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Abstract

A partitioned particle filtering algorithm is developed to track moving targets exhibiting

complex interaction in a static environment, in a video sequence. The filter is augmented

with an additional scan phase, which is a deterministic sequence which has been formulated

in terms of the recursive Bayesian paradigm, and yields superior results. One partition is

allocated to each target object, and a joint hypothesis is made for simultaneous location of

all targets in world coordinates. The observation likelihood is calculated on a per-pixel basis,

using sixteen-centered Gaussian Mixture Models trained on the available colour information

for each target. Assumptions about the behaviour of each pixel allow for the improvement

under certain circumstances of the basic pixel classification by smoothing, using Hidden

Markov Models, again on a per-pixel basis. The tracking algorithm produces very good

results, both on a complex sequence using highly identifiable targets, as well as on a simpler

sequence with natural targets. In each of the scenes, all of the targets were correctly tracked

for a very high percentage of the frames in which they were present, and each target loss was

followed by a successful reacquisition. Two hundred basic particles were used per partition,

with an additional one hundred augmented particles per partition, for the scan phase. The

algorithm does not run in real-time, although with optimization this is a possibility.

x



Chapter 1

Introduction

The problem of target tracking in video sequences is a very advanced and complex area
of signal processing theory. Although the former seems far removed from the usual scope
of the latter, we essentially seek to analyze a two dimensional signal through time and
to identify within that signal, sub-signals, or “targets” which may themselves vary in their
characteristics, and may even interact with one another and with the embedding signal. The
embedding signal would then constitute the image of the background scene within which
the objects are moving. Due to the complexities of the interactions, the most effective
methods which have been developed maintain joint hypotheses about the location as well
as the characteristics of the targets to be found, with respect to the background scene, thus
containing and explaining the observed target occlusions.

The applications of target tracking in general which are of importance in engineering
in today’s world are many and varied, ranging from military imaging with weapon target
detection and tracking, to radar target tracking, to security and surveillance applications.
Target tracking in video sequences may be used for an even wider range, since the infor-
mation content in a video sequence is so much higher than that of radar or sonar or most
other sensor devices, passive or active. The main areas of application of target tracking in
video sequences are:

• Automatic computer controlled surveillance

• Behaviour analysis

• Video conferencing and speaker detection and identification

• Gait analysis for medical applications

• Video compression with region of interest identification.

1
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There are even some unusual applications for target tracking such as analysis of social
insect (and other animal) behaviour, and the analysis of player style and team strategy in
sports.

In this thesis we implement and explore the performance of partitioned particle filtering
on the problem of tracking with a high number of identifiable target objects. In this case
the targets are people, moving and interacting in a static scene. What makes this problem
specification more difficult than usual is the high amount of occlusion which results from
the interaction of the high number of people. Occlusion and noise are generally the biggest
problems in any target tracking implementation, and the tracker’s robustness is a measure
of how well it recovers from these phenomena, when it loses the target.

Particle filtering has only as recently as 1993 surfaced in the domain of computer vision,
where before this, the computational expense of this form of filtering was prohibitive for
online or even offline tracking applications. The advantage which the particle filter has over
other types of filters (Kalman, Extended Kalman, etc.) is that it allows for a state space
representation of any distribution. It also allows for nonlinear, non-Gaussian dynamical
and observation models, and nonlinear, non-Gaussian process and observation noises. This
results in superior performance in areas where the dynamics and observations are in fact
nonlinear and non-Gaussian and where the process and observation noises are essentially
highly non-Gaussian, as with image clutter. The partitioned particle filter was first proposed
in 1999, and allows for the partitioning of the state space for a more intelligent sampling
strategy. The computational efficiency gained through this method is of increasingly greater
benefit as the dimensionality of the state space increases, hence its applicability to the
problem of tracking a large number of targets via a joint hypothesis state vector, which
exists in a space of high dimension.

1.1 Intelligent environments

The creation of a so called intelligent environment, in which the locations of objects of
interest and of people is known at every moment is a goal in research at academic institutions
and in the industry. The ways of discovering these locations may be active, through the
use of transmitters, or passive, through the use of sensor devices.

Computer vision provides an excellent solution to the problem of discovering and track-
ing the locations of targets in a scene, with various algorithmic approaches described in the
next chapter. There are many reasons why one may wish to create an automated monitor-
ing process, which can report at any time where all the targets in the database are in the
intelligent environment. Once the locations of targets, which in this application are people,
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are known, further analysis may be performed on this data, for example behavioural anal-
ysis algorithms may be run on the location data, and on the information which subsequent
sub-location and orientation algorithms reveal. Suspicious or criminal behaviour may be
detected the moment it occurs, if a target is not where it should be or if it behaves in an
unusual way.

1.2 Problem statement

In certain intelligent environments, particularly ones involving high security, it may be
possible and highly useful to restrict the people in the scene to wearing particular types of
clothing, to assist in the performance of the tracking algorithm. The goal is the monitoring
of the interaction of the people in the environment, with the environment, and with one
another. Depending on the quality of the tracking required, targets may also wear natural
clothing, which would make a colour model tracking method such as this one operate less
effectively, but within reason, i.e. within the parameters of usable tracking performance.
Therefore we will also investigate (although in less depth) the performance of this tracker
on naturally-coloured targets. For the target recognition stage, it is possible via blue screen
technology to extract automatically segmented colour information of the target, prior to
entry into the intelligent environment, and in this implementation, this is the stage which
is simulated via the manual segmentation of the targets. We also assume that the cameras
used to monitor these scenes, and which are the input for the tracker, are static. This allows
us to discriminate more easily between background and foreground regions.

The emphasis in this thesis is to solve the problem of developing the best tracking
algorithm for such a controlled environment, which may later be optimized for speed and
real-time performance. A real-time tracker based on this algorithm may then be connected
to a network of similar trackers, which would pass initialization information to each of the
trackers receiving a new target in its range of detection.

1.2.1 Datasets and manual labelling

To establish an accurate empirical metric against which the performance of the tracker here
developed may be compared with alternative solutions, each of the pixels in each of the
frames in each of three sequences has been labelled manually. This is done to benchmark
the algorithm, and although it is an unusual investment of time, (in the tracking literature,
the performance of tracking algorithms is usually described qualitatively), the author feels
it was necessary for true evaluation of tracking performance. Due to the time consuming
nature of this manual labelling, only three sequences were so labelled.
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Figure 1.1: A frame from the indoor benchmark sequence.

1.2.2 Indoor (benchmark) sequence

To test the algorithm which is here developed, we use three test sequences. The first test
sequence is an indoor sequence, of seven people wearing highly coloured clothing, which
makes each of the targets highly identifiable, provided that they are not occluded. The
people arrive from four access points, and it is at these access points that the tracker for
the intelligent environment may be instructed to scan at regular intervals for the arrival of
new targets. The people arrive in a random order, and walk in independent random circles
around the room, deviating from these circles regularly to jump, crouch, or otherwise. The
interaction and occlusion between these people is designed to be very complex, far more
than for natural scenes, and as complex a situation as a tracker might be expected to track
successfully. The sequence is 460 frames long, and the people leave in a different order from
that in which they arrived. This indoor sequence is the benchmark sequence in the sense
that it reveals the true conditions under which the algorithm is intended to operate, and
therefore more analysis has been applied to the performance of the tracker in this scenario.
In Fig. 1.1 we can see a typical frame from the indoor sequence.

1.2.3 Outdoor sequences

The algorithm is also tested on two outdoor sequences. In these sequences, there are four
people which are naturally coloured (wearing normal clothes), and there is a corresponding
increased difficulty in distinguishing these targets from one another. The motion of the
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Figure 1.2: A frame from the first outdoor sequence.

targets is also simple and natural, and the tracker’s performance in these sequences is
tested to evaluate its performance in this scenario. These outdoor sequences are included
as an extended investigation into the performance of the tracker in other scenarios, but the
performance has not been analyzed in the same depth as the indoor sequence. In Fig. 1.2
and Fig. 1.3 we can see typical frames from each of the two outdoor sequences.

1.3 Breakdown of thesis

In chapter 2, the current and past literature on the subjects of target tracking, colour mod-
els, Hidden Markov Models and particle filtering is reviewed, as well as some of the variants
on the basic particle filtering scheme which are not strictly Bayesian in their formulation,
but which still provide good, often excellent tracking performance.

In chapter 3, the formulation of the basic particle filter is given, and the notation is
given which shall be used in this thesis with regards to particle filtering.

In chapter 4, the method of observation of the state is described, as well as the reasons
for the choice of colour space within which this observation process is performed. The
methods of training and using Gaussian Mixture Models for the classification of pixels in
the images of the video sequence is described.

In chapter 5, the effects of using Hidden Markov Models on a per-pixel basis to improve
the classification of the pixels given by the Gaussian Mixture Models of Chapter 3 are
explored.
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Figure 1.3: A frame from the second outdoor sequence.

In chapter 6, importance sampling, partitioned sampling, and the scan phase, which
is a novel implementation in this thesis, are described.

In chapter 7, the results of the combination of the sampling and observational tech-
niques in this implementation are described and compared against manually labelled data.
The basic particle filter, the partitioned particle filter, and the partitioned particle filter
with the additional scan phase, are all compared.

In chapter 8, we conclude with a summary of the results and of some of the interesting
effects that were observed. Also given are directions for possible future areas of research,
extending this work.

Although many of the latest particle filtering algorithms developed in the last few years
run in real-time, the software developed for this application does not. The framework
within which this application was developed, was optimized for extensibility and not for
speed. It is only in the more recent years that the computational power required to use
particle filtering in target tracking in video sequences has been possible at all, and it is
usually difficult to make video based target tracking implementations which can run in
real-time. The recent developments in particle filtering for tracking in video sequences
often reduce the computational expense at the observation stage by using an analysis of
the joint hypothesis to select only a part of the image region within which to perform the
observation, although this is not always valid as one should use all the available observation
data at each time step if one is to develop the best hypothesis. One particularly effective
method for doing this is discussed in Chapter 4, and involves computing in advance the
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probability for the classification of each pixel as a background pixel, and dividing through
by this value when calculating a foreground pixel’s probability, resulting in all of the image
data being implicitly taken into consideration [1]. In general and in this implementation we
may say that iterating through each pixel for each frame once per particle is certainly the
most expensive stage of the filter, and in this implementation, where there is one state space
partition created per target object, the computation required is multiplied by the number
of partitions. With state of the art equipment, and highly optimized code, it is likely that
this algorithm could run in real-time, however that is not the goal of this research.



Chapter 2

Literature Review

In this chapter we review some important literature in the various methods of target track-
ing, using linear and nonlinear filters. Methods for target location are reviewed, as well as
methods for target hypothesis evaluation.

2.1 Kalman Filter based trackers

In [21], published in 1970, Bar-Shalom and Fortmann develop the Probabilistic Data Asso-
ciation Filter (PDAF), in which a number of extensions to the Kalman filter are described
for dealing with a multi-modal Gaussian observation density, and a linear Gaussian process
density. Later in [23], their Joint PDAF (JPDAF) is developed, and the state density is
then also represented by a multi-modal Gaussian distribution. This is relevant in the gen-
eral case where there is uncertainty in the target labelling, i.e. after the target detection
stage, when the targets need to be identified. In this implementation the targets are highly
colourized and identifiable, but such data association methods can be incorporated into a
particle filter framework when the targets are capable of being confused with one another.

In [16], published in 1995, Goncalves et al. track the pose of a human arm in a monocular
image seqence, where the shoulder remains fixed, using a Kalman filter based approach.
Rehg and Kanade [17] also use a Kalman filter approach for self occluding articulated
objects, to track a hand.

Intille et al. in [18], published in 1997, develop a real-time tracking algorithm which can
track multiple objects in a known, closed environment, using contextual information which
allows for the adaptive weighting of the features used to make the matching correspondences.
The features used are blob size, colour, velocity and position. Simple Euclidean distances
are used for the position differences and the colour-average distances between blobs and
objects. This implementation has problems when dealing with blob merging, inaccurate

8
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blob segmentation, erroneous matching and no provision is made for probabilistic matching.
Davey and Colegrove in [19], published in 2001, extend the Multiple Model Joint Proba-

bilistic Data Association Filter (MM-JPDAF) described in [22] which uses PDAF techniques
to track multiple objects, and develop the “Unified Joint Probabilistic Data Association
Filter with Multiple Models” (MM-UJPDAF), which models clutter in an a priori fash-
ion, selects the measurements which are used, and incorporates the use of events for track
initialization and termination.

In [40], published in 1999, Rosales and Sclaroff use an Extended Kalman Filter formula-
tion in their implementation which uses Trajectory Guided Recognition (TGR) of actions.
People are tracked in world coordinates in a mono-camera sequence. The tracking process
is divided into three levels: image processing, trajectory estimation, and action recognition
(e.g. walking or running), and each of these three processes assist in the processing of
the three levels at the next frame. The TGR also allows for the adaptive classification of
actions.

Cham and Rehg in [24], published in 1999 develop a multi-modal representation of a
probability distribution of a state space for a person-tracking implementation, using piece-
wise Gaussians. This work is an extension of [21], where a Kalman Filter may be associated
to each mode of the target state distribution. The benefit of this method is that computa-
tion may be focused around the modes of the state distribution, provided they themselves
have been tracked accurately. The authors report superior performance to the basic particle
filter for tracking human motion. A 2D scaled prismatic model (SPM) is used to represent
the human figure. SPMs, introduced by Morris and Rehg in [25] are 2D representations
of a 3D kinematic articulated object, with constraints imposed upon their configurations
which conform to the underlying 3D kinematic constraints. SPMs do not require multiple
view geometry techniques to generate three dimensional object projections, and may be
generated quickly [24].

In [20], published in 2003, Strens and Gregory develop the Competitive Attention
Tracker (CAT). This is a Bayesian tracker which depends on multiple Velocity Estima-
tion Filters (VEFs). Each VEF is assigned to a particular target. The joint hypothesis
strategy is here discarded in favour of these VEFs, which track independently, but which
compete with one another to describe the image data. Hidden Markov Models are used on
a per-pixel basis to take into account past information, to obtain a better estimate for the
pixel state, given manually specified pixel state transition probabilities. Pixels may be in
one of five states, namely the background state, the target leading edge state, the target
region state, the target trailing edge state, and a colour change state.
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2.2 Gaussian Mixture Models and Colour Histograms

In [8], published in 1998, Rubner et al. introduced the EarthMover’s Distance to compare
two histograms of any dimension via signatures which represent the histograms. The dis-
tance is the smallest amount of work needed to transform one histogram into another. A
linear optimization is done which takes into account the distance between signatures as well
as which components of the histogram have already been used in the transformation.

Wren et al. in [45], published in 1997, track a single person in real-time. An adaptive
background per-pixel Gaussian model is developed, and a non-adaptive colour model is used
for the person. Raja et al. in [10], published in 1998, use adaptive Gaussian Mixture Models
(GMM) to track people in varying lighting conditions. Similarly, Stauffer et al. [11], use an
adaptive GMM to model the background, but not the foreground.

Khan and Shah in [12], published in 2000, develop a background model consisting of one
GMM per pixel, as well as one GMM per person. Each pixel is then classified as belonging
to an object, or to the background at each frame. This is similar to [13] published in 1997,
where Friedman and Russel develop a method for learning GMMs from incomplete data, to
solve the problem of pixels falling in shadow regions.

In [14], published in 2000, Korhonen et al. use GMMs to model the background, and
the foreground regions are identified using colour and tracked using Kalman Filters. In [9]
(2001), Robertson explores the use of adaptive Gaussian Mixture Models for background
and foreground modelling in a segmentation/tracking implementation.

Roberts et al. in [54], published in 2002 develop a method for tracking feature statistics
on the surface of a 3D articulated body model. Feature distributions are represented by
multi-dimensional histograms, and they evaluate different histogram comparison measures
as well as deriving a region-grouping algorithm to improve computational efficiency. Each
articulated part has an associated histogram, and similar articulated parts may then be
merged

In [15], published in 1998, Raja et al. develop update equations for Gaussian Mixture
Models for colour distributions in a person tracking application. The mean, covariance
and prior on each mixture component are adjusted to improve the likelihood of the current
data, but are also affected by each component’s values in the previous few frames. A tunable
parameter allows for the manual adjustment of the rate at which these components adjust
themselves to fit new data.
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2.3 Particle Filter based algorithms for tracking

In [29], published in 1995, Blake et al. describe and develop what we now refer to as the
basic particle filter, or Conditional Density Propagation (Condensation) algorithm. This
algorithm was applied to the problem of tracking contours in moving objects, such as people
and the leaves of trees, using a B-spline based contour distance measure for the observation
stage.

Hue et al. in [30], published in 2001, develop an extended particle filtering algorithm
to track multiple objects, based on a particle filtering system to identify likely targets and
then using a Gibbs sampler to calculate a stochastic vector of assignment between objects
and targets.

Rui and Chen in [31], published in 2001, use the Unscented Kalman Filter (UKF) to
generate proposal distributions thus taking the current data into account when generating
samples which represent the prior; they report a performance improvement over the simple
condensation algorithm in tracking humans.

In [51], published in 2002, Li and Zhang similarly apply the Kalman filter and the Un-
scented Kalman filter to generate importance distributions for a standard particle filter, in
which the domain of application was hand-tracking via contour based observations. Sur-
prisingly, according to their study, the Unscented Kalman Filter performed worse than the
Kalman filter in terms of both the computation time required and the error rate.

In [1], published in 2001, the article to which this work most closely corresponds, Isard
and MacCormick use a single basic particle filter to track multiple targets in a scene which
has a mostly static background. Each frame is divided into a set of square regions which
form the grid on which a filter based preprocessing stage is done. A background model is
developed, based on a Gaussian Mixture Model built on the data output of a set of six filters
which are applied to each grid element (5× 5 pixel square). A simple foreground Gaussian
Mixture Model is trained for all objects collectively (i.e. not one model per object), and
with a filtering preprocessing stage, the tracker survives simple but not complex occlusions
between the target objects. The main weakness in this implementation is in their failure to
train a separate model for each target object.

In [37], published in 1998, Isard and Blake develop the “mixed-state” condensation
tracker, where each particle carries both parameters drawn from continuous distributions,
as well as a discrete label which indicates the type of dynamics which should be applied to
the particle. Also in 1998, in [26], Isard and Blake developed ICONDENSATION, which
used importance sampling to improve the results of their particle filtering by restricting
regions of active sampling to specified areas of interest.
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The method in [38], published in 1998, uses a framework similar to [37], to track hand
outlines which are represented by a high dimensional linear state space, and a Hidden
Markov Model is used to jump between active areas in this space.

In [32], published in 1999, MacCormick and Blake introduce partitioned sampling, a
method used in this work which can be used as a kind of iterative importance sampling
technique, which may be used to refine a probability distribution in areas of interest without
introducing bias, thus allowing computation to be spent on a set of samples which is more
likely to be in a useful region in the state space. A probabilistic exclusion principle is also
introduced which prevents image data from supporting hypotheses for the target objects
which are mutually exclusive.

MacCormick and Isard in [33], published in 2000, apply the partitioned sampling paradigm
to the problem of tracking articulated objects, which is a natural domain of application both
for partitioned sampling and annealed sampling techniques. They develop a hand-tracker
based on contour tracking which is sufficiently fast and robust as to make it a suitable
choice for computer user-interfaces. Another important contribution of [33] is that of a
new measure against which to evaluate particle filters, namely the sample set survival rate,
which indicates how many samples were maintained and propagated at each time step as
opposed to those which are discarded. The value of this measure is that it is useful to know
how much of the computation is useful for a particle filter implemented for a particular
problem, since it is usual to be interested only in the location, size and shape of the local
maxima of a distribution.

Gordon in [34], published in 1997, uses a multiple target tracking methodology similar
to [32], but without an exclusion principle, and with a different observation model.

In [35], published in 2000, a technique called Annealed Particle Filtering (APF) was
developed by Deutcher et al. to iteratively improve the samples representing the posterior
distribution based on a set of successively sharpened weighting functions. This method is
said to search the state space more efficiently than does the basic particle filter.

In [36], Deutscher et al. advance their earlier work in [35] on the Annealed Particle
Filter, to adjust the noise added to particles in each annealing layer based on the variance
of the particle’s parameter components within each layer. This yields a so called “soft
partitioning” of the state space, and an improvement in human motion tracking over simple
APF. A crossover operator, taken from the literature on genetic algorithms is also introduced
which allows for the combination of different particle (sample vector) components in the
formation of a new particle.

In [39], Vermaak et al. extend the particle filter framework via importance sampling to
include marginalization over a data association probability distribution, for a radar tracking
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scenario where many points may belong to each target, all among background clutter.
In [41], Torma and Szepesvari develop LS-N-IPS (Local Search N-Interacting Particle

System), replacing the dynamics stage of the standard particle filter with a local search
step. Each particle is thus refined analytically based on the information yielded in the
observation stage, which is a B-spline perpendicular distance measure similar to that used
by Isard in [7], and MacCormick and Blake in [32]. A uniform convergence property for
LS-N-IPS is also proven.

In [42], published in 2003, Khan et al. track multiple targets (social insects) using a
Markov Random Field as the prior for a motion model. A single joint particle filter for all
targets is discarded in favour of a particle filter for each target, which is reported to yield
superior results. Each filter is prevented from being in a similar state to any other via a
Markov Random Field, which is a factor in the observation for each filter.

Pitt and Shepherd in [44] (published in 1997) developed the auxiliary particle filter,
and tested it on simulated range data, where it outperformed the standard particle filter.
Two weighted bootstraps are performed per time step. In the first, particles are weighted
according to some function of the dynamics distribution rather than the sample drawn from
the dynamics. This intermediate distribution is then resampled and weighted according to
the true observation for the particle.

In [46], published in 2003, Bruno develops a mixed-state particle filter framework, ac-
cording to which changes in the object’s appearance may be modelled via a state variable
and a corresponding method for observing the target depending on its state. The framework
is developed for both the Auxiliary Particle Filter as well as the SIR particle filter. The
algorithms are tested on synthetic infrared airborne radar data, where both outperform the
standard condensation tracker.

Nummiaro et al. in [47] track multiple objects using an adaptive colour based particle
filter. The Bhattacharyya coefficient is used to compare the distributions of the observation
and the target model. The model is only updated if the current estimated position of the
object has an associated probability which is higher than some threshold. This will prevent
the target histogram from being updated if the target is temporarily or permanently lost.

In [48], published in 2003, Li and Chue use an adaptive colour histogram technique
for tracking human targets. Data is classified as labelled or unlabelled at each time step,
and the unlabelled data is used to adjust the colour histogram which is calculated from
the labelled data. Unlabelled data contributes in proportion with the probability which is
associated with the particle which generated it, and unlabelled data is so classified if its
probability measure is below a certain threshold.

Odobez et al. [50] in 2003 remove the independence assumption of the data per frame in
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the SIR particle filter, adapting the filter so that dependence between data at successive time
steps is taken into account, as is dependence between data and the state at the previous time
step. It turns out that only the measurement equation changes. This measurement equation
is factorized into the product of a correlation measurement and a shape measurement. In
the correlation measurement, the correlation between the data at the target window at the
current and previous time steps is taken into account; in the shape measurement, contour
distances may be calculated. In this way the need for pre-trained appearance models is
bypassed, provided that the tracker is initialized at the correct position. Pre-trained target
reference models such as colour histograms may also be used to augment this system,
yielding improved results.

In [52], Zhou et al. stabilize the standard tracker using adaptive observation models,
a velocity model with adaptive noise variance, and adaptive numbers of particles. The
adaptive velocity is computed using a first order linear predictor depending on the previous
particle configuration. Their algorithm is tested on vehicles and human faces, and is superior
to a standard particle filter.

In [53], published in 2002, Vermaak et al. use a stochastic Expectation-Maximization
algorithm to adapt the observation model of the target object (where the observation con-
sists of histogram comparison). In addition, the observation model is adjusted only when
the target is both present and in motion. The dynamical model for the translation and
scaling of the target follows a Langevin dynamical model, and conjugate Dirichlet priors
are used for the observation model to allow for a closed form solution in the Maximization
step of the observation adjustment. In a similar implementation to [1], the image data is
preprocessed with three isotropic Gaussian filters per pixel, two to reveal the colour, and
one to reveal the apparent target motion occurring at that pixel. At each time step the
image is scanned for likely target locations, and these locations are used as the proposal
distribution in the particle filter.

2.4 Variants on the Particle Filtering algorithm

In [49], published in 2002, Bruno extends the bootstrap filter to include importance sam-
pling, and also uses a 2D non-causal Gauss-Markov random field model to describe the
clutter spatial correlation. The tracking is compared to tracking on the same data using
the Kalman-Bucy filter, which the extended bootstrap filter then outperforms.

Tacher and Darrel, in [55], published in 2003, develop a Bayesian pose recovery algorithm
to track the upper body of a person. Importance sampling and a kinematic modelling are
used, and at each stage the current frame is analysed and the pose extracted. The pose from
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the previous frame may be used as a constraint on the sampling for the current frame, but
the framework does not conform to particle filtering, although according the the authors,
the implementation is superior to the basic particle filter with diffusion dynamics.

In [27], published in 1997, Higushi applies principles from genetic algorithms, namely
the crossover and mutation operators, to the sample sets which represent the posterior
distributions of the standard particle filter at each time step. The sample sets are treated
as populations and the samples as individuals, the components of which may be combined
with one another (crossover) or altered (mutation) to provide samples for the iteration at the
next time step. The new population (sample set) in this implementation was generated after
the Sequential Monte Carlo (SMC) resampling stage. The drawback of this implementation
is that the genetic modification stage affects the convergence of the algorithm to the true
posterior distribution. In addition, the genetic modification of the samples in the population
were based on their binary representation, as is often the case in genetic algorithms, however
this is inappropriate for high precision, multidimensional problems.

In [28], published in 2002, Tito et al. introduce a new form of the Genetic Particle Filter,
called the Genetic Sampling Importance Resampling (GSIR) filter. In this implementation,
the genetic operators are capable of working directly on the floating point numbers, and
also allow for convergence to the true posterior distribution.

Choo and Fleet in [64], published in 2001, develop a Hybrid Monte Carlo (HMC) filtering
algorithm to track people. Each person is tracked by a Monte Carlo Markov-Chain, with
the idea that the state space may be explored faster than in a traditional particle filter
by creating a fewer number of particles, each of which searches the state space using the
posterior gradient, while all the chains taken together, still converge towards the correct
posterior. In a 28 dimensional tracking problem, it is found that the HMC filter is several
thousand times faster than a traditional particle filter.

2.5 Multi Camera Tracking

In [61], published in 1996, Gavrila and Davis use a generate-and-test strategy to search
through pose space for the articulated body tracking, with a robust variant of chamfer
matching [62] used as a match metric. Areas of interest in the multi-view data are obtained
through background subtraction, and the basic pose (major axis of orientation) of the person
is extracted from a Principal Component Analysis (PCA) of data points sampled from the
region of interest. A constant acceleration model is used with a best fit search technique,
and the search space is decomposed in a precursor to partitioned sampling for condensation
trackers.
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Haritaoglu et al, in [56], published in 1998, use intensity and disparity images obtained
from a stereo camera rig. Background pixels are modelled by establishing for each a maxi-
mum, minimum and maximum change per frame (intensity only is used, not colour). Objects
are then matched using templates, shape analysis and dynamics.

In [57], published in 1998, Darrel et al. combine colour and face detection and the use
of a stereo camera system for tracking people. A distinction is made between long, medium
and short term tracking, and different data is used to track in these different phases (i.e.
face detection for long term tracking and dynamics for short term tracking).

Krumm et al. in [58], published in 2000, locate the targets using stereo information,
then use colour to identify them, by means of histogram intersection. Birchfield in [59]
(1998) also used histogram intersection as well as intensity gradients to track heads.

In [60], published in 2002, Black et al. use a multi camera system and a pair of Kalman
filters per target per camera. One of the Kalman filters tracks the object in 2D image
coordinates, while the other simultaneously tracks the object in 3D world coordinates.
Information about the observation uncertainty is passed by covariance propagation from the
2D Kalman filter to the 3D Kalman filter to assist its tracking, and viewpoint integration
is done by calculations of the homographies (planar mappings) of the views.

Lee et al. in [63], published in 2002, develop a method for integrating analytical inference
into the particle filter tracking, which allows subsets of the state space to be updated at
any time. Points belonging to the target object are solved for using the multiple-view
geometry, and these points are analyzed to find specific body parts within the region in
world coordinates. This information is then used to solve for a part of the state space, and
the particle filter is then used to search the rest of the state space.



Chapter 3

The basic particle filter

In this chapter the equations for the basic particle filter are presented, along with algorithms
which may carry out these equations. Ways of incorporating a dynamical model into the
particle filter framework are also described.

3.1 Introduction

3.1.1 Bayes Rule and Chain Rule of Probability

The basic particle filter is based on Bayes rule:

p(X|Z) =
p(Z|X)p(X)

p(Z)

where p(X) represents in this text the probability of the system state X, and p(Z) represents
the probability of the observation Z.

We also recall the chain rule of probability, which is

p(A,B,C) = p(A|B,C)p(B|C)p(C)

and is used to derive the recursive formulation of the particle filter equations.

3.1.2 The Markov property in Stochastic dynamics:

A general assumption for the system dynamics is that the state variables form a temporal
Markov chain:

p(Xt|Xt−1) = p(Xt|Xt−1),

17
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where

Xt =


Xt

Xt−1

...

X1

 .

This is to say that insofar as each system state is dependent on the states before it, it is
dependent only on the state immediately preceding the current state, (although of course
it is also dependent on other variables, as we shall see).

3.1.3 Independence in Measurement:

Observations Zt are assumed to be mutually independent and also independent from the
dynamical process:

p(Zt−1,Xt|Xt−1) = p(Xt|Xt−1)
t−1∏
i=1

p(Zi|Xi).

Since observation densities p(Zi|Xi) are assumed independent:

p(Zt|Xt) =
t∏

i=1

p(Zi|Xi).

The latter is a simplifying assumption, which may not be accurate. In fact, the data
in a single frame is actually highly correlated with the data in the preceding frames, which
will of course affect the posterior state distributions for those frames, as is the case with any
natural scene. The recursive Bayesian formulation is simpler to derive and express with this
assumption. In more recent work, [50], improved results are achieved in a more complex
implementation when this assumption is discarded in favour of a more critical examination
of the dependencies, however in this implementation and in the general particle filtering
literature, this assumption is used.

3.1.4 Conditional probabilities

The conditional probabilities resulting from our observational independence and Markovian
conditional dependence assumptions in the state space dynamics may be represented graph-
ically as in Fig. 3.1, where an arrow indicates dependence of the variable at the target of
the arrow on the variable at the source of the arrow:
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Figure 3.1: Graphical representation of conditional dependencies over four time steps.

This graphical notation for conditional dependence is used extensively in the field of
Bayesian networks, and has been used in [50] and elsewhere.

3.1.5 Particle Filter Equations

The rule for the propagation of the state probability distribution in time is:

p(Xt|Zt) = ktp(Zt|Xt)p(Xt|Zt−1),

where
p(Xt|Zt−1) =

∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Zt−1)dXt−1,

in which p(Xt|Xt−1) represents the state dynamics, and may be defined for each time
step t, and p(Zt|Xt) represents the observation density at time t. The observation density
may also change over time, as the data Zt against which the state vector Xt is to be
compared. This latter probability is the answer to the question, how likely is it that a
particular state vector gave rise to the observed data. The normalizing term kt may be
expanded as

kt = p(Zt|Zt−1),

and kt then does not affect our state prediction except via an overall multiplicative
factor, which will not affect our state estimation, prediction, or any other operations.

There are a number of ways in which these equations may be carried out algorithmically.
Perhaps the most commonly used method is to represent the current state distribution by a
weighted set of samples (also known as particles): {s(n)

t , π
(n)
t , c

(n)
t }, with n = 1, 2, .., N where

s(n)
t represents the nth sample at time t, π(n)

t represents the probability weight associated
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with that sample, and c(n)
t represents the cumulative probability distribution of the samples

up to the sample in question, where we assume some random order has been established on
the samples. Such a sample set may then approximate any distribution Pt(x):

Pt(X) =
N∑

i=1

π
(i)
t δ(X− s(i)

t ),

where δ(.) is the Dirac delta. The question arises how we may sample, or simulate from a
distribution represented by such a set of particles, and one way is Factored Sampling. As
the number of samples tends to infinity, so does the approximate distribution tend toward
the true distribution.

3.1.6 Factored Sampling

Factored sampling represents one way to sample from this distribution. As mentioned earlier
each sample is assigned the normalized probability

π
(i)
t =

pz(s
(i)
t )∑N

j=1 pz(s
(j)
t )

,

where
pz(s

(i)
t ) = p(Zt|Xt = s(i)

t ),

which is the observation density given a sample value Xt and measurement data Zt.
To perform factored sampling, we choose from this prior, with replacement, sample s(j)

t−1

with probability πj
t−1. For each sample thus chosen, we sample again from the dynamical

distribution p(Xt|Xt−1 = s(j)
t−1), to generate a sample s(j)

t , and this sample is then evaluated
against the observation density p(Zt|Xt = s(j)

t ) to find its unnormalized probability.

3.1.7 Algorithm for particle filtering using factored sampling

The following algorithm will generate from the prior, represented by the sample set {s(n)
t−1, π

(n)
t−1},

with n = 1, 2, .., N for time t − 1, a posterior distribution, represented by the sample set
{s(n)

t , π
(n)
t }, with n = 1, 2, .., N for time t.



21

For each time step, construct the nth of N new samples as follows:

1. Select a sample s′(n)
t−1 = s(j)

t−1 with probability πj
t−1.

2. Predict by sampling s(n)
t from the distribution:

p(Xt|Xt−1 = s′(n)
t−1)

3. Calculate the observation probability using the observation data for that timestep Zt,

and weight the particle accordingly. So

π
(n)
t = p(Zt|Xt = s(n)

t )

After all N samples have been generated with their corresponding probabilities, the sample

probabilities across the sample set are normalized so that:

N∑
i=1

π
(i)
t = 1

We may also calculate the cumulative distribution across the sample set for ease of
sampling in the next time step.

Each sample may thus be stored as a tuple (s(n)
t , π

(n)
t , c

(n)
t ) after all samples have been

evaluated where:
c
(1)
t = π

(1)
t

c
(n)
t = c

(n−1)
t + π

(n)
t {n = 2, 3, .., N}

The benefit is that to generate a sample from a sample set so represented, we may
randomly generate a number r from the uniform distribution between zero and one, and
then search in increasing order through the sample set until we come across a sample whose
cumulative probability weighting c(n)

t is greater than r. This is then a fair (approximated)
sample from the distribution which the sample set approximates.

3.1.8 Processing all the samples

Another formulation of the algorithm to represent the particle filter equations is to evaluate
all of the samples which make up the prior. Although this is generally inadvisable, since we
would prefer to spend our computation on samples which are closer to the peaks of the prior
distribution, this formulation is still valid and is also helpful in understanding Importance
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Sampling which we discuss later.

The following algorithm will generate from the prior, represented by the sample set {s(n)
t−1, π

(n)
t−1},

with n = 1, 2, .., N for time t − 1, a posterior distribution, represented by the sample set
{s(n)

t , π
(n)
t }, with n = 1, 2, .., N for time t.

For each time step, construct the nth of N new samples as follows:

1. Select the nth sample from the prior. s′(n)
t−1 = s(n)

t−1

2. Predict by sampling s(n)
t from the distribution:

p(Xt|Xt−1 = s′(n)
t−1)

3. Measure and weight the new sample according to the observation data for that timestep

Zt and the source sample’s probability in the prior. So

π
(n)
t = p(Zt|Xt = s(n)

t )π(n)
t−1

After all N samples have been generated with their corresponding probabilities, we then

normalize the sample probabilities across the sample set so that:

N∑
i=1

π
(i)
t = 1

Actually, we also require for this algorithm to be effective a resampling step after the third
step, but we will discuss this in greater depth in Chapter 6. We can see that this algorithm
is similar to the Factored Sampling algorithm, but the first step has become redundant
since all samples are processed. Thus we need to maintain each sample’s prior probability
as a factor in its posterior probability in step 3.

3.1.9 Moments

If we are interested in estimating the moments of the posterior distribution, we may calculate
them directly from the sample set as:

E[f(Xt)] =
N∑

n=1

π
(n)
t f(s(n)

t ).
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For example to establish the mean state we could set

f(Xt) = Xt.

More often we are interested in the maximum a posteriori (MAP) value in the posterior
distribution, which corresponds to the sample in the posterior sample set which has the
highest associated probability, or

m = argmax
j

P (Zt|Xt = s(j)
t ),

then s(m)
t is the sample with the highest observation probability and for our purposes the

MAP state estimate for a particular time step t. Although it can be argued that when
we use the Minimum Mean Square Error (MMSE), which is the first moment of the state,
the estimate is more robust, it was judged in this implementation that the MAP estimate
gives visually preferable results for the state. To show this, consider a minimal case, where
two particles are used to track an object. When the MMSE estimate is used, if a correct
particle has a probability only slightly greater than the second particle which represents
an incorrect hypothesis (this may occur for example when a particle is tested against a
target which is similar to the actual target), the MMSE estimate will be a weighted average
of these two particles. But because the weights are similar, the estimate exists in space
somewhere between the true target and the false one, and is entirely useless. With more
particles, this effect remains whenever parts of the data closely but imperfectly mimic the
target, as is the case in the sequences we analyze in this thesis.

3.2 Dynamics of the Basic Particle Filter

The specification of the dynamical distribution P (Xt|Xt−1) is important to the successful
performance of a particle filter. For a particle filter to track correctly and in the allotted
processing time, it is important that the samples which are measured are drawn from an
optimal location in the state space, and the accurate determination of the state dynamics
is one way to optimize the location of these samples.

Object dynamics are sometimes represented a second order auto-regressive process, with
additive noise. Therefore,

Xt = A2Xt−2 +A1Xt−1 + D0 +B0wt

where wt are independent vectors of independent standard normal variables. A1, A2 are
matrices representing the deterministic components of the dynamical model, B0 represents
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the stochastic component, and D0 is a steady state dynamical term. We may also express
this by forming a vector

Xt =

 Xt−1

Xt

 ,

so that

Xt = AXt−1 + D +Bwt,

where

A =

 0 I

A2 A1

 , D =

 0

D0

 and B =

 0

B0

 .

3.2.1 Specifying the dynamical variables

With the dynamics defined this way, the system becomes a set of damped oscillators, with
natural frequencies and damping constants determined by A, and with external additive
noise determined by B. To set these constants by hand in the case of a single stochastic
variable xt where

xt = a2xt−2 + a1xt−1 + bwt,

we can assert our damping constant β, our natural frequency f , our root mean square
average displacement ρ, with a system time step of length τ . We would then have:

a1 = 2 exp(−βτ) cos(2πfτ)

a2 = − exp(−2βτ)

and

b = ρ

√
1− a2

2 − a2
1 − 2

a2
1a2

1− a2
.

This mode of specifying the dynamical parameters is generalizable to multiple state
variables.

If dynamics are taken into consideration, this will typically be done by including an
additional dimension representing the velocities of all its current dimensions. Stochastic
diffusion noise may be added to the components of the state vector (which usually represent
position) of the particle after it has been operated on by the transition matrix A, and noise
corresponding to acceleration in the particle may be then added to the velocity dimension
of the corresponding position dimension.
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So, with x, y, z representing 3D coordinates for example,

Xt = (x, y, z)

would be replaced with
Xt = (x, y, z, ẋ, ẏ, ż),

and in this case

A =



1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Implementations of particle filtering usually do not include any dynamics other than
stochastic diffusion. The extra dimensions required in the particle vector essentially double
its size, and although there is a high degree of dependence between each velocity element
and its corresponding position element, the number of samples taken would usually have to
increase to compensate for the larger size of the state space, resulting in a higher computa-
tional load. In addition, in the target tracking domain, it is often the case that the velocity
of the object changes too suddenly and too frequently for the inclusion of a velocity term
to be expedient.

In the case where the state space represents something more complicated than simple
position and orientation, but rather something like a configuration in shape-space, a dy-
namical transition matrix may not be obviously specified. In such a case, is may be useful to
learn a dynamical model from typical training data. This method is in fact also applicable to
the case of a position/orientation state space, and would allow us to use a dynamical model
without including a velocity term in the particle vector, but in target tracking problems, it
is not usual to be able to infer useful general dynamical trends except for specific problems,
e.g. people (targets) generally walking in a particular direction and then generally turning
in a particular direction when they have reached a particular point.

3.2.2 Learning a dynamical model

The following algorithm, taken from [7], allows us to calculate estimates for the matrices
which represent the state space dynamics.

Given a correct sequence of points in state space (X1,X2, ..,XN ),
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1. Sums and autocorrelations are calculated:

Ki =
N∑

k=3

Xk−i, Kij =
N∑

k=3

Xk−iXT
k−j , K ′

ij = Kij −
1

N − 2
KiK

T
j

2. Then we may calculate the matrices for the dynamics using

A1 = (K ′
01 −A2K

′
21)K

′−1
11 )

A2 = (K ′
02 −K ′

01K
′−1
11 K ′

12)(K
′
22 −K ′

21K
′−1
11 K ′

12)
−1

D0 =
1

N − 2
(K0 −A2K2 −A1K1)

3. Then B0 is the matrix square root B0 =
√
C with

C =
1

N − 2
(K00 −A2K20 −A1K10 −D0KT

0 )



Chapter 4

Measuring conditional probability
of observations: Gaussian Mixture
Models and Colour Spaces

We have seen in the previous chapter how to implement the sampling and dynamics stages
of the particle filtering algorithm, what remains to understand the basic particle filter is to
describe the method of taking the observation for a particular sample, i.e. how to calculate
p(Zt|Xt = s(i)

t ). The observation of a particle seeks to calculate the likelihood that the
hypothesis has caused the current observed data. Within the problem domain of particle
filtering for tracking people, we may say that in general there have been two approaches:
contour based, and colour/histogram based. Each has its own advantages. The contour
based approach has the benefit of allowing greater detail to be used in the hypothesis
model, since the locations of body parts (limbs, torso) may be detected and independently
verified via an edge detection matching against an image which has been preprocessed by
an edge detection filter, such as the Canny, Sobel or other.

The benefit of using a colour/histogram measure is that very often the colour properties
of a target object vary very little with the aspect of the object, so that a total object
localization becomes easy to do, although perhaps the particular configuration of the object
would be more difficult to calculate. If the colour information known about the target is
not useful in distinguishing it in the scene, then one may need to rely on contour, or other
information. However, for this implementation, where the environment is controlled, and
the targets are wearing identifiable colours, we prefer using a colour based method. In
particular we seek to classify the image data on a per pixel level, using the available colour
descriptions of the targets. We therefore use Gaussian Mixture Models, which have been
shown many times to be highly applicable to this class of problem. The method with which

27
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the GMMs are trained is based on the Expectation Maximization algorithm, and is due to
Nabney, [67]. The reader may refer to Appendix A for a full description of this algorithm.

4.1 Colour spaces

The usual Red-Green-Blue (RGB) representation of colour data is just one of many different
available colour spaces. In fact, there are many reasons why the RGB space is less useful
than other spaces, and for this reason we need to examine the use of other colour spaces
for the representation of our colour data, and for the formation of the Gaussian Mixture
Models for out target objects. Different spaces yield different models, as can be inferred
upon examination of colour space scatter plots of data points (pixel values) in sample
distributions taken from the various target objects. There are a number of different colour
spaces at our disposal. The effect of using different colour spaces, given that our original
data is recorded in RGB space, will be to adjust linearly or nonlinearly the location of each
colour point, as well as the distances between colours. Thus our methods for comparing
colour distributions will be affected, as will the calculation of the probability of a pixel of a
particular colour belonging to a particular mixture model.

4.1.1 RGB

Human beings have three types of photoreceptors, which are sensitive, approximately, to
red, green and blue colour wavelengths. When we want to capture any particular colour,
we may do it with colour detection sensors in such a way that enough information is stored
to stimulate human photoreceptors to experience the same colour on reproduction. One
way of doing this is to use sensors which have approximately the same frequency response
as each human photoreceptor.

For any colour capture device, we define the red, green and blue components of a par-
ticular light as

R =
∫ 830nm

300nm
S(λ)R(λ)dλ,

G =
∫ 830nm

300nm
S(λ)G(λ)dλ,

B =
∫ 830nm

300nm
S(λ)B(λ)dλ,

where R(λ), G(λ), B(λ) are the red, green and blue sensors’ respective sensitivity to
wavelength λ, and S(λ) is the incoming light spectrum. Since the definitions of red, green
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and blue depend on the capturing device, we notice that the RGB space is therefore itself a
device-dependent colour space. There exist methods for calibrating any device-dependent
RGB data into perceptually uniform colour spaces, and providing this is done, we may
subsequently transform the calibrated data into other spaces. One reason why we may
wish to perform such transformations is that in the RGB space, there is high correlation
between the R,G and B components in natural images. Another reason is the perceptual
non-uniformity in the RGB space, where there is a low correlation between the Euclidean
distance between two colours and their perceived colour difference.

4.1.2 Opponent colour space

This colour space was constructed by Ewald Hering after he noted that certain hues never
appear together, for example red-green or yellow-blue. This provides a natural way to
formulate a colour space which had low correlation between components in natural light.
It was later discovered that there is a layer in the human visual system which converts the
RGB stimuli of the cones into an opponent colour space. The new components are:

RG = R−G,

Y eB = 2B −R−G,

WhBl = R+G+B.

There is also a logarithmic opponent colour transformation:

RG = logR− logG,

Y eB = logB − (logR+ logG)
2

,

WhBl = logG.

4.1.3 Ohta transformation

This is an approximation to the Karhunen-Loeve transformation of the RGB components of
natural colours, and was developed for a region segmentation application by Ohta, Kanade
and Sakai in 1980 [70]. The components are very well decorrelated:

I1 =
R+G+B

3
,

I2 =
R−B

2
,

I3 =
2G−R−B

4
.
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4.1.4 YUV and YIQ

The YUV and YIQ colour spaces are used in the transmission of analogue television, the
former in Europe, the latter in North America. These spaces seek to encode the luminance
in the Y component, and the chromaticity information in the other two channels. All three
channels are orthogonal, and relatively decorrelated for naturally occurring colours. These
colour spaces are well known, and widely used.

Y

U

V

 =


0.257 0.504 0.098

−0.148 −0.291 0.439

0.439 −0.368 −0.071

×

R

G

B

 .+


16

128

128


4.1.5 HSV

Hue-Saturation-Value is one of the so called phenomenal colour spaces, where a colour is
described by its hue (redness, yellowness, etc), saturation (level of non-whiteness), and value
(total brightness of perceived colour). This is the mind’s most natural way of classifying
colour. There are a number of different definitions for the transformation from RGB to
HSV space. One such definition is:

H =


G−B

max(R,G,B)−min(R,G,B) if max(R,G,B) = R

2 + B−R
max(R,G,B)−min(R,G,B) if max(R,G,B) = G

4 + R−G
max(R,G,B)−min(R,G,B) if max(R,G,B) = B

S =
max(R,G,B)−min(R,G,B)

max(R,G,B)
,

V = max(R,G,B).

If the saturation is zero, then the hue is undefined.

4.1.6 XYZ

The XYZ transformation, proposed by the International Commission on Illumination (CIE)
along with L*a*b*, is used as a linear transformation on the RGB data before the L*a*b*
conversion is applied. Not all visible colours may be represented by linear combinations of
primary colours in RGB space. To solve this, we may use XYZ space, in which all visible
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colours may be represented as linear combinations of X,Y and Z, which are not real colours,
and are so termed virtual primaries. The transformation is:

X

Y

Z

 =


0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950227

×

R

G

B

 .
4.1.7 L*a*b*

The L*a*b* is a nonlinear transformation from XYZ space, and usually RGB data is first
transformed into XYZ, then to L*a*b*. It was proposed in 1976 by the CIE, and was
intended to be a perceptually uniform colour space [69], suitable for measuring colour dif-
ferences under daylight or similar conditions. The XYZ values are normalized by the so
called white point, and this allows us to use the L*a*b* space in different lighting conditions.

L∗ =

 116( Y
Yn

1
3 )− 16 if Y

Yn
> 0.008856

903.3( Y
Yn
− 16) if Y

Yn
≤ 0.008856

a∗ = 500[f(
X

Xn
)− f(

Y

Yn
)]

b∗ = 200[f(
Y

Yn
)− f(

Z

Zn
)]

where

f(t) =

 t
1
3 if t > 0.008856

7.787× t+ 16
116 if t ≤ 0.008856.

In the L*a*b* space, perceptual colour differences can be quantified as the Euclidean
distance between points in this space.

4.2 Extracting GMM models for target objects

Models for the target objects may be obtained by taking one or more manually segmented
frames, possibly from the tracking sequence itself, and extracting a set of RGB points for
each target object. These data points are then used to create a Gaussian Mixture Model
for each target object.
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A set of Gaussian Mixture Models is created in this way for each target object, with
the RGB data converted to various colour spaces beforehand. Although this may make a
difference for example in the positions of the means and in the final covariance matrices
for each model, we do not investigate the effects of different colour spaces on the tracking
algorithm itself. Instead, we inspect the probabilistic pixel labelling produced by comparing
the pixels of an image with respect to each of the GMMs we have created, and investigate
a metric which we have developed to test the correctness of the pixel classification in these
probability maps. The probability maps presented in section 4.6 demonstrate the quality
of the probabilistic pixel labelling produced by this process.

4.3 Developing a set of GMMs for the background

Assuming that the camera and scene are static, we have at our disposal information about
what the static background looks like. We can use this to assist in the probabilistic classi-
fication of individual pixels in the scene.

The approach taken in this implementation with respect to the classification of the in-
dividual pixels, is to develop a GMM for each background pixel according to its behaviour
as observed over several frames. Since the camera and the scene are largely static, it was
deemed sufficient to approximate the behaviour using a single Gaussian center and covari-
ance matrix, although the framework allows for individual pixel models with an arbitrary
number of mixture centers. An alternative approach, used in [1], is to create GMMs for
a region of pixels. This would assist in situations where parts of the background actually
move, such as the leaves of trees blowing in wind. However, since we are dealing with an
indoor intelligent environment, we do not expect the scene to behave in this way.

When calculating the probability that a pixel belongs to a particular model, we create
the activation matrix A, as we did when training the GMM for each object model (see
Appendix A), using all the available GMM object models and their associated means and
covariances. A contains in its entries probabilities of data points being caused by each
mixture center. From this we create a normalized posterior matrix R, which is a normalized
causality matrix which also takes into account the prior probabilities of the mixtures centers
in A. Included in this set of GMMs is the GMM for the background model for the pixel
which is currently being tested.

Care must be taken to label each mixture component with the model to which it belongs.
Our new vector of mixture center priors, which originally looked like
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P =
[
p1 p2 . . . pK

]
,

will now be composed of labelled entries,

P =
[
p1
1 p1

2 p2
3 p2

4 p3
5 p3

6 . . . p5
K

]
,

where pm
n indicates that this element of the prior vector P is associated to mixture

component n, which belongs to model m, where m is an element of the set of h available
mixture models. Typically we will have one mixture model per target object, and one for
the background at the current pixel.

It is more convenient for the notation to represent the models to which each mixture
center belong in a separate vector:

L =
[

1 1 2 2 3 3 . . . 5
]
.

Assuming that there is no a priori bias towards any one of the models, we need to
normalize the prior vector in such a way that the sum of prior probabilities for each model
are equal:

K∑
i=1

δm(Li)pi =
1
h

m = 1..h

where h is the number of models we are using, including the background model, and δm(.)
is a dirac delta centered at m. The number of mixture centers per model may thus vary if
desired.

4.4 Samples representing locations of target objects

In this implementation, we seek to track moving targets, which are people, through a video
sequence. The state space in which our state distributions exist represents the joint space
of all the 3D locations of the target objects. For a single person, our state vector would
consist of that person’s x,y and z position, in world coordinates. Since a single particle in
our prior, dynamical or posterior distribution represents the location of all the people in
the scene, the particle vector is a concatenation of the x,y and z coordinates of all of the
people in the scene. If there are N people being tracked in the scene, then the jth particle
at time t might look like

s(j)
t = [x1, y1, z1, x2, y2, z2, ..., xN , yN , zN ]T ,
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Figure 4.1: Image projection of sample generated at a particular time in a particle filter, or parti-
tioned particle filter, in this implementation.

if there are N people in the scene.
To take an observation of an object using image data, we need to project the location of

the hypothesized region in which the person lies into image coordinates. In the spirit of [1],
we choose to represent the region which a person occupies as an ellipse in world coordinates.
This 3D conic benefits from many invariant properties as well as being simple to render into
a calibrated scene. In this implementation we use the OpenGL rendering pipeline which
fits neatly into the C++ code in which the rest of the particle filtering algorithm is written.

All the ellipsoids are rendered into an empty scene, which we may then search through
to discover the pixel labelling generated by any sample hypothesis. The use of a joint
hypothesis of all target objects within a single particle has the added advantage that mutual
occlusion between the target objects may be modelled in terms of the pixel labelling after
the rendering stage. As examples of joint hypothesis ellipsoids generated by particles, we
see Fig. 4.1, Fig. 4.2 and Fig. 4.3.

4.5 Observing particles using Gaussian Mixture Models

Now that we have developed a method for assessing the probability that any pixel belongs
to any of a set of models, we are equipped to formulate the method by which we take the
observation p(Zt|Xt = s(j)

t ) of a particular sample s(j)
t . Given that each particle is projected

as an ellipse into the scene, and that these ellipses may be regarded as hypothesized pixel
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Figure 4.2: Image projection of sample generated at a particular time in a particle filter, or parti-
tioned particle filter, in this implementation.

Figure 4.3: Image projection of sample generated at a particular time in a particle filter, or parti-
tioned particle filter, in this implementation.
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Figure 4.4: The image projection of such a hypothesis will be compared to the data image. If
the hypothesis is good, then the target objects which the ellipsoids represent will occupy the same
region in image space as the people.

labellings for the current frame, the observation p(Zt|Xt) of a particle may be calculated as

p(Zt|Xt) =
G∏

g=1

p(zg|Xt) =
G∏

g=1

p(zg|lg),

where g is the index of a particular pixel on the image grid, which contains G pixels
in total. The labelling of pixel g as hypothesized by the current particle s(n)

t is lg where
lg ∈ {1, 2..h} with h the number of models/target objects, including the background. We
may see an example of how the ellipsoids are designed to represent target objects in Fig. 4.4,
where the ellipsoids are superimposed on the corresponding frame in the sequence. After
all particles have been observed, the Maximum a Posteriori (MAP) estimate is found. Fig.
4.5 shows the MAP estimate for a particular frame in the indoor sequence.

Note that here independence between all pixels with respect to their observations given
the hypothesized labelling of that pixel is assumed. It is possible here to improve the
probability estimate via a region based homogeneity measure, possibly via Markov Random
Fields, to take advantage of the fact that pixels of a target object are usually adjacent to one
another, and thereby discarding the aforementioned simplifying independence assumption.
After we have calculated an activation matrix based on the current pixel as the data, given
our combined Gaussian Mixture Model, we calculate for the combined GMM a normalized
1×K posterior matrix R. This step is otherwise identical to the calculation of the posterior
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Figure 4.5: After each of the partitions has been processed, we are interested in the Maximum
a Posteriori estimate of the state space. The sample with the highest probability is stored and
displayed.

matrix R in the training of the GMM, described in Appendix A, although N = 1, since
there is only one data point, i.e. the current pixel.

Again we develop a likelihood for each of the mixture centers:

p′j = R1j {j = 1..K}.

The probability p(zg|lg) is then

p(zg|lg) =
K∑

i=1

δlg(Li)p′i {m = 1, 2, .., h}

where h is once again the number of mixtures models in the GMM, and L is the labelling
vector for the GMM mixture centers.

For notational convenience, we may rewrite

p(zg|lg) = plg(zg)

As pointed out in [1] and [53], with the pixel probabilities defined this way, and since
the observation density only needs to be evaluated up to a multiplicative constant, we can
write

p(Zt|Xt) =
G∏

g=1

p(zg|Xt) =
G∏

g=1

plg(zg) =
∏
g∈F

plg(zg)×
∏
g∈B

pB(zg)



38

where pB(.) = plg(.) with lg = B, F is the set of all pixels which are hypothesized to lie in
the foreground, and B is the set of hypothesized background pixels.

Using this observation, we may normalize the expression for the observation:

p(Zt|Xt) ∝
∏

g∈F plg(zg)×
∏

g∈B pB(zg)∏G
g=1 pB(zg)

=

∏
g∈F plg(zg)∏
g∈F pB(zg)

=
∏
g∈F

plg(zg)
pB(zg)

.

This allows us to visit only the foreground pixels when we perform our observation using
the image data.

As also indicated in [1] and [53], another useful formulation is to convert all the proba-
bilities in an image-preprocessing stage into the log domain. Then we will have:

log(p(Zt|Xt)) = log

 G∏
g=1

p(zg|Xt)

 =
G∑

g=1

log (p(zg|Xt)) .

This allows one to replace the product term with a sum term, which often speeds up
the processing as well as removing the underflow problem, which is arises due to the large
number of pixels in an image.

4.5.1 Underflow

A problem which is solved by conversion into the log-domain is that if the probabilities are
simply calculated according to

p(Zt|Xt) =
G∏

g=1

p(zg|Xt) =
G∏

g=1

plg(zg),

this results in an extremely small value for p(Zt|Xt), often well below machine precision. If
the pixel classification stage for a correct hypothesis attributes to each pixel a 0.9 probability
of belonging to the object which it has been hypothesized as belonging to (i.e. a very good
hypothesis), then the fact that there are approximately a hundred thousand pixels will cause
the probability to be calculated as

p(Zt|Xt) =
G∏

g=1

0.9 = 0.9G,

which is approximately 10−4500. When working in the log domain, all that needs to be
stored is the exponent, which is within the range of a four byte floating point variable.



39

4.5.2 A lower bound for pixel classification probabilities

It is important also to set a lower bound on the classification of any pixel with respect to any
model. Since the observation process is essentially a multiplicative process where particles
are scored according to their relative merit, if any single pixel contributes a zero probability
factor to the product, this will set the probability of the particle to zero, although all of
its other pixel classification hypotheses may have been very good. In this implementation,
we set a lower bound of exp(−100) to all the pixel classifications which have associated
probabilities of exp(−100) or lower.

4.6 Implementation results

We have experimented with the use of some of the different colour spaces, and the colour
separation which we get by using them. Also we have investigated the resulting effects of
performing pixel classification according to the Gaussian Mixture Models which we form
from data from these different colour spaces. Before each image is processed, the image
data is converted to the appropriate colour space for pixel classification.

4.6.1 Scatter plots in different colour spaces

First we present, for the particular tracking task at hand (i.e. that of tracking people
wearing highly coloured clothing), histogram plots of the different people. From these
histograms may be seen the colour separation already present in the RGB information, and
the improvements gained when using different colour spaces. In each of the histograms
shown in Fig. 4.6, Fig. 4.7, Fig. 4.8 and Fig. 4.9 each data point belongs to one pixel
taken from a set of training images, and this is the same data which was used to generate
the GMMs. There is saturation in the RGB data of the colour histograms of certain of the
targets, which may be seen most clearly in Fig. 4.6. It is impossible to say whether the
classification would have been significantly better if this saturation had not been present.
However, since this saturation is present in the RGB data, from which we transform the
data to the various other colour spaces, the effect of the saturation is present in all of the
GMMs trained in each of the colour spaces.

YUV space seeks to decorrelate the components on the assumption that one is dealing
with naturally occurring colours. Using YUV we see in Fig. 4.7 a slightly better colour
separation than in the RGB histogram in Fig. 4.6.
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Figure 4.6: Scatter plot of colour data of people in indoor scene in RGB space. There are seven
people, labelled “White”, “LightBlue”, “Orange”, “Green”, “Yellow”, “DarkBlue” and “Red”.

Figure 4.7: Scatter plot of colour data of people in indoor scene in YUV space.
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Figure 4.8: Scatter plot of colour data of people for indoor scene in HSV space.

The HSV based pixel classification appears to yield poor colour separation, as can be
seen in Fig. 4.8.

The L*a*b* transformation appears to have the best colour separation (Fig. 4.9), and
was the one selected to generate the GMMs for this implementation.

4.6.2 Probability maps using different colour spaces

We have generated probability maps, which demonstrate the variability in the pixel classi-
fication generated for a specific frame, using the Gaussian Mixture Models generated from
the data in the different colour spaces discussed above. The GMMs were trained in the
same way given the data in each of the different colour spaces, and each GMM has sixteen
mixture centers. The choice of sixteen centers per GMM per target may be said to be
excessive given the uniformity of the colour distributions of each of the individual targets.
The number was chosen for two reasons. Firstly, the distributions are less uniform than
they appear, given the varying aspects of each person to the light sources in the sequence.
Also, the skin colours of some of the targets vary, and this is relevant information for the
tracker. Secondly, the outdoor sequences, which are also tested to a degree, require six-
teen centers per target (as has been established empirically), and the consistency of the
number of centers per model across sequences allows better comparison of other aspects of
the tracker. In Fig. 4.10 the correct pixel labelling for a frame in the benchmark scene
is displayed, and the probabilistic classifications shown in Fig. 4.11, Fig. 4.12, Fig. 4.13
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Figure 4.9: Scatter plot of colour data of people for indoor scene in L*a*b* space.

and Fig. 4.14 may be compared with this data. In each image, the likelihood of a pixel
belonging to the specified target object is used to generate a proportional pixel intensity
on the grey scale. Therefore a white pixel represents a near certainty that it belongs to the
specified object, and a black pixel represents a near zero probability.

We can see the classification of the white person in Fig. 4.11, using RGB data, is not
particularly good.

The GMMs trained in YUV space, shown in 4.12 yield good results. The GMMs trained
using the HSV data, shown in Fig. 4.13, yield poor results. This is because of the poor
clustering which we observed in the histogram plot in the training data (this result is
corroborated in [9]).

The results on GMM classification using training data in the L*a*b* colour space is
visibly superior, and empirical results show why we should use this space for our implemen-
tation of the particle filter based target tracker.

4.6.3 Ground-truth comparison of pixel classification

Since we have at our disposal manually labelled data for each of the frames in the sequence,
it is useful to compare the pixel classifications as generated by the different GMMs with
this manually labelled data. The following metric, introduced here and called the “Correct
Classification Metric”, C (which may also be written as Cclassification method, where classi-
fication method indicates the method used for classification), may be used to assess the
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Figure 4.10: Correct pixel classification for the 171st frame in the sequence.

Figure 4.11: Pixel classification of the white person using GMMs trained with RGB data.
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Figure 4.12: Pixel classification of the white person using GMMs trained with YUV data.

Figure 4.13: Pixel classification of the white person using GMMs trained with HSV data.
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Figure 4.14: Pixel classification of the white person using GMMs trained with L*a*b* data.

accuracy of each of the GMM based pixel classifications. For example, with GMMs trained
using the HSV colour space, we have:

Chsv =
G∏

g=1

phsv(zg|cg) =
∏
g∈T0

phsv(zg|cg = T0)×
∏
g∈T1

phsv(zg|cg = T1)× ...

×
∏

g∈TN

phsv(zg|cg = TN ),

where p(zg|cg = Ti) is the probability of observing pixel data zg, given that pixel g has
been correctly (manually) labelled as belonging to target Ti, g ∈ Ti are the pixels g in
the region of the image which has been labelled as belonging to target Ti, and where N is
the number of different models including the background. The probability function phsv(.)
indicates that the probability will be calculated using GMMs trained in HSV space.

Introducing the Log Correct Classification Metric

Kclassification method = log(Cclassification method),

we may then say, in the HSV colour space:
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RGB YUV HSV L*a*b*
T0 -1017.6 -726.2 -1462.8 -770.6
T1 -728.2 -494.8 -1096.7 -498.7
T2 -1614.3 -1097.5 -1905.9 -1120.2
T3 -1292.7 -464.2 -893.3 -481.8
T4 -1131.5 -1572.2 -2205.3 -1622.6
T5 -406.9 -412.6 -547.7 -428.8
T6 0 0 0 0
T7 -372109.5 -255010.5 -110228.0 -186916.6
K -378301.1 -259778.1 -118339.7 -191839.5

Table 4.1: Table of the classification quality for each of the target objects, in different colour spaces,
using the Log Correct Classification Metric.

Khsv = log(Chsv) = log

 G∏
g=1

phsv(zg|cg)


=
∑
g∈T0

log phsv(zg|cg = T0) +
∑
g∈T1

log phsv(zg|cg = T1) + ...+
∑

g∈TN

log phsv(zg|cg = TN )

= T0 + T1 + ...+ TN .

Using a manually labelled image in the sequence, we can generate the Table 7.1, which
displays the target matching characteristics Ti for each of the colour spaces, for the classifi-
cation of the same frame which the probability maps of Fig. 4.11, Fig. 4.12, Fig. 4.13 and
Fig. 4.14 represent. Table 7.1 contains some interesting information about the accuracy
of the classification which we can expect when using GMMs trained on data from different
colour spaces. What we first see is that the value for K, which is the last row in Table
7.1, is the highest for the HSV colour space, which indicates that this is the colour space
we should use. However, when we inspect the individual terms Ti for each of the target
objects (the sixth one of which is absent from the scene), we see that the HSV colour space
scores the worst in this regard (it is the most negative). The summation for the seventh
target object, T7, represents the contribution of the term for the correct classification for
all background pixels. The nature of the algorithm is such that the accurate classification
of background pixels as being background pixels is not nearly as important as the accurate
classification of foreground pixels belonging to the correct target. To put it differently, a
high value for Ti in a particular colour space indicates that that target was well classified,
using GMMs trained on data from that colour space. A low value for Ti indicates that the
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Figure 4.15: Image from simple sequence with naturally coloured people.

target was poorly classified. Therefore, as a compromise between these two desirable traits
in a pixel classifier, we use the GMMs trained on data in L*a*b* space.

4.6.4 Probability maps for scene with naturally coloured targets

For completeness, and for comparison with the benchmark indoor sequence, we examine also
the colour histograms generated with the manual segmentation of people from a natural
scene, i.e. a scene in which the motion is simpler than the indoor benchmark video sequence
used for this thesis.

The colour histograms taken from manual segmentation of the people in this scene are
depicted in Fig. 4.16 and Fig. 4.17, in which we can see that in natural scenes, the colour
histograms of people overlap far more, and this will lead to an inferior, although usable,
probability measure in the observation stage for the particle filter. We also examine the
probability maps generated from an image in this natural sequence, to see if the pixel classi-
fication is accurate enough to be used as a basis for a particle filter tracking implementation.
We can see from the two probability maps in Fig. 4.19 and Fig. 4.20, which may be com-
pared with manually classified data in Fig. 4.18, that the pixel classification becomes more
difficult when the people are wearing natural, random clothing. This is reflected also in the
histograms shown in Fig. 4.16 and in Fig. 4.17 where there is lots of overlap between the
scatter plots of the different targets. The usefulness of colour models in identifying targets
is only as good as the colour separation in the colour histograms of the targets involved.
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Figure 4.16: Scatter plot of colour data of four people in natural scene in RGB space.

We may see for example that there is considerable confusion between two of the targets in
Fig. 4.19, as is indicated by the two different targets appearing as white regions in the same
probability map. This arises because they are both wearing white T-shirts.
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Figure 4.17: Scatter plot of colour data of four people in natural scene in L*a*b* space.

Figure 4.18: Manual pixel classification of the people in the 317th frame in the outdoor sequence.



50

Figure 4.19: Pixel classification of the first person using GMMs trained with L*a*b* data.

Figure 4.20: Pixel classification of the fourth person using GMMs trained with L*a*b* data.



Chapter 5

Hidden Markov models and fixed
lag smoothing for refinement of
pixel classification

To track an object moving through a scene, our task is to accurately label the pixels of each
frame as having a correct probability of belonging to each of the target objects (for which
we have generated Gaussian Mixture Models). Our GMMs are based on information we
have about the colour distributions of the target objects in the scene, and of the background
of the scene.

If we consider the nature of the movement of the target objects, we see that they tend
to move slowly, and their position in any frame is highly dependent on their position in the
previous frame. Therefore, given a pixel in a frame which belongs to a particular model,
be it a model of one of the target objects or of the background, it is likely that in the
next frame it will belong to the same model. If we then create a Hidden Markov Model
for each pixel, and associate with each model a state in the pixel’s HMM. Then, given a
range of observations of that pixel over a series of frames, we can impose our knowledge of
the restrictions described earlier on the pixels state transition dynamics, via the transition
matrix of the pixel’s HMM. This approach is taken in [20], although in that implementation
each pixel has five associated states (background, leading edge, target center region, trailing
edge, and colour change), which are used for all of the targets together. In contrast, this
implementation has one pixel state per target.

51
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5.1 Hidden Markov Models

5.1.1 Definition

A Hidden Markov Model (HMM) λ may be fully described by the 3-tuple λ = {A, B, π}
(see [65] for a more in depth discussion). In this tuple, A represents the transition matrix,
which contains the probabilities that the model, given that it is in a particular state i,
will transition into another state j, B is a probability for each state j producing a certain
observation, and π is a vector which represents the prior values on each of the states.

The HMM may be in one state qt at time t of a set of states S, i.e. s ∈ S, with e.g.
S = S1, S2, S3

Aij = P [qt = Sj |qt−1 = Si]

with each state transition coefficient having the property that

Aij ≥ 0

and

N∑
j=1

Aij = 1

Also we require the definition of the observation probability distribution for each state.
The formulation used in the case where each state’s observation density is a Gaussian
Mixture Model (GMM), is:

bj(O) =
M∑

m=1

pjmN(O|µjm, Vjm)

where pjm is the prior, µjm is the mean, and Vjm is the covariance on a mixture center
m for the HMM state j.

Finally we require a prior distribution λ on the states in which the HMM may be in at
the first time step.

5.1.2 The three problems of HMMs

There are three problems of interest which we must deal with if we are using HMMs, namely

• How to train the model parameters
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• How to find the most likely state sequence given a set of observations O1O2O3..On

• How to find the probability of a particular observation sequence given a HMM

We are most interested in the first two problems for this implementation.
The first problem corresponds to discovering the transition matrix A for the HMM of

each pixel. Classically, all of an HMMs parameters may be optimized via the forward-
backward algorithm, which is itself an Expectation Maximization algorithm (see Appendix
A for explanation), but here the problem is simplified, since we have already developed in
the previous chapter a method for evaluating the probability of any observation of the pixel
at a frame given the GMMs of the target objects.

The second problem corresponds to the task of assigning a probability to a pixel’s
HMM to be in a particular state given the transition matrix A and the observed data over
a sequence of frames. In this implementation, fifteen consecutive observations are used for
each pixel and those fifteen observations are then used to calculate the smoothed probability
estimate for that pixel at the time step which is at the midpoint in the fifteen observations.
This is slightly clumsy, since we are lagging seven frames behind reality, but the results of
this smoothing are of potential benefit.

5.2 Training the model

5.2.1 Training the Hidden Markov Models

The model was trained manually. Since all transitions are possible, although self transitions
(i.e. transitions to the same state in which the model is already in) are more likely, we fill
the square transition matrix with values along the diagonal columns with a relatively large
probability, place a smaller probability on the elements which correspond to a transition
from a state representing an object to the state representing the background, and divide
the remainder equally among the other entries. This is because we expect a transition
from an object to the background with greater probability than we expect a transition
from an object to another object. For the final row, we expect a high self transition if the
pixel is already in the background state, and transitions to all the other objects are equally
distributed. This pixel state transition model is defined using the assumptions that the area
in image space occupied by the people is relatively small compared to the area occupied by
the background, and that the people move independently and that there is usually some
space between them when they interact and occlude one another. This latter assumption
causes us to realize that in general after a person walks through a particular pixel in image
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space, they are more likely to reveal the background behind them than another person. In
principle a transition matrix should be made up of the following entries:

A =


p11 p12 p13

p21 p22 p23

p31 p32 p33

 ,
in which each element pab indicates the probability of a transition from state a to state b.
Many different transition matrices were tested and the results compared to ground truth,
and the following is the matrix which produced the best results for the indoor sequence:

A =



0.6154 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.1538

0.0385 0.6154 0.0385 0.0385 0.0385 0.0385 0.0385 0.1538

0.0385 0.0385 0.6154 0.0385 0.0385 0.0385 0.0385 0.1538

0.0385 0.0385 0.0385 0.6154 0.0385 0.0385 0.0385 0.1538

0.0385 0.0385 0.0385 0.0385 0.6154 0.0385 0.0385 0.1538

0.0385 0.0385 0.0385 0.0385 0.0385 0.6154 0.0385 0.1538

0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.6154 0.1538

0.0435 0.0435 0.0435 0.0435 0.0435 0.0435 0.0435 0.6957


,

where the last row and column correspond to the state of the pixel belonging to the
background. This particular matrix describes a scenario which corresponds to the type of
sequence which this tracker was designed for, namely with a large number of target objects,
but in which it is assumed the targets maintain a certain distance from each other, (as is
normal behaviour). If this assumption is violated on occasion, there is no problem, but
in general we seek to take advantage of this trend. The number of rows and columns of
matrix A is obviously dependent on the number of target objects present in the scene, and
the size and content of the transition matrix should change according to the number of
target objects in the scene. The above matrix is then the one used when all seven of the
target objects are simultaneously in the scene, although it is by no means optimal. Ideally
we should like to train through data a unique HMM for each pixel. We might expect the
transition matrices of pixels which are in the center of the room (lots of activity) to be very
different from the transition matrices on the edges of the scene, where there is little activity.
However, this is not explored further.
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5.2.2 Finding the best observation sequence

There are two general ways to solve the problem of finding the most likely state sequence
which generated a set of observations. The first finds the sequence of states which were
individually most likely, irrespective of a definite decision having been made about the
states before or after it in the state sequence at any point. Once again, the reader is
referred to [65], on which this section is based.

Individually optimal states

To find individually optimal states within the sequence, we define

γt(i) = P (qt = Si|O, λ),

which can be reexpressed as

γt(i) =
αt(i)βt(i)
P (O|λ)

=
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

,

where αt(i) is defined as

α1(i) = πibi(O1) {i = 1..N},

where bi(Ot) is the probability of the observation at time t being generated by state i.
For t > 1, αt(i) is defined recursively, and we form the so called alpha-trellis thus:

αt(j) =
[∑N

i=1 αt(i)Aij

]
bj(Ot+1) {t = 1..T − 1}

{j = 1..N}.

Similarly for the beta trellis,

βT (i) = 1 {i = 1..N},

and inductively

βt(i) =
∑N

j=1 Aijbj(Ot+1βt+1(j)) {t = T − 1..1}
{i = 1..N}.

Then, for any time t, we can solve for the individually most likely state

qt = argmax
i

[γt(i)] {t = 1..T}

{i = 1..N}.
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The Viterbi algorithm

The second method is known as the Viterbi decoding algorithm, and tries to find the best
overall hidden state sequence, given that the sequence must be viewed as a whole. This is
often different to the concatenation of the individually optimal states.

The problem is to find the quantity

δt(i) =
q1, q2, ..., qt−1

max P [q1q2q3...qt = i, O1O2O3...Ot|λ].

The Viterbi algorithm is similar to the calculation of the alpha trellis (αt(i)) of the
previous subsection, with a maximization step instead of a summing step, and for details,
the reader may refer to Appendix B.

The output of the Viterbi algorithm is the most likely state sequence which explains the
observed data over the time period, however, this is not necessarily useful to us. When we
take the observation for a given particle sampled from a distribution, the method we use is to
sum over the log-likelihoods of all the pixels in the image, with respect to the hypothesized
pixel labelling generated by the particle. Now since the Viterbi algorithm returns only the
optimal state sequence, we have no way of using this information in probabilistic terms.
That is, we cannot use this information when we sum over the log likelihoods, since the
Viterbi algorithm does not yield a set of probabilities for the states to which a pixel may
belong, over which we can then sum the logarithms to calculate our posterior distribution.

This is why the Viterbi algorithm was rejected for use in this implementation in favour
of the method of the previous subsection, viz. finding the individually optimal states and
then with those the set of probabilities of any pixel being in any state at any time.

5.3 Results of using fixed lag HMM smoothing

Shown here are some probability maps generated when HMM smoothing is included in
the GMM segmentation method described in the previous chapter. It appears that the
HMM smoothing in general removes some of the effect of spurious pixel (probabilistic)
misclassification, as well as improving the probability estimate within the area of each
target object, including the background. The probability maps for the person dressed in
white (Fig. 5.2, Fig. 5.4) and for the person dressed in light-blue (Fig. 5.3, Fig. 5.5) are
shown (these are the two targets which are the most readily confused). The quality of this
pixel classification may be compared to the manual classification of the targets, which is
shown in Fig. 5.1.
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Figure 5.1: Manually classified pixels for the 87th frame in the indoor sequence.

Figure 5.2: The basic pixel classification map for the first person as generated by Gaussian Mixture
Models trained in L*a*b space.
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Figure 5.3: The basic pixel classification map for the second person as generated by Gaussian
Mixture Models trained in L*a*b space.

Figure 5.4: The HMM smoothed pixel classification map for the first person.
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Figure 5.5: The HMM smoothed pixel classification map for the second person.

When one examines the Log Correct Classification Metric, introduced in the previous
chapter, we see some surprising empirical results based on these probability maps and the
manual segmentation.

The Log Correct Classification Metric is worse for all targets, and for the total,
Kclassification method, which is the same metric, for any particular classification method (be it
a GMM based classification method, GMM with HMM, or otherwise). This is a surprising
result, since the probability maps seem to demonstrate an improvement in the classification.
This empirical worsening of the probabilistic classification in the pixels is the result of the
nature of the HMM smoothing, which tends to force the probability of classification of
a pixel to a model to be closer to zero or closer to unity than the simple GMM based
classification. After the HMM smoothing stage, we find in general that pixels which have
a high probability in their classification of belonging to the correct (manually labelled)
model, have had their probabilities for this classification increased further, and correctly
so. However, in the case of pixels which are probabilistically misclassified, the probability
of the classification to the correct model is decreased further, closer to zero. The overall
effect is then to decrease the Log Correct Classification Metric for the pixel classification
for a particular image. The total effect is negative as can be seen in the K parameter in
Table 5.1.

There is however a beneficial aspect to the HMM smoothing, and this is that pixels
which have been mistakenly classified with high probability as belonging to a target, which
do not in fact belong to that target, will in general have their probabilities adjusted to
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L*a*b* L*a*b* with HMM
T0 -648.7 -778.3
T1 -1325.0 -2157.5
T2 -629.3 -1159.2
T3 -481.3 -900.0
T4 -199.7 -325.4
T5 -484.6 -766.0
T6 -377.1 -403.1
T7 -243520.6 -381800.6
Kclassmethod -247666.7 -388290.5

Table 5.1: Log Correct Classification metric for each of the targets in the scene, at a typical
frame. The addition of HMM smoothing appears to have worsened the pixel classification.

reflect more accurately their true targets, by the HMM smoothing step. This effect may
be seen by the Log Erroneous Classification Metric, here introduced, which is in a sense
the inverse of the Log Correct Classification Metric. We define the Erroneous Classification
Metric ETN

for a particular target TN as

ETN
=
∏

g∈TN

p(zg|cg = TN ),

and similarly, the Log Erroneous Classification Metric is

STN
= log(ETN

) = log
∏

g∈TN

p(zg|cg = TN ) =
∑

g∈TN

log p(zg|cg = TN ),

which will have a large value if there have been many pixels erroneously classified with
large probability as belonging to target N , and small if there were few pixels incorrectly
labelled as belonging to target N . Table 5.2 shows the Log Erroneous Classification Metric
for a typical frame in the indoor sequence.

The HMM smoothing stage may thus be useful if there are regions in the image which
temporarily resemble one of the target objects, and so which may be discriminated against
based on a model of pixel state transition characteristics, via a HMM. The HMM smoothing
affects the pixel classification in such a way that the correctly classified pixels tend to be
concentrated in the correct area. It may be useful in an algorithm such as the partitioned
particle filtering with scan phase (described in the next chapter), where once the target
becomes occluded, the scan phase causes the target model to converge rapidly on the best
background approximation to the target. In the case where the Correct Classification Metric
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L*a*b* L*a*b* with HMM
ST0 -356709.6 -985961.5
ST1 -302690.3 -826856.6
ST2 -474660.9 -1215590.0
ST3 -463249.5 -1204775.3
ST4 -731758.0 -1750928.8
ST5 -470384.0 -1225151.8
ST6 -400185.0 -1021655.5
ST7 -913469.5 -1035726.6

Table 5.2: Log Erroneous Classification Metric for each of the targets in the scene, at
a typical frame. The addition of HMM smoothing has reduced the amount of incorrect
classification.

is so similar to the actual observation method used per particle, however, we see that the
effect on the pixel classification is detrimental with respect to the GMM based observation
model currently being used.



Chapter 6

Importance sampling and
Partitioned sampling

A well known extension to particle filtering is that of importance sampling. The idea is to
concentrate the samples which represent a distribution at interesting regions within that
distribution, without introducing bias by adjusting the particle concentration. Therefore,
when we sample from an alternative proposal distribution, we immediately renormalize the
proposed particle’s weight using the knowledge of the probability of that particle’s selection
from our proposal distribution, then assign the observation density’s weight to it, whereafter
it represents a fair sample from the posterior distribution. With importance sampling comes
higher computational efficiency, since we choose our proposal distribution in an intelligent
way, possibly using the latest available data (as in [31]), from the current time step. In this
regard, there is less reliance on the correctness of definition of the process dynamics, and
one can even define dynamics within the importance distribution itself.

The idea of importance sampling is similar to the idea of importance reweighting, which
is the basis of the partitioned particle filter.

6.1 Importance sampling

Suppose that within a recursive Bayesian particle filtering framework, we prefer not to
sample from the prior distribution P (Xt−1|Zt−1), but rather from an alternative proposal
distribution q(Xt|Zt). We may find that in terms of the state expectation,

E[f(Xt)] =
∫
f(Xt)

p(Xt|Zt)
q(Xt|Zt)

q(Xt|Zt)dXt

=
∫
f(Xt)

p(Zt|Xt)p(Xt)
p(Zt)q(Xt|Zt)

q(Xt|Zt)dXt

62
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=
∫
f(Xt)

wt(Xt)
p(Zt)

q(Xt|Zt)dXt

with
wt(Xt) =

p(Zk|Xt)p(Xt)
q(Xt|Zt)

,

where wt(Xt) represents the weight of the sample drawn from the proposal distribution,
after it has been renormalized to remove the bias introduced by the proposal distribution,
and been observed against the data.

Then we have
E[f(Xt)] =

1
p(Zt)

∫
f(Xt)wt(Xt)q(Xt|Zt)dXt

=
∫
f(Xt)wk(Xt)q(Xt|Zt)dXt∫
p(Zt|Xt)p(Xt)

q(Xt|Zt)
q(Xt|Zt)

dXt

=
∫
f(Xt)wk(Xt)q(Xt|Zt)dXt∫

wt(Xt)q(Xt|Zt)dXt

=
Eq(Xt|Zt)[wt(Xt)f(Xt)]
Eq(Xt|Zt)[wt(Xt)]

,

which shows us that we need to normalize at each time step across the new particle
weights wt(Xt) to form a posterior from which we may take the expectation.

So by drawing from q(Xt|Zt), we can approximate expectations of interest by the fol-
lowing:

E[f(Xt)] =
1
N

∑N
i=1wt(X

(i)
t )f(X(i)

t )
1
N

∑N
i=1wt(X

(i)
t )

≈
N∑

i=1

w̃t(X
(i)
t )f(X(i)

t ),

where the normalized weights are given by

w̃t(X
(i)
t ) =

wt(X
(i)
t )∑N

j=1wt(X
(j)
t )

.

Using the state space assumptions of first order Markoveneity and observational indepen-
dence given a state, the importance weights can be estimated recursively by

wk = wk−1
p(Zt|Xt)p(Xt|Xt−1)
q(Xt|Xt−1,Zt)

.

This may be slightly more obvious when we consider the original particle filter equation
as presented in Chapter 3:
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p(Xt|Zt) = ktp(Zt|Xt)
∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Zt−1)dXt−1.

When we introduce the importance dynamics, this becomes:

p(Xt|Zt) = ktp(Zt|Xt)
∫
Xt−1

p(Xt|Xt−1)
q(Xt|Xt−1)

q(Xt|Xt−1)p(Xt−1|Zt−1)dXt−1.

In [7], the following algorithm for the implementation for importance sampling is pre-
sented (although it is not the only way to implement importance sampling), and allows for
the use of multiple proposal densities. The selection of each proposal density itself may be
randomly selected. The term ”initialization prior” refers to the initial distribution on the
state as determined by an importance distribution, and would be specified manually, for
example by a Gaussian around the expected expectation value. The importance correction
factor is there to remove the bias introduced by sampling from an importance distribution.
Assume that we may sample from the prior, the importance initialization prior, or the im-
portance dynamics. Then, for each nth of N samples:
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• First generate a random number α ∈ [0, 1), from the uniform distribution in that

interval.

• Sample from the prediction density p(Xt|Zt−1) as follows:

1. If α < q use the initialization prior. Choose s(n)
t by sampling from gt(Xt) and

set the importance correction factor λ(n)
t = 1.

2. If q ≤ α < q + r use importance sampling. Choose s(n)
t by sampling from gt(Xt)

and set λ(n)
t = ft(s

(n)
t )/gt(s

(n)
t ), where

ft(s
(n)
t ) =

N∑
j=1

π
(j)
t−1p(Xt = s(n)

t |Xt−1 = s(j)
t−1).

3. If α ≥ q + r generate a sample from the prior p(Xt−1|Zt−1) and then sample

from p(Xt|Xt−1 = s(n)
t−1) and set λ(n)

t = 1.

• Calculate the observation density, and use this to weight the new sample according

to the observed image data Zt and the importance sampling correction term.

π
(n)
t = λ

(n)
t p(Zt|Xt = s(n)

t )

• After this, normalize the sample weights such that
∑

n π
(n)
t = 1.

It can be said that the basic particle filter is a special case of the particle filter with
importance sampling, where the importance distribution is equal to the post-dynamics
distribution of the state variable, so that q(Xt|Zt) = p(Xt|Xt−1).

The design of the proposal distribution is crucial to the efficient functioning of a particle
filter. In addition there are two constraints which must be imposed on the selection of this
proposal distribution. Firstly that the distribution must have the same region of support as
the prior, and secondly, the distribution should be affected by the most recent observations.

The problem with any formulation of Sequential Importance Sampling (SIS) is that the
sample variance typically increases over time until the effective number of particles (Neff)
decreases to one. For this reason at every few time steps, or perhaps every time step, we
perform a resampling step.
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6.1.1 Resampling

In the resampling operation, N unequally weighted particles are resampled into a new set
of N equally weighted particles:

{s(i)
t , π

(i)
t }N

i=1 −→ {s′(j)t ,
1
N
}N

j=1

Here the ith particle s(i)
t is chosen with probability π(i)

t , and then stored in the new distri-
bution as s′(j)t with probability 1

N , with j = 1..N .
The result of the algorithm is that from the previous sample set {s(n)

t , π
(n)
t }, n = 1, ..., N

at time step t, a new sample set {s′(n)
t , 1

N }, n = 1, ..., N is constructed, and this procedure
may be repeated whenever the number of effective particles decreases below a threshold.
The number of effective particles is a measure of how many particles are used per time step,
on the basis that those which are not used are wasted. The resampling operation may be
performed to keep this number high. For a more detailed explanation on the number of
effective particles, see the next chapter.

6.2 Partitioned Sampling

Partitioned sampling for particle filtering was introduced in [33] and in [32]. The mecha-
nism of partitioned sampling can best be expressed in using a block diagram formulation.
It consists of stages of importance sampling followed by a final observation stage for each
time step. One step of conventional condensation can be conveniently expressed with the
following diagram:

p(Xt−1|Zt−1) → ∼ → ∗h(X′|X) → ×f(Zt|X′) → p(X|Zt)
In this diagram, ∼ indicates a resampling step. The ∗ operation indicates that the resam-
pled distribution undergoes adjustment by the convolution dynamics (function h(X′|X))
and finally the samples undergo a measurement stage, denoted by ×f(Zt|X′).

6.2.1 Weighted resampling

The weighted resampling operation is a method for refining the concentration of samples
which represent a probability distribution at specific locations within that distribution,
without introducing bias to those regions, i.e. without changing the distribution which the
samples represent.
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Let g(X) be a strictly positive and continuous function over the available sample space
X. Given a particle set {si

t, π
i
t}, with i = 1..N , a weighted resampling operation will produce

a new set {s′it, π′
i
t}, with i = 1..N . The method according to which this new sample set is

generated is as follows: First calculate importance weights ρi = g(si
t)/
∑n

j=1 g(s
j
t ). Then

select the indices of the particles from this set, k1, k2, .., kn by setting ki = j with probability
ρj . Finally, set s′it = ski

t and π′it = πki
t /ρki

. Weighting the samples in this way removes
any bias introduced when sampling them according to the artificially applied probability
weights ρi.

A simple example of partitioned sampling with two partitions may be as follows:

p(X|Zt−1) → ∼ → ∗h(X′|X) → ∼ g1

→ ∗h(X′′|X′) → ×f(Zt|X′′) → p(X|Zt)

Where in this diagram, ∼ g represents a weighted resampling step using the function g.
We see also that each partition has an associated convolution dynamics operation in which
a subspace of any sample may be affected, depending on which partition the sample is
currently in. There is also given a more complicated example of partitioned sampling with
multiple partitions:

p(X|Zt−1) → ∼ → ∗h(X′|X) → ∼ g1

→ ∗h(X′′|X′) → ∼ g2

→ ∗h(X′′′|X′′) → ∼ g3

→ ∗h(X′′′′|X′′′) → ∼ g4

→ ∗h(X′′′′′|X′′′′) → ×f(Zt|X′′′′′) → p(X|Zt)

In this example we see that we can introduce as many partitions as we would like. Typi-
cally the number of partitions depends on the degree to which the parameters or groups of
parameters which make up the parameter vector of each particle can be evaluated indepen-
dently. Also useful are the diagrams in Fig. 6.1, Fig. 6.2, Fig. 6.3 and Fig. 6.4 which depict
the iterative refinement of the region of interest in the state space, which results from the
partitioning.

6.2.2 Partitioned sampling for articulated objects

In [33], where the partitioned sampling paradigm is applied to the problem of tracking an
articulated object, this approach works because the shape of the hand can be partitioned
into the base of the hand (fist), the thumb, and each finger, totalling six partitions for a
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Figure 6.1: A 2D state space is resampled in its first dimension according to a weighting function
g1(X).

Figure 6.2: The weighting function multiplies the number of particles falling in the region where
the weighting function is maximal. The bias introduced at this stage is removed by reassigning
the weights for the new particles as described elsewhere. Since the number of samples stored per
partition per time step is usually constant, this means we lose some of the other samples.
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Figure 6.3: On this new sample set is applied the second weighting function, g2(X).

Figure 6.4: Once again the particles selected by the weighting function are multiplied.



70

single hand. In this way, samples in the probability space representing the components
of the hypothesized hand are first concentrated, without introducing bias, in areas where
the base of the hand is likely to be. In the next partition, the probability distribution is
further refined, this time in such a way as to increase the number of samples in the region
of space where samples are likely to successfully represent the location of the thumb, and
so on for each finger. When we arrive at the last partition, we will ideally have a set of
samples which represent the same distribution as we had in the first partition, (allowing
for the convolution dynamics), but with a higher concentration of samples in the region of
space where we expect the correct configuration to apply.

These samples are then measured against the true observation density P (Zt|Xt) and
with these new weights, will form the sample set representing the first partition of the next
time step. Also useful in the understanding of partitioned sampling are Fig. 6.5 which
shows the necessary operations, and Fig. 6.6 which shows at which stages sample sets need
to be stored in this implementation of partitioned particle filtering.

6.2.3 Partitioned sampling for person tracking

In their earlier work MacCormick et al. [32], used partitioned sampling to track the contours
which the heads of people made against the background, using a contour based observation,
and tracking in image coordinates. In this implementation, the tracking of entire people is
done in world coordinates using colour modelling information.

Using an assumption that the components of the parameter vector represented by each
sample may be independently observed for likelihood, we partition the sample space in such
a way that we have one partition per person per frame. This assumption is not exactly
correct as the components of the parameter vector of each sample may indeed affect the
way in which others parts of the vector should be measured or observed, i.e. it affects the
weighting function that should be used to measure the sample at that point. However, it
does allow for robust tracking of people in a video sequence.

6.2.4 Varying numbers of partitions

In fact the number of people per frame in a video sequence may vary in time as people
enter and leave the scene, so we may expect the number of partitions to vary dynamically
with the number of people. This is possible if there is a way of determining the number
of people in the scene at any given point in time. In this implementation the algorithm is
updated by manually setting the number of targets to track in the current frame, and the
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Figure 6.5: This is a block diagram of the partitioned sampling process, with the stages at which
we need to store samples shown.

Figure 6.6: We can divide the processing of each partition into two stages: the dynamics, and the
weighted resampling.
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number of partitions varies accordingly.

6.2.5 Weighting functions

Our next goal is to define a reasonable set of weighting functions based on the observation
values of particular components of the particle set. Each weighting function should evaluate
a particle from this set according to these components, and not any other components, or
the usefulness of partitioning the search space in a particular way is nullified.

The observation of particular components of a particle should be affected by other
components insofar as those components affect the visibility of the component in question
via occlusion or the mode of observation or otherwise, however those components should
not be evaluated themselves, and this is the crucial difference.

In our implementation, the weighting function seeks to determine with respect to the
components of the particle in question, how likely it is that this component of this particle
gave rise to the observed data.

We have already stated that our particle vector consists of the concatenated x, y and
z world coordinates of all target objects, and that the mode of observation for such a
hypothesis is to render all ellipsoids and calculate the probability of the resultant pixel
labelling against the image data.

In this implementation, the weighting function used per person is similar to the obser-
vation method for the entire particle:

glg(Xt) = glg(Zt|Xt) =
G∏

g=1

glg(zg|Xt) =
∏
g∈R

plg(zg)×
∏
g∈R

(1− plg(zg)),

where R indicates the set of pixels which have been labelled as belonging to the object
which corresponds to lg. The rest of the pixels R are those labelled as belonging to all other
target objects (including the background). In this way we may measure the correctness
of a particular component of a particle, which hypothesizes that a particular object is in
a particular place, with a particular amount of occlusion, and which hypothesizes that all
other parts of the image do not belong to that object, but does not specify to which objects
they do belong. Note that occlusion has been calculated for the target in question already,
at the ellipsoid rendering stage. If the target is entirely occluded, then the region R will be
empty. A similar normalization may be done as before to allow us to visit only the region
in the image occupied by the target of the current partition, so that:

glg(Xt) ∝
∏

g∈R plg(zg)∏
g∈R(1− plg(zg))

.
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Figure 6.7: The contribution of a single pixel to the weighting function depending on its probability
of classification as a pixel from a particular model.

As before, we may convert this multiplication to a summation in the log domain:

log(glg(Xt)) ∝ log

∏
g∈R

plg(zg)
(1− plg(zg))


=
∑
g∈R

log
(

plg(zg)
1− plg(zg)

)
.

Then, the contribution of a single pixel to this sum, with respect its probability of having
been correctly classified, may be seen in Fig. 6.7.

6.3 Noise and Dynamics for each partition

As mentioned before, this implementation does not model the state space dynamics in
any particularly complex way. Simple diffusion dynamics are used, with random Gaussian
noise being added to the sample set at each partition before the importance reweighting
is applied. We therefore introduce the diffusion dynamics for the components of the state
vector immediately after the resampling operation for each new partition, as suggested in
the original formulation in [32] and [33].

There is nothing to prevent the use of a more sophisticated dynamical model at this
stage.
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6.4 Scan phase

This implementation of the partitioned particle filter also contains a novel method for
recovering from tracking errors. In the problem of tracking people, we have additional
constraints on the search space, namely that any person may occupy one of a set of known
points, typically along the surface of the floor on which that person is walking. Although it
would not be feasible to search exhaustively through all possible combinations of locations
for all people, it is feasible and useful at each partition to allocate a small fixed number of
samples drawn randomly from the prior distribution, but altered to reflect the possibility
that the target object to which the partition has been allocated may occupy a different
space on the floor of the room (which corresponds to particular areas in the state space).

Points at fixed locations on the floor are represented by this small set of samples, with
the goal of tracking the person should he walk through any of these sensitive zones, these
locations in the state subspace which we insist on observing.

The bias introduced by searching with this alternative, deterministic method can be
removed, since we can evaluate the probability of drawing this sample from the prior,
via the dynamics. Its position in state space is a combination of some draw from the
distribution represented by the samples at the previous partition, and values from a database
of target coordinates which overwrite certain of the elements of that state vector before its
observation, in a similar way to the crossover operator presented in [32], and the genetic
modifiers presented in [28].

The partitioned sampling algorithm augmented with this scan phase performs somewhat
better than without it, as it allows for the recovery of lost targets. In fact, this scan phase
of the algorithm allows the tracker, if supplied with the correct tracking and background
models, to locate all the targets and stabilize around the correct joint hypothesis within a
few number of frames (given that the target objects all become visible at some stage) even
when the tracker is randomly initialized.

6.4.1 Deterministic sequences within the Bayesian paradigm

We now briefly present a description of the way in which a set of samples which are to be
specifically included, and processed deterministically (i.e. all the samples in this distribution
will be processed) at a particular partition in a particle filter, may be combined in a weighted
sum with the prior (after partition level dynamics) distribution, and thus processed as a
part of an importance mixture distribution.

Consider a prior which has undergone dynamics, p(X′|X)p(X|Z), and an importance
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distribution g(X′) =
∑

i δ(X
′ − xi), consisting of a collection of Dirac deltas. We take a

weighted sum of these two distributions, forming a new importance distribution, G(X′) =
ap(X′|X)p(X|Z)+ bg(X′), where a+ b = 1. To remove the bias introduced when using this
importance distribution as a proposal distribution, we then normalize each sample in the
combined pdf with ft(s

(n)
t )/G(X′), where

ft(s
(n)
t ) =

N∑
j=1

π
(j)
t−1p(Xt = s(n)

t |Xt−1 = s(j)
t−1).

When calculating 1/G(X′) for the samples taken from the prior, we find that

1
G(X′)

=
1

p(X′|X)p(X|Z) + g(X′)
≈ 1
p(X′|X)p(X|Z)

,

since the samples taken from the prior are almost certainly not also in the importance
distribution g(X′). For the samples of the importance distribution g(X′), we find that

1
G(X′)

=
1

p(X′|X)p(X|Z) + g(X′)

always, since the importance distribution is by design requirement on a region which
has the support of the prior.

We may now describe the scan phase augmentation in the following algorithm:
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Assume that there are B basic particles and A augmented particles per partition. In

addition, assume that to the distribution represented by the B basic particles, we assign

the weight b, and to the distribution of auxiliary particles the weight a, as per the discussion

in the previous subsection. Then for each each partition which is not the final partition:

• First subsample via the dynamics h(X′|X) to obtain from the pre-dynamics set {si
t, π

i
t}

with i = 1..(B +A) a smaller, post dynamics set {s′it, πi
t}, with i = 1..B.

• Sample from this post dynamics set to attain another set of auxiliary particles

{sai
t, π

i
t}, with i = 1..A.

• Adjust each of the particles in this new set {sai
t, π

i
t}, with i = 1..A, in a particular

way to contain in the elements of each sample corresponding to the current partition

a new set of coordinates. So {sai
t, π

i
t}, with i = 1..A, becomes {swi

t, π
i
t}, with i = 1..A.

The way we should weight these new particles is important for the maintenance of

the recursive Bayesian paradigm. In particular, we weight each sample in the smaller,

post dynamics set ({s′it, πi
t}, with i = 1..B) with λ(i) = ft(s

(n)
t )/(b ∗ p(X′|X)). The

auxiliary particles are weighted with λ(i) = ft(s
(n)
t )/(b ∗ p(X′|X) + a ∗ A) where b is

the relative weighting given to the importance distribution, and a the weighting given

to the dynamics on the prior, in the mixture distribution.

• Calculate the importance reweighting function gx(X) on each of the samples in the

combined set of basic particles and augmented particles, in the current partition,

remembering that the previous weight of any particle is also factor in its new weight

(this is where the factor k may come into play). So the new weight of any particle

i is gx(X) ∗ λ(i), where gx(X) is the importance reweighting function for the current

partition.

• A weighted resampling into the new sample set at the next partition is then performed.

If we are in the final partition, the samples in this set are measured against the observation
density p(Zt|Xt), then resampled into the first partition of the next time step.

The scan phase of the algorithm incorporated into the partitioned particle filter is shown
in Fig. 6.8, Fig. 6.9, and Fig. 6.10. In Fig. 6.8 we see at which stages of the algorithm the
augmented particles are inserted. In Fig. 6.9 we see how at each partition, the sample set is
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Figure 6.8: We add to certain of the sample stages an auxiliary set of samples taken from a distri-
bution which is partially based on the posterior of the previous partition and partially determined
by hand.

first subsampled via the dynamics into a smaller sample set, and then the remainder of the
sample set is filled with augmented particles, shown in Fig. 6.10, using a database of state
space coordinates which are used in the creation of the augmented particles. In Fig. 6.11,
Fig. 6.12 and Fig. 6.13, we see the points on the surface of the floor to which components
of the augmented particles are assigned, in their state spaces.

6.5 Reassigning the partitions

6.5.1 Expanding and Contracting

A simple but relevant issue that a partitioned particle filter implementation has to deal with
when assigning partitions to target objects, is that the target objects are likely to arrive
and leave on the scene in quite a random order. The partitions thus need to be allocated
and reallocated to the respective target objects on the fly, in such a way that the number
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Figure 6.9: At each partition, the entire set, namely the base set and auxiliary set of particles are
all evaluated by the weighted resampling function and passed into the next partition. During the
dynamical stage however, the prior at each partition is sub-sampled into the posterior distribution,
to make space for the auxiliary particle set, which forms a small part of the partition posterior, on
which the next weighting function must be performed.
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Figure 6.10: This diagram illustrates the way in which samples are modified before they are stored
in the auxiliary particle set in the posterior of each partition. Particles in the auxiliary particle set
are sampled from the dynamics of the partition prior, but have some of their components altered
and set to specific state space coordinates.
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Figure 6.11: After the basic particles have been processed, the augmented particles are processed
for the scan phase. The location for a particular target represented in the particles in the scan phase
is at a predetermined points on the floor of the intelligent environment.

Figure 6.12: After the basic particles have been processed, the augmented particles are processed
for the scan phase. The location for a particular target represented in the particles in the scan phase
is at a predetermined points on the floor of the intelligent environment.
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Figure 6.13: After the basic particles have been processed, the augmented particles are processed
for the scan phase. The location for a particular target represented in the particles in the scan phase
is at a predetermined points on the floor of the intelligent environment.

of partitions used expands and contracts with the number of target objects.

6.5.2 Best targets first

Another issue which would improve the issue of such a tracker is to assign to the first
partition an object which can with the greatest certainty be tracked correctly, as opposed
to some target object which has been temporarily occluded. The reasoning for this is as
follows. Suppose the first partition were assigned to an occluded target object. Then the
weighted resampling would return a set of samples to the second partition which could
not possibly correspond to the correct position of the first object. In the next partition,
these hypotheses are carried through and then cause erroneous occlusion within the joint
hypothesis as caused by the badly-tracked first target object.

The lack of complete observational independence with respect to the components of the
state vector representing each object has a negative impact on the tracking of all objects if
we begin the search space partitioning using a weighting function which will partition the
search space badly due to the corresponding object’s occlusion.

One way to improve the tracker based on this observation is to allocate partitions to
objects in such a way that the first partition is allocated to the object which is most likely
to be visible, the second partition to the second most likely target, and so on. Of course,
this implies the need for some kind of occlusion reasoning framework according to which
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the partitions may be allocated. A simple solution for this is to sort the objects in terms
of the depth (distance from camera center) via the expectation values for each particle’s
location in the state space of the posterior state distribution for the previous time step.

In fact, this best-first approach was not implemented here, and the results therefore
suffer from the aforementioned problems. The tracking is, however, relatively stable even
without this potential improvement.

6.6 Flow Chart of algorithm

We are now in a position to to describe the algorithm as a whole in terms of a flow chart,
as in Fig. 6.14. As indicated by the chart, the HMM smoothing phase causes the particle
filtering stage to run 7 frames behind the current frame. If this is too much, the HMM
smoothing can be done using fewer than 15 frames, or if the pixel state dynamics are
such that the pixel classification will not benefit from HMM smoothing, it can be removed
completely. The block containing the particle filtering posterior distribution update may be
implemented using the basic particle filter, the partitioned particle filter, or the partitioned
particle filter with scan phase.
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Figure 6.14: Flow chart for algorithm.



Chapter 7

Results

In this chapter we present some graphs and performance statistics of the functioning and
performance of partitioned sampling with GMMs pixel level classification and HMM smooth-
ing, to track people interacting in complex ways in a static scene, as well as some results of
people interacting naturally in a natural scene.

Within the literature about particle filters for visual tracking, and indeed in the literature
for visual tracking algorithms in general, there is no standard way of measuring the tracking
accuracy of a particle filter implementation, or indeed of measuring the accuracy of any
visual tracking algorithm.

Moreover, due to the resampling stage which occurs once per partition in the algorithm
developed in this implementation, the usual metrics of the accuracy of the selection of
the regions of state space for sampling such as the Effective Number of Particles Neff and
the Survival Rate ([33]) are not useful except at the level of individual partitions. We
may however examine the relationship between this measure and between a ground-truth
statistic such as the one developed later in this chapter.

Also provided are graphs illustrating the tracking statistics using the basic particle filter,
which we shall see performs very poorly, and the partitioned particle filtering algorithm
without the scan phase augmentation.

7.1 Partitioned Particle Filter performance assessment based
on ground-truth data

We can plot the correct percentage of pixel labelling produced by the tracker at any stage.
This is possible by using manually labelled data from the same scene, and we propose that
unless the world coordinates of the target object are known to high accuracy, this is a valid
and appropriate empirical measure for the functioning of a tracking algorithm.

84
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For every frame, and for every object, we may generate two statistics. The first is
the percentage of manually labelled pixels which are correctly labelled by the Maximum a
Posteriori (MAP) likelihood of the state estimate (per frame). The second is the percentage
of the pixels labelled as belonging to a certain object by the MAP estimate which in fact
do belong to the object. These statistics should be used together, since using either one
of them alone may lead to a false appraisal of a particular MAP estimate. For example
in the case where the hypothesized location of an object is too close to the camera center,
it will generate a particularly large area in the corresponding image space. The large area
of this hypothesis may then cause the reference segmentation to be fully covered, although
the hypothesis is patently bad. This will be revealed by the second statistic. Conversely,
the second statistic would on its own indicate a good match given a MAP estimate which
was too far away from the camera center, with a corresponding hypothesis region in image
space which was too small. All the pixels of the MAP estimate may then correctly match
up to the manually segmented data, and only the first statistic would actually reveal the
inaccuracy of the MAP estimate for the target object in question.

7.1.1 Performance of partitioned particle filter with scan phase

The graphs in Fig. 7.1, Fig. 7.4, Fig. 7.7, Fig. 7.10, Fig. 7.2, Fig. 7.5, Fig. 7.8, Fig. 7.11,
Fig. 7.3, Fig. 7.6, Fig. 7.9 and Fig. 7.12 describe the tracking success of the partitioned
particle filter, using two hundred basic samples and a hundred augmented samples, for the
tracking scene in which there are seven highly colourized people. The characteristics for the
tracking of the first two people (white and light-blue) are shown in Fig. 7.1, Fig. 7.2 and
Fig. 7.3. The characteristics for the tracking of the second two people (orange and green)
are shown in Fig. 7.4, Fig. 7.5 and Fig. 7.6. The characteristics for the tracking of the
third two (red, dark-blue) are shown in Fig. 7.7, Fig. 7.8 and Fig. 7.9. The characteristics
for the tracking of the last target (Yellow) are shown in Fig. 7.10, Fig. 7.11 and Fig. 7.12.

The best way to interpret these graphs is to look at the amount of time each tracking
curve is above zero, in comparison to the number of times each curve falls to the bottom
(zero percent successful pixel classification per person). So long as a curve in the graph
is above zero, it indicates that the target object is still being correctly, although possibly
inaccurately, tracked. If the percentage successful pixel classification falls to zero, the target
object is essentially lost. It is either random noise, the target walking into the tracker’s
scope, or the scan phase of the algorithm which causes the successful reacquisition of each
target. Notice that all targets are lost at some stage, but always reacquired. In fact, for
each of the target objects which are tracked from their arrival on the scene, the tracker is
still locked onto their locations when they leave the scene. Another interesting point about
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Figure 7.1: Graph of tracking of white and light-blue targets using the percentage of manually
labelled pixels correctly placed in the hypothesis region for each person.

Figure 7.2: Graph of tracking of white and light-blue targets using the percentage of hypothesized
pixels which are correctly labelled as per the manually segmented data.
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Figure 7.3: The average of the percentages shown in Fig. 7.1, and Fig. 7.2.

Figure 7.4: Graph of tracking of orange and green targets using the percentage of manually labelled
pixels correctly placed in the hypothesis region for each person.
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Figure 7.5: Graph of tracking of orange and green targets using the percentage of hypothesized
pixels which are correctly labelled as per the manually segmented data.

Figure 7.6: The average of the percentages shown in Fig. 7.4, and Fig. 7.5.
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Figure 7.7: Graph of tracking of red and dark-blue targets using the percentage of manually labelled
pixels correctly placed in the hypothesis region for each person.

Figure 7.8: Graph of tracking of red and dark-blue targets using the percentage of hypothesized
pixels which are correctly labelled as per the manually segmented data.
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Figure 7.9: The average of the percentages shown in Fig. 7.7, and Fig. 7.8.

Figure 7.10: Graph of tracking of yellow target using the percentage of manually labelled pixels
correctly placed in the hypothesis region for each person.
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Figure 7.11: Graph of tracking of yellow target using the percentage of hypothesized pixels which
are correctly labelled as per the manually segmented data.

Figure 7.12: The average of the percentages shown in Fig. 7.10, and Fig. 7.11.
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White L-blue Orange Green Red D-blue Yellow
Frames tracked 425 328 308 316 262 165 165
Total frames with target 459 362 310 389 288 236 204
Percentage correct tracks 92.59 90.61 99.35 81.23 90.97 69.92 80.88
Longest tracking failure 15 13 1 16 5 10 6

Table 7.1: Table of tracking of seven people over the entire sequence of 460 frames. A frame in
which the percentage of correct pixel labelling is higher than zero is counted as a correct track for
that target for that frame.

these graphs is that in general the characteristic of the graphs in Fig. 7.1, Fig. 7.4, Fig. 7.7
and Fig. 7.10 is that the percentage correct pixel classification is higher than in Fig. 7.2,
Fig. 7.5, Fig. 7.8 and Fig. 7.11. This is a reflection of the fact that an ellipsoid is not a
perfect model of the various image projections of the human figure. The ellipsoid tends to
contain, on a correct hypothesis, the torso and legs of the person, but often limbs protrude
from the border of the hypothesis region.

Important information about the tracking of each target which may not be clear in the
tracking graphs of the indoor sequence is presented in Table 7.1

In this table, the “Frames Tracked” measure is of the number of frames in the video sequence
in which some part of the particular target was correctly tracked. The “Total frames with
target” parameter indicates how many frames in the sequence the target was present at
all. The “Longest tracking failure” parameter indicates the longest continuous number of
frames during which the object was lost.

Another run of the algorithm on the same data

Next we display precisely the same information, using the same tracking algorithm run on
the same sequence at a different time. These tracking graphs are shown in Figures 7.13 to
7.24. The goal is to compare the tracking reliability if all other factors such as the image
data and initialization parameters are held constant.

We can see that there are some slight differences in the tracking in the first and second
runs. For example we can see that in the first run the orange target (Fig. 7.4) was lost
around frame 150, but this does not happen in the second tracking sequence (Fig. 7.16).
Similarly the white target was lost at around frame 80 in the second sequence (Fig. 7.13),
but in the first sequence (Fig. 7.1) it was not. We can see that the red target was lost
in the first sequence around frame 110 (Fig. 7.7), but was not lost in the second sequence
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Figure 7.13: Graph of tracking of white and light-blue targets using the percentage of manually
labelled pixels correctly placed in the hypothesis region for each person, in the second run on the
benchmark sequence.

Figure 7.14: Graph of tracking of white and light-blue targets using the percentage of hypothesized
pixels which are correctly labelled as per the manually segmented data, in the second run on the
benchmark sequence.
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Figure 7.15: The average of the percentages shown in Fig. 7.13, and Fig. 7.14.

Figure 7.16: Graph of tracking of orange and green targets using the percentage of manually
labelled pixels correctly placed in the hypothesis region for each person, in the second run on the
benchmark sequence.
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Figure 7.17: Graph of tracking of orange and green targets using the percentage of hypothesized
pixels which are correctly labelled as per the manually segmented data, in the second run on the
benchmark sequence.

Figure 7.18: The average of the percentages shown in Fig. 7.16, and Fig. 7.17.
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Figure 7.19: Graph of tracking of red and dark-blue targets using the percentage of manually
labelled pixels correctly placed in the hypothesis region for each person, in the second run on the
benchmark sequence.

Figure 7.20: Graph of tracking of red and dark-blue targets using the percentage of hypothesized
pixels which are correctly labelled as per the manually segmented data, in the second run on the
benchmark sequence.
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Figure 7.21: The average of the percentages shown in Fig. 7.19, and Fig. 7.20.

Figure 7.22: Graph of tracking of yellow target using the percentage of manually labelled pixels
correctly placed in the hypothesis region for each person, in the second run on the benchmark
sequence.
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Figure 7.23: Graph of tracking of yellow target using the percentage of hypothesized pixels which
are correctly labelled as per the manually segmented data, in the second run on the benchmark
sequence.

Figure 7.24: The average of the percentages shown in Fig. 7.22, and Fig. 7.23.
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White L-blue Orange Green Red D-blue Yellow
Frames tracked 435 331 310 333 266 215 195
Total frames with target 459 362 310 389 288 236 204
Percentage correct tracks 94.77 91.44 100 85.66 92.36 91.10 95.59
Longest tracking failure 16 17 0 13 6 5 2

Table 7.2: Table of the second run of tracking of seven people over the entire sequence of 460
frames. A frame in which the percentage of correct pixel labelling is higher than zero is counted as
a correct track for that target for that frame.

White L-blue Orange Green Red D-blue Yellow
Frames tracked 125 0 131 116 162 0 41
Total frames with target 459 362 310 389 288 236 204
Percentage correct tracks 27.23 0 42.26 29.82 56.25 0 20.1
Longest tracking failure 278 362 123 83 126 236 161

Table 7.3: Table of tracking of seven people over the entire sequence of 460 frames, using the basic
particle filter with 200 particles. A frame in which the percentage of correct pixel labelling is higher
than zero is counted as a correct track for that target for that frame.

(Fig. 7.19). The statistical information about the tracking of each target in the second run
is presented in Table 7.2.

The important point is that the overall characteristic of the tracker is fairly constant,
and from this tracking visualization we can make inferences about its stability, reliability,
and suitability for a particular application.

7.1.2 Performance of basic particle filter

We now examine the same graphically represented results on the performance of the basic
particle filter, using the same joint state and observation model, when applied to the same
video sequence using the same initialization data. They are displayed in Fig. 7.25 and Fig.
7.26. The statistical information about the tracking of each target in the run of the basic
particle filter is presented in Table 7.3.

The basic particle filter performs poorly compared to the partitioned particle filter. The
algorithm here used the same number of particles as did the partitioned particle filter in the
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Figure 7.25: Graph of tracking of seven people using the percentage of manually labelled pixels
correctly placed in the hypothesis region for each person, using the basic particle filter, with 200
particles.

Figure 7.26: Graph of tracking of seven people using the percentage of hypothesized pixels which
are correctly labelled as per the manually segmented data, using the basic particle filter, with 200
particles.
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White L-blue Orange Green Red D-blue Yellow
Frames tracked 79 189 2 256 285 0 0
Total frames with target 459 362 310 389 288 236 204
Percentage correct tracks 17.21 52.21 0.65 65.81 98.96 0 0
Longest tracking failure 148 101 308 131 2 236 204

Table 7.4: Table of tracking of seven people over the entire sequence of 460 frames, using the basic
particle filter, with 1400 particles. A frame in which the percentage of correct pixel labelling is
higher than zero is counted as a correct track for that target for that frame.

graphs shown in Figures 7.1 to 7.24, in the previous subsection. We can see that the basic
particle filter is only really capable of tracking a single person at a time, and although in
principle the basic particle filter should converge to the same posterior distribution as the
partitioned particle filter (although not the same posterior as the partitioned particle filter
with scan phase), due to the lack of intelligent sampling, many more particles are needed
to perform the same tracking operation.

When the target is lost and then reacquired, as in the case of the green and orange target
object, this is purely accidental, and corresponds to a person walking randomly through
the predicted region of hypothesis for that person. This aspect of the tracker is entirely
unreliable, and so the tracking performance should actually be regarded as worse than is
suggested by the tracking graphs in Fig. 7.25 and Fig. 7.26.

It can be argued that if we are to make a performance based comparison between a basic
particle filter and a partitioned particle filter, then it is the relative amount of computation
per frame which should be held constant in each case, rather than the number of particles.
Since with the partitioned particle filter each particle is processed once per partition, we
could increase the number of particles in the basic particle filter by a multiplicative factor
equal to the number of partitions. This would cause the computational expense between
the two algorithms, per frame, to be equal. The performance of the basic particle filter with
1400 particles, (since the number of particles per partition in the partitioned particle filter
is 200, and there are seven partitions), is depicted in Fig. 7.27, Fig. 7.28 and shown in
Table 7.4. The performance is slightly better than that of the basic particle filter using 200
particles: the filter can for short periods track three targets, but not more than this. At this
point the advantage of using partitioned sampling becomes clear. In theory, as the number
of particles tends to infinity, both the basic particle filter and the partitioned particle filter
will converge to the same posterior. We can see only a small improvement in the basic
particle filter, although we increased the number of particles by a factor of seven.



102

Figure 7.27: Graph of tracking of seven people using the percentage of manually labelled pixels
correctly placed in the hypothesis region for each person, using the basic particle filter with 1400
particles .

Figure 7.28: Graph of tracking of seven people using the percentage of hypothesized pixels which
are correctly labelled as per the manually segmented data, using the basic particle filter with 1400
particles.
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Figure 7.29: Graph of tracking of seven people using the percentage of hypothesized pixels which are
correctly labelled as per the manually segmented data, using the partitioned particle filter without
the scan phase.

7.1.3 Performance of partitioned sampling algorithm without scan phase

It is instructive to examine the performance using the pixel percentage metric of the parti-
tioned particle filter implemented without the scan phase. The results are as shown in Fig.
7.29, Fig. 7.30 and Fig. 7.31. The statistical information about the tracking of each target
in the run of the partitioned particle filter without the scan phase is presented in Table 7.5.

White L-blue Orange Green Red D-blue Yellow
Frames tracked 302 358 309 247 227 213 184
Total frames with target 459 362 310 389 288 236 204
Percentage correct tracks 65.8 98.9 99.68 63.5 78.82 90.25 90.2
Longest tracking failure 151 1 1 132 53 6 8

Table 7.5: Table of tracking of seven people over the entire sequence of 460 frames, using the
partitioned particle filter without the scan phase. A frame in which the percentage of correct pixel
labelling is higher than zero is counted as a correct track for that target for that frame.
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Figure 7.30: Graph of tracking of seven people using the percentage of hypothesized pixels which are
correctly labelled as per the manually segmented data, using the partitioned particle filter without
the scan phase.

Figure 7.31: Graph of tracking of seven people using the percentage of hypothesized pixels which are
correctly labelled as per the manually segmented data, using the partitioned particle filter without
the scan phase.
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Figure 7.32: Graph of tracking of white target using the average percentage metric, using the
partitioned particle filter without the scan phase.

The graphs of the tracking performance in Fig. 7.29, Fig. 7.30 and Fig. 7.31 are not
particularly revealing, as the general characteristics look very similar to that of the data for
the partitioned particle filter with the scan phase. We can see in the Table 7.5 however that
the figure for the “Longest tracking failure” has increased drastically, and this is because
without the scan phase, a lost target can only be recovered accidentally. We can gain a
greater understanding of the benefit of the scan phase if we examine the tracking plot for
a particular individual, with and without the additional scan phase. We can see two such
graphs, in Fig. 7.32 and Fig. 7.33.

We can see in the tracking information shown in Fig. 7.32 more clearly how the white
target is completely lost and then accidentally regained in the case of the partitioned particle
filter without the scan phase. If we add the scan phase, the white target is recovered quickly
after occlusions.

Fig. 7.33 is a similar plot, but this time showing the tracking information of the red
target. Once again the filter performs better if the scan phase is used, since the target
is lost at around frame 330 without the scan phase, but is tracked until frame 385 if the
scan phase is included. We may observe here also that in fact the scan phase introduces
more false hypotheses than would otherwise be processed, so in fact there is also a negative
impact on the performance: At several occasions, (frames 120, 210, 260, 355) the filter with
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Figure 7.33: Graph of tracking of red target using the average percentage metric, using the parti-
tioned particle filter without the scan phase.

the scan phase temporarily loses the target for short periods (one or two frames), where
the partitioned particle filter without the scan phase does not. This is because during short
periods of near total occlusion which the filter without the scan phase might survive, the
filter with the scan phase would more easily lock on to an alternative hypothesis elsewhere
in the image. The scan phase allows the filter to recover quickly from its scan phase induced
error.

7.2 Effective Number of Particles per Partition

Another way of measuring the effectiveness in the sampling/dynamics stage of the selection
of samples from an appropriate region in the state space, is to use Doucet’s estimated
effective number of particles [68], proposed in 1998. Where the effective number of particles,
Neff, is calculated as:

Neff =

(
N∑

i=1

π2
i

)−1

Intuitively this measure indicates the number of useful particles which may be con-
tained in the distribution containing these weights, in the sense that particles with vary low
probabilities are not likely to be used again, and so are wasted time and space.
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Figure 7.34: The Number of Effective Particles shown for each partition, for each time step.

If all the particles have equal weight 1/N , then Neff = N , which shows that all the
particles are likely to be used. Conversely, if the variance of the particles is very high, then
Neff = 1.

The plot shown in Fig. 7.34 shows the number of effective particles calculated at each
partition, after the importance reweighting has been applied, but before the resampling
step has taken place, for the indoor sequence. Since each partition is associated with one
of the target objects, we notice that certain partitions only become active as the corre-
sponding target appears on the scene. The number Neff is highest for the zeroth partition,
corresponding to the white person, and lower for subsequent partitions. The reason for this
is that in this implementation the Neff for the zeroth partition in fact corresponds to the
posterior for the previous time step. In a successful partitioned particle filter, we expect
the Neff of the posterior distribution for any time step in general to be higher than the Neff

for the iterative searches through the partitions that would lead up to such a posterior.
Notice that while the data shown in Fig. 7.34 gives us an idea of when the various

partitions become active, and perhaps also of how many of the samples at each partition
are in fact being used, the Neff measure presented for a particular, typical tracking sequence
does not correlate usefully with the percentile match metrics shown in Figures 7.1 to 7.12,
which provide ground-truth data for the tracking success at any time instant for the first
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run on the benchmark sequence. The value of Neff as a tracking measure is then cast into
question, although in general it may still be useful to determine the tracking efficiency, if it
is already known that the entire tracking sequence was successful, or if it is known which
parts were successful.

7.3 State space variance per dimension per time-step

The primary contribution of particle filtering in state space estimation is to allow for the
representation and propagation of multi-modal state estimation given multi-modal process
and observation noise. Therefore, the variance about the expectation value is not necessarily
a good measure for the successful tracking of an object. However, as with Neff, under
certain assumptions it can be an indicator for the efficiency of the filter. If the true state
space distribution is in fact unimodal, as would be the case if each target object were
uniquely identifiable, and if the posterior distribution p(X|Z) of this state space is essentially
unimodal, and if it is unimodal about the correct mode (i.e. the tracking is successful), then
the variance gives an indication of the accuracy to which the correct solution has been found,
and also of the efficiency of the filter.

Presented in Fig. 7.35 is the variance of the posterior distribution at each time step (to
give the variance of each dimension at each time step for each partition is not useful), for
the indoor scene.

We may have expected some correlation between the variances within each dimension
and the corresponding ground-truth of the quality of the tracking for the objects as shown
in Figures 7.1 to 7.12. However this is not the case, and the two statistics seem unrelated to
one another. One may ask why there is not a large increase in the variance of a particular
object’s location vector when that object is lost in the tracking sequence, occluded or
otherwise. Although there may be a small unnoticed correlation in this regard, the algorithm
usually recovers from lost targets within one to three frames, and this is typically not
enough for the variance to build up noticeably. An alternative explanation is that the
scan phase of the algorithm is both its strength and its weakness. When an object is lost,
an alternative, although incorrect hypothesis is usually found very quickly. Local maxima
for the posterior probability would still exist in configurations where the lost target is
incorrectly hypothesized to be near some image data which best approximates it, and the
characteristic of these local maxima is that they are sufficiently high to trap particles and
therefore maintain them at a low variance within a particular subspace in the state space.
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Figure 7.35: The variance within each dimension at the posterior for each time step.

First Second Third Fourth
Frames tracked 144 139 150 147
Total frames with target present 153 153 153 153
Percentage correct tracks 94.12 90.85 98.04 96.08
Longest tracking failure (frames) 5 8 1 2

Table 7.6: Tracking information for the first natural outdoor scene with four targets.

7.4 Tracking results for outdoor scenes

We now examine some of the results for the tracking of the outdoor sequences. We see in
Fig. 7.36 the average correct pixel classification per frame, for the first outdoor sequence,
and in Fig. 7.37 the statistics for the second outdoor sequence.

We see in 7.36 that the the performance for the first outdoor sequence is reasonably
good, and that targets were momentarily lost, but that the tracking overall was sound.
Table 7.6 summarizes the information in Fig. 7.36.

Similarly, in Fig. 7.37 we see that the the performance for the second outdoor sequence is
also good, and that targets were momentarily lost, but that the tracking overall was sound.
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Figure 7.36: The average of the two percentile metrics, for the first outdoor scene in which there
are four people, dressed naturally, with simple interaction.

Table 7.7 summarizes the information in Fig. 7.37.

7.5 Operating speed of tracking algorithm

As mentioned in the introduction, this implementation of the algorithm was not optimized
for speed, but rather for extensibility. Moreover, the most expensive stage of the algorithm,
which is the observation stage, requires the iterative processing of the current image, once
per particle, at each partition. The partitioned sampling does result in an overall speed
increase through intelligent selection of the state space region in which to sample, but

First Second Third Fourth
Frames tracked 145 142 93 116
Total frames with target present 147 147 110 147
Percentage correct tracks 98.64 96.60 84.55 78.91
Longest tracking failure (frames) 2 1 10 6

Table 7.7: Tracking information for the second natural outdoor scene with four targets.
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Figure 7.37: The average of the two percentile metrics, for the second outdoor scene in which there
are four people, dressed naturally, with simple interaction.

the processing overhead is too high to allow for real-time tracking despite this particular
optimization.

As in [1], the pixel classification stage is moved into a preprocessing stage, so that the
probability maps are already available for the particle filter to operate on. This simplifies
the observation process, since each particle then needs only to sum over the probability map
(in which probabilities are represented in the log domain) for that particle for that image in
the appropriate way. A single frame in the video sequence takes approximately two to three
minutes to process, based on one partition per person, with seven people, with two hundred
base particles and one hundred augmented particles per partition. In many particle filter
algorithms, the particle hypothesis is analyzed to extract a region in the image within which
to make the observation, however this is not necessarily an appropriate approach, since in
that case there is image data which is being ignored, and which may be relevant. With
extensive optimization, we may see real-time performance.

To iterate through a probability map once, i.e. to visit each pixel component, and to
increment the cumulative observation probability in the log domain takes approximately
3 milliseconds. To draw a sample from the prior distribution, add the noise, and render
the ellipsoids (via a scenegraph) which will generate the pixel labelling for a particle into a



112

bitmap takes approximately 30 milliseconds. The total is then 33 milliseconds per particle.
With partitioned sampling, there is an additional overhead of finding the correct order of the
partitions whenever a new target arrives or leaves. On this platform (which uses a Celeron
2GHz processor), we can evaluate approximately 30 particles per second. Since we need
approximately 300 particles per partition (i.e. per target), and since we have seven targets,
we need 2100 particle computations per frame. Assuming that the frame rate for the video
feed is 10 frames per second, we require computation for 21000 particles per second, and so
the algorithm on this platform is a factor of 700 slower than real-time.

The preprocessing stage for each particle is also very expensive, although it needs to be
performed only once per frame. For eight models, with sixteen mixtures per target object
model and a unique single centered Gaussian distribution per pixel for the background
model, it takes 45 seconds to preprocess a frame to generate probability maps for all targets.
This is obviously a large overhead, but the speed of this stage may be increased by reducing
the number of mixture centers for the target models (although this will reduce the accuracy
of the classification). Also, one may use instead of a full covariance matrix, a spherical
covariance matrix, which will greatly reduce the cost of calculating the activation matrix,
as per [67]. The cost of using the L*a*b* colour space may also be discarded by using the
RGB space, or whichever colour space the data was in when it arrived from the camera.

7.6 Performance of tracker on random initialization

Suppose the tracker is not initialized on the correct data, but rather at random. A measure
of how quickly the tracker recovers all the target objects is an indication of the robustness
and independence of the tracker from human intervention. It is also relevant to the com-
plete solution tracking algorithm, in which a tracker should be able to detect targets as
well as locate them. A tracker which can recover all target objects quickly would also be
more independent and useful when integrated with a large network of such trackers, each
responsible for a location or area of interest of a building.

The images in Fig. 7.38, Fig. 7.39, Fig. 7.40 and Fig. 7.41 demonstrate how quickly
the tracker recovers all the targets, when randomly initialized.

This ability to reacquire targets within a joint hypothesis framework would not be
possible with the use of multiple independent trackers, nor without the partitioning which
allows the scan phase for individual targets. Any number of targets may be reacquired in
this way, provided they are partially visible, and a sufficient number of augmented particles
have been allocated to the scan phase.
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Figure 7.38: Tracker for four targets is randomly initialized.

Figure 7.39: After one frame, the white and green targets have been recovered.
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Figure 7.40: After two frames, the light-blue target has also been recovered.

Figure 7.41: After three frames, each of the four targets has been recovered.



Chapter 8

Conclusion

8.1 Summary of results

In this thesis, experimentation was done in the application of Partitioned Particle Filtering
to the tracking of people (target objects) in a RGB video sequence. A variety of colour
spaces were tested to investigate the colour separations which they could yield in the colour
histograms of the colours of the target objects. It was found that the L*a*b* colour space
yielded the best colour separation, and so the Gaussian Mixture Models which were de-
signed to model the colour distributions of the target objects were trained from the data
transformed into this space.

The use of Hidden Markov Models built and implemented on a fixed-lag smoothing
basis to improve the probability estimates in the pixel classification stage, in theory takes
advantage of the underlying and correct assumption that pixels have a low likelihood of
making a transition to any other state given the state that they are in. However according
to the Log Correct Classification Metric introduced in chapter 4, the overall effect of HMM
smoothing is negative given the observation method used in this implementation, although
the HMM smoothing could assist in the case of more severe image noise.

The basic particle filtering algorithm was also compared to the partitioned particle
filtering algorithm, using the same pixel classification models, and the partitioned particle
filtering algorithm was found to perform much better. The traditional particle filter cannot
effectively track more than three people in a heavily cluttered scene given a fixed small
number of particles, whereas the partitioned particle filter augmented with the scan phase
can track all seven of the target objects successfully, although they are lost on numerous
occasions, but then recovered via the scan phase.

The scan phase which augments the partitioned particle filter causes an improvement
in the performance of the tracker, although it is a relatively inexpensive step to take. At
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each partition, the state space is augmented with a small number of altered particles, each
of which the tracker evaluates. With each partition in the sample space corresponding to
a single target object, this altered set of particles represents samples from the search space
which have a corresponding manually defined subspace which the sampling mechanism then
explicitly explores.

8.2 Future work

Within the area of the type of observation which is done on samples of the state space, a
dynamical observation model may be implemented, such as the adaptive Gaussian Mixture
Model. Histogram comparison methods may also be used to compare image data with
state hypotheses, as these better allow a region to be compared with a target model, rather
than assuming that a sum of pixel classification probabilities yields the same result. The
colour models developed for the target objects may be defined on a finer scale, so that the
spatial information of the colour distribution on a target object is not lost in the creation
of a single Gaussian Mixture Model for the entire object. It may also be beneficial to use
multiple colour models for a single target, depending on its orientation to the camera.

Within the partitioned sampling framework, it may be beneficial to allocate the first
partition to the target which is most likely to be correctly tracked, and the last partition
to the target with the smallest likelihood of being correctly tracked with the same order
established for the intermediate partitions (it may be occluded or otherwise), and research
may be done on the best way to estimate this likelihood, and of its effects on the tracking
performance.

As mentioned previously, we may improve the per-pixel probability measure by using
Markov Random Fields (MRFs) to take advantage of the fact that a target objects pixels
are usually adjacent to one another. MRFs however are costly to calculate, and this would
slow the algorithm down substantially.

One of the weaker assumptions about the observation model for the human targets
is that each person may be modelled in world coordinates using an ellipsoid as a model.
Although the ellipsoid has many properties which make it a convenient choice, it is not an
accurate model despite having its parameters adjusted for each target. A superior model
would yield superior tracking results.

The maximum a posteriori probability before the re-normalization stage in the weighted
resampling stage at each partition may be used to trigger a scan phase with a particular
resolution in the state space which it explicitly searches. This would allow computational
savings by not employing the scan phase when the probability of a correct match for a



117

particular target is high, and employing it aggressively if the target is likely to have been
lost, and thus has a corresponding low probability for the correct match.

The scan phase is also performed at uniformly spaced points in the state space, although
it may be more sensible to increase a search radius gradually over time, until the object is
located.

Dynamic Bayesian Networks may be used for sensor fusion in particle filtering if other
data, such as that from sound sensors becomes available, and this approach may also be
beneficial in the incorporation of multiple camera feeds for the observation stage.



Appendix A

Training Gaussian Mixture Models

A.1 The Expectation Maximization method

The Expectation Maximization (EM) falls under the category of gradient ascent methods,
with the convergence property having been proved by Dempster. EM is useful in problems
where there is incomplete information, such as missing data association or unknown causal-
ity between model components and data. The parameters of the Gaussian Mixture Models
represent the parameters through which we seek to maximize the probability of the data.
One way of expressing the algorithm is by implementing it as the iterative maximization of
a lower bound on the likelihood of the distribution.

Θ∗ = argmax
Θ

∑
J∈Jn

P (Θ, J |U)

where Θ represents the parameters over which the distribution must be maximized, J
represents the configuration space over which to integrate, and U represents the observed
data. In general the configuration space can be used to represent the complete data of the
problem, and usually takes the form of explicit data association between model parameters
or components and observed data.

A.1.1 EM as lower bound maximization

The problem may be equivalently expressed as maximizing the log likelihood of the joint
distribution:

Θ∗ = Θ[logP (U,Θ)] = argmax
Θ

[log
∑
J∈Jn

P (U, J,Θ)].

Then we can also say that
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logP (U,Θ) = log
∑
J∈Jn

P (U, J,Θ) = log
∑
J∈Jn

f t(J)
P (U, J,Θ)
f t(J)

.

According to Jensen’s inequality

B(Θ;Θt) ,
∑
J∈Jn

f t(J) log
P (U, J,Θ)
f t(J)

≤ log
∑
J∈Jn

f t(J)
P (U, J,Θ)
f t(J)

.

Then the maximization of the function B(Θ;Θt) is also a maximization of the lower
bound of the expression for Θ∗.

A.1.2 Maximizing the bound

We can reexpress the definition for the function B(Θ;Θt) with

B(Θ;Θt) , 〈logP (U, J,Θ)〉+H = 〈logP (U, J |Θ)〉+logP (Θ)+H = Qt(Θ)+logP (Θ)+H.

where

• 〈.〉 indicates the expectation with respect to f t(J) , P (J |U,Θt)

• Qt(Θ) is the log- likelihood defined as: Qt(Θ) , 〈logP (U, J |Θ)〉

• P (Θ) is the prior on the parameters Θ.

• H , 〈log f t(J)〉 is the entropy of the distribution f t(J).

Since H does not depend on Θ, we can maximize the bound using only the first two
terms:

Θt+1 = argmax
Θ

[B(Θ;Θt)] = argmax
Θ

[Qt(Θ) + logP (Θ)].

The EM algorithm iterates through the expectation and maximization steps. In the
maximization step, this lower bound is maximized, in this case analytically, using informa-
tion obtained at the expectation step, to obtain an improved estimate for B(Θ;Θt).

• E-step: f t(J) , P (J |U,Θt)

• M-step: Θt+1 = argmax
Θ

[Qt(Θ) + logP (Θ)]
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A.1.3 Equations for creating a Gaussian Mixture Model

The following are the equations as developed by Bishop in [66] for the iterative training of
a Gaussian Mixture Model.

µt
j =

∑N
i=1 p

t−1(j|xi)xi∑N
i=1 p

t−1(j|xi)

(σt
j)

2 =
1
d

∑N
i=1 p

t−1(j|xi)‖xi − µt
j‖2∑N

i=1 p
t−1(j|xi)

p(j) =
1
N

N∑
i=1

(j|xi)

where N is the number of data points.
The mean initial values for the GMM are here chosen at random, possibly from points
within the data set, and the covariances and priors are calculated for the data about these
newly selected means. These equations are then iterated through until the values stabilize,
and the results at that point may be regarded as a GMM which represents the data.

In the next section we describe the matrix-based method, due to Nabney (2002) [67], for
the implementation of these equations. The method for calculating the probability P (j|xi)
is described (via the Cholesky decomposition), as well as the implementation of a step for
checking if the smallest singular value following a Singular Value Decomposition (SVD) of
each covariance matrices is below a threshold, to detect a collapse in any of the covariance
matrices. This method also initializes the means, priors and covariance matrices based on
an initial K-means clustering algorithm, which allows for faster overall training of the model
since the EM stage, which is the more computationally expensive, begins with GMM data
which is closer to an optimal solution than if it were initialized on purely random data.

A.2 Generating a Gaussian Mixture Model using K-means
clustering and the EM algorithm

A.2.1 Initializing the Gaussian Mixture model using K means clustering

K-means clustering is an algorithm for generating clusters within a set of unlabelled data,
in an arbitrary number of dimensions. Which cluster each data point belongs to is defined
by the cluster point which is closest to the data point in question. In this way each cluster
is represented by a cluster point, and consists of all the data points which are closer to that
cluster point than to any other cluster point. We assume for the K-means algorithm that
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our data consists of an N ×M matrix, where N is the number of data elements, and M is
the dimension of the data.

The algorithm for the K-means clustering algorithm, is as follows:

• Randomly select distinguishable data points from the data set to center each cluster
point on.

• For i=1..NumSteps
1. For each data point, calculate the cluster point to which it belongs (is closest to).
2. For each cluster point, adjust its position to be the unweighted mean of the points
which are in its cluster.

After this algorithm, we can arrange our cluster centers in a K ×M matrix C, where
K is the number of centers and M is the number of dimensions in the data. The data is
also collected up into a N ×M matrix D so that

D =


d1

x d1
y d1

z

d2
x d2

y d2
z

...
...

...

dK
x dK

y dK
z


or

D =


d1

d2

...

dK


where

di = [ di
x di

y di
z ]T

We also form a similar matrix out of the cluster centers, which constitute the input
(randomly initialized) and output (when they have stabilized) of the K-means clustering
algorithm.

C =


c1x c1y c1z

c2x c2y c2z
...

...
...

cKx cKy cKz


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or

C =


c1

c2

...

cK


where

ci = [ cix ciy ciz ]T

in the case of three dimensional data.
“NumSteps” here represents the number of times we wish to iterate the k-means clus-

tering. We could also set a threshold for the largest adjustment of any cluster center, and
when this has fallen below a threshold, break out of the loop.

It is important that each cluster point is initialized on a distinct data point because
otherwise two cluster points initialized at the same point in RM , where M is the dimension
of the data, will evolve in the same way and one of the clusters will be redundant.

After the cluster centers have stabilized, we find an estimate for the covariance of the
data within each cluster with respect to that cluster vector. We also establish an initial
value for the prior probabilities for each cluster, based on the number of points within the
cluster. We then have a K dimensional vector for the prior probabilities:

P =
[
p1 p2 . . . pK ,

]
where K is the number of clusters, which is also the number of mixtures in our Gaussian

Mixture model. For each cluster center, we then develop a covariance matrix based on the
distribution of the points belonging to that cluster. Therefore, for the ith cluster we have:

Si =


D1x − Cix D1y − Ciy D1z − Ciz

D2x − Cix D2y − Ciy D2z − Ciz

...
...

...

DQx − Cix DQy − Ciy DQz − Ciz

 ,
where S represents a matrix of difference vectors, each horizontal row of which represents

that data points distance from the ith cluster center, and Q is the number of data points
belonging to the ith cluster. We can then easily form for each cluster center, a corresponding



123

intra-cluster covariance matrix Vi:

Vi = ST
i Si/K.

A.2.2 Refining the mean and covariance estimates using the EM algo-
rithm

This algorithm is largely dependent on the calculation of an activation matrix, A, which is
an N×K matrix, each element of which indicates the likelihood that a particular data point
was caused by a particular mixture center. We may use the activation matrix to calculate a
posterior probability on the mixture centers, after which an analytical solution is available
for the parameter maximization step.

Calculating the activation matrix

At each time step create an activation matrix A. The ijth element of our activation matrix
A may be calculated as:

Aij = exp(−0.5(Tij)2)/((2π)3/2d).

In the case of three dimensional data, and where

Tij =
[

Dix −Cjx Diy −Cjy Diz −Cjz

]
vj

−1


1

1

1

 ,
with

vT
j vj = Vj

which is the Cholesky decomposition of Vj , and d is the product of the diagonal entries of
matrix vj .

Calculating the posterior probability matrix

From the activation matrix A and the mixture component priors P we may calculate the
N ×K unnormalized posterior probability matrix F, so that

Fij = Pj ⊗Aij {i = 1..N, j = 1..K},

where ⊗ indicates elementwise multiplication.
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We then construct a normalized posterior matrix R from F so that each row has a
cumulative probability of unity:

Rij = Fij/
N∑

k=1

Fik.

The calculation of the normalized posterior matrix R constitutes the Expectation step
of the EM algorithm. In the Maximization step, we find the new mixture centers, covariance
matrices and prior values which are calculated analytically. We calculate also a temporary
matrix B for use as an intermediate variable to calculate the new priors, and the matrix Y
for similar use in calculating the new mixture centers:

B =
[
b1 b2 . . . bK

]T

bj =
N∑

i=1

Rij {j = 1..K}.

Calculating the maximized GMM parameters

Using B we can calculate the new priors:

p′j = bj/N.

The temporary matrix Y is
Y = RTD,

and the new matrix of mixture centers is then, element-wise:

C′
ij = Yij/bj .

To calculate the covariance matrix for each ith new mixture center, we create a weighted
difference matrix Si

Si =


(D1x −C′

ix)
√

R1i (D1y −C′
iy)
√

R1i (D1z −C′
iz)
√

R1i

(D2x −C′
ix)
√

R2i (D2y −C′
iy)
√

R2i (D2z −C′
iz)
√

R2i

...
...

...

(DNx −C′
ix)
√

RNi (DNy −C′
iy)
√

RNi (DNz −C′
iz)
√

RNi

 .
Then for the ith new covariance matrix, we have

V′
i = ST

i Si/bi.
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We may incorporate an additional check at this stage to avoid the case of collapsing
covariance matrices by checking the rank of the covariance matrix. If the rank is less than
the dimension of the data, three in our case, then we can maintain the covariance matrix
at the last form it had when before we detected its collapse. One easy way to see the rank
of a matrix is to take its Singular Value Decomposition:

V′
i = USVT ,

where the diagonal entries of matrix S contain the singular values. If the smallest singular
value is below a threshold, then the rank is less than three and the covariance matrix has
collapsed.



Appendix B

The Viterbi algorithm for Hidden
Markov Models

Given the observed data and a Hidden Markov Model λ = {A, B, π}, we seek to find the
most likely state sequence.

δt(i) =
q1, q2, ..., qt−1

max P [q1q2q3...qt = i, O1O2O3...Ot|λ]

Then, by induction:
δt+1(j) = [maxiδt(i)Aij ]bj(Ot+1)

which is the probability of the set of observations up to t, given that the model must
end in state j.

We need to keep track of the maximized state at every t and j, and this is done using
an array ψt(j).

The algorithm for unravelling the optimal state sequence is then:
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1. Initialization

δ1(i) = πibi(O1) i = 1..N}

ψ1(i) = 0

2. Recursion
δt(j) = maxi[δt−1(i)Aij ]bj(Ot) {t = 2..T}

{j = 1..N}
{i ∈ {1..N}}

ψt(j) = argmax
i

[δt−1(i)Aij ] {t = 2..T}

{j = 1..N}
{i ∈ {1..N}}

3. Termination

P ∗ = maxi[δT (i)] {i ∈ {1..N}}

q∗T = argmax
i

[δT (i)] {i ∈ {1..N}}

4. Path backtracking:

q∗t = ψt+1(q∗t+1) {t = (T − 1)..1}



Appendix C

Hardware

The platform on which this software was developed is a Celeron 2GHz with 256 MB RAM,
running Windows XP. The compiler and IDE used were those of Microsoft Visual C++ 6.0,
using the Microsoft Foundation Classes and OpenGL library.
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