
Volumetric Medical Classification using Deep
Learning

A comparative study on classifying Alzheimer’s disease using

Convolutional Neural Networks

Presented by:
Richard Masson

Supervisors:
Frederick Nicolls & Jarryd Son

Dept. of Electrical and Electronics Engineering
University of Cape Town

Submitted to the Department of Electrical Engineering at the University of Cape Town
in fulfilment of the academic requirements for a Master of Science degree in Electrical

and Computer Engineering

July 2, 2023

Declaration

1. I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend

that it is one’s own.

2. I have used the IEEE convention for citation and referencing. Each contribution to,

and quotation in, this report from the work(s) of other people has been attributed,

and has been cited and referenced.

3. This report is my own work.

4. I have not allowed, and will not allow, anyone to copy my work with the intention

of passing it off as their own work or part thereof.

5. I know the meaning of plagiarism and declare that all the work in the document,

save for that which is properly acknowledged, is my own. This thesis/dissertation

has been submitted to the Turnitin module (or equivalent similarity and originality

checking software) and I confirm that my supervisor has seen my report and any

concerns revealed by such have been resolved with my supervisor.

Signature:. .

R.D.A Masson

Date:. .

July 2, 2023

Acknowledgments

This dissertation would not have been possible without the help of all those that have

supported me over its lifespan. Immense gratitude goes out to my supervisors, Fred

Nicolls and Jarryd Son. It was with their guidance and support that I was able to turn

an idea into a true academic work. I’ll always be grateful for our meetings where you

helped me to make sense of all the thoughts in my head.

I’d also like to thank the University of Cape Town for facilitating the dissertation, and

for providing me with the space and utilities to go about working on it. Special thanks

must be given to the UCT High Performance Computing Facility, without which I would

not have been able to run most of the resource-heavy computations.

Finally, I want to thank the loved ones, family, and friends who supported me every step

of the way. Whether it was reading through early drafts, or motivating me to keep going,

every contribution helped to make this work a reality.

i

Abstract

This work sets about designing and implementing a number of deep-learning models

capable of identifying Alzheimer’s disease from MRI brain scans. A common problem

with detecting the disease is the difficulty in doing so before outward mental symptoms

have begun to show. Therefore, the models attempt to classify both mild and severe

cases. The experimental process proves that a problem involving volumetric medical

images benefits from the usage of 3D model architecture over traditional 2D architecture.

In doing so, however, it is revealed that the 2D models do ultimately perform only slightly

below the 3D model. Thus, the 2D approaches hold merit for potential usage, should a

2D planar approach be desired. The paper presents a total of three models. The first

is a 3D CNN model, which performs the best in all regards, with a mean accuracy of

81.3%. It is treated as the optimal means of detecting Alzheimer’s. The second is a

2D CNN model which uses separate 2D convolution layers to independently train and

combine 2D slices across the depth axis. This approach produces a model that only

slightly under-performs compared to the 3D model (80% accuracy). The third and final

model is a novel design in which a set of models are each trained on a single unique 2D

slice of the volume, across a carefully chosen range of slices deemed to contain the most

favourable feature data. The model set is then used in unison to make predictions which

are then aggregated using a weighted ensemble-voter to produce a final prediction score.

This final design scored between the prior two models (80.6%), and establishes itself as a

promising model capable of operating on a fraction of the data. Analysis of the models’

activation gradients was conducted to confirm that 2D models are able to train well on

isolated 2D slices, but struggle to process the space between these slices. Additionally,

the work examines and rates the effectiveness of several optional variables in the overall

CNN model design, specifically in the context of training on brain scans. A variety of

pixel rescaling functions were found to have a noticeable positive impact on overall model

performance. Regularization, as well as augmentation in the form of rotation / elastic

deformation, also yielded similar improvements on such models, and are thus universally

recommended as considerations for any works attempting to solve a similar classification

problem. With all this in mind, a final conclusion is made that machine learning and

deep learning are promising tools in the medical field for assessing and diagnosing using

raw brain scans.

For additional reference, the code repository for generating and processing the models

is available for viewing. An alternate branch, containing the code used to produce the

gradient activation maps, has also been included.

ii

https://github.com/RichardMasson/Thesis
https://github.com/RichardMasson/Thesis_GradCam

Contents

1 Introduction 1

1.1 Background to the study . 1

1.2 Objectives of this study . 3

1.3 Problems to be investigated . 4

2 Literature Review 5

2.1 Model Design . 5

2.2 Pre-processing . 7

2.3 Dataset . 8

3 Design 9

3.1 Overview . 9

3.2 Data Pipeline . 10

3.2.1 Data Collection . 10

3.2.2 Data Partitioning . 12

3.2.3 Image Pre-processing . 13

3.3 Model Design . 15

3.3.1 3D Subject-level Model . 15

3.3.2 2D Subject-level Model . 17

iii

3.3.3 2D Slice-level Model . 18

3.4 Additional Specifications . 22

3.4.1 Hyperparameters . 22

3.4.2 Activation Gradient Visualizaton 24

4 Implementation 25

4.1 Pre-processing . 25

4.1.1 Data Preparation . 25

4.1.2 Data Formatting . 26

4.2 Model Training . 27

4.2.1 Data Partitioning . 28

4.2.2 Model Implementation . 28

4.3 Evaluation Step . 29

4.3.1 Recording Results . 29

4.3.2 Activation Gradient Visualisation 31

5 Results 32

5.1 Model Assessment . 32

5.1.1 3D CNN Classification . 32

5.1.2 2D Subject-level CNN Classification 36

5.1.3 2D Slice-level CNN Classification 39

iv

5.1.4 Training Time Cost . 42

5.2 Training Parameters . 44

5.2.1 Pre-processing Steps . 45

5.2.2 Over-fitting Correction . 46

5.3 Model Activations . 47

6 Discussion 54

6.1 3D versus 2D Classification . 54

6.2 Classifying MRI Brain Scans . 56

6.3 Machine Learning and Medical Prediction 58

7 Conclusions 60

7.1 Conclusions For the Experiment . 60

7.2 Conclusions in General . 61

7.3 Shortcomings . 62

7.4 Future Improvements . 63

v

Chapter 1: Introduction

This chapter provides a more detailed introduction to the study. It gives the background

and origin of the research question, the core objectives of the work, and the tasks

conducted to complete these objectives.

1.1 Background to the study

The rising prevalence and use of machine learning in the modern world has led to its usage

in various professional fields. In medicine specifically, machine learning architectures such

as deep learning have opened up opportunities to automate the classification of medical

imagery. In radiology, radiologists are expected to manually sift through every scanned

image in order to make a particular diagnosis. However, this usually requires them to

know what they’re looking for, and is a costly endeavour. Deep learning models, if

properly configured, could be used to automatically detect target symptoms within a

digital image, while requiring only minimal feature pre-processing. The question then

becomes: in a field where image format, lighting and target diagnosis vary from scan

to scan, what is the best design to use for your learning model? Specifically, this work

asks this question in the context of classification problems, and investigates a model best

suited to assess a raw input image and determine which class of diagnosis the patient

would fall under.

The problem presents two paths for accepting input images: 3D volumetric imaging (such

as an MRI scan of a brain) versus 2D flat images (such as X-rays). Traditionally, machine

learning application was done using 2D data-transformation techniques, regardless of the

original shape of the input image. Examples of these older algorithms are the support

vector machine and linear regression model. However, newer neural network-based designs

have made it significantly easier to train on 3D inputs, thanks to processing options such

as 3D convolution layers. Therefore, the question arises of whether 3D volumetric medical

images should now exclusively be handled using contemporary 3D architecture, or if there

is still value to be found in 2D-based models augmented to process 3D images. In this

context, “3D architecture” refers to models designed to accept 3D inputs, and which

use processing steps that take advantage of the interconnectivity between all three axes.

An example would be a 3-dimensional convolution kernel. “2D architecture” refers to

1

1.1. BACKGROUND TO THE STUDY

approaches that instead attempt to transform the input data into a 2D representation

so that 2-dimensional algorithms can be applied — noting that a portion of the cross-

dimensional feature data is ignored in this process. However, if this cross-dimensional data

could be proven to be mostly redundant to the learning process, its removal would have

the benefit of significantly reducing the computation complexity of the image processing.

One problem that can benefit greatly from such an investigation is that of identifying

dementia — specifically Alzheimer’s disease — in brain scans. Alzheimer’s disease is

a severe form of dementia and is a degenerative condition that impairs an individual’s

cognitive capacities and eventually leads to death. It has been cited to be afflicting over

44 million individuals globally, and in the US is listed as the sixth-leading cause of death

above a certain age. Alzheimer’s primarily only afflicts individuals above the age of 65,

and presents noticeable behavioural symptoms in the form of memory loss and decreased

mental acuity. However, the issue lies in the fact that once these behaviours begin to

show, the disease is often already in its late stages. As there is no definitive “cure”

for Alzheimer’s, it is an affliction where detecting it in its earliest stages is absolutely

critical. If caught early, patients could be given time to take preventative measures.

While the results still require further research, papers such as the one by Silva et al.[20]

have demonstrated that basic lifestyle adjustments, such as changes in exercise, diet, or

mental stimulation, can mitigate or slow the rate of Alzheimer’s development in some

individuals. Beyond this, there is value in simply giving patients time to emotionally

prepare for the possibility of the disease worsening. For this reason, alongside its high

affliction rate, it is a medical issue that stands to benefit a great deal from machine

learning. While the diagnosis can be made via manual assessments from an expert,

an automated model would allow for such assessments to be conducted far more often.

Automated tests could be done regularly after a certain age, and possibly even in the

background when brain scans are taken for completely unrelated reasons, in an attempt

to detect the disease sooner.

Brain scans are imaged in 3D in order to capture the full volume of the brain. This

serves as a perfect problem space to compare 3D and 2D model performance, where the

specific goal in mind for the models is identifying and classifying whether a given scan

comes from a patient with Alzheimer’s. Silva et al.’s work mentions how Alzheimer’s is

understood to be closely linked with the development of a protein plaque in the patient’s

brain — with this in mind, this study holds the belief that the presence of this plaque

means that trainable feature data can be found within the tissue of these brain scans.

2

1.2. OBJECTIVES OF THIS STUDY

1.2 Objectives of this study

The main objective of the study deals with a comparative evaluation of 2D versus 3D

based training models, in the context of identifying and classifying Alzheimer’s in brain

scans. Observations are made on whether the models are able to accurately predict

negative cases (cognitively normal patients), versus positive (some stage of Alzheimer’s).

The primary metric for testing is the accuracy of the model, evaluated on a held-

out set of unseen data, alongside the loss score, which serves to further inform the

assessment. Doing so shall prove the superiority of 3D model architecture when working

with volumetric data. It will also highlight methods that achieve comparable results with

2D architecture. It is important to note is that producing a near-perfect model is not the

main objective of this study. Rather, the model’s effectiveness serves to act as a proof of

concept, as well as aid in making comparisons between multiple factors that may improve

or hinder performance.

The work will also highlight and test several other variables involved in designing such

a classification model, such as pre-processing options, augmentation and regularization.

These variables, while not specific to a 3D versus 2D discussion, are still important

pieces to consider when developing a solution to the Alzheimer’s detection problem.

The discussion surrounding them, specifically in the context of dealing with brain scans

as input data, also offers interesting discoveries. The four main findings that will be

presented are:

1. The importance of selecting the right function for intensity scaling and normalization

of the image pixel values.

2. The benefits of applying two types of augmentation to the data: rotation and elastic

deformation.

3. A discouragement in the usage of skull stripping, due to its negative impact on

model performance as well as to its heavy implementation cost.

4. The positive effect that regularization has on the models in this work.

Finally, all prior findings are considered to make a summary evaluation of machine

learning’s role in the medical domain, in terms of offering automated classification models.

This evaluation is made partly in the context of the Alzheimer’s problem, and partly in a

generalised sense, and will assert that these models are more than capable of producing

results and accuracies that warrant practical usage. However, the discussion will also

3

1.3. PROBLEMS TO BE INVESTIGATED

admit that there is some margin for error, and therefore practical application would need

to be done in conjunction with medical experts in order to produce the most reliable

solution.

1.3 Problems to be investigated

This section provides a quick overview of the core topics to be addressed via the chosen

experimental procedure:

• Comparing the performance of 3D-based models to similar 2D ones. The 3D

Convolutional Neural Network (CNN) architecture is found to perform the best,

though two approaches to a 2D model are presented, with performances only

marginally below that of the 3D model.

• Observing the layer gradient activations of the various models, and observing the

changes in the values based on the model, as well as the class of image predicted on.

From this, it would be discovered that the 2D models do face difficulty in processing

the space between axial slices. The visual differences between Alzheimer’s-positive

and negative cases are found to be too subtle for the untrained eye to differentiate.

• Exploring the pre-processing steps, and assessing their impact on model performance.

In some cases, comparisons are tested for several preprocessing variants. This

applies to the rescaling and normalization, skull stripping, and augmentation of

the input data.

• Exploring the performance of all of the above when dealing with greatly limited

data. Medical imagery data is often extremely limited, and as a result processing/

training designs that mitigate this are explored. This includes regularization steps

taken to reduce over-fitting, and utilisation of a second dataset for full-scale testing

on unseen data.

4

Chapter 2: Literature Review

This chapter highlights the literature reviewed during the development of the core design

of this work. This is broadly split into three topics. The first is the design of the model

– both the type used, and as its overall architecture. The second is the impact that

certain pre-processing of the input data has on model performance. The final topic is the

datasets available, and which set is best suited to this work.

2.1 Model Design

To begin with, the paper by Bratic et al. [2] was assessed. This paper presents summaries

of several other academic works, all attempting to develop a training model for cognitive

brain conditions. This acts as an overview of the possible approaches one could take for

this problem. As the papers are all listed alongside the performance of their models,

this made for an efficient way of determining which approaches yield the best results.

There are four individual papers present in the summaries that cite accuracies at 90%

or higher. The top listed paper by Patil [14] claims to have over 95% accuracy using an

Artificial Neural Network, but the paper does not detail its implementation steps, nor its

experimental process. This unfortunately makes it difficult to draw useful information

from. The second paper, by Payan [15], offers a robust 3D-CNN showcase, with favourable

results (87+% across three different classification problems) — this paper will be discussed

in detail below. The other two papers, by Liu [12] and Lopez [13], offer novel designs

worth mentioning: Liu’s approach achieves 89% accuracy using 2D slices as inputs to the

learning model, with the aid of ensemble-voting. The Lopez paper reports a much higher

accuracy than any other SVM-based approach (90%), and shows that such an approach

can produce favourable results in the right conditions. However, the model uses the

SPECT dataset, which deviates from most other literature on this topic, and is not dealt

with in this work. Because of this, Lopez’s strategy was not pursued further. Reviewing

these works, as well as the other models listed, the first conclusion made was that

approaches utilising older learning techniques, such as Bayesian Gaussian models, logistic

regression, or support vector machines, seem to generally perform worse than many

examples utilising artificial neural network and CNN-based approaches. Several other

papers utilising such models were found to also produce favourable results [11][22][23][24].

The second observation was that the two most commonly used datasets were the Alzheimer’s

5

2.1. MODEL DESIGN

Disease Neuroimaging Initiative (ADNI) set, and the Open Access Series of Imaging

Studies (OASIS) set. This observation became more relevant later when selecting a

dataset.

The Payan paper [15], mentioned previously, offers valuable information regarding the

implementation of a CNN model, specifically for the ADNI dataset. It also discusses the

advantages and disadvantages of using a 3D convolution model versus a 2D one, which is

especially relevant to this dissertation. The paper sets up the experiment by constructing

two different models, one taking in 3D patches of the brain scans as input data and using

3D convolutional layers, and the other taking an assortment of random 2D scan patches.

The layer dimensions are also fine-tuned to ensure an equal number of output nodes for

each case. The results of this experiment find the 3D input/layer approach to be superior

(89% accuracy in a 3-class problem versus 85% for the 2D approach). This paper also

presents a novel approach of evaluating using three different class setups: CN (cognitive

normal) versus AD (Alzheimer’s disease), CN versus MCI (mild cognitive impairment),

and all 3 classes. This approach immediately stands out as more informative, as it

demonstrates the potential unequal difficulty the model can experience in identifying

some classes versus others. Payan reports the classification of CN versus AD to have

an accuracy almost 10% higher than CN versus MCI, which makes sense under the

assumption that more severely diagnosed dementia would display more visible patterns

of disease than milder cases. Finally, this paper employs a sparse auto-encoder model

for feature extraction. However, this strategy does not come up in any other examined

literature, and the paper does not offer evidence or discussion on the benefit that the

autoencoder has on overall performance.

A paper that makes similar conclusions on a 3D CNN implementation, while also going

into significantly more detail on the different possible design options, was published by

Wen et al. [23]. Experiments conducted in the paper show several different approaches

to training an Alzheimer’s classification model, for both the ADNI and OASIS sets. Four

models are assessed: a 3D subject-level model (using the entire volumetric image at once

as input), a 3D ROI-based model (where a patch containing only the hippocampus area

of the brain was used), a 3D patch-level model (using many random 3D patches of the

model), and a 2D slice-based model (which attempts to utilise 2D model architectures).

All three 3D approaches outperform the 2D one, with similarly equal scores all in the

80 percentiles, versus the 2D model in the 70s. This falls in line with Payan’s findings

on the effectiveness of 3D model designs. The paper details the architectures of each

model in a replicable manner. Furthermore, a novel implementation of ensemble-voting

is covered in conjunction with the 3D patch-level and 2D slice-level models. Effectively,

a hard-voting classifier is used to aggregate the predictions of multiple trained models

6

2.2. PRE-PROCESSING

(where each model is trained on a different patch/slice for a given input scan). The voting

algorithm uses the validation accuracy scores as weights in order to place priority on the

models trained on the most valuable data. The results of this paper also show that the

ADNI dataset yields better results than OASIS, which lines up with findings in other

papers [24].

The papers covered so far have either based their CNN architectures on well-known

models such as VGG-net [24], or used a large number of stacked convolution and pooling

layers [23]. In contrast, the experiments conducted by Khagi et al. [11] attempt to

assess the impact that the complexity of a model can have on performance. The paper

attempts to classify Alzheimer’s within brain scans using 3D CNNs with an increasing

number of convolution layers — from 2 layers up to 6. While more complex models show

a higher training accuracy (admittedly only from 99% to 100%), the testing accuracy

instead peaks at 4 convolution layers (approximately 96% compared to 92% at 6 layers).

The paper further discusses how over-fitting is a major problem faced in a deep learning

task like this. It stipulates that one must consider the complexity of the model —

that over-complicating the model can increase the tendency towards over-fitting. This

is exacerbated in a medical classification problem where there is minimal data available

and models are already prone to over-fitting.

2.2 Pre-processing

For pre-processing of the image data, there appear to be a few steps commonly taken

by a majority of research papers. In the case of papers using CNN models, the overall

processing of the images is still minimal, as deep learning models typically do not require

extensive pre-processing, but there are still a few considerations. Several papers crop

down the image data, as there is empty space present around the actual brain in most

MRI scans. In the previously-mentioned Wen [23] paper, the ADNI images are uniformly

cropped to a dimension of 169×208×179, whereas the Yagis paper [24] lists a dimension

of 182×218×182 as viable. Skull stripping — the process of mapping the areas of an

MRI scan containing only brain-matter in order to produce a mask free of skull data —

is also worth considering. It is employed by several papers [19][23][24] as a pre-processing

step. However, the Wen paper performs a comparative evaluation on the impact of skull

stripping on the training performance and finds it to have only negligible benefit (1%

accuracy increase). While sometimes a non-zero performance increase can be worth it,

one must consider the cost involved in implementing a skull stripping algorithm.

7

2.3. DATASET

The Wen paper also includes several other pre-processing experiments. Alongside skull

stripping, bias-field correction and non-linear registration are deemed to have negligible

effects on model performance. On the other hand, intensity rescaling (rescaling all voxel

values to lie between 0 and 1 based on minimum and maximum values) is described

as having a massive effect on performance. Without the rescaling function, the results

show none of the models able to train beyond a 50% accuracy. When included, the

accuracy is shown to increase by 30%. The prevalence of intensity rescaling in most

of the other papers explored further validated these results. For this reason, special

attention must be given to the intensity rescaling step of pre-processing when dealing

with such a classification problem.

The type of volumetric image used as training data also varies between works, and is

relevant to the discussion. While both the ADNI and OASIS datasets offer a wide variety

of image types, the most commonly chosen type to use for demenetia classification are

T1-weighted MRI scans [14][19][23][24]. Even outside the context of brain scans it seems

that this type of scan is preferred for volumetric classification, as shown in one paper on

pelvic tomography classification [7]. In the Khagi paper [11], an experiment is conducted

comparing the performance of models trained on MRI data versus PET scan data. The

MRI-trained model is shown to yield accuracies 30% higher than that of a PET-trained

model.

2.3 Dataset

From the papers observed by this point, it was clear that the two most commonly accepted

datasets were found to be the ADNI set, and the OASIS set. The ADNI set sees the most

usage [11][12][15], though some papers do still use the OASIS set [14], or a combination

of both [23]. Both datasets are viable options in that they are freely available and well-

organised collections of labelled MRI data. Though, across the observed papers, those

using ADNI were found to perform better. This is backed up in detail within the Wen

paper, as well as in the paper by Bansal et al. [1]. The Bansal paper comes to this

conclusion after assessing several papers using either the ADNI or OASIS sets.

8

Chapter 3: Design

This chapter covers the core design decisions relating to the model development for

this dissertation. First, it presents a general overview of the Alzheimer’s classification

problem, and what requirements a model would need to meet in order to properly solve it.

Then, the data-processing pipeline is presented, which covers the steps taken to collect

and prepare the data for training and testing. This will showcase the dataset used,

how the data is extracted and assigned class labels, as well as the preprocessing steps

taken in order to prepare the images for fitting on a model. Following this, the chapter

details the design for each of the models created. This covers three model designs: a

3D CNN model, a 2D CNN model trained on a 3D volume, and a design utilising a

collection of 2D CNN models trained on individual 2D input slices. Finally, some choices

made relating to specific hyperparameters common between all models are outlined, as

well as a gradient-activation visualisation experiment. The gradient experiment was

used in order to visualise the trained patterns in the models. This chapter presents the

design information in a generalised form, such that it could be replicated in any given

programming language. The subsequent chapter on implementation will cover the exact

means by which certain subsystems were programmed in this work specifically.

3.1 Overview

This work attempts to find means of correctly identifying the presence of Alzheimer’s

disease within a brain scan. A primary consideration in dementia detection is detecting it

before a patient becomes symptomatic, and as such only labelled image data was utilised

for training purposes. As dementia can be detected using purely visual patterns within a

scan, this paper utilises a pure machine-learning approach in an attempt to train a model

that can determine these patterns without additional instruction. Specifically, the model

would adopt a deep-learning CNN architecture. Deep-learning models typically require

less feature data when training, making them the best fit based on the decision to work

with only raw labelled image inputs. This dissertation does not deal with the actual logic

and reasoning behind the visual features, as this is better left to literature in the medical

field.

Research has shown that Alzheimer’s is traditionally classified as one of three states:

9

3.2. DATA PIPELINE

cognitively normal (negative case), mild impairment (positive case — early stage of the

disease where cognitive performance is impaired, but symptoms may still go unnoticed),

and Alzheimer’s disease (positive case — late stage diagnosis). Because of this, the

problem can be tackled as a classification problem, in which the model will need to

properly predict which class a given brain scan falls under. This will be assessed in 2

forms, cognitive normal versus mild impairment, and cognitive normal versus Alzheimer’s

disease. Cases involving mild impairment versus Alzheimer’s disease were not considered

as the delineation between two stages of a positive case was deemed not of critical value.

Cognitive normal versus Alzheimer’s was expected to yield the best results as the two

classes have the largest difference, and this was proven to be correct. Attention was still

given to cognitive normal versus mild impairment, as it represents the most common

practical application of detecting the disease early on while cognitive symptoms are still

minor.

3.2 Data Pipeline

The first step involves collecting and preparing the data so that it is ready to be fit into the

desired model for training. An outline is provided on the pipeline that the data takes from

its initial collection until that point of fitting. This provides a replicable process, should

one decide to attempt to expand upon this work, and also highlights the areas of variable

design. Variable design refers to sections of the pipeline that have no predetermined

optimal setup, and warrant experimentation in order to report their impact on model

performance. This pipeline remains the same for both 3D and 2D architectures, as the

2D models possess the transformation functions necessary to accept the 3D data. These

functions will be detailed in a later section.

To make the pipeline easier to follow, it has been split into three subsystems: data

collection, data partitioning, and image processing.

3.2.1 Data Collection

The literature review showed the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

dataset to yield the best training results, and thus it serves as the central dataset for this

work. The dataset has been verified by previous works, and thus it can be safely assumed

that all samples are accurately labelled.

10

3.2. DATA PIPELINE

MRI data was chosen as the universal input data-type. While MRI is not the only type of

3D brain imaging available, it yields the most favourable results in similar literature. The

literature showed the highest degree of reliability and favour when using T1-weighted, 3D

Sagittal scans. Therefore, this was the type of image extracted from the chosen datasets

for this work. An example of this type of scan, from the ADNI set, is presented in fig.

3.1. Some experiments were also conducted in order to confirm the discouragement of

using skull stripping that can be found in other works [23]. For these experiments, skull

stripping was performed on the dataset using available modules, and the resultant images

were saved as a separate set for future testing.

(a) Sagittal plane (b) Coronal plane

(c) Axial plane

Figure 3.1: Multi-plot showing the three plane views of a sample bearing the
“Alzheimer’s” classification

Finally, every image intended for use needs a label. As mentioned earlier, Alzheimer’s

class labelling is typically comprised of Cognitive Normal (henceforth CN), Mild Cognitive

Impairment (MCI), and Alzheimer’s Disease (AD). In the medical field these are assigned

values of 0, 0.5 and 1 respectively, however for application in training this can be simplified

to assign labels of 0 and 1. The 0 label is used exclusively to refer to the CN class, and

11

3.2. DATA PIPELINE

1 is used for any positive-case class — MCI or AD. All images within the dataset are

pre-labelled, so the algorithm need only assign the correct label value pairing to each

input image.

Table 3.1 shows the summarised count of each class of image in the ADNI dataset.

Table 3.1: Class count for the ADNI dataset.

Class Count
CN 541
MCI 513
AD 154

3.2.2 Data Partitioning

At runtime, data needs to be stored in data structures such as arrays in order to facilitate

the partitioning of the data between training, validation and testing. Labels are stored

as simple integers, but the images take up significantly more memory. While the total

image count is comparatively low compared to other machine-learning problems, the

detailed 3D scans take up a massive amount of memory. During early implementation, it

was impossible to load all the images into memory simultaneously without encountering

out-of-memory issues. As a result of this, the storage design was significantly altered.

Firstly, text files were generated before runtime, containing the file locations of all the

relevant images for any given experiment, alongside the label for that sample. During

runtime, the file containing these location strings could simply be loaded in to act as

proxies for the actual images. It would not be necessary to extract the actual image out

of the sample until training time.

Once the location strings and labels are properly stored within lists, acting as our x and

y variable sets, they could be split into training, validation and testing sets. Table 3.2

outlines the partition ratios chosen for this work. The majority of the data was assigned

to training, as is common procedure in machine learning. The validation and test sets

were not made too small, as the total images available were limited, and it was important

that each subset possessed enough data for proper variety in the evaluation.

12

3.2. DATA PIPELINE

Table 3.2: Dataset split ratios using the ADNI set.

Partition Split
Training 0.75
Validation 0.15
Testing 0.1

3.2.3 Image Pre-processing

Once the training, validation and testing sets are prepared, each subset is assigned to

its own data loader. Each data loader pairs the image directory data with its label, and

applies the relevant processing. This processing includes batching and shuffling, as well

as mapping a function to the data to extract and process the image only when the data

is indexed for the fitting function. By mapping the processing to the directory data, it

ensures that each image is only loaded into memory when called during training, and is

unloaded from memory directly after. Images loaded are also resized to a uniform shape,

and have their pixel values rescaled to normalise the range distribution. Additionally,

augmentation is applied to the training data. Augmentation not only simulates additional

“new” images in an otherwise limited dataset, but also ensures that the trained model

learns to adapt to scans with minor variations. The augmentation techniques chosen were

rotation and elastic deformation, and the exact parameter values are shown later in the

work. Once more, this processing is largely the same for both 3D and 2D models in the

paper. These steps ensure that the full volume is available to the model, and it is up to

the 2D model to further process the data depending on the design.

The mapped function itself was designed to do the following to each paired data-label

element:

1. Use the location string as an input parameter to load in the relevant image data.

2. Convert the image data into an array of 32-bit float pixel values. This is down-scaled

from the default 64-bit values in order to reduce data storage requirement,

3. Rescale and resize the image to the desired specifications.

4. Apply any chosen augmentation functions to the training data.

5. Return the augmented pixel array alongside the label, which is also converted to a

32-bit float.

The augmentation used the following procedure:

13

3.2. DATA PIPELINE

1. Rotation, up to 3 degrees in either direction, with each rotation using randomised

magnitude and angle. The 3D model and the 2D subject-level model apply this

across all three planes, whereas the 2D-slice model applies it over only two planes.

During training this is applied with a 60% frequency rate.

2. Elastic deformation, with a randomised affine alpha range between 0 and 0.5. Each

model has this transformation configured according to its relevant number of planes.

During training this augmentation is applied with a 30% frequency rate.

For all sets, the loader shuffles the data and applies batching as well as pre-batching. Only

the training data has augmentation applied to it, as standard practice involves leaving

validation and testing data in its original state.

With respect to the image resizing, the decided-upon uniform shape for all images was

169×208×179. This is based on the Wen paper [23]. This was verified to successfully

trim unnecessary space while preserving all true brain matter. A full visual summary

of this pipeline, with respect to training data, is shown in fig. 3.2. For validation and

testing images, the same pipeline occurs except for the augmentation step.

Figure 3.2: Visual representation of the pipeline that a single image will take during
model training.

14

3.3. MODEL DESIGN

3.3 Model Design

The discussion in this paper predominantly focuses on the development and experimental

procedure surrounding a 3D convolutional classifier model. However, the comparison

between it and possible 2D CNN implementations — ones that still use volumetric images

as an input — is another focal point to the discussion. In the end, two 2D models were

developed alongside the 3D model, to show different approaches that can be taken in order

to try to solve the existing problem, as well as the pros and cons each offer alongside the

original 3D approach. Therefore, this design section can be broken into three subsections:

the core 3D CNN model, a 2D CNN model that attempts to put the full subject-level

3D image through a 2D architecture design, and a 2D CNN model that instead performs

training on multiple 2D “slices” extracted from the original image. The 3D model’s

outline will contain most of the content that applies to all three of the models, whereas

the 2D model design outlines will only cover their unique design differences.

3.3.1 3D Subject-level Model

The first design is a 3D CNN learning model, which aims to use a combination of layers,

particularly convolution layers, in an attempt to create a network that best facilitates

the learning of features. The features in this case are visual patterns within a brain scan

that the model can leverage to correctly classify the dementia rating of a given subject.

As a classifier, when the model trains it takes an image and an associated label as input,

and produces an output value that represents the model’s estimate of what label class the

image would belong to. It then uses the known true value in a loss function to iteratively

optimise a set of weights on each layer. This weight optimization is the basis of the

supervised learning process.

The 3D model, as well as the other models, was designed with a sequential structure

in mind, and thus comprises several sequential layers that activate in order. A visual

summary of this design is shown in fig. 3.3. However, the architecture is best described

by the following enumeration, which outlines these sequential layers in detail:

1. The input layer accepts an x-y pair of a 3D image and its associated label. The

3D image is treated as having a channel capacity of 1, as it is a grey scale image.

Including the batch dimension, this makes the input image 5-dimensional. The

labels are converted into binary matrices, which are better suited to multi-class

15

3.3. MODEL DESIGN

problems.

2. The input is fed through four convolution blocks. A convolution block comprises

the following components:

(a) 3D Convolution layer: This forms the core of the network, and is set to use a

5 × 5 × 5 convolution kernel, as this has been shown to produce good results

in similar networks. Padding is not utilised, as we are fine with the down-

sampling this causes. The kernel is given a number of output nodes, which are

set to increasing multiples of 8 per convolution block, as is common practice.

Finally, the layer is given a ReLU activation function, as ReLU is the most

commonly used activation function and has been shown to yield consistently

beneficial results.

(b) L2-type regularizer: Only used for the final two convolution blocks. This is

applied to the weights of the prior convolution kernel, with lambda set to 0.01.

This adds additional regularization to the model to combat over-fitting. L2-

type regularization is preferred as it is better than L1-type at learning complex

data patterns.

(c) 3D max pooling layer: Pooling layers are implemented in order to further

down-sample the data and reduce the number of trainable parameters in the

model. Max pooling is specifically used here as it is best suited for images

with dark backgrounds, such as medical scans.

3. The data is then flattened into the single dimension required for the subsequent

layers.

4. The flattened data then passes through an intermediate dense layer using ReLU

activation. The dense layers further process the output of the convolution kernels

into the desired class predictions. The layer is given 128 output nodes.

5. Finally, the data arrives at the output layer. The output layer is another dense

layer with a softmax activation function and output nodes equal to the number

of classes present, which is extracted from the label set. Softmax is used in order

to produce separate scores for each class. While the experiments conducted dealt

only with two-class predictions, the design was built to accommodate multi-class

predictions, such as for a hypothetical CN versus MCI versus AD case.

This design takes inspiration from Wen et al. [23], except it uses a somewhat simplified

approach in which only four convolution blocks are implemented. While Wen at al.’s

model yields very high accuracies (>85%), early tests utilising an exact replica of that

16

3.3. MODEL DESIGN

Figure 3.3: Chosen 3D model architecture design. Under each layer, the various
parameters as well as output nodes are specified.

design evaluated significantly worse (55% accuracy). This implies that unless very carefully

tuned, the complexity of the design can actually hinder the model’s performance. In

Khagi and Kwon [11], it is noted that a model with high complexity but low data size

can produce poorer results unless fine-tuned with extreme precision. Ultimately, the

design presented above was found to produce far better results using the chosen ADNI

dataset, and thus it was used instead.

3.3.2 2D Subject-level Model

In this work, the first 2D model is referred to as a subject-level design, the reasoning

being that the full 3D subject image is still loaded in as an input. However, the model

utilises 2D convolution layers. The architecture of this model, which is summarised in

fig. 3.4, is the same as the prior 3D model, except for the following changes:

17

3.3. MODEL DESIGN

1. 2D Separable convolution layer: Normally, this would not be possible as the 3D

input image would have too many dimensions. However the design circumvents this

by treating the third dimension as the channel layer. Whereas the previous model

would take an input of shape 169×208×179×1, where the last dimension represents

a grey-scale channel layer, this model treats the input as a 169×208 2D image with

179 channel layers. By doing so, one can ensure that the convolutions are conducted

in complete isolation from each other, thus effectively differentiating the working

of this design from the 3D model. A visual depiction of how these convolutions

occur separately is covered in fig. 3.5. The figure shows how treating the volume

as a multi-channel 2D plane still results in the full image being processed by the

model. Furthermore, separable convolution is used. This is a specific convolution

intended for separate depth-wise convolutions that can then be combined at the

end. To achieve this, a 1 times convolution is set as the final combining kernel. A 1

times convolution has the effect of purely combining the individual 2D convolutions

without performing any further calculation.

2. 2D Max pooling layer: A 2D pooling layer is necessary as the input images are now

treated as 2D slices. This results in the down-sampling only occurring across two

dimensions instead of three.

3. 4-dimensional input shape: As the depth is treated as the channel dimension, there

is no need for a fifth channel of size 1.

3.3.3 2D Slice-level Model

Unlike the previous design, this approach attempts to solve the dimensionality problem

by developing a model that captures the 3D volume by training an individual model for

each axial slice of the image. In this work, axial is seen as the top-down axis of a brain

scan, viewing the brain from above. The process is as follows:

1. A number of models are instantiated. Each model is identical to that of the prior

2D model, except that the channels are set to 1 and the 2D convolution layer is not

separable. The full design per model is shown in fig. 3.6. The number of models

instantiated is discussed below.

2. Each model is assigned a specific slice number.

3. During training, each 3D input image is split depth-wise into a user-specified

number (discussed later) of 169 × 208 2D slices. For the given set of models, each

18

3.3. MODEL DESIGN

Figure 3.4: Chosen 2D subject-level model architecture design. Convolutional layers
apply a kernel of size 3×3 and a ReLu activation function, each pooling layer has a
kernel of size 2×2, and the output layer has as many output nodes as the number of
classes.

model is trained on the slice of the number associated with it, alongside the label for

the original 3D image. This results in an ensemble of models, each trained to deal

with one specific slice depth. This ensures every slice is convolved and weighted in

complete isolation from the others.

4. When a prediction is made, the image is split into slices and the relevant slices are

fed into their associated models.

5. The predictions from each slice model are then combined using an ensemble voting

algorithm, which aggregates the predictions. This effectively combines the slices

together while allowing for a specific weighting per slice.

This design is similar to the previous one in that the axial slices are convolved in isolation.

However, the major difference in this approach lies in the ability to use only a subset of

19

3.3. MODEL DESIGN

Figure 3.5: Illustration of how 2D convolution is applied across channel slices, and how
these individual convolutions can still be used to represent the full volume.

slices rather than the full volume, as well as the ability to weight slices different through

the voting algorithm. A visualisation of this process is shown in fig. 3.7.

Attempting to train a full model, across numerous epochs, for every single slice in the

range proved to be immensely time-consuming. Based on the previously-noted correlation

between Alzheimer’s and protein plaques, it was hypothesised that this protein-based

feature data could lie in localised clusters within the most tissue-rich sections of the scan.

This opened the possibility that most of the feature data could be present in only a

subset of the slices. Thus, a novel approach was designed to further narrow the training

down to only a subset of feature-rich slices. To find these slices, an initial trial training

run with fewer epochs was conducted on the ADNI dataset, for all the slices between 50

and 100. Then, slice models that scored validation accuracy above 60% were recorded as

“priority slices”. As a result of this, the model could be implemented by only training on

20

3.3. MODEL DESIGN

Figure 3.6: Figure showing the chosen 2D slice-level model architecture design. Each
convolutional layer applies a kernel of size 3×3 and a ReLu activation function, each
pooling layer has a kernel of size 2×2, and the output layer has as many output nodes as
the number of classes.

these priority slices, while discarding the less useful ones. While this does not account for

slight variations in scan placement across samples, this approach was still able to produce

favourable results.

The experiments in this work used the following slices: [56, 57, 58, 64, 75, 85, 88, 89, 96].

Some images showing examples of priority slices can be seen in fig. 3.8.

For the ensemble voting, the two options available are hard voting and soft voting

algorithms. Hard voting takes the modal prediction from the model array. Soft voting

produces a weighted average of the predictions. Some slices can be safely assumed to

contain more feature data than others, such as comparing slices in the centre of the brain

tissue to those on the periphery. Therefore, soft voting is the better approach, as it allows

for more informative slices to be weighted higher than others. To do this, the validation

accuracy recorded during training of each model is used as its own weight — this means

21

3.4. ADDITIONAL SPECIFICATIONS

Figure 3.7: Figure showing the 2D slice pipeline that a sample 3D scan goes through in
order to produce a prediction.

that slices / models that yielded more accurate initial validation readings will be weighted

higher than models with worse validation readings.

3.4 Additional Specifications

The following section covers concepts not necessarily tied to each of the individual models.

This includes the hyperparameters that were kept the same across all models, as well as

the gradient-activation module which was used on several of the models.

3.4.1 Hyperparameters

Hyperparameters are external variables that are not directly associated with the layer

design one has used to construct a model. As such, these parameters could be kept

identical across all three models, in order to ensure that all differences in performance

can be linked to the architecture alone. As each model had the same classification goal,

it meant that the loss metrics could be kept the same across all tests. Below is a list of

these hyperparameters, and their set values for all models:

22

3.4. ADDITIONAL SPECIFICATIONS

(a) Slice 88. (b) Slice 96.

Figure 3.8: Example images of slices that on average produced higher validation accuracy
and were thus selected as priority slices for the associated 2D model.

• Batch size: 3. The batch size was only set to 3, as any higher values resulted in

memory issues within the code.

• Max epochs: 25. While the epoch upper limit was set to 25, an early-stopping

algorithm was set up when training the models. This algorithm would prematurely

end any training run that went 5 epochs without improvement in validation loss.

• Learning rate: 0.0001. This was set lower than the standard rate of 0.01 in order

to further minimise the chances of the model over-fitting.

• Loss metric: Cross-entropy loss. Cross-entropy was chosen as the loss function due

to its common application in classification tasks. Additionally, as the labels are

one-hot encoded, categorical cross-entropy loss was chosen.

• Optimizer model: Adam. Adam is the most commonly used optimizer in most

CNN designs, and has been proven to adapt well to almost any design.

• Early-stopping: An algorithm which would prematurely stop the training if it went

10 epochs without an increase in validation accuracy.

• Checkpointing: An algorithm that checks the validation accuracy at the end of each

epoch, and after the training completes, it attempts to roll the model weights back

to the epoch with the highest score.

23

3.4. ADDITIONAL SPECIFICATIONS

3.4.2 Activation Gradient Visualizaton

The work sought to implement a means of visualizing the loss gradient between a given

prediction’s activations and the target class. Specifically, this dissertation employed an

approach inspired by Grad-CAM [18], in which the gradients of the final convolution layer

of a model are extracted and transformed into a heatmap that can be superimposed over

the original image. By visualizing the values produced from predicting on an Alzheimer’s-

positive image, the resulting image highlights regions of the scan that yield the greatest

positive-case activations. These highlighted regions can be used to infer which parts

of a brain scan offers the most valuable data for detecting positive cases, allowing a

conclusion to made on whether an accurate prediction requires the entire brain scan, or

only a portion of it. Because negative cases are treated as the default zero-state, a map

for negative activations was not investigated.

Additionally, visualising the convolution activations allows for comparisons to be drawn

between the 3D model and one of the 2D models. In this case, the slice-based model

was chosen. Each model produces gradient maps of equivalent dimensions. Therefore,

2D maps were generated for slices 50 through 100, and then combined to create a

reconstruction of a 3D map.

24

Chapter 4: Implementation

The strategies presented were designed to be open-ended and reproducible using any

number of programming languages and packages. However, this work was done in the

Python language, using the TensorFlow package for model construction and Numpy for

data processing. Other packages of note will be referenced when relevant. Additionally,

the work utilised a high-speed computing server possessing 56 CPU cores and 4 high-

performance GPU cards for the purposes of training and testing. This was done with the

goal of greatly reducing training time, though it could have been reproduced (at a slower

rate) on any machine with sufficient processing power (either CPU or GPU).

4.1 Pre-processing

In this section, it is explained how the data was set up and processed before model

training / evaluation. The first part of this is data preparation, which covers how the

data was prepared for the training pipeline. This includes how directories were set up,

pre-runtime processes like skull stripping, and augmentation. The second part is the

formatting of data — how each image was formatted directly before being input into the

model. This involved resizing and normalization of the images.

4.1.1 Data Preparation

Pre-processing steps were set up according to the design specifications. The following is

a list of noteworthy steps taken:

• The locational strings and labels were stored in Numpy arrays, then bound together

in a Tensorflow data loader object.

• Skull stripping, when used, was done using the Python implementation of the

ROBEX package [9], known as Pyrobex. A separate script was used to generate a

stripped version of every image in a given directory, and these versions were saved

to disk. This way, the process would not need to be repeated every time.

25

4.1. PRE-PROCESSING

• A script was implemented to generate the list of file locations for each desired image,

and then save them alongside their corresponding label. This allowed for different

text files to store different dataset configurations. For example, one text file may

contain the information for all AD and CN images, while another may have all MCI

and CN skull stripped images.

• The data loader for any given subset was assigned a mapped function that could

convert the loaded location and label into a Numpy pixel array with an associated

encoded label. The image is loaded in using the Nibabel library [3].

• Data augmentation was also applied as part of the mapped function. For the

2D slices, this augmentation was done using the inbuilt Numpy augmentation

functions. 3D augmentation was done using the Volumentations package [21],

whereas 2D augmentation (for the 2D slices) used the Imgaug package [10]. The

augmentation transformations are those outlined in the design chapter (rotation

and elastic deformation) and were applied to all training samples.

4.1.2 Data Formatting

This subsection relates to the data resizing and intensity rescaling applied to each image.

For the resizing, a centering algorithm was needed. In other words, the images need to

be cropped around the edges of every axis, rather than from a single side. For the 3D

model, the algorithm crops around each volumetric side of the image until it is an array

of shape 169 × 208 × 179, then adds another axis to the end of the array to make the

object compatible with batching. This is the same for the 2D subject-level model. For

the slice-based one, once the image has been resized, an individual slice is extracted based

on the associated model.

The main goal of the rescaling process was to rescale all the pixel values to a common scale.

Most often this is set as 0 to 1, as a smaller normalised range has been shown to improve

model training performance. However, multiple approaches exist for implementing this,

and the literature did not present a clear best option. Many papers had placed great

importance on the rescaling algorithm [23], therefore a decision was made to explore four

promising implementation strategies. The four algorithms are as follows:

1. Normalization with trimming: Takes a maximum pixel threshold value as input,

then rescales all pixel values to a range between 0 and 1. Pixels above the threshold

26

4.2. MODEL TRAINING

are trimmed down. For the images in this work, the minimum pixel value was always

0.

2. Normalization without trimming: Same as above, only without trimming down

values greater than the threshold. This produces some values greater than 1 in the

rescaled range.

3. Local normalization per image: This approach eschews using a chosen threshold

value for the entire set. Instead, each individual image is rescaled using that given

image’s minimum and maximum pixel values to set the bounds for the new scale,

from 0 to 1.

4. Standardizing: Using a “standardize” algorithm, where pixel values are instead

rescaled using a formula that uses both the mean and standard deviation of the set

to generate a standard range.

Each approach requires several additional values to be known. These were the average

value across all sets, the values of the 2nd and 98th percentile (representing non-outlier

min and max values), as well as a maximum cut-off value that would support the greatest

share of the data. Those values, obtained during experimentation, are shown in the next

chapter. For now, the function formulae are shown below:

Normalize: y = x
m

, where x is either the trimmed or untrimmed pixel value, and m is

either the input maximum threshold value, or the local maximum in the case of the 3rd

approach. As the minimum is assumed to be 0, it does not factor into this formula.

Standardize: y = x−µ
σ

, where x is the pixel value, µ is the global mean of the dataset,

and σ is the standard deviation of the set.

During experimentation, the functions were then compared in order to determine the

best option for these models. The approach of local normalization per image was found

to yield the most reliable results, and was subsequently utilised as the standard for the

model. This will be elaborated on within the results chapter.

4.2 Model Training

Here, the dissertation briefly covers the data partitioning for model training, as well as the

actual implementation of the models. As these topics were covered in detail in the prior

27

4.2. MODEL TRAINING

chapter, this section only covers the technicality of the partitions, as well as the additional

steps that had to be taken for the 2D slice-based model ensemble’s implementation.

4.2.1 Data Partitioning

Data splits were done using the SKLearn stratified-split function, to ensure subsets had

a proper distribution. Additionally, all splits utilised seeded shuffling. While a random

arrangement of data was desired, a seed allowed for that same distribution to be kept

consistent across all experiments.

Previously, it was shown that the AD class has a significantly lower count than the

other two classes — approximately 4 times smaller than the next class. Therefore, in

order to avoid performance loss due to imbalanced datasets, training attempts using the

AD class would use a trimming function. This decision was motivated by the fact that

many of the papers reviewed utilised subsets of the ADNI set for training. While this does

significantly reduce the amount of data available, tests using unequal class sizes resulted in

the model quickly over-generalising to predict only a single class. The trimming function

implemented trims the larger class by taking a seeded random subset of elements equal in

size to the smaller set. This minimises class imbalance with a random, unbiased selection,

however the seed ensures that the same distribution would be used for every test, so as

to not introduce variance to the tests.

4.2.2 Model Implementation

Each model was set up using the Keras package for Python. The process was the same

for each model, except for the chosen layer architecture. The layer specifications can be

found in the previous design section.

For the 2D slice-based design, each model used the same approach, but additional steps

were needed. The implementation of fitting models for each unique slice utilises a loop

to instantiate and train a model, where each new loop changes a global variable for

the slice index. The variable controls which 2D slice of the input volume is used for

each input sample during training. The data loader is configured to fetch slices based

on this variable. For ensemble voting, there are many packages available in Python for

automating ensemble learning, however they are often limited to scenarios where the

dataset remains constant. This experiment requires each model to view a different slice

28

4.3. EVALUATION STEP

level of the dataset, and thus it proved easier to design the voting ensemble from first

principles. Using the test set of data, predictions are generated by splitting a given test

image into slices, feeding each relevant slice into the corresponding model, and having

the model produce a prediction. Each set of predictions is then appended to a single 3D

array, where each prediction is a set of probabilities for the various classes. The soft voting

algorithm then takes the weighted average of this set, using recorded validation accuracies

as the weighting variable. The hard voting algorithm translates the probabilities into a

final class prediction for every slice, then finds the model class.

4.3 Evaluation Step

The evaluation of the models, though not mentioned until now, is a vital step to be

taken. The way in which the models are evaluated, and how these results are stored,

will form the basis of the next chapter. This section will highlight by what metrics

the models were evaluated, and how testing was run in order to obtain a diverse set of

results. Additionally, this section will cover how the gradient visualisation was conducted

in practice, and how its outputs were recorded.

4.3.1 Recording Results

Models were assessed across three avenues: the training metrics, the evaluated scores,

and the performance average across repeated testing.

The training metrics refer to the training/validation scores available directly from the

fitting step. While they do not reflect how the model performs in the presence of unseen

data, this data permits analysis of the actual training process. Possible observations

include whether the model is under or over-fitting, and how different permutations in

some variables might affect the training rates. The metrics assessed here, applying to

both training and validation, are:

• Loss: Categorical cross-entropy. The same loss as was used for the training function.

While accuracy serves as an easier measure of effectiveness at a glance, the tested

loss of the model is still important as well. It conveys how much the label prediction

output deviate from the true values.

29

4.3. EVALUATION STEP

• Accuracy: Binary accuracy. This was chosen as the accuracy metric, as all the

models only predict on two classes. While loss is based on the measurable different

between the actual and expected outputs, accuracy reflects how often the model will

be able to make the correct diagnosis. As humans more naturally understand and

contextualise accuracy readings, this will be used as the main means of comparing

the performance of different model configurations.

Actual testing was conducted using evaluated scores. These involved running an evaluation

function on the trained model, which simply returns the loss and accuracy scores obtained

using the test set. As this is based on a held-out set of unseen data, it is the most valuable

data and is the primary objective of the evaluation step.

In order to properly validate a model’s average performance and variance, a method of

repeated testing and data collection was needed. A k-fold training approach was utilised

for this, and acts the primary source of data for the work going forward. The k-fold

algorithm operates as follows:

1. The model is generated, and its initial weights are saved so that they can be accessed

later.

2. The training and validation sets are automatically partitioned based on the value

of k, in order to ensure a different distribution on each new training run. This is

handled by the SKLearn k-fold module, which stratifies and splits the data based

on the value of k.

3. The model is then trained on the partitions as usual, and a snapshot of the model

is saved for future reference.

4. Standard testing and evaluation is conducted on the model. These values are all

stored in memory, and the final loss and accuracy values for the fold are appended

to arrays.

5. This process then repeats, up to a total of k times. In our case, k was always set

to 5. Lower than 5 would be counter-intuitive to the idea of getting a wider array

of tests. Higher than 5 causes the validation partition to become too small, as the

ratios are dictated by the value of k.

6. Once all folds are complete, the averages and the standard deviation of the model’s

loss and accuracy are computed and returned.

30

4.3. EVALUATION STEP

With averages and standard deviations in hand, the data produced by this procedure

can then be used to generate box-plots for easy comparison between multiple models.

Box-plots offer a more visual means of assessing the variance in each model, compared

to its overall efficiency.

4.3.2 Activation Gradient Visualisation

As specified in the Design chapter, a GradCAM-type algorithm was implemented in order

to map out and visualise the activations and gradients of the 3D model and the 2D slice-

based model. The vast majority of information regarding GradCAM implementations is

limited to 2D images. Inspiration was taken from the MedCam module [8][17][4], which

outlines specific extraction and visualisation of gradients relating to volumetric medical

images. Unfortunately, the module only works with PyTorch models, but it still offered

valuable insight.

The actual code implementation was conducted using a modified version of the Keract

module [16], which is designed to extract activations from a given layer in a model. This

was used to extract the activations from the convolution layer in each model (which

also includes the ReLU activation function). The Keract module combines the channels

of a given map together and superimposes it across the original image as a heatmap.

The activations are then saved as either a NIFTI file (3D) or a PNG image (2D). For the

gradients, a custom script was instituted to produce a gradient array using the Tensorflow

GradientTape function, which records gradients in the desired layer during a prediction

call. The channels of the maps were summed based on a weighted mean function across

all channels. Using this algorithm, the 3D model produced a 3D array, which is saved

as a NIFTI file. For the 2D model, a setup was desired in which multiple concurrent

2D gradient maps could be combined into a 3D volume, for the purpose of comparing

to the 3D model map. Therefore, a slightly altered version of the slice-based model was

used here. Instead of training on only the priority slices, the models were instead trained

over the range of slices 50 to 100. These maps could then be combined into a coherent

volumetric subsection of the brain, and saved as a NIFTI.

In all of the above cases, the visuals (NIFTI/PNG) were produced for an example CN

image, as well as an AD one. The results of this, as well as the discussion surrounding

it, are documented later in the dissertation.

31

Chapter 5: Results

All the experimental results of this work are presented within this chapter, alongside

observations on the outcomes. The first section deals with the three models and their

evaluated scores. Brief discussion is made on the comparisons between the performance

of each model. The training times of each model are also noted, as this contributes to the

discussion on model efficiency. The following section covers the evaluation of the impact

that several training parameters have on model performance. Finally, the outputs of the

gradient activation visualisation are presented in the final section.

5.1 Model Assessment

Evaluation of models used for the classification problem can be divided into the following

sub-categories: the 3D subject-based CNN model, the 2D subject-based CNN model,

and the 2D slice-based collection of CNN models. The following observations deal with

overall performance of the model architecture itself, focusing on the readings given by

each of the full systems. The individual effects of variables such as pre-processing are to

be observed in a later section.

5.1.1 3D CNN Classification

The 3D CNN model, using the final design presented in the design section, on a single

training run yielded the results shown in table 5.1. Each training run ran for up to a

maximum of 25 epochs, not counting premature ends due to early stopping. Results are

split for both classification modes. The training accuracy has been included to emphasize

that while a model may have little trouble learning the training set perfectly, it is not

necessarily able to perform equally well during validation and testing. While each fold’s

training data will be large enough to allow to the model to fit onto the available data, the

validation set verifies whether the model can adapt to a smaller, varying batch of data.

Furthermore, the held-out testing set serves as the most reliable assessment of whether

the model can perform well on entirely unseen data.

32

5.1. MODEL ASSESSMENT

Table 5.1: Evaluation metrics for the 3D model for both classification cases, showing
the final tested accuracy and the associated training and validation accuracies. The
evaluation was conducted using a standard accuracy metric and a categorical cross-
entropy loss metric.

Classification Accuracy Loss Validation Acc Training Acc
CN versus AD 84 0.97 85 98
CN versus MCI 65 1.13 66 91

Some training curves (accuracy and loss) for the CN versus AD run are shown in figs. 5.1

and 5.2. These highlight a sample case of the progression of the training and validation

metrics over the course of multiple epochs. As the figures show, training performance

shows quick improvement until it reaches nearly 100% accuracy. However, the validation

metrics show a slightly worse, more realistic pattern based on unseen data. Though the

model validation loss fluctuates over the first few epochs, it quickly corrects, and both

metrics improve over the course of the remaining epochs. That both the training and

validation curves follow the same general shape shows that the model is not over-fitting

to the training data. Curiously, the curves show that the model could have continued to

improve with more epochs, though the rate of improvement is already beginning to fall

off by epoch 25. It is also worth noting that despite the positive trend in the validation

accuracy curve, there are still some epochs where it briefly drops. This is likely due to

the model over-correcting for some data elements, and reinforces the need to track the

checkpoints of each epoch so that the model can be rolled back if the final epoch weights

are not desirable.

Following this, for the CN versus AD case, the model was assessed more extensively via

a k-fold validation strategy in order to validate the above results. Identical versions of

the model were trained across 5 folds, where each fold used a unique set of shuffled and

stratified training/validation data splits. Each fold was evaluated using the same held-out

test set. These results were then compiled into box-plots better suited to summarising

the performance. Based on the box plots, the mean scores act as the primary point

of comparison, while the interquartile range (IQR) of the box acts as an estimate of

the model’s expected variance. The results of these experiments can be seen below in

figs. 5.3 and 5.4. While the prior tables show the difference in scores between the two

classification cases, these box-plots highlight the extent of variance in the model.

Observing these results, we see a mean accuracy of 81.3%, an accuracy IQR of around

4%, and a loss IQR of around 0.13. On its own, this shows the model’s variance is not

a cause for concern, as the earlier quoted accuracy and loss both fall near the mean

value of both box plots. The loss variance is larger than that of the accuracy, though

33

5.1. MODEL ASSESSMENT

Figure 5.1: Plot showing the training and validation accuracy curves of the 3D CNN
model, trained over 25 epochs, with respect to classification of CN versus AD subjects.

this is unsurprising given that the checkpointing system optimises for weights with the

best accuracy above all else. It also means that while the model exhibits accurate final

predictions, it is perhaps more sensitive to outlier data. This outlier data could result

in exaggerated loss penalties, despite the model performing well otherwise. Furthermore,

while there is variance in the final accuracy of the model, a quoted accuracy of 81.3 ±
4% is still a very well-performing classifier. Additionally, the earlier quoted score of 84%

accuracy is confirmed to fall within this range. Even the lowest outlier, at 74%, falls

within 10% of the mean and would be an acceptable target.

The existing variance likely comes from variations in data partitions. While every run

of the model possesses identical starting weights, hyperparameters, and testing samples,

each variation of the training possesses slightly different training/validation sets. This is

due to the inherent shuffling of the training/validation data partitions, which influence the

optimisation of the weights differently each time. While for the most part the variation

is slight (<4%), there are still outliers, such as the run at 74%. To explain this, it could

have been the result of suboptimal image samples within the training data that, if fetched

34

5.1. MODEL ASSESSMENT

Figure 5.2: Plot showing the training and validation loss curves of the 3D CNN model,
trained over 25 epochs, with respect to classification of CN versus AD subjects.

early during training, could negatively skew the training process. When presented with

difficult-to-classify images in the testing data, these small negative skews would result in

some models failing to correctly classify an image that other variations succeeded with.

In an attempt to investigate this, a tally was kept of test images that a model would fail

to correctly classify. These difficult images were then sorted and ranked. A sample that

was consistently misclassified in all five folds is presented in fig 5.5.

Fig 5.6 shows a comparison between this sample and an example “easy” sample, which

was used as a data example earlier in the dissertation. Unfortunately, the comparison

does not reveal any obvious differences (at least to one not professionally trained to assess

MRIs), besides some greater pixel intensity ranges in the difficult image.

Comparing the 3D model’s performance to other similar works, particularly those summarised

by Bratic et al. [2], places these results firmly in the middle of the rankings. The two

closest comparisons are by Ewers et al. [6], who got 86% accuracy for CN versus AD

and 62% for CN versus MCI, and Chu et al. [5], who got 85% and 65%, respectively.

35

5.1. MODEL ASSESSMENT

Figure 5.3: Box-plot showing the accuracy summary of the final 3D model for the case
of the CN versus AD classification task. The orange line marks the median, whereas the
green line marks the mean.

These are both very close to our model’s single-run scores of 84 and 65%, and shows that

it is common for models to struggle significantly more with the MCI case than the AD

case. The performance of the 3D model was thus deemed satisfactory, especially when

considering that it is only one of three approaches being discussed in this work. Of course,

there is still some room for further improvement if desired, as evidenced by works such

that of Wen et al. discussed earlier.

5.1.2 2D Subject-level CNN Classification

Table 5.2 shows the evaluated performance of the 2D model used to fit the data at a

subject-level. Similarly to the 3D model, this was also trained over 25 epochs. Comparing

the two classification cases, there is a smaller differential compared to the 3D model’s

results. The loss scores are fairly close though, which suggests that while the model

struggles to reach the MCI prediction, the error present in the individual class confidence

scores is better than the accuracy score suggests.

36

5.1. MODEL ASSESSMENT

Figure 5.4: Box-plot showing the loss summary of the final 3D model for the case of the
CN versus AD classification task. The orange line marks the median, whereas the green
line marks the mean.

Similarly to the 3D approach, the model was also subjected to repeated k-fold training

runs, which serves as the main way of comparing the two models. The comparisons of

accuracy and loss, for the CN versus AD case, are shown in figs 5.7 and 5.8. Continuing

forward, results used to compare models will be exclusive based on the CN versus AD

case. This is for two reasons. First because the dataset for this case is smaller and allows

for faster experimentation. Second, this case universally yields the highest performance

for each model, allowing comparisons to be made in a best-case scenario. One can observe

by comparing these box-plots that the 2D model has a marginally lower mean accuracy

(2% lower), but better loss compared to the 3D implementation. However, it possesses a

significantly larger IQR than the 3D model.

Table 5.2: Evaluation metrics for the 2D model for both classification modes. Similarly
to the 3D model, evaluation was conducted using a standard accuracy metric, and a
categorical cross-entropy loss metric.

Classification Accuracy Loss Validation Acc Training Acc
CN versus AD 74 0.72 74 90
CN versus MCI 66 0.74 58 74

37

5.1. MODEL ASSESSMENT

(a) Sagittal plane. (b) Coronal plane.

(c) Axial plane.

Figure 5.5: Multi-plot showing the three plane views of an AD sample that proved
extremely difficult for the model to predict correctly.

While the 2D model’s IQR does extend above the 3D model’s, there is too much variance

in the values and thus the 3D model is considered to be performing better. This suggests

that performing the depth-wise convolutions in isolation produces less reliable results,

due to the loss in some level of feature data. Aside from the one outlier point, the

3D model yields more consistent and better performance. On the other hand, the loss

comparison shows the 3D model to perform noticeably worse. As the 2D model does not

yield better accuracy despite this large difference in loss, it can be assumed that the 2D

model is less sensitive to outlier data, and thus incurs a lower overall loss, though its

overall prediction accuracy is still lower than that of the 3D model. As we are evaluating

based on accuracy, the optimised 3D model is deemed to perform better. However, the

fact that the 2D model performs nearly as well, using only a 2D convolution window,

shows that it is still a valid alternate strategy.

38

5.1. MODEL ASSESSMENT

(a) Difficult image (axial plane). (b) Easy image (axial plane).

Figure 5.6: Paired figures contrasting an image that proved difficult for the model to
classify, versus one with which it had no difficulties.

5.1.3 2D Slice-level CNN Classification

The 2D slice-level implementation, using the model ensemble trained on a set of high-

priority slices, was tested in the same way as the previous two architectures. Firstly,

table 5.3 shows an example of the individual scores for each slice when trained on CN

versus AD. This helps show the validation accuracies, which were used as weightings for

each slice in the soft ensemble voter, as well as the accuracy of the individual predictions

that are later combined in the ensemble voter. These results showcase how some slices

will yield more accurate predictions, such as slice 64, and thus should be given more

weight in the final selection. Also note that, on their own, each model exhibits significant

validation loss.

Table 5.3: Validation accuracy and loss per slice individual slice model trained for the
2D slice-level design.

Slice Model No. Val Accuracy (%) Val Loss Accuracy (%)
56 75 1.45 75
57 56 1.81 75
58 62 1.81 63
64 66 1.58 88
75 59 1.75 57
85 69 1.52 69
88 72 1.86 69
89 69 1.51 75
96 73 1.45 56

Table 5.4 shows the ensemble evaluated scores, this time for both classification cases,

after running the slices through either hard or soft voting. As the voting algorithm only

39

5.1. MODEL ASSESSMENT

Figure 5.7: Box-plots comparing the accuracy performance of the 3D model to those of
the 2D subject-level model, in the case of a CN versus AD classification problem. The
orange line marks the median, whereas the green line marks the mean.

40

5.1. MODEL ASSESSMENT

Figure 5.8: Box-plots comparing the loss performance of the 3D model to those of the 2D
subject-level model, in the case of a CN versus AD classification problem. The orange
line marks the median, whereas the green line marks the mean.

41

5.1. MODEL ASSESSMENT

Table 5.4: Ensemble voted prediction accuracy for the slice-level 2D model for both
classification cases.

Classification Voting Method Evaluated Accuracy (%)
CN versus AD Hard 81
CN versus AD Soft 81
CN versus MCI Hard 62
CN versus MCI Soft 69

aggregates the accuracy scores, loss is not covered here. Once again we can see that the

model performs significantly better with the AD data compared to MCI. Furthermore,

while both voting methods yield the same accuracy for the AD case, soft voting performs

noticeably better for the MCI case. In general, soft voting was found to consistently

perform either equal to or better than hard voting. Therefore soft voting, or some

manner of weighting the individual slice predictions differently, is recommended for this

kind of design. Furthermore, the accuracy using the ensemble prediction is noted to be

significantly higher than the average of the individual slice accuracies. In the CN versus

AD case, for example, the average of the individual accuracies would be 70%, whereas

the accuracy of the final combined design reached 81%.

In figs 5.9 and 5.10, the slice-based model ensemble is compared to the 3D model, as

well as the previous 2D model. This model’s accuracy is found to be even closer to the

3D model (only 1% difference), though the IQR falls lower. It exhibits similar variance

to the 3D model — again less than the first 2D model. For the same reasons that the

3D model was rated higher than the 2D subject-level model, this slice-based design is

rated higher as well. However, while the mean loss is similar to the 3D model, there is

practically zero variance in the loss. This likely comes from the small selection of slices,

which may not include the outlier data that produces spikes in loss. Similarly to before,

while the 3D still performed slightly better, this 2D model is practically just as good for

making predictions. Due to the potential for optimisation in the design (in terms of slice

selection / voting algorithm), as well as its novelty, this slice-based model is regarded as

more valuable than the previous 2D design. The model’s ability to produce promising

results while using only a fraction of the data gives it a notable advantage over the 3D

model.

5.1.4 Training Time Cost

In the interest of noting the cost in terms of time that each model carries (with the

slice-based 2D model showing time taken for priority versus full training), table 5.5 below

42

5.1. MODEL ASSESSMENT

Figure 5.9: Box-plots comparing the accuracy of all three models evaluated on the k-fold
experiment in the case of a CN versus AD classification problem.

Table 5.5: Time taken to train each of the models, in an identical training setup for
classifying CN versus AD.

Model Training (hh:mm:ss) Epochs Time/epoch Total %
3D 5:02:23 25 0:12:05 99
2D Subject-level 5:17:28 25 0:12:42 98
2D Slice-level 8:04:48 23.4 (average) 0:20:46 99

shows the total training time for each of the models. Furthermore, in order to account for

differing numbers of epochs trained, the approximate time per epoch is also presented.

For the 2D slice model, this was an averaged from the epochs taken by each model.

Admittedly, this does not account for overhead time costs, but they are considered small

enough to not factor in. Also included are the percentages of the total runtime that

training takes up, with the near-100% rates showing that training time is the only real

time metric to consider. The experiment was put through additional repeated runs, under

the same parameters, to ensure that each run’s times did not deviate (+- 5%) from the

mean. This was done to verify that there was minimal variance within the presented

results.

43

5.2. TRAINING PARAMETERS

Figure 5.10: Box-plots comparing the loss of all three models evaluated on the k-fold
experiment in the case of a CN versus AD classification problem.

The 3D model has the shortest training time of the three. This is not unexpected for

the slice-based ensemble, which has the overhead of having to train multiple models, and

thus takes nearly twice as long as the other two. The 2D subject-level model, on the

other hand, holds much similarity to the 3D model and thus the difference is very slight.

A difference of less than a minute per epoch could have several causes, such as delays in

the convolution layers, or costs within the module code where one type of layer is simply

more efficient than the other. Regardless, the fact that the 3D model trains the fastest

while also yielding the best results is another point in its favour.

5.2 Training Parameters

Several variable parameters were present during the training process. While the previously

presented results were those of the final selections of each model design, the following

subsection highlights the many variable parameters and their effects on the overall performance

of the model. This examination shows results only for the 3D model, as it is the primary

44

5.2. TRAINING PARAMETERS

interest of this work, and any trends observed on the 3D model were largely the same on

the other two models.

The parameters to be split into pre-processing steps, applied to the training / testing

images, and over-fitting correction, applied to the model.

5.2.1 Pre-processing Steps

Pre-processing experimentation is split into three groups of variables: intensity rescaling,

skull stripping, and augmentation. While continuous experimentation was used to find the

optimal choices for each, and thus set the parameters used for all future experimentation,

the following are a series of tests conducted to observe the isolated effects of each variation

in these groups. For each variable, the 3D model, trained for CN versus AD, is treated

as the base point of comparison.

The first experiment concerned the intensity rescaling function. The readings in table

5.6 show the evaluated scores of otherwise identical models (using the final 3D model

design) utilising different rescaling functions. The noticeable drop when not using a

rescaling function is expected, as the literature shows that intensity rescaling has a large

impact on CNN training performance. Furthermore, the different functions used have a

small but noticeable effect on model accuracy, with trimmed global, as well as localised

normalization showing the best results. On repeat tests, the trimmed global normalization

showed some variance in performance, and therefore the localised version was used in all

future experiments. Further investigation showed a high degree of variance in pixel values

across all the images in the dataset. While the average pixel value across the entire set

is 1054, 158 images exceed a value of 200 (double the average), with the maximum being

1200. Using localised minimum/maximum values therefore makes sense as it prevents

outlier images from skewing the scale.

Table 5.6: Evaluated scores for models utilising one of four different intensity rescaling
functions, each trained on the same data splits.

Function Accuracy Loss
Global normalization with trimming 84 0.92
Global normalization without trimming 81 1.04
Local normalization per image 84 0.97
Global standardizing 81 0.97
No rescaling 77 1.07

The second experiment deals with the impact skull stripping input images has on overall

45

5.2. TRAINING PARAMETERS

performance. A test was conducted using the final iteration of the model, training it both

with and without skull stripping. The results of which can be seen in table 5.7. Skull

stripping was actually found to cause a drop in performance. This is hypothesized to

either be due to the rescaling function not interacting well with the new images, or due

to the stripping process removing valuable feature data on the surface of the brain-tissue.

In either case, the significant effort required to obtain skull-stripped images (generating

masks for each image, followed by either needing to rewrite the entire set or save altered

copies) outweighs the possible benefit of the process. This falls in line with what other

literature has claimed on the topic, and thus it was not further investigated.

Table 5.7: Performance of the 3D model with and without skull stripping, in the context
of a CN versus AD classification task.

Experimental Setup Accuracy (%) Loss
With skull stripping 74 1.14
Without skull stripping 84 0.97

The third experiment observes the effect of augmentation on the training process. The

experimental process is the same as the one used in the previous experiment, with

the variable now being the augmentation transformations applied during training. The

two transformations were rotation and elastic deformation. As outlined by the design,

rotation augmentation was performed on 60% of training images and elastic deformation

on 30% of them. The results of the 3D model with both techniques, and without any

augmentation, can be observed in table 5.8. Removing augmentation yielded an accuracy

decrease of 7%. This was a large enough impact (falling outside the 3D model’s IQR

noted earlier) to warrant the continued usage of augmentation. In contrast to the skull

stripping, augmentation is also a much less demanding option to implement, as it only

requires adding relevant functions to the data-loaders. Therefore it is recommended to

use augmentation when tackling training problems like this.

Table 5.8: Tested scores of the 3D subject-level model with and without augmentation.

Augmentation Accuracy (%) Loss
Augmentation 84 0.97
None 77 1.05

5.2.2 Over-fitting Correction

Unexpectedly, the concern of over-fitting ended up posing quite a significant challenge.

Early iterations of the model quite easily over-fit onto the given dataset if no measures

were taken to correct this behaviour. As a result, validation and tested scores would

46

5.3. MODEL ACTIVATIONS

very quickly diverge from training scores after only a few epochs. On the other hand,

experiments showed that applying too much over-fitting correction negatively affected

model performance, though this could possibly be alleviated with a different hyperparameter

set-up. The final version of the design found a good balance between the two, and

produced favourable results. Still, an experiment was conducted in order to evaluate how

the same design would fare with all regularization removed.

In table 5.9, the evaluated accuracy and loss of the model is compared with and without

regularization. Without regularization, the accuracy is 80%. While this is a 4% difference

from the base score, it still falls within the expected IQR shown in the k-fold test. At

first glance, this could imply the drop is simply a result of variance. However, the full

picture becomes clear when we also take the training curves into account. In figs. 5.11

and 5.12, the accuracy and loss curves for the no-regularization model — both training

and validation — are shown.

Table 5.9: Final tested performance of the 3D model, with and without regularization
layers, in the context of a CN versus AD classification.

Experimental Setup Accuracy (%) Loss
Regularization 84 0.97
No regularization 80 0.71

From these curves, the over-fitting of the model immediately becomes evident. Around

epoch 10, both validation accuracy and loss begin to diverge from the training curve.

Comparing this with the earlier validation curves, which improve with each epoch, shows

that regularization creates a significantly more stable model with a higher performance

ceiling. While the given experiment did yield a fairly high-accuracy result for the non-

regularized model (owing to the checkpointing system rolling back to the best epoch),

the curves show that such a result is not guaranteed, and the actual training process

is extremely erratic. Furthermore, model performance quickly drops off, guaranteeing

that such a design would not see any improvement with an increased number of training

epochs, unlike the original design. Thus, the importance of utilising regularization for

such a model is reconfirmed.

5.3 Model Activations

Several gradient maps were obtained for the purpose of comparing model learned feature

patterns. The first images come from the 3D model, which acts as a baseline for the

comparisons. The figures in 5.13 show the activation maps for a CN image as well as an

47

5.3. MODEL ACTIVATIONS

Figure 5.11: Accuracy curve for the no-regularization 3D model, trained for CN versus
AD.

AD one (both of which were correctly classified by the model). The figures show the 3D

volume, as well as midpoint slices from each axis. The corresponding gradients are shown

in figure 5.14. Observing these images, it is difficult to find an obvious visual pattern in

the regions with significant activation. Comparing the CN maps to the AD ones shows

little difference, and yet the model was still able to correctly classify both images with

high confidence. This suggests that the patterns in the feature data are inconspicuous,

and there is no clear “region of interest” that the training could be refined to. A basic

assessment shows though that the outer folds, as well as the central-most folds, appear

to produce the most activations.

Next, we present the gradients generated by the 2D slice-based model ensemble, on an

AD-class image. In order to observe their relationship with each other, a range of maps,

corresponding to a range of slices, were produced for this 2D model. The maps were then

combined into a 3D volume. This was done using the modified 2D design mentioned in

the implementation chapter. The model was trained on slices 50-100, and the output

is compared to a corresponding 3D model map of slices 50-100. Fig. 5.15 shows the

48

5.3. MODEL ACTIVATIONS

Figure 5.12: Loss curve for the no-regularization 3D model, trained for CN versus AD.

isometric view of the two maps, whereas fig. 5.16 shows a closer look at the axis slices.

Upon closer inspection, the fold tissues are shown to be the regions with the highest

activity density. Note that both figures were artificially brightened in order to improve

visualisation.

Comparing these two maps highlights the issues that 2D implementations face in this

problem. While the trained axial slice maps are largely the same between 2D and 3D,

the information between the slices does not fully translate even when combining the slices

together. The isometric view and the first two axis views show a sort of noise in the maps.

This is a direct result of the 2D convolutions occurring in isolation, causing information

along the other axes to become lost or misinterpreted. The axial slices are also slightly

different, with the 2D heat-maps showing more active / lit up regions. This is likely due

to each 2D model needing to draw more information from each individual slice.

49

5.3. MODEL ACTIVATIONS

(a) CN Image.

(b) AD Image.

Figure 5.13: Visualisation of the activation maps produced by the 3D model while
predicting on two different classes of image.

50

5.3. MODEL ACTIVATIONS

(a) CN Image.

(b) AD Image.

Figure 5.14: Visualisation of the gradient maps produced by the 3D model while
predicting on two different classes of image.

51

5.3. MODEL ACTIVATIONS

(a) Combined 2D Maps.

(b) 3D Map.

Figure 5.15: Visualised gradient map volumes for the combined 2D slice models, as well
as the 3D model. Both maps used an AD input image.

52

5.3. MODEL ACTIVATIONS

(a) Combined 2D Maps. (b) 3D Map.

Figure 5.16: Midpoint axis slices of the gradient maps for the combined 2D slice models,
as well as the 3D model. Both maps used an AD input image. Pixel brightness was
artificially increased to improve visibility.

53

Chapter 6: Discussion

While the results chapter contains some discussion relating to the experimental data,

this chapter attempts to summarise and discuss the outcomes of the work on a broader

level. It considers the combined outcomes of all previous analysis and uses this to make

observations on the original question of whether a 3D or 2D approach is best for this

problem. Assessment is made on the superiority of using a 3D model, as well as the

overall validity in using learning models for identifying Alzheimer’s disease in brain scans.

Finally, this chapter takes a look at the practicality of implementing such a model in a

real-life medical scenario.

6.1 3D versus 2D Classification

The initial hypothesis of this dissertation stated that, given volumetric image data as an

input, utilising a 3D-based classification model would prove to be a superior choice over a

similar 2D architecture. The work conducted here has proven this fact, however it has also

brought up several points of discussion. Firstly, the 3D model design had a mean accuracy

of 81.3%, making it the best performing model. However, it must be stressed how minor

the difference in performance between the models ended up being. The 2D subject-level

model held a mean accuracy of 80%, while the 2D slice ensemble had a mean accuracy

of 80.6%. This disparity is actually quite minor. The 3D models as still deemed the best

due to having a better spread of results, all three models were deemed successful designs.

This presents the notion that, while 3D may be better, and simpler, to implement for an

isolated volumetric data problem, 2D-based approaches are also perfectly viable. In other

words, such a problem can still be solved with only 2D convolution layers. Additionally,

the 2D subject-level model actually yielded better loss scores than the 3D model. While

this doesn’t change the final verdict, as the mean accuracy was still lower, it shows that

the 3D model did not outperform the 2D approaches in every way. Ultimately though,

the 3D model required almost no additional effort to implement compared to the 2D

models, making cases where one would prefer to utilise a 2D approach rare. One such

case could involve a dataset wherein the images are split into a collection of 2D slice

images, and there is concern over data lost in between the slices.

The slice-based model’s implementation was more complicated, but it did perform slightly

54

6.1. 3D VERSUS 2D CLASSIFICATION

better than the other 2D model (in terms of mean performance as well as variance). This

was impressive to see, in spite of the design’s limitations. The design has to make an

assumption that all input images are aligned similarly, so that the slice of one model aligns

with that of another. While this is true of orientation, there is slight variation between

brain positioning between scans. However it seems this did not hinder the model much,

as there must be enough overlap of the regions of interest in images to mitigate the issue.

Furthermore, this design exhibited significantly less variance than the other 2D model,

with similar mean accuracy. If one were to approach this problem using 2D convolution,

the slice-based method may the better option, despite the increased complexity. Other

works have made similar attempts to isolate 3D zones of interest in images, however

utilising predetermined 2D slices is a novel approach offered only by this work. Even

with a rudimentary approach to selecting the slices, this design shows that one does not

need the full volume of an image in order to extract features. While it is difficult to

make assumptions for all kinds of data, this work proves it in the case of Alzheimer’s

prediction. Additionally, this design presents an obvious option for further optimisation

in the selection of the slices.

Across all three models, the CN versus AD classification scenario performs significantly

better than the other case. This common pattern shows that the model faces difficulty

in handling MCI-class images, regardless of the type of model design used. This is

very likely due to the models struggling to differentiate MCI samples from CN ones.

MCI samples represent earlier states of the disease, and thus almost by definition their

features are less pronounced. The fact that the CN versus MCI case performs worse

despite having significantly more data available to train on only reinforces this notion.

This has certain implications that will be discussed in the next section. What matters

here is the realisation that regardless of the optimisation done to the model, it can be

surmised that there will always be a drop in performance when considering MCI versus

AD cases.

The gradient mapping showed how the 2D slice-based model produces similar gradients

to the 3D model, at least on a per-slice basis. The problem came in when attempting

to look at the information between slices, which was distorted. This behaviour can be

extrapolated to apply to 2D approaches in general, as by definition their convolutions

are limited to 2D slices. The distortion explains why, despite learning well on individual

slices, the 2D models do still produce slightly worse results than the 3D model. The map

visualisations also showed that the regions of interest were located across the full volume

of the model. Based on this, it is suggested that training inputs use the full brain volume,

rather than attempting to concentrate on any sub-regions.

55

6.2. CLASSIFYING MRI BRAIN SCANS

Finally, the topic of the real-time cost of training models was considered. As illustrated

in the results section, the models were all trained in less than ten hours, with the 3D

approach only taking a bit over five hours. Compared to other large-scale machine

learning tasks, this is quite desirable, though these times were based on the CN versus

AD classification scenario. Early training attempts using the full dataset took up to

three days. Though this is a larger margin, and stands to benefit from efficient design,

it is still significantly lower — for all three models — than is average for most natural

image learning tasks. This dataset, like most medical datasets, is significantly limited in

performance by a lower volume of samples compared to other natural-image cases. As

such, it is believed that with the current architectures available, this problem stands to

gain more from an increase in available data, than would be lost in the increase in training

time. This is especially true when considering the way in which this dissertation handled

data loading — one could drastically increase the size of the dataset without evoking

memory issues as only one batch of images is ever present in memory, and there is still

room for a significant increase in training times before it would become impractically

slow.

6.2 Classifying MRI Brain Scans

Several training variables experimented with ended up producing results worth analysis.

In this section, they are assessed in greater detail beyond their initial discussion.

For pre-processing steps, the results obtained made a clear impression that pixel rescaling/

normalization yields tangible benefit when attempting to build a model for this sort of

problem. For the pixel rescaling, it was expected that its implementation would have a

noticeable impact on the model, as many works have cited its importance for developing

an image-classifier model. Without any normalization, the model saw a drop in accuracy

of approximately 7%, putting it 4% below the expected mean. Local normalization

and global normalization, with trimming of values above a certain threshold, performed

the best, but they had very similar performances. The best and worst normalization

functions had a difference of 4% in accuracy, which does actually just fall within the

model’s recorded standard deviation. As such it is difficult to conclusively say that either

top performer is strictly superior to the other options. However, what it does convey is

that so long as some form of image rescaling is employed, an increase in performance can

be expected. This will not necessarily be the case for all datasets, but there are some

reasons why it is the way it is for our case. The pixel ranges across the dataset were quite

varied, thus causing the global normalization to struggle with certain data elements, as no

56

6.2. CLASSIFYING MRI BRAIN SCANS

chosen median value would apply well to every image. This was especially so in some cases

where entire images would be comprised of pixels with values greatly above the median.

By instead computing locally, images with higher pixel values than usual were treated

the same as other images, thus keeping training uniform. Despite the low differential

between the results, local per-image normalization was chosen as the best option due to

being more reliable, as well as having the additional benefit of not requiring pixel median

/ maximum values to be calculated beforehand (which is needed for the other functions).

For processing the input data, augmentation was also shown to have a positive impact.

Without augmentation, the model saw an accuracy drop equivalent to the image rescaling

test (4% below the mean, and outside the IQR). This is hardly novel, as augmentation is

often recommended for learning models. Augmentation produces more diverse training

data, as it produces images with sufficient differences to give the model new information

to train with. Therefore, in a scenario like this one with limited data, it helps greatly to

reduce over-fitting. Much like with the rescaling, removal of augmentation does not

critically compromise the model, however its inclusion is still of value. While only

the results for the 3D model were shown, it was straight-forward to implement 3D

transformation techniques that would directly translate between 3D and 2D data.

Similarly, regularization was also found to offer a positive impact on model training.

While its use is commonly accepted in most learning models, it was valuable to observe the

differences in the training curves that removing it produced. Removing the regularization

layers still allowed the model to produce acceptable results, as shown by the 80% accuracy.

However, as demonstrated by the training curves, it greatly destabilizes model training

and limits its potential due to the over-fitting that will occur quite early into the training

process.

In contrast, utilising skull stripping was found to have a negative effect on the model.

Other similar works have made conclusions that skull stripping offers negligible impact,

however the loss in accuracy observed here further dissuades from its use. The recorded

accuracy, 74%, is the same as one of the outlier scores in the k-fold test, and could thus

possibly be unrelated to the process. However, this would still suggest that the stripping

offered no positive impact and this, alongside the difficulty of implementing this process,

makes it difficult to recommend such action. Acquiring brain-matter maps of every image,

then processing them using a separate module and generating new cropped images, is not

worth the minuscule, or in this case negative, impact it offers. Perhaps this would be

more valuable in a segmentation task where the boundary between brain matter and skull

is more relevant, but for this problem its use is not advised.

57

6.3. MACHINE LEARNING AND MEDICAL PREDICTION

6.3 Machine Learning and Medical Prediction

With all the results laid out, we can set about discussing what it means in the greater

context of medical predictions and the Alzheimer’s problem. The models developed all

showed promising results — enough to, from a non-expert perspective, show potential

in classifying brain scans. Furthermore, they would likely hold similar merit in terms of

classifying other types of volumetric medical scans, assuming the data is at least similarly

feature-rich. The most common obstacles faced with those types of datasets is that of low

sample sizes and large input images (in terms of memory) — both of which are factors

taken into account in this dissertation. The work conducted also showed that a variety

of model designs can produce these sorts of results, as each model was able to produce

an admirable evaluation score (80% or above).

In terms of the Alzheimer’s scenario, the main obstacle appears to be the reduced

performance when dealing with MCI images. MCI samples are quite vital as they

represent the disease in its earliest stages, when cognitive symptoms may not yet have

manifested and detecting via a scan is critical. By the time a patient/sample is classified

as “AD”, the outward symptoms are very often obvious enough that a brain scan classifier

would not be needed to detect it. Nonetheless, the CN versus MCI classifier still produced

good results, and with further optimisation this performance could be further improved.

Based on the patterns observed across the three models, a design further optimised to

better improve the MCI case detection would almost certainly work on the 2D approaches

alongside the 3D approach. Therefore, all the findings from this study would still bear

the same relevance.

While the gradient-maps highlight a pattern in the brain regions that yielded activations

in the models, this work did opt not to do an in-depth investigation into the nature

of these features. Rather, focus was placed on the viability of developing a model

that would require minimal assistance / medical expertise to construct. To this end,

speaking in terms of practical application of the model, the findings are promising, as

the models demonstrated were able to pick up on Alzheimer’s-positive patterns even with

minimal feature extraction. However, when making diagnoses on patients with a real,

potentially life-threatening disease such as Alzheimer’s, any amount of loss can have dire

ramifications. While the performance of the proposed models shows great promise, it is

unlikely the model would ever reach a perfect prediction rate. Misclassifying someone with

Alzheimer’s could incur unnecessary costs in follow-up evaluations, and misclassifying

them as negative could result in the disease being ignored until it is too late. For this

reason, the proposed practical application is to use such a model in conjunction with

58

6.3. MACHINE LEARNING AND MEDICAL PREDICTION

a radiologist or similar professional. The implementation would involve setting up the

model to automatically run in the background of brain scans — even those taken for

unrelated reasons. This allows background tests to be conducted on people without

incurring any costs beyond the initial cost to set up the model. Then, should the

model produce a positive prediction, a radiologist could investigate to either confirm

or refute the prediction. In the case where the scan was taken explicitly for the purpose

of investigating dementia, the medical professional could double-check on any conflicting

predictions. Even medical professionals can make mistakes, however using a conjoined

approach of a model and a human allows them to cover up each other’s mistakes. With

the current model’s performance, compounded with the expert’s verdict, would yield a

high degree of accuracy. The encoded label output of the model is also valuable here, as

it would allow the professional to assess the model’s weighting of each class in a given

prediction. The only obstacle would be the model’s difficulty with MCI cases, for which a

practical version would need to be further optimised. In practice, the greater importance

is expected to be placed on detecting early cases. Finally, the model design utilised in

this situation would be the 3D model. The availability of raw volumetric scans would

negate the benefits of the 2D models, and thus the greater efficiency of the 3D approach

would be best.

59

Chapter 7: Conclusions

This chapter covers the closing remarks and conclusions of the dissertation. First,

conclusions are given for the actual experiments conducted on the three model designs.

Following this is a set of conclusions made for the potential practical application of such

models in the real world. Finally, the shortcomings of the work are listed alongside a list

of possible additions that could be implemented by future works.

7.1 Conclusions For the Experiment

Three models were proposed by this work: the 3D model, the 2D subject-level model

using channels as a means to process the third dimension, and the 2D slice-level combined

models. All three of the models were found to produce respectable results. Ultimately

the 3D model was deemed the highest performing one, which confirms the hypothesis

that a problem dealing with raw 3D image scans should use 3D model architecture. The

final version of the 3D model achieved an average accuracy of around 82% for classifying

cognitively normal scans versus Alzheimer’s scans, in addition to a low loss score with

minimal variance. This level of performance acts as a proof of concept that CNN model

designs have potential for predicting Alzheimer’s in patients using only brain scan input

data.

However, the 2D designs were only marginally less accurate (1-2%) than the 3D model,

and both performed better than expected and yielded very good results on their own.

While the 3D deep learning model will typically be the best approach due to low variance

and simplicity in implementation, the 2D models offer viable alternate strategies. The

novel concept offered in this work is the design of the slice-based 2D model. The design

utilised several independent 2D models, each trained to specialise in a particular slice

of the data known to contain significant feature data. The predictions of the slices can

then be combined using a weighted soft-voting ensemble. This design performed better

than the other 2D model, and further refinement on the slice selection process and the

voting algorithm could stand to improve its accuracy further. As the usage of slice subsets

greatly reduces the size of input data that needs to be processed, this design has potential

in offering a viable low-memory approach to building a model.

60

7.2. CONCLUSIONS IN GENERAL

Additionally, it was found that a model attempting to classify MCI-class images (mild

cognitive impairment) will suffer a sharp decrease in performance (between 10 and 15%)

compared to one dealing with AD-class (a more severe class of the disease). This

is due to the less obvious visual signs of the disease within the brain, and thus less

well-defined feature data. This is a problem that is present within all three models,

and is one that rather requires optimisation and additional training data in order to

mitigate. Classification of MCI-class patients is quite important, as it makes up the target

population of individuals that possess the disease but may not yet know it. Therefore

future research should place importance on optimising around this scenario, and perhaps

that future data collection projects focus on expanding the training data available for the

MCI class.

Investigation was also conducted around several variables within the training process, in

an attempt to find strategies that yield optimal performance when training models for

this Alzheimer’s problem. In the end, the following design suggestions are made based

on the results obtained:

1. Utilisation of a pixel rescaling and normalization function is essential during pre-

processing, as it drastically affects the performance of a given model. Either use a

per-image local normalization algorithm, or one based on a global threshold that

trims values over said threshold.

2. Augmentation, using rotation and elastic deformation, offers a small but noticeable

increase to model performance, at least when done in moderation.

3. Regularization is a valuable tool to increase model stability and to prevent over-

fitting from inhibiting training potential. This applies to most learning models, but

especially so in this case where the data is so limited.

7.2 Conclusions in General

Overall, the results discussion did find great potential in the practical application of such

models. Models such as the ones presented in this paper possess low enough loss values as

to accurate classify and identify Alzheimer’s disease using only raw MRI scans. However,

this conclusion came with the caveat that there is still some error, and any error can still

be disastrous when human lives are involved. Thus, the best-case implementation would

involve a combined effort of a model and a professional radiologist. The model would

61

7.3. SHORTCOMINGS

act as an early-warning system, capable of detecting and warning about the presence of

the disease in any scan including the brain. This removes the need for a radiologist to

check every single scan with the specific goal of looking for signs of Alzheimer’s. Instead,

the model would be able to perform background assessments of any scan taking place,

and raise a flag when it makes a positive prediction. Then, the radiologist can act as

a backup system to confirm the results of the model, or at least make the decision on

whether follow-up examination is warranted or not.

As such, this dissertation puts forth the belief that the advancement of deep learning

models has opened the way for machine learning to aid in detecting Alzheimer’s in patients

before they ever begin showing symptoms. Further investigation into this problem with

more data, and further optimised architectures with more powerful hardware for training,

could produce something usable in a real-life application. When it comes to Alzheimer’s,

an early detection grants more time to act and prepare in the worst case, and saves lives

in the best case. In this endeavour, the advancement of specifically 3D CNN models

currently seems the most promising option.

7.3 Shortcomings

The paper found success in most of the elements it set out to achieve, however there were

certain limitations that had to be circumvented in the process. Said limitations can be

found below:

• Batch size limitations: During implementation, it was found that the size of the

input images would often result in out-of-memory issues. While this was solved

using careful pre-processing steps, the models all still had to use a conservative

batch number of three in order to preserve memory. While the project did utilise

a high-speed computing server for the training process, it did not have exclusive

access to this server and thus hardware resources were limited. Future attempts on

a similar project would likely benefit from using greater batch numbers, as well as

more powerful hardware in general.

• Classification problem scope: While the paper performs extensive experimentation

and analysis surrounding the Alzheimer’s classification problem, the conclusions

made cannot necessarily be said to extend to other problem cases. The conclusions

surrounding the superiority of 3D models may differ in other volumetric medical

image classification tasks not involving brains. While it is assumed that the results

62

7.4. FUTURE IMPROVEMENTS

would not change drastically, investigation into other parts of the body holds value

in the discussion surrounding 3D versus 2D model design.

• Data limits: The experiments performed for this work exclusively used the ADNI

dataset. While there are other datasets available, such as OASIS, the large difference

in image data made it too costly to attempt to optimise a model around multiple

sets.

7.4 Future Improvements

Alongside the limitations presented above, there were also several elements that, while

offering unique points of further interest to the discussion, fell outside the scope of the

project:

• Different model types: The scope of the work is limited to CNN models, as this

model design has been shown to produce the most reliable results. There are still

several other types of model that could be investigated in order to assess if the

difference between 3D and 2D approaches would behave similarly with other model

types.

• Segmentation: Segmentation is a complex enough topic to prevent its inclusion in

this dissertation, as it would require significant focus and investment that would

detract from the other aspects. Still, it offers another facet of experimentation

around Alzheimer’s detection in the form of identifying regions of the brain that

correspond to dementia features.

• Additional datasets: As mentioned previously, configuring the model to train on

more datasets than just ADNI would help alleviate the limitations of the limited

data available for training. This presents several obstacles, such as different file

structures, labelling systems, and image pixel ranges. However, the potential benefit

of doing so, in terms of improving model accuracy and flexibility, would make the

endeavour worthwhile.

• Further optimisation: The models developed for this project were optimised to the

point of producing sufficient results to make informed comparisons and discussion.

However, there is still room for further improvement in terms of architecture of

hyperparameters. Certain papers were able to report accuracies in the 90-percentile

range. Therefore, should one wish to extend upon the models in this work, further

refinement is an obvious place to start.

63

Bibliography

[1] Deepika Bansal, Kavita Khanna, Rita Chhikara, Rakesh Dua, and Rajeev Malhotra.

Classification of magnetic resonance images using bag of features for detecting

dementia. Procedia Computer Science, 167:131–137, 01 2020.

[2] Brankica Bratić, Vladimir Kurbalija, Mirjana Ivanovic, Iztok Oder, and Zoran

Bosnic. Machine learning for predicting cognitive diseases: Methods, data sources

and risk factors. Journal of Medical Systems, 42, 10 2018.

[3] Matthew Brett, Christopher J. Markiewicz, Michael Hanke, Marc-Alexandre Côté,

Ben Cipollini, Paul McCarthy, Christopher Cheng, Yaroslav Halchenko, Satra

Ghosh, Eric Larson, Demian Wassermann, Stephan Gerhard, and Ross Markello.

nipy/nibabel package, June 2022.

[4] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N.

Balasubramanian. Grad-cam++: Generalized gradient-based visual explanations

for deep convolutional networks. In 2018 IEEE Winter Conference on Applications

of Computer Vision (WACV), pages 839–847. IEEE, 2018.

[5] Carlton Chu, Ai-Ling Hsu, Kun-Hsien Chou, and Peter Bandettini. Does feature

selection improve classification accuracy? impact of sample size and feature selection

on classification using anatomical magnetic resonance images. NeuroImage, 60:59–

70, 12 2011.

[6] Michael Ewers, Cathal Walsh, John Trojanowski, Leslie Shaw, Ronald Petersen,

Clifford Jack, Howard Feldman, Arun Bokde, Gene Alexander, Ph Scheltens,

Bruno Vellas, Bruno Dubois, Michael Weiner, and Harald Hampel. Prediction of

conversion from mild cognitive impairment to Alzheimer’s disease dementia based

upon biomarkers and neuropsychological test performance. Neurobiology of aging,

33:1203–14, 12 2010.

[7] Jie Fu, Yingli Yang, Kamal Singhrao, Dan Ruan, Fang-I Chu, Daniel A. Low, and

John H. Lewis. Deep learning approaches using 2D and 3D convolutional neural

networks for generating male pelvic synthetic computed tomography from magnetic

resonance imaging. Medical Physics, 46(9):3788–3798, 2019.

[8] Karol Gotkowski, Camila Gonzalez, Andreas Bucher, and Anirban Mukhopadhyay.

M3D-CAM: A PyTorch library to generate 3D data attention maps for medical deep

learning, 2020.

64

BIBLIOGRAPHY

[9] Juan Eugenio Iglesias, Cheng-Yi Liu, Paul M. Thompson, and Zhuowen Tu. Robust

brain extraction across datasets and comparison with publicly available methods.

IEEE transactions on medical imaging, 30(9):1617–1634, 2011.

[10] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi Tanaka, Jake Graving,

Christoph Reinders, Sarthak Yadav, Joy Banerjee, Gábor Vecsei, Adam Kraft,

Zheng Rui, Jirka Borovec, Christian Vallentin, Semen Zhydenko, Kilian Pfeiffer,

Ben Cook, Ismael Fernández, François-Michel De Rainville, Chi-Hung Weng, Abner

Ayala-Acevedo, Raphael Meudec, Matias Laporte, et al. imgaug. https://github.

com/aleju/imgaug, 2020. Online; last accessed 01-Feb-2022.

[11] Bijen Khagi and Goo-Rak Kwon. CNN model performance analysis on MRI images

of an OASIS dataset for distinction between healthy and Alzheimer’s patients. IEIE

Transactions on Smart Processing & Computing, 8:272–278, 08 2019.

[12] Shen Liu, Zhang. Ensemble sparse classification of Alzheimer’s disease. NeuroImage,

2012.

[13] M. López, J. Ramı́rez, J.M. Górriz, I. Álvarez, D. Salas-Gonzalez, F. Segovia,

R. Chaves, P. Padilla, and M. Gómez-Ŕıo. Principal component analysis-

based techniques and supervised classification schemes for the early detection of

Alzheimer’s disease. Neurocomputing, 74(8):1260–1271, 2011. Selected Papers

from the 3rd International Work-Conference on the Interplay between Natural and

Artificial Computation (IWINAC 2009).

[14] Dr. Manasi Patil and Anil Yardi. MLP classifier for dementia levels. International

Journal of Modeling and Optimization, 01 2011.

[15] Adrien Payan and Giovanni Montana. Predicting Alzheimer’s disease: a

neuroimaging study with 3D convolutional neural networks. CoRR, abs/1502.02506,

2015.

[16] Philippe Remy. Keract: A library for visualizing activations and gradients. https:

//github.com/philipperemy/keract, 2020. Online; last accessed 23-Sep-2022.

[17] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna

Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep

networks via gradient-based localization. In Proceedings of the IEEE international

conference on computer vision, pages 618–626, 2017.

[18] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael

Cogswell, Devi Parikh, and Dhruv Batra. Grad-cam: Why did you say that?

visual explanations from deep networks via gradient-based localization. CoRR,

abs/1610.02391, 2016.

65

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://github.com/philipperemy/keract
https://github.com/philipperemy/keract

[19] Zahraa Sh and Hawraa Abbas. Classification of Alzheimer’s disease based on

several features extracted from MRI T1-weighted brain images. Kerbala Journal

for Engineering Science, 01 2022.

[20] M.V.F. Silva, C.d.M.G Loures, L.C.V Avles, L.C.d.S Souza, K.B.G Borges, and

M.d.C Carvalho. Alzheimer’s disease: risk factors and potentially protective

measures. Journal of Biomedical Science, 26, 5 2019.

[21] Roman Solovyev, Alexandr A Kalinin, and Tatiana Gabruseva. 3D convolutional

neural networks for stalled brain capillary detection. Computers in Biology and

Medicine, 141:105089, 2022.

[22] Halebeedu Subbaraya Suresha and Srirangapatna Sampathkumaran Parthasarathy.

Alzheimer disease detection based on deep neural network with rectified adam

optimization technique using MRI analysis. In 2020 Third International Conference

on Advances in Electronics, Computers and Communications (ICAECC), pages 1–6,

2020.

[23] Junhao Wen, Elina Thibeau-Sutre, Mauricio Diaz-Melo, Jorge Samper-Gonzalez,

Alexandre Routier, Simona Bottani, Didier Dormont, Stanley Durrleman, Ninon

Burgos, and Olivier Colliot. Convolutional neural networks for classification of

Alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis,

63:101694, 05 2020.

[24] Ekin Yagis, Luca Citi, Stefano Diciotti, Chiara Marzi, Selamawet

Workalemahu Atnafu, and Alba G. Seco De Herrera. 3D convolutional neural

networks for diagnosis of Alzheimer’s disease via structural MRI. In 2020 IEEE

33rd International Symposium on Computer-Based Medical Systems (CBMS), pages

65–70, 2020.

66

	Introduction
	Background to the study
	Objectives of this study
	Problems to be investigated

	Literature Review
	Model Design
	Pre-processing
	Dataset

	Design
	Overview
	Data Pipeline
	Data Collection
	Data Partitioning
	Image Pre-processing

	Model Design
	3D Subject-level Model
	2D Subject-level Model
	2D Slice-level Model

	Additional Specifications
	Hyperparameters
	Activation Gradient Visualizaton

	Implementation
	Pre-processing
	Data Preparation
	Data Formatting

	Model Training
	Data Partitioning
	Model Implementation

	Evaluation Step
	Recording Results
	Activation Gradient Visualisation

	Results
	Model Assessment
	3D CNN Classification
	2D Subject-level CNN Classification
	2D Slice-level CNN Classification
	Training Time Cost

	Training Parameters
	Pre-processing Steps
	Over-fitting Correction

	Model Activations

	Discussion
	3D versus 2D Classification
	Classifying MRI Brain Scans
	Machine Learning and Medical Prediction

	Conclusions
	Conclusions For the Experiment
	Conclusions in General
	Shortcomings
	Future Improvements

