15,6 10.7 2.5

15,7 32.9 3.6

17,1 4.1 -1.7

17,2 -2.5 -5.2

17,3 -4.0 -5.3 <chosen, lowest AR

17,4 -2.4 -2.0

17,5 3.3 0.5

17,6 11.7 0.5

17,7 52.7 1.5

19,1 1.2 -3.3

19,2 -3.0 -5.5

19,3 -2.4 -5.4

19,4 -1.6 -3.1

19,5 3.4 -2.1

19,6 8.9 -0.4

19,7 45.8 0.0

Table 5.3: nProfWidth and nPixSearch, 1D profiles.
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5.4.2 Search parameters: nMaxSearchIters and nQualifyingDisplacements

During profile matching, we iterate for a solution (Figure 2.5). The profile match at each
landmark suggests a displacement from the current position. We declare convergence and
stop iterating when either of the following conditions is met:

1. nMaxSearchIters is reached.

2. nQualifyingDisplacements of the landmark displacements are less than or equal to
the maximum displacement nPixSearch. Cootes and Taylor [20] section 7.3 proposes a
slightly different criterion: the number of landmark displacements that are within 50%
of nPixSearch. Using a different criterion here allows the same code to be used for both
1D and 2D profiles:
ABS(xDisplacement) + ABS(yDisplacement) <= nPixSearch.
This is city block distance. For 1D profiles, yDisplacement is always 0. Note added
29 Oct 2007: the above description is slightly different to the actual code, see nGood-
Landmarks in stasm/asm.cpp.

Table 5.4 on the next page gives measurements. We see that good results can be obtained
with nMaxSearchIters=4 and nQualifyingDisplacements=80.
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Parameters are nMaxSearchIters, nQualifyingDisplacements

Model AR XM2VTS

Ref 0.0 0.0

2,75 2.3 3.5

2,80 2.3 2.6

2,85 2.4 1.9

2,90 2.2 1.8

2,95 2.3 1.5

3,75 -0.9 0.5

3,80 -1.6 0.9

3,85 -1.0 0.8

3,90 -1.3 0.5

3,95 -1.5 -0.1

4,75 -2.3 0.2

4,80 -2.4 0.5 <chosen, lowest AR

4,85 -1.7 0.0

4,90 -1.7 -1.0

4,95 -1.7 -0.8

5,75 0.0 -1.1

5,80 -0.4 -0.7

5,85 -1.1 -1.0

5,90 -0.3 -1.5

5,95 -0.6 -1.4

6,75 -0.5 0.1

6,80 -0.6 -0.1

6,85 -0.3 -0.2

6,90 -0.8 -1.0

6,95 -0.4 -0.6

7,75 -0.5 -0.3

7,80 0.3 -0.9

7,85 0.8 0.0

7,90 0.3 0.2

7,95 0.1 -0.2

Table 5.4: nMaxSearchIters and nQualifyingDisplacements, 1D profiles.
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5.4.3 Shape model parameters: nEigs and bMax

During the landmark search, we generate a suggested shape by profile matching and then
conform the suggested shape to the shape model.

For best results we need to choose the appropriate nEigs and bMax parameters for the shape
model. nEigs is the number of eigenvectors used by the shape model. bMax is a parameter
controlling the maximum allowable value of elements of b in equation 2.2.

In the rectangle example in section 2.3.2 there were eight eigenvectors. But we needed only
two eigenvectors to describe any of the shapes i.e. nEigs was two in that example. It was clear
that two eigenvectors were sufficient because there were only two large eigenvalues. For face
shapes there are 136 eigenvectors (136 = number of x- and y-coordinates for 68 landmarks).
The magnitude of the eigenvalues decreases relatively smoothly and there is no obvious cut-off
point. Thus we choose nEigs by testing.

Figure 5.3(a) on the next page shows the results. This graph was generated by applying hard
limits to each element bi of b i.e. clipping them to ±bMax∗sqrt(λi). Note that the increments
along the x-axis are not uniform.

We can get an idea of the lower-bound possible for any search by taking a manually land-
marked face shape and conforming it to the shape model. Ideally there should be no change
because we should not change a face shape that is already valid. We can get close to this
ideal if we use a large bMax and a full set of eigenvalues. But using such a flexible shape
model allows bad profile matches to pass unchecked and so does not give the best results
when searching. This can be seen by the increase on the right of the solid curves.

A variation [20] on the method described above is to constrain b to be in a hyper-ellipsoid
i.e. scale the bis so that sqrt(

∑
b2i /λi) < bMax. We force the inequality when necessary by

multiplying each bi by bMax/sqrt(
∑
b2i /λi). A comparison of subfigure (b) to subfigure (a)

shows that this slightly more complicated variation does not give better results (for the given
code and databases) even though it has stronger theoretical justification, and so is not used
in this project.

Subfigure (c) shows results for the same images as subfigure (a), but displays the results for
the left eye instead of me17. A comparison of the graphs shows that the best parameter
values for the eye are different from the best values for me17: the eye prefers a more flexible
model (higher nEigs and bMax). In spite of this, this project does not do any special shape
model processing for eyes or other features.

Table 5.5 on page 47 shows results for the AR dataset at a finer resolution. The chosen values
of nEigs=20 and bMax=1.8 give the best results for the AR dataset.
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Figure 5.3: nEigs and bMax, 1D profiles.
Gray and black are used to help distinguish curves and have no special meaning.
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Parameters are nEigs, bMax

Model AR XM2VTS

Ref 0.0 0.0

12,1.0 0.0 0.0

12,1.2 -3.5 -3.5

12,1.4 -6.9 -1.6

12,1.6 -6.5 -4.9

12,1.8 -6.8 -2.2

12,2.0 -6.1 -3.0

12,2.2 -7.8 -2.5

12,2.6 -3.9 -1.5

12,3.0 -5.9 -0.9

12,5.0 0.3 0.9

14,1.0 0.5 -1.2

14,1.2 -4.2 -2.9

14,1.4 -4.3 -3.4

14,1.6 -5.2 -6.4

14,1.8 -7.0 -4.9

14,2.0 -7.7 -2.9

14,2.2 -7.0 -3.1

14,2.6 -6.2 -3.6

14,3.0 -3.9 -1.4

14,5.0 2.4 -0.6

18,1.0 -1.6 -2.1

18,1.2 -4.2 -4.4

18,1.4 -5.5 -4.9

18,1.6 -7.9 -4.4

18,1.8 -6.8 -4.5

18,2.0 -6.4 -4.0

18,2.2 -6.0 -3.4

18,2.6 -7.1 -1.7

18,3.0 -3.6 1.1

18,5.0 5.4 2.5

20,1.0 -1.6 -2.4

20,1.2 -3.9 -4.7

20,1.4 -6.4 -6.9

20,1.6 -6.5 -4.7

20,1.8 -9.0 -5.1 <chosen, lowest AR, good XM2VTS

20,2.0 -8.0 -4.8

20,2.2 -6.8 -3.3

20,2.6 -6.6 -2.2

20,3.0 -3.0 0.0

22,1.0 -3.1 -2.8

22,1.2 -6.1 -5.5

22,1.4 -6.9 -6.9

22,1.6 -8.9 -4.8

22,1.8 -8.6 -3.8

22,2.0 -9.0 -3.1

22,2.2 -7.5 -3.7

22,2.6 -5.1 -1.5

22,3.0 -3.1 0.4

Table 5.5: nEigs and bMax (“hard limit” method), 1D profiles.
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Parameters are ShapeNoise (pixels), xRhsStretchShape (rhs face stretch)

File Model me17

Ref 0.75,1.08 0.0

AR 0,0 2.1

XM2VTS 0,0 1.6

Table 5.6: Fit improved by adding noise to the training shapes, 1D profiles.

5.4.4 Adding noise during training

A shape model built by adding noise to the input shapes during training gives slightly im-
proved fits. Noise is added as follows:

1. Displace each landmark by a random amount. In effect, this increases variability in the
training set face shapes.

2. Stretch or contract just the right hand side of the face by a random amount. This is done
by multiplying the x position (relative to the face center) of each right-side landmark by
a random number near 1. Stretching possibly helps because the faces in the XM2VTS
training set are mostly facing the camera directly. In the AR set, the faces, although
frontal, are sometimes facing slightly away from the camera, which makes the face less
symmetrical.

Table 5.6 above shows the fit on model built without noise, versus a model built by adding
gaussian noise. The AR me17 improves by about 2%.

5.4.5 Number of pyramid levels

The search proceeds through the image pyramid, from a low resolution image to the original
image resolution. How many pyramid levels are best? Table 5.7 below shows some results.
Three pyramid levels produces a slightly better me17 for the AR set, but the jaw fit is far
worse, so it seems best to stay with the 4 pyramid levels of the classical ASM.

At the other end of the pyramid, terminating a search at a resolution less than the original
gives worse results, perhaps obviously.

File Model Face me17 Jaw Nose Mouth Eyes

AR nPyramidLevels=4 0.0 0.0 0.0 0.0 0.0 0.0

AR nPyramidLevels=3 1.3 -0.3 14.5 -0.6 8.4 1.5

XM2VTS nPyramidLevels=4 0.0 0.0 0.0 0.0 0.0 0.0

XM2VTS nPyramidLevels=3 2.2 2.1 2.6 1.2 2.1 -1.1

Table 5.7: Number of pyramid levels, 1D profiles.
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Model AR XM2VTS Time

Reference 0.0 0.0 0.0

Bilinear -2.4 -0.7 17.7

NearestPix -2.6 -0.8 1.4

Table 5.8: Method used to scale the image, 1D profiles.
This is the first table in this chapter with a Time column. Times are relative to the reference
model (see section 4.6).

5.4.6 Method of scaling images

We form the image pyramid by scaling the image. Table 5.8 above shows results from scaling
using bilinear versus nearest-pixel resampling. Nearest-pixel is faster and gives results that
are almost the same as those for bilinear.

5.4.7 Pyramid ratio

Each image in the image pyramid is a scaled version of the image above it. Table 5.9 below
shows results using different scale factors. A scale factor of 2 is best, probably because the
pixels are scaled by an integer, which tends to preserve image texture. (Scaling by 3 also
scales by an integer, but scales by too much.)

Model AR XM2VTS

sqrt2 7.1 -3.6

sqrt3 12.8 -1.8

2 0.0 0.0 <chosen, lowest AR

3 12.1 1.1

Table 5.9: Pyramid ratio, 1D profiles.
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Figure 5.4: Whisker directions for some XM2VTS landmarks.
The red whiskers are from the classical ASM. The pale blue whisker uses explicitly specified
“previous” and “next” landmarks.

File Model Face me17 Jaw Nose Mouth Eyes

AR UseLandmarkOrdering 0.0 0.0 0.0 0.0 0.0 0.0

AR UseExplicitSpec -2.5 -2.2 -4.3 -9.0 -2.9 0.3

XM2VTS UseLandmarkOrdering 0.0 0.0 0.0 0.0 0.0 0.0

XM2VTS UseExplicitSpec -0.4 0.6 0.1 -2.6 -1.6 3.0

Table 5.10: Whisker directions, 1D profiles.
This compares results using whisker directions determined by ordering of landmarks (i.e. clas-
sical ASM), versus results using explicitly specified whisker directions.

5.4.8 Whisker directions

In the classical ASM, the direction of a whisker is determined by the order in which the
landmarks are numbered. This is because the whisker direction is determined by the position
of previous and next landmarks relative to the current landmark. This is rather arbitrary.
Consider landmark 48 in Figure 5.4, which shows selected XM2VTS landmarks. The previous
landmark is 47, which is the right nostril. The next landmark is 49 which is on the upper lip.
Compare the odd direction of the resulting whisker (shown in red) to that of the whisker on
the symmetrical landmark 54.

Instead of using the ordering of previous and next landmarks to determine whisker direction,
we can explicitly specify the landmarks to be used. In Figure 5.4, we use landmarks 59 and
49 for this purpose, and the resulting whisker is shown in pale blue.

Table 5.10 shows some results. The overall results for the AR set are slightly better when we
explicitly the “previous” and “next” landmarks.

Note that none of this applies to 2D profiles which are not rotated for alignment to the shape
edges.
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(a) training set: unobscured vs all
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(b) training set: clean vs all

clean

all

clean
all

0.
04

0
0.

04
5

0.
05

0
0.

05
5

m
e1

7 
ov

er
 2

00
 A

R
 fa

ce
s

50
0

10
00

15
00

20
00 al

l

nTrainingShapes

2%

(c) training set: include mirrored images vs not
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error on
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(d) theoretical, with a big training set available

Figure 5.5: Fit for various training and test sets, 1D profiles.
Except where marked not mirrored, the training sets include mirrored images. Unobscured
means that the face is unobscured (by the edge of the image or by the subject’s hand). Clean
faces have no face attribute bits set (Table 4.2).

5.4.9 Face attributes in the training set

Looking at the table of face attributes (Table 4.2) on page 26, it is natural to ask a few
questions. For example, is it better to train on all images, or just on “good” images? And
assuming we want to search for features only on faces without glasses, is it better to train
on all faces or just on a subset? There are many possibilities. Figure 5.5 shows some of the
more interesting ones.

The color of the curves indicates the test set. The annotation on the right of each curve is
the training set. The horizontal axis is the number of training images. The all label means
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all images in the specified training set — this size varies with the training set. The training
sets include mirrored images except where marked not mirrored (section 4.1.2).

In the graphs, unobscured means that the face is unobscured i.e. the Obscured attribute bit
is clear (Table 4.2). Clean faces have no face attribute bits set.

Using subfigure (b) as an example, we see that if one wishes to search for landmarks only
on clean faces (black lines), then it is best to train the model only on clean faces. If one
wishes to search for landmarks on on all images (blue lines), it is best to train on all images.
Finally, the best results for clean faces (solid black) are better than the best results for all
faces (dashed blue).

All graphs show a general tendency for the test error to decrease as the number of training
images increases. That is true at least up to about 2000 training shapes; after that the error
could increase or decrease. In the cases where error increases as the number of training images
increases, we are getting a hint of the theoretical concave test curve shown in subfigure (d)
(see for example Hastie et al. [40] Figure 2.11).

The main conclusions from the graphs are

1. as a general rule, the results depend more on the test set than the training set

2. for landmark location on a test set sampled from all AR images, the best XM2VTS
training set is a set of 2000 images sampled from all XM2VTS images, including mirrored
images (subfigure (a) dashed blue line, same as subfigure (b) dashed blue line). Note
that this applies, as does everything in this section 5.4, only to models with 1D profiles.
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Figure 5.6: Left some 1D profiles. Right some 2D profiles.
Yellow shows the profiles (each 2D profile is the area inside a yellow box). Red shows the
current shape model.

5.5 Models with 2D profiles

This section more-or-less repeats the entire previous section, but for ASMs that use two-
instead of one-dimensional profiles.

5.5.1 About 2D profiles

The classical ASM uses a one-dimensional profile at each landmark. Now we are interested in
using two-dimensional profiles. Instead of sampling a one-dimensional line of pixels along the
whisker, we sample a square or circular region around the landmark (Figure 5.6). Intuitively,
a 2D profile area captures more information around the landmark, and this information, if
used wisely, should give better results.

During search we displace the sampling region in both the “x” and “y” directions, where x is
orthogonal to the shape edge at the landmark and y is tangent to the shape edge.

In this project, 2D profiles stay aligned to the edges of the image. Unlike 1D profiles, we do not
rotate the profiles to align with the shape model whisker (section 5.4.8). Without reorientation
we must rely on the face being approximately upright, but do avoid interpolation noise.

The covariance matrix of a set of 2D profiles (section 2.4.2) is formed by treating each 2D
profile matrix as a long vector (by appending the rows end to end), and calculating the
covariance of the vectors.

We start off our investigation with profiles which are the sigmoid of the normalized gradient
magnitude, with a flat window. These terms will be explained in section 5.8 where other
profile types are considered.
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File Model me17 Time

AR 1D 0.0 0.0

AR 2D -4.4 272

XM2VTS 1D 0.0 0.0

XM2VTS 2D -3.3 293

Table 5.11: 2D versus 1D profiles.
Using 2D profiles give better results but is about 3 times slower.

5.5.2 2D versus 1D profiles

To see that we are not barking up the wrong tree, let’s first do a quick check comparing 2D
to 1D profiles. Table 5.11 shows that the me17s are better for 2D searches, but searches take
much longer.

5.5.3 Face size scaling

As in section 5.3, we prescale faces to a common pixel width before using them. Table 5.12
shows the results. The width for the lowest AR error is not quite the same as that for 1D
profiles (Table 5.2), but it is close, and to avoid keeping two image pyramids we continue
using the 1D parameter values.

Model AR XM2VTS

Reference 0.0 0.0

width 140, nearest-pixel 1.3 0.7

width 140, bilinear -1.5 1.6

width 160, nearest-pixel 3.3 -0.9

width 160, bilinear 1.6 -0.2

width 180, nearest-pixel -0.9 -0.4

width 180, bilinear -3.0 -1.9 <chosen, see text

width 200, nearest-pixel -4.0 -1.8 <lowest AR

width 200, bilinear -2.4 -1.7

width 220, nearest-pixel -1.9 -0.5

width 220, bilinear -1.8 -1.8

width 240, nearest-pixel -0.9 -1.1

width 240, bilinear -0.3 -1.5

width 250, nearest-pixel 1.8 -1.2

width 250, bilinear 2.2 -1.8

Table 5.12: Scaled face width, 2D profiles.
Here we prescale all faces to the given width before using them.
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5.5.4 Profile model search parameters: nProfWidth and nPixSearch

During profile matching, we search in the vicinity of each landmark for the best profile match.
Table 5.13 on the next page shows results for 2D profile models (compare to Table 5.3 for 1D
profiles).

The fit can be improved beyond that for the chosen parameter values, but only at the expense
of much more real time. This is a fairly arbitrary judgment call: balancing error versus time,
knowing that in section 5.10 we will revisit profile widths.

The displacements on the table are “x” displacements (orthogonal to the shape model bound-
ary). Not shown are the “y” displacements (tangent to the shape model boundary), but a y
displacement of ±1 gives good results.
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Parameters are nProfWidth, nPixSearch

Model AR XM2VTS Time

Ref 0.0 0.0 0

9,1 -7.4 4.8 -58

9,2 -7.3 3.3 -49

9,3 6.5 5.7 -25

9,4 16.3 7.7 0

9,5 28.9 10.6 37

9,6 76.8 6.9 78

9,7 337.0 9.7 130

11,1 -10.1 3.9 -52

11,2 -10.9 0.6 -33 <chosen, because a low AR and good time

11,3 4.0 5.4 7

11,4 10.2 7.9 54

11,5 24.4 5.6 119

11,6 70.2 4.5 193

11,7 382.2 8.3 285

13,1 -10.7 3.4 -41

13,2 -11.2 -0.2 -5 <also considered but not chosen

13,3 1.9 3.4 60 because too slow

13,4 7.9 4.9 141

13,5 17.7 6.4 250

13,6 63.0 3.8 374

13,7 351.1 5.7 524

15,1 -11.7 4.1 -26

15,2 -12.7 -0.6 35 <lowest AR, this 1.8% better but

15,3 -0.3 3.6 139 much slower than the chosen params

15,4 5.9 4.8 270

15,5 15.8 7.2 442

15,6 60.6 1.7 643

15,7 415.7 3.5 881

17,1 -11.3 2.8 -4

17,2 -11.8 -0.6 93

17,3 1.2 3.4 251

17,4 7.8 5.3 455

17,5 15.2 5.9 716

17,6 57.1 0.4 1026

19,1 -10.8 1.9 27

19,2 -12.1 -0.9 179

19,3 -0.8 3.9 418

19,4 6.0 4.5 728

19,5 15.3 5.2 1126

Table 5.13: nProfWidth and nPixSearch, 2D profiles.
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Parameters are nMaxSearchIters, nQualifyingDisplacements

Model AR XM2VTS Time

2,75 3.1 0.3 -37

2,80 3.5 -0.5 -36

2,85 3.0 -0.2 -36

2,90 2.4 -0.8 -35

2,95 2.3 -0.6 -35

3,75 0.5 -0.2 -19

3,80 -0.3 -0.1 -17

3,85 0.0 -0.4 -15

3,90 -0.2 -0.2 -14

3,95 -0.7 -0.2 -13

4,75 0.0 0.0 0 <ref

4,80 -0.6 -0.2 2

4,85 -0.3 -0.5 4

4,90 -1.1 -0.9 8 <chosen, lowest AR, time ok

4,95 -0.6 -0.4 9

5,75 0.9 -0.3 15

5,80 0.0 0.3 20

5,85 0.3 0.6 24

5,90 0.9 -0.3 28

5,95 0.0 0.2 31

6,75 0.8 -0.2 32

6,80 -1.1 0.1 39 <also good AR, but slower

6,85 0.1 1.0 43

6,90 1.2 -0.2 50

6,95 0.6 -0.3 54

7,75 0.7 0.2 48

7,80 -0.5 0.1 56

7,85 0.1 0.2 63

7,90 0.6 -0.4 70

7,95 0.2 -0.7 75

Table 5.14: nMaxSearchIters and nQualifyingDisplacements, 2D profiles.

5.5.5 Search parameters: nMaxSearchIters and nQualifyingDisplacements

During profile matching, we search in the vicinity of each landmark for the best profile match.
Table 5.14 shows results for 2D profile models (compare to Table 5.4 for 1D profiles). We see
that good results can be obtained with nMaxSearchIters=4 and nQualifyingDisplacements=90.

5.5.6 Shape model parameters: nEigs and bMax

After generating a suggested shape by profile matching, we conform the suggested shape to
the shape model. We must choose the appropriate nEigs and bMax parameters for the shape
model. The results for 2D models are quite similar to those for 1D models (section 5.4.3) and
so we stay with the 1D model parameter values.
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Model AR XM2VTS Time

Lev=0 -0.1 -1.1 22

Lev=0 AND AllExceptMouth 0.0 0.0 0 <ref

Lev=0 AND Eyes 0.2 -0.2 -43

Lev=0 AND Internal -1.6 -1.9 2

Lev=0 AND InternalExceptMouth -1.1 -0.9 -17

Lev=0 AND NotInternal 7.5 3.8 -37

Lev<=1 0.8 -1.4 96

Lev<=1 AND AllExceptMouth -1.7 0.6 54

Lev<=1 AND Eyes -3.4 -3.0 -33

Lev<=1 AND Internal -1.7 -1.7 61

Lev<=1 AND InternalExceptMouth -4.1 -1.4 20 <chosen, lowest AR

AllLevs 5.2 -2.9 194

AllLevs AllExceptMouth 3.1 0.6 124

AllLevs AllInternalExceptMouth -0.7 1.6 63

AllLevs AllInternal 1.7 -4.4 130

AllLevs AllNotInternal 14.9 7.6 4

(Lev=0 AND AllExceptMouth) OR AnyLevEyes 0.1 -2.1 22

(Lev<=1 AND AllExceptMouth) OR AnyLevEyes 1.3 -1.4 69

Table 5.15: Which profiles should be 2D?

5.5.7 Which profiles should be 2D?

For best results not all profiles should be 2D; some should remain 1D. Table 5.15 shows a
number of possibilities.

In the table, Lev=0 means that 2D profiles are used only at pyramid level 0 (full resolution).
Lev<=1 means that 2D profiles are used at pyramid levels 1 and 0. AllLevs means that 2D
profiles are used at all pyramid levels.

The table shows that best results are obtained using 2D profiles at pyramid levels 1 and 0 for
the interior landmarks excluding the mouth landmarks. All other profiles remain 1D.

The table results can be a bit misleading. We are using the me17 to evaluate the results. The
me17 uses only the interior landmarks, and thus favors interior landmarks, possibly at the
expense of landmarks at the edge of the face.

Also of interest are the times — 2D profiles are much slower.
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Parameters are nEigs and bMax for final pyramid level

Model AR XM2VTS

20,1.5 0.0 -1.1

20,1.8 0.0 0.0 <ref

20,2.0 0.0 0.2

20,2.6 0.4 1.3

20,3.0 1.0 1.3

20,5.0 1.2 1.1

24,1.5 -1.1 -0.8

24,1.8 -1.4 -0.2

24,2.0 -1.4 0.2

24,2.6 -0.7 1.0

24,3.0 -0.7 0.9

24,5.0 -0.3 1.0

26,1.5 -1.0 -1.1

26,1.8 -1.1 -0.3

26,2.0 -1.7 -0.1 <chosen, lowest AR

26,2.6 -1.0 0.7

26,3.0 -0.7 0.5

26,5.0 -0.1 0.6

30,1.5 -1.3 -0.6

30,1.8 -1.3 -0.2

30,2.0 -1.5 0.4

30,2.6 -1.0 1.1

30,3.0 -0.7 1.1

30,5.0 -0.2 0.8

40,1.5 -1.0 -0.3

40,1.8 -1.2 0.1

40,2.0 -0.8 0.7

40,2.6 0.0 1.3

40,3.0 0.1 1.2

40,5.0 0.0 1.0

Table 5.16: Loosening up the shape model for the final iteration, 2D profiles.

5.5.8 Loosening up the shape model for the final iteration

In section 5.4.4 we looked at a modification to the shape model: adding noise during training.
Here we look at another modification. As usual, we conform the suggested shape to the shape
model for each iteration of the search, at each pyramid level. But for the last pyramid level,
we get improved results by using a higher value for nEigs and bMax (section 5.4.3). See
Table 5.16.

This modification is effective only for 2D profiles, not for 1D profiles. This is probably because
as the profile matches become more reliable the shape constraints can be weakened.
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PyramidRatio nPyramidLevs Interp AR XM2VTS Time

2 4 bilinear 0.7 0.2 8

sqrt2 4 bilinear 10.4 3.9 17

sqrt2 6 bilinear 5.9 -1.7 46

sqrt2 8 bilinear 2.7 -1.8 42

sqrt3 4 bilinear 7.4 -0.2 14

sqrt3 6 bilinear 1.5 1.8 21

2 4 nearestPix 0.0 0.0 -2 <chosen

sqrt2 4 nearestPix 10.3 4.1 5

sqrt2 6 nearestPix 6.6 -1.1 19

sqrt2 8 nearestPix -0.9 -1.2 24

sqrt3 4 nearestPix 6.8 -0.4 5

sqrt3 6 nearestPix -0.8 -0.2 12

Table 5.17: Pyramid ratio, 2D profiles.

5.5.9 Pyramid ratio and method of scaling images

We need to choose a pyramid scaling ratio and scaling method for 2D profiles, just as we did
for 1D profiles (sections 5.4.6 and 5.4.7). See Table 5.17. The table shows that we can stay
with the values used for 1D profiles: PyramidRatio=2.0 nPyramidLevs=4. Thus only one
image pyramid is needed.
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(b) training set: clean vs all
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(c) training set: include mirrored vs not

clean

not mirrored,clean

clean
not mirrored,clean

Training Set:

Figure 5.7: Fit for various training and test sets, 2D profiles.
Except where marked not mirrored, the training sets include mirrored images. Unobscured
means that the face is unobscured (by the edge of the image or by the subject’s hand). Clean
faces have no face attribute bits set (Table 4.2).
In subfigure (b), the curve for clean but include glasses and beard is not shown for
test set clean because it is the same as the curve for clean.

5.5.10 Face attributes in the training set

In section 5.4.9 we looked at how training and evaluating on images with different attributes
affected the fit. Now we repeat that section, but for 2D profiles. See Figure 5.7.

Cutting through the details, we can summarize Figure 5.7 as follows: the training set that
gives the best results on AR faces is the set of clean XM2VTS images, but including images
with glasses and beards. The mirrored images should also be used. This is the dotted blue
curve in subfigure (b).
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Figure 5.8: Left eye with new landmarks in yellow, existing landmarks in red.

AR XM2VTS Time

Test set: All faces

nLandmarks=68 0.0 0.0 0

nLandmarks=76 -0.3 -1.4 13

nLandmarks=84 -4.6 -4.9 23

Test set: Clean faces

nLandmarks=68 0.0 0.0 0

nLandmarks=76 1.1 -1.4 13

nLandmarks=84 -3.2 -5.3 23

Table 5.18: Expanded XM2VTS training set — overview.
Clean faces have no face attribute bits set (Table 4.2).

5.6 Adding landmarks to the XM2VTS set

In general, the more landmarks the better (section 5.1). Pursuing this improvement, eight
landmarks were added to the left eye of clean faces in the XM2VTS set, as shown in Figure 5.8.
(Left is with respect to the viewer.) The total number of landmarks becomes 68 + 8 = 76.

Manually landmarking images is a tedious business, so instead of manually adding extra
landmarks to the right eye, during training we generate 8 right eye landmarks by symmetry
from the left eye. The total number of landmarks then becomes 68 + 8 + 8 = 84.

There are limits to this process, even for an exceptionally patient human landmarker, because
one tends to run out of logical positions for landmarks.

Table 5.18 shows that as we add landmarks, the me17s tend to improve.

Table 5.19 on the next page shows details. The improved fit at the eyes ripples across to
cause improved fits on other facial features. Note that the left is much better than the right
eye fit for the 76 point sets (which have new landmarks on the left eye only).
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Face me17 Jaw Nose Mouth LEye REye

Test set: All faces

Ref nLandmarks=68 0.0 0.0 0.0 0.0 0.0 0.0 0.0

AR nLandmarks=76 -0.1 -0.3 0.8 2.9 -0.3 -6.1 2.4

AR nLandmarks=84 -4.0 -4.6 -0.4 -1.8 -1.9 -9.3 -14.9

XM2VTS nLandmarks=76 -0.3 -1.4 1.9 -0.3 -2.5 -10.6 0.9

XM2VTS nLandmarks=84 -2.5 -4.9 1.5 -4.9 -2.5 -12.6 -9.0

Test set: Clean faces

Ref nLandmarks=68 0.0 0.0 0.0 0.0 0.0 0.0 0.0

AR nLandmarks=76 0.9 1.1 -0.8 6.9 0.2 -4.5 4.5

AR nLandmarks=84 -2.8 -3.2 -0.6 0.0 0.1 -8.8 -9.9

XM2VTS nLandmarks=76 -0.5 -1.4 0.7 -0.6 -0.1 -8.1 0.9

XM2VTS nLandmarks=84 -2.3 -5.3 1.5 -6.0 -1.4 -10.5 -13.1

Table 5.19: Expanded XM2VTS training set — details.

5.7 Stacking models

Accurate positioning of the start shape is crucial (section 5.2). In this section we look at a
method of better positioning the start shape, by stacking two ASM models as follows:

1. run the ASM search on the image

2. run the ASM search again, using the results of the first search as the start shape.

Table 5.20 below shows some results. In the table, the single model is the best 2D model
we have. The stacked model is the best 1D model we have followed by the best 2D model
we have.

For all faces there is a large improvement in fit. For clean faces the improvement is
small, because the start shape is already good for most of the clean faces.

Tests (not shown here) show that for stacked models it is fine to use a 1D model for the first
search. Using a 2D model does not give better results, and takes longer. Other tests show
that is suffices to start the second model at pyramid level 1, one level below full size.

AR XM2VTS

Test set: all faces

single model 0.0 0.0

stacked model -6.1 -14.0

Test set: clean faces

single model 0.0 0.0

stacked model -1.8 -0.1

Table 5.20: Stacked model versus single model.
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0 0 0 0 1 0 1 1 1

0 1 0 1 -4 1 1 -8 1

0 0 0 0 1 0 1 1 1

mask_gray mask_4_lap mask_8_lap

(gray level) (4 connected (8 connected

Laplacian) Laplacian)

0 0 0 0 0 0 0 0 0

0 -2 1 0 -1 1 0 -1 0

0 1 0 0 0 0 0 1 0

mask_grad mask_x_grad mask_y_grad

(gradient) (x gradient) (y gradient)

Table 5.21: 2D convolution masks.

5.8 Profile types

A 2D profile at a landmark is created in four steps: convolution, normalization, equalization,
and weight masking. These four steps are repeated at each landmark. This section describes
each of the steps and then evaluates different profile types.

5.8.1 Convolution

In the convolution step, we move a 3x3 convolution mask over each pixel in the area around
the landmark to generate a profile matrix. Each element of the profile matrix corresponds to
a pixel. The element’s value is a measure of some image property at the pixel. The property
in question is determined by the convolution mask. This is a standard technique described
in most image processing textbooks, for example Gonzalez and Woods [37].

Table 5.21 shows convolution masks used in this project. Taking mask x grad as an example,
each element in the profile matrix is minus the value of the center pixel plus the value of the
pixel to its right. Thus mask x grad gives the intensity gradient in the horizontal direction.

Experiments (not shown here) show that the best me17 results are obtained using these 3x3
masks. Other masks, or larger masks, do not give better results.

5.8.2 Beyond linear convolution

In this section we discuss a few nonlinear transformations that go beyond simple convolution.

1. Mask grad mag: This is the method we have been using in this chapter up to now.
These profiles are similar to mask grad but use the magnitude of the gradient as follows:
(a) Take the difference between the pixel at the landmark and the pixel to its right.
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(b) Take the difference between the pixel at the landmark and the pixel below it.
(c) Square the two differences, sum them, and use the square root of the sum.

2. Harris and Stephens [38] present an ingenious edge and corner detector. They calculate
the difference between the image and itself as one is scanned over the other. They apply
a gaussian window to this difference around the landmark. They then take a first order
approximation, resulting in a quadratic which gives the intensity rate of change at each
pixel. The two eigenvalues of the coefficents of the quadratic give a measure of cor-
nerness (both eigenvalues big) or edgeness (one eigenvalue big). Since the eigenvalues
measure the principal rates of change they are invariant to image rotation.

In this project, simple templating was found to give better results than the Harris
Stephens method.

3. Scott et al. [60] extend the Harris Stephens detector to yield two numbers at each pixel.
The one number is a measure of edgeness at the pixel; the other is an independent
measure of cornerness.

In this project, this technique was found to perform poorly. However, Scott et al.
and other researchers [23] report good results (albeit in an Active Appearance Model
context). Further investigation is needed.

5.8.3 Normalization

Convolution yields a profile matrix for the landmark. We normalize the profile matrix by
dividing it either (a) by its length or (b) by the absolute sum of its elements. The length
here is the Frobenius norm i.e. the euclidean norm if you treat the matrix as a single long
vector.

Normalization corrects for varying overall image brightnesses and contrast.

5.8.4 Equalization

We equalize the normalized profile matrix by applying a sigmoid transform to each element
x of the matrix:

x′ =
x

abs(x) + c
. (5.1)

The shape constant c determines the shape of the sigmoid. Figure 5.9 on the next page shows
some sigmoids with different values of c. Sigmoids compress big positive or negative values
but are approximately linear for input values near 0. Using this transformation on the image
intensity reduces the effect of outliers [19]. Smaller values of c make the compression more
pronounced.

In this project, the best values for sigmoid constant were found to be fairly high (greater than
about 10) i.e. just a small amount of sigmoid equalization is best.
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Figure 5.9: Sigmoids for different values of the shape constant c.

5.8.5 Weight masking

Finally, we weight the values in the profile matrix to give more weight to pixels near the
landmark. Figure 5.10 below shows the three weight masks used in this project. Elements
outside the range of the circular mask are set to zero. The gaussian mask is formed by

x′ = x exp

(
−(i2 + j2)

2σ2

)
(5.2)

where σ2 is a positive constant determining the steepness of the gaussian peak, and i and j
are the horizontal and vertical distances in pixels from the landmark.

In this project, weight masks were found to give small or no improvement in overall fit,
although only a couple of different values of σ2 were tried.

(a) flat mask (a) gaussian mask (a) circular mask

Figure 5.10: Weight masks.
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Convolution Norm Equalization AR XM2VTS

mask_grad_mag abs_sum sigmoid_shape10 5.2 -0.8 "shape10" means shape const c = 10

sigmoid_shape100 17.2 5.7 "shape100" means shape const c = 100

len sigmoid_shape10 0.0 0.0 <ref

sigmoid_shape100 0.5 -0.2

none 0.1 -0.2

mask_grad abs_sum sigmoid_shape10 -3.8 -2.3 <tied lowest AR

sigmoid_shape100 -3.8 -2.9 <chosen, tied lowest AR

len sigmoid_shape10 -1.6 -0.6

sigmoid_shape100 -1.8 -4.0

none -2.0 -1.7

mask_y_grad abs_sum sigmoid_shape10 0.3 -0.3

sigmoid_shape100 6.0 1.9

len sigmoid_shape10 1.8 -0.5

sigmoid_shape100 6.4 1.2

none 7.0 1.1

mask_4_lap abs_sum sigmoid_shape10 -2.3 -2.6

sigmoid_shape100 -2.2 -2.8

len sigmoid_shape10 -0.1 -0.8

sigmoid_shape100 0.2 -1.5

none 0.5 -1.2

mask_8_lap abs_sum sigmoid_shape10 0.2 -1.4

sigmoid_shape100 0.3 -0.3

len sigmoid_shape10 -0.1 1.1

sigmoid_shape100 0.7 0.9

none 0.6 0.9

harris_steph abs_sum sigmoid_shape10 7.5 9.9

len sigmoid_shape10 11.6 16.5

Table 5.22: 2D profile types.The weight mask is flat for all the above tests.

5.8.6 Measurements

Table 5.22 shows some of the more interesting results for different profile types.

The reference is the model we have been using in this chapter up to now

mask grad mag len sigmoid shape10.

However, the table shows that results are best using

mask grad abs sum sigmoid shape100

so we will use that for the rest of this dissertation.
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Profile1 Profile2 AR XM2VTS

Convolution Norm Convolution Norm mean median mean median time

mask_grad abs_sum ---- none -- --- 0.0 0.0 0.0 0.0 0 <ref

mask_x_grad abs_sum mask_y_grad abs_sum -2.6 -7.9 0.3 1.7 54

mask_x_grad abs_sum mask_y_grad len -2.1 -8.5 0.8 -0.1 53

mask_4_lap abs_sum mask_grad abs_sum -1.1 -0.3 -0.7 1.9 52

mask_x_grad abs_sum mask_grad abs_sum -0.6 -4.0 2.9 1.7 52

mask_4_lap abs_sum mask_y_grad len -0.4 -7.2 1.1 2.9 53

mask_4_lap abs_sum mask_y_grad abs_sum -0.3 -5.2 0.5 1.2 53

mask_grad len mask_4_lap abs_sum -0.3 -2.8 0.4 5.0 52

mask_grad abs_sum mask_8_lap abs_sum -0.2 -1.7 -0.3 4.4 52

mask_grad abs_sum mask_4_lap len -0.1 -3.7 -0.1 0.1 52

mask_y_grad abs_sum mask_8_lap abs_sum 0.1 -6.3 0.4 0.9 54

mask_y_grad abs_sum mask_4_lap len 0.1 -6.2 1.1 3.0 57

mask_grad abs_sum mask_8_lap len 0.2 -1.8 0.5 2.5 52

mask_grad len mask_8_lap abs_sum 0.6 -2.9 0.4 1.9 52

mask_grad len mask_y_grad abs_sum 0.9 -4.9 0.9 2.0 52

mask_grad len mask_x_grad abs_sum 0.9 -1.1 3.9 8.1 52

mask_grad len mask_grad abs_sum 1.0 -3.6 0.7 0.6 51

mask_grad abs_sum mask_y_grad abs_sum 1.0 -3.7 -0.1 3.9 52

mask_grad len mask_4_lap len 1.0 -7.2 0.6 2.9 53

mask_y_grad abs_sum mask_8_lap len 1.1 -6.2 0.7 1.5 54

mask_grad len mask_8_lap len 1.4 -3.0 1.5 2.3 52

mask_grad len mask_y_grad len 1.4 -5.5 1.0 2.1 56

mask_grad abs_sum mask_y_grad len 1.5 -4.1 0.6 -0.2 56

mask_y_grad abs_sum harris_ste abs_sum 1.5 -7.4 1.4 2.2 81

Table 5.23: Dual profiles, sorted on AR mean.
All models use sigmoid shape100 equalization.
Blank lines have been inserted to enhance readability and have no special meaning.

5.9 Dual profiles

In this section we evaluate the following technique:

1. Perform two independent profile matching searches around the landmark, using two dif-
ferent convolution masks. This will give two suggested new positions for the landmark.

2. Take the (equally weighted) mean of these two positions as the final suggested landmark
position.

Table 5.23 shows results for dual profile models, sorted on the AR mean me17. The table
shows just the best results, but other profile types were tried. The reference model is the best
model from the previous section: mask grad abs sum sigmoid shape100.
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For the AR validation set, we get better medians but the means may or may not be better.
A better median but worse mean usually indicates that most of the fits are better but the
worst cases are worse.

For the XM2VTS training set, the results are on the whole not as good as using a single
profile model.

Since these results are equivocal, we will not use dual profiles but rather will continue using
the single profile approach described in section 5.8.
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Figure 5.11: Profile covariance matrix for a 1D profile (landmark 7, tip of chin)
Bigger absolute values are darker.
The figure shows the log of the absolute values in the profile covariance matrix.

5.10 Trimming the profile covariance matrix

In this section we discuss trimming the profile covariance matrices. The resulting model is
the TrimmedModel, which is the best model in this dissertation. The TrimmedModel also
incorporates the improvements presented earlier in this chapter.

5.10.1 Trimming

The covariance between two pixels in a profile tends to be much higher for pixels that are
closer together. This means that for 1D profiles, as we move away from the diagonal of
the covariance matrix, the absolute values of the elements get smaller. You can see this in
Figure 5.11, which shows the log of the absolute values. Intuitively then, we can simply
ignore elements that are too far from the diagonal, or equivalently set them to 0. This is
called trimming the covariance matrix.

For 2D profiles the distance between pixels is not simply the distance from the diagonal.
Remember that covariance matrices for 2D profiles are formed by treating the 2D profile as
one long vector, appending the rows end to end. Such covariance matrices can be trimmed
with a little code to calculate the inter-pixel distances.

5.10.2 Why we trim

The advantage of trimming is faster landmark searches. The profile search time at each land-
mark is dominated by the calculation of the Mahalanobis distance in equation 2.6, reproduced
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here:
Distance = (g − ḡ)T S−1

g (g − ḡ) . (5.3)

Representing the trimmed matrix as a sparse matrix, because most entries are zero, means
that we can calculate the Mahalanobis distance quickly — fewer additions and multiplications
are needed.

We only trim 2D profiles. Trimming 1D profiles results in a neglible overall speed increase.
The size difference between the original and trimmed covariance matrices is not big enough.

Some numbers for 1D profiles: a covariance matrix for a 13 pixel long 1D profile has 13 * 13
= 169 elements. If we clear elements for pixels that are more than 3 pixels apart, about (3
+ 1 + 3) * 13 = 91 = 54% of the original entries remain. And for 2D profiles: a covariance
matrix for a 13x13 2D profile has 169 * 169 = 28,561 elements. If we clear elements for pixels
that are more than 3 pixels apart, only 6% of the original entries remain. See the source file
tcovar.cpp for details.

The main reason we trim is for speed, but trimming also finds justification in the fact that it
does not make statistical sense to estimate over 28,000 covariance values from approximately
1000 images in the training set.

5.10.3 Forcing positive definiteness

But there is a problem. Trimming results in a matrix that may no longer be positive definite.
The Mahalanobis distance is only meaningful if the covariance matrix is positive definite.
Or, equivalently, the distance should never be negative, and zero only if there is a perfect
profile match. The usual meaning of distance breaks down if distances can be negative —
for example, the shortest distance between two points may not be a straight line. (See, for
example, Duda et al. [31] section 4.6 which discusses distance as a metric.)

The solution is to force the trimmed covariance matrix to be positive definite. One way of
doing that is:

1. Trim the covariance matrix A by clearing entries for pixels that are not near each other.

2. Perform a spectral decomposition A = QΛQT where Λ is a diagonal matrix of eigenval-
ues.

3. Set small or negative elements of Λ to a small positive value to create Λ
′
. The “small

positive value” used in this project is 10−3 × trace(A)/nrows(A).

4. Reconstruct A using Λ
′
: A = QΛ

′
QT .

5. Re-trim the new A by clearing entries for pixels that are not near each other.

A couple of iterations of the above algorithm does the trick: the final matrix A will be both
trimmed and positive definite.

More rigorous ways of forcing positive definiteness are discussed in Gentle [35].
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Figure 5.12: Profile width and covariance trim.
The parameters are for the second model of a stacked model.
Left AR fit
Right search time

5.10.4 Parameters: nProfWidth and nTrim

We need to determine two parameters for trimmed covariance matrices:

1. nProfWidth, the profile width in pixels.

2. nTrim. Entries for pixels that are more than nTrim pixels apart are cleared.

Actually, we have already determined the tentative best value of nProfWith=11 in sec-
tion 5.5.4. Now we redo the test using trimmed matrices, as shown in Figure 5.12. We
obtain good me17s and times with nProfWidth=13 and nTrim=3.



5.11 Using the Viola Jones face detector 73

0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

me17

pr
op

or
tio

n

Rowley, all AR faces
Viola Jones, all AR faces

Figure 5.13: Start shape from Rowley versus Viola Jones detector.

5.11 Using the Viola Jones face detector

Up to now we have been using the Rowley face detector to determine the global position of
the face, and hence to determine the start shape. In this section we replace it with the Viola
Jones detector (section 4.4).

The start shape is generated as follows from the Viola Jones face rectangle. The width of the
face rectangle is multiplied by a constant WidthCorrect. The rectangle is moved upwards by
a constant HeightCorrect times its height. The model mean shape is aligned to the modified
rectangle with a similarity transform, and becomes the start shape.

Table 5.25 on the next page shows a test done to estimate the values of WidthCorrect=1.16
and HeightCorrect=0.64.

Figure 5.13 above and Table 5.24 below show the fits after generating the start shape with
the Viola Jones detector. On the AR validation set the results are quite close to the Rowley
results, but not so on the XM2VTS training set.

AR XM2VTS

Rowley 0.0 0.0

Viola Jones 4.4 16.4

Table 5.24: Start shape from Rowley versus Viola Jones detector.
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Parameters are WidthCorrect, HeightCorrect

AR XM2VTS

Reference 0.0 0.0

1.08, 0.60 12.0 -1.6

1.12, 0.60 1.4 -8.3

1.16, 0.60 11.1 -10.3

1.20, 0.60 13.7 -10.0

1.24, 0.60 16.5 -7.1

1.28, 0.60 19.2 -7.4

1.08, 0.62 4.4 -4.9

1.12, 0.62 1.3 -7.6

1.16, 0.62 3.7 -10.1

1.20, 0.62 7.0 -12.2

1.24, 0.62 7.9 -8.6

1.28, 0.62 19.0 -10.5

1.08, 0.64 0.5 -7.8

1.12, 0.64 0.3 -9.2

1.16, 0.64 -1.3 -9.8 <chosen, lowest AR

1.20, 0.64 4.1 -10.4

1.24, 0.64 8.7 -9.2

1.28, 0.64 14.9 -9.9

1.08, 0.66 -0.4 -3.9

1.12, 0.66 -1.0 -5.2

1.16, 0.66 -1.1 -11.5

1.20, 0.66 0.3 -9.5

1.24, 0.66 2.6 -3.6

1.28, 0.66 5.6 -10.0

Table 5.25: Parameters for the Viola Jones face detector.



Chapter 6

Results

In this chapter we will evaluate the performance of the TrimmedModel, which is the best
model in this dissertation (section 5.10).

In a nutshell, the TrimmedModel stacks two models in a row, the second being an 84 point
model with some 2D profiles and trimmed covariance matrices. We will use the Rowley face
detector to determine the start shape, except where stated otherwise.

For the first time, we examine results on the BioId test set. As usual, the results are presented
in terms of the me17 measure (section 4.5).
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Figure 6.1: Optimized classical ASM (left) versus TrimmedModel (right).
The most visible improvement in the right image is in the position of the nose landmarks, but
other improvements can also be seen.
The landmarks in the right image are still not faultless. Look at the lines around the base of
the left side of the nose, for example.

6.1 Results on an example face

To start off, let’s look at the improved results on just a single BioId face.

Figure 6.1 shows search results using a classical ASM and then using the TrimmedModel. The
image is the same as Figure 1.2. The classical ASM used for this example is an optimized 68
point model with 1D profiles. The me17 has gone from 0.11 to 0.06, with visible improvements
in landmark positioning.
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Figure 6.2: Performance of various models.

6.2 Relative performance of various models

In the last chapter it was easy to get lost in the details of model building. This section gives
an overview by summarizing the performance of various models, as shown in Figure 6.2. This
figure was created in reverse, by starting with the TrimmedModel and removing features one
by one.

Each graph point represents the me17 averaged over all faces in the test set, for the given
model. The test set consisted of 200 images randomly chosen from the clean BioId faces.
Clean faces have no face attribute bits set (Table 4.2). A different BioId subset would give
different results but would not make large changes to the relative performance of the various
models.

The models shown in the graph are:

1. 20pointModel The classical ASM built with 1D profiles and 20 landmarks — train on
the XM2VTS set but use only those 20 XM2VTS landmarks in common with the BioId
landmarks.

2. 68pointModel As above, but use 68 XM2VTS landmarks (section 5.1). During search,
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fit all 68 landmark (but calculate the me17, as always, from only 17 of landmarks).

3. TwoDimProf As above but:

(a) Use 2D profiles for certain landmarks (section 5.5.1). The profiles are the sigmoid
of the normalized gradient magnitude, with a 13x13 square window (section 5.8).

(b) Generate the start shape using the position of the eyes located by the Rowley
global face detector, as well as the overall position of the face (section 5.2).

(c) When building the shape model, add noise to each landmark and also randomly
stretch and contract the right hand side of faces (section 5.4.4).

(d) Use a larger lambda and a larger number of eigenvectors in the final fit of the shape
model (section 5.5.8).

4. StackedModel As above but:

(a) Add 16 extra eye landmarks to a subset of the XM2VTS data (section 5.6). This is
done by manually adding 8 landmarks to the left eye and, by symmetry, generating
8 landmarks for the right eye. Build a two-dimensional ASM by training as before,
but on the extended XM2VTS data.

(b) During search, run two models in series as follows (i) run the classical 1D profile
ASM (ii) run the 2D ASM, using the results of the first search as the start shape
(section 5.7).

5. TrimmedModel As above, but ignore the covariance of pixels that are more than 3
pixels apart (section 5.10). This improves speed without unduly affecting the fit.
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Figure 6.3: 84 versus 68 point model.

Face me17 Jaw Nose Mouth Eyes

TrimmedModel 0.0 0.0 0.0 0.0 0.0 0.0

TrimmedModel-68 3.1 3.4 0.0 1.5 0.5 13.9

Table 6.1: 84 versus 68 point model.
TrimmedModel is our best 84 point model.
TrimmedModel-68 is identical to TrimmedModel, except that the model is built with the
original 68 point XM2VTS set.
The test set is all BioId faces found by the Rowley detector.

6.3 84 versus 68 point model

In section 5.6 we extended the XM2VTS training database by adding 16 landmarks. Now we
ask the question: what is the best ASM possible using the techniques in this thesis, but with
the original unmodified XM2VTS dataset?

Figure 6.3 and Table 6.1 show that training on the original set gives worse me17 results on
the BioId data, but the deterioration is small.

Note the poor results for the eyes. This is not surprising, because the additional landmarks
on the 84 point model were added around the eyes.
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Figure 6.4: Start shape from Rowley versus Viola Jones detector

6.4 Rowley versus Viola Jones

We generate the start shape for a search using a global face detector. How does the Rowley
stack up against the Viola Jones detector in this application?

Figure 6.4 appears to show that the Rowley detector gives better results. There is a misleading
subtlety though: the Rowley detector cannot find “hard” faces (Table 4.1), Thus the black
curve excludes hard faces, giving the Rowley detector an unfair advantage. Also, the Rowley
detector is much slower (Table 4.1). Thus, depending on the application, it may be preferable
to use the Viola Jones detector.

In detail, the curves in the graph are:

1. Rowley is the TrimmedModel with the Rowley detector, applied to the BioId faces
(1144 faces found by the detector).
From the figure, the me17s at the 50 and 90 percentiles are roughly 0.04 and 0.06.
Examples of faces with these values can be seen in Figure 4.3.

2. Viola Jones is the TrimmedModel with the Viola Jones detector, applied to the BioId
faces (1456 faces found by the detector).

3. Viola Jones no glasses is the TrimmedModel with the Viola Jones detector, applied
to BioId faces without glasses (1031 faces).

From the graph we can see that the worst case performance for Viola Jones all is poor.
The gray curve near the top of the graph flattens out at about the 96th percentile. It turns out
that the remaining 4% faces are all wearing glasses, and the Viola Jones detector overestimates
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Figure 6.5: Effect of a bad start shape from the face detector.
Left The yellow box is the face region detected by the Viola Jones face detector The red shape
is the start shape i.e. the model mean shape aligned to the Viola Jones box. Because the
detected face region is too big, the start shape is too big.
Right Bad ASM search results because of the bad start shape.

the size of these faces, as shown in Figure 6.5. A remedy is to exclude faces wearing glasses,
giving the blue curve.

It is interesting to compare Figure 6.4 to Figure 5.13 i.e. to compare tests on the BioId set
to tests on the AR set, both with the Viola Jones detector. The worst case performance on
the AR set is better, probably because the model parameters were optimized in Chapter 5
for the AR set.
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Figure 6.6: Comparison to published results, with the Viola Jones detector.

6.5 Comparison to published results

A fairly meaningful comparison can be made against the Constrained Local Model described in
Cristinacce [28]. The results in Cristinacce’s paper appear to be the best previously published
results on the BioId set, and are presented in terms of the me17, which makes a direct
comparison possible.

Briefly, the Constrained Local Model is similar to an Active Appearance Model [13], but in-
stead of modeling texture across the whole face it models a set of local feature templates. Dur-
ing search, the feature templates are matched to the image using an efficient shape constrained
search. The model is more accurate and more robust than the original Active Appearance
Model.

The comparison here is unfair to Cristinacce, because his aims were different from those of
this project. He was comparing the relative performance of novel algorithms, and to do so
kept the framework in which these algorithms operate constant. But in this project, we
optimize by changing the framework — by increasing the number of landmarks, for example.
Nevertheless some comparison is needed, and Figure 6.6 shows the results.

The Viola Jones detector was used to find the faces (and generate the start shape) for both
curves in the graph. TrimmedModel is the best model in this dissertation (section 5.10)
applied to the BioId data. CLM Fig 4(c) is Cristinacce’s Constrained Local Model applied
to the same data. This curve reproduces the CLM curve in [28] Figure 4(c).
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6.5.1 Search times

The TrimmedModel is just a little slower than the Constrained Local Model. The Trimmed-
Model mean search time is 440 ms. This time is for BioId images on a 1.5 GHz Pentium, and
excludes the global face search time (Figure 6.2).

The equivalent time for a Constrained Local Model search is roughly 410 ms. This time is
derived from section 4.4 in [28] as follows

240 * 2 - 70 = 410 ms.

The *2 scales a 3 to a 1.5 GHz processor. The -70 excludes the Viola Jones search time, but
this is to a certain extent a guess based on the last line of Table 4.1.
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6.6 Back in the real world

Testing against standard face databases is one thing, but how does the ASM do on “real”
images? Figures 6.7 and 6.8 overleaf show the results of an informal test.

These figures were created as follows. From my personal collection of snapshots, eighteen
images were selected of unobstructed more-or-less frontal views of upright faces with both
eyes open. It turns out that such images are rare — nearly all faces in the collection are tilted
or not facing the camera directly. An additional qualification was that the face and both
eyes could be found by the Rowley detector. The backgrounds and face sizes were diverse.
The TrimmedModel was then run on the images, and the images cropped to the faces for
presentation.

The TrimmedModel has trouble with faces not facing the camera directly (for example, the
jaw line in faces 13 and 14). It also has trouble with faces showing expression (for example, the
mouth landmarks in faces 9 and 12). Another common problem is that the TrimmedModel
confuses the chin for the shirt collar, especially if the start face is too big (Figure 6.5). A
little blurring seems just a minor hindrance (for example, faces 2, 3, and 4).

The last three faces are drawings and paintings. Surprisingly, the results are not too bad on
faces 17 and 18.

Although the TrimmedModel has had certain success, a human landmarker would do better
on most of these images.

6.7 Further tests

Lie Gu provides a web interface to the detector of Zhou et al. [70]. The web interface returns
a JPEG image with the feature shape superimposed on the face. It does not return printed
landmark coordinates, which makes it hard to compare results. Visually, on the eighteen faces
in figures 6.8 and 6.8, the detector seems to be sometimes better and sometimes worse than
the TrimmedModel.

It would be useful to test against more facial feature detectors. Unfortunately, there appear
to be no other publicly available detector software pre-configured for finding features in faces.
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Figure 6.7: Landmarks generated by the TrimmedModel.
The faces are from my personal collection, except for face 04 which is from the CMU frontal
test set [5].
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Figure 6.8: Landmarks generated by the TrimmedModel (continued).



Chapter 7

Conclusions

Everyone knows the game where you ask an infant to point out your nose or your eyes. In
this thesis a computer played the same game. This final chapter summarizes the methods
used and suggests future avenues of research.

7.1 Summary of contributions

This project extended the classical one-dimensional Active Shape Model of Cootes et al. in
various ways, cumulating in the “TrimmedModel” (section 5.10). The principal techniques,
in the approximate order they were introduced, were

1. extending the set of landmarks (section 5.1)

2. using modifications such as adding noise to the training set (sections 5.4.4, 5.4.8, 5.5.8,
and 5.16)

3. selectively using two instead of one-dimensional texture profiles at landmarks (sec-
tion 5.5)

4. stacking two ASMs in series (section 5.7)

5. trimming covariance matrices by setting most entries to zero, for speed (section 5.10).

The result is a facial feature locater that gives better results than the classical ASM (sec-
tion 6.2). On monochrome frontal upright faces with neutral expressions, it is competitive
with published methods (section 6.5).

The procedures used are fairly standard. Perhaps the main contribution of this thesis was
assembling them together in a sound fashion.

A few simple rules of thumb for improving ASMs emerged during this project. You get better
results with a better start shape, and you can do this by running two models in series. You can
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get better fits by adding more landmarks. You can discard most elements of the covariance
matrices for increased speed with almost no loss of quality.

7.2 Future research

There are many ways to modify any implementation of the ASM. Chapter 3 described various
techniques that have already been used by other researchers. In this section, we are more
interested in some immediate extensions to this dissertation’s TrimmedModel.

7.2.1 Quality of profile matches

An estimate of relative certainty in the landmark positions suggested by the profile model
would be useful. Looking at Figure 6.5, we see that most jaw landmarks are “sitting in space”,
and the profile matches at these points must surely be weak. The final fit would probably be
better if such landmarks were down-weighted when the shape model corrected the suggested
shape.

A pilot implementation weighted the landmarks by the inverse of the Mahalanobis distance of
the profile at the landmark. This did not give better results. A better method could probably
be devised without too much head scratching, using [17,22] as a starting point.

Another form of weighting could be used in conjunction with the above technique. This
would be to scale the weight at a landmark by the uncertainty of the profile model at that
landmark. Landmarks which tend to be on strong edges, such as the tip of the chin, inherently
are more trustworthy than, say, a profile along the edge of the nose, where the image texture
is relatively flat. Weights would be estimated from the variance of training profiles at each
landmark.

7.2.2 Estimating the quality of the final fit

An estimate of the quality of the final fit would be useful. (In this dissertation we measured
quality by comparing to manually landmarked faces, which would not normally be available.)
The estimate could be used to trigger a retry in situations were you could take another
photograph of the subject. Implementation would possibly follow naturally from the measures
of quality discussed in the previous section.

7.2.3 Different kinds of profiles

There are many ways of building a profile model characterizing the nature of the image around
a landmark. We evaluated several in section 5.8. In fact there are so many that choosing
which ones to investigate is not easy.
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Figure 7.1: A double sigmoid.

The sigmoids used in section 5.8.4 reduce the effect of outliers. A better curve for inputs
with both positive and negative values could be the double sigmoid shown in Figure 7.1. This
would reduce the effect of small values (i.e. noise) as well as outliers.

Modern supervised classification techniques are a direction that seems to have had limited
exploration by other researchers in this field. Examples are Hastie’s Flexible Discriminant
Analysis [39] and Friedman’s Multivariate Adaptive Regression Splines [33]. A convenient
listing of a number of these methods can be found in the “R Task Views” in [41,43].

An approach that may bear fruit would be to combine or select from multiple profiling tech-
niques at each landmark, using a decision tree or related method [7]. The thinking here is
that we expect chin landmarks to be quite different from nose landmarks, and want training
to automatically select the appropriate profiling techniques. So the training process would try
different profiling techniques at each landmark and build a decision tree (for each landmark)
that would be used to select or combine techniques during searching. This is another take on
the approach of van Ginneken et al. [36]. It is a refinement of the dual profile approach tried
in section 5.9, and Table 5.23 in that section gives a taste of what is possible.

7.2.4 Poor mouth location

The TrimmedModel often does a poor job of locating the subjects’ mouths. Figures 6.7 and
6.8 show examples. Part of the problem is that many of the subjects are smiling in those
figures, whereas the feature locater trained on the mostly neutral expressions in the XM2VTS
images. But part of the problem could be that the TrimmedModel uses 1D profiles on the
mouth, and 2D profiles for the other internal landmarks (section 5.5.7). Revisiting which
landmarks should have 2D profiles could possibly give better mouth positions.

7.2.5 Poor worse case performance with Viola Jones start shape

Using the Viola Jones instead of the Rowley face detector gives poor worst case results
(Figure 6.6). These could possibly be improved by revisiting how the start shape is generated
from the Viola Jones face location.
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7.2.6 Bits and pieces

We list below a few other possibilities for further work.

The model could be extended to include the whole head and not just the face. This could be
done by building a larger shape model, or by combining two models: one for the face and one
for the head. The outline of the head could perhaps be better modeled with a different kind
of model (not an ASM).

It is usual in ASMs to reduce non-lineararity by using tangent space projections [20]. Tan-
gent spaces were not used in this project, but may produce slightly better fits. However,
Stegmann [64] reports that tangent spaces had no practical effect for ASMs modeling human
hands.

In section 5.10.3 we forced positive definiteness with a crude algorithm that clips negative
eigenvalues. Some benefit may be obtained from alternate methods [35].

7.3 Conclusion

The Active Shape Model is one of the simplest methods for locating facial features. By focus-
ing on the specific application of locating features in monochrome frontal upright faces with
neutral expressions, this dissertation has shown that Active Shape Models can be competitive
with more sophisticated methods.

On arbitrary images, computers are not yet as accurate as human landmarkers. The methods
in this dissertation are one way of getting closer to that goal.



Appendix A

Face landmarks

Figure A.1: XM2VTS landmarks (0 based indexing).
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Figure A.2: AR landmarks.

Figure A.3: BioId landmarks.
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LANDMARK NAMES

LTemple 0 LMouthCorner 48

LJaw1 1 Mouth49 49

LJaw2 2 Mouth50 50

LJaw3_MouthLine 3 MouthTopOfTopLip 51

LJaw4 4 Mouth52 52

LJaw5 5 Mouth53 53

LJaw6 6 RMouthCorner 54

TipOfChin 7 Mouth55 55

RJaw6 8 Mouth56 56

RJaw5 9 MouthBotOfBotLip 57

RJaw4 10 Mouth58 58

RJaw3_MouthLine 11 Mouth59 59

RJaw2 12 Mouth60 60

RJaw1 13 MouthTopOfBotLip 61

RTemple 14 Mouth62 62

ROuterEyeBrow 15 Mouth63 63

ROuterTopEyeBrow 16 Mouth64 64

RInnerTopEyeBrow 17 Mouth65 65

RInnerEyeBrow 18 MouthBotOfTopLip 66

Landmark19 19 NoseTip 67 last XM2VTS point

Landmark20 20 LEye0 68 left eye points created for this project

LOuterEyeBrow 21 LEye1 69

LOuterTopEyeBrow 22 LEye2 70

LInnerTopEyeBrow 23 LEye3 71

LInnerEyeBrow 24 LEye4 72

Landmark25 25 LEye5 73

Landmark26 26 LEye6 74

LEyeOuter 27 LEye7 75

LEyeTop 28 REye0 76 synthesized right eye points

LEyeInner 29 REye1 77

LEyeBottom 30 REye2 78

LEye 31 REye3 79

REyeOuter 32 REye4 80

REyeTop 33 REye5 81

REyeInner 34 REye6 82

REyeBottom 35 REye7 83

REye 36

LNoseTop 37

LNoseMid 38

LNoseBot0 39

LNoseBot1 40

Nosebase 41

RNoseBot1 42

RNoseBot0 43

RNoseMid 44

RNoseTop 45

LNostril 46

RNostril 47

Table A.1: Landmark names used in this document.
This table uses 0 based indexing. “L” and “R” stand for left and right, and are with respect
to the viewer. The first 68 landmarks are the standard XM2VTS landmarks. See the source
file atland.hpp for details.
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