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Abstract

This work investigated some of the consequences of using a priori information in image

processing using computer tomography (CT) as an example. Prior information is infor-

mation about the solution that is known apart from measurement data. This information

can be represented as a probability distribution. In order to define a probability density

distribution in high dimensional problems like those found in image processing it becomes

necessary to adopt some form of parametric model for the distribution. Markov random

fields (MRFs) provide just such a vehicle for modelling the a priori distribution of labels

found in images.

In particular, this work investigated the suitability of MRF models for modelling a

priori information about the distribution of attenuation coefficients found in CT scans.

This involved selecting different models and fitting them to sample images of CT scans.

These MRF models were then used in a number of experiments and were found to lead to

more accurate tomographic reconstructions.

In the experiments maximum a posteriori (MAP) estimation using MRFs to model the

a priori distribution was found to outperform maximum likelihood (ML) estimation which

does not use prior information. The experiments included cases where the angular range

was less than ��� degrees (limited angle tomography) and cases were the angular range

was sparse (sparse angle tomography).
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Chapter 1

Introduction

Computer tomography allows internal anatomical detail of a patient to be examined with

minimal danger to the patient. For this reason computer tomography (CT) has revolution-

ized medical practice since the pioneering work of Allan Cormack and Godfrey Hounsfield

who both received the Nobel prize in Physiology or Medicine in 1979 [25].

Since then computer tomography has reached a mature state of development with com-

mercial machines producing good quality reconstructions in reasonable time due to effi-

cient reconstruction algorithms. These algorithms fail when their sample requirements are

not met. Conditions under which these algorithms fail include cases where the projection

data is only available over a limited angular range, cases where projection data are only

available at a few projection angles, and cases where the data measurements are noisy.

In cases where the available data is insufficient to specify a unique solution, the problem

is said to be ill-posed. If methods using all statistical information about the measurement

process fail to produce sufficiently good results one has the choice of either giving up or of

bringing other knowledge to bear on the problem. This type of knowledge is called a priori

knowledge and is knowledge about the solution that does not come from the measurement

data. An example of a priori knowledge in computer tomography is that X-ray attenuation

1
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coefficients cannot be negative as this would mean that more X-ray photons were leaving a

region than were entering it. This information could be used to improve an estimate of the

attenuation coefficients of an object. In fact, ‘It is is fundamental rule of estimation theory

that the use of prior knowledge will lead to a more accurate estimator’ [34].

All knowledge about possible estimates can be represented as a probability distribution

that assigns a probability to each possible solution. This distribution is called the a priori

probability distribution.

For problems of high dimension, like computer tomography, the configuration space of

possible solutions is very large, making the direct definition of the probability distribution

unfeasible. In order to define a probability distribution in high dimensional problems like

this, it becomes necessary to adopt some form of parametric model for the distribution.

Markov Random Fields (MRFs) provide just such a vehicle for modelling the a priori

distribution of images.

The aim of this work has been to investigate some of the consequences of using a priori

information in image processing and computer tomography. In particular, it investigated

the suitability of Markov random field models for modelling a priori information about the

distribution of attenuation coefficients found in CT scans. This involved selecting different

models and fitting them to sample images. A secondary goal was to use these models

to help solve some image processing problems and determine whether their use led to

improved results over methods that do not take a priori information into account.
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“Since its beginnings, computer vision research has been evolving from heuris-

tic design of algorithms to systematic investigation of approaches.”

—Stan Z. Li 1

1.1 Markov Random Fields

Markov random field theory holds the promise of providing a systematic approach to the

analysis of images in the framework of Bayesian probability theory. Markov random fields

(MRFs) model the statistical properties of images. This allows a host of statistical tools

and approaches to be turned to solving so called ill-posed problems in which the measured

data does not specify a unique solution.

This chapter introduces a number of concepts needed to understand Markov random

fields and how they may be used for modelling images. Defining a probability density

distribution for an image requires that a probability mass be assigned to each possible

configuration of labels or intensities in an image. As this configuration space is very large

and cannot be calculated directly, parametric methods are needed. MRFs can be used as

parametric models for the probability distribution of intensity levels in an image. In more

abstract terms this can be seen as modelling the distribution of labels on a set of sites.

1.2 Sites and Labels

A Markov random field is defined on a set of sites. The sites may be regularly spaced

on a lattice or irregularly spaced. Regularly spaced sites are suitable for modelling pixel

1From page XI of his book Markov Random Field Modeling in Image Analysis [38]
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intensity levels in images and will be used throughout this work. Irregularly spaced sites

are useful for high level vision problems in which features have been extracted from the

image. Irregularly spaced sites are usually referred to in the statistical literature as point

processes rather than Markov random fields [43]. Let � be a set of m discrete sites

� � ��� � � � � �� (1.1)

in which �� � � � � � are indices. A set of sites on a square � � � lattice can also be written

as � � ���� ���� � �� � � ��.

Each site has a label associated with it. The set of possible labels may be continuous

or discrete. The adoption of either a continuous or a discrete label set is one of the first

decisions that need to be made as this determines the nature of the solution space. If the

label set is continuous, the probability distribution used to model the problem must also be

continuous in which case it is known as a probability density function. If the label set is

discrete, the probability distribution used to model the problem must also be discrete and

is called a probability mass function. For now, a set � of� discrete labels will be adopted

such that

� � ���� ���� ���� (1.2)

The labelling for a set of sites, �, will be denoted by

	 � �	�� � � � � 	�� (1.3)

where 	� is the label at site �. The set of all possible configurations is called 
 . The size

of the configuration space 
 is given by �� where � is the number of candidate labels

for each site and � is the number of sites on the lattice. Many problems in machine vision

can be cast into this form where the problem is to estimate the best labelling for a set of

sites. For the example used in this chapter each site will be assigned one of four possible
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labels such that � � ���� ��� ��� ���. In this case the labels are unordered. This means that a

statement like label �� is greater than label �� is meaningless. Unordered labels arise from

classification problems where the image is divided up into a number of regions. Labels

used to represent image intensities are more naturally treated as ordered. Examples of the

use of ordered labels include image restoration [18] [52], surface reconstruction [16] and

image reconstruction in computer tomography [2][15].

1.3 The Markov Property

The defining characteristic of MRFs is that the interaction between labels is limited to a

local region. This region is called the neighbourhood of a site. The sites of a Markov

random field on a lattice � are related to each other via a neighbourhood system, � , such

that

� � ����	� 
 �� (1.4)

where �� is the set of sites neighbouring site �. A site cannot be a neighbour to itself. Fig-

ures 1.1 and 1.2 show the neighbourhoods for � and � neighbourhood models. The shaded

square represents the site of interest and the white squares represent the neighbouring sites.

The figures also show how the neighbourhood can be broken up into a number of cliques. A

clique determines the arguments for the potential functions which define different Markov

random field models. A clique for a site � must include that site as one of its members and

may contain other sites in the neighbourhood of the site �. The concept of a neighbourhood

system will be expanded upon in the next section.

A random process is said to be Markov if the following condition holds. The conditional

probability function for the label at a site � given the labels of all other sites on � is equal
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0 1 2 3 4

Figure 1.1: 1st order or 4 neighbourhood system and its division into cliques. The shaded
squares represents the site of interest and the white squares represent the neighbouring
sites.

0 1 2 3 4 5 6 7 8

Figure 1.2: 2nd order 8 neighbourhood system and its division into cliques.

to the conditional probability for that label given only the labels in the neighbourhood of

site �. Following the notation of Li’s book [38], this can be written as

� �	��	������ � � �	��	��
�� (1.5)

Equation 1.5 does not mean that the labels of sites not in each others neighbourhood

are independent, but rather that all information about the distribution at a site is given

by its neighbours and no more information can be gained by considering sites outside of

that sites neighbourhood. In other words, correlations may extend far beyond the local

neighbourhood of a site [6].

The conditional distribution of a site gives the probability of possible labels at that site

given the labels at neighbouring sites. It is difficult to specify a Markov random field by

its conditional probability structure as there are highly restrictive consistency conditions

[4]. Fortunately Gibbs distributions provide a way to specify a Markov random field by its

joint probability distribution. The joint probability assigns a probability to each possible



7

configuration 	 on the lattice �. It is the joint probability that is required for the maximum

a posteriori estimation algorithm described in Chapter 6.

1.4 The Gibbs Distribution

Markov random fields and Gibbs distributions are equivalent. The Gibbs distribution of a

Markov random field is just the joint probability of that Markov random field.

Let � �	� be a Gibbs distribution on a lattice �. Then � �	� has a form given by

� �	� � ��� � � �
�
���� (1.6)

where

� �
�
���

�
�
�
���� (1.7)

is a normalizing constant called the partition function. Calculating the partition function

exactly involves normalizing over all possible configurations which is computationally pro-

hibitive for even moderately sized images as the number of possible configurations is given

by �� where � is the number of labels for each site and � is the number of sites on the

lattice. The term Z is sometimes called the free energy of the system.

The energy function ��	� in Equation 1.6 is the sum of clique potential functions,

���	�, over all cliques � on the lattice � as given by Equation 1.8. Configurations with

higher energy have less probability of occurring.

��	� �
�
���

���	� (1.8)

The energy ��	� and the clique potential functions ���	� should be positive for all pos-

sible label configurations, to enable correct normalization of Equation 1.6. This positivity
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constraint can be enforced on clique potential functions by subtracting the minimum value

of the potential function over the domain � from the potential function as shown in Equa-

tion 1.9. This is done for all clique potential functions except for the uniform prior defined

in Equation 3.19 which is defined to be positive for all possible labels.

���	�� ���	��	

����

������ (1.9)

The order of a clique is given by the number of sites in the clique. A first order clique

potential is thus a function of the label at one site. A second order clique potential is a

function of the labels at two sites and is also the lowest order clique potential to convey

contextual information or to model dependence between the labels at neighbouring sites.

The term � in Equation 1.6 is a scalar that represents temperature in physical systems

and will be referred to as the temperature here. As the value of � is increased the distribu-

tion approaches a uniform distribution, for which each configuration has the same proba-

bility. Similarly, as the temperature is lowered the distribution becomes more peaked with

the probability mass concentrating at the most likely configurations. The temperature term

� is prominent in the simulated annealing optimization algorithm where the search strat-

egy involves sampling the same distribution at different temperatures [45]. The simulated

annealing algorithm will be further discussed in Chapter 2.

The following proof that a Gibbs distribution is equivalent to a Markov random field is

taken from Li [38]. Consider the conditional probability for the label at a site � given the

labels at all other sites on �

� �	��	������ � � �	�� 	������

� �	������
�

� �	��
� ����

� �	 	�
(1.10)

where 	 	 � �	�� � � � � 	���� 	
	
� � � � � � 	�� is any configuration which agrees with 	 at all sites

except possibly at �. The notation �  ��� indicates the set of all sites on the lattice �
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excluding site �. Writing out � �	� � ��� � ����� 	���� using Equation 1.6 and 1.8 gives

� �	��	������ � �
�

��� 	�����
� ��
�

�
��� 	���

��
� (1.11)

Divide � into two sets � and � with � consisting of cliques containing site � and � con-

sisting of cliques not containing site �. Then Equation 1.11 can be written as

� �	��	������ � ��
�

��� 	�������
�

��� 	������
� ��
������� 	��� �����

�
��� 	���

���� � (1.12)

Because ���	� � ���	
	� for any clique � that does not contain site �, �

�
��� 	���� can-

cels from the numerator and denominator. Therefore, this probability depends only on the

potentials of the cliques containing site �.

� �	��	������ � �
�

��� 	�����
� ��
�

�
��� 	��� ��

(1.13)

This proves that a Gibbs random field is a Markov random field where the neighbourhood

of � is determined by those clique potential functions that include site �. Thus if a site � is

a neighbour of site �, site � is also a neighbour of site �. This can be written as, if � 
 �


then � 
 ��.

The numerator of Equation 1.13 is the potential of the configuration at the site while the

denominator is the normalizing factor taken over all possible labels for that site. Equation

1.13 also tells us how to calculate the conditional probability densities of the equivalent

Markov random field from a Gibbs distribution.

1.5 The Multi-level Logistic Model

This section uses the multi-level logistic (MLL) model as an example of a MRF model

[26]. The primary use of the multi-level logistic model is for modelling the distribution of
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regions although it can also be used to model simple textures. Samples from MLL models

are shown in Figure 1.3.

Different MRFs are realized by the choice of potential functions and the neighbour-

hoods over which they act. The potential functions for the MLL model can be defined as

follows. The potential for each site is the sum of the contributions from a single site clique

and those pairwise cliques that involve the site. The potential of a single site clique is a

function of the label at that site.

���	�� �

�������
������

�� if 	� � ��

�� if 	� � ��

�� if 	� � ��

�� if 	� � ��

(1.14)

The potential of single site cliques in a Markov random field should be related to the relative

frequency or probability of each label. Assuming the following values for the probability

of each label,

� �	� � ��� � ���

� �	� � ��� � ��

� �	� � ��� � ���

� �	� � ��� � ����

(1.15)

the probability for each label can be written in the form of a Gibbs potential function.

� �	� � ��� � 
���	���

� �	� � ��� � 
���	���

� �	� � ��� � 
���	���

� �	� � ��� � 
���	���

(1.16)

Thus for a site �, with the probability for label �� given by � ���� the ��� order clique po-

tential function is given by ���	� � ��� �  �
�� �����. This shows that the probability of

every label must be greater than zero for the Gibbs distribution to be defined as �
��� is not
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defined. If information about the relative frequencies of labels is not available a uniform

distribution should be used where the probability of each label is the same. This choice

is motivated by the principle of maximum entropy that states that when information about

a distribution is incomplete the distribution with maximum entropy that agrees with the

incomplete data should be chosen [10],[31]. When no data is available an uninformative

or uniform distribution should be chosen that assigns the same probability to each possible

configuration. Entropy is a measure of the amount of uncertainty in a probability distri-

bution [31]. A uniform distribution is said to have maximum entropy and a distribution in

which one event occurs with certainty is a minimum entropy distribution.

Single site cliques can only convey information on the relative frequency of different la-

bels and cannot convey contextual information. To convey contextual information, cliques

with two or more sites are needed.

When defining models the clique potential function for a clique will be given as the

sum of all the clique potential functions on that clique. If conditional probabilities need

to be calculated this notation is more natural, although care must be taken not to double

count pairwise clique potentials when calculating the joint probability of the random field.

This notation requires another constraint on the definition of MRF models, that there must

be symmetry around the site being considered. Thus for a 1st order neighbourhood sys-

tem only two pairwise clique potential functions need to be defined. One for the vertically

aligned cliques and one for the horizontally aligned cliques. In terms of Figure 1.1 the po-

tential functions for cliques 1 and 3 and cliques 2 and 4 must be the same. This notation can

only be used for homogenous Markov random fields for which clique potential functions

do not change with the position of a site on the lattice �.

The potential function for pairwise cliques in the MLL model consisting of the site �
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and one of its neighbours can be defined as follows.

��	�� 	
	
�� �

�
�� if sites on clique ��� �	� have the same label

�� otherwise
(1.17)

Although this is the form in which the MLL potential function is usually defined it does

introduce negative energy components and can be restated as

��	�� 	
	
�� �

�
�� if sites on clique ��� �	� have the same label

� otherwise�
(1.18)

The form of the MLL model has now been defined. By changing the value of the � and

� parameters, different distributions can be modelled. Figure 1.3 shows samples taken

from MLL distributions for different parameter values. A uniform distribution was used

for the ��� order cliques while all the second order cliques, in the � neighbourhood model

used, share the same potential function defined by the parameter �. The images were

simulated using one hundred iterations of a Metropolis sampler [44]. Image (a) and (b)

were initialized from a constant flat image while (c) and (d) were initialized from random

independent samples. This was done because for � larger than ��� the Markov random

field is close to freezing and therefore strongly favours uniform images. If the image were

initialized using a uniform image, the model would not be able to escape from this low

energy configuration.

The images in Figure 1.3 can be interpreted as being generated by the same distribution

at different temperatures. This is because the energy of each model is linearly related to the

others. If image (d) is nominally assigned the temperature � � �, then the temperature of

image (a) is � � �, the temperature of image (b) is � � � and the temperature of image (c)

is given by � � ���.

Boundary sites may be dealt with in a number of ways. The simplest approach is to

hold boundary sites constant as then all sites have the same clique configuration. Another
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approach is to adopt toroidal periodicity where the lattice is wrapped into the shape of a

doughnut [42]. The approach adopted in this work was to define the energy function ��	�

at the boundary sites using only those cliques that were defined on the lattice. The effect

of this is that the sites on the boundary of the lattice tend to have a larger variance as their

interaction with the lattice is weaker than for interior sites.

(a) (b)

(c) (d)

Figure 1.3: Sample images from the MLL model for different values of �, (a) � � ��� (b)
� � �� (c) � � ��� (d) � � ���
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1.6 Some Underlying Assumptions

The underlying assumption of using Markov random fields is that an image can be treated

as a sample from a random process. The validity of this assumption is not obvious for

many images. In practice there are often statistical relationships between labels that can

be modelled. Even for complex images like Figure 1.4 (a) it may be reasonable to model

regions like those in Figure 1.4 (b) using MRFs. This assumption must be made in order to

use sample images to train MRF models.

It is not strictly necessary to assume that an image can be treated as a sample from a

random process as the role of the prior distribution is to represent our incomplete knowl-

edge about the parameters of interest. It is not necessary that these parameters be samples

from a random process. The prior distribution need not represent any physical property of

the parameters, but only the state our knowledge about the parameters [31].

For example, ‘To assign equal probabilities to two events is not in any way an assertion

that they must occur equally often in any “random experiment”’ [31]. Rather it is a way to

show uncertainty or lack of knowledge about the events.

Rejecting the assumption that an image can be treated as a sample from a random pro-

cess leaves one with the thorny problem of how to define the a priori distribution without

recourse to training images and so is not done here.

An important assumption that is often made when using Markov random fields is that

of homogeneity. This implies that the model does not change with position on the lattice.

This assumption is important as is allows inferences to be made about the model by greatly

reducing the dimensionality of the model.

The validity of this assumption is not obvious for many images. For complex images

like Figure 1.4 (a) it may be necessary to model different regions like those in Figure 1.4
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(a) (b)

Figure 1.4: A complex image for which the assumption of homogeneity may not be valid.
Image (b) shows details from image (a).

(b) using different MRF models.

The assumptions that a set of images can be treated as being homogeneous over their

extent and that a set of images can be treated as being sampled from a random process

becomes more reasonable when the modality for gathering image data does not change and

the scale and subject matter of the images are similar. For example, a set of tomographic

scans taken of the same region in different patients, as shown in Figure 1.5, may be expected

to share statistical characteristics.

By making the assumption that an image 	 was generated by a random process it be-

comes reasonable to ask what the probability of that image is. This cannot be answered

unless the probability distribution characterizing the random process is known. Markov

random fields provide a parametric approach to model these probability distributions.

Having a statistical model of an image allows better inferences to be made about the

image and the underlying scene. These inferences may involve image analysis or they may

involve inferences about restoration of the true scene. Bayes’ theorem tells us how to make
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Figure 1.5: Details from tomographic scans of the torso region

these inferences as is discussed in Chapter 4.

1.7 Optimality

Using Markov random fields, many problems in image processing can be viewed as opti-

mization problems where the aim is to find the estimate that minimizes some cost function.

For Bayesian maximum a posteriori estimation, as discussed in Chapter 4, the aim is to

find the maximum of the a posteriori distribution. The a posteriori distribution combines

the likelihood distribution and the a priori distribution. The likelihood distribution relates

the measured data to the solution space. The a priori distribution contains prior information

about possible solutions. This distribution will be modelled as a Gibbs distribution or

Markov random field.

Rather than solve the problem in this form, it is often reasonable to take the negative

log of the a posteriori distribution as the cost function to be minimized. The negative log
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of a distribution is known as the energy of the distribution.

If the cost function is strictly convex there exists only one minimum to the cost func-

tion. In this case, so called greedy optimization methods can be used that decrease the

value of the cost function with each iteration until a minimum is reached. If the potential

functions contributing to the energy are all convex functions, and the energy of the likeli-

hood distribution is convex, then the energy of the a posteriori distribution will also be a

convex function. Thus using convex potential functions allows the global maximum of the

a posteriori distribution to be found efficiently.

A function � � �� � � is convex if the following inequality holds for � � � � � and

the domain of � is a convex set

����� � �� ����� � ������ � �� ������� (1.19)

for all points �� and �� in the domain of � [47]. A function is strictly convex if strict

inequality holds whenever � �� �. Graphically this inequality can be explained using Figure

1.6. If all chords between two points on the graph lie above the graph, then the function

is convex. Figure 1.7 shows a non-convex function for which chords can be found that

intersect the function.

If the cost function is not convex it may have local minima. This makes finding the

minimum of the function much more difficult than if the function was convex, especially

in high dimensional spaces. Methods that converge to the global minimum in the case of a

convex function, may only converge to a local minima giving suboptimal results.

In practice, how the problem is modelled is often decided by the designer rather than

prescribed by the physical process. The designer must decide which effects to model, for

instance, Compton scatter and the effects of polychromatic X-ray sources are not taken

into account in most CT reconstruction algorithms. This approach may be well justified if
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Figure 1.6: Graph of a convex function ����. The line segment between any two points on
the graph stays above the graph.

these processes do not dominate the solution as they increase the computational complexity

of the problem. Similarly, when it comes to modelling the a priori distribution of labels,

convex models may be favoured due to the stability of convex models, even when non-

convex models could better model the distribution. It should therefore be remembered that

optimal solutions are only optimal in the sense of minimizing some cost function rather

than being the best possible solution of the problem. Similarly, suboptimal solutions are

local minima of the cost function. If the cost function is well chosen the minimum of the

cost function should provide good quality estimates of the parameters in question.

1.8 Summary

The problem tackled in this dissertation is that of computer tomography where the mea-

surement data is insufficient to make an estimate of sufficient quality. The approach inves-

tigated makes use of the concept of a priori information, that is, information known apart

from measurement data. The vehicle used to capture and use this information is the Markov

random field. This chapter introduced a number of concepts needed to understand Markov
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Figure 1.7: Graph of a non-convex function ����. Line segments between two points on
the graph can be found such that the line segment intersects the graph.

random fields, the most important of which is the equivalence between Markov random

fields and Gibbs distributions as this result is used throughout the remaining chapters.



Chapter 2

A History of Markov Random Fields

The aim of this chapter is to provide some coverage of the development and use of Markov

random field theory in image processing with a focus on image restoration.

2.1 Statistical Mechanics

Much of the theory of Markov random fields was developed in the field of statistical me-

chanics. Statistical mechanics studies the macroscopic behaviour of bodies made up of

microscopic particles such as atoms and molecules. Each particle is characterized by its

state while the laws governing the interaction between particles at a microscopic level de-

termine the macroscopic behaviour of the system.

An early example of a MRF model was the Ising model developed to study ferromag-

netism in which particles can have one of two states depending on their polarization. In

fact, this model has been used in image processing to model binary images [38].

Concepts such as Gibbs distributions, the temperature of a distribution, equilibrium and

entropy have all found use in statistical mechanics and thermodynamics. The temperature

of a Gibbs distribution plays a major role in the behaviour of the system. As the temperature

20
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of a system is increased all configurations become equally likely and the entropy of the

system is said to be high. At low temperatures the Gibbs distribution collapses, restricting

the system to low energy configurations. The distribution is therefore peaked around the

configurations in the state space with low energy. The effect of changing the temperature of

a distribution is illustrated in Figure 2.1. The temperature of a distribution may be changed

by manipulating it into the form a Gibbs distribution, as defined in Equation 1.6, from

where it is a simple matter to change the temperature of the distribution.

(a) (b)

(c) (d)

Figure 2.1: Figure shows the effect of temperature on the shape of a distribution. For image
(a) � � �, image (b) � � ��, image (c) � � ��� and image (d) � � ���

The simulated annealing optimization algorithm is another example where the inspira-

tion of the physical world is evident. This algorithm finds low energy configurations by

gradually lowering the temperature of the distribution being sampled. By starting at a high

temperature and gradually lowering the temperature T, the algorithm is able to escape from
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local minima [45]. The gradual lowering of temperature is designed to ensure that the sys-

tem stays in equilibrium and allows very low energy configurations to be found. This is

analogous to the process of annealing metal in which the metal is slowly cooled to make

the metal less brittle. Slow cooling allows large crystals to form which corresponds to a

low energy state.

The simulated annealing algorithm was developed by Kirkpatrick [45] and was applied

to the travelling salesman problem as well as circuit layout design problems. Geman and

Geman were the first to apply it to the problem of image restoration in their seminal paper

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images [18].

2.2 Setting Out The Framework

The paper of Geman and Geman placed the use of MRFs in image processing on a firm

footing by presenting a coherent way to solve image processing problems. The problem

of image restoration was viewed as one of combinatorial optimization where the aim was

to find the discrete labelling for a set of sites that minimized their cost function given a

degraded image. Simulated annealing was presented as a method to solve the problem of

image restoration in an optimal way.

Unfortunately the method of simulated annealing is computationally very expensive.

This is because the temperature must be lowered very slowly at low temperatures to ensure

convergence to a global minimum [18].

The paper introduced the Gibbs sampler as a means of sampling Gibbs distributions,

as is required by the simulated annealing algorithm. The Gibbs sampler has a number of

applications, one being that it enables image textures to be synthesized from a Markov ran-

dom field model. Another important application is in Monte Carlo Markov Chain (MCMC)
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methods of Bayesian estimation [7],[28].

The MRF model used in the paper of Geman and Geman was defined on a dual lattice

system with an intensity process and an edge process. The edge process prevented smooth-

ing across edge boundaries while smoothness priors were applied on the intensity process

where edge processes were absent. The edge process worked by replacing the energy of the

intensity process with a penalty term for sites corresponding to edges, with the magnitude

of the penalty being less than the energy of the intensity process. This dual lattice model

has become outdated and has been largely replaced by simpler single lattice MRFs like the

Tukey potential function, see Equation 3.14.

2.3 Local Optimization

Finding globally optimal solutions remains prohibitively expensive for many image pro-

cessing problems. In these cases it may be possible to obtain suboptimal estimates of

sufficient quality much more quickly than the globally optimal solution. These methods

search for local minima by iteratively reducing the cost of the estimate.

Besag was one of the first to present a method for finding suboptimal solutions with

a method called iterated conditional modes (ICM) [6]. ICM works by updating the label

at one site at time. The new label for a site is chosen so as to maximize the conditional

probability for that site given the observed data and the labels at all other sites. This iterative

method converges to a local minimum rather than a global minimum. Besag justified this

approach by arguing that the MRF models modelled the statistical distribution at a local

level and not at the global level and thus the long range statistical correlations that MRFs

can introduce were in many cases undesirable. It should be pointed out that if the cost

function is convex, these methods will find the globally optimal solution.
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2.4 The Choice of MRF Model

The definition of Gibbs random fields allows for a wide variety of models to be generated.

A number of different models have been suggested in the literature, some of which are pre-

sented in Chapter 3. Gaussian models were one of the first to be used for image processing.

Gaussian models have a limited ability to model edges and this led to the adoption of dis-

continuity adaptive models. Many of these discontinuity adaptive models use non-convex

potential functions making optimization difficult. This motivated the design of models us-

ing convex potential functions that are less difficult to solve while also producing more

stable results.

The choice of MRF model also requires a neighbourhood system to be defined. In the

past the neighbourhood system has often been limited to a 4 or 8 neighbourhood model

for computational reasons. More recently models using much larger footprints have been

developed using pyramid and wavelet decompositions [49]. The Frame model is one such

example of this approach [48].

2.5 Parameter Estimation

Most Markov random field models have some parameters that change the distribution of

the model. Parameter estimation is the task of selecting the parameters in a model to fit the

data.

It is desirable that the a priori model accurately model the statistical distribution of the

intensity levels when making inferences. Little has been done to address the problem of

parameter estimation. It seems that in the case of image restoration, parameters are often

chosen by the user. It may be argued that the MRF model is not a realistic model of the
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random process generating the image, making accurate estimation of the MRF parameters

a moot point. If this view is taken, the model may be seen merely as a means of adding

regularization in image restoration problems, rather than a means of characterizing a ran-

dom process that generated the image. Another reason why the user may estimate the MRF

model parameters may be the unavailability of sample images on which to train the MRF

models.

An interesting feature of the statistical framework developed in Chapter 4 for image

restoration is that the a priori model does not change with the type and degree of degra-

dation to the image. This is because the a priori model stores prior information about

possible solutions which is completely independent of the measurement process. This fea-

ture is very convenient as the same model can be used in different restoration problems. It

is however alarming that these models can be applied blindly to image restoration problems

without taking into account how much the result is determined by the data and how much

it is determined by the a priori model. This can be particulary serious when the model is

not accurate as artifacts may be introduced by the prior model. For example, it may be

reasonable to use an a priori model in CT reconstruction to reduce noise in the estimate.

However using the same model in the case of limited angle tomography which is highly

ill-posed may lead to incorrect estimates.

The obvious approach to parameter estimation if sample images are available is to

choose the model parameters to maximize the likelihood of the sample data as is shown

below

�
 � arg���
�
� �	 ��� (2.1)

or

�
 � arg���
�

�

�
� � �

�
���� (2.2)
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where the parameter vector � is chosen so as to maximize the probability of the sample im-

age 	 . However due to the high dimensionality of the configuration space, the normalizing

term Z called the partition function cannot be calculated directly.

An alternative approach is to maximize a function called the pseudo likelihood (PL) as

defined by Besag [6]. This approach calculates the conditional probability of each label

given its neighbours and calculates the PL as the product of these conditional probabilities.

This is the most widely adopted method as it has been shown to give good consistency and

convergence properties as the number of sites increases [32]. It is very efficient when the

dimension of labels M is low.

Images found routinely in medical applications often have �� intensity levels with

�� � �� sites. The PL method becomes more computationally expensive for images

with a large number of intensity levels as the conditional density at each site needs to be

normalized over the � possible labels. Another complication is that for images of this

type with large configuration spaces the probability of a single configuration is very small

leading to potential problems associated with machine accuracy.

Parameter estimation remains one of the most difficult obstacles to using MRFs. This

is especially difficult if sample images are degraded or there are no sample images and the

parameters need to be estimated directly from the observed data. Parameter estimation will

be discussed further in Chapter 5.

2.6 Medical Imaging

In medical imaging the adoption of MRF models has been slow due to the heavy compu-

tational requirements of MRFs. In a medical environment it is usually possible to collect

enough data measurements to ensure a well posed problem. However, there are application
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where MRFs have produced results of much better quality than classical methods. These

include tomography applications like PET and SPECT where low photon counts make the

use of accurate statistical models and a priori information desirable [19][14]. MRFs have

also been used in the so called limited angle tomography problem in which data is not

available over the full angular range of ��� degrees [2].

While objection can be made to the use of MRFs for image restoration in critical envi-

ronments because incorrect a priori information could potentially produce image artifacts,

there seems to be no such obstacles to the use of MRFs for data analysis or Computer

Aided Diagnosis (CAD) where the use of prior information is unavoidable. Here MRFs

could conceivably be applied to problems like the segmentation of CT data and the detec-

tion of tumours. CAD is becoming more important with the large amounts of data produced

by modern diagnostic equipment as it is seldom possible for a radiologist or doctor to view

all information at once making it possible to miss diagnostic information.

2.7 Present and Future Development

Future work looks set to follow the same pattern of developing more specialized models

for modelling images in specific applications. As computer systems continue to get faster

the adoption of MRFs should continue apace.

In addition to the large number of papers that have been published on MRFs there

are a number of books on the subject although not all of them are readily available. Li’s

recent book provides a particularly good introduction to the varied uses of MRFs in image

processing [38].



Chapter 3

Some MRF Models

In the first chapter the multi-level logistic model was presented. This model treated the

labels as unordered and is thus not suitable for modelling images with a large number of

intensity levels. In this chapter other MRFs will be presented that are more suitable for

modelling images with a large number of intensity levels. These models treat the labels

as ordered and penalize differences in the labels of neighbouring sites. These models are

defined by the choice of continuous potential functions.

The input arguments for a potential function are the labels associated with the sites

that fall within the clique on which the function is defined. Pairwise cliques, having two

sites, are the smallest cliques to convey contextual information. Models with higher order

cliques can potentially model more complex interactions between labels than models using

only pairwise cliques. The models discussed in this chapter use only single and pairwise

cliques.

28



29

3.1 The Auto-Normal or Gaussian Model

The auto-normal model of Besag is a type of Gaussian model [4]. The Gaussian model is

defined for a continuous label set � by its mean and covariance terms. Its biggest advantage

is that the normalizing constant can be evaluated in closed form. This contributes to the

computational efficiency of this model. The covariance parameters defining the model can

also be efficiently calculated [5].

The conditional probability density function for the label at a site given the labels of the

neighbouring sites is given by

��	��	��
� �

��
���

�
�

���
�������

�
�����

����� �������� ��
�

� (3.1)

The mean or expected value of the conditional distribution for 	�, the label at site �, is

given by

��	��	��
� � �� 

�
�����

������	��  ���� (3.2)

where ����� are scalar values. The variance is given by

var�	��	��
� � ��� (3.3)

When the mean value of each site is zero the conditional mean is just a weighted sum of

the neighbouring pixels. The joint probability for the random field is a Gibbs distribution

with the form

��	� � ������
�
�
�� � �� � ������ ������

��� (3.4)

where 	 is the labelling of the image in vector form, � is a � � � vector of the condi-

tional means, and B is the � � � interaction matrix. B must be symmetric and positive

definite for the model to be a valid probability density function. The single site and pairwise
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clique potential functions for the Gaussian model are

� �	�� � �	�  ����!�� (3.5)

and

� �	�� 	��� � ������	�  ����	��  ����!��� (3.6)

The auto-normal or Gaussian model is not investigated here for a number of reasons.

The mean values, ��, are unknown and may be expected to change from image to image.

Assuming the mean values are zero may be reasonable for some applications, but not for

most image processing applications in which only positive pixel values are allowed.

What would be more convenient is a model that did not require estimates of the under-

lying mean values, but rather penalized differences in the value of labels at neighbouring

sites, thus favouring smooth solutions.

3.2 Smoothness Priors

Smoothness priors are prior distributions that discourage large differences in the labels

of neighbouring sites by assigning a low probability to these configurations. To do this,

some metric is needed to measure the similarity of labels. If the labels are ordered then a

difference operator can be defined as shown in Equation 3.7.

In practice, most images display some degree of smoothness. Smoothness priors char-

acterize the smoothness or continuity of an image. Smoothness priors are usually defined

using pairwise clique potential functions of the form given in Equation 3.7

���	�� 	��� � ��	�  	��� �	 
 �� (3.7)
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where the function ��"� is even so that

��"� � ��"� (3.8)

and ��"� is nondecreasing over the range ������ [38].

For images that are smooth, without sharp changes in intensity or discontinuities a

quadratic based potential function is appropriate where � in Equation 3.9 is a scalar con-

stant.

� �	�� 	��� � ������	�  	���� (3.9)

The conditional probability for the label at a site � is given by

��	��	��
� �

�

�
�

�
�����

�������������
�

� (3.10)

Many images do not fall into this category, exhibiting discontinuities and sharp edges.

Quadratic based potential functions produce over smooth results in these cases as large

changes in intensity are too heavily penalized. The obvious approach is to use potential

functions that make allowance for discontinuities in the image. It turns out that there are a

number of potential functions that do just that.

3.3 Discontinuity Adaptive Models

Discontinuity adaptive models are designed to allow edges to form while still providing

smoothing away from the edges. Edges can be seen as the boundary between approxi-

mately flat regions. Sites falling on edges in the image are therefore classed as outliers and

smoothing is not performed on them. Below are four examples of potential functions that

can be used in discontinuity adaptive models.
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The last potential function is known as the Tukey potential function and originates from

the field of robust statistics [38].

The weakness of these potential functions is that they are not convex over their whole

domain. The result of this is that it can be difficult to find globally optimal solutions to

problems using them as gradient methods cannot be used to find optimal solutions. Another

weakness of these models is that small changes in the data can lead to large changes in the

result. This is highly undesirable where the robustness of the estimation is important. Often

more efficient optimization methods can be used to find global minima if convex potential

functions are used.

3.4 Convex Discontinuity Adaptive Models

Convex potential functions allow efficient nonlinear optimization methods to be used in

place of methods like simulated annealing which are very computationally expensive. They

also help to stabilize the solution of problems.
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Figure 3.1: Graph of some non-convex potential functions.

Like the Tukey potential function the Huber potential function, see [11] and the refer-

ences within, also originates from robust statistics and can be written as follows

�
�"� �

�
#�"

� �"� � #�
#��#��"�  #��� �"� $ #�

(3.15)

For values of " less than #� the Huber function is quadratic but for values larger that #� the

function is linear. The generalized Gaussian model of Bouman and Sauer [11] is given by

���"� � #��"��� (3.16)

where ��� � #� � ��. For #� �  the potential function is quadratic, as #� is decreased

the function becomes less strongly convex. For #� � � the function is no longer strictly

convex. This can make optimization more difficult as there may be many global optima to

the cost function rather than a unique optimal solution.



34

class ��"� �	�"� �		�"�

5
#�"

�

#��#��"�  #���
#�"

#�#� sgn�"�
#� �"� � #�
� �"� $ #�

6 #��"��� #�#��"����� sgn�"� #�#��#�  ���"����� sgn�"�

7 #� �
������"!#��� #�#
��
� ��
��"!#�� #�#

��
� �� ��
���"!#���

Table 3.1: The first and second derivatives of some convex potential functions

Another convex potential function, attributed to Green [24], is given by

���"� � #� �
������"!#���� (3.17)

Table 3.1 gives the first and second derivatives of the convex potential functions which

are required by the maximum a posteriori reconstruction algorithm used in Chapter 6.

Figure 3.2 gives the graph of the different convex potential functions and their derivatives.

The convex potential functions �
� �� and �� each have two free parameters, #� and #�.

When training different models to fit sample images, as discussed in Chapter 5, setting the

range of allowed values for each parameter can be difficult. This is because the magnitude

of some potential functions can change by orders of magnitude with the choice of the free

parameters. This can lead to problems of numerical accuracy. The approach used here is to

normalize each potential function as shown by Equation 3.18. This normalization must be

repeated every time #� is changed and is performed after the adjustment of Equation 1.9.

���"� � ��"�!���
����

�����
��
���

(3.18)
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Figure 3.2: Graph of different convex potential functions and their derivatives.
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3.5 Single Site Clique Potential Functions

Although the maximum a posteriori reconstruction algorithm in Chapter 6 does not require

single site clique potential functions to be defined, it is a good idea to incorporate a single

site potential function into the model when training. A single site clique potential func-

tion can be used to ensure that each configuration has a non-zero probability. Single site

clique potential functions cannot convey contextual information, but only information on

the relative frequency of each label.

The simplest single site clique potential function is the uniform prior. This poten-

tial function assigns the same probability to each label. It is however useful for pseudo–

likelihood parameter estimation as it ensures that all configurations have a non-zero proba-

bility and because it introduces another degree of freedom into the model which allows the

temperature of the distribution to be set. The uniform prior is given by

���"� � #� (3.19)

where #� is a positive constant. Equation 3.20 gives a single site clique potential function

that can be used to favour labels with either small or large values.

���"� � #�"� (3.20)

This potential function is more likely to find application modelling zero mean processes

than for analyzing images. While this potential function introduces a bias in favour of large

or small values it is a convex potential function and may therefore be used with gradient

methods of image restoration.

The most general single-site clique potential assigns a weight proportional to the rela-

tive frequency of each label as was shown in section 1.5. The relative frequency of different
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labels can change significantly from image to image. This makes obtaining this informa-

tion & �'�('� difficult. This prior may be non-convex in which case it is not suitable for use

by the convex reconstruction algorithm in Chapter 6.

3.6 Summary

In this chapter a number of potential functions have been presented that can be used to

form an & �'�('� model. The most interesting of which for image restoration are the con-

vex potential functions that are chosen so as not to over smooth edges. In later chapters

estimating the parameters #� and #� will be discussed. The subscripts on the potential func-

tions given in this chapter denote the class of the potential function and are maintained in

later chapters.



Chapter 4

From Classical to Bayesian Estimation

This chapter introduces some concepts from estimation theory and looks at some of the

assumptions behind using MRFs in image processing.

4.1 Introduction

In the introductory chapter, it was stated that many problems in image processing can

be abstracted to one of estimating the labelling 	 of a set of sites denoted by �. This

chapter deals with how one makes inferences about the labelling 	 from the measurement

data %. Two approaches are discussed, classical estimation theory and Bayesian theory.

For an introduction to statistical estimation theory see [34]. For a discussion of Bayesian

estimation see [31].

4.2 Classical Estimation

To make estimates of a parameter or set of parameters one needs to have a set of data

measurements and an observation model with which to interpret the measurement data.

The observation model can be represented in the form of a probability density distribution.

38
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The parameters are considered to be deterministic but unknown. The measurements are

corrupted by random noise. This introduces uncertainty into the observational model and

allows a probabilistic approach to be taken. This model is known as the likelihood function.

The likelihood function � �%�	� is the likelihood of measuring the data % for the labelling

	 .

Once a measurement or observation model has been determined the goal is to estimate

the labelling 	 from the probability density distribution. Just how this is done depends on

the estimator used. Minimum variance unbiased estimators are generally favoured if they

can be calculated. By definition minimum variance estimators have the smallest average

mean square error from the true solution.

4.2.1 Maximum Likelihood Estimation

The maximum likelihood (ML) estimate is given by the mode or location of the peak of the

likelihood distribution. This estimate is not optimal in the sense of being a minimum vari-

ance estimator although it is a popular choice of estimator due to the fact that the solution

is always defined and the solution is often feasible to calculate. The maximum likelihood

estimator gives the estimate, 	 
, that maximizes the probability of the measurement data.

	 
 � ������
���

� �%�	� (4.1)

If there is sufficient data the ML estimator gives good results. However for problems

with insufficient data which are known as ill-posed, the maximum likelihood estimator has

a tendency to over-fit the solution to the data leading to poor estimates. Uncertainty in the

data measurements is amplified in the solution as the ML estimator has no regularization.

The ML estimator makes no use of a priori information.
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4.3 Bayesian Estimation

In classical estimation the parameters are assumed to be deterministic but unknown [34]. In

Bayesian estimation the parameters may be a realization or sample from a random process

that can be represented by a probability density function. In this case the a priori distribu-

tion may model the random process generating the samples. It is however not necessary for

Bayesian estimation that the parameters being estimated be samples from a random pro-

cess. In this case the a priori distribution represents the state of our incomplete knowledge

about the parameters [31].

The a priori probability density function contains information about desirable solu-

tions. This information does not depend on the observed data and is known prior to the

samples being taken. Bayesian theory describes how this information can be used to ob-

tain better solutions. It is a fundamental principle that incorporating more information into

an estimator will improve the quality of the estimator. Bayes’ theorem describes how to

combine the likelihood function and the a priori probability density function in an optimal

manner to form an a posteriori distribution containing all information about the solution.

One of difficulties of using Bayesian estimation is to obtain the prior distribution. In

other words, one needs to estimate the prior probability density function before one can use

it obtain the a posteriori distribution. MRFs may be used to model the a priori distribu-

tion. Once the form of the model has been selected there are usually some parameters that

need to be estimated to fully define the probability density function. This problem can be

approached in two ways: one can treat the parameters as missing data and use expectation

maximization techniques to estimate the parameters at the same time as one estimates the

solution [3][52], or one can estimate the parameters from a training set of sample images.

The latter approach is discussed in Chapter 5.
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The posterior probability distribution can be calculated using Bayes’ theorem as follows

� �	 �%� � � �%�	�� �	�
��%�

(4.2)

where � �%�	� is the conditional probability of the observations %, ��	� is the a priori

probability of the labelling 	 and ��%� is the prior probability of making the observation %.

In this work ��%� will be treated as a constant.

4.3.1 Maximum A Posteriori Estimation

Once the a posteriori distribution has been determined, various estimates of the the la-

belling can be made. The maximum a posteriori (MAP) estimate is given by the mode of

the a posteriori distribution.

	 
 � ������
���

� �	 �%� (4.3)

The quality of Bayesian estimates is dependant on the quality of the information stored

in the a priori model. If the a priori model is valid, the MAP estimator will display better

performance than the ML estimator.

Bayesian estimation allows all available information to be used in making an estimate,

and thus has the potential to produce better results than classical estimation. If the prob-

lem is well posed in the sense that the data specifies a unique solution the classical and

Bayesian estimates should coincide. In cases where the solution is not well posed the a

priori distribution may add valuable information needed to make a useful estimate.

So far MRFs have been presented as a means to model the a priori distribution of a

set of labels. In some cases MRFs may also be used to model the likelihood function. For

example, a number of MRFs could be used to model different textures in an image. These
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could be used to obtain a likelihood function to segment an image into regions of different

texture. Another MRF could be used to model the a priori distribution of these regions in

the image, see [50] for an example of this approach.

4.4 Summary

In this chapter, Bayes’ theorem has been presented as the optimal way to update a probabil-

ity density function to incorporate all available information about a set of parameters. MAP

estimation was then presented as a method of inference for estimating a set of parameters

from an a posteriori distribution.



Chapter 5

Estimating Parameters of Markov
Random Fields

In this chapter a number of ways to estimate the parameters of a Markov random field

are discussed. Before this can be done the form of the MRF model needs to selected.

This involves selecting the neighbourhood structure and the form of the clique potential

functions.

If the a priori model is not estimated from a set of sample images but is instead set by

a user, one cannot claim to be systematically approaching the problem and the approach

loses its advantage over other ad hoc methods where some a priori knowledge is implicit

in the method.

This chapter is therefore of primary importance if a systematic approach is to be taken to

image processing in general and computer tomography reconstruction in particular. With-

out methods of fitting MRF models to a set of data, different models cannot be compared

and the question of whether it is reasonable to adopt a Bayesian approach cannot be tackled.

Parameter estimation remains one of the harder problems associated with MRFs.
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5.1 Introduction

When Markov random field models are used in image processing the underlying assump-

tion is that the images of interest can be modelled by a random process. This random pro-

cess is characterized by its probability distribution which in most cases will be unknown.

Markov random field models provide parametric models of these probability distributions.

By approximating the probability distribution using a Markov random field model, the

probability distribution can be estimated from sample images. Thus the probability dis-

tribution can be estimated by estimating the free parameters of the Markov random field

model.

One of the assumptions made when using MRFs is that the Markov property holds for

some neighbourhood structure � . Finding the neighbourhood structure cannot be sep-

arated from the problem of selecting clique potential functions. This is the problem of

model selection. In this chapter it will be assumed that the form of the model has been

previously selected. The form of the Markov model is usually chosen by the user although

one form may allow for a variety of images to be modelled by changing the MRF model

parameters.

The selection of the form of the MRF by the user may be motivated by a number of re-

quirements. These may include computational requirements and modelling requirements,

such as the need to model long range interaction of labels. The adoption of more sophisti-

cated MRF models may require a greater number of sample images from which to estimate

the parameters and may also require more sophisticated methods of parameter estimation

[49].
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5.2 Maximum Likelihood Estimate

Parameter estimation is usually based on the maximum likelihood principle where the MRF

model parameters are estimated so that the distribution defined by the MRF model max-

imizes the probability of the sample images. Searching for the ML estimate of the MRF

parameters usually requires the calculation of the likelihood of the sample images for dif-

ferent parameter values. Unfortunately, this is very computationally expensive. This is

because calculating the likelihood of an image 	 given the MRF parameters � requires the

partition function � to be evaluated. This is usually computationally unfeasible even for

small images with a small number of labels or intensity levels.

One of the weaknesses of the maximum likelihood estimator is that it overfits a model

to a data set if the model has sufficient modelling capacity. It is therefore important that the

model have limited modelling power so that overtraining the model is not a problem. This

will not be a problem for the simple models used here, although as computational power

allows more complex models to be used this may become a consideration.

Given a sample image, 	 , the maximum likelihood estimate of the free parameters, �
,

maximizes the conditional probability, � �	 ���, as shown in Equation 5.1.

�
 � arg���
�
� �	 ��� (5.1)

This is equivalent to maximizing the log-likelihood function

�
 � arg ���
�
�
� �	 ��� (5.2)

that for computational reasons may be favoured over Equation 5.1.

There are a few cases in which closed form solutions exist for the maximum likelihood

estimate, however this not the case in general. The maximum likelihood parameter estimate

for MRFs is generally difficult to obtain.
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5.3 Pseudo-likelihood Estimate

This is probably the most common method of parameter estimation for MRF models. The

method was first proposed by Besag [5]. It calculates the conditional probability for each

site based on its neighbourhood. It then estimates the joint probability of a labelling as the

product of these conditional probabilities as shown in Equation 5.3. The pseudo-likelihood

(PL) estimate only equates to the true likelihood distribution in the trivial case in which the

labels are independent.

The PL is only an approximation to the true likelihood. However, existence, uniqueness

and consistency have been proved for the maximum pseudo-likelihood estimate [32].

�)�	� �
	

������

� �	��	��
� �

	
������

���������
��

����
���������

�
(5.3)

The Pseudo likelihood estimate is then given by

�
�� � arg���
�
�)�	 ���� (5.4)

5.4 The Coding Method

The reason why the PL does not equate with the true likelihood is that the conditional prob-

ability of the label at each site are not independent. The coding method, also introduced by

Besag [4], sidesteps the problem of dependencies between these conditional probabilities

by separating them into codings so that the conditional densities in a coding are indepen-

dent. The joint likelihood of a coding is then taken as the product of conditional densities,

as in the PL method. This method has several weaknesses, firstly, the method does not
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get maximal information from the available data, secondly, it is not obvious how to com-

bine the estimates from different codings in an optimal manner. This method has been

superseded by the PL method.

Although the coding method has been superseded for parameter estimation, the concept

of dividing a lattice into codings has found other applications, like in Gibbs samplers, where

a coding groups the sites that can be updated synchronously in a parallel architecture.

X – X – X –
– X – X – X
X – X – X –
– X – X – X
X – X – X –
– X – X – X

Figure 5.1: A 4 neighbour coding scheme

5.5 The Mean Field Approach

This approach to parameter estimation takes its inspiration from mean field theory in sta-

tistical mechanics. The concept behind this approach is that for a system in equilibrium the

interaction between a label and its neighbours can be modelled as an interaction between

the label and the mean field value.

The mean field approach takes the same form as that of the PL algorithm except that the

neighbouring site labels are replaced by a mean field approximation. This decouples the

conditional densities with the result that the product of the conditional densities is a better

approximation to the likelihood function [16][52].
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Mean field methods differ in the way the mean field values are calculated. The ap-

proach of Geiger and Girosi was to approximate the mean field by iteratively averaging

neighbouring intensity levels [16]. It is not obvious how many times one should iterate this

algorithm. As more iterations are used the mean field diffuses towards a uniform field. This

is likely to be uninformative. There is thus a problem of scale selection when deciding on

a mean field approximation.

The averaging method used by Geiger and Girosi is only valid for Gaussian MRFs

where the expected value can be calculated as the weighted average of the neighbouring

intensity levels.

Another approach to estimating the mean field is the saddle point approximation of

Zhang [52]. This also iteratively calculates the mean field value at a site by solving the

following equation.

*��� �

� �	��

*	�

�����
������

� � (5.5)

where

��� �

� �	�� � ���	�� �
�

���

���	�� + 	
 $� (5.6)

The solution of Equation 5.5 gives the maximum likelihood estimate of a label given its

neighbours and is only an approximation to the conditional mean of the label. For Equation

5.5 to have a unique solution the potential functions must be convex. A more natural

approach is to take the expected value of the conditional distribution of a site given its

neighbours. For images with a large number of intensity levels the expected values could be

approximated using Markov Chain Monte Carlo (MCMC) sampling methods [17][21][22].
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5.6 A Cross Validation Approach

Most image processing algorithms using MRF models do not require the MRF model to be

normalized. It is only when one wants to train models, using the maximum likelihood cri-

terion, that it becomes necessary to normalize MRF models. Cross validation is appealing

as a method for training Markov random fields as it does not require normalization of the

MRF model.

The cross validation procedure can be summarized as follows. Estimate the value of a

label using the conditional probability of the label given its neighbouring labels. Calculate

the error between the label and its estimate. Repeat this procedure for all sites. Calculate

the average error over the complete lattice. The average error constitutes a cost function to

be minimized.

This approach makes use of the assumption that the random process generating the sam-

ple images is stationary in the sense that the properties of the random field over the lattice

do not change with position. This approach may be seen as a cross validation approach, as

the label of each site is left out and estimated from the other labels on the lattice [8].

The label at a site may be estimated from its conditional probability distribution in a

number of ways. Using the mean of the conditional distribution as the estimator of a label

is a reasonable choice as it is the estimator with the lowest variance. However this would be

as computationally expensive as the PL approach. A more computationally efficient choice

would be to use the mode of the conditional distribution otherwise called the ML estimate.

Using this is potentially orders of magnitude faster than using the mean value estimate for

images with a large number of possible labels.
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5.7 Sampling Markov Random Fields

Sampling Markov random fields has a number of applications. The one of primary interest

here is that of generating a set of random images from a known distribution in order to

evaluate the performance of a method of parameter estimation.

A MRF sampler can be used to generate a set of images from a specific distribution

or MRF model. These model parameters can then be estimated using one of the methods

discussed in this chapter. The error between the true values and the estimated values can

then be calculated and the bias and variance of the parameter estimator can be calculated.

A complication with this approach is that the same distribution may be represented by a

number of equivalent Gibbs distributions.

For this and for other applications it is imperative that the sampling method is error

free. One of the major sources of error in many implementations is the use of poor pseudo

random number generators [20]. Often the period of the random number generator is much

too short for the large number of random numbers needed for sampling MRFs.

With the exception of Gaussian MRFs it is generally not possible to sample Markov

random fields in closed form. Therefore iterative methods are used. Two samplers are dis-

cussed here, the Metropolis sampler and the Gibbs sampler. The idea behind using iterative

samplers is that the iterant will converge to samples representative of the distribution.

Both the samplers discussed here sample one site at a time. The conditional density of

the label at a site given the labels at the neighbouring sites is used to update the estimate

of the label at the site. When all the sites have been visited one iteration of the sampler has

been completed.
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5.7.1 The Gibbs Sampler

The Gibbs sampler was first proposed by Geman and Geman [18]. The algorithm can be

summarized as follows:

Algorithm 1 One iteration of the Gibbs sampler

repeat
Select a site � from the set �
Sample the conditional probability density of the label at site � given the labels in the
neighbourhood of site �
Replace the old label with the label just sampled

until all sites in � have been sampled

Implementations of the Gibbs sampler differ in the scheme used to visit each site and

the manner in which the conditional probability densities are sampled.

Provided that enough iterations of the sampler are used, the order of sampling is not

critical to producing valid samples [18].

Visiting sites using a raster scanning pattern may introduced artifacts into the sample

images. A coding scheme may be used to prevent neighbouring sites from being sampled

sequentially.

Figure 5.1 shows a coding scheme that can be used for a 4 neighbourhood model where

all the sites marked with and ’x’ are updated before the sites marked with a ’-’ are sampled.

This pattern of sampling has the advantage that it is easily parallelized as all the sites with

the same mark may be updated at the same time. Other sampling patterns can be used,

including methods that are designed so that the transition probabilities are reversible. This

consideration is important for some methods of Markov chain analysis. These methods

include the random sampling of sites. For a discussion on sampling patterns see [28] or

[44].

The conditional probability distribution can be calculated from the clique potential



52

functions as was shown by Equation 1.13. The conditional probability distribution is a

univariate function and may be sampled in a number of ways. The most general approach

would be to calculate the cumulative distribution and sample the inverse of it using a uni-

form deviate. This method has high setup and memory costs as each possible value of the

label needs to be evaluated to normalize the conditional density.

A less general but often more efficient method is the rejection method [44]. The ad-

vantage of this method is that the conditional distribution needs only be known to a scale

factor.

Let 	��� be the probability function we want to sample and ���� be another probability

density function so that ����� � 	���� 	� 
 �where � is a scalar. The sampling procedure

is given by algorithm 2.

Algorithm 2 Rejection Method

repeat
sample, from �
sample � from ��	���

until � � 	�,�!���,�
accept sample,

The probability of accepting a label in the algorithm is exactly �!�. The closer �

is to unity the more efficient the method becomes. The method does not require that � be

calculated explicitly as only the ratio is important. The difficulty with this method is finding

a function ���� that can be sampled efficiently. The distribution ���� may be constructed

using mixtures of standard distributions like the Gaussian distribution.
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5.7.2 The Metropolis Sampler

To update the current label at site � on a lattice � the ratio of the probability of the current

label and a proposed label is calculated. The proposed label is then accepted with proba-

bility � as shown in algorithm 3. If the proposed label is rejected the current label is kept

[44]. The proposed label 	 	� may be taken from a uniform distribution of the possible labels

although this may result in a large number of proposals being rejected.

Algorithm 3 The Metropolis sampler

generate 	 	�
�� � ��	 	� ��	�
� � �	
��� ������
if random��� �� + � then
	� � 	 	�

end if

5.7.3 Comparing the Gibbs and Metropolis Samplers

It is generally not possible to say the one sampler is categorically better than the other.

Much depends on the task at hand and how each algorithm has been implemented.

The Metropolis sampler is often easier to code and less computationally expensive than

the Gibbs sampler. The other advantage of the Metropolis sampler is that it may be used to

sample a group of sites at a time rather than a single site. This may be of benefit if there

are strong interactions between labels.

The advantage of the Gibbs sampler is that it updates each site at each iteration while

the Metropolis sampler may keep many of the same labels. It could thus argued that fewer

iterations of the Gibbs sampler are needed to produce a sample that can be treated as inde-

pendent from the initial configuration.



Chapter 6

Case Study : Transmission Tomography

In previous chapters the selection and training of MRFs has been discussed. This chapter

forms a case study of how to apply a MRF model to an image processing problem. The

chapter looks at how a MRF model may be used to obtain better image reconstructions in

transmission tomography.

After introducing transmission tomography, the chapter presents the maximum likeli-

hood approach that, while modelling the data measurement process statistically, does not

incorporate any prior information about the reconstruction image. The maximum likeli-

hood (ML) approach is then compared with the maximum a posteriori (MAP) approach

that makes use of prior information.

The emphasis of this chapter will not be on the implementation of the ML and MAP

reconstruction algorithms but rather on the choice of a priori model. Rather than selecting

a model in an ad hoc fashion, different models are trained on sample images from a spiral

CT scanner. Reconstructions from the ML and MAP algorithms are compared to determine

whether the use of prior information leads to better quality reconstructions.

54
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Figure 6.1: LODOX digital X-ray machine and example of an X-ray image

6.1 An Introduction to Tomography

Computer tomography allows internal anatomical detail of a patient to be examined with

minimal danger to the patient. For this reason computer tomography (CT) has revolution-

ized medical practice since the pioneering work of Allan Cormack and Godfrey Hounsfield

who together received the Nobel prize in Physiology or Medicine in 1979 [25].

Computer tomography differs from conventional X-ray scanning in that it allows cross-

sectional views of a patient to be generated. This makes it possible to locate the position

of anatomical structures more accurately than can be done using X-rays. It also allows

small changes in density level to be seen that would be lost in X-ray images. Figure 6.1

shows a digital X-ray machine and a X-ray image. The X-ray image can be thought of

as a projection of the patient’s X-ray density onto an image plane. CT machines use this

projection data, taking X-rays from around the patient to estimate the density at different

spatial positions. Figure 6.2 shows a spiral CT machine and a CT image of the head region.

There are many varieties of tomography. They differ in modality and in application.
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Figure 6.2: CT machine and CT image from a head study

Different modalities measure different physical attributes of the material being imaged. X-

ray computer tomography images the X-ray attenuation coefficient of a material. Magnetic

resonance imaging (MRI) images the resonance response of materials to a strong magnetic

field [1]. Positron Emission Tomography (PET) and Single Photon Emission Tomography

(SPECT) are examples of emission tomography where a radioactive isotope is administered

to the patient. The isotope gives off gamma rays which are detected by a ring of detectors

surrounding the patient. PET and SPECT give functional rather than structural information

about the patient as the isotope concentrates in regions of high metabolic activity [1].

Tomography has also found application in other fields like nondestructive testing, radar

imaging [51], seismic tomography and impedance tomography. Here only transmission

tomography which includes X-ray tomography and the estimation of the X-ray attenuation

map in PET are dealt with.
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6.2 The Analytic Approach to Tomography

The field of computer tomography has reached a mature state of development with com-

mercial machines able to efficiently produce good quality reconstruction images. This

is largely due to efficient reconstruction algorithms based on analytic inversion formulas.

These include the convolution-backprojection algorithm and the direct Fourier inversion

algorithm [39]. The analytic or transform approach places emphasis on understanding the

relationship between the discrete operations specified by the algorithm and the functional

operations expressed by the inversion formula [37][39]. The analytical approach has pro-

duced some very efficient reconstruction algorithms that produce good results within the

controlled environments in which they are used. The analytical approach has also been

used to analyze sampling requirements and tackle the problem of aliasing.

At the heart of the analytical approach is the Fourier slice theorem. This theorem states

that the one dimensional Fourier transform of a projection slice is equal to a slice in the

two dimensional Fourier transform of the image [1].

The attenuation of a mono-energetic X-ray beam through a material with linear attenu-

ation coefficient given by a function 	 is given by



	���%� �


 ��
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-��%- (6.1)

� �

�-	
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�
(6.2)

where -	 is the number of photons emitted at the source of the X-ray beam and -� is the

number of photons detected after passage through the material. This equation shows how

the photon count data can be massaged into a form that resembles ray integrals. The nomen-

clature suggests that -	 and -� are intensity measures rather than photon counts. The dis-

crete nature of the photon count measurements are thus ignored.
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The analytical approach does have some weaknesses: the inversion formulas assume

ideal projection data without noise. Thus the analytical approach cannot lead to statistically

optimal results. If the presence of noise is acknowledged it is assumed to be Gaussian in

nature on the transformed data �
�-	!-�� and dealt with using linear filtering techniques.

The algorithms have strict sampling requirements that must be met and are thus poorly

equipped to deal with changes in projection geometry. Another drawback of the analytical

approach is that it does not allow prior information to be incorporated in a natural manner.

Analytical methods are not used or discussed further here as they are not useful for an-

swering the question of whether prior information is useful for transmission tomography.

Instead, the series-expansion approach to tomography is taken.

6.3 The Finite Series-Expansion Approach to Tomogra-

phy

Finite-series methods are based on the discrete sampling of the image domain prior to any

mathematical analysis [12]. This approach allows for the data measurement and noise

to be related to the image domain through a likelihood distribution. It also allows prior

information to be defined on the discrete image domain and incorporated in a natural way

using the maximum a posteriori approach.

The image domain can be modelled as a mosaic of pixels, each with constant den-

sity over their extent. It should be remembered that the pixels in CT images represent a

volume in space rather than a 2D area and may more accurately be called voxels. This ap-

proach assumes that the density in a voxel is homogeneous or constant over its extent. This

assumption is reasonable for most voxels although it may not be at boundaries between



59

different tissues. When this occurs the attenuation coefficient of the voxel is an average

of the intensities of the different tissues. As the size of the voxels are increased this effect

may become more apparent.

In the statistical framework for image processing that has been presented in the previous

chapters a likelihood model is needed to model the relationship between the measured data

and parameters to be estimated.

6.4 The Likelihood Model

The likelihood model relates the measurement data to the solution space. The more accu-

rate the likelihood model is, the more accurately the solution can be estimated. In practice

the likelihood model is limited by what is computationally feasible and by mathematical

tractability. The likelihood model usually falls far short of a complete description of the

measurement process.

The measurement data in CT is X-ray data. The X-ray process can be modelled at

a number of different levels of complexity. The dominant effect in X-ray tomography is

the absorption of X-ray photons. This occurs through what is known as the photo-electric

effect. Photo-electric absorption occurs when an X-ray photon passes all its energy to

an inner electron of an atom [23]. Different materials have different absorption levels.

The likelihood that a photon will be absorbed by the material determines the attenuation

coefficient of a material. The goal of CT is to reconstruct an image of the attenuation

coefficients called an attenuation map.

In most likelihood models the X-ray beam is assumed to be mono-energetic, consisting

of photons of the same energy [15][36][11][14]. This assumption allows the X-ray absorp-

tion in a region to be characterized by a single value. X-ray tubes generate poly-chromatic
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X-ray beams consisting of photons with a range of energy values. The attenuation coeffi-

cient of materials changes with the energy of the X-ray photons. Modelling the effects of a

poly-chromatic X-ray source in a likelihood model requires that the absorption coefficients

of the different materials be known for the different photon energies and that the energy

profile of the X-ray source be known [27]. This would greatly increase the complexity of

the likelihood model and thus the effect of polychromatic X-ray sources is seldom mod-

elled, even though assuming a monochromatic source may lead to beam hardening effects,

including streaking and cupping in the reconstructed image [1].

In addition to the photo-electric effect there are also other interactions by which an

X-ray beam is attenuated. Compton scatter is the most significant for computer tomog-

raphy. Compton scattering occurs when an X-ray photon strikes an outer electron. The

electron absorbs some of the photon’s energy and the photon is deflected from its origi-

nal path. Compton scatter is not as dependent on the energy of the X-ray photons as the

photo-electric effect. Compton scatter introduces a bias into the measurement data. This

affects the rays with low photon counts more than rays with large photon counts. Modelling

Compton scatter accurately would be computationally expensive as the probability of pho-

tons travelling along many different paths would have to be evaluated. Because developing

an accurate likelihood model is not the primary interest, Compton scatter and other absorp-

tion effects are not modelled here. The primary interest is that of developing an accurate a

priori model with the aim of making more accurate tomography reconstructions.

The likelihood model can also be used to model noise in the detector. In a CCD this

could be modelled as Gaussian thermal noise. Again, this is not modelled here as it is not of

primary interest. The point of highlighting some of these phenomena is that the likelihood

model is not determined solely by the objective physical nature of the physical process, but
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also by subjective choices made by the user. The likelihood model, like all physical models,

is merely a description of the actual physical process. The use of a priori information may

reduce the effect of secondary effects not modelled by the likelihood model.

The absorbtion of X-rays is a probabilistic process. The probability of an X-ray photon

being absorbed is related to the X-ray attenuation coefficient of the medium through which

the photon is travelling. The probability of an X-ray photon reaching a detector from its

source through a medium with X-ray absorbtion density � is given by the limiting frequency

-�
-	
� �

�
� ��� (6.3)

This is just the exponential attenuation law rewritten in a form that highlights the proba-

bilistic nature of X-ray absorbtion.

X-ray source medium detector

Figure 6.3: Illustration of X-ray photon travelling through medium with absorbtion density
�.

Making the assumption that the X-ray medium can be modelled by voxels with ho-

mogenous density, Equation 6.3 can be rewritten in discrete form as

�


-�
-	

�
� �

�
����� (6.4)

where �
�
��
��

�
is the expected value of the ratio ��

��
, �
 is the linear absorbtion coefficient

at site � and ��
 is the projection weight for the intersection of ray � with site �. The most
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obvious way to calculate the weighting coefficients ��
 is as the length of the ray intersecting

the pixel as shown in Figure 6.4(a).

This method is appealing in that the weights have the dimension of length which agrees

with Equation 6.3. The weights can also be calculated efficiently using standard line clip-

ping algorithms [30].

In practice this model is not ideal for modelling tomographic projection for two reasons.

The first is that the sampling requirements when using infinitely thin beams are very great.

The second is that X-ray sources and detectors have non-negligible width.

A better approach is to model each ray as a rectangular tube [1], as shown in Figure 6.4

(b). This method leads to more stable solutions than the line intersection method although

this method may not be able to model the physical geometry of the detector and source as

accurately as wished. A third method and the one used here is to calculate the projection

weights as the intersection of a quadrilateral with each pixel. This method allows for the

geometry of the CT scanner to be accurately modelled. This method is shown in Figure

6.4(c).

line intersection rectangular tube quadrilateral
method method method

(a) (b) (c)

Figure 6.4: Different methods of calculating projection weights. Shaded gray regions rep-
resent the intersection of a square pixel with a projection ray. The attenuation coefficient �
is assumed to be constant over the full extent of the pixel or voxel.
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6.4.1 Modelling Noise in X-ray Data

Statistical methods require the measurement noise in the data to be quantified. If the pro-

cess is a discrete counting process a natural candidate is the Poisson model. If the process is

continuous, a Gaussian model would probably be a more appropriate candidate. The con-

tinuous nature of the Gaussian model and the discrete nature of the Poisson model make

comparison difficult. However, for high counts the shape of the Poisson distribution is

very close to that of the Gaussian distribution. By sampling the Gaussian distribution, the

similarity between the two probability mass functions can be calculated. The term proba-

bility mass function refers to a discrete probability distribution whereas the term probability

density function is often reserved for continuous probability distributions. The Gaussian

assumption does have some computational advantages and has therefore been adopted by

some researchers [29]. In practice assuming Gaussian noise on the photon count data may

be reasonable because of the detectors characteristics. Some detectors do not count indi-

vidual X-ray photons but rather a charge proportional to the number of photons reaching

the detector. Figure 6.5 shows an illustration of a digital X-ray detector. X-ray photons

strike the scintillator causing a cascade of light photons to be emitted that are detected by

the CCD.

While Gaussian models may be adopted in the quest for faster reconstructions algo-

rithms, this was not the primary concern here. The more statistically correct Poisson model

was therefore used.
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Figure 6.5: Illustration of a digital X-ray detector. X-ray photons strike the scintillator
causing a cascade of light photons to be emitted that are detected by the CCD.

6.4.2 Some Properties of the Poisson Distribution

The Poisson distribution is a discrete distribution useful for modelling noise in some imag-

ing applications. It has two distinctive properties, the first is that the distribution is re-

stricted to positively valued integers. This is useful for modelling counting processes like

photon counts in charge coupled devices (CCDs) where negative values are not feasible.

The second property is that the variance changes with the mean. This is in contrast to the

assumption of a Gaussian noise model with variance that does not change with the mean of

the variate. The big difference between Poisson noise and other types of noise is that Pois-

son noise is dependent on the data whereas with other distributions, noise may be treated

as an independent additive or multiplicative component.

The distribution of a non-negative, integer valued random variable � following a Pois-

son distribution with mean and variance . is given by

� �� � /� � � 
.�

/�
� (6.5)

The Poisson distribution for different values of . are shown in Figure 6.6. For low

values of . the distribution is skewed so that it is not symmetric around its mean. At

higher values of . the Poisson distribution can be approximated by quantizing a Gaussian



65

distribution. In fact this approximation is used by some routines for generating Poisson

numbers.
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Figure 6.6: The Poisson distribution, � �� � /�, where / is a positive integer, for different
values of .. To show the shape of the distribution clearly the distributions have been drawn
as continuous functions, however it should be remembered that the Poisson distribution is
discrete, being restricted to positive integer values.

6.4.3 Deriving the Likelihood Model

Let %� be the expected number of photons leaving the source along ray �. The expected

number of photons to reach the detector is then %��
�

����� . Assuming that the X-ray source
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is Poisson in nature the likelihood function is given by
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� (6.6)

The maximum likelihood estimate of absorption coefficients � maximizes the likelihood

given photon count data 1 . This is equivalent to maximizing the log-likelihood )���.
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The last two terms do not depend on the absorption coefficients � and can therefore be

ignored when estimating the absorbtion coefficients that maximize the likelihood. The

maximum likelihood estimate �
 is then given by

�
 � ������
�
�

�
 %��

�
�����  1�

�
��
�


�
� (6.11)

Equation 6.11 can be solved by a number of different algorithms. The one adopted here

is called the Convex algorithm of Lange [36] and will presented in section 6.11.

6.5 Outlining the Experimental Procedure

When testing reconstruction algorithms one can choose to either simulate the projection

data or to use projection data from a CT machine. While the final goal must always be

to perform reconstructions on real data, the testing of an algorithm may be more easily

accomplished on simulated projection data.
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It can be difficult to evaluate the results obtained using real data as one does not have

a reference against which to measure the reconstruction quality. This difficulty may be

overcome by using a phantom object with known dimensions and physical properties. This

solution is not ideal in this case, because the phantom object may have different statistical

properties to real CT images. Another method of overcoming the difficulty of a refer-

ence against which to measure the reconstruction quality is to simulate the X-ray process.

This is done by sampling the likelihood model given a phantom image. This work differs

from previous research in that it uses CT scans reconstructed by a spiral CT scanner as

phantom images rather than simple artificial images made up of only a few intensity levels

[15][11][9][36]. This was done to facilitate the development of more realistic and accurate

MRF models.

This approach removes sources of error that occur when using real data. The geometry

of the machine is known exactly. The efficiency of the detectors is known. Secondary

attenuation effects like Compton scattering can be ignored. Other sources of error like

beam hardening and patient movement are also avoided. Taking a simulation approach

also allows for different geometries to be tried and tested.

The experimental procedure used to test whether the use of prior information leads to

better quality reconstructions can be summarized as follows.

1. Collect a set of images that represent clean realizations of the a priori probability

distribution. CT scans from a spiral CT scanner were used in this case.

2. Select the form of one or more MRF model which will be used to model the a priori

distribution.

3. Estimate the free parameters of each MRF model using the sample images and select
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the MRF model that best models the sample images. The pseudo-likelihood was used

as a measure of fitness when estimating the free parameters.

4. Generate the projection data by sampling the likelihood model. Images from the set

of CT scans were used as phantom images to define the linear attenuation coefficients

�
 in the likelihood model.

5. Estimate the original sample images from the experimental data samples using max-

imum likelihood estimation which does not use a priori information and using max-

imum a posteriori estimation which does make use of a priori information in the

MRF model.

6. Compare the results of the two estimation procedures using the original sample im-

ages.

6.6 Defining the Projection Geometry

Whether one uses real or simulated data, defining the projection geometry is an essential

step towards solving tomography problems. The variables defining the geometry will be

explained here and the values used in the experiments will also be given.

There are two main architectures for the projection geometry. The first is a parallel

beam geometry in which the coefficients are projected perpendicularly onto a detector. A

parallel beam geometry models the configuration of a single point source and a single de-

tector that is scanned linearly for each projection ray. This method of data collection is very

inefficient and slow and is not used in clinical machines [1]. Some reconstruction methods

demand parallel projection data. For these algorithms it is necessary to use resorting and
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interpolation of fan beam data to put it into a form that can be used by algorithms designed

for parallel beam data.

A fan beam geometry is adopted in the experiments that can easily be adjusted to model

different CT machines. A fan beam geometry allows a complete projection slice to be

measured at once using an array of detectors and a single X-ray source. More recently

cone beam geometries have been developed that measure a number of projection slices

simultaneously.

The position and number of projection slices determine the CT geometry. For the exper-

iments in limited angle tomography an angular range of ��� degrees was used with either

10 or 20 projection slices. For the experiments in sparse angle tomography, an angular

range of 180 degrees was used also with 10 or 20 projection slices. The projection slices

are equally separated within the available angular range.

The reconstruction region must fall within the X-ray beam for all projection angles. A

circular reconstruction region offers the largest possible reconstruction area for a given CT

geometry although a square reconstruction region has been used here to match the sample

images.

6.7 The Limited Angle Tomography Problem

The goal of limited angle tomography (LAT) as with all computerized tomography is to

reconstruct an image of the internal structure of an object from projection data of the object.

The need to reconstruct images where the data is limited in its angular range occurs

in many applications of computed tomography. Data acquisition may be limited by ob-

structions as in some non-destructive testing situations or by time constraints as in cardiac

imaging.
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There are well established algorithms for solving computer tomography reconstructions

when sufficient data is available [1], however these fail in the case of limited angle tomog-

raphy where there is insufficient data. The LAT problem is highly ill posed [39], and thus

requires the use of a priori information to find reasonable solutions.

6.8 The Sparse Angle Tomography Problem

Sparse angle tomography (SAT) occurs when the number of projection slices are too few to

uniquely determine the solution or prevent aliasing effects. The number of projection slices

needed to prevent aliasing is dependent on the resolution at which one wants to reconstruct

an image and the quality of the data. Commercial machines tend to use a large number of

projection slices with 512 slices a reasonable number to perform a 512x512 reconstruction.

For the 128 by 128 pixel images used in the experiments, anything less than 100 pro-

jection slices may be considered as sparse angle tomography. The main reason why sparse

angle tomography is worth pursuing is that, because less data is needed for sparse angle

tomography, the radiation dose to the patient can be lowered. X-ray radiation can damage

human tissue as it is ionizing radiation. Reducing the number of projection slices needed

therefore reduces the X-ray dose to the patient. This consideration is especially important

for patients like cancer sufferers who require regular scanning to determine the progress of

their disease. In trauma situations this is less of a concern as multiple exposures are un-

likely and the potential damage caused by the X-ray dose is far outweighed by the benefits

of the CT scan.
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6.9 Generating the Projection Data

The generation of projection data was setup as a number of experiments with different

phantom images, projection geometries and photon counts. The experiments can be broken

into two groups, those for LAT which are defined in Table 6.1 and those for SAT defined

in Table 6.2. ML and MAP reconstruction algorithms are applied to the same experimental

data in subsequent sections.

Experiment Angular range Number of projection slices Series Photon count

01 100 10 HIS 4000
02 100 10 HIS 2000
03 100 20 HIS 4000
04 100 20 HIS 2000
05 100 10 TIS 4000
06 100 10 TIS 2000
07 100 20 TIS 4000
08 100 20 TIS 2000

Table 6.1: Generation of projection data for LAT experiments. The angular range is given
in degrees while the photon count is the number of photons leaving the source along a ray.
The projection slices are equally spaced over the angular range.

The probability of making a measurement, 1�, given that the number of incident photons

along ray � is %�, is given by

� �1� � /� �
���!

�
�

�����
�%�

�
�

����� ��

/�
� (6.12)

By sampling this distribution for each measurement, 1�, a complete set of measurement

data can be generated. Reconstructions from a spiral CT scanner were used as phantom

images to set the linear attenuation coefficients �
.
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Experiment Angular range Number of projection slices Series Photon count

09 180 10 HIS 4000
10 180 10 HIS 2000
11 180 20 HIS 4000
12 180 20 HIS 2000
13 180 10 TIS 4000
14 180 10 TIS 2000
15 180 20 TIS 4000
16 180 20 TIS 2000

Table 6.2: Generation of projection data for SAT experiments. The angular range is given
in degrees while the photon count is the number of photons leaving the source along a ray.
The projection slices are equally spaced over the angular range.

6.10 Probability Modelling Approaches in Tomography

In Chapter 4 ML and MAP estimation was discussed, although the algorithms used to cal-

culate these estimates were not. Most research into probability modelling approaches in

tomography has centered around the development of algorithms for ML and MAP esti-

mation. Probability modelling approaches model the data measurement process through

a likelihood model like the Poisson model in Equation 6.11. The algorithms proposed to

solve these estimation problems are all iterative in nature and are designed to converge to

favourable solutions. Not all of them are guaranteed to converge to a globally optimal so-

lution while others may have very different convergence rates. Algorithms are often better

suited to either a parallel or serial computer architecture making comparisons difficult.

The Expectation Maximization(EM) algorithm provides an approach to solving Maxi-

mum likelihood problems [35][40]. In cases where the likelihood function may be difficult

to maximize the EM approach suggests hypothesizing a complete data set in which the

available data is embedded. If the expectation for this complete data set can be maximized
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the original likelihood can also be maximized. However the algorithm does not fit the prob-

lem of transmission tomography well and more efficient algorithms have been developed

[36].

A number of algorithms have been proposed that attempt to directly minimize the cost

function. These include gradient methods [14], and methods like coordinate descent opti-

mization [9].

The method chosen here to perform ML and MAP reconstructions is the Convex method

of Lange [36]. This method is based on arguments proposed by De Pierro [41] for emission

tomography. The method has good convergence properties and is much more efficient than

the EM algorithm [36]. It is however by no means the only algorithm one can choose, there

being many alternatives [15]. Some of these methods use Gaussian approximations for the

noise to enable faster reconstructions [46][9][29], while others use likelihood models that

allow for Compton scattering [40]. The methods discussed here only give globally optimal

solutions when convex potential functions are used to model the a priori distribution.

There has also been some research into the development of a priori models suitable

for tomography reconstruction [11]. These models have been designed to preserve edge

information while still providing suitable regularization [2].

Because most previous work has centered around deriving estimation algorithms, the

phantom images used to test them have generally been very simplistic, comprising of just

a few intensity levels. While these show reconstruction errors clearly, these simple image

phantoms do not display the same variety and variation as are found in real CT images.

This limits their usefulness for evaluating the performance of reconstruction algorithms,

especially those that use prior information, as an a priori model suitable for modelling

simple images may not be suitable for modelling more complicated images.
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label description value units

A position of X-ray source ����� ���� m
B position of X-ray source ����� ���� m
C position of detector ��������� m
D position of detector ��������� m
E center of rotation ����� ���� m
F position of origin of image ������ ����� m

Figure 6.7: Projection geometry for specifying projection weights
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6.11 The Convex Algorithm for ML Estimation

Lange and Fessler [36] discuss the Convex algorithm for transmission tomography. This

method, while bearing some resemblance to the EM algorithm, does not use the concept of

missing data and is less cumbersome than the EM algorithm as it does not require as many

exponentiations [35]. To motivate the algorithm rewrite the log-likelihood as

)��� � 
�
�

2������ ��� (6.13)

using the strictly convex functions 2� � %�
�# � 1��. As the sum of convex functions is

also convex, the log-likelihood is therefore convex. In Equation 6.13 the sum
�


 ��
�
 has

been rewritten as the inner product ���� �� using matrix notation. This can be understood as

integrating along a ray � over the attenuation coefficients �
. Terms not dependent on the

attenuation coefficients have been dropped as they do not effect the optimization. Using

convexity arguments the log-likelihood can be approximated by another function 3������
that relates � to the current estimate of � denoted by ��. At iteration �
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with strict inequality unless ��
!��
 ����� ��� � ���!�
�
������ ��� for all � and all � �� /. If

�
 � ��
 for all �, then 6.14 holds with equality. Inequality 6.14 is derived as a direct

result of Jensen’s inequality [47]. The function 3������ is designed so that the difference

)���  3������ attains a minimum of � at �  ��. At each iteration ���� is chosen to

maximize 3������. Then the likelihood function can only increase with each iteration as
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shown below
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Solving Equation 6.16 is guaranteed to maximize the function 3������ as the function is

strictly convex. Equation 6.16 can be solved iteratively by applying Newton’s method [53]

for each attenuation coefficient to be estimated. Since
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for ��
 $ �, one step of Newton’s method gives the approximate solution
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6.12 Models for Tomographic Data

The most general Markov models for image restoration are those that favour smooth im-

ages. This sort of model may reduce the effect of noise but will also reduce the resolution

of the reconstructed image. These models do not fit computer tomography images well as

they generally have sharp discontinuities in intensity at boundaries between different tis-

sues. For instance, there is a large difference in attenuation level between regions of soft

tissue and and those of bone.

One would then expect models that allow for discontinuities to perform better. These

models should allow for subtle features to be reconstructed within the regions belonging to

a single tissue. Some of these models are convex resulting in solutions that are solvable in

a reasonable amount of time.

A more restrictive Markov random field model would be to assume that the image

consists of a number of known density levels corresponding to different tissues that have

been corrupted by noise. This poses tomography as a segmentation problem [13]. The

Markov model would then contain information on the spatial distribution of the different

levels that could be used to segment the reconstruction into a number of density levels. This

type of model is non-convex making the globally optimal solution difficult to estimate.

6.13 Data Sets of Sample Images

In the chapter on parameter estimation it is assumed that sample images are available on

which to train the various models. These sample images should be clean realizations of

the random process. In problems like tomography one would not normally have access

to sample images as these reconstructions are what one is trying to estimate. Fortunately,



78

commercial CT machine are able to produce good quality tomography reconstructions us-

ing conventional algorithms by gathering large amounts of projection data. The sample

images used here were taken from a spiral CT scanner in digital form so that no distortion

was introduced by the use film.

A series of 10 images were taken from head studies from four patients to form the Head

Image Large (HIL) series. These images have dimensions 512 x 512 with 12 bits of pixel

information stored in 16-bit TIFF format. A series of 10 smaller images were made from

this series to form the Head Image Small (HIS) series. These images are one sixteenth the

size of the HIL images and are stored in 8 bit format. This series of images are shown in

appendix A.

A series of 10 images were also taken from abdominal studies from three patients to

form the series Torso Image Large (TIL) and Torso Image Small (TIS).

The pixel spacing for HIL and TIL series are given in tables found in appendix A. The

information is important because Markov random fields are sensitive to changes in scale.

The pixel spacing in the HIS and TIS series are one quarter the length the of pixel spacing

of the original images.

6.14 Defining the MRF Models

This section defines the neighbourhood structure and the clique potential functions for some

proposed models. Lower and upper bounds are given for the free parameters that require

estimation.

The models presented here are all based on an 8-neighbourhood model. Figure 6.8

identifies the cliques in the neighbourhood. The models are isotropic in that they do not

favour a particular orientation. Because of this the potential functions for cliques �� � �� �
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and cliques �� �� �� �must be equal.

Model 01 is based on the Huber potential function defined in Equation 3.15. Model

02 is based on the generalized Gaussian model of Bouman and Sauer defined in Equation

3.16. The third model tested, model 03, is based on Greens potential function as defined

in Equation 3.17. A uniform prior was used for clique � in each case, although this can be

dropped for the MAP reconstruction algorithm as it has no effect on the result.

It is unusual to include parameters that change the shape of a potential function in the

model as has been done here. It is far more common for the free parameters to be a set of

scalar weights for a set of candidate potential functions. This can make the estimation of

the free parameters more tractable. The potential function for a clique is then the weighted

sum of the candidate functions. The approach taken here of including parameters that

change the shape of potential functions allows the different models to be compared while

also allowing for a far greater range of potential functions to be tested.

0 1 2 3 4 5 6 7 8

Figure 6.8: 2nd order 8 neighbourhood system and its division into cliques.

6.15 Training MRF Models on Sample Images

In this section different models are compared by training the free parameters of each model

to the data sets. The PL method is used to evaluate the goodness of fit of different models

on the sample images. The parameter space is limited by the definition of the potential

functions and the numerical accuracy of the machine.
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Table 6.3: Definition of clique potential functions for Model 01. The parameters for each
potential function are given by #� and #�.

�� �� �� �� �


lower bound 4.0e-7 0.00 0.00 1.0 1.0
upper bound 4.0e-3 150.00 150.00 100.0 100.0

Table 6.4: Lower and upper bounds for the estimated parameters of model 01.

The results of training the convex models on the HIS and TIS image series were similar.

For the parameters estimated, all three models are very similar and are all at their least

convex. This is not surprising when the effect of subsampling is taken into account. The

images in these two series were one sixteenth the size of the original 512x512 images.

Sampling images like this, results in larger changes between neighbouring pixels. This in

turn leads to less convex models, that do not penalize these changes, fitting the subsampled

images better. A more surprising result was that the closest four neighbours were far more

important than the diagonal neighbours which were found to contribute negligibly to the

model.

The results from training the models 01 to 03 on the sample images suggest that a
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Table 6.5: Definition of clique potential functions for Model 02. The parameters for each
potential function are given by #� and #�.

�� �� �� �� �


lower bound 4.0e-7 0.00 0.00 1.0 1.0
upper bound 3.9e-3 200.00 200.00 100.0 100.0

Table 6.6: Lower and upper bounds for the estimated parameters of model 02.

non-convex model would better fit the data at the chosen resolution. All three models

produce potential functions with a a similar shape for the estimated parameters, although

the generalized Gaussian potential function used in model 02 proved the most likely.

The images on which the models are trained can be considered to be independent sam-

ples from the probability distribution to be estimated. To estimate the most likely param-

eters for a model given a series of independent sample images one must maximize the

likelihood of obtaining the set of sample images for the parameters. The likelihood for a

set of independently sampled images is given by

	
�

� �	image ���� (6.21)
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Table 6.7: Definition of clique potential functions for Model 03. The parameters for each
potential function are given by #� and #�.

�� �� �� �� �


lower bound 4.0e-7 0.00 0.00 1.0 1.0
upper bound 3.9e-3 200.00 200.00 100.0 100.0

Table 6.8: Lower and upper bounds for the estimated parameters of model 03.

with the log-likelihood given by

�
�

�
� �	image ����� (6.22)

This is computationally expensive to calculate, as the PL for each image in the set needs to

be evaluated in order to evaluate the joint pseudo-likelihood.

If the likelihood function and the prior function in the MAP estimation are normalized,

then the estimated parameters for the a priori distribution can be used as is. If this is not the

case a relaxation parameter . must be introduced to determine the influence of the a priori

distribution. This parameter is inversely proportional to the temperature of the distribution.

Because the relaxation parameter . acts as a balance between the likelihood and prior
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estimated parameters

image �� �� �� �� �
  �����)�
HIS01 2.4528e-3 67.838 2.008 1.000 1.000 32932
HIS02 6.4003e-4 84.233 0.000 1.000 1.263 29271
HIS03 1.0000e-3 65.483 0.000 1.000 1.211 32281
HIS04 1.0000e-3 76.521 1.517 1.000 1.000 29839
HIS05 1.8965e-3 87.948 4.344 1.000 1.000 28729
HIS06 2.6669e-4 84.914 2.051 1.000 1.000 29036
HIS07 6.3934e-6 109.582 3.501 1.000 1.000 25767
HIS08 2.0835e-6 150.000 38.995 1.000 1.000 20761
HIS09 1.7264e-3 43.499 4.810 1.000 1.000 35797
HIS10 1.4378e-4 44.140 15.714 1.000 1.000 33101

Table 6.9: Results of fitting model 01 to sample images in the HIS series.

distributions it cannot be estimated directly from the sample images but must rather be

evaluated in terms of the algorithm in which it is being used. In this case that algorithm

is the MAP reconstruction algorithm. The relaxation parameter may be set using cross

validation. Because of the expense of the MAP reconstruction algorithm cross validation is

not used here. Instead the relaxation parameter was set so as to minimize the reconstruction

error for the first two images in the series of ten images used in the experiments.

6.16 Hypothesis Testing

In earlier chapters the contrast between methods that make use of a priori information and

those that don’t was discussed. It was pointed out that methods that make use of a priori

information work under that assumption that an image can be treated as a sample from

a random process while non-Bayesian methods that do not use a priori information treat

image generation as a deterministic process. The different underlying assumptions between
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estimated parameters

image �� �� �� �� �
  �����)�
HIS01 3.9191e-3 72.332 0.000 1.000 1.895 31305
HIS02 2.4602e-3 86.745 0.000 1.000 1.999 26977
HIS03 3.9215e-3 69.634 0.000 1.000 2.000 30328
HIS04 1.0000e-3 81.625 0.000 1.000 2.000 27573
HIS05 3.2991e-3 93.579 0.000 1.000 1.997 26468
HIS06 2.0194e-3 90.103 0.000 1.000 1.556 26487
HIS07 3.9216e-3 110.421 0.000 1.000 1.184 23013
HIS08 1.0000e-3 131.768 32.170 1.000 1.000 18644
HIS09 2.3910e-3 49.728 0.000 1.000 1.880 34696
HIS10 1.0000e-3 58.752 0.000 1.000 1.513 32293

Table 6.10: Results of fitting model 02 to sample images in the HIS series.

methods that make use of a priori information and those that do not, make comparison of

the two approaches difficult. However, it is possible to make no use of prior information

in a Bayesian framework by adopting an uninformative or uniform prior. This distribution

favours all possible solutions equally. This allows the validity of prior information to be

tested in a Bayesian framework.

In order to compare the two theories a hypothesis needs to be formulated for each

theory or model. The null hypothesis, 4	, is that sample images were generated by a

uniform distribution. The alternative hypothesis,4�, is that the set of sample images were

sampled from a MRF, the parameters of which are given in Table 6.16.

Non-Bayesian significance tests are not suitable in this case and so a Bayesian approach

using Bayes factors is taken. The Bayes factor can be calculated as follows

Bayes factor �  �	 �
� �4��1 �
� �4	�1 � (6.23)

where 4	 is the null hypothesis that the sample images in the HIS series were sampled
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estimated parameters

image �� �� �� �� �
  �����)�
HIS01 2.4503e-4 67.677 1.887 1.000 1.000 33435
HIS02 2.4608e-3 83.966 0.000 1.000 1.000 29925
HIS03 4.2854e-7 64.969 0.000 1.000 1.000 32823
HIS04 1.7421e-4 76.258 1.336 1.000 1.000 30444
HIS05 1.0000e-3 88.210 4.129 1.000 1.000 29357
HIS06 3.9216e-3 84.738 1.885 1.000 1.000 29721
HIS07 9.9998e-4 113.364 0.000 1.000 6.637 26527
HIS08 4.0051e-7 179.886 32.411 1.000 1.000 21283
HIS09 9.9982e-4 47.119 0.000 1.000 5.063 36371
HIS10 4.4698e-7 43.903 15.407 1.000 1.000 33676

Table 6.11: Results of fitting model 03 to sample images in the HIS series.

estimated parameters

image �� �� �� �� �
  �����)�
HIS01 2.8770e-3 74.263 0.000 1.000 100.000 32095
HIS02 4.0000e-7 79.548 0.000 1.000 81.416 31056
HIS03 2.4373e-3 52.131 0.000 1.000 1.000 34618
HIS04 2.1613e-3 53.311 0.000 1.000 1.000 34120
HIS05 4.0005e-7 56.956 0.000 1.000 1.000 33240
HIS06 1.0000e-3 55.954 0.000 1.000 1.000 33369
HIS07 3.9191e-3 79.839 0.000 1.000 100.000 31114
HIS08 3.3077e-3 58.703 0.000 1.000 60.030 35238
HIS09 3.1771e-3 76.450 0.000 1.000 64.592 31840
HIS10 6.2252e-5 83.273 0.000 1.000 12.560 30464

Table 6.12: Results of fitting model 01 to sample images in the TIS series.
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estimated parameters

image �� �� �� �� �
  �����)�
HIS01 4.4356e-5 71.301 0.000 1.000 1.919 31661
HIS02 3.9216e-3 75.303 0.000 1.000 1.915 30643
HIS03 2.5529e-3 53.285 0.000 1.000 2.000 33670
HIS04 1.0000e-3 54.797 0.000 1.000 1.998 33069
HIS05 2.2485e-3 58.336 0.000 1.000 2.000 32139
HIS06 2.2430e-3 57.810 0.000 1.000 1.805 32174
HIS07 3.9206e-3 75.796 0.000 1.000 1.946 30718
HIS08 1.3416e-3 58.090 0.000 1.000 1.965 34745
HIS09 3.9216e-3 72.747 0.000 1.000 1.921 31484
HIS10 1.0000e-3 78.029 0.000 1.000 1.830 30112

Table 6.13: Results of fitting model 02 to sample images in the TIS series.

estimated parameters

image �� �� �� �� �
  �����)�
HIS01 1.0043e-3 75.744 0.000 1.000 100.000 32325
HIS02 3.8283e-3 81.220 0.000 1.000 100.000 31310
HIS03 2.3277e-3 51.915 0.000 1.000 1.000 35000
HIS04 2.0059e-3 53.093 0.000 1.000 73.282 34513
HIS05 1.0000e-3 56.798 0.000 1.000 99.190 33645
HIS06 2.8537e-3 55.683 0.000 1.000 1.000 33786
HIS07 1.0000e-3 81.791 0.000 1.000 100.000 31325
HIS08 2.2566e-3 59.255 0.000 1.000 1.072 35460
HIS09 4.4580e-5 78.328 0.000 1.000 100.000 32039
HIS10 4.9526e-5 85.596 0.000 1.000 99.847 30687

Table 6.14: Results of fitting model 03 to sample images in the TIS series.
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model Sample Images mean fitness variance

model01 HIS 2.9748e+004 1.8161e+007
model02 HIS 2.7778e+004 2.1933e+007
model03 HIS 3.0364e+004 1.7926e+007
model01 TIS 3.2715e+004 2.6886e+006
model02 TIS 3.2041e+004 2.1035e+006
model03 TIS 3.3009e+004 2.8626e+006

Table 6.15: Mean and variance measures for the models 01,02 and 03.

image estimated parameters

model series �� �� �� �� �
  �����)�
model02 HIS 0.0027 76.0958 4.1904 1.0000 1.0000 282972
model02 TIS 0.0010 64.4566 0.0000 1.0000 321551

Table 6.16: LMPL estimate of the parameters of model 02 on the HIS and TIS image series.
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���� �	�  �	 Evidence against4	

� to �! � to �� Not worth more than a bare mention
�! to � �� to �� Substantial
� to  �� to � Strong
$  $ ��� Decisive

Table 6.17: Guide to interpreting Bayes factors

from a uniform distribution and 4� is the alternative hypothesis that the sample images

were generated from a MRF model.

The Bayes factor can be interpreted using the guidelines given in Table 6.17 taken

from Kass and Raftery [33]. The pseudo-likelihood parameter estimation approach used

evaluated the log-likelihood of the model in question rather than the likelihood, thus the log

form of the Bayes factor will be used.

���� �	� � ���

�
� �4��1 �
� �4	�1 �

�
� ����� �4��1 �� ����� �4	�1 �� (6.24)

The log-likelihood for the null hypothesis can be calculated as follows

����� �4	�1 �� � �� ���

�� �

��

������

� ��� ��� ���
� �

��

�
� ������� (6.25)

while the log-likelihood for the hypothesis 4� was calculated for the HIS set of sample

images as -282972. Then the log of the Bayes factor, ��� �	 � �����. This result

suggests that there is strong evidence to adopt the MRF model in favour of the uniform

distribution for the sample images in question.
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6.17 The Convex Algorithm for MAP Estimation

MAP estimation requires the maximization of the posterior function or its log. This func-

tion includes the log-likelihood function and an energy function penalizing large deviations

between neighbouring pixels. The log posterior function may be written as  ��� � )���
����. The maximization function for the convex MAP algorithm is then 3������ ����
where 3������ is the maximization function derived for the convex ML algorithm in sec-

tion 6.11. The function  ��� can be maximized by solving the equation.

� �
*

*�

3������ *

*�

���� (6.26)

Because the function  ��� is convex, Equation 6.26 has a unique solution. However it is

difficult to evaluate in this form as we do not know � but only its estimate ��. We therefore

follow the approach used for the ML estimate to find a comparison function for ����. The

energy function ���� is given by

���� �
�
���

����� (6.27)

where �� is the clique potential on clique �. Here ���� can be rewritten as the sum of

pairwise cliques because the uniform priors used when training the models in section 6.15

are not dependant on � and therefore do not affect the optimization.

���� �
�

�
�����

�
���
  ��� (6.28)

Convexity and evenness of the potential functions ��"� together imply

���
  ��� � �
��

��
  ��
  ��� �

�


��� � ��
 � ��� �

�
� �


���
  ��
  ���� �

�


����  ��
  ���� (6.29)
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term description

%� expected number of photons leaving source along ray �
1� photon count for ray �
�
 attenuation coefficient to be estimated
��
 contribution of site � to ray �
�
� potential function for pairwise clique on sites � and /

Table 6.18: Description of terms used in sections 6.11 and 6.17.

with strict inequality unless �
 � �� � ��
 � �
�
� . Inequality 6.29 in turn yields

���� � 
�

�
�����

�
���
  ���

� �


�
�
�����

�
���
  ��
  ����

�


�
�
�����

�
����  ��
  ����

� � ������ (6.30)

The comparison function 3������ ���� is substituted by

!������ � 3������ � ������� (6.31)

To find the maximum of comparison function !������, its derivative is taken and equated

to zero. Then Newton’s method can be used to solve. In practice it is unnecessary to

maximize !������ at each iteration. One step of Newton’s method can be used.

����

 � ��
 

�
���
!�����������

��

����
!�����������

(6.32)

One iteration of the convex MAP algorithm involves solving Equation 6.32 for each

site on the lattice and a number of iterations may be needed for the algorithm to converge.
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The first and second derivatives of � ������ are given below. It is assumed that � 	 and �		

are available in closed form.

*

*�

� ����������� � 

�
�
�����

�	
���
�

  ���� (6.33)

*�

*��

� ����������� � 

�
�
�����

�		
���
�

  ���� (6.34)

6.18 Estimating the Relaxation Parameter

Even when a MRF model has been trained on a set of sample images, it is often necessary

to introduce a relaxation parameter . which affects how strongly the solution is regular-

ized by the MRF a priori distribution. This is necessary because the likelihood or the a

priori distribution may not be normalized. It is not necessary that the likelihood and prior

distributions are normalized so long as they are correctly balanced, hence the need for the

relaxation parameter . to balance the two distributions. The function we wish to maximize

may therefore be rewritten as

 ��� � )��� . ����� (6.35)

The relaxation parameter . is inversely proportional to the temperature of the a priori

distribution. It can therefore be understood in terms of changing the temperature of the a

priori distribution.

The relaxation parameter . is usually set by trial and error by the user or by minimizing

some measure of error. The latter approach was taken here, with the mean square error of

the MAP reconstruction from its image phantom being used. Ideally . should be set for a

particular set of sample images and a particular model using a method like cross-validation
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Experiment .

1 0.015
2 0.010
3 0.025
4 0.015
5 0.025
6 0.020
7 0.035
8 0.030

Table 6.19: Values of lambda for LAT experiments using model 02

[8]. This was found to be too computationally expensive in this case as each evaluation of

the error metric requires a complete reconstruction to be made.

Instead, . was set for each experiment by minimizing the error for just the first two

images in each image series. Thus better results could be expected had the error been

minimized over the whole image series or had cross-validation methods been used. Tables

6.19 and 6.20 give the . values used for each set of reconstructions. It has been pointed out

that the error metric of the mean square error tends to tends to over regularize the solution

giving images an over-smoothed appearance.

6.19 Comparing ML and MAP Reconstructions

Reconstruction images for both maximum likelihood and maximum a posteriori recon-

structions are given appendix B.

Because the projection data was calculated from a set of phantom images, the recon-

struction error can easily be evaluated. The Mean Square Error (MSE) metric was used to

calculate the error between the phantom images and the reconstructed images. The MSE is
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Experiment .

9 0.010
10 0.010
11 0.020
12 0.020
13 0.030
14 0.025
15 0.035
16 0.030

Table 6.20: Values of lambda for SAT experiments using model 02

given by

MSE �
�

�

��
��

��
�  ���� (6.36)

where m is the number of elements in the reconstructed image �
 and � is the original

phantom image. The average MSE refers to the average MSE over a set of reconstruction

images.

The mean square error for the experiments in limited angle tomography are given in

Table 6.21. The MAP reconstructions for the limited angle tomography experiments show

a significant reduction in MSE error over the ML reconstructions. The use of a priori

information about the solution not only helped to reduce noise in the reconstructions but

also helped to recover the underlying shape of the phantom images. This can be seen in

some of the MAP image reconstructions in which the support of the reconstruction objects

is more accurately recovered than in the corresponding ML reconstructions, see Figures

B.11 and B.12. The support of an object in a CT scan is the area the object occupies on the

image plane.

The visual quality of both the ML and MAP reconstructions was poor with neither
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method able to accurately reconstruct the regions corresponding to the missing projection

data. This can in large part be attributed to the very small number of projections slices used

in the reconstructions.

To obtain better quality reconstructions the best course of action would be to increase

the number of projection slices collected. No improvements can be made by modifying

the likelihood model as it exactly matches the simulated measurement process. The a

priori model could be further refined by adopting a first order clique potential function

that more accurately models the distribution of the different attenuation coefficients. This

would however make the a priori distribution multi-modal making estimation of the global

maximum of the a posteriori distribution more difficult.

If taking more measurements were not feasible and refinement of the a priori model

did not realize sufficient improvements it may be necessary to redefine the solution space.

Reforming the problem as one of segmentation where only a few density levels or labels

are allowed greatly reduces the dimensionality of the solution space, although the problem

becomes one of combinatorial optimization rather than one convex optimization.

The visual appearance of the MAP reconstructions were susceptible to showing signs of

blocking and producing false edges. This is highly undesirable in a clinical environment as

false edges could lead to a misdiagnosis. Using potential functions that are more strongly

convex should reduce blocking effects and the production of false edges, although this may

lead to some loss of resolution in the reconstruction images.

While the reconstruction quality for both the ML and MAP reconstructions cannot be

described as good, the MAP reconstructions did show a strong improvement over the ML

images demonstrating that the use of a priori information can lead to greatly improved

reconstruction images.



95

4 60
0

500

1000
Experiment  01

4 60
0

500

1000
Experiment  02

4 60
0

500

1000
Experiment  03

4 60
0

500

1000
Experiment  04

4 60
0

500

1000
Experiment  05

4 60
0

500

1000
Experiment  06

4 10 20 30 40 50 60
0

500

1000
Experiment  07

4 10 20 30 40 50 60
0

500

1000
Experiment  08

Figure 6.9: Plots showing the average MSE error against iteration number for the ML
reconstructions for the different LAT experiments.
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Figure 6.10: Plots showing the average MSE error against iteration number for the MAP
reconstructions for the different LAT experiments.
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Exp Number Image Photon ML error MAP error

of slices series count mean variance mean variance

01 10 HIS 4000 430.88 2920.35 373.34 2177.70
02 10 HIS 2000 483.36 2096.84 406.49 1971.64
03 20 HIS 4000 443.25 2877.06 345.46 2178.31
04 20 HIS 2000 500.62 2885.61 371.63 2159.41
05 10 TIS 4000 193.55 1020.92 151.99 1210.84
06 10 TIS 2000 240.23 845.01 180.14 1266.75
07 20 TIS 4000 187.07 535.25 130.31 756.77
08 20 TIS 2000 246.53 373.34 144.58 902.91

Table 6.21: Average MSE and variance measures for the ML and MAP limited angle to-
mography reconstructions.

Figures 6.9 and 6.10 give the convergence results for the limited angle tomography

experiments for the ML and MAP reconstruction algorithms respectively. The average

mean square error between the phantom images and the reconstructions is used to measure

convergence. One does not usually have a phantom image to evaluate the convergence, in

these cases the change in the log-likelihood can be used as an indicator of convergence as

shown in Figure 6.11.

MSE measure Change in log-likelihood
HIS01 HIS01

Figure 6.11: Comparison of the MSE and the change in log-likelihood as measures of
convergence. The figure shows the convergence of the ML reconstruction of image 01 in
experiment 01.
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The ML reconstructions in the sparse angle tomography experiments showed much

better results than the ML reconstructions in limited angle tomography using the same

number of measurements.

In the experiments in sparse angle tomography the MAP reconstructions showed a re-

duction in error over the ML reconstructions in all but two of the experiments. This was

due to the inaccurate selection of the . parameter in those cases. The convergence of the

sparse angle tomography reconstructions was also much faster than for the LAT reconstruc-

tions. In fact, the error of the reconstructions tended to increase or remain constant past 50

iterations of the MAP algorithm as can be seen in Figure 6.15.

The appearance of the MAP SAT reconstructions is improved over the ML reconstruc-

tions although, like the LAT experiments, use of more strongly convex potential functions

may lead to visually more appealing reconstructions. The effects of using too few projec-

tion slices is evident in both the ML and MAP reconstructions. However the use of a priori

knowledge is again justified by the results obtained as they show a significant improvement

over the ML reconstructions as can be seen in Table 6.22.

Figure 6.12 allows the average results over all the LAT and SAT experiments to be

compared. The SAT reconstructions far prove more accurate than the LAT reconstructions

even though they represent the same X-ray dose to the patient. This shows the impor-

tance of collecting projection data over a full ��� degrees. The improvement of the MAP

reconstructions can be seen for both the LAT and SAT reconstructions

Figure 6.13 shows the effect of changing the number of incident photons entering each

ray. Again the MAP reconstructions prove more accurate than the ML reconstructions,

but what is more surprising is that the MAP reconstructions using half the dose of the ML

reconstructions still have a lower average error. What this means is that by using the MAP
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Figure 6.12: Average MSE for the LAT and SAT experiments

Figure 6.13: Average MSE for the different photon count experiments
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Exp Number Image Photon ML error MAP error

of slices series count mean variance mean variance

09 10 HIS 4000 184.23 2883.22 191.74 2709.66
10 10 HIS 2000 235.43 2918.92 235.46 3338.27
11 20 HIS 4000 137.74 962.32 114.60 633.33
12 20 HIS 2000 202.68 1003.46 148.78 1024.67
13 10 TIS 4000 157.09 668.56 119.68 1008.59
14 10 TIS 2000 205.96 466.10 137.80 985.80
15 20 TIS 4000 128.54 168.59 79.32 418.17
16 20 TIS 2000 191.64 245.44 95.65 398.20

Table 6.22: Average MSE and variance measures for the ML and MAP sparse angle to-
mography reconstructions.

algorithm the X-ray dose could be halved and still perform better than the ML algorithm.

6.20 Conclusions and Recommendations

Reconstructions using maximum likelihood and maximum a posteriori methods have been

compared for several different problems in transmission tomography and the MAP ap-

proach using MRFs to model the a priori distribution were shown to give better results

than the maximum likelihood method.

The theoretical framework for Bayesian image reconstruction is in a mature state. Cur-

rent and future development will involve improvement to various components within this

Bayesian framework. Likelihood models that more accurately model the physical image

formation process are being developed to take into account effects like Compton scatter,

noise in the detector and polychromatic X-ray sources. There is also work to be done in de-

veloping more sophisticated MRF models that model specific applications more accurately
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Figure 6.14: Plots showing the average MSE error against iteration number for the ML
reconstructions for the different SAT experiments.
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Figure 6.15: Plots showing the average MSE error against iteration number for the MAP
reconstructions for the different SAT experiments.
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and models that support the use of larger neighbourhoods.

The final area of development will be in the algorithms used to calculate MAP recon-

structions. The biggest limitation to the adoption of these methods is the computational

time involved, however improvements are being made in both computational power and

the efficiency of new algorithms for MAP estimation.



Chapter 7

Conclusions and Recommendations

Markov random fields prove to be a useful tool for modelling the distribution of attenua-

tion coefficients found in CT scans. The models were not overtrained due to their limited

modelling power. Even the relatively simple models derived provided improved results in

a number of different experiments over the ML method that does not take a priori infor-

mation into account. These results are all the more impressive when one considers that the

ML algorithm uses a complete statistical model of the measurement process.

The dangers of using an a priori model in an image restoration environment is that

inaccuracy in the model may lead to artifacts in the restored or reconstructed images. For

this reason convex models were investigated as convex models are more stable than non-

convex models for which small changes in the input data can lead to large changes in the

solution.

For the images on which the models were trained the potential functions that maximized

the likelihood of the sample images were non-convex. This is not surprising as the effect

of sub-sampling an image is that differences between neighbouring pixels tend to be larger.

This favours non-convex models that do not penalize large changes in neighbouring pixels

as harshly as convex models.

104
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It can therefore be expected that had the images not been sub-sampled, more strongly

convex potential functions would come to prominence.

For the maximum a posteriori reconstructions the least strongly convex convex func-

tions were used. This was done to ensure convergence of the solution and because of the

favourable properties of convex models.

The importance of training models on sample images was highlighted by the rather

surprising result that the sample images were better modelled using a 4 neighbourhood

model rather than an 8 neighbourhood model which one might assume to be superior due

to its more symmetric structure.

One of the concerns people have with using prior models is what will happen in unusual

cases. For instance, if someone with a bullet wound or extensive fractures were scanned,

would the algorithm fail because the training data did not contain these examples? In

special cases like these the algorithm would still work because of the very general nature of

the a priori model that does not include specific information about attenuation coefficients

or other specific information like the shape of the objects being reconstructed.

The appeal of taking a Bayesian approach has a lot to do with its modularity. One does

not have to tackle the whole problem at once but rather one can approach each part as a

separate problem which is then combined in the optimal manner using Bayes’ theorem. For

instance, one can improve an algorithm simply by adopting a more accurate likelihood or a

priori model. One can determine whether one has made an improvement without actually

having to run the whole algorithm on expensive validation testing.

Comparison of the experimental results with similar work is complicated by the differ-

ent aims and goals between this and previous work. Most previous work on probabilistic

approaches to transmission tomography has concentrated on the development of algorithms
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for calculating the MAP estimate with the goal of designing algorithms with better conver-

gence properties. It must be remembered that all these algorithms should give the same

solution given the same likelihood and prior distributions.

The aim of this work was not to develop another MAP algorithm, but rather to develop

the a priori model used in the MAP estimation. Where most previous work has used simple

image phantoms, this work has used real CT scans as phantom images. This has allowed the

development of more accurate models to model the distribution of attenuation coefficients

found in real CT images. It was found that MRFs can be used to model the distribution of

attenuation coefficients found in real CT scans and that these models can be used to make

better MAP estimates. The results affirm the importance of previous work in developing

the algorithms needed for MAP estimation in transmission tomography.

There is still much work to be done especially in the design of non-convex optimization

routines. There is also work to be done in the field of training MRFs with larger regions

of support. With a few caveats imposed by computational and mathematical tractability,

MRFs offer a very useful tool for modelling the a priori distributions of images within a

Bayesian framework.



Appendix A

Data Sets

This appendix describes the sample data used in Chapter 6. The sample images were

taken from a spiral CT scanner. The images generated by the CT scanner had 12 bits of

information and dimensions of 512 x 512 pixels. Smaller copies were make from these to

reduce computational loads. These smaller images have dimensions of 128 x 128 pixels

and have been quantized to 8 bit images.

A series of 10 images were taken from head studies from four patients to form the

Head Image Large (HIL) series. A series of 10 smaller images were made from this series

to form the Head Image Small (HIS) series. These images are one sixteenth the size of

the HIL images and are stored in 8 bit format. A series of 10 images were also taken from

abdominal studies from three patients to form the series Torso Image Large (TIL) and Torso

Image Small (TIS).

The pixel spacing for HIL and TIL series are given in tables A.2 and A.3. This infor-

mation is important because Markov random fields are sensitive to changes in scale. The

pixel spacing in the HIS and TIS series are one quarter the length the of pixel spacing of

the original images.
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Data Set numbering description image dimensions bit depth storage

HIL 01 - 10 head study 512 x 512 12 16-bit TIFF
HIS 01 - 10 head study 128 x 128 8 8-bit TIFF
TIL 01 - 10 torso study 512 x 512 12 16-bit TIFF
TIS 01 - 10 torso study 128 x 128 8 8-bit TIFF

Table A.1: Summary of image data sets

Image pixel spacing (mm) patient

HIL01 0.45117188 a
HIL02 0.45117188 a
HIL03 0.46289063 b
HIL04 0.46289063 b
HIL05 0.37695313 c
HIL06 0.37695313 c
HIL07 0.37695313 c
HIL08 0.37695313 c
HIL09 0.40039063 d
HIL10 0.40039063 d

Table A.2: Pixel spacing for images in the HIL series
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HIS01 HIS02

HIS03 HIS04

HIS05 HIS06

HIS07 HIS08

Figure A.1: Images in the HIS series
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HIS09 HIS10

Figure A.2: Images in the HIS series

Image pixel spacing patient
(mm)

TIL01 0.61914063 e
TIL02 0.61914063 e
TIL03 0.7421875 f
TIL04 0.7421875 f
TIL05 0.7421875 f
TIL06 0.7421875 f
TIL07 0.45703125 g
TIL08 0.45703125 g
TIL09 0.45703125 g
TIL10 0.45703125 g

Table A.3: Pixel spacing for images in the TIL series



111

TIS01 TIS02

TIS03 TIS04

TIS05 TIS06

TIS07 TIS08

Figure A.3: Sample images in the TIS series
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TIS09 TIS10

Figure A.4: Sample images in the TIS series
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Experimental Results
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HIS01 HIS02 HIS03

HIS04 HIS05 HIS06

HIS07 HIS08 HIS09

HIS10

Figure B.1: Experiment 1. Maximum likelihood reconstruction using the Convex algo-
rithm.
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HIS01 HIS02 HIS03

HIS04 HIS05 HIS06

HIS07 HIS08 HIS09

HIS10

Figure B.2: Experiment 1. MAP reconstruction using the Convex algorithm.
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HIS01 HIS02 HIS03

HIS04 HIS05 HIS06

HIS07 HIS08 HIS09
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Figure B.3: Experiment 2. Maximum likelihood reconstruction using the Convex algo-
rithm.
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HIS01 HIS02 HIS03

HIS04 HIS05 HIS06

HIS07 HIS08 HIS09
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Figure B.4: Experiment 2. MAP reconstruction using the Convex algorithm.
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HIS01 HIS02 HIS03

HIS04 HIS05 HIS06

HIS07 HIS08 HIS09
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Figure B.5: Experiment 3. Maximum likelihood reconstruction using the Convex algo-
rithm.
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Figure B.6: Experiment 3. MAP reconstruction using the Convex algorithm.
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HIS01 HIS02 HIS03
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Figure B.7: Experiment 4. Maximum likelihood reconstruction using the Convex algo-
rithm.
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HIS01 HIS02 HIS03

HIS04 HIS05 HIS06

HIS07 HIS08 HIS09
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Figure B.8: Experiment 4. MAP reconstruction using the Convex algorithm.
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TIS01 TIS02 TIS03

TIS04 TIS05 TIS06

TIS07 TIS08 TIS09

TIS10

Figure B.9: Experiment 5. Maximum likelihood reconstruction using the Convex algo-
rithm.
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TIS07 TIS08 TIS09

TIS10

Figure B.10: Experiment 5. MAP reconstruction using the Convex algorithm.
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TIS01 TIS02 TIS03

TIS04 TIS05 TIS06

TIS07 TIS08 TIS09

TIS10

Figure B.11: Experiment 6. Maximum likelihood reconstruction using the Convex algo-
rithm.
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TIS07 TIS08 TIS09

TIS10

Figure B.12: Experiment 6. MAP reconstruction using the Convex algorithm.
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TIS01 TIS02 TIS03
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Figure B.13: Experiment 7. Maximum likelihood reconstruction using the Convex algo-
rithm.
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Figure B.14: Experiment 7. MAP reconstruction using the Convex algorithm.
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TIS01 TIS02 TIS03
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Figure B.15: Experiment 8. Maximum likelihood reconstruction using the Convex algo-
rithm.
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TIS01 TIS02 TIS03
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Figure B.16: Experiment 8. MAP reconstruction using the Convex algorithm.
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Figure B.17: Experiment 9. Maximum likelihood reconstruction using the Convex algo-
rithm.
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Figure B.18: Experiment 9. MAP reconstruction using the Convex algorithm.
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Figure B.19: Experiment 10. Maximum likelihood reconstruction using the Convex algo-
rithm.
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Figure B.20: Experiment 10. MAP reconstruction using the Convex algorithm.
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Figure B.21: Experiment 11. Maximum likelihood reconstruction using the Convex algo-
rithm.
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Figure B.22: Experiment 11. MAP reconstruction using the Convex algorithm.
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Figure B.23: Experiment 12. Maximum likelihood reconstruction using the Convex algo-
rithm.
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Figure B.24: Experiment 12. MAP reconstruction using the Convex algorithm.
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Figure B.25: Experiment 13. Maximum likelihood reconstruction using the Convex algo-
rithm.
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Figure B.26: Experiment 13. MAP reconstruction using the Convex algorithm.
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Figure B.27: Experiment 14. Maximum likelihood reconstruction using the Convex algo-
rithm.
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Figure B.28: Experiment 14. MAP reconstruction using the Convex algorithm.
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Figure B.29: Experiment 15. Maximum likelihood reconstruction using the Convex algo-
rithm.
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Figure B.30: Experiment 15. MAP reconstruction using the Convex algorithm.
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Figure B.31: Experiment 16. Maximum likelihood reconstruction using the Convex algo-
rithm.
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Figure B.32: Experiment 16. MAP reconstruction using the Convex algorithm.
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