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Abstract

The deformable image registration is central to many challenges in medical imaging ap-
plications. The basic idea of the deformable image registration problem is to find an
approximation of a reasonable deformation which transforms one image to match another
based on a chosen similarity measure. A reasonable deformation can be thought of as one
that is physically realizable. A number of models, guaranteeing reasonable deformations,
have been proposed and implemented with success under various similarity measures.
One such model is based on the grid deformation method (GDM) and is the method of
interest in this thesis. This work focuses on the evaluation of an optimal control-based
model for solving the deformable image registration problem which is formulated using
GDM. This model is compared with other four well-known variational-based deformable
image registration models: elastic, fluid, diffusion and curvature models. Using similar-
ity and deformation quality measures as performance indices, the non-dominated sorting
genetic algorithm (NSGA-II) is applied to approximate the Pareto fronts for each model
to facilitate proper evaluation. The Pareto fronts are also visualized using level diagrams
analysis.
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Chapter 1

Introduction

Image registration is defined as a process of determining an optimal transformation that
maps the template image points to the corresponding points in the reference
image [1]. These images could be of the same or different objects and imaging modalities,
and possibly captured at different times and pose. Generally speaking image registration
can be divided into two major categories depending on the types of transformations con-
cerned. The first category is the rigid (global) image registration whose search space is
limited to global transformations like affine and perspective transformations. Such trans-
formations can only map straight lines to other straight lines. The second category is the
nonrigid (deformable) image registration whose search space extends to include nonlinear
transformations which can map straight lines onto curves.

With recent developments in imaging technology and increases in computing power, im-
age registration has found its use in many areas of inquiry including in the fields of as-
tronomy, health sciences and engineering. Medical imaging is one such field which makes
extensive use of image registration in solving daily health problems. Image registration is
an essential component in medical imaging due to the fact that it serves as one of the pre-
requisites for advanced processing and analysis including disease diagnosis, monitoring
and treatment. Using image registration in these applications requires prior knowledge of
the nature of tissue or object involved, such as its softness. This gives an idea as to which
methods of image registration will be most appropriate based on the transformations they
permit.

Rigid image registration is appropriate in applications where the involved tissue or object
deformation can be reasonably approximated by global transformations and such applica-

1



CHAPTER 1. INTRODUCTION 2

tions include brain tumor diagnosis. However global image registration in itself can not be
used satisfactorily in applications involving large nonlinear deformation such as in breast
and prostate cancer diagnosis. For such applications deformable image registration is the
most suited for the job.

Deformable image registration aims to find a physically realizable deformation that opti-
mizes a chosen similarity measure between two images. That is, the deformable image
registration problem can be thought of as a bi-objective minimization problem whereby
two key objectives are similarity measure and deformation quality measure.

Similarity measure provides a quantitative measure of correspondence between two image
features and it is upon this quantifiable correspondence measure that optimization prob-
lems can be formulated such that alignment of features is maximized. sum of squared

differences (SSD) is one of the popular similarity measures in the literature [2, 3, 4] and it
is adopted for evaluation in this work.

The deformation quality measure is perhaps the most vital component in the deformable
image registration process since without it arbitrary deformations may lead to grid tan-
gling and other undesirable solutions. The necessity of good quality deformations has led
to development of various kinds of deformable models including variational-based ones
like elastic, fluid, diffusion and curvature models [3, 4, 5, 6, 7]. Each of these variational-
based models is equipped with a unique regularizer which penalizes physically unrealiz-
able deformations.

These regularization terms result in transformations which do not optimize the similarity
measure alone; in fact if the weighting on the regularizer is too small, the model will be
unstable. On the other hand if it is too large the regularity will be too strong and the result-
ing transformation will not accurately optimize the similarity measure [1]. Closely related
to variational-based models is an optimal control approach to the deformable image regis-
tration problem, whose formulation is based on grid deformation method
(GDM) [1, 8, 9]. GDM is able to generate a grid with a desired grid density distribu-
tion that is free from grid tangling without the need for any regularizer. This is achieved
through a positive monitor function as a control input. More details on the variational-
based model and the optimal control-based model will be discussed in Chapter 3 and
Chapter 4 respectively.
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1.1 Problem Statement

The current proton therapy program at iThemba LABS is designed around treating le-
sions predominantly in the head and neck region. One of the useful side effects is that
the anatomy in this region is very rigid and registration of the target volume can rely on
comparatively simple image registration techniques. It would be desirable, however, to
be able to treat a wider range of configurations, especially treating various lesions in the
abdominal region such as the prostate. Since the body structure is less rigid, registering
the patient position to the CT scan data is much harder. This requires investigating various
deformable image registration models to decide when two shapes are sufficiently similar.

Although there are many models in the literature for tackling the deformable image regis-
tration problem relatively less work has been done on the subject of their evaluation. One
model may perform best for a particular application and worse in other applications. The
performances of these models usually differ due to the differences in their formulation
and without sufficient evaluation it is not easy to decide which model is best suited for a
particular application. There is a need to carry out more evaluations and most importantly
quantitative evaluations which give more useful insight on the models through defining
proper objectives as performance markers to facilitate efficient evaluation.

Evaluation of the adequacy of deformable image registration models for a given applica-
tion is required not only to allow the appropriate selection of the most suitable model but
also to tune their parameters for optimal performance. Based on the chosen objectives the
models are evaluated, and from the evaluation results the strengths and weakness of each
model are investigated. For instance some models penalize global transformations hence
are likely to perform poorly in the absence of good initialization relative to others which
do not penalize global transformations. So the sensitivity of the models to initialization
needs to be investigated through the evaluation, thus arming the designer with enough
information to make well-informed decisions.

1.2 Purpose of Study

With regard to the problem outlined in the problem statement section above, the purpose
of this study is to carry out an evaluation of the optimal control-based model, using as
references for comparison purposes four variational-based models. In so doing, these other
four variational-based models are evaluated as well. This work serves as a contribution, in
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some way, to an ongoing study on the evaluation of deformable image registration models.

1.3 Objectives of Study

The objectives of this study include the development of a fast and reliable pre-registration
system that offers better initialization for the deformable registration models. This will
also help investigate the sensitivity of each model to initialization provided by the pre-
registration system. The implementation of all deformable models is on the same frame-
work of Finite Elements as a way of avoiding differences in approximations brought by
different frameworks. The decision is made as to which evaluation scheme to use to al-
low for efficient and rigorous comparison between the optimal control-based model and
the variational-based models. In order to facilitate proper evaluation reasonable objective
functions are proposed to serve as performance indices. A method for visualizing the re-
sults of evaluation is chosen and used to show how this evaluation can guide a designer or
user when choosing a model appropriate for a particular application.

1.4 Scope and Limitations

In this study the evaluation does not cover all models used for solving the deformable
image registration problem. Rather, it covers only four variational models: elastic, fluid,
diffusion and curvature models as well as the optimal control-based model. There are dif-
ferent optimal control-based models for solving the deformable image registration prob-
lem, but we focus only on the model formulated based on the grid deformation method
(GDM). There are three versions of GDM, two of which are static while the third is dy-
namic. The version of GDM used in the formulation of the optimal control-based model
is the first of the static versions.

In the evaluation procedure we have not used convergence time as one of the performance
measures so the results of this study are invariant to the differences in the computational
intensities of model implementations. SSD is the only similarity measure used for carrying
out the entire evaluation process. This is because there are no experiments conducted
which involve multimodality so SSD is justified as a reasonable similarity measure. All
the experiments for this evaluation use computer tomography (CT) slices and digitally
reconstructed radiographs (DRRs) only.
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1.5 Thesis Outline

The rest of this document proceeds in the following fashion: Chapter 2 addresses the basics
of image registration with emphasis on rigid image registration and some of its solution
methods. Some of these methods are integrated to form a reliable pre-registration system
to be used later in evaluation. Chapter 3 covers the variational-based models and their
implementation procedure while Chapter 4 presents the optimal control-based model and
its implementation procedure. Chapter 5 covers the evaluation method used, and proposes
the objective functions for evaluation as well as the method to be used for interpreting the
evaluation results. Chapter 6 describes the experiments over which the models are tested
and presents the evaluation results as well as their interpretations. Chapter 7 concludes the
study and makes comments on possible future work.



Chapter 2

Affine Pre-Registration

Iterative solution methods for the deformable image registration problem suffer from con-
vergence problems whenever good initial guesses are not available [2]. These convergence
problems arise mainly due to the fact that many deformable image registration models pe-
nalize the affine (global) transformations in their formulation, as is demonstrated in the
later chapters. This problem can be overcome by providing good initial guesses so that
those mismatches described by affine transformations are mostly reduced between the two
images. One way of providing good initialization is by using a reliable affine (global) im-
age registration method in a pre-registration step, as mentioned in [2]. For that reason we
need to assemble a reliable pre-registration system that will be used in deformable image
registration. This requires exploration of available options for solving the affine image
registration problem. This chapter therefore starts by covering the basic concepts of im-
age registration in general. More focus is later turned towards the affine image registration
which is essential in pre-registration.

Given two images, a template image T (x) and a reference image R(x) with x ∈ Ω ⊂
Rm , image registration aims to obtain a physically realizable transformation φ(x) from
T (x) to T (φ(x)) such that the similarity between R(x) and T (φ(x)) is minimized [2].
The superscript m indicates the dimensionality of the image space Ω, thus m = 2 for two
dimensional (2D) images. As mentioned in [10], image registration is in general composed
of four distinct components which are: the feature space, the search space, the similarity

measure and the search strategy. These components are addressed in the sections below.

6



CHAPTER 2. AFFINE PRE-REGISTRATION 7

2.1 The Feature Space

The feature space is concerned with that which is observable in the image. Thus it is
constituted by observables such as raw pixel intensities, statistical properties, contours,
corners and landmarks in the image. Features like edges and corners are secondary to
pixel intensities since they are extracted out of pixel intensity distributions in the image.
The similarity measure necessitates the feature space in the sense that the feature space
defines the observables within the images that can be used for comparisons purposes.
Image registration methods can be classified based on the nature of the feature space used
in the construction of the similarity measure. Methods which use raw pixel intensities
are referred to as intensity-based methods while those which use secondary features like
contours and landmarks are referred to as feature-based methods. Unlike the intensity-
based methods, which are computationally intensive and slow because of the necessity
to process all pixels, the feature-based methods tend to be a lot faster since processing
is not done over the entire image domain Ω or every pixel. However the feature-based
methods can result into undesirable results due to not processing all image pixels; one
example of this can be found in [11] with the landmark-based image registration of the
human hand. This problem can be solved by increasing the number of landmarks with a
uniform distribution.

2.2 The Search Space

The search space is more focused on the kinds of transformation models considered in
image registration process. In general these transformation models can be classified as
either global (parametric) or local (nonparametric) transformation models based on how
they apply across the whole image domain Ω. Regardless of whether global or local, the
transformation φ(x) is intended to align the two images with respect to their common
features. The nature of distortions in images has influence on the choice of the search
space, although the nature of the distortions is sometimes not known a priori. Both global
and local transformations are elaborated in the subsections below.
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2.2.1 Global (Parametric) Transformations

A global transformation is one which applies uniformly to every feature in the image
domain, and such transformations include translation, rotation, scaling, shear, projection

and their combinations such as rigid, affine and perspective transformation models. Global
transformations are limited to mapping straight lines to straight lines but not curves. Due to
their uniformity the global transformations can be factored and parametrized into matrix
form with few parameters. This makes the rigid image registration problem relatively
easier to solve than the nonrigid registration problem.

2.2.1.1 Rigid Transformation

The rigid transformation is constituted by translation and rotation transformations only, so
object shape and angles are preserved. In 2D the rigid transformation can be described by
the following equations which transform a coordinate pair x = (x,y) to a new coordinate
pair φ(x) = (x′,y′):

x′ = xcosθ − ysinθ +a3

y′ = xsinθ + ycosθ +a6
, (2.1)

where θ is the rotation angle while a3 and a6 are the translation parameters. These equa-
tions can be put in matrix form as follows:x′

y′

1

=

cosθ −sinθ a3

sinθ cosθ a6

0 0 1


x

y

1

 . (2.2)

Letting x̃ =
[
x y 1

]T
and A be the transformation matrix above, we can rewrite Equa-

tion (2.1) above even more compactly as φ(x̃) = Ax̃. Combining the rigid transformation
above with an isotropic scale α gives rise to a similarity transformation. A more gen-
eral transformation than the similarity transformation is an affine transformation which is
elaborated below.

2.2.1.2 Affine Transformation

The affine transformation is restricted to mapping straight lines onto other straight lines
and parallelism of lines is conserved. In contrast to rigid transformations, an affine trans-
formation does not preserve angles. It is composed of the combination of rotation Rt ,
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anisotropic scale Sc, shear Sh and translation Tr in any order. These transformations are
shown below:

Rt =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 , Tr =

1 0 a3

0 1 a6

0 0 1

 ,

Sc =

sx 0 0
0 sy 0
0 0 1

 , Sh =

1 sh 0
0 1 0
0 0 1

 .
(2.3)

Parametrically the affine transformation matrix A can be represented in terms of the fun-
damental transformation matrices in Equation (2.3) as shown below:

A = TrRtScSh =

a1 a2 a3

a4 a5 a6

0 0 1

 , (2.4)

where a1, . . . ,a6 result from computing the matrix product of these fundamental matrices.
Now the affine transformation can be represented as φ(x̃) = Ax̃. The problem of affine
image registration can then be thought of as seeking the parameters ai, i = 1, . . . ,6, which
minimize a chosen dissimilarity measure between two images. The only constraint that
is enforced on the parameters ai is that they should not lead to a singular transformation
matrix A.

2.2.1.3 Perspective Transformation

Unlike in the affine transformation model parallelism of lines is not preserved in the per-
spective transformation model. The perspective transformation model adds two projection
parameters a7 and a8 to the original affine transformation model and gives the following
more general transformation matrix A:

A =

a1 a2 a3

a4 a5 a6

a7 a8 1

 . (2.5)
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2.2.2 Local (Nonparametric) Transformations

A local transformation is one which does not necessarily apply uniformly throughout all
image domain. This means local transformations include nonlinear transformations which
cannot be parametrized into matrix form but rather have at least as many parameters as
there are features in the image. This is because every feature in the image has its own
transformation, which can be different from every other transformation applied to other
features. Contrary to global transformations, local transformations can map straight lines
onto curves so are nonlinear. These local transformations form the search space considered
in nonrigid or deformable image registration. Unlike global transformations, which always
keep the transformed objects intact, local transformations allow deformations which can
result in objects splitting. These kind of deformations are not favorable in deformable im-
age registration and are part of what renders the problem ill-posed [12, 13]. For this reason
constraints or regularizers are necessary to prevent certain unwanted local transformations
from occurring. These regularizers are explained in Chapter 3.

The local transformation φ(x) can be represented as follows:

φ(x) = x±u(x), (2.6)

where u(x) is the displacement field which quantifies the shift of every point x in the image
domain Ω. In general u(x) can be any function, but for deformable image registration it is
desired that u(x) be a bijection so that it is both continuous and invertible. The inversion
is important in deformable image registration because it allows the template image to be
matched to the reference image and for the reference image to be matched to the template
image.

2.3 The Similarity Measure

Having decided the features of interest, the image registration process proceeds by aligning
features that are common to both images. The modalities involved in image registration
influence the choice of features for image registration. Some common imaging modali-
ties include X-ray, computer tomography (CT), magnetic resonance imaging (MRI) and
ultrasound. For instance, statistical properties of images may be more appropriate for
multimodal applications than the raw pixel intensities. The choice of similarity measure is
reliant upon the modalities of images involved in the registration process. The similarity
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measure is focused on quantifying the differences between the geometrically transformed
template image and the reference image. It is the measure of how well T (φ(x)) matches
with R(x).

The most intuitive and most popular similarity measure in the literature is the sum of
squared differences (SSD). It is cheap to compute but is only appropriate to monomodal
applications. Other similarity measures include sum of absolute differences (SAD), cor-
relation coefficient (CC) and mutual information (MI). These similarity measures are de-
scribed briefly in the sections below.

2.3.1 Sum of Absolute Differences (SAD)

The SAD measures how similar two images are to each other based on the sum of absolute
values of their pixel difference. When images match exactly the SAD will be exactly zero.
The SAD is given as:

SAD =

ˆ
Ω

|T (φ(x))−R(x)|dx. (2.7)

This similarity measure presents some difficulties when first order necessary conditions
for optimality are derived since computing its derivative is not easy.

2.3.2 Sum of Squared Differences (SSD)

The SSD is one of the most popular similarity measures in the literature and is very effi-
cient in monomodal applications. It is based on the L2-norm of the discrepancies between
the transformed template image T (φ(x)) and the reference image R(x) as shown below:

SSD = 1
2 ‖T (φ(x))−R(x)‖2

L2
= 1

2

´
Ω
(T (φ(x))−R(x))2dx. (2.8)

Despite it being of higher order relative to SAD this similarity measure is easily differen-
tiable since it has no discontinuities in its formulation.

2.3.3 Correlation Coefficient (CC)

As the name suggests, the CC quantifies the similarity between the template image and the
reference image based on how well they correlate with each other. It measures the statisti-
cal dependence or information redundancy between the image intensities of corresponding
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pixels in both images [14]. This similarity measure is computed as follows:

CC =

´
Ω
(T (φ(x))− T̄ )(R(x)− R̄)dx√´

Ω
(T (φ(x))− T̄ )2dx

´
Ω
(R(x)− R̄)2dx

, (2.9)

with T̄ and R̄ being the mean intensity values of the template image and the reference
image respectively. When the discrepancies between the two images is minimized the
CC will be maximized. This similarity measure is very appropriate in multimodal ap-
plications. No limiting constraints are imposed on the image content of the modalities
involved [14].

2.3.4 Mutual Information (MI)

Mutual information is an information theory measure of the statistical dependence be-
tween two random variables or the amount of information that one variable contains about
the other. It can be qualitatively considered as a measure of how well one image explains
the other [15, 16]. Similar to CC, MI gets maximized when the two images match cor-
rectly. The formulation of MI between the transformed template image T (φ(x)) and the
reference image R(x) is constituted by the entropy of the template image H(T (φ(x))), the
entropy of the reference image H(R(x)), and the joint entropy H(T (φ(x)),R(x)), defined
as follows:

H(T (φ(x))) =−∑
t

PT (t)log2(PT (t)),

H(R(x)) =−∑
r

PR(r)log2(PR(r)),

H(T (φ(x)),R(x)) =−∑
t

∑
r

PT R(t,r)log2(PT R(t,r)), (2.10)

where PT (t), PR(r) are the marginal distributions of the image intensities of the template
image and the reference image, and PT R(t,r) is their joint probability. Given
Equation (2.10), MI is defined as follows:

MI(T (φ(x)),R(x)) = H(T (φ(x)))+H(R(x))−H(T (φ(x)),R(x)). (2.11)

There are other similarity measures, such as those constructed out of image moments, but
these are not discussed here.
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2.4 The Search Strategy

The search strategy is concerned with the method used for obtaining the transformation
φ(x) which accurately matches the template image T (φ(x)) to the reference image R(x).
The most popular strategy for finding this transformation is optimization [2, 17]. In op-
timization a cost functional is formulated based mainly on the similarity measure, and
this functional is then minimized with respect to the transformation parameters so that
the optimal transformation is obtained. As mentioned in [2] the general form of the cost
functional is given by:

J[φ ] = D[R,T,φ ]+αS[φ ], α > 0 , (2.12)

where D[R,T,φ ] is the similarity measure with φ as the transformation, α is the regu-
larization constant and S[φ ] is the regularizer or smoothness measure. In global image
registration the regularization S[φ ] can be neglected since the only regularization that is
required is for the transformation matrix A to be non-singular, and this can be achieved
without adding the regularization term. Also since the transformation parameters can be
factored into the matrix, the cost functional can be restated such that it varies explicitly
with the transformation matrix elements ai. The resulting cost functional for global image
registration problem is then given as:

J[a] = D[T,R,a], (2.13)

where the vector containing the elements of A is denoted by a, that is a =
[
a1 . . .an

]T

with n = 6 and n = 8 for affine and perspective transformation models respectively. The
optimization problem can then be presented as follows:

min
a

J[a]. (2.14)

Since we are considering minimization problems CC and MI need to be inverted in order
to conform to the minimization methods. There are many optimization methods that are
used to solve this problem and such methods are divided into local optimization methods

or global optimization methods based on whether they are designed to find local optimal
solutions or global optimal solutions. Local optimization methods are often faster than
global optimization methods but they are prone to getting trapped in local minima. Also
based on how they search for the optimal solution, these methods can also be classified
into deterministic search methods [18] and stochastic search methods [19].



CHAPTER 2. AFFINE PRE-REGISTRATION 14

Deterministic search methods such as the gradient-based methods and direction-based

methods use the following iterative search procedure:

ak+1 = ak +α
kdk, (2.15)

where ak, dk and αk denote the current solution vector, the search direction vector and
the scaling factor obtained at each iteration k respectively. Given the current solution
ak and the search direction dk at iteration k, the scaling factor αk is chosen such that
J[ak +αkdk]≤ J[ak]. There are many deterministic methods in the literature [17, 20] and
each of them is identified by how it obtains the search direction dk and the scaling factor
αk. The two major groups of deterministic optimization methods are gradient-based meth-
ods and direction-based methods. The gradient-based methods include gradient descent

(GD) method, Newton method, Gauss Newton (GN) method, quasi-Newton (QN) method,

Levenberg-Marquardt (LM) method and conjugate gradient (CG) method [17, 20]. The
direction-based methods include Nelder-Mead simplex (NMS) method, Powell (P) method

and differential evolution (DE). In this chapter we cover NMS, GD, GN and LM methods.

Global optimization methods include branch and bound (BB) methods [21], evolutionary

algorithms (EAs), genetic algorithms (GAs) and memetic algorithms (MAs) [19, 22, 23].
BB methods are deterministic, and they guarantee convergence to a global optimal solution
in a finite number of iterations. EAs and GAs are stochastic search methods while MAs
adopt both the deterministic and the stochastic search strategies. In this chapter we cover
α-branch and bound (αBB) and evolutionary programming (EP), although they are not
included in the development of the pre-registration system due to being quite slow for real-
time applications. Table 2.1 shows a summary of these optimizations methods classified
based on their type as well as their search strategy.

Table 2.1: Classification of Optimization methods based on search strategy and scope.
Optimization Method Global/Local Deterministic/Stochastic
GD, GN, QN, LM & CG Local Deterministic
NMS, PM, DE Local Deterministic
BB methods (e.g. αBB, γBB) Global Deterministic
EAs and GA Global Stochastic
MA Global Deterministic & Stochastic

There are other methods for obtaining a required transformation to match two images
and some are the principal axis method (PAT), Fourier-based correlation, the Procrustes

algorithm and mutual information-based techniques [10]. In this chapter we cover only
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PAT and use it in the implementation of the pre-registration system. Details of other
methods can be found in [10]. The next section elaborates more on PAT and the sections
that follow focus on the optimization approach.

2.4.1 Principal Axes Transformation (PAT)

PAT is an approximate registration approach using statistical features, the image centers
and an eigendecomposition of the covariance matrix derived from the input images [2]. As
mentioned in [10] the feature space acted upon by PAT consists of features of images, such
as edges and corners. The search space consists of global translations and rotations while
the similarity measure is the variance of the projection of the feature’s location vector onto
the principal axis [10].

Given the template image and the reference image a centroid can be computed for each
image and the difference between centroids can be used to translate the template image to
match the reference image. The center coordinates (x̄T , ȳT ) for the template image T (x)
and the center coordinates (x̄R, ȳR) for reference image R(x) are given by the following:

x̄T =
∑x,y xT (x,y)
∑x,y T (x,y) , ȳT =

∑x,y yT (x,y)
∑x,y T (x,y) ,

x̄R =
∑x,y xR(x,y)
∑x,y R(x,y) , ȳR =

∑x,y yR(x,y)
∑x,y R(x,y) .

(2.16)

Now the centers of the images are aligned by translating the template image using the
following translation equations:

a3 = x̄R− x̄T , a6 = ȳR− ȳT . (2.17)

The centroids are then used to form covariance matrices for the template image CT and
the reference image CR. The eigenvalue decompositions of the matrices give rotation
information necessary to transform the template image to align with the reference image.
In the 2D case, the distribution of image data forms an elliptic shape and the eigenvector
matrix from the eigenvalue decomposition of CT or CR is a rotation matrix whose angle of
rotation θ is the angle made by the major axis of an ellipse with the horizontal axis of the
coordinate space. This is shown in Fig. 2.1.
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Fig. 2.1: Principal axes with the angle θ , and the major and minor axes corresponding to the
largest and smallest eigenvalues of the covariance matrix.

The difference between the angles made by the major axes can be used to align the two
images. The covariance matrices CT and CR are given as follows:

CT =

[
cT

11 cT
12

cT
21 cT

22

]
, CR =

[
cR

11 cR
12

cR
21 cR

22

]
, (2.18)

where parameters cT
i j and cR

i j are given by:

cT
11 = ∑

x,y
(x− x̄T )

2T (x,y), cR
11 = ∑

x,y
(x− x̄R)

2R(x,y),

cT
22 = ∑

x,y
(y− ȳT )

2T (x,y), cR
22 = ∑(y− ȳR)

2R(x,y),

cT
12 = ∑

x,y
(x− x̄T )(y− ȳT )T (x,y), cR

12 = ∑
x,y
(x− x̄R)(y− ȳR)R(x,y),

cT
21 = cT

12, cR
21 = cR

12. (2.19)

The smallest and largest eigenvalues of the covariance matrix indicate the direction of the
major and the minor axes of the ellipse, respectively. Fig. 2.2 shows the results of PAT
applied to T (x). This method of registration is sensitive to missing or additional data. That
is, if the two images differ not only in translations and rotations but also data is missing in
one but not the other, the method often performs poorly. Regardless the method quickly
and cheaply obtains an approximation which can serve as a good initialization for other
accurate methods such as the affine and perspective registration models via an optimization
approach. The optimization methods are covered in the following sections.
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Fig. 2.2: The registration of two CT slices (top row) and two synthetic images (bottom row) using
PAT. The first column shows the reference images R(x), the second column shows the template
images T (x) and the third column shows the transformed or registered template image T (Ax).

Looking at the registration results by PAT on Fig. 2.2 it can be observed that the registered
template image T (Ax) is approximately aligned with the reference R(x) in terms of rota-
tion and translation, but the scaling has not improved from T (x) to T (Ax). These results
are therefore in line with the theoretical predictions elaborated above. With this method the

normalized dissimilarity measure
‖T (Ax)−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

has been reduced from the value 1 down

to 0.68106 in roughly zero seconds (CPU time) for CT slices and 1 down to 0.43798 in
roughly zero seconds for synthetic images.

2.4.2 Gradient-based Methods

In this section we cover three gradient-based methods: GD, GN and LM. We also show
how LM relates to GD and GN.
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2.4.2.1 Gradient Descent (GD)

The gradient descent method takes the negative of the gradient of the cost function as
its search direction. The gradient is found by taking the first order derivative of the cost
functional which results in the following:

g(a) = J(a)T [T (Ax)−R(x)], (2.20)

where J(a) is the Jacobian matrix given by:

J(a) =
∂Ax
∂a
·∇T (Ax). (2.21)

At iteration k the GD method employs the search direction as:

dk =−g(ak),

and αk is obtained using either the exact line search methods [2, 20, 24, 25] which solve
the minimization problem:

α
k = argmin

α

J(ak +αdk), (2.22)

or the inexact line search methods. The exact line search methods are expensive as they
require many cost functional evaluations thus the inexact line search methods are widely
used [17]. In [17, 25] the scaling factor at iteration k is defined by the following exponen-
tially decreasing function:

αk = l
(k+A)p , l > 0, A≥ 1, 0 < p≤ 1. (2.23)

The GD method has the property that it converges faster when far away from the optimal
solution, but it becomes slow to converge when near to the optimal solution. This makes
GD inferior to other methods when close to the optimal solution.

2.4.2.2 Gauss Newton (GN)

The Newton method makes use of both the gradient g(a) and the Hessian H(a) of the
cost functional in order to obtain the search direction [2]. The resulting search direction is
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given as:
dk =−H(ak)−1g(ak). (2.24)

The method converges very quickly when it is close to the optimal solution. However, it
is computationally demanding due to the need to compute the exact Hessian matrix. As
mentioned in [2] this method may be not suitable in registering two images for practi-
cal applications because computing higher derivatives is time consuming and numerically
unstable. GN is a modification of the Newton method which addresses the Hessian prob-
lem found in Newton method. In the GN the Hessian is approximated using the Jacobian
matrix rather than computing the exact Hessian. That is, the approximate Hessian used is

H(a)≈ J(a)T J(a). (2.25)

This formulation of GN makes the assumption that the resulting Hessian is well-conditioned
and non-singular, which is not always the case. One effective way of conditioning the ap-
proximated Hessian in GN is by using the Cholesky factorization with a predefined thresh-
old which enforces a certain degree of diagonal dominance in the matrix [20]. Based on
the properties of GD and GN, there seems to be a need for a hybrid of these two methods,
one which behaves like GD when far from the solution and switches when closer to behave
like GN. One improvement of GN which behaves like such a hybrid of GN and GD is the
LM method.

2.4.2.3 Levenberg-Marquardt (LM)

The LM method is an improvement of GN which modifies the Hessian approximation
J(a)T J(a) by adding either a multiple of the identity matrix I to give

H(a)≈ J(a)T J(a)+µ I (2.26)

or by adding the diagonal of J(a)T J(a) to give

H(a)≈ J(a)T J(a)+µ diag(J(a)T J(a)) (2.27)

where µ > 0 is the LM parameter adjusted to guarantee that the search direction is a de-
scent direction. The addition of the diagonal dominant matrix helps to improve the diago-
nal dominance of the entire Hessian approximation thus making it more positive definite.
The parameter µ gives weight to the matrix I and serves an important purpose in the con-
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vergence of this method. This parameter is set to be large initially so that the algorithm
mimics the GD and approach the minimum quickly and it is reduced as the minimum is
approached to mimic pure GN thus avoiding the zig-zag problems associated with GN.
Even though these methods work so well in solving the problem they are sensitive to poor
initialization due to the fact that this minimization problem is nonconvex and presents
local minima as traps that catch these methods.

Fig. 2.3: The registration of two CT slices (top row) and two synthetic images (bottom row) using
LM. The first column shows the reference images R(x), the second column shows the template
images T (x) and the third column shows the transformed or registered template image T (Ax).

Fig. 2.3 shows the results of using LM to register the same two CT slices and two synthetic
images as those used with PAT earlier. Contrary to PAT, LM was able to correct not only
global rotation and translation but also anisotropic scale and shear as well. Given that the
search space allowed in the implementation is affine transformations it was expected that
misalignment that is described by these four basic transformations would be corrected
provided that a reasonable initialization is available. From several tests made on LM
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it was observed that initialization has a big impact on the convergence to an acceptable

solution. In the test shown in Fig. 2.3 the normalized dissimilarity measure
‖T (Ax)−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

was reduced from 1 to 0.16374 in 11 seconds (CPU time) with CT slices and from 1 to
0.09730 in 9 seconds (CPU time) with synthetic images. This is a significant improvement
from the figures obtained with PAT previously with regard to convergence, however it took
more time to complete.

2.4.3 Nelder-Mead Simplex (NMS) Method

The NMS method is a popular direct search method for multidimensional unconstrained
minimization problems. It maintains at each step a non-degenerate simplex, a geometric
figure in n-dimensions of nonzero volume which is the convex hull of n+1 vertices [26].
There are four scalar parameters essential to the workings of the NMS method and these
are:

• the coefficient of reflection ρ > 0,

• the coefficient of expansion χ > 1 , χ > ρ ,

• the coefficient of contraction 0 < γ < 1 and

• the coefficient of shrinkage 0 < σ < 1.

As mentioned in [26] the nearly universal choices used in the standard NMS method are
ρ = 1, χ = 2, γ = 1

2 and σ = 1
2 . More detail on the Nelder-Mead simplex method can be

found in [26]. For purposes of solving the affine image registration minimization problem

presented above the vertex a =
[
a1 . . .a6

]T
represents a 6-dimensional vector constructed

from elements of the affine transformation matrix in Equation (2.4). Also we consider
f (a) = 1

2 ‖T (Ax))−R(x)‖2
L2

. One iteration of the NMS method proceeds as outlined
in [26]:
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Algorithm 2.1 One iteration of the NMS method.
1. Ordering vertices: order the n+ 1 vertices to satisfy f (a1) ≤ f (a2) ≤ ·· · ≤ f (an+1)

with (ai)i=1,2,...,n+1 as the solution vectors to an optimization problem defined by
the cost function f . Then a1 is the best vertex while an+1 is the worst vertex.

2. Reflection: compute the reflection point ar from

ar = ā+ρ(ā−an+1) = (1+ρ)ā−ρan+1, (2.28)

where ā = 1
n ∑

n
i=1 ai is the centroid of the n best point excluding vertex an+1. If

f (a1)≤ f (ar)< f (an) then accept the reflected point ar and terminate the iteration.

3. Expansion: if f (ar)< f (a1) then calculate the expansion point ae as follows:

ae = ā+χ(ar− ā) = (1+ρχ)ā−ρχan+1. (2.29)

If f (ae)< f (ar) then accept ae and terminate the iteration, otherwise accept ar and
terminate the iteration.

4. Contraction: if f (ar)≥ f (an), perform a contraction between ā and the better of an+1
and ar .

(a) Outside: if f (an)≤ f (ar)< f (an+1) then perform an outside contraction:

ac = ā+ γ(ar− ā) = (1+ργ)ā−ργan+1. (2.30)

If f (ac)≤ f (ar) then accept ac and terminate the iteration, otherwise go to step 5.

(b) Inside: if f (ar)≥ f (an+1) then perform an inside contraction:

acc = ā− γ(ā−an+1) = (1− γ)ā+ γan+1. (2.31)

If f (acc)< f (an+1) accept acc and terminate the iteration otherwise go to step 5.

5. Shrinkage: shrink the simplex as follows:

vi = a1 +σ(ai−a1), (2.32)

where i = 2, . . . ,n+ 1. The unordered vertices of the simplex at the next iteration
consist of a1,v2, . . . ,vn+1.

Fig. 2.4 shows the results of applying the Nelder-Mead simplex method to CT slices and
synthetic images for registration.
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Fig. 2.4: The registration of two CT slices (top row) and two synthetic images (bottom row) using
the NMS method. The first column shows the reference images R(x), the second column shows
the template images T (x) and the third column shows the transformed or registered template image
T (Ax).

Unlike the LM method the NMS method was found to be relatively less sensitive to bad
initialization. The search space allowed in the design and implementation of this method
covers only affine transformations, and as can be observed from Fig. 2.4 global rotation,
translation, shear and anisotropic scale have been corrected. The normalized dissimilarity

measure
‖T (Ax)−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

was reduced from 1 to 0.16244 in 17 seconds (CPU time) for CT

slices and from 1 to 0.19257 in 13 seconds (CPU time) for the synthetic images. The NMS
method took is relatively slower than the LM method but is more robust to initialization
than the LM method.
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2.4.4 α- Branch and Bound (αBB)

All the search methods that have been discussed above are local optimization methods,
since they do not guarantee a global optimal solution but rather the locally optimal so-
lution. For a nonconvex functional they often get trapped in local minima and fail to
converge to the global minimum. The αBB method is a very popular global optimization
method that is deterministic and can guarantee ε−convergence to the global minimum
within a finite number of iterations [27]. The basic principle of this method is to partition
the solution domain into smaller elements [aL,aU ] and process the elements sequentially.
The main goal of this method is to find a tight convex under-estimator of the cost functional
and use that under-estimator to locate the global minimum. Given a cost functional f (a),
the method uses the quadratic under-estimator to arrive at the following under-estimator
of the cost functional [27]:

L(a,α) = f (a)+
6

∑
i=1

αi(aL
i −ai)(aU

i −ai). (2.33)

The quantity L(a,α) is a guaranteed under-estimator of f (a), and since the quadratic term
is convex the nonconvexities in f (a) can be overpowered with sufficiently large values
of the αi parameters. Since L(a,α) is convex if and only if its Hessian matrix HL(a) is
positive semi-definite, the convexity condition is derived from the relationship between
the Hessian matrix of the cost functional H f (a) and HL(a) as given below:

HL(a) = H f (a)+24, (2.34)

where 4 is the diagonal shift matrix, which is the diagonal matrix whose diagonal el-
ements are the αi parameters [28]. It can be seen that increasing the values of the αi

parameters increases the diagonal dominance of HL(a), thus HL(a) can be made positive
semi-definite even when H f (a) is not. The main task now rests on the determination of ap-
propriate αi parameters that guarantee positive semi-definiteness of HL(a). One approach
for obtaining the αi parameters is by using the scaled Gerschgorin method shown below:

αi = max{0,−1
2
( fii−

6

∑
j 6=i

max{
∣∣∣ fi j

∣∣∣ , ∣∣ fi j
∣∣}d j

di
)}, (2.35)

where fi j and f i j are the lower and upper bounds of ∂ 2 f
∂ai∂a j

as calculated by interval anal-
ysis, and di is the positive distance commonly given as di = aU

i −aL
i (as explained

in [28]). Other tighter under-estimators have been proposed, such as the γBB whose under-
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estimator is given in [28] as

L(a,γ) = f (a)−
6

∑
i=1

(1− eγi(ai−aL
i ))(1− eγi(aU

i −ai)). (2.36)

Despite its strength in capturing the global optimal solution, the αBB method can be
slow to converge and may not always be suitable for real time and online optimization
applications.

2.4.5 Evolutionary Programming

Evolutionary algorithms (EAs) and genetic algorithms (GAs) have been used to solve the
problem of image registration in the literature, such as in [23] where a genetic algorithm
is used to solve the initialization problem in active shape models and for medical image
registration in [29]. These algorithms are global search methods that employ no explicit
direction in their search strategy, but rather maintain a population of solutions which are
evaluated using the cost functional to determine their fitness. They work on the principle of
survival of the fittest, whereby the less fit the solution the less likely it is to pass its genes
to the next generation. The EA discussed in this section is the one called evolutionary
programming (EP) and is summarized by the following steps as described in [19]:

Algorithm 2.2 Steps in Evolutionary Programming (EP).
1. Initialization: this process involves assigning the parameters for EP, such as the po-

pulation size µ , the mutation probability σ and the maximum number of generation
maxgen. Then µ uniformly distributed individuals are generated randomly to form
the initial population and their fitness values are obtained through evaluation by the
cost functional. Set the number of generation to zero, gen=0.

2. Main Loop: repeat the following steps until gen>maxgen.

Step 2.1: repeat the following operations until a new population with µ individuals
has been generated. Perform a mutation for every gene of the individual to generate
a new one.

Step 2.2: calculate the fitness value for every new individual.

Step 2.3: combine µ current and µ new individuals and pick the µ best ones to form
a new population. Set gen=gen+1.

3. Submission: submit the final µ individuals as the result of EP.
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More details on EP and other EAs can be found in [19].

2.5 The Affine Pre-Registration System

The affine pre-registration system comprises three solution methods described above,
namely the PAT, the NMS method and the LM method. The system first applies PAT on
the input images to bring them closer to each other translationally and rotationally. Even
though PAT does not correct for scaling, shear and projections, it is able to improve the ini-
tialization for the next method. Having brought them close to each other, the two images
are further registered with the NMS method. The NMS method has the advantage of not
being easily trapped by the local minima, although it is by no means a global optimization
method. It has been argued that this method does not always guarantee convergence to
the optimal solution, and that it can converge to solution which is not optimal [30]. For
this reason the results are further processed by the LM method to ensure convergence to a
nearby locally optimal solution.

One way of improving the results of these optimization methods is to manipulate the input
images such that the nonconvexities or the local minima in the cost functional are reduced.
This is usually done by incorporating the multi-resolution technique in the images during
the registration process. The basic idea in multi-resolution is to register low resolution
versions of images and to interpolate level-by-level to higher resolutions until the last
level of the original images. Every level of resolution provides a reliable initial guess
(transformation) for the next level [2, 17]. This strategy was adopted in our affine pre-
registration system. The performance of the pre-registration system on the CT slices and
the synthetic images is shown in Fig. 2.5.
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Fig. 2.5: The registration of two CT slices (top row) and two synthetic images (bottom row) using
our pre-registration system. The first column shows the reference image R(x), the second column
shows the template image T (x) and the third column shows the transformed or registered template
image T (Ax).

The pre-registration system was tested on several images and found to be more robust rel-
ative to its constituents with regard to both initialization and convergence to a satisfactory
solution. Much of the initialization strength is owed to PAT since it is immune to bad
initialization. The combination of only PAT and LM was first attempted but proved to be
not very robust since quite frequently the initialization provided by PAT to LM was not
sufficient: the incorporation of NMS in the middle gave rise to a relatively more reliable
pre-registration system. In Fig. 2.5 the same test images as the ones used for the previous

methods were used and the normalized dissimilarity measure
‖T (Ax)−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

was reduced

from 1 to 0.11449 in 26 seconds (CPU time) for CT slices and from 1 to 0.077657 in 21
seconds (CPU time) for synthetic images. This is the pre-registration system that we use
to initialize the deformable registration models for subsequent evaluation. The system is
more robust than its individual components although it is much slower than its slowest
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component. The run-time of this system is still less than the time taken by branch and
bound method which takes more than a minute to run. Evolutionary algorithms also take a
longer time to suffiently minimize the cost function on average hence was not considered
in building the pre-registration system.



Chapter 3

Variational-based Models

The deformable image registration aims to find a physically realizable deformation φ(x)
that transforms the template image T (x) into T (φ(x)), which matches the reference image
R(x) with respect to some chosen similarity measure. It is vital that the deformation be
physically realizable, which means that it is free of grid tangling and folding. Various
models have been proposed to accomplish this task and most of them are based on phys-
ical models [31]. In [32] these deformable image registration models are classified based
on the following transformations: geometric transformations derived from physical mod-

els, geometric transformations derived from interpolation theory and knowledge-based

geometric transformations.

The models based on geometric transformations derived from physical models include
the elastic model [3, 33], the fluid model [3, 5, 7, 34], the diffusion model [3, 35], the
curvature model [3, 11, 36] and flows of diffeomorphisms [37, 38, 39, 40]. The mod-
els based on geometric transformations derived from interpolation theory include radial
basis functions [41], elastic body splines [42], free form deformations [43], basis func-
tions from signal processing [44] and locally affine models [45]. Lastly, the models based
on knowledge-based geometric transformations include statistically-constrained geomet-
ric transformations [46] and geometric transformations inspired by biomechanical or bio-
physical models [47].

Some of the most popular models used in medical imaging applications are variational-
based models, which are based on the geometrical transformations derived from physical
models. In this chapter we cover four of these variational-based models, which will be
used in the evaluation of the optimal control-based model. These four variational-based

29
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models are elastic, fluid, diffusion and curvature models, details of which can be found
in [3, 11]. In [3] these four models are unified such that the implementation of one can
easily be changed into that of another. In all of these variational-based models the aim is
to minimize the following weighted objective functional with respect to the displacement
field u(x) as outlined in [3]:

J[u(x)] = 1
2 ‖T (φ(x))−R(x)‖2

L2 +αS[u(x)], α > 0 , (3.1)

where φ(x) = x− u(x) in the case of variational-based models, α is the regularity or
smoothness constant and S[u(x)] is the regularity or smoothness measure of the displace-
ment field u(x).

As mentioned in [48], solving variational calculus and optimal control problems with di-
rect methods requires: (1) a partial differential equation (PDE) solver, (2) a numerical

integration tool and (3) an optimization algorithm. All our implementations were carried
out in the Matlab Language and the Matlab PDE solver was obtained from source code
available in the book by Strang [49]. However, some of the codes were modified to fit our
problems (such as the finite element method code given in section 3.6 of the book). To
further confirm if the PDE solvers are working correctly we used them to solve some sim-
ple PDEs whose exact solutions are known, and compared the approximate solutions from
the solvers with the exact solutions. The Gauss-Legendre quadrature scheme was used for
numerical integrations and the Matlab source code was obtained from the internet [50].
The optimization algorithm adopted for all our models is the gradient-based algorithm.

The necessary conditions for optimality are obtained by taking the Gâteaux derivative of
Equation (3.1) to obtain the following general form of Euler-Lagrange equation, as given
in [3]:

f(x,u(x))+αΛ[u(x)] = 0, (3.2)

where f and Λ denote the Gâteaux derivatives of the L2-norm term and the regularity term
S[u(x)] in Equation (3.1) respectively. That is

f(x,u(x)) = (T (φ(x))−R(x)) ·∇T (φ(x)). (3.3)

Having obtained the Euler-Lagrange equation for Equation (3.1) above the steps for regis-
tering the template image to the reference image are summarized as follows.
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Algorithm 3.1 Steps for registering the template image to the reference image.
• Initialization:

(a) Initialize the deformation u(x) and set parameters like α , λ and µ .

(b) Use φ(x) = x− εu(x) to evaluate Equation (3.1), where ε is the scaling factor
chosen as mentioned in Chapter 2 for gradient descent (GD) method.

• Main Loop:
(c) Compute f using as shown in Equation (3.3).

(d) Solve for the displacement field u(x) from Equation (3.2).

(e) Solve for the deformation φ(x) = x− εu(x) and evaluate Equation (3.1).

(f) If the stopping criteria not met, go to (c) else submit the current solution φ(x).

• End Loop

In the following sections we describe the four variational-based models and condition the
associated equations to be ready for the solvers mentioned above. For every model we use
two synthetic images and two CT slices, as part of data set provided by iThemba LABS,
to show its behavior. The diagrams shown in this chapter and the next are not part of the
results for this work but serve for demonstration purposes.

3.1 Elastic Model

The elastic model was proposed by Briot [33] and is identified by the smoothness measure
which has the form of a linear elastic potential of the displacement field S[u(x)]. As in
the physics of elastic bodies, the elastic potential penalizes motions that lead to physically
unrealizable deformations such as ones which lead to objects splitting up. This property of
the elastic potential becomes useful in deformable image registration since it penalizes dis-
placement fields that lead to grid tangling, grid folding and other unwanted deformations.
Some of the unwanted deformations include splitting of image objects into incoherent
pieces or piling up of image objects into a point, thus not conserving information in the
image.

Even though this model is favorable with regard to keeping the transformed image intact
and conserving pixels, it is significantly stiff and only allows small deformations [3]. This
presents difficulties in using this model for applications that involve large deformations,
such as for soft tissue registration. This has led to the elastic model being used in appli-
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cations that involve small deformations, such as in brain registration [3]. Although this
model may exhibit poor convergence in soft tissue applications and in highly deformable
object registration, it always has good deformation quality measure that makes it a good
candidate for evaluation in this work with regard to the deformation quality measure. This
model also penalizes the affine and perspective transformations, and pre-registration is
therefore necessary to accelerate convergence to an optimal solution.

3.1.1 Formulation and Implementation

The elastic model is distinguished by a deformation regularizer motivated by a linearized
elastic potential of the displacement field shown below and given in [3]:

Seslas[u(x)] =
ˆ

Ω

[
µ

4

2

∑
j,k=1

(∂x juk +∂xku j)
2 +

λ

2
(∇ ·u(x))2]dx, (3.4)

where µ and λ are called Lamé-constants and reflect the material properties. The abbre-
viation ∂z is used to denote ∂

∂ z from here onwards. Combined with the SSD similarity
measure, the regulated cost functional becomes

Jelas[u(x)] = ‖T (φ(x))−R(x)‖2
L2 +α

ˆ

Ω

[
µ

4

2

∑
j,k=1

(∂x juk +∂xku j)
2 +

λ

2
(∇ ·u(x))2]dx,

(3.5)
and the elastic image registration problem can be stated as seeking the displacement field
u(x) that minimizes Jelas[u(x)]. The most common approach is that of gradient-based
optimization methods, which start by deriving the optimality conditions. The first order
necessary conditions for optimality are obtained by taking the Gâteaux derivative of the
cost functional Jelas[u(x)] to obtain the following Euler-Lagrange equation as given in [3]:

(R(x)−T (φ(x)))∇T (φ(x))+α(µ4u(x)+(λ +µ)∇(∇ ·u(x))) = 0. (3.6)

The solutions of this equation either minimize or maximize the cost functional. There are
various ways or methods of obtaining the solutions of partial differential equations (PDEs)
such as the Euler-Lagrange equation above. The most general and robust methods are
numerical methods such as the finite difference method (FDM) [1], the successive over-
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relaxation (SOR) method [32] and the finite element method (FEM) [51]. In this work, we
adopt FEM for finding solutions to all PDEs that we come across and the choice of FEM
is motivated by the simplicity it offers in handling boundary conditions as compared to
FDM. There are fast solvers for PDEs other than FEM, but since convergence time is not
of essence in this evaluation we are justified to proceed with FEM.

The Euler-Lagrange equation above can be decoupled into systems of simple first order
equations. First we represent the Laplacian operator above in terms of curl, divergence
and gradient, and this leads to the following:

(λ +2µ)∇∇ ·u(x)−µ∇×∇×u(x) = (R(x) =
1
α

T (φ(x)))∇T (φ(x)). (3.7)

We then introduce two scalar fields p and q. Let f = 1
α

T (φ(x)))∇T (φ(x)) and drop off
the arguments for convenience to obtain this linear equation:

(λ +2µ)∇p−µ∇×q = f, (3.8)

together with the complementary div-curl system below:

∇ ·u = p, ∇×u= q. (3.9)

Equations (3.8) and (3.9) are solved by the FEM to obtain the displacement field u to
be used in transforming the template image to match the reference image. The div-curl
system can be transformed into a system of Poisson equations which are easily solvable
by custom Poisson solvers, as follows:

4ux =
∂ p
∂x
− ∂q

∂y
, 4uy=

∂ p
∂y

+
∂q
∂x

, (3.10)

where ux and uy are the x and y components of the displacement vector field u. Once the
displacement field is obtained it is used to obtain the deformation field φ(x), which in
turn transforms the template image to match the reference image. This process is done
recursively with the help of the gradient algorithm as the optimization method adopted
in this work. Fig. 3.1 shows examples of this model applied to two CT slices and two
synthetic images for registration.
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Fig. 3.1: The registration of two CT slices (top row) and two synthetic images (bottom row) using
the elastic model. The first column shows the reference images R(x), the second column shows the
template images T (x), the third column shows transformed or registered template image T (φ(x))
and the last column shows the resulting deformation φ(x).

The normalized dissimilarity measure
‖T (φ(x))−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

decreased from 1 to 0.5506 for the

CT slices and from 1 to 0.7848 for the synthetic images. The parameter settings for the
CT slices were λ = 0.02, µ = 0.02 and α = 1, while for the two synthetic images they
were λ = 0.01 , µ = 0.01 and α = 0.01. Looking at these parameter settings in relation to
the observations on Fig. 3.1 we notice that when the parameters are set to larger values the
model becomes stiff and hardly optimizes the similarity measure. However, with small
parameter values the regularization becomes insignificant and bad deformations start to
occur. This is one of the problems mentioned in [1] on tuning the regularity weight. No
pre-registration was used for initialization in these two examples.

3.2 Fluid Model

The Fluid model was proposed by Christensen [34] and is very similar in structure and
formulation to the elastic model, with the only exception being that instead of regulariz-
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ing the displacement field u(x), the fluid model regulates the velocity field, v(x, t). The
velocity field is obtained from the displacement field by computing the time derivative of
the displacement field shown below [3, 11]:

v(x, t) = ∂tu(x, t)+∇u(x, t) ·v(x, t)). (3.11)

The elastic potential of the velocity field has the benefit of permitting more flexibility in
deformations, which allows the fluid model to account for larger deformations in objects
than the elastic model [3]. However this comes at the cost of a decreased deformation
quality measure. This follows from the fact that when a regular grid is subjected to more
deformation then the regularity of the grid is increasingly compromised. Despite its flex-
ibility the fluid model is reported to be very time demanding, so lighter alternatives like
demon registration are preferred in the face of convergence time [3]. However, demon
registration is not part of this work since convergence time has not been chosen as one of
the performance criteria in the evaluation. Similar to the elastic model, the fluid model
penalizes the affine and perspective transformations, and thus necessitates pre-registration
for good initialization.

3.2.1 Formulation and Implementation

The fluid model is characterized by the following regularity measure [3, 11]:

Sfluid[u(x)] = Selas[v(x)] =
ˆ

Ω

[
µ

4

2

∑
j,k=1

(∂x jvk +∂xkv j)
2 +

λ

2
(∇ ·v(x))2]dx, (3.12)

where vk is the kth component of the velocity field v(x). The deformable image registration
based on the fluid model then seeks the displacement field u(x) which minimizes the
following cost functional:

Jfluid[u(x)] = ‖T (φ(x))−R(x)‖2
L2 +α

ˆ

Ω

[
µ

4

2

∑
j,k=1

(∂x jvk +∂xkv j)
2 +

λ

2
(∇ ·v(x))2]dx,

(3.13)
where v(x) relates to u(x) through Equation (3.11). The necessary conditions for optimal-
ity are given by the following Euler-Lagrange equation [3, 11]:
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(R(x)−T (φ(x)))∇T (φ(x))+α(µ4v(x)+(λ +µ)∇∇ ·v(x)) = 0. (3.14)

This equation has the similar structure to that in the elastic model above, and therefore
the same procedure as in the elastic model can be used to obtain the solution. Fig. 3.2
shows examples of this model as applied on two CT slices and two synthetic images for
registration.

Fig. 3.2: The registration of two CT slices (top row) and two synthetic images (bottom row) using
the fluid model. The first column shows the reference images R(x), the second column shows the
template images T (x), the third column shows transformed or registered template image T (φ(x))
and the last column shows the resulting deformation φ(x).

With the same parameter settings as those set in the elastic model we observe that the

fluid model is able to reduce the normalized dissimilarity measure
‖T (φ(x))−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

from

1 to 0.4403 for the two CT slices and from 1 to 0.2810 for the two synthetic images.
This more reduction in dissimilarity however comes at the cost of bad deformation in
the synthetic images. It can be observed that the fluid is less stiff than the elastic model
mentioned before. No pre-registration was used for initialization in these two examples.
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3.3 Diffusion Model

The diffusion model proposed by Thirion in [35] is based on the magnitude of the gradient
of the displacement field u(x). This is another way to penalize the physically unrealizable
deformations which occur due to ill-exposure of the image registration problem. The
Euler-Lagrange equations resulting from this construction are very similar in structure to
the diffusion equation, hence the model being named the diffusion model. This model
possesses interesting features of speed and flexibility thus making it very attractive for
high-resolution applications such as 3D magnetic resonance imaging in conjunction with
breast cancer surgery [3]. Similar to elastic and fluid models the diffusion model penalizes
the affine and perspective transformations, and therefore requires the pre-registration step
to aid in fast convergence.

3.3.1 Formulation and Implementation

As mentioned in [3] the diffusion model is based on the following regularizer:

Sdiff[u] =
1
2

2

∑
l=1

ˆ

Ω

‖∇ul‖2
L2 dx. (3.15)

The diffusion based image registration problem proceeds by seeking the displacement field
u(x) minimizing the following weighted cost functional:

Jdiff[u(x)] = ‖T (φ(x))−R(x)‖2
L2 +

α

2

2

∑
l=1

ˆ

Ω

‖∇ul‖2
L2 dx. (3.16)

The resulting Euler-Lagrange equation has the following form, given in [3, 11], which is
similar to the standard diffusion equation:

(R(x)−T (x−u(x)))∇T (x−u(x))+α4u(x) = 0. (3.17)

Letting f = 1
α

T (x−u(x)))∇T (x−u(x)) as before and dropping off the arguments we get
the Poisson equation below:

−4u = f, (3.18)



CHAPTER 3. VARIATIONAL-BASED MODELS 38

which is easily solved by FEM to obtain the displacement field u for deforming the tem-
plate image. It is intuitive to expect this model to be fast given that only Equation (3.18)
has to be solved, unlike in the elastic and fluid models where there are more equations to
be solved. With the displacement field obtained the gradient algorithm is used to minimize
the cost functional (3.16), and Fig. 3.3 shows examples where this model is applied to two
CT slices and two synthetic images for registration.

Fig. 3.3: The registration of two CT slices (top row) and two synthetic images (bottom row)
using the diffusion model. The first column shows the reference images R(x), the second column
shows the template images T (x), the third column shows transformed or registered template image
T (φ(x)) and the last column shows the resulting deformation φ(x).

Diffusion was found to be significantly faster than the first two models, and is due to there
being fewer equations to solve. This model was able to reduce the normalized dissimilarity

measure
‖T (φ(x))−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

from 1 to 0.092465 for the CT slices and from 1 to 0.008001 for

synthetic images with the parameter set at α = 0.0005. This is a significant reduction
in the dissimilarity with a visually acceptable deformation in the CT slices but not in the
synthetic images. Grid folding can be observed in the registration of synthetic images and
as such it is not a good deformation. No pre-registration was used for initialization in these
two examples.
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3.4 Curvature Model

The curvature model proposed by Fischer and Modersitzki [36] is based on the magnitude
of the Laplacian of the displacement field [5]. This model can be viewed as an approxi-
mation of the curvature of the components of the displacement field that penalizes
oscillations [3]. Modersitzki in [3] shows that the curvature model, unlike other models
above, has a non-trivial kernel containing affine and perspective transformations:

Scurv[Ax+b] = 0. (3.19)

Thus in contrast to many other nonlinear registration models, including the elastic, fluid
and diffusion models, the curvature model does not necessarily require affine pre-registration
step to be successful.

3.4.1 Formulation and Implementation

The curvature model is given by the following regularizer [3, 11]:

Scurv[u] =
1
2

2

∑
l=1

ˆ

Ω

(4ul)
2dx. (3.20)

The problem of image registration based on this model can be stated as seeking the dis-
placement field u(x) which minimizes the cost functional

Jcurv[u(x)] = ‖T (φ(x))−R(x)‖2
L2 +

α

2

2

∑
l=1

ˆ

Ω

(4ul)
2dx. (3.21)

The resulting Euler-Lagrange equation is the following bi-harmonic equation, as given
in [3, 11, 36]:

(R(x)−T (x−u(x)))∇T (x−u(x))+α42u(x) = 0. (3.22)

This equation can be restructured into a system of two standard Poisson equations as
follows, with the help of a vector field p:

−4p = f, −4u= p, (3.23)
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with f = (R(x)−T (x−u(x)))∇T (x−u(x)). These two Poisson equations are solved by
the FEM to obtain the displacement field u. Fig. 3.4 shows examples of this model applied
to two CT slices and two synthetic images for registration.

Fig. 3.4: The registration of two CT slices (top row) and two synthetic images (bottom row)
using the curvature model. The first column shows the reference images R(x), the second column
shows the template images T (x), the third column shows transformed or registered template image
T (φ(x)) and the last column shows the resulting deformation φ(x).

The curvature model reduced the normalized dissimilarity measure
‖T (φ(x))−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

from

1 to 0.23090 for CT slices and from 1 to 0.093247 for synthetic images with the same
parameter setting as the diffusion model above. This model was able to produce visually
acceptable deformations for both registrations. No pre-registration was used for initializa-
tion in these two examples.



Chapter 4

Optimal Control-based Model

The variational formulation of the deformable image registration problem is widely used
to find the matching transformations in a number of approximate methods, such as with
the models discussed in the previous chapter. Many of these approaches require high
regularity in the control variables [8]. Very closely related to the variational-based models
for solving the deformable image registration problem is the optimal control-based model.
In [1, 8, 9] the problem of deformable image registration is formulated as an optimal
control problem and the approach is based on the grid deformation method (GDM). This
method has its origin in the field of differential geometry, as mentioned in [52], and it
was formulated for grid generation by Liao and Anderson in [53]. This chapter covers the
concepts of the optimal control-based model for solving the deformable image registration
problem and shows examples of it being applied to sample images.

For implementation of models in this chapter, the same tools were used as for the previous
chapter. Some of the details left out in the previous chapter, such as how the Poisson
equations were reduced to the level of implementation by the finite element method, are
briefly described in this chapter.

4.1 Grid Deformation Method

The GDM is used for construction of differentiable and invertible transformations to solve
grid adaptation problems [9]. This method has some interesting properties: (a) it offers a
way of generating a grid of the desired density distribution that is free from grid folding,
and (b) it gives direct control over the cell size of the adaptive grid and determines the

41
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node velocities directly. This is achieved through the use of a positive monitor function
which disallows grid folding and provides a way to control the ratio of the areas between
the original and the transformed grid [1]. Unlike the variational-based models in the pre-
vious chapter the GDM does not require the use of any regularization term [31]. These
properties of the grid deformation method are favorable to the aim of the deformable im-
age registration of seeking grid transformations which do not result in grid folding and
tangling.

The GDM is based on a solid mathematical foundation. In particular, it accounts for local
volume changes through the divergence of the transformation and it also accounts for lo-
cal rotation through the curl vector of the transformation. The GDM is based on a linear
differential system, thus its numerical implementation is fast, stable, simple and
robust [1]. As mentioned in [1] this method is general in the sense that it may be used in
any optimization problem that involves motion estimation. The basic idea in this method
is to move the nodes with correct velocities so that the nodal mapping has a desirable
Jacobian determinant [9]. It uses some ideas in Moser’s deformation method which con-
structs a differentiable and invertible transformation between two domains equipped with
Riemannian metrics, which deforms the volume element from one to the other [1].

There are three versions of GDM, the first two of which are static and the last is dynamic.
Unlike the static versions, which cannot handle problems with moving boundaries very
well, the dynamic version is appropriate for problems with moving boundaries since it has
real time adaptation based on its formulation. This dynamic version of GDM was used
for solving the deformable image registration problem in [54]. The least squares finite
element method (LSFEM) implementation approach of this dynamic version can be found
in [52]. This chapter covers briefly these three versions. We adopt the first version in this
work: the one used in the formulation of the deformable image registration problem as an
optimal control problem in [1, 8, 9].

4.1.1 The Deformation Method: Version One

The first version is one of the static versions of the grid deformation method where the
transformation Jacobian determinant is specified on the old grid x before adaptation. It was
developed in [53, 55, 56, 57] and the 2D version was proposed in [58]. The description
of this version proceeds by letting f (x) denote a positive monitor function, defined on
the image domain Ω, and satisfies

´
Ω
( f (x)− 1)dx = 0. Then there exists an injective
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transformation φ : Ω 7→Ω such that:

det∇φ(x) = f (x)> 0, ∀x ∈Ω. (4.1)

The GDM then employs the monitor function f (x) to generate a time-dependent mapping
φ(t,x) that transforms points, x ∈ Ω, in a desired way. This mapping can be obtained by
solving the following nonlinear ordinary differential equation:

∂

∂ t
φ(t,x) = h(t,φ(t,x)), 0 < t ≤ 1,

φ(0,x) = x,

h(t,x) =
u(t,x)

t +(1− t) f (x)
,0 < t ≤ 1, (4.2)

where u(x) satisfies the following linear partial differential equations:

∇ ·u(x) = f (x)−1, ∀x ∈Ω,

∇×u(x) = 0, ∀x ∈Ω,

n ·u(x) = 0, ∀x ∈ Γ, (4.3)

with n as an outward normal unit vector and Γ the boundary of the domain Ω. The required
mapping or transformation is then given by φ(1,x). Using these sets of equations as path
constraints the deformable image registration problem is formulated as an optimal control
problem in [1, 8, 9]. More details on how to choose the monitor function can be found
in [1, 52, 59].

4.1.2 The Deformation Method: Version Two

The second version of GDM is also static but differs from the first in that the Jacobian is
specified on the new grid coordinates before grid refinement [59]. It is required that the
monitor function f be normalized and that the following condition holds over the entire
domain Ω: ˆ

Ω

(
1
f
−1)dx = 0. (4.4)

As in the first version there is a need to find a transformation φ such that Equation (4.1)
holds, and this requires the solution of the following nonlinear ordinary differential equa-
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tion:

∂

∂ t
φ(t,x) = h(t,φ(t,x)), 0 < t ≤ 1,

φ(0,x) = x,

h(t,x) =
u(t,x)

t
f (φ(t,x)) +(1− t)

0 < t ≤ 1, (4.5)

where u(x) satisfies the linear partial differential equation

∇ ·u(x) = 1− 1
f (x)

, ∀x ∈Ω,

∇×u(x) = 0, ∀x ∈Ω,

n ·u(x) = 0, ∀x ∈ Γ. (4.6)

4.1.3 The Deformation Method: Version Three

The third version of GDM has real-time adaptation and is convenient in solving problems
involving moving boundaries such as motion tracking and computational fluid dynam-
ics (CFD). It is required that the monitor function be normalized and that the following
condition holds: ˆ

Ω

1
f (t,x)

dx = |Ω(t = 0)| , (4.7)

where |Ω(t = 0)| denotes the area or volume of the domain Ω at time t = 0 [31]. Now as
with the previous versions the required mapping or transformation from Ω(t = 0) to Ω(t)

should satisfy the following relation concerning the Jacobian J(φ(t,x)):

J(φ(t,x)) = det∇φ(t,x) = f (t,φ(t,x))> 0, ∀x ∈Ω. (4.8)

The required transformation φ is then given by the following ordinary differential equa-
tion:

∂

∂ t
φ(t,x) = h(t,φ(t,x)) 0 < t ≤ 1,

h(t,φ(t,x)) = f (t,φ(t,x))u(t,φ(t,x)) 0 < t ≤ 1, (4.9)
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where u(t,x) satisfies the linear partial differential equation

∇ ·u(t,x) =− ∂

∂ t
1

f (t,x)
∀x ∈Ω,

∇×u(t,x) = 0, ∀x ∈Ω,

n ·u(t,x) = 0 ∀x ∈ Γ. (4.10)

All details together with proofs arguing for the validity of these three versions in providing
the required transformations can be found in [60].

4.2 Optimal Control Formulation

In this section we present the optimal control formulation of the deformable image regis-
tration problem based on the first version of GDM. The resulting optimality system is also
presented as derived in [9].

4.2.1 Problem Statement

An optimal control formulation of the image registration problem based on GDM seeks
controls f (x) and g(x) and states φ(t,x) and u(x) that minimize

J(φ(1,x), f (x),g(x)) = 1
2 ‖T (φ(1,x))−R(x)‖2

L2

+α

2 ‖ f (x)‖2
H1 +

β

2 ‖g(x)‖
2
H1 ,

(4.11)

subject to

∇ ·u(x) = f (x)−1, ∀x ∈Ω,

∇×u(x) = g(x), ∀x ∈Ω,

n ·u(x) = 0, ∀x ∈ Γ,

∂φ(t,x)
∂ t

= u(t,φ(t,x)), ∀t,x ∈ (0,1]×Ω,

φ(0,x) = x, ∀x ∈Ω,ˆ

Ω

( f (x)−1)dx = 0, ∀x ∈Ω, (4.12)
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where α and β are penalty parameters. It is also necessary that φ(t,x) ∈ (0,1]×Γ,

∀x ∈ Γ. The original aim of image registration is to minimize the similarity measure
(objective functional) term given by the L2-norm in Equation (4.11) above. However,
minimizing only that term would result in unbounded optimal control functions because
of the lack of any explicit dependence of the objective functional on the controls [8]. It
is therefore necessary to penalize the objective functional with additional terms, such as
the H1-norms (Sobolev norms) of the controls f and g. With this choice of a stronger
norm than the L2-norm for the controls it has been possible to prove the existence of
optimal solutions in [8], something which the L2-norm penalization may not be sufficient
to guarantee.

The monitor function f (x) controls the local volume changes through the divergence of the
transformation in the grid, while g(x) controls the local rotations through the curl vector
of the transformation [1]. The monitor function is an important parameter for achiev-
ing proper grid refinement in this method [59]. From the nonlinear ordinary differential
Equation (4.2) the following assumption has been made:

h(t,x)≈ u(t,x), (4.13)

and the soundness of this assumption has been argued in [61]. One way of approaching
the minimization problem above is by applying the Lagrange multiplier method to get the
optimality system as in [1, 8, 9] which consists of the state and co-state (adjoint) systems
as well as the optimality conditions.

4.2.2 The Optimality System

The optimality system is given by the following set of equations derived in [9]:

• State Equations:

∇ ·u(x) = f (x)−1, ∇×u(x)= g(x). (4.14)

∂φ(t,x)
∂ t

= u(t,φ(t,x)), φ(t0,x)= x. (4.15)

• Co-state Equations:
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∇ · (ξ ,−η) = (T (φ(1,x))−R(x))
∂T (φ(1,x))

∂φ1
= G1,

∇ · (η ,ξ ) = (T (φ(1,x))−R(x))
∂T (φ(1,x))

∂φ2
=G2, (4.16)

with (ξ ,η) being the Lagrange multipliers and φi the ith component of the grid coordinates.
The optimality conditions are

α f = ξ , βg= η . (4.17)

In [8] Lee and Gunzburger made a suggestion that since the resulting system is consti-
tuted of several coupled systems, it is more efficient to solve the system using iterative
optimization rather than solve the system all at once. The optimization algorithm adopted
in our work is provided in [62]. The ordinary differential Equation (4.15) is solved using
Runge-Kutta (RK-4) and all the source codes used in our work can be obtained from the
attached CD ROM. In the next section we discuss two approaches to obtaining the optimal
solution to the system above.

Given the optimality system the steps for registering the template image to the reference
image can be summarized as follows:

Algorithm 4.1 Steps for registering the template image to the reference image.
• Initialization:

(a) Initialize controls f (x), g(x) and penalty parameters α and β .

(b) Solve for the displacement field u(x) from Equation (4.14).

(c) Solve for the deformation φ(1,x) from Equation (4.15) and evaluate Equation
(4.11).

• Main Loop:
(d) Solve for the Lagrange multipliers ξ and η using Equation (4.16).

(e) Solve for the controls f (x) and g(x) using Equation (4.17).

(f) Solve for the displacement field u(x) from Equation (4.14).

(g) Solve for the deformation φ(1,x) from Equation (4.15) and evaluate Equation
(4.11).

(h) If the stopping criteria not met, go to (d) else submit the current solution φ(1,x),
f (x) and g(x).

• End Loop



CHAPTER 4. OPTIMAL CONTROL-BASED MODEL 48

4.3 Solution to the Optimality System

One approach taken for solving the partial differential equations (PDEs) in the optimality
system is the least squares finite element method (LSFEM) as suggested in [8, 62] and
implemented in [52]. The LSFEM works with the system of first order PDEs. Another
approach suggested in [9] and presented in [1] is to restructure the first order PDEs into a
system of second-order Poisson equations which are easily solvable by the Galerkin finite
element method (GFEM) and the finite difference method (FDM).

4.3.1 The System of Poisson Equations

Representing the optimality system as a set of Poisson equations is motivated by the ease
of solving Poisson equations and the availability of standard Poisson solvers. This ap-
proach was suggested in [9] and implemented in [1] for a 3D image registration problem.
It proceeds by taking the gradient of the the div-curl system in the state equation and
reorders the components, thus obtaining the following first system of Poisson equations:

4ux =
∂ f
∂x
− ∂g

∂y
, 4uy=

∂ f
∂y

+
∂g
∂x

. (4.18)

Using the same logic on the co-state equations yields the following Poisson equations for
the Lagrange multipliers (ξ ,η):

4ξ =
∂G1

∂x
+

∂G2

∂y
, 4η=

∂G2

∂x
− ∂G1

∂y
. (4.19)

Substituting the optimality conditions (4.17) in the Equation (4.19) above we get

4 f =
1
α
(
∂G1

∂x
+

∂G2

∂y
), 4g=

1
β
(
∂G2

∂x
− ∂G1

∂y
). (4.20)

The Poisson equations in Equations (4.18) and (4.20) can be reduced into a weak for-
mulation with the help of a square integrable test function v to make them compatible
with the Galerkin finite element method [51]. As shown in [51], given a Poisson equation
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−4w = h the weak formulation is given as

−
ˆ

Ω

v4w =

ˆ

Ω

∇w ·∇v−
ˆ

Γ

v
∂u
∂n

=

ˆ

Ω

vh, (4.21)

where the term gn = v∂w
∂n describes the boundary conditions which can either be essen-

tial (Dirichlet) specified on v or natural (Neumann) specified on ∂w
∂n . The FEM solution

approximation we
h in the element grid e is given in terms of the coefficients we

j and the
support or shape functions ψe

j as:

we
h =

4

∑
j=1

we
jψ

e
j ,

such that ∑
4
j=1 ψe

j = 1. (4.22)

The shape functions ψ j define the set of test functions v and given that, Equation (4.22)
can be used in Equation (4.21) to yield the following representation:

4

∑
j=1

we
j

ˆ

Ω

∇ψ
e
j ·∇ψ

e
i =

ˆ

Ω

ψ
e
i h+

ˆ

Γ

ψ
e
i gn. (4.23)

This can be written compactly in matrix form as:

Kewe = He, (4.24)

such that the local stiffness matrix Ke and the load vector He are given by:

Ke = [ki j] =

ˆ

Ωe

∇ψ
e
j ·∇ψ

e
i ,

He = [hi j] =

ˆ

Ωe

ψ
e
i h+

ˆ

Γ

ψ
e
i gn. (4.25)

The system of linear equations (4.24) above is called the Galerkin system. To obtain the
Galerkin solution {wh} for all the grid elements the local equations are assembled and
result in the global system of linear equations

[Ke]{we}= [He], (4.26)

which can be solved using linear algebra techniques to obtain the coefficients {we}. The



CHAPTER 4. OPTIMAL CONTROL-BASED MODEL 50

Fig. 4.1: Mapping an arbitrary quadrilateral element in the physical space onto the regular quadri-
lateral in the natural space to simplify integration.

Galerkin solution is then obtained using Equation (4.22). In our case the Gauss-Legendre
Quadrature scheme is used for evaluating integrations in Equation (4.25). Many details
are left out here in deriving the Galerkin system and more information can be found
in [51] and any introductory book on finite element methods. The shape functions used
here are those of quadrilateral grids shown below as given in [51]:

ψ1 =
1
4
(1−ξ )(1−η), ψ3=

1
4
(1+ξ )(1+η),

ψ2 =
1
4
(1+ξ )(1−η), ψ4=

1
4
(1−ξ )(1+η). (4.27)

These shape functions can also be thought of as interpolation functions since, given the
solution at only four nodes of an element, they can be used to approximate the solution
elsewhere within the element through interpolation. Only one shape function is nonzero
at any particular node. Any quadrilateral element in the physical space (xy−coordinate
space) with arbitrary shape can be mapped onto the regular quadrilateral in the natural
space (ξ η−coordinate space) as shown in Fig. 4.1. This makes integration within the
element of any quadrilateral element easy since we only have to perform integration in the
natural space with the regular and symmetric quadrilateral.

For validation purposes several Poisson equations whose exact solutions are known were
compared with our implementation results. One such Poisson equation and its exact
solution is −4u(x,y) = 2π2sin(πx)sin(πy) on the domain Ω = [0,1]2 subjected to the
Dirichlet boundary conditions u(x,y) = 0, ∀(x,y) ∈ Γ. The exact solution of this Pois-
son equation is u(x,y) = sin(πx)sin(πy).
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Lastly, Runge-Kutta 4 is used for solving the ordinary differential Equation (4.15).
Fig. 4.2 shows examples of this optimal control-based model implemented via the Galerkin
approach when applied on two CT slices and two synthetic images for registration.

Fig. 4.2: Registration of two synthetic image using the optimal control-based model implemented
with GFEM. The first column shows the reference images R(x), the second column shows the
template images T (x), the third column shows transformed or registered template image T (φ(x))
and the last column shows the resulting deformation φ(x).

This implementation reduced the normalized dissimilarity measure
‖T (φ(x))−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

from 1

to 0.12447 for CT slices and from 1 to 0.01103 for synthetic images with α = β = 0.0005
in both CT slices and synthetic images registration. The resulting deformation for the CT
slices example is visually acceptable, but the one for synthetic images gave rise to grid
folding which is not desirable. No pre-registration was used for initialization in these two
examples.

4.3.2 The System of Linear Equations

Since the optimality system is already constituted by linear equations, one approach is
to use LSFEM to obtain the Lagrange multipliers (ξ ,η) and the displacement field u(x).
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The LSFEM is based on the minimization of the residual in a least-squares sense [52]. For
instance the first order equation Aw = h with A as the differential operator is restated as
the residual in the following particular form as shown in [52]:

I(w) = ‖Aw−h‖2 =

ˆ

Ω

(Aw−h)2dx. (4.28)

The first order variation of Equation (4.28) results in the following equation which shares
some similarities with the weak formulation in Equation (4.21):

ˆ

Ω

(Aw) · (Av)dx =

ˆ

Ω

h · (Av). (4.29)

The major difference between the Galerkin method and the LSFEM rests upon the family
of functions chosen as the test functions in each of them. The Galerkin method chooses the
test functions v from the same class of functions as the approximating or trial functions
w, while the LSFEM chooses the test functions Av from the class of derivatives of the
approximating functions Aw. In [63] the two approaches are compared on solving the first
order differential equation and the Galerkin method was shown to fail in getting a solution
due to the strict choice of test functions it allows. Using the FEM solution approximation
as given in Equation (4.22) and as shown in [31, 52] the resulting local stiffness matrix Ke

and load vector He are given by

Ke =

ˆ

Ωe

[
Aψ1 . . . Aψ4

]T [
Aψ1 . . . Aψ4

]
dx,

He =

ˆ

Ωe

[
Aψ1 . . . Aψ4

]T
hdx. (4.30)

Similar to the Galerkin solution, the LSFEM solution is obtained by assembling the ele-
mental linear equations Kewe = He to obtain the global equation [Ke]{we} = [He]. One
advantage of the LSFEM is that the stiffness matrix Ke is always symmetric and positive-
definite [52]. It is tricky to perform integration over the original quadrilateral elements,
which keep on deforming from time to time, so a reference quadrilateral which is reg-
ular and symmetric (as the one shown in Fig. 4.1) is used for integration. This ap-
proach requires the Jacobian matrix J(ξ ,η) which maps every arbitrary element in the
xy−coordinate space to the regular element in the ξ η−coordinate space. This required
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Jacobian matrix is shown below as given in [51]:

J(ξ ,η) =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(4.31)

such that

∂x
∂ξ

=
1
4
(1−η)(x2− x1)+(1+η)(x3− x4)

∂y
∂ξ

=
1
4
(1−η)(y2− y1)+(1+η)(y3− y4)

∂x
∂η

=
1
4
(1−ξ )(x4− x1)+(1+ξ )(x3− x2)

∂y
∂η

=
1
4
(1−ξ )(y4− y1)+(1+ξ )(y3− y2) (4.32)

where (xi,yi) is the coordinate at a particular node in the xy−coordinate space. The inte-
grations in Equation (4.30) can be represented in the ξ η−coordinate space by substituting
the following relations obtained from [52] into Equation (4.30):

dx = |detJ(ξ ,η)|dξ dη ,

x =
4

∑
j=1

x jψ j(ξ ,η),

y =
4

∑
j=1

y jψ j(ξ ,η),

[
∂ψ j
∂x

∂ψ j
∂x

]
= J(ξ ,η)−1

[
∂ψ j
∂ξ

∂ψ j
∂η

]
. (4.33)

More details on the LSFEM can be found in [31, 52, 64]. The first order systems of PDEs
presented in [62] as the least square formulation of the optimal control problem in [8] were
solved using the LSFEM approach described briefly above, and the convergence rate was
relatively slow compared with the Galerkin approach in the previous subsection. This is
most probably because of the relatively large matrix equations that need to be solved. For
instance, the Aψ j obtained from Equation (3.47) in [62] for the control f had the following
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form:

Aψ j =


ψ j 0 −∂ψ j

∂x

0 ψ j −∂ψ j
∂y

− 1
β

∂ψ j
∂x − 1

β

∂ψ j
∂y βψ j

 , (4.34)

and upon substituting Equation (4.34) into Equation (4.30) the resulting matrices are rela-
tively large compared with the ones obtained in the Galerkin formulation. Thus the follow-
ing approach was considered and implemented: the div-curl system given in the optimality
system can be written as follows:[

1 0
0 1

][
∂ux
∂x

∂uy
∂x

]
+

[
0 1
−1 0

][
∂ux
∂y

∂uy
∂x

]
=

[
f −1

g

]
(4.35)

and with the help of Equation (4.22) the resulting Aψ j is given as

Aψ j =

[
∂ψ j
∂x

∂ψ j
∂y

−∂ψ j
∂y

∂ψ j
∂x

]
. (4.36)

Also using a similar approach the co-state equations result in the local matrix equation[
∂ψ j
∂x

∂ψ j
∂y

−∂ψ j
∂y

∂ψ j
∂x

][
η j

ξ j

]
=−

[
G2 j

G1 j

]
, (4.37)

and as it appears, the Aψ j matrix in Equation (4.37) is exactly the same as that found
for the div-curl system. This means that one implementation is enough to solve both
the state and the co-state equations, and the optimality conditions (4.17) are then used to
obtain the controls from the Lagrange multipliers. This approach was implemented and
the optimization algorithm outlined in [62] was adopted. Fig. 4.3 shows examples of this
approach when applied on two CT slices and two synthetic images for registration. Even
though this approach is faster than the one in [62] we use the Galerkin based approach in
the evaluation instead.

This implementation approach was able to reduce the normalized dissimilarity measure
‖T (φ(x))−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

from 1 to 0.14062 for CT slices and from 1 to 0.017795 for synthetic

images with α = β = 0.0005 in both CT slices and synthetic images registration. The
resulting deformation for the CT slices example is visually acceptable however the one
for synthetic images is not as good. No pre-registration was used for initialization in these
two examples.
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Fig. 4.3: Registration of two synthetic image using the Optimal Control-based model implemented
with LSFEM. The first column shows the reference images R(x), the second column shows the
template images T (x), the third column shows transformed or registered template image T (φ(x))
and the last column shows the resulting deformation φ(x).



Chapter 5

Evaluation in Fitness Space

There are different methods used for evaluating the performance of algorithms or models,
but broadly speaking the evaluation methods are divided into two categories: analytical
methods and empirical methods [65]. Analytical methods directly examine the algorithm
through analysis of their properties and principles. For instance a long and computation-
ally intensive algorithm is necessarily slower than a short and simple one. These methods
avoid direct implementation of algorithms to be evaluated, and thus they do not suffer from
influences caused by the arrangement of evaluation experiments. However, it is difficult
to compare algorithms solely by analytical studies. Hence analytical methods have not
received much attention [65].

On the other hand, empirical methods work by testing algorithms on a particular problem
and measuring the quality of the results. These methods require implementation of the
algorithms to be evaluated and availability of test problems. The empirical methods use
some goodness measure or performance index which gives a measure of how good the
algorithm is or how well the model performs. The performance index can be a variable in
the model or a function chosen such that it varies monotonically with the performance of
the algorithm [66]. The empirical methods evaluate and rank algorithms through compu-
tation of some chosen performance index without the need for a priori knowledge of the
reference. These methods have been widely used in the evaluation of image segmentation
algorithms [65, 66, 67].

In [68] four deformable image registration models namely, B-spline, free-form deforma-
tion (FFD), Horn-Schunk optical flow (OF) and Demons were evaluated on thoracic im-
ages. The registration error for the evaluation was defined as the difference between the

56
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manually measured displacement vector field (mDVF) obtained from the coordinate list of
anatomical landmarks and the automatically calculated displacement vector field (aDVF)
obtained using each of the four models. The mean 3D registration errors were 2.7±0.8mm

for B-spline, 3.6±1.0mm for FFD, 2.4±0.9mm for OF and 2.4±1.2mm for Demons. It
was concluded that B-spline, OF and Demons showed reasonable accuracy, and thus have
potential to be used for 4D dose calculation and 4D CT ventilation imaging in patients
with thoracic cancer. It was also suggested that the accuracy for all the models could be
improved by using optimized parameter tuning.

In [69] an entirely computer-driven systematic method, which eliminates biased interpre-
tations associated with human evaluation, was proposed and used to quantify the ability of
a modified basis spline (B-Spline) registration algorithm to recover artificially introduced
deformations. The method is fully automated and it can be applied to any chosen registra-
tion algorithm without the requirement of user interaction. With this method the evaluated
deformable image registration model was shown to be accurate and stable in the presence
of noise in the images used for evaluation. In [70] the Demons and the thin-plate spline
interpolation were evaluated using a concept based on unbalanced energy. The evaluation
was performed on a prostate patient’s CT images. The detection of unbalanced energy
together with a conditioned finite element model gives a quantitative assessment of every
registration instance.

In [71] evaluation of the performance of surface-based deformable image registration for
adaptive radiotherapy of non-small cell lung cancer was carried out both visually and
quantitatively. Their method requires manual segmentation of CT images prior to com-
parisons. Several other methods of evaluation are mentioned in [72] together with the
registration errors obtained from the deformable image registration models used in eval-
uation. Wei in [73] uses average relative overlap, normalized region of interest overlap,
intensity variance, inverse consistency error as well as transitivity error to evaluate de-
formable image registration models.

Most of these evaluation methods mentioned focus on the registration error or accuracy
and have little to say of the resulting nature of the deformation. Sometimes the over-
all performance of an algorithm can be defined by at least two performance indices. The
evaluation in this case can be thought of as a multiobjective optimization problem whereby
multiple objectives are given by these multiple performance indices. One approach con-
sists of forming a weighted linear aggregation of the performance indices which results in
one composite performance index, minimization of which reflects just one solution point
in space. The weights can be changed to vary the relative importance and significance
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of one performance index over the other. A disadvantage of this approach is that it lacks
objectivity since the weights are set subjectively by a designer.

One way to avoid subjectivity is by treating each performance index as a dimension in
a fitness space rather than aggregating them. In this way all performance indices are
orthogonal to each other and the performance of an algorithm is marked by a point in
this fitness space. It is clear that the coordinate points which are closest to the ideal
performance point in this fitness space, according to a certain distance measure, mark
the best performing algorithms. This is the basis for constructing what is called a Pareto
front. This is the approach we adopt when carrying out the evaluation process in this work.

The essence of this chapter is to explain the proposed evaluation procedure, which is based
on a Pareto ranking scheme and proposes the fitness or objective functions to be used as
performance indices. Since some of the fitness functions are conflicting we adopt the level
diagrams analysis as a way of visualizing the Pareto fronts.

5.1 Motivation

Motivated by Everingham et al. [66] on evaluation of image segmentation using the Pareto
front, we adopt a general form of aggregate fitness function as

H(ap, I) = Φ(h1(ap, I), . . . ,hn(ap, I)), (5.1)

where ap represents algorithm a (registration algorithm in our case) with parameters p, I is
a set of images and hi(ap, I) are individual fitness functions defined to increase monotoni-
cally with the fitness of some particular aspect of the algorithm’s behavior. The behavior
of an algorithm a applied to a set of images I with a particular choice of parameters p
can be characterized by a point in the n−dimensional space defined by evaluation of the
fitness functions. Variation of parameters p of algorithm a produces a new point in the
fitness space and this makes it possible to compare algorithms having different parameter
sets. This representation decouples the fitness trade-off from the particular parameter set
used by an individual algorithm.
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5.2 Pareto Front Approximation

In this section we introduce the concepts of the Pareto front and discuss the approximation
of Pareto fronts using genetic algorithms.

5.2.1 Pareto Front

Points generated by variations of algorithm parameters are plotted on the fitness space.
The set of non-dominated points on the fitness space is given by

{
〈
ap ∈ Pa,H(ap, I)

〉
|¬∃aq ∈ Pa : H(aq, I)> H(ap, I)}, (5.2)

where Pa is the parameter space of algorithm a, H is a vector of fitness functions denoted
as
〈
h1(ap, I), . . . ,hn(ap, I)

〉
and a partial ordering relation on F is defined as

H(aq, I)> H(ap, I)⇐⇒∀i : hi(aq, I)≥ hi(ap, I)

and
∃i : hi(aq, I)> hi(ap, I).

(5.3)

This construction, referred to as the “Pareto front”, is extendable to the case of multiple
algorithms, and this has the natural consequence that any algorithm which does not con-
tribute to the front can be considered a bad choice for any monotonic fitness function
Φ [66]. Representation in Equation (5.3) above is also abbreviated as p≺ q which means
solution p dominates q.

5.2.2 Approximation by NSGA-II

Genetic algorithms are commonly used to approximate the Pareto front with a finite num-
ber of points, and have an advantage in that they require less prior knowledge about the
behavior of an algorithm with respect to its parameters [66]. NSGA II is an elitist multi-
objective evolutionary algorithm introduced by Deb et al. [74] as an improved version of
the NSGA. A flow diagram illustrating this algorithm is shown in Fig. 5.1.
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Fig. 5.1: The flow diagram of NSGA-II.

More details about NSGA-II can be found in [74]. A Matlab code by Seshadri [75] was
used in this work.

In NSGA-II, for each solution p ∈ P one has to determine the following:

• The set Sp of solutions q dominated by solution p. i.e. Sp = {q : p≺ q}

• The integer number np of solutions dominating solution p.

• The integer number prank indicating the rank of solution p. i.e. the front index.

• Crowding-distance of solution p, which gives the density of solutions surrounding
solution p with respect to each objective function.

Binary tournament selection is performed using a crowding-comparison operator which
takes into account the following:

• Non-domination rank, prank of individual p: in the tournament, during selection,
non-dominated solutions with lesser rank are preferred.
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• Crowding-distance of solution p: if competing solutions in the tournament share the
same rank then the solution with higher crowding-distance is preferred.

The following genetic operators are used to produce offspring:

• Simulated Binary Crossover (SBX):

c1,k =
1
2
[(1−βk)p1,k +(1+βk)p2,k],

c2,k =
1
2
[(1+βk)p1,k +(1−βk)p2,k], (5.4)

where ci,k is the ith child with kth component, pi,k is the selected parent and βk (≥ 0)
is a sample from a random number generated having the density:

p(β ) =
1
2
(ηc +1)β ηc, 0≤ β ≤ 1,

p(β ) =
1
2
(ηc +1)

1
β ηc+2 , β > 1, (5.5)

where ηc is the distribution index for crossover. This distribution can be obtained
from a uniformly sampled random number u between (0,1). That is

β (u) = (2u)
1

η+1 ,

β (u) =
1

[2(1−u)]
1

η+1
. (5.6)

• Polynomial Mutation:

ck = pk +(pu
k− pl

k)δk, (5.7)

where ck is the child and pk is the parent with pu
k and pl

k being the upper and lower
bounds on the parent component respectively. The parameterδk represents a small
variation which is calculated from a polynomial distribution using

δk = (2rk)
1

ηm+1 −1, i f rk < 0.5,

δk = 1− [2(1− rk)]
1

ηm+1 , i f rk ≥ 0.5, (5.8)

where rk is a uniformly sampled random number in the open interval (0,1) and ηm

is the mutation index.

The offspring population is combined with current generation population and selection is
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performed to set the individuals of the next generation. Since all the previous and current
best solutions are preserved in the population, elitism is ensured. One example of the
Pareto front generated by NSGA-II is shown in Fig. 5.2 with two objective functions
f 1 = 1+cosθ and f 2 = 1+sinθ . In the next section we formulate the objective functions
necessary for the purpose of the evaluation process in this work.

Fig. 5.2: Approximation of Pareto Front generated by NSGA-II.

5.3 Fitness (Objective) Functions

Fitness or objective functions are the necessary components in any empirical or quantita-
tive evaluation scheme. They serve as performance indices which indicate the performance
of an algorithm or model in question. In the case where there are two or more objective
functions in the evaluation process, the evaluation is considered multidimensional where
the dimensions of a fitness space are constituted by the objective functions themselves
such as with f 1 and f 2 in Fig. 5.2. For the Pareto front evaluation scheme it is necessary
that there be at least two objective functions. Sometimes each objective function is fully
decoupled from others and in such cases it is almost trivial to use Pareto fronts as an eval-
uation tool. It is in cases where at least two objective functions are not only coupled but
also conflicting whereby the Pareto front becomes the vital tool for evaluation.

In the sections below we construct two major conflicting objective functions to be used in
evaluating the deformable image registration models. The deformation quality measure is
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itself composed of three independent quality measures which complement each other to
give a better quantitative measure of the deformation quality.

5.3.1 Similarity Measure

SSD and CC are the most popular geometry-based similarity measures. Although re-
stricted to monomodal applications, SSD is adopted here due to it being simple, intuitive
and computationally efficient. The normalized SSD is much more convenient as a well-
bounded objective function h1:

h1(ap,R,T,φ) =
‖T (φ(x))−R(x)‖2

L2

‖T (x)−R(x)‖2
L2

(5.9)

where ap stands for a registration algorithm for a particular model and subscript p stands
for parameters of the model. These can be varied as part of the decision variables to inves-
tigate optimal tuning of the model in algorithm a. For variational-based models we have
φ(x) = x−u(x) and for the optimal control-based model we have ∂

∂ t φ(t,x) = u(t,φ(t,x)).

5.3.2 Deformation Quality Measure

The quality of a grid is quantified by skewness, shape, size, aspect ratio and
orientation [76, 77], and a proposed quality measure should account for most if not all
of these quantities. However, skewness varies almost linearly with shape. Also, aspect
ratio is meaningful only if skew is significant. Shape is preferred because it contains both
skew and aspect ratio [78]. In this work we adopt two of these measures as formulated
for quadrilateral grid elements in [78]. Fig. 5.3 shows example of a structured or regular
grid and an unstructured or irregular grid, each with four quadrilateral elements labeled
e1,e2, ...,e4 where each element has four nodes labeled k,k+1, ...,k+3.
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Fig. 5.3: A regular grid with quadrilateral elements (left) and its deformed version (right).

Unlike in the case of simplical elements such as the triangle and tetrahedron, which pos-
sess very convenient properties simplifying the definition of quality measures, the quadri-
lateral element does not. The main problem is that the Jacobian matrix of a non-simplical
element like the quadrilateral cannot be defined in terms of a single Jacobian matrix [78].
There are actually four Jacobian matrices for the quadrilateral element, one for each node
k. However, it has been shown in [78] that given any node k, the sum of the determinants
of the Jacobian matrices at nodes k and k+2 is always twice the total area of the quadri-
lateral. This invariance of the element area under node transformation helps us to avoid
using four of the Jacobian matrices to construct the quality measure. We proceed to define
the Jacobian matrix at node k of element e in the grid φ(x) as follows:

Ae
k =

[
φ e

1k+1
−φ e

1k
φ e

1k+3
−φ e

1k

φ e
2k+1
−φ e

2k
φ e

2k+3
−φ e

2k

]
, k ∈ {0,1,2,3}, (5.10)

where (φ e
1k
,φ e

2k
) is the coordinate pair at node k of element e in the deformed grid φ(x).

Thus αe
k = det(Ae

k)+ det(Ae
k+2) is twice the total area of the element e, and using these

settings the relative size measure as given in [78] is

f e
size = min(

αe
k

2w
,
2w
αe

k
), (5.11)

where w is the area of a reference element. This measure has other essential properties
which are:

• f e
size = 1 if and only if the physical quadrilateral has the same total area as the refer-

ence quadrilateral w.
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• f e
size = 0 if and only if the physical quadrilateral has a total area of zero.

• The value of f e
size depends directly on the area of the physical quadrilateral.

However, f e
size is just local in the grid and thus cannot give the size quality for the entire

grid. We propose solving this problem by introducing the infinity norm taken over the
entire grid. The infinity norm is convenient in the sense that it is able to capture and expose
the worst element in the whole grid and set it as the quality measure of the entire grid. In
short we are adopting the worst case element size as the quality measure for the whole grid
with regard to element size quality. The other inconvenience with f e

size is that it conforms
well with the maximization methods for optimization instead of the minimization methods
which we require for consistency purposes here. We alleviate this problem by considering
1− f e

size rather than f e
size itself. The final proposed relative size quality measure is

h2(ap,φ) =
∥∥1− f e

size
∥∥

∞
. (5.12)

The relative size measure is not a very useful quality measure on its own because a grid
element can be poorly shaped yet still maintain a good size measure. Complementary
to the relative size quality measure we need the shape quality measure. Unfortunately,
describing the shape of the quadrilateral requires not just two as with size but rather all
four Jacobian matrices Ae

k to give the following shape quality measure as given in [78]:

f e
shape =

8

∑
3
k=0

trace(AeT
k Ae

k)

det(Ae
k)

. (5.13)

This shape measure is nodally invariant and has the following other properties:

• f e
shape = 1 if and only if the physical quadrilateral is a square.

• f e
shape = 0 if and only if the physical quadrilateral is degenerate or has zero area.

• The value of f e
shape is scale invariant.

Following a similar procedure as in with the size quality measure above, the shape quality
measure above is modified to give the following:

h3(ap,φ) =
∥∥∥1− f e

shape

∥∥∥
∞

. (5.14)
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Even though h2 and h3 are necessary for quantifying the deformation or grid quality, they
are not sufficient since they do not give a measure of how many grid elements are degen-
erate or inverted (deformation failure). For this reason we impose another global quality
measure to account for that, and it is a modification of the one given in [76]:

h4(ap,φ) =
1

2N

N

∑
e=1

{
∣∣αe

k −ρ
∣∣−αe

k +ρ}∣∣αe
k −ρ

∣∣+ ε
, (5.15)

where N is the total number of elements in the grid, 0 < ε ≤ 1 is set to avoid division by
zero and 0 < ρ < 1 is a threshold used to isolate inverted elements with zero area. All
objective functions hi above are dimensionless and all range from zero to one.

5.4 Level Diagrams Analysis of Pareto Fronts

Whenever two or more objectives are conflicting in the Pareto front, visualization and
trade-offs become nontrivial and this necessitates tools to tackle the visualization and
trade-off issues. Level diagrams are used for visualizing Pareto fronts by providing a
geometrical visualization of the Pareto front based on a distance measure from an ideal
solution point, which optimizes all objectives simultaneously [79]. Given normalized ob-
jectives hi, as the ones above, a suitable norm is chosen to evaluate the distance from an
ideal solution point to a point on the Pareto front. In this work we adopt the infinity norm
for evaluating distance since it offers a compact visualization of the Pareto front which is
useful for trade-off analysis [79]. With the distances computed, the plot of level diagrams
proceeds as follows.

The distance of all points from the Pareto front are plotted against each objective function
hi to produce two-dimensional plots with distance along the y-axis and objective function
hi along the x-axis. In this way, a single point from the Pareto front is plotted at one level
(y-axis), carrying with it all the information about its performance on the Pareto front.
The smaller the distance measure on the level diagrams the better the performance. Thus
a decision maker can use this distance measure to decide which point, corresponding to a
particular algorithm, suits their design specifications.
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Fig. 5.4: The Level Diagram of the Pareto Front example in Fig. 5.2.

More details about level diagrams can be found in [79, 80]. In Fig. 5.4 we show the level
diagram visualization of the example Pareto front in Fig. 5.2. The point with the lowest
infinity norm distance is the best point for minimizing all objective functions simultane-
ously.



Chapter 6

Evaluation Results

In radiation therapy the accuracy and precision on targeted unhealthy tissues or organs is
of utmost importance because if not, healthy tissues nearby can get damaged by high ra-
diation doses meant only for the tumors. Medical imaging techniques have been very suc-
cessful in providing this precision in various medical applications. One such application
is in the diagnosis, monitoring and treatment of prostate tumor and growth. Prior to treat-
ment phase the patient is first taken through the planning phase and data collected is stored
as 3D CT data. During actual treatment, images of the targeted tissues are produced by a
real-time digital X-Ray device as Portal Radiographs (PRs). For proper correspondence
between planning and treatment phases, the 3D CT data is projected from a known view-
point and angle to produce 2D images called digitally reconstructed radiographs (DRRs),
which are then compared with PR to check for misalignment. Fig. 6.1 shows the example
of a CT slice and a DRR.

As part of the misalignment correction process, a preliminary patient positioning can be
carried out based on external markers, either on the patient’s skin or using the mask sys-
tem [16]. However, even after this alignment the organs or tissues inside may still not be
aligned properly, especially if the regions of interest are in the abdominal region where or-
gans and tissues are soft and highly deformable. For instance the prostate whose pose and
shape depend on the conditions in the bladder and rectum. This problem necessitates the
use of deformable image registration techniques to alleviate the remaining misalignment
between the PR and the DRR.

In this work we prepare a setup which mimics much of the application explained above and
use it as a platform for evaluating the deformable image registration models presented in

68
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Chapters 3 and 4. That is to mimic the registration of DRRs to the PR of a human prostate
to obtain the tissue transformation from the planning phase to the treatment phase. The
major limitation in our setup is the lack of PR data. Thus we divide DRRs and CT slices
into two sets: one acting as DRRs while the other mimicking PRs. This prostate regis-
tration problem is used in this work as a test application to facilitate proper evaluation of
the deformable registration models. This chapter presents two experiments on which the
models are evaluated using the procedure explained in Chapter 5.

Fig. 6.1: Example of a CT slice (left) and a DRR (right).

6.1 Experiment One

The purpose of this first experiment is to compare the performance of the models on
prostate registration application based on DRRs formed by projection of CT data along
the cross sectional view of the human body. As part of the comparison the model perfor-
mance with and without the pre-registration is carried out as a way of investigating the
relative reliance of the models on pre-registration. A demonstration of how evaluation can
aid in decision making is shown through level diagram interpretation.
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6.1.1 Experimental Setup

In this experiment we used the DRRs from different patients to perform prostate regis-
tration. The DRRs were grouped into a template set Ts = {Ti(x) : i = 1,2, . . . ,25} and a
reference set Rs = {Ri(x) : i = 1,2, . . . ,25} (representing PRs). The criteria used when
pairing Ti(x) with Ri(x) is based on feature similarity and slice level correspondence be-
tween the two, but no Ti(x) was paired with itself.

A copy of Ts was passed through the pre-registration process and kept as set Tp of pre-
registered templates. The experiment proceeded by testing all models with and with-
out pre-registration separately on the prostate registration problem. For each model the
NSGA-II optimization algorithm is used to optimize the initial population to produce the
approximate Pareto front. The results are shown in Fig. 6.2 and their interpretation is
presented in the sections below together with the Pareto fronts visualization shown in Fig.
6.3. Every parameter (decision variable), for all models, was varied in the open interval
(0,1) to produce the Pareto fronts. Decision variables λ and µ in the elastic and fluid mod-
els are bulk and shear modulus measured in Pascal units. Every other decision variable is
dimensionless.

6.1.2 Results and Interpretations

In this section we compare each variational-based model with the optimal control-based
model using, as reference, the Pareto fronts shown in Fig. 6.2. The term net Pareto front

refers to the non-dominated set of points contributed by the chosen Pareto fronts in
Fig. 6.2. As a summary of the Pareto fronts shown in Fig. 6.2 (d), (e) and (f), and for
decision making purposes, level diagrams representation of the Pareto fronts is shown in
Fig. 6.3. Since all objective functions are dimensionless, no units are put in Fig. 6.2 and
Fig. 6.3.
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Fig. 6.2: Two dimensional side views of Pareto fronts approximation. The top row with sub-
figures labeled (a), (b) and (c) shows the Pareto fronts generated without including the pre-
registration step. The bottom row with sub-figures (d), (e) and (f) shows the Pareto fronts generated
with the pre-registration step included.

6.1.2.1 Comparison with Curvature Model

From Fig. 6.2 (a) and (b), the curvature model dominates the left side of the net Pareto
front with better SSD as well as deformation quality based on size and shape. This implies
that under the assumption of no pre-registration the curvature model is able to simultane-
ously optimize SSD, size and shape objectives better than all other models. It can also be
observed from Fig. 6.2 (c) that the curvature model has no deformation failure throughout
which means it is able to prevent physically unrealizable deformations without the aid of
pre-registration. Also its performance did not change much when pre-registration is in-
cluded except for a slight improvement in size as observed in Fig. 6.2 (d), thus indicating
the insensitivity of this model to pre-registration step.
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In contrast the optimal control-based model shows a relatively significant improvement
in SSD, size and shape objectives when pre-registration step is introduced hence the op-
timal control-based model is more sensitive to pre-registration than the curvature model.
These observations confirm the assertion that the curvature model can do without a pre-
registration step. It is also worth noting that the curvature model outperforms the optimal
control-based model throughout with regard to size, shape and SSD measures. However,
both perform equally well in deformation failure measure. With regard to the sensitivity to
pre-registration the curvature model is the best choice in the absence of the pre-registration
tools.

6.1.2.2 Comparison with Elastic Model

As anticipated, the elastic model manifests signs of stiffness as it is dominated by all
methods on the left region of Fig. 6.2 (a) and (b) with respect to the SSD objective. This
means the elastic model has a relatively poor image matching ability when the images are
not close to one another. Given the high deformations involved in the prostate dynamics it
was expected that the elastic model will suffer in convergence with regard to the similarity
measure. On their own, elastic and optimal control-based models share their net Pareto
front with elastic performing better in size and shape while optimal control is better in
SSD (as shown in Fig. 6.2 (a), (b), (d) and (e)).

A stiff model like the elastic model does not distort the shape and size of the grid as much
as the less stiff model hence why the elastic model performs better in size and shape ob-
jectives. However this good performance in deformation quality due to limited distortions
comes at the cost of poor image matching ability. In a severe case it is almost as if no
registration was performed due to small deformations occurring. With regard to deforma-
tion failure measure the two models are non-dominated. Including pre-registration results
in the elastic model performing slightly better with respect to size objective but not in
shape objective. Since the elastic model is already stiff and limited to small deformations
in its nature, pre-registration cannot be expected to bring much difference with regard
to the size, shape and deformation failure objectives. This makes the elastic model less
sensitive to pre-registration step than the optimal control-based model with regard to the
deformation quality measure in general.
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6.1.2.3 Comparison with Fluid Model

In the absence of pre-registration, the fluid model is dominated by almost all the other
models throughout in terms of size, shape and SSD, except for the elastic model, since the
only way for it to participate in the net Pareto front is by allowing it to compete with the
elastic model alone. The fluid model dominates the elastic model with regard to the SSD
measure thus showing that it is less stiff than the elastic model. Its flexibility, however
has come at the burden of compromising its performance with regard to size, shape and
deformation failure objectives. This is likely due to not penalizing the displacement field
u(x) directly but rather the velocity field v(x, t) in its formulation yet the deformation φ(x)
is itself directly dependent on u(x).

Even though both optimal control and fluid models are not members of the overall net
Pareto front, the optimal control-based model would participate in the absence of the cur-
vature model while the fluid model still would not. The fluid model also produced a
significant number of physically unrealizable elements, as shown in Fig. 6.2 (c) and this
is likely a result of this indirect penalization of the displacement field through the velocity
field with the intention of improving flexibility of the model. When pre-registration is
included the fluid model significantly improves in all deformation quality measures and
starts to participate in the overall net Pareto front thus showing that the fluid model is
more reliant on pre-registration step than the optimal control-based model which does not
improves as much.

6.1.2.4 Comparison with Diffusion Model

Excluding the curvature model for the moment in Fig. 6.2 (a), and (b), we realize that op-
timal control and diffusion models dominate the left-center region of the net Pareto front
side by side. This observation is not surprising given that the first variations of these mod-
els are expressible by almost similar Poisson equations, with the exception of optimality
equations in the case of the optimal control-based model. With regard to deformation fail-
ure, the optimal control-based model is non-dominated with a deformation failure of zero
throughout, thus justifying the claim that it gives direct control of element structure. The
diffusion model has shown a significant improvement in deformation quality measures
relative to that of the optimal control-based model when pre-registration is included. This
demonstrates higher sensitivity of the diffusion model to pre-registration with regard to
deformation quality measure. With pre-registration included, the net Pareto front of dif-
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fusion and optimal control-based models is now occupied mostly by the diffusion model.
This shows that the diffusion model is relatively more flexible as mentioned in previous
chapters.

6.1.2.5 Summary Table

Table 6.1 summarizes the comparisons made in sections 6.1.2.1 to 6.1.2.4 above. Each of
the four variational-based models is compared to the optimal control-based model based
on the sensitivity to pre-registration, SSD, size, shape and deformation failure objectives.
For example, since the diffusion model is more sensitive to pre-registration than the op-
timal control based model the key word “more” is used to indicate this. With regard to
the objectives like SSD the key word “dominated” is used if the a variational-based model
is dominated by the optimal control-based model with respect to the SSD objective only
otherwise the key word “non-dominated” is used.

Table 6.1: Comparison of variational-based models with the optimal control-based model
based on sensitivity to pre-registration, similarity and deformation quality measures.

Model/Objective Elastic Fluid Diffusion Curvature
Sensitivity less more more less

SSD dominated dominated non-dominated dominated

Size non-dominated non-dominated dominated non-dominated

Shape non-dominated non-dominated non-dominated non-dominated

Deformation Failure non-dominated non-dominated non-dominated non-dominated

Considering optimization of all objectives at once as indicated by the distances between
the Pareto fronts points and the ideal point (the origin), curvature and diffusion models
outperformed the rest of the models. The optimal control-based model on the other hand
outperformed both elastic and fluid models.

6.1.3 Visualization using Level Diagrams

The visualization presented in Fig. 6.3 is based only on the objectives and distance mea-
sures but no decision variables are included. Given Fig. 6.3, a decision maker who priori-
tizes the SSD objective over other objectives, for example, needs to use Fig. 6.3 (a) and to
choose the model with the lowest infinity norm at the desired SSD objective value.
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Fig. 6.3: The Level Diagrams for the Pareto Fronts in Fig. 6.2 above.

6.2 Experiment Two

In this experiment the CT data was projected from different angles to produce DRRs. The
purpose of this experiment is to demonstrate how this evaluation procedure can help in
obtaining better or optimal parameter tuning for a particular model.

6.2.1 Experimental Setup

The setup for this experiment is the same as the one in the previous experiment except that
the experimental data has been changed by varying the projection angles or planes when
generating DRRs from the CT data. Also the pre-registration step was not included in this
experiment. The results are shown in Fig. 6.4 and their interpretation is presented in the
sections below.
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6.2.2 Results and Interpretations

Fig. 6.4: Two dimensional side views of Pareto fronts approximation.

In Fig. 6.4 (a) curvature and optimal control-based models dominate the left region of the
net Pareto front. The Diffusion model appears to be inferior to the optimal control-based
model. This results from the relatively higher sensitivity of diffusion to pre-registration, as
observed in the first experiment. The fluid and elastic models participate in the net front on
the rightmost side of the Pareto front with bad SSD measure. Looking at Fig. 6.4 (b) the
curvature model is dominating the middle region of the net Pareto front thus minimizing
both SSD and shape objectives better than the other models. The optimal control-based
model participates on the left side of the net Pareto Front with a good SSD measure but a
bad shape measure. The elastic and fluid models dominate the right side of the net Pareto
front with good shape measures but poor SSD measure. With regard to deformation failure
Fig. 6.4 (c) most models are showing deformation failure and this is likely due to larger
deformations involved with comparing differently projected data.

Since the chosen domain of model parameter is between zero and one, sometimes the
NSGA-II can pick a parameter close to zero and result in less regulation strength. This
leads to instabilities that cause more deformation failures, as mentioned in [1]. This has
less to do with the limitations of the model but more to do with the choice of parameters
for a particular model. For optimal parameter tuning we use the level diagrams in Fig. 6.5
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and Table 6.2 to obtain the model parameters (decision variables) which give rise to the
desired point on the level diagrams.

6.2.3 Visualization Using Level Diagrams

Fig. 6.5: The level diagram analysis for the Pareto fronts in Fig. 6.4 above.

The optimal parameter tuning for a particular model is achieved by locating the point
of that particular model which is closest to the origin, thus minimizing all objectives si-
multaneously. The corresponding model parameters leading to that performance are then
located from the table of points produced by NSGA-II. This is demonstrated with the cur-
vature model whose NSGA-II is shown in Table 6.2. It can be observed from the level
diagrams in Fig. 6.5 and the corresponding Table 6.2 that the closest curvature model
point to the origin is the one with an infinity norm of 0.3793. This point corresponds to
the model parameter α = 0.0001 from Table 6.2. Fig. 6.6 shows the result of applying
this parameter value in registering two DRRs.
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Table 6.2: The NSGA-II minimization output relating to the curvature model.
Parameter α SSD h1 Size h2 Shape h3 Failure h4 ∞−norm
2.254e-05 7.116e-01 1.449e-01 1.558e-02 0 7.116e-01
1.498e-07 1.387e-01 1.000+00 1.000+00 2.715e-01 1.000+00
1.000e-04 2.372e-01 3.793e-01 1.060e-01 0 3.793e-01
1.386e-05 1.675e-01 4.438e-01 2.854e-01 0 4.438e-01
1.589e-05 6.972e-01 1.684e-01 2.131e-02 0 6.972e-01
1.386e-05 1.675e-01 4.438e-01 2.854e-01 0 4.438e-01
1.366e-05 1.672e-01 4.460e-01 2.879e-01 0 4.460e-01
...

...
...

...
...

...
2.024e-05 7.058e-01 1.529e-01 1.739e-02 0 7.058e-01

Fig. 6.6: The registration of DRRs by curvature model. Top row show two DRRs produced by
cross sectional projection. Bottom row shows two DRRs produced by side view projection.

Having obtained the optimal deformation φ(x), it is used to guide the radiation beam to
the targeted tissues precisely. In the case whereby pre-registration is included the overall
optimal deformation is comprised of the the optimal transformation obtained from the pre-
registration step as well as the optimal deformation φ(x) obtained from the deformable
model.



Chapter 7

Conclusion

The major goal of this work was to carry out an evaluation of the optimal control-based
image registration model. As a way of facilitating this evaluation, we used four variational-
based models: elastic, fluid, diffusion and curvature models for comparisons and reference
purposes. The method of evaluation was chosen as the Pareto front ranking scheme and for
facilitation of proper evaluation under this scheme, the objective functions were defined
and served as performance markers for evaluating the models performance in multidimen-
sional fitness space. From the Pareto fronts diffusion and curvature models dominated the
optimal control-based model with respect to optimizing all objectives taken at once. Under
the same scenario the optimal control-based model outperformed fluid and elastic models
with regard to all objectives considered at once. So with regard to optimizing all objective
functions simultaneously, the curvature model was best followed immediately by the diffu-
sion model and then optimal control-based model. The elastic model performed relatively
poorly with regard to optimizing the similarity measure thus confirming the assertion that
it is stiff and more appropriate in applications involving small deformations.

The level diagrams were used for visualizing the Pareto fronts, and a demonstration was
made on how level diagrams aid in decision making as well as for optimal parameter
tuning for a particular model. Given that the decision maker requires the model which
best optimizes all objectives, the level diagrams showed that the curvature model is the
best choice since it had the least infinity norm of 0.3793. Under the experimental settings
in the second experiment the optimal tuning of the curvature model is acquired when
α = 0.0001.

The pre-registration system was built by combining the principal axes transformation
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(PAT) method which fast and suitable for initialization, the Levenberg-Marquardt (LM)
method and the Nelder-Mead simplex (NMS) method. Evolutionary algorithms and branch
and bound method were not used in building the pre-registration system since they are rel-
atively slower than the methods mentioned above. The three methods used in building the
pre-registration system together resulted in a sufficiently reliable pre-registration system
although at the cost of comprising speed slightly in relation to the speed of individual
method. The pre-registration system aided in the initialization of deformable image regis-
tration models, and upon comparison it was observed that the fluid and diffusion models
are relatively more sensitive to initialization than the optimal control-based model which
in turn is more relatively more sensitive than elastic and curvature models.

From this evaluation work we can conclude that the optimal control-based model is well
suited for tackling medical image registration applications involving large deformations,
such as with the prostate cancer treatment. This follows because the optimal control-based
model has proven to be a competitive model for tackling the deformable image registration
problem, the prostate image registration in specific. It can also be concluded that pre-
registration is necessary for good performance of the optimal control-based model. The
absence of deformation failures shown by the optimal control-based model can be counted
as evidence that the model has a direct control of the grid structure thus leading to more
ease in preventing physically unrealizable deformations as argued in the literature.

7.1 Future Work

All models were implemented on a framework of finite elements. However, this results
in some models, like the fluid model, being significantly slow due to high computational
intensity. In future work, when convergence time is considered as one of the objectives,
every model should be implemented in the framework that allows its optimum run-time.
Also, evaluation based on different image modalities needs to be considered in future
work. More investigations are still required on the development of more computationally
efficient and faster solutions to the optimal control problem set in the framework of de-
formable image registration. Also, the other two versions of GDM need to be investigated
as to whether they can provide optimal solutions if used in reformulating the deformable
image registration problem as an optimal control problem.
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