
Dissertation presented for the degree of Master of
Science in Engineering

Gesture Recognition with
Application to Human-Robot

Interaction

Ra’eesah Mangera

February, 2015

University of Cape Town
Department of Electrical Engineering

Supervisors: A/Prof. F. Nicolls (UCT) and
Mr F. Senekal (CSIR)

Declaration

I declare that this dissertation and the work presented in it are my own work.
I confirm that:

1. This work was done mainly while registered for a MSc at the University of
Cape Town.

2. I have not previously, in its entirety or in part, submitted this dissertation for
obtaining any qualification.

3. Where I have consulted the published works of others, this is always clearly
attributed.

4. I have acknowledged all main sources of help.
5. Parts of this work has been published as:

a) R. Mangera, “Static Gesture Recognition using Features Extracted from
Skeletal Data”, Proceedings of the Twenty-Fourth Annual Symposium
of the Pattern Recognition Association of South Africa, Aukland Park,
South Africa, 2013.

b) R. Mangera, F. Senekal, and F. Nicolls, “Cascading Neural Networks for
Upper-body Gesture Recognition”, International Conference on Machine
Vision and Machine Learning (MVML), Prague, Czech Republic, 2014.

Signature

Date

i

Abstract

Gestures are a natural form of communication, often transcending language barriers.
Recently, much research has been focused on achieving natural human-machine in-
teraction using gestures. This dissertation presents the design of a gestural interface
that can be used to control a robot. The system consists of two modes: far-mode
and near-mode. In far-mode interaction, upper-body gestures are used to control
the motion of a robot. Near-mode interaction uses static hand poses to control a
graphical user interface. For upper-body gesture recognition, features are extrac-
ted from skeletal data. The extracted features consist of joint angles and relative
joint positions and are extracted for each frame of the gesture sequence. A novel
key-frame selection algorithm is used to align the gesture sequences temporally. A
neural network and hidden Markov model are then used to classify the gestures.
The framework was tested on three different datasets, the CMU Military dataset
of 3 users, 15 gestures and 10 repetitions per gesture, the VisApp2013 dataset with
28 users, 8 gestures and 1 repetition/gesture and a recorded dataset of 15 users, 10
gestures and 3 repetitions per gesture. The system is shown to achieve a recognition
rate of 100% across the three different datasets, using the key-frame selection and a
neural network for gesture identification. Static hand-gesture recognition is achieved
by first retrieving the 24-DOF hand model. The hand is segmented from the image
using both depth and colour information. A novel calibration method is then used
to automatically obtain the anthropometric measurements of the user’s hand. The
k-curvature algorithm, depth-based and parallel border-based methods are used to
detect fingertips in the image. An average detection accuracy of 88% is achieved.
A neural network and k-means classifier are then used to classify the static hand
gestures. The framework was tested on a dataset of 15 users, 12 gestures and 3
repetitions per gesture. A correct classification rate of 75% is achieved using the
neural network. It is shown that the proposed system is robust to changes in skin
colour and user hand size.

iii

Acknowledgements

First and foremost, all praise is due to Allah, the most merciful, the most gracious.
I would like to thank my supervisors Dr Fred Nicolls and Fred Senekal for their
guidance, advice and encouragement throughout my MSc studies. I have benefited
immensely from their knowledge. Special thanks to Benjamin Rosman for helping
with the editing, I really appreciated your discerning eye.
My deepest gratitude to my parents and sister for their unwavering support, motiv-
ation and encouragement.
I would also like to thank my colleagues at MIAS and everyone else who volunteered
and allowed me to record them for my data set.

v

Contents

Declaration i

Abstract iii

Acknowledgments v

1. Introduction 1
1.1. Gestures . 1
1.2. Gesture Recognition . 2
1.3. Human-Robot Interaction . 4
1.4. System Overview . 4
1.5. Contribution of this Dissertation . 6
1.6. Dissertation Overview . 7
1.7. Summary . 8

2. Literature Review 9
2.1. Sensors used for Gestural Interfaces 9

2.1.1. Vision-based Sensors . 10
2.2. Gesture Recognition Methodology . 11

2.2.1. Feature Extraction . 11
2.2.2. Gesture Classification . 12

2.3. Gesture Recognition for Human-Robot Interaction 12
2.3.1. Hand Gesture Recognition . 13
2.3.2. Body Gesture Recognition . 14
2.3.3. Discussion . 15

3. Data Acquisition 17
3.1. Publicly Available Datasets . 17

3.1.1. Dynamic Gesture Sets . 17
3.1.2. Hand Gesture Datasets . 19

3.2. Recorded Dataset . 19
3.2.1. Gesture Lexicon . 20
3.2.2. Recording . 22

4. Hand Gesture Feature Extraction 23
4.1. Hand Segmentation . 24

4.1.1. Skin Detection . 24

vii

4.1.2. Forearm Separation . 26
4.1.3. Results . 27

4.2. High Level Feature Extraction . 31
4.2.1. Hand Model . 32
4.2.2. Fingertip Detection . 35
4.2.3. Hand Calibration . 38
4.2.4. Joint Angles . 39
4.2.5. Results . 41

4.3. Summary . 44

5. Body Gesture Feature Extraction 47
5.1. Data Collection . 47
5.2. Joint Angles . 48

5.2.1. Joint Angles . 48
5.2.2. Relative Joint Positions . 49
5.2.3. Combined Feature Vector for upper body Gesture Recognition 51

5.3. Gesture Spotting . 51
5.4. Temporal Alignment of Gesture Trajectories 53

5.4.1. Dynamic Time Warping . 53
5.4.2. Key-Frame Selection . 54
5.4.3. Results . 54

5.5. Summary . 55

6. Gesture Classification 59
6.1. Body Gesture Classification . 59

6.1.1. Neural Networks . 59
6.1.2. Hidden Markov Models . 62
6.1.3. Results . 65

6.2. Hand Gesture Recognition . 69
6.2.1. K-means Classification . 69
6.2.2. Neural Network for Hand Gesture Recognition 72
6.2.3. Results . 73

6.3. Summary . 77

7. System Results 79
7.1. System Implementation . 79

7.1.1. Viola-Jones Face Detector . 79
7.1.2. Close-Far Boundary Detection 80

7.2. Results . 80
7.2.1. Hand Gesture Recognition . 81
7.2.2. Body Gesture Recognition . 83

7.3. Summary . 84

viii

8. Conclusion and Future Work 85
8.1. Conclusion . 85
8.2. Future Work . 86

Bibliography 87

A. Anatomical Terms of Motion 97
A.1. Overview . 97
A.2. Flexion-Extension . 98
A.3. Abduction-Adduction . 98
A.4. Pronation-Supination . 98
A.5. Opposition-Reposition . 99

B. Ethics Clearance 101

C. Calculating the Intersection of a Circle and Line 105

D. Live Testing Videos 107
D.1. Hand Gesture Recognition . 107
D.2. Upper Body Gesture Recognition . 107

ix

List of Figures

1.1. A typical gestural interface for communicating with a robot. 2
1.2. The phases in the gesture recognition component of a gestural interface. 3
1.3. System overview for a human robot interaction (HRI) system. 5

3.1. Static hand gestures for close HCI in the recorded dataset. 20
3.2. Dynamic far-gestures in the recorded dataset. 21

4.1. Overview of hand gesture feature extraction. 23
4.2. Hand segmentation approach. 24
4.3. Segmentation of the forearm from the hand. 26
4.4. Dataset used to evaluate segmentation performance. 28
4.5. LCE and GCE for different images in the dataset. 29
4.6. Comparison of three different segmentation methods. 30
4.7. Incorrect classifications using the explicit skin-colour segmentation. . 31
4.8. Skeletal anatomy and model of the hand. 32
4.9. Finger angle definitions. 33
4.10. Valid fingertip region. 34
4.11. Angle definitions of the thumb. 35
4.12. Examples of the different states that a finger can occupy. 36
4.13. Illustration of the k-curvature algorithm. 36
4.14. Tuning the angle threshold τ . 37
4.15. Calculating the initial position of the MCP joint. 38
4.16. Method for calibrating the user hand parameters. 39
4.17. Geometry of the finger in the sagittal plane. 40
4.18. The relationship between R and θ3. 41
4.19. Sample ground truth images. 41
4.20. The percentage of finger tips identified correctly. 42
4.21. The average pixel error. 43
4.22. Samples of incorrect hand models due to incorrect fingertip detection. 44
4.23. Samples of incorrect hand models due to incorrect segmentation. . . . 44
4.24. Samples of correctly generated hand models. 44

5.1. NiTE Skeleton. 48
5.2. Joint angles calculated for upper body gesture recognition. 49
5.3. Calculation of the elbow angle. 50
5.4. Relative position of the hand and elbow with respect to the head. . . 50
5.5. Velocity profile of the left and right hands. 52

xi

5.6. Illustration of the key-frame selection algorithm. 55
5.7. log SSE between the average trajectory of each gesture and each ges-

ture sample before and after alignment. 56
5.8. Alignment between gesture sequences. 57

6.1. Basic neural network containing three layers. 60
6.2. Neural network structure used to determine the gesture side using

feature defined in Section 5.3. 62
6.3. Gesture trajectory of seven samples of the “Attention” gesture. 63
6.4. Cluster centres for the dynamic gesture dataset. 65
6.5. Precision results for the CMU dataset. 66
6.6. Recall results for the CMU dataset. 67
6.7. Confusion matrices for the CMU Dataset. 67
6.8. Comparison of the results obtained by Celebi et al. [28] and those

obtained using the presented approach. 68
6.9. Comparison of the results obtained if no distinction between the left

and right is made and if a distinction is made in the VisApp dataset. 69
6.10. Confusion matrix for the CSIR Gesture Dataset using the 10/20 ANN. 70
6.11. Illustration of determining the number of clusters. 72
6.12. Correct classification rate using an ANN as a classifier. 73
6.13. Confusion matrices when using an artificial neural network as a clas-

sifier for three different feature vectors. 74
6.14. Relationship between the pixel error and the classification accuracy. . 75
6.15. Comparison of the classification accuracy using a K-means classifier

for three different feature vectors. 75
6.16. Confusion matrices for the K-means classifier. 76
6.17. Comparison of the precision and recall for a K-means classifier and

ANN. 76

7.1. Distance boundaries for human-robot interaction. 80
7.2. Calibration GUI of the Rock, Paper, Scissors game 82
7.3. Description of the GUI elements for the Rock, Paper, Scissors game. 82
7.4. Misclassification’s in the Rock, Paper, Scissors demo video. 83

A.1. The anatomical planes and terminology used to describe motion. . . . 97
A.2. Flexion-Extension. 98
A.3. Abduction-Adduction. 99
A.4. Pronation-Supination. 99
A.5. Opposition of the thumb. 99

C.1. Intersection of line and circle. 105

xii

List of Tables

3.1. Publicly available dynamic gesture datasets 17
3.2. Publicly available hand pose datasets. 19
3.3. Specifications of the Asus Xtion Pro Live Sensor 22

4.1. Ranges of motion of the hand joints. 34

5.1. Description of the elements in the feature vector used for upper body
gesture recognition. 51

7.1. Specifications of the computer used for implementing and testing the
gesture recognition system. 79

xiii

1. Introduction

Scientists predict that within the next 20 to 30 years robots could be a part of our
daily lives, assisting humans with various tasks [1]. Already, they can be found vacu-
uming homes, mowing the lawn and more recently assisting customers in stores [2].
Therefore, it is essential that the communication between robots and humans, or
human-robot interaction (HRI), be as natural as possible. To this end, there has
been much research focused on imbuing robots and computers with the ability to
understand human gestures. A gestural interface for controlling computers was en-
visioned as early as 1980, with researchers at MIT developing a voice and gesture
interface to move shapes about a display screen [3].

This chapter introduces the basic terminology and definitions that are used in this
work (Sections 1.1 to 1.3), presents an overview of the designed system in Section 1.4,
and provides an analysis of the contributions in Section 1.5. An outline of the
dissertation is provided in Section 1.6.

1.1. Gestures

A gesture is defined as a bodily action that conveys intent, or a movement that is
deliberate or communicative [4]. Gestures can be performed using any part of the
body, from the arms, as in a waving gesture, the head, as in a nod, or even the
face. Gestures are thought to be one of the most natural forms of communication,
particularly in noisy environments or where speech is not possible. There are four
main classes of gestures: deictic, iconic, metaphoric, and beat gestures [5]. Deictic
gestures are pointing gestures. They refer to physical locations in space. Iconic
gestures represent the features of an action or event. An example of an iconic
gesture is holding your hands together to form a pistol whilst describing shooting
something. Gestures that represent concepts with no physical form are metaphoric,
such as the waving of hands to emphasise the complexity of what is being discussed.
Various speakers use beat gestures such as banging a fist on a table top to emphasise
points. These categories are not mutually exclusive, and gestures may typically fall
into more than one category. Gestures used in gesture interfaces are usually iconic,
metaphoric or deictic.

A further classification is made between static and dynamic or temporal gestures.
Static gestures occur at a single instance in time and are also known as poses. They

1

Chapter 1 Introduction

can be captured by a single image. Dynamic or temporal gestures occur over a
certain period of time and can be represented by a sequence of images or a video.
This work focusses on both dynamic gestures, performed using the upper body, and
static hand gestures where most of the information lies in the hand configuration.

1.2. Gesture Recognition

Gesture recognition is one of the core components of what developers refer to as
a perceptual computer interface. It is the detection and interpretation of gestures,
using a computing device. A typical gestural interface consists of of a sensor, com-
parator and actuator. The sensor measures the environmental state such as light,
proximity or motion. The sensor sends the information it receives to a comparator
which is usually a computer algorithm. The comparator analyses the information,
extracting features that are then used to classify the gesture based on prior know-
ledge. Based on the class of gesture a specific action is performed by an actuator
which operates in the environment. See Figure 1.1 for a depiction of the full system.

Figure 1.1. A typical gestural interface for communicating with a robot.

The comparator component of the system can be further split into two phases — a
training phase and a prediction phase.
Typically the sensors stream data continuously. Therefore the raw data must be
preprocessed to extract meaningful information, such as the poses or motion of the
hands, from the signal. A set of features which uniquely define a gesture are then
extracted. This is known as feature extraction. These features may be the position of
body joints, the shape of the hand, or the joint angles. A set of gestures, referred to

2

1.2 Gesture Recognition

as the gesture lexicon, is defined. The features of these gestures are learnt during the
training phase and used to train a model which is later used for gesture classification.
In the prediction phase the real time sensor data is also preprocessed, features are
extracted and these are classified based on the trained model. The output of the
classifier then dictates what action should be taken. This flow of information is
depicted in Figure 1.2.

Figure 1.2. The phases in the gesture recognition component of a gestural interface.

According to Wachs et al. [6], the basic requirements for any gesture recognition
system are:

1. Responsiveness: the system must be able to recognise gestures almost instant-
aneously (a maximum delay of 45 ms) as a slow system is impractical.

2. User adaptability and feedback: the majority of gesture recognition systems
have a defined number of gestures which the system is able to identify. These
gestures are programmed through an offline classifier algorithm. The challenge
is to provide a classifier that is able to generalise a gesture from minimal
training samples.

3. Learnability: the gestures used to control the system should be easy to re-
member and execute.

4. Accuracy: the system must be able to first detect if the hand or body is within
the view, track the hand from frame to frame, and match the gesture to learnt
templates (recognition).

5. Intuitiveness: gestures used in the system should be intuitive in order to mimic
communication between humans. For example a closed fist with the thumb
up could represent “OK”. This is strongly dependent on cultural background
and experience.

6. Lexicon size: a lexicon is a dictionary of the gestures used in the system.
Ideally increasing the number of signs in the system should affect the perform-
ance and accuracy of the system as little as possible.

3

Chapter 1 Introduction

7. Garment and environment requirements: the system should not require the
user to wear additional aids or to be wired to a device, and in terms of back-
ground and illumination the environment should not need to be fixed.

8. Reconfigurability: hands are different in size, shape and skin colour, thus the
gesture recognition system should be invariant to these variations.

9. Mobility: many systems are dependent on the assumption that the user stands
in a fixed position. For many applications this is not a valid assumption.

10. Unintended gestures: the system must be able to distinguish between inten-
tional and unintentional gestures.

These ten requirements are integral to the development of a robust, reliable and
accurate gesture recognition system.

1.3. Human-Robot Interaction

Human-robot interaction (HRI) is the study of communication between robots and
humans. It exists at the intersection of the fields of artificial intelligence, computer
vision, robotic design, social science, and the humanities. Robots are increasingly
becoming involved in more complex tasks and activities, sometimes requiring inter-
action with people to complete these tasks. This has given rise to the field of HRI,
the study of how to design and implement robotic systems that can interact with a
human environment in a safe and efficient manner.
HRI is a challenging field because the system needs to be able to perceive, understand
and react to human activity in real time. Challenges include:
• There is a limitation on the size of the gesture recognition system, it must be

able to fit on the robot.
• As both the robot and the human are mobile, static backgrounds cannot be

used for segmentation and a a fixed camera location cannot be assumed.
• The robot mobility could lead to drastic changes in environmental conditions,

such as lighting.
• The system must be able to work in real-time. Ideally, there must not be a

perceivable lag between the user performing a gesture and the robot response.
These challenges should be taken into consideration when designing a HRI system.

1.4. System Overview

An overview of the system is depicted in Figure 1.3. This diagram shows the integ-
ration of the components presented in the subsequent chapters.
There are two main components:

4

1.4 System Overview

Figure 1.3. System overview for a human robot interaction (HRI) system.

• An upper body gesture recognition system that uses joint angles extracted
from the NiTE skeleton as input to a neural network that classifies gestures
performed using either the left or right arm.
• A hand gesture recognition system that uses the position of the fingertips to

calculate the hand joint angles, which are subsequently used as input to a
k-means classifier that determines the static hand pose.

First, a Viola-Jones face detector is used to determine if a user is looking at the
robot. Detection of a frontal face triggers the gesture recognition system. The
Viola-Jones face detector is described in Section 7.1.1.
The depth map is then used to calculate the distance between the robot and user.
If this distance is greater than a threshold (described in Section 7.1.2) then the
upper body gesture recognition is triggered, otherwise hand gesture recognition is

5

Chapter 1 Introduction

performed. The distance is chosen based on the maximum distance that a user will
be able to see the GUI attached to the robot.

If the upper body gesture recognition system is triggered, the velocity of the left
and right hands are calculated. These velocities are used as an input to a neural
network that is then used to determine the gesturing side, as described in Sec-
tions 5.3 and 6.1.1. The relative position and joint angles of the arm are extracted
from the user skeleton as they are robust to variations in scale and rotation. These
features, described in Chapter 5, are then temporally aligned as described in Sec-
tion 5.4. Alignment is necessary to ensure that the most important frames from
the gesture sequence are input to a classifier. Two classifiers are compared for up-
per body gesture recognition — a neural network presented in Section 6.1.1 and a
hidden Markov model presented in Section 6.1.2. These classifiers are chosen based
on their ability to model temporal data such as gesture sequences. It is found that
the neural network achieves a higher classification compared to the hidden Markov
model. Based on the classified upper body gesture, the robot performs an action
defined in Figure 3.2.

For hand gesture recognition, the hand is segmented from the image as illustrated
in Figure 4.2. The hand segmentation combines depth, colour and hand orientation
information improving segmentation performance. The characteristics of fingers,
namely the curved fingertips, parallel borders and the fact that tips always occur
as depth differences are used to detect fingertips as described in Section 4.2.2. If a
fingertip cannot be detected then it is assumed that the finger is closed (fully flexed),
and use the joint angles associated with a closed finger. Inverse kinematics presented
in Section 4.2.1 are used to calculate the finger joint angles. Joint angles are ideal
features as they are rotation and scale invariant implying that they can be used for
a broad range of users. The use of hand joint angles fulfils the reconfigurability re-
quirement for a successful gesture recognition system. The hand gesture is classified
using the classifiers outlined in Section 6.2. Two classifiers are compared— a neural
network and a k-means classifier. The performance of the neural network exceeds
that of the k-means classifier. The hand gesture is used to control a graphical user
interface with actions depicted in Figure 3.1.

In addition, there is a hand calibration component that automatically calibrates the
finger joint lengths. This is needed to initialise the hand model. Hand calibration
is illustrated in Figure 4.16.

1.5. Contribution of this Dissertation

This dissertation describes the design of a gestural interface which can be used to
interact with a robot, both when it is far away (far mode) and close to the user
(near mode). This interaction is achieved by capturing human behaviour using a
depth sensor, as follows. First, all users in the camera’s field of view are segmented

6

1.6 Dissertation Overview

from the image stream. Frontal face detection is then employed to determine if a
user is looking directly at the robot. This is used as a trigger gesture, activating the
interaction module. Depending on the distance of the user from the robot, either
the near mode or the far mode module is invoked.

Far-mode interaction is used to control the movements of the robot, such as turn or
go away, and near-mode is used to interact with a display that is attached to the
robot. In far-mode interaction, the position of the upper body joints are recorded. A
gesture spotting module is used to determine whether a gesture is being performed
or not as well as its time boundaries. A neural network is then used to assign a class
label to the gesture. In response to this label, the robot performs a particular task.

In near-mode interaction the hand is segmented from the image. All fingertips are
then identified, including those that are close together or not separated from the
palm. The fingertip locations and the palm and wrist position are used to solve the
inverse kinematics and estimate the finger joint angles for the hand. These angles
are the features utilised by a neural network to classify the static hand gesture.

In short, the main contributions of this dissertation are:

• Proposing a complete gestural interface that can be used for both near and
far interaction with a mobile robot.

• Successfully detecting dynamic upper body gestures for a variety of users
without prescribing which side of the body should be used for the gestures
and no additional training and calibration.

• Successfully detecting hand poses by identifying the location of all fingertips.
Using inverse kinematics to determine joint angles increases the robustness of
the system so a variety of users can use it. In addition, the high-level features
can be used to describe a large number of hand poses.

The proposed system is evaluated using both publicly available datasets, as well as
a recorded dataset.

1.6. Dissertation Overview

The remainder of the dissertation is organised as follows:

Chapter 2 presents a review of the existing literature in the field of gesture re-
cognition with emphasis on gesture recognition for human-robot interaction (HRI).
The various approaches employed in each phase of a gesture recognition system are
discussed, highlighting the strengths and weaknesses for each method.

Chapter 3 details the acquisition of data used to evaluate the designed system. It
contains a full review of existing datasets and a description of the dataset collected
for both upper body gestures and hand gestures.

7

Chapter 1 Introduction

Chapter 4 discusses the features extracted for hand gesture recognition. This in-
cludes the strategy used for hand segmentation and the method used to extract hand
joint angles from an image. Results for the hand gesture features are presented.
Chapter 5 presents the feature extracted for upper body gesture recognition in par-
ticular the extraction of joint angles and a novel key-frame selection method used to
temporally align gesture sequences. The temporal alignment is quantitatively and
qualitatively evaluated and the results of the evaluations are reported.
Chapter 6 discusses the theory of hidden Markov models (HMMs) and artificial
neural networks (ANN) that are used for gesture classification. The application of
these algorithms to gesture recognition is presented.
Chapter 7 provides an evaluation of the integrated gesture recognition system. The
results for the integrated system are presented as well as a summary of the results
for each component of the system.
Chapter 8 concludes the dissertation providing a description of possible future work
and underlining the main contributions.

1.7. Summary

This chapter introduced the terminology used throughout the dissertation. An over-
view of the designed system was provided and the contributions of this work were
highlighted. An outline of the dissertation was also provided.

8

2. Literature Review

Gesture recognition is a growing research area due to its wide range of applications,
ranging from medical systems and assistive technologies, entertainment, crisis man-
agement, disaster relief, human-robot interaction and many more. Among these
areas, the most common application is human computer interaction (HCI). It aims
to replace the traditional keyboard and mouse interfaces with a more natural in-
terface. A large amount of the research in gesture recognition is dedicated to sign
language translation, including recognition of both static alphabets and dynamic
word gestures.

This survey is organised as follows. The typical sensors used are presented in Sec-
tion 2.1. Feature and classification methods employed are discussed in Section 2.2.
A review of gesture recognition systems used for HRI can be found in Section 2.3.
Dynamic upper body gesture systems and static hand pose systems are examined
independently.

2.1. Sensors used for Gestural Interfaces

Two main types of sensors are used for gesture recognition, glove-based sensors and
vision-based sensors.

In glove-based systems the user is required to wear a glove fitted with sensors such
as accelerometers and flex sensors [7, 8, 9, 10, 11, 12, 13]. These devices directly
measure the hand or arm joint angles and spatial positions. The gloves may be
wired or wireless. The wired system requires the user to be in close proximity to
the computer. Glove-based systems restrict natural gestures as users are required
to wear additional aids that may hamper natural movements. These systems also
require the glove to be calibrated for each new user, limiting the reconfigurability of
the interface. However, they are typically more accurate.

Whilst there are various application specific uses for the glove-based systems, they
are not a “natural” method of interacting with a robot. This shortfall has driven a
large proportion of gesture recognition research toward vision-based systems. These
approaches use single or multiple cameras and more recently depth sensors such as
the Microsoft Kinect to capture and interpret gestures. The advantages of vision-
based sensors are numerous: they are simple, low cost and do not need to be adjusted
for each user. However, they suffer from the limitation that the gesture must be

9

Chapter 2 Literature Review

performed in the camera’s field of view in order to be detected. In addition, depend-
ing on the distance of the user from the camera the hand may only be represented
by a few pixels, making it challenging to extract useful features for hand gesture
recognition.

2.1.1. Vision-based Sensors

Vision-based sensors use single or multiple cameras and depth sensors such as the
Kinect to capture the gesture. Vision-based sensors suffer from the limitation that
the gesture must be performed in the camera’s field of view in order to be detected.

2.1.1.1. RGB Camera

Prior to the release of the Microsoft Kinect, vision-based gesture recognition used
ordinary colour or greyscale images. These typically focused on static and dynamic
hand gestures. Skin colour is used as a cue to segment the hand from the image [14,
15, 16, 17]. However, as there is no depth information available, the majority of
these systems require simple, solid backgrounds [18, 19, 14, 20] or that the user
wear a coloured or textured wrist band to aid in segmentation [21].

Another method of gesture recognition using colour images, presented by Drake [22]
and Davis and Shah. [23], requires that the user wear a glove where each fingertip
or hand joint is a different colour, making identification easier.

One of the challenges of using colour as a feature is its sensitivity to illumination
changes. This makes robustness difficult to achieve, motivating the use of depth
sensors together with the colour images.

2.1.1.2. Depth Sensors

Since the release of the Microsoft Kinect in 2010, much of the gesture recognition
work has been based on depth sensors. These sensors provide depth information in
addition to the RGB image captured by a traditional camera. The depth information
aids in hand segmentation [24, 25, 26, 27] and the OpenNI and NiTE SDKs provide
skeleton information [28, 29, 30, 31, 32]. This has made depth sensors ideal for
gesture recognition. A thorough review of gesture recognition is provided by Suarez
and Murphy [33]. A sensor similar to the Kinect is produced by Asus. This sensor
is known as the Asus Xtion Live Pro and has the same operating principle as the
Kinect. However it does not require an external power supply.

In 2013, Intel released a depth sensor for HCI known as the Creative Senz3D camera.
This sensor is intended for closer range, from 0.01 m to 1 m. It uses time-of-flight to
recover depth information from the scene rather than structured light employed by

10

2.2 Gesture Recognition Methodology

the Asus and first generation Kinect sensors. Given the novelty of the sensor there
are few works that use it [34, 35].

The second generation of Kinect sensors that are shipped with the Xbox One, also
now use time-of-flight for depth recovery. This sensor was made available to de-
velopers in late 2014; therefore there is not much literature available [36]. However,
it reportedly has a higher depth resolution and range compared to the first genera-
tion Kinect.

Another relatively new gesture device is the Leap Motion sensor. This sensor is
also for close-range HCI, and is capable of tracking all fingers with an accuracy
of up to a 100th of a millimetre over a range of 1 m. The operating principle
is similar to that of the Asus, projecting a distinct IR pattern and using this to
recover depth. Several works that use Leap Motion for HCI are presented in the
literature [37, 38, 39, 40, 41].

Whilst the earlier generation of depth sensors had several flaws, including low sensor
depth resolution and reduced close-range depth recovery for applications where the
user is further than 1 m, the Kinect is best for HCI. The ideal system would therefore
combine two sensors, one for close interaction and another for far interaction.

2.2. Gesture Recognition Methodology

A Gesture recognition algorithm consists of two phases: a training phase and a pre-
diction phase. During both phases features are extracted from the data to reduce the
dimensionality of the feature space. Feature extraction is discussed in Section 2.2.1.
The extracted features are then used to classify the gesture. Gesture classification
methods are presented in Section 2.2.2.

2.2.1. Feature Extraction

Feature extraction refers to the process of extracting discriminative characteristics
from an image that can uniquely identify a gesture. There are two main approaches
used for feature extraction, appearance-based and model-based.

Appearance-based methods use image features to model the appearance of the hand
and arm. For hand gesture recognition, typical features extracted include the shape
of the hand [31, 42, 43, 44], the hand area [24] and other less intuitive features such
as SURF [45], SIFT [46, 47], Haar-like features [48, 49, 50] and HOG features [51, 52,
53]. The feature space is often reduced using techniques such as PCA [15, 31]. Other
higher-level features such as the location of the finger-tips [54, 55, 56] and counting
the number of extended fingers [57, 58, 26] can also be used for appearance-based
feature extraction. The majority of these approaches can only identify fingertips

11

Chapter 2 Literature Review

associated with extended fingers and are unable to detect fingertips if they are not
on the external contour of the hand.

Model-based approaches rely on recovering the 3D kinematic model of the hand
and trying to estimate all the parameters by comparing input images with the 2D
appearance of the hand model. The advantage of this approach lies in the fact that
many hand gestures can be defined, however these approaches are resource intensive
and typically cannot operate at speeds faster than 15 frames per a second [59]. They
may also require special hardware such as a GPU (graphical processing unit) [59,
60]. The most common approach to model-based hand pose estimation is to use
synthetically generated hand poses to train a classifier and has been adopted by
several researchers [61, 62, 63, 64].

2.2.2. Gesture Classification

Pattern recognition is a technique for learning and recognising patterns that exist
in a dataset. They are flexible as they can often learn in a changing environment.
This is not possible for rule-based systems that can only operate in the situation for
which they have been designed. For this reason the majority of gesture recognition
systems employ pattern recognition classifiers.

During the training phase, a machine learning algorithm uses training data to infer
the structure of the data to enable classification to take place. There are many dif-
ferent techniques that can be used for pattern recognition. These include artificial
neural networks (ANNs) [46, 65], histogram based features [19], fuzzy clustering al-
gorithm [10], hidden Markov models (HMMs) [17, 44], adaboost [46], support vector
machines [66, 43], decision trees [67], and dynamic time warping (DTW) [28]. The
classification technique selected depends on the amount of training data available,
the training and classification time and the ability of the learnt model to generalise
any sample. For example, neural networks and HMMs are only suitable when there
is a large amount of training data whereas DTW can create a model from just a
few samples. In contrast, HMMs can correctly classify gestures even when there is
a large intra-class variance. This is not possible with DTW as several templates are
then needed.

2.3. Gesture Recognition for Human-Robot
Interaction

The majority of existing systems only allow for robot interaction at either close
distances, where the hand shape is used as an input, or further away, where features
are extracted from the position of the human body, particularly the upper body.
These are termed hand gesture recognition (HGR) and body gesture recognition

12

2.3 Gesture Recognition for Human-Robot Interaction

(BGR) respectively. The subsequent sections provide a review of these two gestural
interfaces. In the field of human robot interactions (HRI) many systems have been
developed for robotic control using gestures [68, 69, 70, 71, 72, 73, 74, 75, 65, 46,
76, 77, 78, 79].
What follows is a review of the most recent approaches to using gestures for HRI.

2.3.1. Hand Gesture Recognition

Hand gesture recognition is commonly used to control a computer interface in the
near vicinity of the user. The hand is found in the input image and features are
extracted, most often based on shape. Below is a review of some recent approaches
used for hand gesture recognition.
A video camera is used to capture RGB images by Hasanuzzaman and Ueno [74].
The hand is extracted from the image using skin colour as a feature. Eight static
gestures are classified using principal component analysis.
Yin and Xie [68] use skin colour and a restricted coulomb energy (RCE) neural
network to segment the hand from an image. They count the number of fingers that
are extended and the distance from the arm to train another RCE neural network
to classify static hand gestures. For a gesture lexicon of size eight, an accuracy of
95% is achieved.
Thakur [72] define a lexicon of five gestures, the numerals 1 through 5. The sys-
tem captures images in real-time using a colour camera. The Y-Cb-Cr colour
space is used to isolate the hand from a uniform background using Otsu segmenta-
tion [80]. Peak and valley points are identified in the image using the k-curvature
algorithm [81]. The numbers of peaks and valleys are used for gesture classification.
An accuracy of 95.2% is achieved. This system is limited to a distinct number of
gestures (six) and cannot be extended to include more as only the number of fingers
is used as a feature.
Trigueiros et al. [73] use depth information to segment the hands from the image.
They assume that the hands are the closest object to the camera. The orientation
of the hand is then determined using a vector from the mid-point of the hand to
the furthest point on the hand contour. The hand orientation is used to control
the orientation of a robot whilst it is moving, and the distance between the hand
centroid and image determine the robot’s linear velocity.
Van den Bergh et al. [75] use the shape of the hand to control a robot. Rather than
extracting high-level features, all intensity values in the depth and colour image
within a bounding box around the hand are used. Average neighbourhood margin
maximisation (ANMM) is used to reduce the dimensionality of the feature space. A
nearest neighbour classifier is used to classify four gestures.
Wang and Wang. [46] extract scale invariant feature transform (SIFT) features from
a greyscale hand image. Adaboost is used to classify a total of three gestures—

13

Chapter 2 Literature Review

palm, fist and six. They achieve an accuracy of approximately 96%. The primary
advantage of the system is robustness to viewpoint changes that may occur. Re-
cognition accuracy is still high even when the hand is rotated up to 40 degrees.
However, the lexicon size is small, and the hands are captured against a uniform
background.
Xu et al. [76] present an online dynamic hand gesture recognition system. After
segmenting the human body from a depth image, they use the chamfer distance to
match a hand template to edges in the image. A skin colour model is then used to
refine the hand region. The hand centroid is tracked through several image frames
and the orientation and hand location are used for the final feature vector. Hidden
Markov models are trained to distinguish between gestures. Two different datasets
are used to evaluate system performance, one with six gestures and another with
ten gestures. An average accuracy of 98.1% on dataset 1 and 96.1% on dataset 2 is
obtained. The gestures are used to control the motion of a SIATRob robot.
Yang et al. [78] use a geometric feature to classify a total of six hand gestures. Skin
colour is used to detect the hand in the colour input images. The distance between
the hand centre and all points on the hand contour are then extracted. The number
of peaks and valleys in this signal are used to classify a gesture. High accuracies
of between 95% to 100% are achieved for three different datasets. However, like
Thakur [72] the gesture set is limited to six as more gestures cannot be characterised
using the defined feature vector as only the number of fingers are counted.

2.3.2. Body Gesture Recognition

Body gesture recognition is typically used to control the motion of a robot. Gestures
are used to determine whether the robot should turn left or right, come closer or
pick an object up.
Waldherr et al. [65] define a gesture lexicon of four whole body gestures. They
also use skin colour to track the person but include shirt colour in their tracking
algorithm. An ANN is used to train and classify the gestures. Their system achieved
a gesture recognition rate of 97%. This system is not scale invariant and requires
the person to be a specified distance from the robot.
Yeasin and Chaudhuri [82] describe a gesture recognition system which uses a video
camera to capture temporal gestures and use these to control a robot. The system
then finds the temporal signature of the gesture by dividing the gesture into subsets
such that for each subset motion is only performed in one direction. The order of
the directions determines the gesture performed. Finite state machines are used
to classify the gesture. The system was found to perform well on synthetically
generated data, but yields poor results for real images as the motion sequence is not
as uniform.
Zhao et al. [69] use gestures to call an elderly service robot. Rather than using the

14

2.3 Gesture Recognition for Human-Robot Interaction

traditional skeleton-based approach for feature extraction they include an octree-
based method that operates when skeleton generation fails. The head and hand are
segmented from the image, and various geometric properties are extracted. They
validate the approach for a number of different situations where the skeleton gener-
ation would fail, for example if the user is sitting on a sofa. By fusing the Kinect
skeleton and octree approaches, an accuracy of over 95% is achieved for four calling
gestures.
Kopanivčáková and Virčíková [83] develop a system to record dynamic gestures and
discuss how these can be applied to human-centred robotics. The system captures
the Kinect skeleton joints, and DTW is used to recognise gestures. However, the
system is not user-independent and training data must be added for new users.
Yang et al. [77] estimate the 3D pose of the human body in a stereo camera video
sequence. The relative angular position of each joint with respect to the mid-back
is used as a feature vector in each frame. These are concatenated over the video
sequence to form the full feature vector. A HMM is used for gesture classification.
The overall system recognition accuracy is 94.9% for 14 gestures.

2.3.3. Discussion

In summary, few gesture recognition systems are robust enough to meet all the
requirements for a real-life HRI system. The most common shortcoming is the
inability to adapt to any user and the small lexicon size due to the types of features
extracted. This shortcoming is especially true for HGR systems.
Whilst an attempt is made at incorporating domain knowledge into hand gesture re-
cognition, the inability of most systems to identify fingertips even when they are not
extended reduces the lexicon size. Tracking methods are successful at reconstructing
the full 27-DOF hand model. However, they are computationally expensive, requir-
ing graphical processing units (GPUs), extensive training sets or are unable to run
in real time.

15

3. Data Acquisition

This chapter provides a brief overview of the publicly available gesture recognition
datasets, namely hand pose and body gesture datasets, in Section 3.1. In addition,
the recording of the hand pose and dynamic gesture datasets which is for evaluating
the designed system in Section 3.2 is described.

3.1. Publicly Available Datasets

There are datasets that have been made available for download allowing authors
to compare results with a common benchmark. Section 3.1.1 presents the dynamic
gesture sets available and Section 3.1.2 presents the static hand pose datasets avail-
able.

3.1.1. Dynamic Gesture Sets

There are a number of publicly available datasets for gesture recognition, captured
using a variety of sensors. These are summarised in Table 3.1. The MSRC-Kinect

Table 3.1. Publicly available dynamic gesture datasets

Source Dataset Abbreviation

1 Fothergill et
al. [84]

Microsoft Research Cambridge-12
Kinect Gesture

MSRC-
Kinect

2 Lin et al. [85] Keck Gesture dataset Keck
3 Guyon et al. [86] ChaLearn dataset 2012 ChaLearn2012
4 Escalera et al. [87] ChaLearn dataset 2014 ChaLearn2014
5 Celebi et al. [28] VisApp2013 Gesture dataset VisApp2013
6 Bernstein et

al. [30]
Cornell Military Gesture Dataset CMU

dataset [84] consists of 12 full-body gestures that relate to gaming, music, and dance.
The main purpose of the work was in investigating methods for instructing users for
gesture performance. The dataset consists of 30 subjects recorded using a Microsoft
Kinect. There are total of 6244 gesture instances, approximately 500 per class. The

17

Chapter 3 Data Acquisition

dataset provides only the skeleton positions of 20 joints in the human body at a
sample rate of 30 Hz with approximately 2 cm accuracy in joint positions. The
environmental conditions are not specified. The majority of participants were right
handed and male. As this dataset is not restricted to only upper body gestures, it
is not used for performance evaluation of the proposed system.
The Keck dataset [85] consists of 14 military signals performed using only the upper
body. The dataset was collected using a standard colour VGA camera with a resol-
ution of 640 × 480. The environmental conditions for the training set and test set
were different. For the training set the camera remained in a fixed position, and the
background is static and uniform. In the test dataset the camera was moving, and
the background contains clutter and other moving objects. There are 21 instances
of each gesture: nine training and twelve testing. Each gesture was performed seven
times by three different participants. This dataset has no depth information avail-
able; therefore, it could not be used for testing the proposed system.
The main purpose of the ChaLearn2012 dataset [86] was a competition for one-
shot training: the problem of learning from only one training sample. The gesture
lexicon is vast, with 86 different gestures covering a wide range of application areas
including Italian sign language, diving signals and many more. The gestures are
captured using a Kinect camera with a resolution of 240× 320, at a low frame rate
of just ten frames per second. There was a total of 20 participants, recorded in
front of a fixed camera. No information is provided with regard to the background
and lighting conditions. Both the RGB and depth data were provided to challenge
participants. However, joint positions were not recorded and therefore this dataset
could not be used for testing.
The ChaLearn2014 dataset [87] focused on recognising gestures from several in-
stances performed by different users. The gesture lexicon consists of 20 Italian
cultural signs performed using the upper body. The data is collected using a Kinect
sensor and includes the depth map, RGB image and skeleton information for 7754
gesture instances. There are approximately 388 samples per gesture.
The VisApp2013 dataset [28] consists of eight dynamic gestures performed using
the upper body. There are four unique gestures, performed using the left and right
sides of the body. The skeleton from the Kinect SDK is recorded. The SDK tracks
15 joints in the human body in real time at a frame rate of 30 frames per second
(fps). Unlike the majority of datasets the data was recorded using users who were
unfamiliar with the system, resulting in a dataset which is noisy in terms of gesture
starts, gesture ends, and gesture duration. There are only 28 samples of each gesture,
eight samples for training and twenty for testing. This dataset is used to evaluate
the performance of the body gesture recognition system.
The CMU dataset [30] consists of fifteen dynamic gestures, namely, “action”, “ad-
vance”, “attention”, “charge”, “cover”, “crouch”, “rally”, “shift fire”, “point of
entry”, “confused”, “hurry”, “sneak”, “out of action” and “come”. The gestures
are performed using the right arm and the skeleton from the NiTE SDK is recorded.

18

3.2 Recorded Dataset

Three users perform each of the 15 gestures ten times giving a total of 450 gesture
instances. The dataset is recorded using a Kinect sensor and the joint positions of
the body are saved. This dataset is used to evaluate the performance of the body
gesture recognition system.

3.1.2. Hand Gesture Datasets

The majority of publicly available hand gesture sets are recorded using only an
ordinary camera. Thus, there is no depth information available. The datasets that
have both colour and depth information are summarised in Table 3.2.

Table 3.2. Publicly available hand pose datasets.

Source Dataset Abbreviation

1 Ren at al. [42] NTU Microsoft Kinect Hand
Gesture dataset

NTU

2 Tompson et al. [88] NYU Hand Pose dataset NYU
3 Qian et al. [70] Microsoft Research Asia Hand Pose

dataset
MSRA

The NTU dataset [42] contains both colour and corresponding depth from the Kinect
sensor. It contains ten gestures from ten subjects with ten repetitions per gesture.
Therefore there are one thousand gesture instances. However, no skeleton tracking
information is provided and the dataset cannot be used for evaluating the hand
gesture algorithms.
The NYU dataset [88] consists of colour and depth images from three different views,
one frontal and two side. There are only two users recorded, and rather than defining
specific gestures the dataset contains a wide range of hand poses. As there is no
ground truth, this dataset is hard to use for effective evaluation.
The MSRA dataset [70] is recorded using an Intel Creative depth camera. This
dataset consists of six subjects performing various rapid gestures, with ground truth
data for 2400 frames. Rather than a gesture label, the ground truth is the position
of the five fingertips and the wrist. However, as there are no gesture labels this
dataset cannot be used to evaluate the designed gesture recognition system.

3.2. Recorded Dataset

To evaluate the performance of the gesture recognition system a dataset is recorded.
This dataset is particularly important for the hand gestures as none of the publicly
available datasets are suitable. Ethics clearance obtained from the CSIR and UCT
can be found in Appendix B.

19

Chapter 3 Data Acquisition

3.2.1. Gesture Lexicon

Two types of gestures will be used for robotic control — far-gestures and near-
gestures. Far-gestures are used to control the motion of the robot whilst Near-
gestures are used to control the computer interface attached to the robot.

The hand poses are seen in Figure 3.1. The twelve near-gesture actions defined are:

• Calibrate: obtain user finger lengths and calibrate the hand model.

• Mouse: control the position of the mouse on the screen using the user’s hand.

• Select: select the item where the mouse pointer is located.

• Pan Left: move the screen display to the left.

• Pan Right: move the screen display to the right.

• Scroll Up: move the screen display up.

• Scroll Down: move the screen display down.

• Numbers 1–5 : used to enter numbers.

Figure 3.1. Static hand gestures for close HCI in the recorded dataset.

The following ten far-gesture actions are defined. The corresponding gestures can
be seen in Figure 3.2:

• Start/ Wake Up: this will wake up the robot. Once this gesture has been
performed the robot will await further instructions.

• Stop: stop the robot motion. This gesture should function as a dead man
switch/emergency stop in that it overrides all previous commands.

• Come Here: indicate to the robot to come towards the user. The robot will
stop at a specified distance from the user.

20

3.2 Recorded Dataset

• Go Away: instruct the robot to move away from the user.
• Move Left: indicate the robot should move left from its current position.
• Move Right: specify that the robot must move right from its current position.
• Follow Me: indicate that the robot should follow the gesturing subject.
• Take a Picture: command the robot to use the on-board camera to take a

picture of the current scene.
• Wander : indicate that the robot should wander around the room.
• Teleop: activate a joystick that can be used to control a robot.

Figure 3.2. Dynamic far-gestures in the recorded dataset.

21

Chapter 3 Data Acquisition

3.2.2. Recording

An Asus Xtion Pro Live sensor, which is similar to the Kinect, was used to record
the dataset. This sensor does not require external power and has a better near-
field range than the Kinect. By emitting a distinct IR pattern and capturing the
distortion of its image the sensor can return 3D coordinate information. Note that
the distance to the camera plane is returned, rather than the actual distance to the
object from the sensor. The specifications of the sensor can be seen in Table 3.3.

Table 3.3. Specifications of the Asus Xtion Pro Live Sensor

Characteristic Sensor Specification
Camera Resolution 1280 ×1024

Frame Rate 30 Hz
IR Depth Resolution 640× 480

Field of View 70◦ (Diagonal), 50◦ (Horizontal), 45◦(Vertical)
Range 0.8 – 3.5 m
Power Single USB 2.0

A total of 15 subjects were recorded in a laboratory environment. For the dynamic
far-gestures, participants stood approximately 1.5 m from the sensor and for the
static close hand gestures users were seated approximately 0.7 m from the sensor.
Subjects were instructed using pre-recorded videos of the gesture that they were
asked to replicate.

22

4. Hand Gesture Feature Extraction

Hand gestures have a broad range of application from sign-language recognition to
controlling computer interfaces. Recognising hand gestures is challenging due to the
high dimensionality of the problem implying that there is a large number of possible
hand configurations. These difficulties make it very hard, if not impossible, to write
software by hand to do this, and so pattern recognition approach is adopted. This
approach involves solving several problems such as:

• automatic hand detection and segmentation, and

• extracting features that have a large inter-class variation but a small intra-
class distribution (i.e. can effectively distinguish between different classes of
gestures), and can be used to describe a large subset of gestures.

In this chapter, solutions to these problems are proposed. First, the use of depth
and colour information for hand segmentation are discussed in Section 4.1. The
extraction of high-level features, namely the joint angles for the hand, are presented
in Section 4.2. An overview of hand gesture feature extraction is shown in Figure 4.1.
The results for hand gesture feature extraction are also presented.

Figure 4.1. Overview of hand gesture feature extraction.

23

Chapter 4 Hand Gesture Feature Extraction

4.1. Hand Segmentation

The first step is detecting and isolating the hand from the rest of the image. This
is a challenging task as the appearance of the hand is not consistent: as people
have different skin colours, lighting changes in the environment, and the hand has
a high number of degrees of freedom (DOF). Therefore, hand segmentation is often
accomplished using skin colour models to account for variations in skin colour and
lighting, and depth thresholds to account for the high DOF. The approach taken
for hand segmentation is shown in Figure 4.2. The initial position of the hand is
obtained from the NiTE skeleton, available from the NiTE SDK [89]. This is used
to get the skin colour and hand depth of the user. The colour of all pixels in the
image is then compared to the user skin colour to obtain a colour mask. Depth
thresholding is employed to get a depth mask. If a pixel is within the correct depth
range and matches the user skin colour then it is a hand pixel.

Figure 4.2. Hand segmentation approach.

4.1.1. Skin Detection

Skin segmentation is the process of classifying a pixel as being skin coloured or not.
However, the appearance of skin is significantly affected by changes in illumination,
and different cameras can produce different colours even for the same individual.
Additionally, there is a large variation in the skin tones of people from around the
world. Any skin detection algorithm must be robust to these perturbations.

One of the challenges in segmenting the hand from an image is its size compared to
the rest of the image. Even at distances as close as half a metre, the total area of the
hands is only approximately 10% of the image. Therefore, the hand position from
the NiTE SDK is used to extract a region of interest where the hand is expected to
be. The size of the ROI is proportional to the distance of the user from the camera,
the closer the user, the larger the ROI. All subsequent processing is then applied
only on the ROI, decreasing the processing time.

24

4.1 Hand Segmentation

Researchers often use colour to segment human skin in pictures [26, 90, 44, 14, 32] .
The two primary approaches to colour-based skin segmentation are a model-based
approach and a deterministic approach. In a model-based approach, skin colour is
modelled using pattern recognition techniques, such as Gaussian mixture models
and naive Bayesian methods, and for each pixel the probability of it being skin is
calculated. The deterministic approach uses explicitly-defined rules to determine
whether a pixel is skin or not.

Both of the skin segmentation approaches can operate over a broad range of colour
spaces. A full review of the various colour spaces that are commonly used for skin
detection are provided in the work presented by de Campos [91].

As the system is required to work for a variety of users of different skin colours, an
approach that adapts to each user is proposed. This approach relies on the initial
hand position from the NiTE SDK. The colour of this pixel (the initial position of
the hand) is compared to the intensity of other pixels in the image to classify if a
pixel is skin coloured or not. The LAB colour space is used for colour comparisons
as it is perceptually uniform, and a standard metric can be used to measure the
similarity between two colours.

Like the majority of colour spaces, the CIE Lab colour space has three channels.
The L channel for luminance, indicating how light or dark a pixel is, and two colour
channels a and b. Unlike other colour spaces, perceived colour differences corres-
pond to distances [92]. This implies that the similarity between two colours can be
calculated in a way that resembles human colour similarity judgement. Therefore,
all pixels in the ROI that are similar to the colour of the initial hand point can be
found.

Let the colour of the initial hand position be (Li, ai, bi). To then determine whether a
pixel at position j with colour (Lj, aj, bj) is classified as skin, the Euclidean distance
is calculated and if it is less than a threshold τLab,as shown in Eq. (4.1),√

(Li − Lj)2 + (ai − aj)2 + (bi − bj)2 < τLab, (4.1)

it is classified as skin. Another method for hand segmentation is depth thresholding.
The initial position from the NiTE SDK can also be used to threshold the image
based on the distance of the hand from the camera. Let the depth of the initial
hand position be di. For any pixel with depth dj it then belongs to the hand if the
absolute difference between the distances is less than a threshold τd, or

|di − dj| < τd. (4.2)

Morphological operators, such as dilation and erosion, are used to fill in holes in
the hand contour. These may occur at dark regions in the hand where there are
shadows present.

25

Chapter 4 Hand Gesture Feature Extraction

4.1.2. Forearm Separation

If the user is wearing short sleeves then the forearm is also segmented as part of the
hand. To segment only the hand an approach similar to the one presented by Wang
and Xu [93] is adopted. This method relies on the following assumptions:

1. The wrist is located on a line tangent to the maximum inscribed circle.

2. The forearm is perpendicular to the wrist line.

3. The wrist point is located on the maximum inscribed circle at the point where
the tangent is perpendicular to the forearm orientation.

4. The diameter of the palm is greater than the diameter of the wrist.

These assumptions are depicted in Figure 4.3. The grey area is the maximum
inscribed circle. The green point indicates the centre of this circle which corresponds
to the centre of the palm. The wrist point, indicated in red, is located at a tangent
to the inscribed circle (blue line) perpendicular to the orientation of the forearm.

Figure 4.3. Segmentation of the forearm from the hand.

As noted above, the palm centre is the centre of the maximum inscribed circle. This
is the circle with maximum area that fits exactly into a given set of points or contour.
The maximum inscribed circle can be found using the distance transform [94]. First
determine the distance to the closest pixel with intensity zero for each pixel in the
image using the distance transform. The centre point is then given by the point in
the hand that maximises the distance to the closest hand boundary.

The orientation is calculated as in Liang et al. [95] where it is assumed that the
direction of the forearm corresponds to the eigenvector with the largest eigenvalue
of the covariance matrix of the hand contour.

Consider a binary image that contains the hand mask found as described in Sec-
tion 4.1.1. Contours are retrieved from the binary image using border following [96].
The covariance matrix of the points on the contour with the largest area is calcu-
lated. The covariance matrix is a measure of the correlation between x and y and

26

4.1 Hand Segmentation

for 2D data, and is calculated as

Σ =
[
σ(x, x) σ(x, y)
σ(x, y) σ(y, y)

]
. (4.3)

The covariance matrix can also be represented as a function of its eigenvectors and
eigenvalues

Σ = V LV −1, (4.4)

where V is a matrix whose columns are the eigenvectors of Σ and L is a diagonal
matrix whose non-zero elements are the corresponding eigenvalues. This form of
the covariance matrix is obtained using singular value decomposition (SVD). The
eigenvectors represent the directions of the variance of data, and the eigenvalues rep-
resent the magnitude of the variance in those directions. Therefore, the eigenvector
corresponding to the largest eigenvalue represents the direction of greatest variation
in the data. This eigenvector corresponds to the orientation of the forearm, as it is
assumed that the area of pixels associated with the forearm will be much more than
those belonging to the hand.

4.1.3. Results

To evaluate the performance of the segmentation scheme, a dataset of 10 images
was used. These can be seen in Figure 4.4.

The dataset consists of users with different skin colours and hand sizes to test the
robustness of the segmentation algorithm. RGB images, depth images and the NiTE
hand position were captured using an Asus Xtion Pro Live sensor. Ground truth,
containing only the hands in the image was manually marked to aid in quantitative
assessment of the segmentation performance. The global-consistency error (GCE)
and local-consistency error are used to evaluate the segmentation performance [97].
For a given pixel pi consider the hand segments S1 and S2 in the two images I1 and
I2 that contain that pixel. If one segment is a subset of the other, then the pixel
lies in an area of refinement and the error should be zero. However, if there is no
subset relationship then the error should be nonzero. The local refinement error is
defined in the work by Martin et al. [97] as

E(S1, S2, pi) = |U(S1, pi)− U(S2, pi)|
|U(S1, pi)|

, (4.5)

where U denotes the set of pixels in S1 that contain pixel pi, and |x| is the cardinality
of set x. Considering only two segments, background and skin, and the user-defined

27

Chapter 4 Hand Gesture Feature Extraction

Figure 4.4. Dataset used to evaluate segmentation performance. (a) Original
colour image. (b) Manually segmented ground truth image. Black indicates pixels
belonging to the hand. (c) Results of the segmentation algorithm. White indicates
pixels belonging to the hand. (d) Ground truth and segmented images overlayed.
Green is correct classifications, orange is background pixels classified as skin (SF),
and red is skin pixels classified as background (BF).

28

4.1 Hand Segmentation

ground truth Eq. (4.5) can be simplified to the following four equations:

E1 = SF
NB

(4.6)

E2 = BF

BT +BF

(4.7)

E3 = BF

NS

(4.8)

E4 = SF
SF + ST

. (4.9)

The number of background pixels classified as skin is SF , ST is the number of skin
pixels classified as skin, BF is the number of skin pixels classified as background, BT

is the number of true background pixels and NB and NS are the number of back-
ground and skin pixels in the ground truth image. The local and global consistency
errors are as defined in the work by Martin et al. [97]:

GCE(S1,S2) = 1
n

min
{∑

i

E(S1, S2, pi),
∑
i

E(S2, S1, pi)
}

(4.10)

LCE(S1, S2) = 1
n

∑
i

min {E(S1, S2, pi), E(S1, S2, pi)} (4.11)

where n is the total number of pixels.
The error measures for the 10 images in the dataset can be seen in Figure 4.5. The
amount of overlap between segmentation’s can be seen in Figure 4.4.

Figure 4.5. LCE and GCE for different images in the dataset.

As expected LCE ≤ GCE as GCE is a tougher measure of segmentation performance
as all local refinements must be in the same direction. Details of these measures can
be found in the work by Martin et al. [97]. Note that all the segmentation results
have a GCE less than 3% and LCE less than 2%. False positives, or background

29

Chapter 4 Hand Gesture Feature Extraction

pixels classified as belonging to the hand, contribute the majority of the error due
to the larger appearance of the hand in the depth image. In Figure 4.4, for per-
sons (6) and (8) the wrist is larger than the palm, resulting in a larger inscribed
circle. This error depends on the user’s clothes. A comparison to an explicit skin
colour segmentation [90] or segmentation based on depth-based methods is shown
in Figure 4.6. The poor performance of the explicit skin colour-based method is
due to skin-coloured objects in the environment. The combined method and the
depth-based methods perform equally well in terms of both the LCE and GCE per-
formance. In addition, the rule is unable to classify all types of skin colours, as
illustrated in Figure 4.7. Skin coloured objects in the background are segmented
(shown in orange) and the rule is unable to cope with a wide range of skin colours
(shown in red). Depth, colour and forearm separation yield the best results.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9 10

Lo
ca

l
C

o
n

si
st

e
n

cy
 E

rr
o

r(
LC

E)

Image Number

Combine

Explicit Skin

Depth

(a) LCE performance.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10

G
lo

b
al

 C
o

n
si

st
e

n
cy

 E
rr

o
r(

G
C

E)

Image Number

All

Explicit Skin

Depth

(b) GCE performance.

Figure 4.6. Comparison of three different segmentation methods.

30

4.2 High Level Feature Extraction

Figure 4.7. Incorrect classifications using the explicit skin-colour segmentation.

4.2. High Level Feature Extraction

As stated in Section 2.2, there are two main approaches to gesture recognition,
appearance-based and model-based methods. Appearance-based approaches are lim-
ited in that they cannot be easily extended, whereas model-based approaches are
typically resource intensive methods. However, as the requirements in Section 1.2
state, for a gesture recognition system to be successful it must be reconfigurable.
Therefore, the model-based approach is ideal as it is easily extensible. This is the
approach adopted in this work.

After the hand has been segmented from the image using depth thresholding and
skin colour analysis, a hand model should be created. The parameters of the model
will then be used to determine which gesture is being performed. The approach
presented uses the hand depth image and inverse kinematics to determine the hand
pose, combining the approaches of Mo and Neumann [98] and Chua et al. [99].
The depth image is used to locate seven characteristic points on the hand: the five
fingertip positions, the palm centre, the wrist centre, and the forearm orientation.
Using inverse kinematics the pose of the fingers are calculated using the fingertip
position and finger lengths. The pose of the hand can be determined using the
forearm orientation. The following steps describe the process:

• The user is asked to present their hands to the camera with the palms facing
forward and the fingers spread apart.

• A calibration routine is used to calculate the finger lengths and the palm and
wrist size.

• The user performs a pose.

• The palm centre and wrist positions are calculated.

• The forearm is segmented from the hand, and the forearm orientation is cal-
culated as described in Section 4.1.2.

• The hand depth image is used to locate fingertip positions.

• Inverse kinematics is used to calculate the pose of each finger. These para-
meters describe the hand.

31

Chapter 4 Hand Gesture Feature Extraction

4.2.1. Hand Model

The hand model is formed by examining the skeletal anatomy of the hand as shown
in Figure 4.8a.

(a) Skeletal anatomy of the hand. (b) DOF of the hand model.

Figure 4.8. Skeletal anatomy and model of the hand.

The bones of the hand are naturally divided into two groups: the thirteen bones
which make up the palm; and the digits, each consisting of three phalangeal seg-
ments (except for the thumb that consists of only two phalangeal bones). The
proximal row of the carpals articulates with the radius and ulna from the arm.
There are six degrees of freedom (DOF) possible at this joint, namely, flexion-
extension, abduction-adduction and pronation-supination, as well as translation in
the x, y and z directions. These terms are explained in Appendix A. For each of
the digits the functional anatomy is the same, with the exception of the thumb.
The metacarpals articulate with both the distal row of the carpals and the proximal
phalanges. The metacarpal-phalangeal (MCP) joint has two DOF: flexion-extension
and abduction-adduction. At each interphalangeal joint, i.e. the joint between the
proximal and middle phalanges (PIP) and the joint between the middle and distal
phalanges (DIP), there is only one DOF, namely flexion-extension. At the joint
between the carpal and metacarpal of the thumb (CMC), there are three DOF:
flexion-extension, abduction-adduction and opposition. Images describing the pos-
sible motions can be found in Appendix A, and Figures A.2 to A.5.

There is a total of 27 DOF for the hand. These are summarised in Figure 4.8b.
However, the movements of the fingers are largely interdependent, so the number of
DOF can be significantly reduced. This is achieved by imposing the following six
constraints on the hand model, that capture the motion dependencies.

(Finger angles are as defined in Figure 4.9).

32

4.2 High Level Feature Extraction

(a) Angles θ1, θ2 and θ3 between the phalanxes of
the finger in the sagittal plane.

(b) Parameter θ2 is defined
as the angle between two
adjacent fingers in the
coronal plane.

Figure 4.9. Finger angle definitions.

Constraint 1 The angle between the distal phalanx and proximal phalanx are
strongly correlated. This correlation is given by

θ4 = 2
3θ3, (4.12)

where the angles are as defined in Figure 4.9. This constraint reduces the DOF of
each finger from four to three.

Constraint 2 As observed by Kuch and Huang [100], the angles of the metacarpal
joint and the proximal phalanx are directly proportional. This means that as the
finger flexes towards the palm the angle of abduction decreases. More precisely, the
relationship between these two joints is defined by

θ1 = kfθ3, 0 ≤ kf ≤
1
2 . (4.13)

For dynamic cases kf = 0.5, but this does not hold for static analysis. Therefore, k
is adjusted in the range [0, 0.5] as in the work by Kuch and Huang [100].

Constraint 3 It was noted by Lee and Kunii [101] that there is little abduction-
adduction possible at the metacarpal joint of the middle finger. Therefore θ2 = 0
for the MCP joint of the middle finger.

33

Chapter 4 Hand Gesture Feature Extraction

Constraint 4 As mentioned in Section 4.2.1, the thumb has 5 DOF. However for
model simplification an angle for the degree of opposition is not defined. Rather a
binary variable is defined to determine if the thumb is extended across the palm or
not.

Constraint 5 Based on anatomical studies there are typical ranges of motion
(ROM) defined for each angle. These are seen in Table 4.1.

Table 4.1. Ranges of motion of the hand joints.

θ1 θ2 θ3 θ4

Thumb 70◦ 70◦ 90◦ -
Index/Ring/Pinky 90◦ −15◦ to 15◦ 100◦ 70◦

Middle 90◦ 0◦ 100◦ 70◦

In addition, limits are imposed on the length between the finger joints. Studies by
Buryanov and Kotiuk [102] show that the segments of the finger are defined by the
following ratio:

l1 : l2 : l3 = 0.48 : 0.3 : 0.22 (4.14)

where l1 is the length of the proximal phalanx, l2 is the length of the middle phalanx
and l3 is the length of the distal phalanx. Therefore given the length of the finger,
the phalanx lengths can be calculated.
These constraints impose an area where the fingertip can be located. For example,
consider the case where the MCP is located at position (0, 0) in the sagittal plane.
The valid region where the tip may occur is shown in Figure 4.10. Therefore,
inverse kinematics can be used to calculate the finger joint angles given the fingertip
position.

Figure 4.10. Valid fingertip region where the fingertip can occur if the MCP joint
is located at position (0, 0) in the sagittal plane. Parameter l is the length of the
finger.

34

4.2 High Level Feature Extraction

Constraint 6 As noted, the thumb has an additional degree of freedom allowing it
to move along a non-trivial axis. However, through experimental observations done
by Rijpkema and Girard [103], the kinematics of the thumb can be represented by
the following two equations:

θ1 = 2
(
θ3 −

1
6π
)

(4.15)

θ2 = θ4
7
5 (4.16)

where θ1 and θ2 are as defined in Figure 4.11.

Figure 4.11. Angle definitions of the thumb.

4.2.2. Fingertip Detection

To determine the position of the fingertips an approach similar to that present by
Mo and Neumann [98] is used. In this work, the authors use low resolution depth
images to recognise hand poses by decomposing the problem into finger states. That
is, they look at the pose of each finger (up, forward, bent, closed) and the relationship
between fingers (separated, together, cross, loop).
Fingers have the following characteristics:
• They have curved/rounded tips.
• Fingertips are located at regions where there is a difference in depth.
• A finger can be decomposed into two parallel lines and a rounded tip.

Using these characteristics three methods of finding fingertips in an image are
defined:
• Profile curvature-based: used for fingers that are extended.
• Depth-based: used for fingers where the fingers are flexed and the finger and

palm region are merged in the hand profile.

35

Chapter 4 Hand Gesture Feature Extraction

• Parallel border-based: used when fingers are together.
Examples of each of these cases can be seen in Figure 4.12.

(a) Extended. (b) Flexed. (c) Together.

Figure 4.12. Examples of the different states that a finger can occupy.

Extended fingers can be located in the hand image using curvature based techniques.
As noted, fingers typically have curved tips or peaks. Therefore, the k-curvature
algorithm presented by Segen and Kumar [81] is used to identify valleys and peaks
in the contour of the hand.
Given a set of points that describe the hand contour, the algorithm identifies points
that occur at valleys and peaks. For each point in the set of points, the angle
between the two lines that start at the point in question and end k points away in
either direction is calculated. If the angle is less than a threshold then the point
is marked as a candidate fingertip. To delineate between valleys and peaks the
distance between the points and the palm centre is calculated, and only points that
are further away than the radius of the palm are kept. The approach is illustrated
in Figure 4.13. The primary disadvantage of this approach is the adjustment of the
parameter k. Depending on the size of the hand in the image, the number of points
checked should differ. This is accounted for by using k = 0.5rp where rp is the radius
of the palm found in Section 4.1.2. This is based on human hand proportionality
studies [102]. These show that on average the radius of the palm is approximately
80% of the length of the fingers. Candidates close to one another are clustered, and
the centroid is used as the fingertip candidate.

Figure 4.13. Illustration of the k-curvature algorithm. In the left image, the point
is at a peak whereas the image on the right depicts the case where the point is not
a peak/valley point.

36

4.2 High Level Feature Extraction

Tuning the Angle Threshold The k-curvature algorithm requires two parameters,
k and the angle threshold τ . Whilst k is related to the length of the fingers, τ
measures the curvature of the finger. This parameter was set using a subset of
the hand gesture dataset. Using hand-labelled ground truth data the percentage
of fingers correctly identified and the percentage of false positives was calculated
for each image. The true positive rate (TPR) and false positive rate (FPR) as a
function of τ can be seen in Figure 4.14. Ideally, the true positive rate (TPR) must
be 100% and the false positive rate must be 0%. Therefore τ = 0.1 is used as a
higher TPR is favoured and an FPR of less than 15%.

Figure 4.14. Tuning the angle threshold τ .

If the fingers are not extended depth-based finger detection is employed. Unlike the
vast majority of works, fingertips that are not extended can be detected using the
approach proposed by Mo and Neumann [98]. Fingertips are always located where
there is a noticeable depth difference between neighbouring pixels. Therefore, search
the depth images for pixels where this occurs:

D = {p|p ∈ H ∩∆} (4.17)

∆ := (∃q ∈ H, ||p− q||2 = 1 ∩ z(q)− z(p) > δ (4.18)

where z(x) is the depth at point x and H is the set of points in the hand region.
Curvature-based fingertip detection is then used to identify fingertips on the depth
boundaries. If no fingertips are found, the parallel border-based approach is used.
The parallel-border based method uses the parallel borders of fingers to detect finger-
tips. The Hough line detection algorithm is used to find all parallel depth boundaries
in the image. Candidate fingertips are then located between two parallel boundaries.
The number of fingers is allocated based on the distance between the left and right

37

Chapter 4 Hand Gesture Feature Extraction

borders using finger widths obtained from calibration. For example, suppose that
the distance between the left and right borders is 4 cm and it is known that the
index and middle fingers are 2 cm, two fingers will be placed between these borders.

4.2.3. Hand Calibration

During hand calibration the initial position of the MCP joint is obtained, the length
of the fingers and the width of the fingers.
The MCP joint is located between the metacarpal bone and the phalanges on the
palm of the hand. Ideally this point is located on a line parallel to the finger bound-
aries, passing through the fingertip at the base of the finger. These characteristics
are used to calculate the initial position of the MCP joint. The algorithm is illus-
trated in Figure 4.15.

Figure 4.15. Calculating the initial position of the MCP joint corresponding to
the second finger from the left.

The intersection between the line and the circle is calculated as shown in Ap-
pendix C. This yields two points where the line intersects the palm circle. The
point with the smaller y value is the MCP joint as it is assumed that the fingers
are above the wrist joint. This is a valid assumption as the flexion-extension of the
wrist joint is not included in the hand model.
Whilst the proportions of the finger and hand segments are robust enough for general
use, it is still necessary to obtain the finger lengths and widths for each individual.

38

4.2 High Level Feature Extraction

This is done using a calibration scheme depicted in Figure 4.16. The user holds
up their hand with the fingers spread as far apart as possible. Curvature-based
finger detection is then used to locate the five fingertips in the image. These po-
sitions are converted from the 2D image positions to 3D world coordinates using
the depth image and intrinsic camera parameters. By assuming that the fingers are
straight and the rotation of the hand is zero, the standard proportions provided in
Section 4.2.1 can be used to calculate the 3D coordinates of the hand joints and the
joint lengths. These parameters are required for the hand model. This automatic
calibration routine makes the system robust over a broad range of users, even if they
have not been used to train the system.

Figure 4.16. Method for calibrating the user hand parameters.

4.2.4. Joint Angles

Inverse kinematics is used to obtain the angles of the finger joints as presented by
Chua et al. [99]. Consider a single finger in the sagittal plane. The distance between
the tip T and the wrist joint W , is defined as R. The geometry of the finger in the
sagittal plane is shown in Figure 4.17 [99].

The geometry is represented by a pentagon and several triangles, therefore the fol-
lowing set of equations is obtained:

WP2 = l20 + l21 − 2l0l1 cos(180− θ1) (4.19)

39

Chapter 4 Hand Gesture Feature Extraction

Figure 4.17. Geometry of the finger in the sagittal plane.

PT2 = l22 + l23 − 2l2l3 cos(180− θ4) (4.20)

cosα = l21 + WP2 − l20
2l1WP2 (4.21)

cos β = l22 + PT2 − l23
2l2PT2 (4.22)

γ = 180− θ3 − α− β (4.23)

R2 = WP2 + PT2 − 2(WP)(PT) cos γ. (4.24)

From the calibration phase of the system the finger lengths l0 to l3 can be obtained.
In addition, once the fingertips are identified using the algorithms provided in Sec-
tion 4.2.2 the 3D position of T is available. It is noted by Chua et al. [99] that there
is a relationship between θ3 and R, the distance between the wrist joint and the
fingertip. This relationship is shown in Figure 4.18. Therefore, given R the value of
θ3 can be found. The constraints given in Eq. (4.12) and Eq. (4.13) are then used
to calculate θ1 and θ4. It was noted in Section 4.2.1 that the value of k is variable.
To obtain a valid solution, the value of k is varied such that the finger pose is valid.
To find the value of θ2 it is assumed that this angle can be represented by a single
link between the MCP joint and the tip as in the work by Chua et al. [99]. Therefore,
given the fingertip position and the MCP position from calibration this value can
be calculated.
Given the position of the fingertips in 3D world coordinates, and the finger joint
lengths obtained from the calibration module, the joint angles of the fingers that
uniquely represent the pose of the hand can be calculated. For hand gesture recog-
nition a feature vector of dimension 21 is created for each image. This is used as
input to the classifier discussed in Section 6.2.

40

4.2 High Level Feature Extraction

Figure 4.18. The relationship between R and θ3.

4.2.5. Results

4.2.5.1. Fingertip Detection

To evaluate the performance of the fingertip detection algorithms the recorded hand
gesture dataset is used. Fingertips were manually marked in the colour images, red
was used to mark extended fingers on the external contour of the hand and green
to mark fingers that are not on the external hand contour. Samples of the ground
truth images can be seen in Figure 4.19. Extended fingers are marked in red and
bent or closed fingers are marked in green.

Figure 4.19. Sample ground truth images.

This allows us to evaluate the accuracy of the k-curvature algorithm and the depth-
based fingertip detection. Two measures are used:

41

Chapter 4 Hand Gesture Feature Extraction

• The percentage of fingers identified

A = nd
nt
, (4.25)

where nd is the number of fingers detected and nt is the number of finger tips
in the ground truth image.
• The average pixel error

Pe =
∑N
i=1 ||Xd −Xt||2

N
(4.26)

where N is the number of fingertips in the image, Xd is the location of the
detected fingertip and Xt is the ground truth location of the fingertip.

The percentage of fingertips correctly identified can be seen in Figure 4.20.

Figure 4.20. The percentage of fingertips identified correctly. F.

For extended fingers the k-curvature algorithm is robust, with only a small per-
centage of errors in the dataset. It can be seen that on average 88% of fingers are
detected in the gesture images. The average for curvature detected fingers is 90.7%
and the depth detection rate is 85.7%. This indicates that the detection methods
achieve quite robust results.
The average pixel error can be seen in Figure 4.21. The error is larger for the depth

42

MangeraR
Highlight

4.2 High Level Feature Extraction

detected fingers as the internal contour is not as well defined as the external contour.
Some error is expected as the ground truth fingertips were marked by hand.

Figure 4.21. The average pixel error between the ground truth fingertips and the
detected fingertips.

For gestures that contain primarily extended fingers, such as the Calibration, Four
and Five gestures, the error is less than 5 pixels. A small error in this range is
expected as the ground truth fingertips were marked manually. This shows that
the k-curvature detection algorithm is a robust and accurate method for detecting
fingers that are extended and do not coincide with the internal contour of the hand.
Gestures which contain tips in the hand contour have a larger error of approximately
9 pixels. Due the lower resolution of the depth sensor internal contours in the hand
are not as smooth as the external contour, which are generated using both depth
and colour. This results in more tips being detected. Fingertips are then matched
to the closest MCP position and this could result in a larger error.

4.2.5.2. Hand Model

The estimated hand model was qualitatively compared to the pose of the hand
and number of hand models that correctly matched the gesture were counted. On
average, 80.8% of hand models were correctly generated using the fingertip positions
and inverse kinematics. The average accuracy is in line with the average percentage

43

Chapter 4 Hand Gesture Feature Extraction

of fingers detected, as the primary cause for incorrect hand models was incorrect
fingertip detection (examples seen in Figure 4.22) and large pixel errors. Another
cause of incorrect hand models is the segmentation of the hand from the forearm.
In particular, the forearm of one user was not segmented from the hand, resulting in
an incorrect hand model. Examples can be seen in Figure 4.23. Figure 4.24 shows
samples of correctly generated hand models.

Figure 4.22. Samples of incorrect hand models due to incorrect fingertip detection.

Figure 4.23. Samples of incorrect hand models due to incorrect segmentation.

Figure 4.24. Samples of correctly generated hand models.

4.3. Summary

In this chapter the methods employed for hand gesture feature extraction were
introduced. First, the hand is segmented from the image using skin colour and

44

4.3 Summary

depth thresholds. This approach was shown to have a small GCE of 3% compared
to using only colour information where the GCE is over 14%. A novel method
of calibrating the hand model for each user is presented. The fingertips are then
located using the characteristics of fingers, namely the rounded tips, the difference
in depth and the parallel borders. The curvature-based detection method is robust
with an accuracy of approximately 91% and a small error of 5 pixels. The depth-
based method achieves a fingertip detection accuracy of 86%, however, the error is
larger due to the low resolution of the depth sensor. The locations of the fingertips
are used to calculate the joint angles using inverse kinematics, that impose a number
of constraints on valid hand poses. As opposed to other approaches that count the
number of extended fingers, this method does not limit the gesture lexicon size.
On average 80.8% of hand models were correctly generated. Higher results can be
achieved if a higher resolution depth sensor is used or the methods of detecting
fingertips are improved.

45

5. Body Gesture Feature Extraction

Real-world gesture recognition involves users who are untrained in gesture perform-
ance, resulting in data that is noisy in terms of gesture starts, gesture trajectory
and gesture ends. For this reason, focus is placed on upper body gestures where
the gesture duration and side of the body used are not prescribed. In such cases
the features extracted from the non-gesturing hand may skew the results as each
user may not keep this hand in the same position, resulting in poor classification
accuracy.

The approach used to address the noisy gesture trajectories is presented in this
chapter. First joint angles are extracted using joint positions from the NiTE skeleton
as described in Section 5.2. The joint angles are used as an input to the classifier
for upper body gesture recognition. The velocity-based feature vector is described
in Section 5.3. This feature vector is used to determine which side of the body is
being used for gesture performance. Finally, key-frame selection using the euclidean
distance metric and dynamic time warping are presented in Section 5.4. These
algorithms are used to temporally align the gesture trajectories, ensuring that all
trajectories have the same duration. The results of the temporal alignment are
reported in Section 5.4.3.

5.1. Data Collection

The Asus Xtion Pro Live depth sensor generates depth maps, RGB images and audio
streams without requiring the user to wear any additional aids [104]. To interface
with the device, the OpenNI [105] and NiTE Software Development Kits (SDKs) [89]
are used. These SDKs provide a control API to the end user by utilising the depth,
RGB and audio information received from the depth sensor. In particular, the NiTE
library includes a skeleton tracker [89]. The skeleton model generated by NiTE is a
tree graph whose nodes correspond to individual joints in the human body, as seen
in Figure 5.1. The skeleton tracker tracks the 3D (x, y, z) coordinates of these 15
joints in real-time, at 30 fps. The skeleton model is robust to differences in user size
and shape, clothing colour and texture and background clutter, making it ideal for
feature generation.

47

Chapter 5 Body Gesture Feature Extraction

Figure 5.1. NiTE Skeleton.

5.2. Joint Angles

This work only considers upper body gestures. Therefore only the joints in the
upper body are of interest, namely the left shoulder (ls), right shoulder (rs), left
elbow (le), right elbow (re), left hand (lh), right hand (rh) and head (he) joints.

5.2.1. Joint Angles

The distance between joints is affected by the height of the user and the distance from
the camera. Therefore, relative distance is not a scale invariant feature. Joint angles
on the other hand are both scale and rotation invariant, as they are not dependent
on the height of the subject, the distance from the camera, or the orientation of the
user relative to the camera plane. Six joint angles were calculated for each pose.
These are shown in Figure 5.2 [106].

Figure 5.3 illustrates the calculation of the elbow angle.

To calculate the joint angle the vector between joints must be computed. The
shoulder-elbow vector s− e and elbow-hand e− h vector are given by Eq. (5.1)
and Eq. (5.2) respectively:

s− e = (x2 − x1)̂i+ (y2 − y1)ĵ + (z2 − z1)k̂. (5.1)

e− h = (x2 − x3)̂i+ (y2 − y3)ĵ + (z2 − z3)k̂. (5.2)

The coordinates (x, y, z) are as defined in Figure 5.3.

48

5.2 Joint Angles

Figure 5.2. Joint angle calculated for the upper body gesture recognition feature
vector .

The elbow angle is then given by

θ = arccos
(
s− e · e− h
|s− e||e− h|

)
, (5.3)

where the numerator s− e · e− h is the scalar product of the corresponding vectors.
The denominator is a normalising factor such that the scalar product is of unit
length.
The six-dimensional joint angle feature vector is defined as follows:

FJA = [γL, γR, βL, βR, αL, αR], (5.4)

where the symbols are as shown in Figure 5.2.

5.2.2. Relative Joint Positions

As joint angles are rotation invariant, a pose with the arms stretched on either side of
the torso and arms stretched in front of the torso will have similar feature vectors.
Therefore, the relative joint position between the elbow and hand joints and the
head joint is calculated for each pose. Figure 5.4 shows the position of the hand

49

Chapter 5 Body Gesture Feature Extraction

Figure 5.3. Calculation of the elbow angle.

relative to the x-component of the head joint. Similarly to Eq. (5.1) the head-hand
vector is given by

he− h = (x2 − x1)̂i+ (y2 − y1)ĵ + (z2 − z1)k̂. (5.5)

Figure 5.4. Relative position of the hand and elbow with respect to the head.

The x-component of the head joint is

hex = x1î+ 0ĵ + 0k̂. (5.6)

50

5.3 Gesture Spotting

Thus the position of the hand relative to the head is

ϕ = arccos
(
he− h · hex
|he− h||hex|

)
. (5.7)

If the joint is below the head, the angle is subtracted from 360◦ to ensure that
relative joint positions have unique angular representations.

5.2.3. Combined Feature Vector for upper body Gesture
Recognition

The joint angles, relative joint positions and the distance between the left and right
hands are combined to form an eleven-dimensional feature vector

FC = [γL, γR, βL, βR, αL, αR, ϕL, ϕR, σL, σR, lh− rh]. (5.8)

Table 5.1 on page 51 provides a brief description of each element this feature vector.

Table 5.1. Description of the elements in the feature vector used for upper body
gesture recognition.

γ Elbow-Shoulder-Neck angle ϕ Relative position of the
elbow relative to the head

β Torso-Shoulder-Neck angle σ Relative position of the
hand relative to the head

α Hand-Elbow-Shoulder
angle

lr−rh Distance between the left
and right hands

Therefore, for each frame in the gesture sequence an eleven–dimensional feature
vector is calculated. This feature vector is used for training and testing.

5.3. Gesture Spotting

A common problem in temporal gesture recognition is gesture spotting. Gesture
spotting locates a gesture in a sequence of signals. An approach employed by
Cheng et al. [107] uses the acceleration signal of the hand to determine if a ges-
ture is being performed. There are three distinct phases in a gesture signal: a
high-speed start, a continuous change in direction and an end in an almost steady
position. In order to identify the gesturing side a similar approach is employed. The
velocity of the left and right hands are calculated as

v =

√
(xt − xt−1)2 + (yt − yt−1)2 + (zt − zt−1)2

fps−1 . (5.9)

51

Chapter 5 Body Gesture Feature Extraction

Like the acceleration signal, the velocity signal of the gesturing hand will show a
steady increase whilst that of the non-gesturing hand will be largely stationary. This
relationship is illustrated in Figure 5.5.

Figure 5.5. Velocity profile of the left and right hands when the “Right Hand Pull
Up” gesture from [28] is performed.

It is evident that the velocity profiles of the gesturing and non-gesturing hands are
distinct from one another. The velocity of the non-gesturing hand is steady through-
out the gesture whereas the gesturing hand has some variable velocity trajectory.
To capture this characteristic the tenth percentile and ninetieth percentile values of
the velocities are found. The difference between these values is used to distinguish
between left and right side gestures. It is expected that the gesturing hand will show
a much greater difference between these velocities compared to the non-gesturing
hand. This difference is calculated as

side feature = v(i)− v(j), (5.10)

where i is the index of the ninetieth percentile and j is the index of the tenth
percentile. The velocity signal is calculated for the duration of the gesture. This
calculation is possible as the gestures in the datasets are already segmented, but
they are not temporally aligned.
In addition, the difference between the ninetieth percentile and the value at the
mid-point between the tenth and ninetieth percentile values is calculated. This
value is used to capture any sudden changes in gradient that may be present and is

52

5.4 Temporal Alignment of Gesture Trajectories

calculated as shown
x = v

(
i− j

2

)
, (5.11)

where v(·) is the velocity of the hand and i−j
2 is the mid-point between the tenth

and ninetieth percentile values. i.e. Eq. (5.11) is the velocity of the hand at the
mid-point.

5.4. Temporal Alignment of Gesture Trajectories

Real world data collected from untrained users often contains trajectories that are
temporally misaligned. This misalignment is caused by gestures not starting at
the same time, having different durations and ending at different times. Efforts
to recognise gestures will give inaccurate results if there is no temporal alignment.
Therefore the data must be temporally aligned. Two methods are considered — the
dynamic time warping (DTW) algorithm that compares the gesture sequence to a
template and the novel key-frame selection algorithm that selects only frames where
there is significant motion.

5.4.1. Dynamic Time Warping

DTW is a well-known technique for finding the optimal temporal alignment between
two time-dependent signals [108]. Consider two sequences X := (x1, x2, ..., xN) of
length N ∈ N and Y := (y1, y2, ..., yM) of length M ∈ N. The points in the sequence
must be equidistant in time. To compare two different features xn and ym a local
cost corresponding to the distance between points xn and ym must be defined. An
n × m cost matrix consisting of the cost distance between the points is defined.
The goal of DTW is to find that path through the matrix that minimises the total
cumulative distance between them. The optimal path that minimises the warping
cost is

DTW (X, Y) = min

√√√√ K∑
k=1

wk

 , (5.12)

where wk is the matrix element (n,m)k that belongs to the kth element of a warping
path W , a contiguous set of matrix elements that represents a mapping between X
and Y . The warping path W can be found using dynamic programming to evaluate

δ(n,m) = d(xn, ym) + min {δ(n− 1,m− 1), δ(n− 1,m), δ(n,m− 1)} , (5.13)

where d(n,m) is the distance in the current cell, and δ(n,m) is the cumulative
distance of the d(n,m) and the minimum cumulative distances from three adjacent
cells.
Three constraints are introduced to limit the search space during computation [108]:

53

Chapter 5 Body Gesture Feature Extraction

• Boundary conditions: the first and last elements of X and Y must be aligned
to one another. Mathematically, w1 = (1, 1) and wK = (N,M).
• Monotonicity condition: if an element in X precedes a second one this should

also hold for the corresponding elements in Y . In other words
n1 ≤ n2 ≤ ... ≤ nK and m1 ≤ m2 ≤ ... ≤ mK .
• Step size condition: this ensures that no element in X and Y can be omitted

and there are no replications in the alignment, so
wk+1 − wk ∈ {(1, 0), (0, 1), (1, 1)} for k ∈ [1 : K − 1].

However, DTW has a number of disadvantages:
• A template sequence must be provided to align the sequence. As it is not

known which gesture is being performed the sequence will have to be aligned
to all gesture templates increasing the computational requirements.
• Traditional DTW is computationally expensive, particularly for problems with

many sequences [109].
Therefore, rather than traditional DTW, key-frame selection is used to align se-
quences temporally and ensure that they are all the same length.

5.4.2. Key-Frame Selection

The novel key-frame selection algorithm to temporally align gesture sequences is
presented. These key-frames are selected on the basis that there must be significant
movement between consecutive frames:
• Step 1: The Euclidean distance between feature vectors in successive frames

is calculated.
• Step 2: If the distance is below the threshold the corresponding point is dis-

carded. The threshold value was found empirically to be 0.1.
• Step 3: Using the remaining points, the minimum sequence length is found.
• Step 4: All sequences are shortened to the minimum sequence length. For

example, if the minimum sequence length is ten and a sample had twenty key-
frames the ten frames with the smallest distance from the previous frame are
discarded.

The method is illustrated in Figure 5.6.

5.4.3. Results

As discussed in Section 5.4, key-frame selection was used to temporally align ges-
ture sequences and ensure that all sequences are the same length. To evaluate the
performance of the algorithm the log sum squared error (SSE) between the average

54

5.5 Summary

Figure 5.6. Illustration of the key-frame selection algorithm. The goal is to tem-
porally align gesture sequences and ensure that all sequences are the same length.
(a) Original sequence. The intensity of the block is proportional to the distance
between the feature vectors from the previous and current frame. Solid black in-
dicates maximum distance. (b) Frames with a distance less than the threshold are
discarded. (c) To obtain sequences of the same length frames with the minimum
distance are discarded. (d) Final sequence.

sample in each gesture set and each sample in the dataset is calculated. These are
shown in Figure 5.7.

The log squared error is reduced by at least one order of magnitude in both the
VisApp2013 and recorded datasets implying that the key-frame selection improves
the alignment between gesture sequences. Qualitative results showing the alignment
between two gesture trajectories can be seen in Figure 5.8. Before alignment the
gesture sequences start at different times and have different lengths. After key-frame
selection the sequences are the same length and start at the same time.

5.5. Summary

This chapter describes the features extracted for upper body gesture recognition. A
feature vector consisting of joint angles and relative joint positions is extracted from
the NiTE skeleton. These features are extracted from each frame in the gesture
sequence and concatenated to form a feature vector that can be used for gesture
classification. The use of the velocity of the hands is proposed as a feature for
determining which side of the body is being used. In addition, a novel key-frame
selection algorithm is proposed to temporally align gesture sequences. This method
is chosen over DTW as it does not rely on a template gesture. The results show
that the key-frame selection method is able to reduce the log squared error by at

55

Chapter 5 Body Gesture Feature Extraction

(a) log SSE of the VisApp dataset.

(b) log SSE of the recorded dataset.

Figure 5.7. log SSE between the average trajectory of each gesture and each gesture
sample before and after alignment.

least one order of magnitude after alignment. Qualitative results indicate that the
method works for temporally aligning gesture sequences.

56

5.5 Summary

(a) Before Alignment.

(b) After Alignment.

Figure 5.8. Alignment between gesture sequences.

57

6. Gesture Classification
Features extracted from the raw data are used as inputs to a classifier. The classifier
is required to identify the most probable class for an unknown pattern or sequence.
Given an unknown pattern or gesture, represented by the feature vector x, which
must be classified into one ofM classes. The gesture is then classified by maximising
the probability that an unknown pattern belongs to a given class. Mathematically

c∗ = arg max
i
P (ci|x), (6.1)

where c is the gesture label and c∗ denotes the optimal class.
This chapter presents three types of classifiers used for gesture recognition, namely
are neural networks discussed in Section 6.1.1, hidden Markov models presented in
Section 6.1.2 and k-means described in Section 6.2.1. These classifiers are used to
obtain the class labels of a gesture given the feature vectors discussed in Chapter 4
and Chapter 5. The goal of each classifier is to have a large number of true positives,
that is, gestures that are correctly labelled, and as few as possible misclassification’s.
The classifiers are evaluated in terms of their accuracy, precision and recall rates.
The results of the body gesture recognition and hand gesture recognition is presented
in Sections Section 6.1.3 and Section 6.2.3 respectively.

6.1. Body Gesture Classification

The joint angle and relative joint position features extracted from the NiTE skeleton
are used as feature vectors for upper body gesture recognition as shown in Chapter 5.
Two classifiers, neural networks and hidden Markov models, are compared. These
classifiers are chosen as they can model temporal signals. This section discusses the
theory and implementation details for the classifiers.

6.1.1. Neural Networks

Artificial neural networks (ANN) are widely used architectures for machine learning
applications. Developed in the 1960s to try and mimic the brain, neural networks
are now a state-of-the-art technique used in a variety of applications. One of the
main advantages of neural networks is that multiple layers can easily model non-
linearities in the data, without these relationships being pre-specified by the system

59

Chapter 6 Gesture Classification

designer. They rely on the principle of "divide and conquer" where a large, complex
problem can be decomposed into simpler, interconnected elements known as neurons
or nodes [110]. The nodes are computational elements that receive inputs and
process them to produce an output. The connections between nodes determine the
flow of information from one node to another. A basic neural network can be seen
in Figure 6.1.

Figure 6.1. Basic neural network containing three layers.

Similarly to the behaviour of a neuron in the brain, when the total received signal is
larger than a certain threshold the neuron is activated, and a signal is propagated to
the connected neurons. By tuning or training the weights w the required output for a
given set of inputs can be obtained. To adjust the weights of the neural network the
back propagation algorithm is used. In back propagation, inputs are fed forward
whilst errors are propagated backwards, with the goal of minimising the training
error [111]. The activation function is given by

a
(l)
j =

d∑
i=1

w
(l)
ji xi, j = 1 . . .M. (6.2)

The activation of the hidden neuron is dependent on the inputs xi and the weights
associated with the lth layer, w(1)

ji .a
(l)
j is the activation of the jth neuron in the lth

layer. The output function is the sigmoid function by

O(aj) = 1
1 + eaj

. (6.3)

This function will be close to one for large positive numbers, 0.5 at zero and almost
zero at large negative numbers. As discussed above, the goal of back propagation is
to find the weights that result in the desired output for a specific input, or to min-
imise the error between the desired output and the actual output. Mathematically,

E =
N∑
j=1

(O(aj)− dj)2, (6.4)

where dj is the desired output at the jth neuron in the output layer. To minimise

60

6.1 Body Gesture Classification

the error, the derivative of the error function with respect to the weight parameters
is evaluated.
The error gradient for each output neuron Ok is given by

δk = Ok(1−Ok)(dk −Ok). (6.5)

The error gradient for each node in the hidden layer is given by

δj = yj(1− yj)
n∑
k=1

wjkδk. (6.6)

This is dependent on the error in the output layer.
Finally, to update the weights

wij = wij + α.Ai.δj and
wjk = wjk + α.Hj.δk,

(6.7)

where α is the learning rate and affects the learning speed of the network, Ai is the
ith neuron in the input layer and Hj is the jth neuron in the hidden layer.
Mini-batch stochastic gradient descent (MBSGD) is used to optimise the network
weights. MBSGD is similar to gradient descent with several modifications:
• Weights are updated randomly with a chosen subset of b samples of the training

set, rather than a single sample at a time, to escape local minima .
• Momentum is used to smooth the search direction.
• Each weight has an adaptive learning rate.
• The learning rate and momentum can be adjusted during optimisation.

This results in a faster optimisation and discourages convergence to local minima.
The OpenANN [112] implementation is used to train the neural networks in our
work.
Two neural networks are used in this work, one to distinguish the gesturing side and
another to determine the upper body gesture label.
A fully-connected feed-forward neural network is used to determine which side of the
body is being to perform gestures. The network structure can be seen in Figure 6.2.
There are four input neurons, five hidden neurons and two output neurons. The
inputs are the hand velocities described in Section 5.3. The number of hidden
neurons in calculated according to

h =
∥∥∥∥2

3i+ n

∥∥∥∥ , (6.8)

here h is the number of hidden neurons, i is the number of input neurons and n is
the number of labels or outputs.

61

Chapter 6 Gesture Classification

Figure 6.2. Neural network structure used to determine the gesture side using
feature defined in Section 5.3.

A feed-forward fully-connected neural network is used for gesture classification. The
network architecture is similar to Figure 6.2 except that there are 198 input neurons,
142 hidden neurons and 10 output neurons. The input neurons correspond to the
eleven-dimensional feature vector presented in Section 5.2. The number of hidden
neurons is calculated using Eq. (6.8) and there is an output neuron for each gesture
in the lexicon.

6.1.2. Hidden Markov Models

Hidden Markov models (HMM) are temporal models that describe the state of a
process by the evolution of a single discrete random variable. The possible values of
the state are equal to the possible values of the random variable. They are used to
represent probability distributions over a sequence of observations. HMMs satisfy
two properties:

• An observation Ot at time t is generated by some process whose state Xt

is hidden from the observer. The observation,Ot is one of the L possible
observation symbols, Ot ∈ {o1...oL}.

• Given the values of the previous state, Xt−1, the current state Xt is independ-
ent of all states prior to t− 1. The state Xt is a discrete random variable with
N possible values {1 . . . N}.

The joint distribution over all the variables is given by

P(X0:t,O1:t) = P(X0)
t∏
i=0

P(Xi|Xi−1)P(Oi|Xi), (6.9)

where P(X0) is the initial state model representing the prior probability, P(Xi|Xi−1)
is the state transition model and P(Oi|Xi) is the sensor model.

62

6.1 Body Gesture Classification

By assuming that the states are time-independent the transition model can be rep-
resented using a stochastic transition matrix T = {tij} = P(Xt = j|Xt−1 = i).
When t = 0, the initial state model isπ.

The sensor model can be described using an emission matrix E. The probability
of a particular observation at time t for state j is described by ej(ot) = P(Ot =
ot|Xt = j). The emission matrix E is an L×N matrix. Therefore,an HMM can be
described by λ = (T,E, π).

The transition and emission matrices are most commonly estimated from data using
the Baum-Welch algorithm. Inference provides an estimate of what transitions oc-
curred and the states that generated the sensor readings. These are used to update
the models.

The Baum-Welch algorithm, Algorithm 6.1 [110], is a special case of the expectation-
maximisation (EM) algorithm that is used to learn the transition and sensor models
of a HMM from data. The algorithm finds the HMM λ that maximises the probabil-
ity of the observation O. First, the transition, emission and initial state models are
initialised with random initial conditions to obtain the HMM λ0. The probability
of being in state i at time t given the observations and λ0 is then calculated. The
probability of transitioning to state j at time t+ 1 is also calculated. These values
are used to update the parameters of the HMM by summing over all time. This
process is repeated until convergence.

Application of HMMs to Gesture Recognition Gesture recognition shares a num-
ber of similarities with other recognition tasks such as speech recognition, where
HMMs have also successfully been employed. Consider a gesture with one of the
trajectories shown in Figure 6.3.

Figure 6.3. Gesture trajectory of seven samples of the “Attention” gesture. Each
colour represents a different user.

63

Chapter 6 Gesture Classification

Algorithm 6.1 Baum-Welch algorithm
1: function Baum-Welch(X, N, L) return λ = (T,E, π)
2: inputs: X, M × p matrix of states, p sequences
3: N, the number of states
4: L, the number of observation symbols
5: set λ = (T,E, π) with random initial conditions.
6: while not converged do
7: define: αi(t) = P(O1 = o1, ...,Ot = ot,Xt = i|λ)
8: αi(t) = πiei(o1)
9: αj(t+ 1) = ej(ot+1)∑N

i=1 αi(t)ṫij
10: define: βi(t) = P(ot+1, ..., oT |Xt = i)
11: βi(T) = 1
12: βi(t) = ∑N

j=1 βj(t+ 1)tijej(ot+1)
13: γi(t) = P(Xt = i|O, λ) = αi(t)βi(t)∑N

j=1 αj(t)βj(t)

14: ζij(t) = P(Xt = i,Xt+1 = j|O, λ) = αi(t)tijβj(t+1)ej(ot+1)∑N

i=1

∑N

j=1 αi(t)tijβj(t+1)ej(ot+1)

15: Update:
16: π̄i = γi(1)
17: t̄ij =

∑T−1
t=1 ζij(t)∑T−1
t=1 γi(t)

18: ¯ei(k) =
∑T

t=1 γi(t)∀ot=ok∑T

t=1 γi(t)
19: end while
20: end function

At each instant three values are observed, the x, y and z positions of the hand cor-
responding to a state. For a gesture of duration 2 seconds there will be a total of 60
observations (30 fps). Given a HMM for the gesture the probability that an obser-
vation sequence corresponds to the “Attention” gesture, given the 60 observations,
can be calculated. That is, given a sequence of observations the sequence of states
that are most likely to have generated it must be found.

A HMM requires discrete states and observations. Therefore, as the (x, y, z) co-
ordinates are continuous in space the data is clustered into 30 states using k-means
clustering. Each point in the trajectory is then assigned to the closest cluster. An
observation sequence is a series of transitions between cluster centres. Clustering
is performed on the entire dataset i.e. the x, y and z positions of the hand for all
gestures. The cluster centres can be seen in Figure 6.4. The structure of the data
corresponds to the normal use of the system. Each data point represents a hand
position at an instant in time whilst a gesture is being performed.

The Baum-Welch algorithm [110], given by Algorithm 6.1, is used to train a HMM
for each gesture. For a new observation sequence find the model that maximises the

64

6.1 Body Gesture Classification

Figure 6.4. Cluster centres for the dynamic gesture dataset. Each point represents
a state. The points in the dataset are shown in grey.

probability of the observed sequence, namely

c = arg max
i

P(O|λi), (6.10)

where c is the gesture label, λi is the HMM for the ith gesture and P(O|λ) is the
probability of the sequence given the model and is calculated using the forward
algorithm given by

P(O|λ) = log
N∑
i=1

αi(T), (6.11)

whereN is the number of states, αi(t) is the probability of seeing the partial sequence
o1, ..., ot and ending in state i at time t, and T is the time at the end of the sequence.

6.1.3. Results

The evaluation of the gesture recognition system will show whether the designed
system meets the requirements. The classification rate is used as a performance
index and is estimated by testing the response of a classifier using a finite set of N
test feature vectors. The total classification rate is given by

Pe = nt
N
, (6.12)

where nt is the number of feature vectors correctly classified. In addition, the
confusion matrix is used to give an indication of whether there are classes that
exhibit a higher tendency for confusion. A confusion matrix A is defined such that
the element A(i, j) corresponds to the number of data points whose true class label
was i and are classified to class j. From the confusion matrix the precision and
recall values for each class can be obtained. Recall is the percentage of data points
with true class label i which are correctly classified in that class, i.e. the percentage

65

Chapter 6 Gesture Classification

of true positives. Recall for class i is given by

Ri = A(i, i)∑M
j=1 A(i, j)

, (6.13)

where M is the number of classes in the dataset.
Precision is the percentage of data points classified as class i, whose true class label
is i. For an M class problem, the precision of the ith class is given by

Pi = A(i, i)∑M
j=1 A(j, i)

. (6.14)

These are used as performance measures in evaluating the gesture recognition sys-
tem.
The performance of HMMs and ANNs for the purpose of gesture recognition are
compared. The CMU Military dataset was used and the classification accuracy,
precision and recall were calculated. Two tests were performed:
• In the first test, the dataset was split into 66.6 training data and 33.4% test

data. That is, 20 samples are used for training and 10 for testing. This test is
referred to as 20/10 in the results.
• In the second test the dataset were divided into 33.4% training data and 66.6%

test data. This test is referred to as 10/20 in the results.
The precision and recall for the tests can be seen in Figures 6.5 and 6.6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ct

io
n

A
d

va
n

ce

A
tt

en
ti

o
n

C
h

ar
ge

C
o

m
e

C
o

n
fu

se
d

C
o

ve
r

C
ro

u
ch

H
u

rr
y

O
u

t
o

f
A

ct
io

n

P
o

in
t

o
f

En
tr

y

R
al

ly

Sh
if

t
Fi

re

Sh
o

t
G

u
n

Sn
ea

k

O
ve

ra
ll

R
e

ca
ll

Gesture

CMU DATASET PRECISION

HMM 20/10 HMM 10/20 ANN 20/10 ANN 10/20

Figure 6.5. Precision results for the CMU dataset.

66

6.1 Body Gesture Classification

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ct

io
n

A
d

va
n

ce

A
tt

en
ti

o
n

C
h

ar
ge

C
o

m
e

C
o

n
fu

se
d

C
o

ve
r

C
ro

u
ch

H
u

rr
y

O
u

t
o

f
A

ct
io

n

P
o

in
t

o
f

En
tr

y

R
al

ly

Sh
if

t
Fi

re

Sh
o

t
G

u
n

Sn
ea

k

O
ve

ra
ll

R
e

ca
ll

Gesture

CMU DATASET RECALL

HMM 20/10 HMM 10/20 ANN 20/10 ANN 10/20

Figure 6.6. Recall results for the CMU dataset.

The confusion matrices for the four tests are shown in Figure 6.7.

Figure 6.7. Confusion matrices for the CMU Dataset.

Across all gestures the ANN performs markedly better, achieving an accuracy of
100% for all gestures. Even with a smaller dataset, the performance of the ANN
does not degrade. On the other hand, the HMM has an overall accuracy of 93.3%
for the 20/10 test and an accuracy of 81.6% with the smaller training set.
Using HMM, there is confusion between the Rally and Come gestures. This result is

67

Chapter 6 Gesture Classification

seen in both the 20/10 test and the 10/20 test. With few training samples many of
the gestures are misclassified by the 10/20 HMM. Five of the gestures have a correct
classification rate of less than 80%. However, when doubling the number of training
samples, all the gestures have a correct classification rate (CCR) of over this value.

This trend implies that as the amount of training data is increased, the HMM is able
to build a better model to represent each gesture. The ANN can develop a model
with fewer data samples. This result may be due to the optimised implementation
of the ANN, whereas the standard unoptimised algorithms were used for HMM
training and testing.

To test the performance of the ANN the VisApp dataset was used. This dataset is
presented in Section 3.1. The authors of the dataset use DTW for gesture classi-
fication. They divided the dataset into 8 samples performed by trained users and
20 samples performed by untrained users. The trained user data is use to train the
DTW classifier and the untrained user data is used for system evaluation. In order
to compare the results the same procedure is followed. The results can be seen in
Figure 6.8.

75

80

85

90

95

100

RH Push
Up

LH Push
Up

RH Pull
Down

LH Pull
Down

RH Swipe LH Swipe RH Wave LH Wave Average

%
 S

am
p

le
s

C
o

rr
e

ct
ly

 C
la

ss
if

ie
d

Gesture Label

Celebi et al. Presented Approach

Figure 6.8. Comparison of the results obtained by Celebi et al. [28] and those
obtained using the presented approach.

This dataset was also used to investigate the effect of cascading neural networks
as presented in Figure 6.2. Figure 6.9 depicts the results of distinguishing between
gesturing sides and the results if no distinction is made.

The confusion matrix for the recorded dataset can be seen in Figure 6.10.

68

6.2 Hand Gesture Recognition

0

10

20

30

40

50

60

70

80

90

100

RH Push Up LH Push Up RH Pull
Down

LH Pull
Down

RH Swipe LH Swipe RH Wave LH Wave

%
 S

am
p

le
s

C
o

rr
e

ct
ly

 C
la

ss
if

ie
d

Gesture Label

No Distinction Distinction

Figure 6.9. Comparison of the results obtained if no distinction between the left
and right is made and if a distinction is made in the VisApp dataset.

The use of ANN results in a marked improvement in the results when compared to
those obtained by Celebi et al. [28], particularly for the Wave gesture. There is also
a 15% improvement from using an initial neural network to determine which side of
the body is being used for gesture performance. A 100% classification accuracy is
obtained across three different datasets. This result shows that the designed ANN
is robust and can be used to classify dynamic upper body gestures.

6.2. Hand Gesture Recognition

The goal of the hand gesture recognition is to classify a hand gesture using the
features extracted from an image, as described in Section 4.2. This section introduces
two techniques used for hand gesture recognition, k-means and neural networks.
HMMs are not employed as the hand gestures are static. Therefore, a temporal
model is not required.

6.2.1. K-means Classification

K-means clustering is a method of identifying groups or clusters of data points in
a multidimensional space. A cluster is a group of data points whose inter-point

69

Chapter 6 Gesture Classification

Figure 6.10. Confusion matrix for the CSIR Gesture Dataset using the 10/20
ANN.

distance is small compared to the distances to points outside the cluster. K-means
is used as a method to model the distribution of the data in a multidimensional
space.

Given a dataset {x1, ..., xN} consisting of N observations of a D-dimensional feature
vector x. The goal of k-means is to assign each observation/data point one of K
labels, such that these labels partition this dataset into K clusters. A set of vectors
µk are defined where k = 1, ..., K in which µk represents the centre point of the kth

cluster. K-means finds the set of vectors µk and the assignment of data points to
clusters such that the sum of the squares of the distances of each data point to its
closest vector µk is a minimum.

A N ×K matrix R is defined that defines the assignment of data points to clusters.
The element rnk of the matrix is a binary variable describing the assignment of the
data point xn to the kth cluster. Each data point can only be assigned to a single
cluster.

An objective function is defined, which represents the sum of the squared distances
of each data point to its assigned centre as

J =
N∑
n=1

K∑
k=1

rnk||xn − µk||2. (6.15)

The values of µk and rnk are updated iteratively so as to minimise J . This algorithm
is shown in Algorithm 6.2 [113]. This is also a version of the EM algorithm.

The initial values of µk are found using the k++ algorithm [114] shown in Al-
gorithm 6.3. This results in faster convergence as the points are not randomly
assigned. Rather, µ1 is defined to be a randomly selected point from the dataset.
Next the point with the minimum probability of belonging to the same cluster as this
point is found. This point is then assigned as the next point in µk. This procedure
is repeated until all the centres have been initialised.

70

6.2 Hand Gesture Recognition

Algorithm 6.2 K-means
1: function K-means(X, K) return µk, rnk
2: inputs: X, points in the dataset
3: K, the number of clusters
4: Initialise µk using the k++ algorithm (discussed later), shown in 6.3.
5: while not converged do

6: rnk =

1 if k = arg minj ||xn − µj||2

0 otherwise
7: µk =

∑
n
rnkxn∑
n
rnk

8: end while
9: end function

Algorithm 6.3 k++ Centre Initialisation
1: function k++ Initialisation(X, K) return µk
2: inputs: X, points in the dataset
3: K, the number of clusters
4: Take one centre µ1, chosen uniformly at random from X.
5: while i 6= K do
6: Calculate D(x), the shortest distance from a data point to the closest

centre already chosen.
7: Take a new centre µi, choosing x ∈ X with probability D(x)2∑

x∈X D(x)2 .
8: end while
9: end function

Determining the Number of Clusters One of the pitfalls of the k-means algorithm
is that the number of clusters must be specified a-priori. A number of methods exist,
these are examined in the work by Milligan and Cooper [115]. The metric used for
determining the number of clusters is the sum of squared error (SSE) metric. The
SSE metric is chosen due to its simplicity. In this technique, the sum of squared error
is calculated for each cluster and is plotted as a function of the number of clusters.
The number of clusters is then chosen where adding another cluster does not give
a much better result, often where an “elbow” occurs. The method is illustrated in
Figure 6.11. A sample dataset was generated where the data has been sampled from
three Gaussian mixture models. The cluster centres are shown in red and the circle
represents the GMM with σ = 1, where σ is the standard deviation. The number
of clusters is at the value of K where the is a “elbow” in the graph. In this case at
k = 3.

K-means for Gesture Recognition K-means is used to model the distribution
of each static hand gesture in space. Rather than assuming that each gesture can
be represented by a single cluster, consider that the gesture may have a complex

71

Chapter 6 Gesture Classification

(a) A sample dataset. (b) The SSE as a function of K.

Figure 6.11. Illustration of determining the number of clusters.

manifold in space that may be represented by multiple clusters. A k-means classifier
is trained for each of the twelve hand gestures to obtain cluster centres in the form
{(C1

1 , ..., C
K
1), ..., (C1

12, ..., C
K
12)}, where k is the number of clusters per gesture. A

new sample is classified as belonging to the gesture with the minimum distance.k is
not the same for each gesture as the method described in Section 6.2.1 is employed
for each gesture.

For each new query, FQ, the euclidean distance to each cluster centre is computed
as,

ε(FQ, Ck
g) :=

√√√√ M∑
m=1

(fQm − Ck
gm)2, (6.16)

where M is the number of features, Ck
g is the centre of the kth cluster of gesture g.

The classification of a new query is then given by,

label(FQ) = label(Fw)
w = arg min

k=1..K,g=1..12
ε(FQ, Ck

g) (6.17)

6.2.2. Neural Network for Hand Gesture Recognition

To compare the performance of the k-means classifier a neural network is implemen-
ted for hand gesture recognition. The network is a fully-connected, 3-layer neural
network with one hidden layer. The input layer has 21 neurons, the hidden layer 24
neurons and the output layer 10 neurons. The network is trained using MBSGD,
discussed in Section 6.1.1. The advantage of the neural network approach is that
the weights of each feature can be tuned. For example, the position of the hand
could have more weight than say the position of the elbow. On the other hand, in
the k-means algorithm all features are weighted equally. In addition, k-means clus-
tering tends to find clusters which have comparable spatial extent i.e. the clusters
will have similar shapes.

72

6.2 Hand Gesture Recognition

6.2.3. Results

As discussed in Section 6.2, artificial neural networks (ANN) and k-means are used
for hand gesture classification. This section presents the results for the recorded
hand dataset. An overview of the dataset can be found in Section 3.2. A total
of 15 subjects performed each of the twelve gestures three times, giving a total of
540 samples. However, in cases where the calibration phase failed (i.e. five fingers
were not identified) the subsequent gestures were not used for classifier evaluation.
After data pruning, there are 75 samples per gesture. Individual leave-one-out
cross validation (ILOOCV) is used to evaluate the performance of the classification
system. In ILOOCV, the data is partitioned into n subsets of equal size, where
n is the number of subjects. The classifier is then trained n times using each of
the n subsets as the test set each time and the remaining data for training [116].
Therefore, the data is divided into 15 subsets. Each time 70 samples were used to
train the classifier and 5 samples of each gesture was used for testing.

Three feature vectors were defined and compared, namely,

• Hand joint positions: this feature vector contains the normalised position of
each of the hand joints.

• Finger states: this feature vector contains the state of each finger namely,
whether the finger is Straight, Bent, Closed, and for the thumb, Opposed or
Extended.

• Hand joint angles: this feature vector contains the finger joint angles discussed
in Section 4.2.4.

It can be seen in Figure 6.12 that the correct classification rate across all gestures
is the highest for the joint angle feature vector. This result is expected as the joint
angles are rotation and translation invariant and can work for a large variety of
users. The overall average accuracy using a ANN classifier is approximately 75%.
The accuracy for the gestures is 57− 100%.

Figure 6.12. Correct classification rate using an ANN as a classifier.

73

Chapter 6 Gesture Classification

Examining Figure 6.13, note that there is a large amount of confusion between the
Calibration gesture and the Five gesture as they are identical. In calculating the
correct classification rate gestures which belong to the Calibration class but are
classified as belonging to gesture Five are considered as true positives. The same is
true for gestures classified as Calibration but from the Five gesture class. Using the
finger states feature vector the system is unable to distinguish between the Scroll
Up gesture and the Calibration gesture. This is because the finger state parameters
do not adequately describe all the possible configurations of the hand: the angle
of abduction is not described using the hand joints. There is also a large degree of
confusion between the Neutral, Pan Left, Pan Right and Select gestures. All of these
gestures contain the extension of the thumb at the metacarpal-phalangeal joint, and
in the case of the Pan Right and Select gestures the extension of one other finger.
If this finger is not detected as being extended the gestures will have similar feature
vectors.

Figure 6.13. Confusion matrices when using an artificial neural network as a
classifier for three different feature vectors.

Comparing the fingertip detection and the classification accuracy it can be seen that
they are strongly correlated (see Figure 6.14). Each point on the graph represents a
different gesture and the best fit line was determined using least square fitting. The
line predicts 61.2% of the variance in the accuracy. Gestures with a lower fingertip
detection have a lower classification accuracy, as expected.
A k-means classifier was trained for each of the twelve gestures. The sum of squared
errors was used to determine the number of clusters for each gesture, as discussed
in Section 6.2.1.
The same three feature vectors discussed above are used to compare the performance

74

6.2 Hand Gesture Recognition

Figure 6.14. Relationship between the pixel error and the classification accuracy.

of the k-means classifier. The classification accuracy and confusion matrices are
shown in Figures 6.15 and Figure 6.16 respectively. As for the ANN, the classification
accuracy using the joint angle feature vector is significantly higher compared to the
finger state and finger position feature vectors.

Figure 6.15. Comparison of the classification accuracy using a K-means classifier
for three different feature vectors.

Figure 6.17 shows a comparison of the precision and recall for both the ANN and
k-means classifiers using the joint angle feature vector. Note that both the precision
and recall for the ANN is higher than for the k-means classifier. This is assumed
to be due to the feature weighting employed by the ANN. The weighting for each
feature is learnt during ANN training whilst for the k-means classifier each feature

75

Chapter 6 Gesture Classification

Figure 6.16. Confusion matrices for the K-means classifier.

is weighted equally.

Figure 6.17. Comparison of the precision and recall for a K-means classifier and
ANN.

76

6.3 Summary

6.3. Summary

This chapter discussed the classifiers used for gesture recognition. The neural net-
works and hidden Markov models used for upper body dynamic gesture recognition
are presented. These are chosen to represent the temporal nature of dynamic ges-
tures. The results show that cascading neural networks a classification accuracy
of 100% is achieved across three different datasets. For the static hand gestures,
k-means and neural networks are used. Unlike HMMs where the transition matrix
is dependent on time, neural networks are not only used to model temporally de-
pendent data, therefore the inputs to a neural network can be static. K-means is
used to model the distribution of each gesture in multidimensional space, with the
neural networks used as a comparative method. An analysis of the results reveals
that the neural network classifier achieves better accuracy compared to the k-means
classifier. This result is thought to be because the neural network tunes the weights
of each feature, whereas the same weight is used for each feature in the k-means
classifier. An improvement in the fingertip detection algorithms may increase the
hand gesture recognition results as the pixel error is correlated to the classification
accuracy for each gesture.

77

7. System Results
This chapter presents the implementation details of the system as well as the results
for the integrated system. The implementation details are provided in Section 7.1
and results in Section 7.2.

7.1. System Implementation

All algorithms were implemented using C++. The specifications of the computer
used can be seen in Table 7.1.

Table 7.1. Specifications of the computer used for implementing and testing the
gesture recognition system.

Property Specification
Processor Intel Core i7-3930 CPU @ 3.20 GHz
Memory 16 GB

Operating System Ubuntu 12.04 LTS

OpenCV [117], the NiTE SDK [89] and OpenNI [105] were used to implement the
vision algorithms presented in this work. The NiTE and OpenNI libraries are used
to interface with the Kinect. The OpenNI library provides access to the depth and
colour images and the NiTE library uses these images to calculate the user joint
positions in real time. The OpenCV library provides a multitude of computer vision
algorithms which can be used to further process the images. In particular the func-
tionality provided by the core and highgui static libraries were used. These include
functions such as findContours, and various drawing functions used for the GUI.
The Eclipse IDE was used to create a project and integrate the libraries discussed
above.
The Robot Operating System (ROS) Hydro [118] is used to control a Pioneer-3DX
robot. Robot control experiments were simulated using MobileSim, a free simulator
available from [119].

7.1.1. Viola-Jones Face Detector

Unlike hands, frontal views of faces have unique characteristics that make them
easier to detect. The Viola-Jones [120] face detector uses a cascade of weak classifiers

79

Chapter 7 System Results

to detect faces in an image. The detector is trained using multiple examples of faces.
Rectangular filters similar to Haar wavelets are used to extract image features from
an integral image. The OpenCV implementation was used to detect faces in the
RGB image. If a frontal face is detected then it is assumed that the user is looking
at the robot and gesture recognition is triggered. If multiple faces are detected,
gesture recognition is triggered for the user closest to the robot.

7.1.2. Close-Far Boundary Detection

There are two modes of interacting with the robot, far-mode where upper body
gestures are used to control the actions of the robot and near-mode where hand
gestures are used to control a graphical interface attached to the robot. The mode
activated depends on the distance of the user’s hands from the camera. The distance
boundaries and mode activations are depicted in Figure 7.1. At distances greater
than 0.8 m far-mode interaction is activated. If the distance is less than 0.7 m,
near-mode interaction is used instead. Between 0.7 to 0.8 m is a dead zone.There
are dead zones where no mode is activated. Two of these dead zones are due to
the range of the depth sensor, and the depth zone between the near-mode and the
far-mode safeguards the system from switching continuously if the user is on the
boundary between them.

Figure 7.1. Distance boundaries for human-robot interaction.

7.2. Results

This section presents a summary of the results achieved for each component of the
gesture recognition system.

80

7.2 Results

7.2.1. Hand Gesture Recognition

The four components of the hand gesture recognition system are hand segment-
ation, fingertip detection, hand model generation or joint angle extraction and a
classifier. This section provides a summary of the results obtained for each of these
components.

The segmentation results show that a GCE less than 3% and LCE less than 2%
is achieved by combing the colour, depth and hand orientation information. False
positives, or background pixels classified as belonging to the hand, contribute the
majority of the error. This error is due to the larger appearance of the hand in the
depth image. Comparing this result to using only colour information for segment-
ation, a GCE of approximately 14% is achieved as there are many skin coloured
objects in the background.

On average 88% of fingers are detected in the gesture images. The average for
curvature detected fingers is 90.7% and the depth detection rate is 85.7%. These
indicate that the detection methods achieve quite robust results. For gestures that
contain primarily extended fingers, such as the Calibration, Four and Five gestures,
the error is less than 5 pixels. A small error in this range is expected as the ground
truth fingertips were marked manually. This result shows that the k-curvature
detection algorithm is a robust and accurate method for detecting fingers that are
extended and do not coincide with the internal contour of the hand. Gestures that
contain tips in the hand contour have a larger error of approximately 9 pixels. Due
the lower resolution of the depth sensor, internal contours in the hand are not as
smooth as the external contour, which are generated using both depth and colour.
This results in more tips being detected. Fingertips are then matched to the closest
MCP position, and this could result in a larger error.

The estimated hand model was qualitatively compared to the pose of the hand, and
the number of hand models that correctly matched the gesture were counted. On
average, 80.8% of hand models were correctly generated using the fingertip positions
and inverse kinematics.

The hand model is used to extract three feature vectors, namely the finger states,
finger joint positions and the joint angles. The performance of a k-means classifier
and ANN was compared for all three gesture. It is found that the joint angle
feature vector achieves the highest classification accuracy for both classifiers. This
is expected as the joint angles are rotation and translation invariant and can work for
a large variety of users. Across all gestures, the ANN performance was greater than
the classification performance of the k-means classifier. This result is assumed to be
due to the feature weighting employed by the ANN. The weighting for each feature is
learnt during ANN training while for the k-means classifier each feature is weighted
equally. The overall average accuracy using an ANN classifier is approximately
75%. The accuracy for the gestures is 57 − 100%. The classification accuracy of
gestures with extended fingers was higher than that where the fingers are flexed

81

Chapter 7 System Results

or closed. This result is expected as the curvature-based fingertip detection has a
smaller error compared to the depth-based fingertip detection. To achieve higher
classification accuracy a higher resolution depth sensor must be used, or the depth-
based detection method must be improved.

The live testing of the hand gesture recognition system can be seen in videos found
in Appendix D. These videos show the implementation of a Rock, Paper, Scissors
game. The objective of the game is to perform the gesture that either wins, loses
or ties against the object shown on the screen and the instruction given. First the
user is asked to raise their hand for calibration as shown in Figure 7.2.

Figure 7.2. Calibration GUI of the Rock, Paper, Scissors game

After calibration the game automatically starts. The GUI of the game and a de-
scription of each of the components can be seen in Figure 7.3. Of the 20 gestures
in the demo, two gestures are misclassified. These can be seen in Figure 7.4. The
hand gesture recognition system was able to operate in real-time.

Figure 7.3. Description of the GUI elements for the Rock, Paper, Scissors game.

82

7.2 Results

(a) Classified as rock but the gesture is scissors. (b) Classified as rock but the gesture is scissors.

Figure 7.4. Misclassification’s in the Rock, Paper, Scissors demo video.

7.2.2. Body Gesture Recognition

There are three components of the body gesture recognition system — feature ex-
traction from the NiTE skeleton, temporal alignment of the gesture sequences and
gesture classification. This section presents a summary of the results obtained for
the alignment and classification components. The feature extraction was not eval-
uated as it is largely reliant on successful skeleton generation from the NiTE SDK
and is assumed to be robust.

The results show that the key-frame selection method can reduce the log squared
error by at least one order of magnitude after alignment. Qualitative results indicate
that the method works for temporally aligning gesture sequences.

Two classifiers are compared for upper body gesture recognition — an ANN and
HMM. The results show that cascading neural networks a classification accuracy of
100% is achieved across three different datasets. On the other hand, the HMM has
an overall accuracy of 93.3% for the 20/10 test and an accuracy of 81.6% with the
smaller training set. Increasing the amount of training data, the HMM can build a
better model to represent each gesture. The ANN can develop a model with fewer
data samples due to the optimised implementation of the ANN whereas the standard
unoptimised algorithms were used for HMM training and testing. The use of ANN
results in a marked improvement in the results when compared to those obtained
by [28], particularly for the Wave gesture. There is also a 15% improvement from
using an initial neural network to determine which side of the body is being used
for gesture performance. These results show that the designed ANN is robust and
can be used to classify dynamic upper body gestures.

The video of the live testing of the body gesture recognition system can be found in
Appendix D. The video shows the actions of a simulated robot for different dynamic
upper body gesture.

83

Chapter 7 System Results

7.3. Summary

This chapter presented a summary of the results for the components of a gesture re-
cognition system. The presented method for hand segmentation yields better results
compared to using only depth or colour information and works for a wide variety
of users even with a non-uniform background and with skin coloured objects in the
background. This method satisfies user adaptability, reconfigurability and envir-
onmental requirements specified in Section 1.2. An accuracy of 75% was achieved
using an ANN classifier with joint angles for hand-gesture recognition. This was
shown to be an improvement over using the position of the fingertips or using a k-
means classifier. The per-subject accuracy for the hand gesture recognition system
has a small standard deviation, proving the robustness of the system for a variety
of users. While the joint angle feature vector is superior to the position or state-
based feature vectors this method relies on the correct detection of fingertips that
are both fully extended. Further improvements to the fingertip detection algorithms
must be made to improve the accuracy of the hand-gesture recognition system.The
designed cascaded neural network architecture with MBSGD results in upper body
gesture recognition of 100% across all gestures in three different datasets implying
that the combination of ANNs with joint angles as a feature vector are ideal for
use in classifying dynamic upper body gestures. Real-time performance is achieved
for both the hand gestures and upper body gestures, fulfilling the responsiveness
requirement specified in Section 1.2.

84

8. Conclusion and Future Work

8.1. Conclusion

This dissertation presents the design of a gestural interface for application in human-
robot interaction. The design fuses upper body gestures for far-mode interaction,
and hand poses for near-mode interaction depending on the distance of the user
from the camera.

Far-mode interaction focuses on recognising upper body gestures using features ex-
tracted from skeletal data. A feature vector consisting of the joint angles of the
upper body and the relative position of the hand and elbow joint is formed. A novel
key-frame selection algorithm is proposed to temporally align the data. This ap-
proach is shown to decrease the intra-class log sum of squared error by at least one
order of magnitude on both a recorded dataset and a publicly available dataset. In
addition, a neural network is used to spot which side of the body is used for gesture
performance, and to only extract features from the gesturing hand resulting in an
improvement from 85% to 100%. Using a cascade of neural networks, the designed
upper body gesture recognition system can recognise 100% of gestures in real-time
for three different datasets.

Near-mode interaction focuses on retrieving the hand model using a single depth
and colour image. The hand is segmented from the image using a colour model
developed from the initial estimation of the hand position and depth segmentation.
This method is shown to improve the segmentation results with a small global
consistency error of less than 3% and a local consistency error of less than 2%.
Fingers are detected in the image using the k-curvature algorithm, depth differences
and parallel borders. A fingertip detection accuracy of 88% is achieved, but the pixel
error for the depth-based segmentation is up to 15 pixels due to the low resolution
of the depth camera. A novel calibration method insures that the hand model was
invariant to changes in the anthropometric parameters of different users. Inverse
kinematics are used to calculate the joint angles and hand model given the position
of the fingertips and wrist points. The hand model matches the gesture in cases
where the fingertips are correctly identified. The hand models can be calculated in
real-time, fulfilling the responsiveness requirement of successful gesture recognition
systems. A k-means classifier and neural network are used to classify gestures using
the calculated joint angles. The neural network achieves a better accuracy than the
k-means classifier.

85

Chapter 8 Conclusion and Future Work

The major contributions of this dissertation are:
1. A complete gestural interface which combines upper body gestures and hand

gestures, and can therefore be used both when the user is far from the sensor
and close to the sensor.

2. A novel key-frame selection algorithm for temporally aligning gesture sequences,
reducing the logSSE error by one order of magnitude.

3. A complete upper body gestural interface, which combines a unique feature
vector extracted from skeletal data and two neural networks, one for gesture
spotting and another for gesture classification. Real-time, accurate, and robust
upper body gesture recognition is achieved.

4. A novel hand model calibration method ensuring that the generated hand
model matches the anthropometric measurements of the user.

5. Hand pose estimation implemented in real-time, combining fingertip detection
and inverse kinematics. The use of joint angles allows for the gesture lexicon
to be easily extended.

8.2. Future Work

For future work there are many possible improvements that could extend this work.
The current accuracy of the fingertip detection methods is approximately 88%. An
improvement will result in a higher hand pose estimation accuracy. A possible
optimisation includes using the latest generation of depth sensors to improve the
depth resolution available.
Currently, hand pose estimation only works when the hand is orientated with the
palm approximately parallel to the sensor. The hand pose estimation could be ex-
tended to include instances where the hand is perpendicular to the sensor. This
extension could increase the number of possible gestures. However, this is a chal-
lenging task as the fingers may be occluded by one another.
One of the primary applications of hand gesture recognition is sign language transla-
tion. Sign languages typically include both dynamic and static gestures, so adapting
the system to recognise dynamic gestures would increase the applicability of the sys-
tem.

86

Bibliography

[1] E. Guizzo. So, where are my robot servants? Spectrum, IEEE, 51(6):74–79,
June 2014.

[2] Evan Ackerman. OSHbot will save you from having to
ask for help in a hardware store. Available at http://
spectrum.ieee.org/automaton/robotics/industrial-robots/
oshbot-will-save-you-from-asking-for-help-in-a-hardware-store.

[3] Richard A. Bolt. "Put-that-there": Voice and gesture at the graphics interface,
volume 14. ACM, 1980.

[4] A. Kendon. Gesture: visible action as utterance. Cambridge University Press,
Cambridge, 2004.

[5] Daniel Casasanto. Gesture and Language Processing. In H. Pashler, T. Crane,
M. Kinsbourne, F. Ferreira, and R. Zemel, editors, Encyclopedia of the Mind,
pages 372–374. Oxford University Press, New York, 2013.

[6] Juan Pablo Wachs, Mathias Kölsch, Helman Stern, and Yael Edan. Vision-
based hand-gesture applications. Communications of the ACM, 54(2):60,
February 2011.

[7] D. Vishnu Vardhan and P. Penchala Prasad. Hand gesture recognition ap-
plication for physically disabled people. International Journal of Science and
Research, 3(8):765–769, 2014.

[8] Prapat Parab, Sanika Kinalekar, Rohit Chavan, Deep Sharan, and Shubhadha
Deshpande. Hand gesture recognition using microcontroller and flex sensor.
International Journal Of Scientific Research And Education, 2(03), 2014.

[9] Farid Parvini, Dennis McLeod, Cyrus Shahabi, Bahareh Navai, Baharak Zali,
and Shahram Ghandeharizadeh. An approach to glove-based gesture recogni-
tion. In Human-Computer Interaction. Novel Interaction Methods and Tech-
niques, pages 236–245. Springer, 2009.

[10] Thomas Allevard, Eric Benoit, and Laurent Foulloy. Fuzzy glove for gesture
recognition. In XVII IMEKO World Congress, pages 2026–2031, 2003.

[11] Manisha R. Ghunawat. Multi-point gesture recognition using LED gloves for
interactive HCI. International Journal of Computer Science & Information
Technologies, 5(5), 2014.

87

http://spectrum.ieee.org/automaton/robotics/industrial-robots/oshbot-will-save-you-from-asking-for-help-in-a-hardware-store
http://spectrum.ieee.org/automaton/robotics/industrial-robots/oshbot-will-save-you-from-asking-for-help-in-a-hardware-store
http://spectrum.ieee.org/automaton/robotics/industrial-robots/oshbot-will-save-you-from-asking-for-help-in-a-hardware-store

Bibliography

[12] Mario Ganzeboom. How hand gestures are recognized using a dataglove. Hu-
man Media Interaction (HMI), 2009.

[13] D. Vishnu Vardhan and P. Penchala Prasad. Hand gesture recognition ap-
plication for physically disabled people. International Journal of Science and
Research, 3(8):765–769, 2014.

[14] Amit Gupta, Vijay Kumar Sehrawat, and Mamta Khosla. FPGA based real
time human hand gesture recognition system. Procedia Technology, 6:98–107,
2012.

[15] Mohammed Hasanuzzaman, Vuthichai Ampornaramveth, Tao Zhang, M.A.
Bhuiyan, Yoshiaki Shirai, and Haruki Ueno. Real-time vision-based gesture
recognition for human robot interaction. In IEEE International Conference on
Robotics and Biomimetics, 2004. ROBIO 2004., pages 413–418. IEEE, 2004.

[16] N. Naidoo and James Connan. Gesture recognition using feature vectors. In
Proc. South African Telecommunication Networks and Applications Confer-
ence (SATNAC 2009), 2009.

[17] Thad Starner, Joshua Weaver, and Alex Pentland. Real-time American sign
language recognition using desk and wearable computer based video. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(12):1371–1375,
1998.

[18] Tasnuva Ahmed. A neural network based real time hand gesture recognition
system. International Journal of Computer Applications, 59(4):17–22, 2012.

[19] William T. Freeman and Michal Roth. Orientation histograms for hand ges-
ture recognition. In International Workshop on Automatic Face and Gesture
Recognition, volume 12, pages 296–301, 1995.

[20] Juan P. Wachs, Helman Stern, and Yael Edan. Cluster labeling and parame-
ter estimation for the automated setup of a hand-gesture recognition system.
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, 35(6):932–944, 2005.

[21] Raymond Lockton and Andrew W. Fitzgibbon. Real-time gesture recognition
using deterministic boosting. In BMVC, volume 2002, pages 1–10, 2002.

[22] Alex Drake. Kinect hand recognition and tracking. Washington University in
St. Louis, Kinect Hand Recognition and Tracking, Project Report, 2012.

[23] James Davis and Mubarak Shah. Visual gesture recognition. In Vision, Image
and Signal Processing, IEE Proceedings, volume 141, pages 101–106. IET,
1994.

[24] Zhou Ren, Jingjing Meng, and Junsong Yuan. Depth camera based hand
gesture recognition and its applications in human-computer-interaction. In
2011 8th International Conference on Information, Communications and Sig-
nal Processing (ICICS), pages 1–5, Dec 2011.

88

Bibliography

[25] J.L. Raheja, A. Chaudhary, and K. Singal. Tracking of fingertips and centers of
palm using Kinect. In 2011 Third International Conference on Computational
Intelligence, Modelling and Simulation (CIMSiM), pages 248–252, Sept 2011.

[26] Yi Li. Hand gesture recognition using Kinect. In 2012 IEEE 3rd Interna-
tional Conference on Software Engineering and Service Science (ICSESS),
pages 196–199. IEEE, 2012.

[27] Yuan Yao and Yun Fu. Contour model based hand-gesture recognition using
Kinect sensor. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 2014.

[28] Sait Celebi, Ali S.A.S. Aydin, T.T. Talha T. Temiz, and Tarik Arici. Gesture
recognition using skeleton data with weighted dynamic time warping. Com-
puter Vision Theory and and Applications. VisApp, 2013.

[29] Lee Jaemin, Hironori Takimoto, Hitoshi Yamauchi, A Kanazawa, and Yasue
Mitsukura. A robust gesture recognition based on depth data. In 2013 19th
Korea-Japan Joint Workshop on Frontiers of Computer Vision,(FCV), pages
127–132. IEEE, 2013.

[30] Garrett Bernstein, Nyk Lotocky, and Dan Gallagher. Robot Recognition of
Military Gestures CS 4758 Term Project. Technical report, Robot Learning
Lab, Cornell University, 2012.

[31] Zahoor Zafrulla, Helene Brashear, Thad Starner, Harley Hamilton, and Peter
Presti. American sign language recognition with the Kinect. In Proceedings
of the 13th international conference on multimodal interfaces, pages 279–286.
ACM, 2011.

[32] Kam Lai, Janusz Konrad, and Prakash Ishwar. A gesture-driven computer
interface using Kinect. In 2012 IEEE Southwest Symposium on Image Analysis
and Interpretation (SSIAI), pages 185–188. IEEE, 2012.

[33] J. Suarez and R.R. Murphy. Hand gesture recognition with depth images: A
review. In RO-MAN, 2012 IEEE, pages 411–417, Sept 2012.

[34] Barry Kollee, Sven Kratz, and Anthony Dunnigan. Exploring gestural interac-
tion in smart spaces using head mounted devices with ego-centric sensing. In
Proceedings of the 2nd ACM Symposium on Spatial User Interaction, SUI’14,
pages 40–49, New York, NY, USA, 2014. ACM.

[35] Sven Kratz and M.D.T. I. Aumi. AirAuth: A Biometric Authentication System
Using In-air Hand Gestures. In CHI ’14 Extended Abstracts on Human Factors
in Computing Systems, CHI EA ’14, pages 499–502, New York, NY, USA,
2014. ACM.

[36] Tomás Mantecón, Carlos R. del Blanco, Fernando Jaureguizar, and Narciso
García. New generation of human machine interfaces for controlling UAV
through depth-based gesture recognition. In SPIE Defense+ Security, pages
90840C–90840C. International Society for Optics and Photonics, 2014.

89

Bibliography

[37] Ondrej Kainz and František Jakab. Approach to hand tracking and gesture
recognition based on depth-sensing cameras and EMG monitoring. Acta In-
formatica Pragensia, 3(1):104–112, 2014.

[38] Frank Weichert, Daniel Bachmann, Bartholomäus Rudak, and Denis Fisseler.
Analysis of the accuracy and robustness of the Leap motion controller. Sensors,
13(5):6380–6393, 2013.

[39] Maryam Khademi, Hossein Mousavi Hondori, Alison McKenzie, Lucy Do-
dakian, Cristina Videira Lopes, and Steven C. Cramer. Free-hand interaction
with Leap motion controller for stroke rehabilitation. In CHI’14 Extended
Abstracts on Human Factors in Computing Systems, pages 1663–1668. ACM,
2014.

[40] Ali Boyali, Naohisa Hashimoto, and Osamu Matsumato. Hand posture con-
trol of a robotic wheelchair using a Leap motion sensor and block sparse rep-
resentation based classification. In SMART 2014, The Third International
Conference on Smart Systems, Devices and Technologies, pages 20–25, 2014.

[41] D. Bassily, C. Georgoulas, J. Guettler, T. Linner, and T. Bock. Intuitive
and adaptive robotic arm manipulation using the Leap motion controller. In
Proceedings of ISR/Robotik 2014; 41st International Symposium on Robotics,
pages 1–7. VDE, 2014.

[42] Zhou Ren, Jingjing Meng, Junsong Yuan, and Zhengyou Zhang. Robust hand
gesture recognition with Kinect sensor. In Proceedings of the 19th ACM in-
ternational conference on Multimedia, pages 759–760. ACM, 2011.

[43] Nicolas Pugeault and Richard Bowden. Spelling it out: Real-time ASL fin-
gerspelling recognition. In 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pages 1114–1119. IEEE, 2011.

[44] Aditya Ramamoorthy, Namrata Vaswani, Santanu Chaudhury, and Subhashis
Banerjee. Recognition of dynamic hand gestures. Pattern Recognition,
36(9):2069–2081, 2003.

[45] Matthew Tang. Recognizing hand gestures with Microsoft’s Kinect. Palo Alto:
Department of Electrical Engineering of Stanford University, 2011.

[46] Chieh-Chih Wang and Ko-Chih Wang. Hand posture recognition using Ad-
aboost with SIFT for human robot interaction. In Recent progress in robotics:
viable robotic service to human, pages 317–329. Springer, 2008.

[47] Pallavi Gurjal and Kiran Kunnur. Real time hand gesture recognition using
SIFT. International Journal for Electronics and Engineering, pages 19–33,
2012.

[48] Qing Chen, Nicolas D. Georganas, and Emil M. Petriu. Real-time vision-based
hand gesture recognition using Haar-like features. In Instrumentation and
Measurement Technology Conference Proceedings, 2007. IMTC 2007. IEEE,
pages 1–6. IEEE, 2007.

90

Bibliography

[49] Qing Chen, Nicolas D. Georganas, and Emil M. Petriu. Hand gesture recog-
nition using Haar-like features and a stochastic context-free grammar. IEEE
Transactions on Instrumentation and Measurement, 57(8):1562–1571, 2008.

[50] Chen-Chiung Hsieh and Dung-Hua Liou. Novel Haar features for real-time
hand gesture recognition using SVM. Journal of Real-Time Image Processing,
pages 1–14, 2012.

[51] Kai-ping Feng and Fang Yuan. Static hand gesture recognition based on HOG
characters and support vector machines. In 2013 2nd International Sympo-
sium on Instrumentation and Measurement, Sensor Network and Automation
(IMSNA), pages 936–938. IEEE, 2013.

[52] Hui Li, Lei Yang, Xiaoyu Wu, Shengmiao Xu, and Youwen Wang. Static
hand gesture recognition based on HOG with Kinect. In 2012 4th Inter-
national Conference on Intelligent Human-Machine Systems and Cybernetics
(IHMSC), volume 1, pages 271–273. IEEE, 2012.

[53] Yu Ren and Chengcheng G.U. Hand gesture recognition based on HOG char-
acters and SVM. Bulletin of Science and Technology, 2:011, 2011.

[54] Ankit Chaudhary, Jagdish L. Raheja, and Shekhar Raheja. A vision based
geometrical method to find fingers positions in real time hand gesture recog-
nition. Journal of Software, 7(4):861–869, 2012.

[55] Guan-Feng He, Sun-Kyung Kang, Won-Chang Song, and Sung-Tae Jung.
Real-time gesture recognition using 3D depth camera. In 2011 IEEE 2nd
International Conference on Software Engineering and Service Science (IC-
SESS), pages 187–190. IEEE, 2011.

[56] Unseok Lee and Jiro Tanaka. Finger identification and hand gesture recog-
nition techniques for natural user interface. In Proceedings of the 11th Asia
Pacific Conference on Computer Human Interaction, pages 274–279. ACM,
2013.

[57] Zhou Ren, Junsong Yuan, Jingjing Meng, and Zhengyou Zhang. Robust part-
based hand gesture recognition using Kinect sensor. IEEE Transactions on
Multimedia, 15(5):1110–1120, 2013.

[58] Shuxin Qin, Xiaoyang Zhu, Yiping Yang, and Yongshi Jiang. Real-time
hand gesture recognition from depth images using convex shape decompo-
sition method. Journal of Signal Processing Systems, 74(1):47–58, 2014.

[59] Iason Oikonomidis, Nikolaos Kyriazis, and Antonis A. Argyros. Efficient
model-based 3D tracking of hand articulations using Kinect. In BMVC, vol-
ume 1, page 3, 2011.

[60] James Anthony Brown and David W. Capson. A framework for 3D model-
based visual tracking using a GPU-accelerated particle filter. IEEE Transac-
tions on Visualization and Computer Graphics, 18(1):68–80, 2012.

91

Bibliography

[61] Vassilis Athitsos and Stan Sclaroff. Estimating 3D hand pose from a cluttered
image. In 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 2, pages II–432. IEEE, 2003.

[62] Paul Doliotis, Vassilis Athitsos, Dimitrios Kosmopoulos, and Stavros Peran-
tonis. Hand shape and 3D pose estimation using depth data from a single
cluttered frame. In Advances in Visual Computing, pages 148–158. Springer,
2012.

[63] B. Stenger, P.R.S. Mendonca, and R. Cipolla. Model-based 3D tracking of an
articulated hand. In Proceedings of the 2001 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2001. CVPR 2001.,
volume 2, pages II–310–II–315 vol.2, 2001.

[64] Javier Molina and José M. Martínez. A synthetic training framework for
providing gesture scalability to 2.5 D pose-based hand gesture recognition
systems. Machine Vision and Applications, pages 1–7, 2014.

[65] Stefan Waldherr, Roseli Romero, and Sebastian Thrun. A gesture based in-
terface for human-robot interaction. Autonomous Robots, 9(2):151–173, 2000.

[66] Cem Keskin, Furkan Kıraç, Yunus Emre Kara, and Lale Akarun. Real time
hand pose estimation using depth sensors. In Consumer Depth Cameras for
Computer Vision, pages 119–137. Springer, 2013.

[67] Chen Yiqiang, G.A.O Wen, and M.A. Jiyong. Hand gesture recognition based
on decision tree.

[68] Xiaoming Yin and Ming Xie. Finger identification and hand posture recogni-
tion for human–robot interaction. Image and Vision Computing, 25(8):1291–
1300, 2007.

[69] Xinshuang Zhao, Ahmed M. Naguib, and Sukhan Lee. Kinect based calling
gesture recognition for taking order service of elderly care robot. In 2014
RO-MAN: The 23rd IEEE International Symposium on Robot and Human
Interactive Communication, pages 525–530. IEEE, 2014.

[70] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, and Jian Sun. Realtime and
robust hand tracking from depth.

[71] Osamu Sugiyama, Takayuki Kanda, Michita Imai, Hiroshi Ishiguro, and Nori-
hiro Hagita. Natural deictic communication with humanoid robots. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007.
IROS 2007., pages 1441–1448. IEEE, 2007.

[72] Vijay Kumari Thakur. Robust hand gesture recognition for human machine
interaction system. Journal of Global Research in Computer Science, 5(3):14–
19, 2014.

[73] Paulo Trigueiros, António Fernando Ribeiro, and Gil Lopes. Vision-based
hand segmentation techniques for human-robot interaction for real-time ap-
plications. 2012.

92

Bibliography

[74] M.D. Hasanuzzaman and Haruki Ueno. Face and gesture recognition for
human-robot interaction. Face Recognition, page 149.

[75] Michael van den Bergh, Daniel Carton, Roderick de Nijs, Nikos Mitsou, Chris-
tian Landsiedel, Kolja Kuehnlenz, Dirk Wollherr, Luc van Gool, and Martin
Buss. Real-time 3D hand gesture interaction with a robot for understanding
directions from humans. In RO-MAN, 2011 IEEE, pages 357–362. IEEE, 2011.

[76] Dan Xu, Xinyu Wu, Yen-Lun Chen, and Yangsheng Xu. Online dynamic
gesture recognition for human robot interaction. Journal of Intelligent &
Robotic Systems, pages 1–14, 2014.

[77] Hee-Deok Yang, A-Yeon Park, and Seong-Whan Lee. Gesture spotting and
recognition for human–robot interaction. IEEE Transactions on Robotics,
23(2):256–270, 2007.

[78] Dongseok Yang, Jong-Kuk Lim, and Younggeun Choi. Early childhood edu-
cation by hand gesture recognition using a smartphone based robot. In 2014
RO-MAN: The 23rd IEEE International Symposium on Robot and Human
Interactive Communication, pages 987–992. IEEE, 2014.

[79] Pujan Ziaie. Implementing and Evaluating Hand Gesture Recognition for
Human-Robot Joint Action. Master’s thesis, Technische Universität München,
Fakultät für Informatik, Munich, Germany, 2008.

[80] Nobuyuki Otsu. A threshold selection method from gray-level histograms.
Automatica, 11(285-296):23–27, 1975.

[81] Jakub Segen and Senthil Kumar. Fast and accurate 3D gesture recognition in-
terface. In Fourteenth International Conference on Pattern Recognition, 1998.
Proceedings., volume 1, pages 86–91. IEEE, 1998.

[82] Mohammed Yeasin and Subhasis Chaudhuri. Visual understanding of dynamic
hand gestures. Pattern Recognition, 33(11):1805–1817, 2000.

[83] Alena Kopaničáková and Mária Virčíková. Gesture recognition using DTW
and its application potential in human-centered robotics. Robotics research
paper, 2013.

[84] Simon Fothergill, Helena Mentis, Pushmeet Kohli, and Sebastian Nowozin.
Instructing people for training gestural interactive systems. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages
1737–1746. ACM, 2012.

[85] Zhe Lin, Zhuolin Jiang, and Larry S. Davis. Recognizing actions by shape-
motion prototype trees. In 2009 IEEE 12th International Conference on Com-
puter Vision, pages 444–451. IEEE, 2009.

[86] Isabelle Guyon, Vassilis Athitsos, Pat Jangyodsuk, Ben Hamner, and
Hugo Jair Escalante. Chalearn gesture challenge: Design and first results.
In 2012 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 1–6. IEEE, 2012.

93

Bibliography

[87] Sergio Escalera, Xavier Baró, Jordi Gonzalez, Miguel A. Bautista, Meysam
Madadi, Miguel Reyes, V. Ponce, Hugo J. Escalante, Jamie Shotton, and Is-
abelle Guyon. Chalearn looking at people challenge 2014: Dataset and results.
In ECCV ChaLearn Workshop on Looking at People, 2014.

[88] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin. Real-time
continuous pose recovery of human hands using convolutional networks. ACM
Transactions on Graphics, 33, August 2014.

[89] PrimeSense. NiTE 2 API Programmer Tutorial Guide, 2013. Avail-
able from http://www.primesense.com/wp-content/uploads/2013/04/
PrimeSense_NiTE2API_ProgTutorialGuide_C++Samples_docver0.2.pdf.

[90] Jure Kovac, Peter Peer, and Franc Solina. Human skin color clustering for
face detection, volume 2. IEEE, 2003.

[91] Teófilo de Campos. 3D Visual Tracking of Articulated Objects and Hands.
PhD thesis, University of Oxford, Oxford, United Kingdom, 7 2006. Available
from http://www.robots.ox.ac.uk/~teo/thesis/.

[92] Marko Tkalcic and Jurij F. Tasic. Colour spaces: perceptual, historical and
applicational background. In Eurocon, 2003.

[93] Bosheng Wang and Jiaqi Xu. Accurate and fast hand-forearm segmentation
algorithm based on silhouette. In 2012 IEEE 2nd International Conference on
Cloud Computing and Intelligent Systems (CCIS), volume 2, pages 976–979.
IEEE, 2012.

[94] Gunilla Borgefors. Distance transformations in digital images. Computer
vision, graphics, and image processing, 34(3):344–371, 1986.

[95] Hui Liang, Junsong Yuan, and Daniel Thalmann. 3D fingertip and palm track-
ing in depth image sequences. In Proceedings of the 20th ACM international
conference on Multimedia, pages 785–788. ACM, 2012.

[96] Satoshi Suzuki. Topological structural analysis of digitized binary images by
border following. Computer Vision, Graphics, and Image Processing, 30(1):32–
46, 1985.

[97] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database
of human segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics. In Proceedings. Eighth
IEEE International Conference on Computer Vision, 2001. ICCV 2001., vol-
ume 2, pages 416–423. IEEE, 2001.

[98] Zhenyao Mo and Ulrich Neumann. Real-time hand pose recognition using
low-resolution depth images. In CVPR (2), pages 1499–1505, 2006.

[99] Chin-Seng Chua, Haiying Guan, and Yeong-Khing Ho. Model-based 3D hand
posture estimation from a single 2D image. Image and Vision computing,
20(3):191–202, 2002.

94

http://www.primesense.com/wp-content/uploads/2013/04/PrimeSense_NiTE2API_ProgTutorialGuide_C++Samples_docver0.2.pdf
http://www.primesense.com/wp-content/uploads/2013/04/PrimeSense_NiTE2API_ProgTutorialGuide_C++Samples_docver0.2.pdf
http://www.robots.ox.ac.uk/~teo/thesis/

Bibliography

[100] James J. Kuch and Thomas S. Huang. Vision based hand modeling and track-
ing for virtual teleconferencing and telecollaboration. In Fifth International
Conference on Computer Vision, 1995. Proceedings., pages 666–671. IEEE,
1995.

[101] Jintae Lee and Tosiyasu L. Kunii. Constraint-based hand animation. InModels
and techniques in computer animation, pages 110–127. Springer, 1993.

[102] Buryanov Alexander and Kotiuk Viktor. Proportions of hand segments. Int.
J. Morphol, 28(3):755–758, 2010.

[103] Hans Rijpkema and Michael Girard. Computer animation of knowledge-based
human grasping. In ACM Siggraph Computer Graphics, volume 25, pages
339–348. ACM, 1991.

[104] Asus. Asus Xtion PRO Live, 2012. Available from http://www.asus.com/
Multimedia/Xtion_PRO_LIVE/.

[105] OpenNI. OpenNI Programmer’s Guide, 2013. Available from http://www.
openni.org/openni-programmers-guide.

[106] R. Mangera. Static gesture recognition using features extracted from skeletal
data. In Proceedings of the Twenty-Fourth Annual Symposium of the Pattern
Recognition Association of South Africa(PRASA2013), pages 59–63. PRASA,
2013.

[107] Jun Cheng, Wei Bian, and Dacheng Tao. Locally regularized sliced inverse
regression based 3D hand gesture recognition on a dance robot. Information
Sciences, 221:274–283, 2013.

[108] Meinard Müller. Dynamic time warping. Information retrieval for music and
motion, pages 69–84, 2007.

[109] Chotirat Ann Ratanamahatana and Eamonn Keogh. Three myths about dy-
namic time warping data mining. In Proceedings of SIAM International Con-
ference on Data Mining (SDM’05), pages 506–510. SIAM, 2005.

[110] Stuart Jonathan Russell, Peter Norvig, John F. Canny, Jitendra M. Malik, and
Douglas D. Edwards. Artificial intelligence: a modern approach, volume 74.
Prentice hall Englewood Cliffs, 1995.

[111] I. Nabney. NETLAB: Algorithms for Pattern Recognition. Advances in Com-
puter Vision and Pattern Recognition. Springer, 2002.

[112] Alexander Fabisch. OpenANN, 2013. Available from http://openann.
github.io/OpenANN-apidoc/index.html.

[113] Christopher M. Bishop et al. Pattern recognition and machine learning, vol-
ume 4. springer New York, 2006.

[114] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of care-
ful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium

95

http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
http://www.openni.org/openni-programmers-guide
http://www.openni.org/openni-programmers-guide
http://openann.github.io/OpenANN-apidoc/index.html
http://openann.github.io/OpenANN-apidoc/index.html

Bibliography

on Discrete algorithms, pages 1027–1035. Society for Industrial and Applied
Mathematics, 2007.

[115] Glenn W. Milligan and Martha C. Cooper. An examination of procedures for
determining the number of clusters in a data set. Psychometrika, 50(2):159–
179, 1985.

[116] Tom M. Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45,
1997.

[117] OpenCV. OpenCV API Reference. Available from http://docs.opencv.
org/modules/refman.html, year = 2014.

[118] Open Source Robotics Foundation. ROS Hydro Medusa, 2014. Available from
http://wiki.ros.org/hydro.

[119] Adept Technology. MobileSim— The Adept MobileRobots Simulator, 2012.
Available from http://robots.mobilerobots.com/MobileSim/download/
current/README.html.

[120] Paul Viola and Michael Jones. Rapid object detection using a boosted cas-
cade of simple features. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001.,
volume 1, pages I–511. IEEE, 2001.

96

http://docs.opencv.org/modules/refman.html
http://docs.opencv.org/modules/refman.html
http://wiki.ros.org/hydro
http://robots.mobilerobots.com/MobileSim/download/current/README.html
http://robots.mobilerobots.com/MobileSim/download/current/README.html

A. Anatomical Terms of Motion

A.1. Overview

Anatomical terms of motion are used to describe the movement of joints of the body
relative to their anatomical position. As the majority of motions have an inverse,
for example a push and pull, they are paired. This section describes the terms of
motion, specifically those that are applicable to the hand. The planes and terms
used to describe the direction of motion are shown in Figure A.1. The midline refers
to the middle of the hand, as depicted in Figure A.1a. Three planes are commonly
used, as shown in Figure A.1b. The sagittal plane is through the mid-line, dividing
the palm into left and right. The coronal plane is parallel to the palm and divides
the hand into front and back, and lastly the transverse plane divides the hand into
top and bottom.

(a) The midline of the hand. (b) The three anatomical planes.

Figure A.1. The anatomical planes and terminology used to describe motion.

97

Chapter A Anatomical Terms of Motion

A.2. Flexion-Extension

Flexion and extension are movements that occur in the sagittal plane. They are
actions that bend or straighten a part of the body, thereby increasing or decreas-
ing the angle between two subsequent segments. Flexion decreases the angle and
extension increases the angle. These motions are depicted in Figure A.2.

Flexion and extension of the hand at the wrist joint is referred to as palmarflexion
and dorsiflexion. Palmarflexion refers to decreasing the angle between the palm and
anterior forearm and dorsiflexion is the extension of the wrist joint.

(a) Flexion of the
proximal interpha-
langeal joint.

(b) Extension of
the proximal inter-
phalangeal joint.

Figure A.2. Flexion-Extension.

A.3. Abduction-Adduction

Abduction and adduction describe the motion of a body part away from or towards
the midline. In the case of the hand, the midline is the middle of the hand, as
shown in Figure A.1a. Abduction is movement away from the midline, for example
when the fingers are spread, and adduction is movement towards the midline. These
motions are illustrated in Figure A.3.

A.4. Pronation-Supination

Pronation is rotation of the forearm such that the palm faces towards the rear and
supination is a rotation of the forearm so that the palm faces towards the anterior.
These are shown in Figure A.4.

98

A.5 Opposition-Reposition

(a) Abduction of the in-
dex finger.

(b) Adduction of the in-
dex finger.

Figure A.3. Abduction-Adduction.

(a) Pronation. (b) Supination.

Figure A.4. Pronation-Supination.

A.5. Opposition-Reposition

These movements are unique to humans and are only applicable to the carpal-
metacarpal joint of the thumb. Opposition brings the thumb and little finger to-
gether in a grasping motion and reposition is the opposite movement, which moves
the thumb and little finger apart. An example of these motions is depicted in Fig-
ure A.5.

Figure A.5. Opposition of the thumb.

99

B. Ethics Clearance

This chapter contains the ethics clearance certificates received from the University
of Cape Town (UCT) and the Council for Scientific and Industrial Research (CSIR)
for this work.

101

 CSIR Research Ethics Committee

PO Box 395 Pretoria 0001 South Africa
Tel: +27 12 841 4060

Fax: +27 12 841 2476
Email:R&DEthics@csir.co.za

30 June 2014

Dear: Ms Ra’eesha Mangera

Approval of Protocol: Testing Gesture Recognition with Application in Robotic Control

This is to confirm that your Protocol reviewed by the CSIR REC has been approved. The
reference number of this research project is REF: 101/2014.

This approval is granted under the condition that:

1. The researcher remains within the procedures and protocols indicated in the
proposal, as well as the additions made to the procedures and protocols as indicated
in the responses submitted to the questions of the REC, particularly in terms of any
undertakings made and guarantees given.

2. The researcher notes that the research must be submitted again for ethical clearance
if there is substantial departure from the existing proposal.

3. The researcher remains within the parameters of any applicable national legislation,
institutional guidelines and scientific standards relevant to the specific field of
research.

4. This approval is valid for one calendar year from the date of this letter.
5. The researcher submit bi-annual progress reports to the REC
6. The researcher immediately alert the REC of any adverse events that have occurred

during the course of the study, as well as the actions that were taken to immediately
respond to these events.

7. The researcher alert the REC of any new or unexpected ethical issues that emerged
during the course of the study, and how these ethical issues were addressed. If
unsure how to respond to these unexpected or new ethical issues as they emerge,
the researcher should immediately consult with the REC for advice.

8. The researcher submit a short report to the REC on completion of the research in
which it is indicated (i) that the research has been completed; (ii) if any new or
unexpected ethical issues emerged during the course of the study; and if so, (iii) how
these ethical issues were addressed.

We wish you all of the best with your research project.

Kind regards

Dr Mongezi Mdhluli Dr Sandile Ncanana

(CSIR REC Chair) (CSIR REC Secretariat)

C. Calculating the Intersection of a
Circle and Line

Consider a circle centred at point C with radius r, and a line, LE, from point L to
point E (as depicted in Figure C.1).

Figure C.1. Intersection of line and circle.

The points of intersection P1 and P2 are found as follows:
Define the direction vector of LE, from start to end, as

d = L− E, (C.1)

and the vector from the centre of the circle to the start of the line LE as

f = E−C. (C.2)

The parametric equation of the line LE is given by:

P = E + td. (C.3)

105

Chapter C Calculating the Intersection of a Circle and Line

In Cartesian coordinates this is

px = ex + tdx, (C.4)

py = ey + tdy. (C.5)

The equation of the circle is given by

(x− h)2 + (y − k)2 = r2, (C.6)

where C = (h, k) is the centre of the circle.
To find the intersection, substitute Eq. (C.4) and Eq. (C.5) into Eq. (C.6) to obtain

(ex + tdx)2 − 2(ex + tdx)h+ h2 + (ey + tdy)2 − 2(ey + tdy)k + k2 − r2 = 0. (C.7)

Expanding and grouping Eq. (C.7) to obtain

t2(d · d) + 2t(d·(E−C)) + (E−C) · (E−C)− r2 = 0. (C.8)

Finally, substituting Eq. (C.2) into Eq. (C.8) to get

t2(d · d) + 2t(d·f) + f · f − r2 = 0. (C.9)

This equation can be solved using the quadratic formula

t = −b±
√
b2 − 4ac

2a , (C.10)

where

a = d · d,
b = 2(d · f), (C.11)
c = f · f − r2.

The variable t can then be substituted into Eq. (C.4) and Eq. (C.5) to obtain the
points where the circle and the line intersect.

106

D. Live Testing Videos

This chapter includes a description and links to the live testing videos that show
the real-time testing of the gesture recognition system.

D.1. Hand Gesture Recognition

Live testing of the hand gesture recognition system was done using a Rock, Paper,
Scissors game. In the game either an image of a rock, paper or scissor is shown.
The user is then instructed to perform the gesture that will win, lose or tie against
the displayed gesture. Once the correct gesture is displayed a new gesture and
instruction is shown on the screen. The objective of the game is to get the maximum
number of gestures correct in one minute.
The real-time demo of the game can be found at:
https://www.dropbox.com/s/h86pikn1o9t3p1r/HandGestureRecognitionRealTime.
wmv?dl=0.
A slowed down version of the demo, where the misclassifications are highlighted may
be found at:
https://www.dropbox.com/s/to9cn5o6j2hjxbu/HandGestureRecognitionSlow.wmv?
dl=0.

D.2. Upper Body Gesture Recognition

Live testing of the upper body gesture recognition system was done using an Asus
Xtion Pro Live Camera and a simulated robot. The video in the link below shows
the robot reactions to the dynamic gestures and the far-mode interface.
https://www.dropbox.com/s/9gmw0eb6dxtw52y/UpperBodyGestureRecognition.
wmv?dl=0

107

https://www.dropbox.com/s/h86pikn1o9t3p1r/HandGestureRecognitionRealTime.wmv?dl=0
https://www.dropbox.com/s/h86pikn1o9t3p1r/HandGestureRecognitionRealTime.wmv?dl=0
https://www.dropbox.com/s/to9cn5o6j2hjxbu/HandGestureRecognitionSlow.wmv?dl=0
https://www.dropbox.com/s/to9cn5o6j2hjxbu/HandGestureRecognitionSlow.wmv?dl=0
https://www.dropbox.com/s/9gmw0eb6dxtw52y/UpperBodyGestureRecognition.wmv?dl=0
https://www.dropbox.com/s/9gmw0eb6dxtw52y/UpperBodyGestureRecognition.wmv?dl=0

