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Abstract
Visual saliency is one of the mechanisms that guide our visual attention, or where

we look. This topic has seen a lot of research in recent years, starting with biologically-
inspired models, followed by the information-theoretic and recently statistical-based
models. This dissertation looks at a state-of-the-art statistical model and studies what
effects the histogram construction method and histogram distance measures have on
detecting saliency.

Equi-width histograms, which have constant bin size, equi-depth histograms, which
have constant density per bin, and diagonal histograms, whose bin widths are deter-
mined from constant diagonal portions of the empirical cumulative distribution func-
tion (ecdf), are used to calculate saliency scores on a publicly available dataset. Cross-
bin distances are introduced and compared with the currently employed bin-to-bin dis-
tances by calculating saliency scores on the same dataset. An exhaustive experiment
with combinations of all histogram construction methods and histogram distance mea-
sures is performed.

It was discovered that using the equi-depth histogram is able to improve various
saliency metrics. It is also shown that employing cross-bin histogram distances im-
proves the contrast of the resulting saliency maps, making them more perceptually
meaningful but lowering their saliency scores in the process.

A novel improvement is made to the model which removes the implicit center bias,
which also generates more perceptually meaningful saliency maps but lowers saliency
scores. A new scoring method is proposed which aims to deal with the perceptual and
scoring disparities.
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Chapter 1
Introduction

The natural world is an extremely complex and intricate system. A 250ml glass of
water contains roughly 8.25 × 1024 H2O molecules1 all exerting forces on each other,
the container and the environment. That is about 1000× more molecules than there
are cups of water in all the water on earth! To fully characterise this system we would
need to be able to specify every single force and action of every single molecule, and
even then that does not include the details of the quarks and leptons at an even smaller
scale. Yet, through all this complexity, we humans and animals alike have developed
an ability to distil the essence of the world around us which enables us to understand
it and interact with it. If we were to knock over the glass we could, with moderate
accuracy, predict where the water might flow. The explosion in complexity as we look
at the system through the molecular lens is called the curse of dimensionality [6], which
luckily nature has provided us and the animal kingdom a powerful tool to overcome:
abstraction. Abstraction allows us to look at the world through generalisations, to
change the scale of the world we are looking at. Rather than attempting to identify and
model each molecule individually, we are able to identify “water” as a single concept
and assign properties to it, such as its viscosity or its ability to take on a container’s
shape. It might not be the whole picture, but it is certainly enough to allow us to use
it for our survival and competitive advantage.

Survival of the fittest requires that a creature have some trait or ability which allows
it to make better use of its environment which would allow it to propagate its species
forward through time. Over the course of the world’s evolution nature has designed
many solutions for interacting with the environment around us, most notably sight.
The ability to turn electromagnetic waves into electrical and chemical signals that rep-
resent the world, otherwise known as sight, was obviously an incredibly important
advantage, judging by the ubiquity of the eye in nature. To be able to interact with the
world the eye could try and identify every molecule in every object, but the amount
of processing power required for such a task would be enormous. Our brains exist

1For water at 20°C and 1atm: 250ml × 0.9882g/ml [26] × 6.0221×1023molecules/mol ÷
18.01528g/mol [47] = 8.25×1024 H2O molecules.
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Introduction

in a finite space and require energy to function, meaning the processing power at our
disposal is a finite resource. To deal with these limitations, the eye developed its own
abstractions. There are approximately 92 million rods and 5 million cones in the aver-
age human eye, but only about 1 million connections leading from the eye to the visual
cortex [12]. Even then, the information is not sent directly as it is received; rather it is
preprocessed into roughly 10-12 channels consisting of abstracted information such as
edges, motion and large areas of uniform colour in the scene. The visual system does
something we refer to as sparse coding. It finds the minimum amount of information
that adequately allows the brain to reconstruct the scene which gives the creature the
best possible chance of survival [29].

To keep the entire scene in front of us in focus would require a tremendous amount
of data capture, as well as processing. We have developed a mechanism called visual at-
tention, otherwise known as selective focus, to make this process more efficient. Rather
than attempting to keep the entire scene in focus, a “spotlight” of higher resolution
imagery is allowed to scan the scene in rapid succession, called saccades [37]. The as-
sumption is that the environment does not change more rapidly than we can update
our representation of it, which in most situations is reasonable. This ability allows us
to selectively view the scene, allocating our finite processing power only to the parts of
the scene that require it or that we deem important.

There are certain triggers that guide this attentional mechanism, the most popular
theory being the corresponding bottom-up and top-down attentional mechanisms [23,
27, 40, 44]. The theory suggests that we have two streams of attention, one being a
highly parallel feature and stimulus driven mechanism, the other being a much higher-
level goal-driven mechanism. These two systems work in tandem to decide what part
of the visual field should be allocated the spotlight of processing power. Sharp edges,
abrupt colour changes, repeating patterns, moving objects and even seemingly higher-
level concepts like faces can trigger the bottom-up mechanism to indicate interesting
content [25]. Top-down goals such as looking for words, or a specific colour or face
in a crowd, would basically prime the bottom-up process to only respond to those
cues, overriding its default behaviour. These processes result in certain parts of the
world standing out relative to their surroundings and this perceptual quality is known
as visual saliency.

In recent years, researchers have developed models for saliency which have moved
from the biologically-plausible models [22, 23, 27, 34, 40] into the information-theoretic
[9, 15], statistical [33, 50] and transform-based [18, 31] models, each providing new and
unique understandings of the way visual saliency works. Biologically-based saliency is
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Introduction

a great place to start, due to it being successfully implemented in nature and therefore
readily available to be studied, but perhaps through biological limitations or evolution-
ary pressures the current systems are sub optimal.

1.1 Objectives and Hypotheses

The statistical models have recently shown good performance at detecting visual saliency
and predicting where humans might look, which is why this dissertation focuses on ex-
ploring these models and attempts to discover the effects certain assumptions and design
decisions have on the resulting saliency predictions.

The model presented by Liu et al. [33] makes extensive use of histograms to calcu-
late the saliency in an image, where a histogram is a mathematical tool that provides an
estimate of a data distribution. The authors use equi-width histograms that partition
the colour space, in which the image resides, into equal-sized bins. However, as shown
by Piatetsky-Shapiro and Connell [36], equi-depth histograms that vary the bin width
to maintain a constant number of data points per bin achieve lower estimation errors.
Further, Denby and Mallows [13] show that equi-width histograms are unable to cap-
ture spikes in the distribution and that equi-depth histograms smooth the low-density
regions of the distribution. They introduce the new diagonal histogram (d-hist) which
is a trade-off between the two. The first objective of this dissertation is to discover
what effect the histogram construction method has on detecting visual saliency. It is
hypothesised that the variable width equi-depth and d-hist construction methods will
be better able to estimate the data distribution in the images, and will therefore allow
better detection of visual saliency.

Histogram distances also play a crucial role in the model of Liu et al. [33]. The
authors use histogram distances to compute saliency values based on the assumption
that salient regions generally show contrast with the surrounding background regions
as well as the assumption that salient colour distributions are more sparsely distributed
around the image than background colour distributions. They use a combination of
bin-to-bin distances and cross-bin distances to compute the saliency values. Bin-to-bin
distances are highly susceptible to binning effects, which occur when the bin edge in-
correctly partitions related data, and histogram shifting, which easily occurs due to
lighting and shading in the image. The second objective of this dissertation is to iden-
tify whether the histogram distance used has an impact on the performance of detecting
visual saliency. It is hypothesised that using cross-bin distances which negate the sus-

3
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ceptibility to binning effects and histogram shifts will improve the ability to generate
meaningful saliency values.

The third objective is to identify whether the methods of histogram construction
and histogram distances depend on one another, and if there is a combination that pro-
vides the best result. It is hypothesised that combining the variable width histogram
construction methods with the cross-bin histogram distances will provide a jointly im-
proved ability to detect visual saliency.

An issue present in most saliency scoring methods as well as saliency models is
that of center bias. Photographers generally place objects of interest in the center of
the frame and datasets generally have participants fixate on the center of the frame
before being exposed to stimuli. This leads to inflated scores when the saliency model
has a built-in center bias, as does the model of Liu et al. [33]. The fourth and final
objective of this dissertation is to attempt to remove the center bias from the model.
It is hypothesised that removing the center bias will lower the resulting saliency scores
due to the center bias artificially inflating most scoring methods. However, it is also
hypothesised that removing the center bias will improve the perceptual output of visual
saliency because the center bias will no longer mask salient regions towards the edges
of the image.

1.2 Road Map and Results

Chapter 2 provides the background information for the techniques and methods used
in this dissertation. The history of histograms and their construction methods are
discussed, along with the various histogram distances which will be used in the ex-
periments. Related research and key concepts of saliency are covered, and the model
from Liu et al. [33] that forms the basis of study for this dissertation is presented.
The methods and formulae for scoring saliency, the dataset and the viewing tasks per-
formed, which consist of three eye-tracking tasks with corresponding eye-tracking data
and one explicit selection task with corresponding mouse-click location data, close out
the chapter.

Due to the different strengths and weaknesses of the histogram construction meth-
ods, an experiment is presented in Chapter 3 that determines their effects on saliency
detection. It is shown that equi-depth histograms improve performance on a num-
ber of saliency scoring metrics for the eye-tracking data, but lower performance for
the explicit selection task. The equi-depth histogram’s smoothing of the low-density,
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or salient, colours causes the saliency in the image to become more spread out. This
favours the more random and haphazard eye-tracking data and not the more precise
explicit selection data.

An experiment to test the effects of the choice of histogram distance is presented
in Chapter 4. It is shown that cross-bin distances are detrimental to the saliency scores
generated, but perceptually improve the saliency detection in the image. The dispar-
ity is due to bin-to-bin distances not sufficiently suppressing the background regions
which, when combined with the eye-tracking data, generate higher scores but have per-
ceptually less meaningful results. It is noted that the eye-tracking data is spread out and
more randomly distributed around the image than the explicit selection data, and a new
scoring method is designed based on this observation.

The combined effects of the histogram construction methods and histogram dis-
tances are tested for in Chapter 5. The results from Experiments 1 and 2 are reiterated
and show that the equi-depth histograms and cross-bin distances can improve saliency
detection perceptually, but do not align well with current scoring methods.

An experiment is performed and presented in Chapter 6 which removes the center
bias from the model and compares saliency scores with the original method. It is shown
that removing the center bias from the model drastically lowers most scores, apart
from the scoring method which accounts for the center bias, but the resulting saliency
values are more perceptually meaningful. This highlights the need for new scoring
methodologies that better align with perception.

Chapter 7 concludes the dissertation with final thoughts and insights, and provides
some avenues for future research.

5



Chapter 2
Background Information

Saliency models and their subsequent scoring methods are often built up using existing
mathematics and methods. This chapter serves to introduce and explain in detail how
these concepts are applied when calculating and scoring saliency. Section §2.1 gives a
brief history of how the concept of a colour space came about, and how it can be used
to summarise an image’s contents. The tool used to summarise the image is the his-
togram and its various construction methods are explored in detail in Section §2.2. It
is possible and useful for computing saliency to compare these image summaries with
one another by calculating distances between their histograms, and some histogram dis-
tance measures are shown and their strengths and weaknesses explained in Section §2.3.
The concept of saliency, its origins, and its recent related literature is presented in Sec-
tion §2.4. The saliency model defined in [33] is the foundation for the experiments in
this dissertation, and is given a thorough working through in Section §2.4.1. Finally,
Section §2.5 explains how to score saliency using four of the most common metrics,
and Section §2.5.1 provides details of the dataset used in the experiments.

2.1 Colour Spaces

The perception of colour by humans is currently explained by two complementary
theories. The Young-Helmholtz, or trichromatic, theory states that we have photore-
ceptive cells in our eyes that are sensitive to three wavelengths of the electromagnetic
spectrum [42]. These wavelengths roughly correspond to the colours red (λ = 560nm),
green (λ = 530nm) and blue (λ = 420nm). As one of the first validations of this the-
ory, James Clark Maxwell took the first permanent colour photograph in 1861 by using
three separate colour filters, namely red, green and violet-blue, which when viewed to-
gether in a dark room created the colour photograph1. This led to the notion of an
additive colour space, known as the Red Green Blue (RGB) colour space, in which col-
ours are reproduced by additively combining the three primary colours. This colour

1Photo viewable at http://www.nationalgeographic.com/wallpaper/photography/photos/
milestones-photography/color-tartan-ribbon/.
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Background Information

(a) The RGB colour space.

(b) The RGB space embedded in the CIE L*a*b* space.

Figure 2.1.1: Representations of colour spaces in 3D.

space can be visualised or represented by a 3-dimensional space as seen in Figure 2.1.1a,
where a vector of three values between 0 and 255 defines their additive contribution to
the final colour.

The trichromatic theory could explain the physical mechanisms of colour, but it
was noted that we never see reddish-green or blueish-yellow, and the theory could not
explain the supposedly negative colour afterimages we perceive after overstimulation
of the retina. Ewald Hering created the opponent process theory which postulates
that colour perception is created by three opponent processes based on the primary
red, green and blue receptors [5]. These opponent processes consist of opposing pairs
of colours, namely white-black, red-green and blue-yellow. The responses from each
channel in a pair are antagonistic to each other, which explains the inability to perceive
reddish-green, it also explains the negative afterimages, as an overstimulation of red
would create an afterimage of green; likewise overstimulation of blue would create an
afterimage of yellow. It is thought that the overstimulation of one channel fatigues
the neuronal firing of that channel, and when the stimulus is removed the opposing
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channel’s signals are by comparison magnified.
The International Commission on Illumination (CIE)2 was established in 1913, and

is recognised by the International Organization for Standardization (ISO) as an inter-
national standardisation body dealing with all matters relating to the science and art of
light and lighting, colour and vision, photobiology and image technology. In 1931 the
CIE formally defined the CIE 1931 XYZ colour space, commonly referred to as CIE
XYZ, based on experiments by William David Wright [48] and John Guild [16], whose
purpose was to encompass all the colour sensations an average person can experience,
and as such serves as a standard reference against which many other colour spaces are
defined. CIE XYZ provides a mapping of physical light spectra onto human perceived
colours, as represented by tristimulus values, which takes into account that humans
overstate the contribution of green to the luminance or brightness of a colour, as well
as some other adjustments due to the differences in our subjective perception of colour.

Although the CIE XYZ “master” space can represent every perceivable colour, it
is not particularly perceptually uniform. Perceptual uniformity means a change of the
same amount in the colour space should produce an equivalent perceptual change in
the colour perceived. To overcome this shortfall, the CIE L*a*b* (CIELAB) colour
space was defined in 1976 [21], which is a perceptually uniform opponent colour space
with L for lightness and a and b for the colour opponent dimensions of red-green
and yellow-blue respectively. This perceptual uniformity was achieved via a nonlinear
transformation of the CIE XYZ colour space based on psychophysical experiments, as
can be seen by embedding of the RGB space in the CIELAB space in Figure 2.1.1b. The
beauty of having a perceptually uniform colour space is that it allows mathematical
treatment of the differences between colours that correlate to our perception via the
simple Euclidean distance between colours. It is thanks to this attractive property that
the CIELAB colour space has become the de facto standard for colour computations
in the computer vision community and is why it is chosen for the remainder of this
dissertation.

There are many colour spaces defined, each having properties that make them at-
tractive to the community that spurred their development. For example, the Hue-
Saturation-Value (HSV) and Hue-Saturation-Lightness (HSL) colour spaces came about
due to the difficulty of manipulating colours in RGB. To change the shade of red, one
needs to update all three RGB values simultaneously, which can be tedious, unintuitive
and error prone. The HSV and HSL spaces rearrange the RGB space into cylindrical

2http://www.cie.co.at.
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spaces, hue being the angle around the colour wheel, the radius being the saturation
of the specific hue, and the vertical axis being the lightness or brightness of the col-
our. Now changing the shade of red equates to adjusting its saturation or brightness
level, creating a much more intuitive interface for graphical designers and digital artists.
These spaces still suffer from the perceptual nonuniformity which makes them impre-
cise and inaccurate to work with computationally.

An image is made up of pixels, usually arranged in a rectangular grid, each of which
has an associated colour triplet most commonly stored in the RGB format. An im-
age can therefore be seen as a point cloud in the space of our choosing, which allows
us to apply clustering and data analysis techniques to uncover hidden structures and
manifolds in the image. Histograms are one such tool which allow us to achieve this.

2.2 Histograms

Histograms have their origins in the 19th century, introduced by Karl Pearson as a
means for graphically representing frequency data. As a mathematical tool, a histo-
gram provides an estimate of a data distribution, usually a discrete approximation of
a continuous variable, but can be applied to discrete data equally well. It acts very
much like a summary, exposing structures in the data as well as making computations
tractable by approximating and condensing the data [19].

Histograms made their first commercial appearance in the 1980s in database query
optimisers. By estimating how many records would need to be read or written (I/O),
the query optimiser is able to reorder the query appropriately so as to minimise data
I/O thereby drastically reducing query execution time. They then made their way into
image processing and computer vision, being used to summarise the intensity inform-
ation in an image, allowing characterisation of the content of the image, and allowing
image enhancement by histogram equalisation. A colour histogram characterises the
image in all three of its colour channels and adds further discriminatory and summar-
isation power. Examples of intensity and colour histograms are shown in Figure 2.2.1.

The most common and easy to implement histogram is the equi-width histogram.
For the 1-dimensional case it is constructed by partitioning a region of the data space
into equal width partitions, called bins, and then counting the number of data points
that lie within each bin’s edges. There are two main variables when dealing with histo-
grams, total number of bins n, and bin width k. In the equi-width histogram n and k
are related by k = upper−lower

n
where upper and lower are the upper and lower bounds

9
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(a) Greyscale image. (b) Intensity histogram.

(c) Colour image. (d) Colour histogram.

Figure 2.2.1: An image with its associated intensity and colour histograms.

of the histogram respectively. Generally, one chooses n and then partitions the space
over the maximum and minimum values in the data, but it can be advantageous to keep
a fixed range for the data, for example binning over 0 to 255 for intensity histograms re-
gardless of the image contents, so that one may compare histogram bin values directly.
The formula for an equi-width histogram with a total of m data points is

cb =
m∑
j=1

1(xj), (2.2.1)

where cb is the count of data points in bin number b ∈ {1, . . . , n} and 1(xj) is an indic-
ator function equalling 1 when bin b contains xj and 0 otherwise. The bin b contains
xj if edgeleft(b) ≤ xj < edgeright(b). The last bin also includes the right edge, such that
it contains xj if edgeleft(b) ≤ xj ≤ edgeright(b). Histograms are often normalised to
have unit area, which corresponds to a total probability of 1. This removes the depend-
ence on sample size and allows for different-sized sample distributions to be compared,
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resulting in a relative frequency histogram. The frequency fb of bin b is calculated by

fb =
cb∑n
i=1 cb

. (2.2.2)

Piatetsky-Shapiro and Connell [36] studied the histogram as applied to database
query optimisation, and showed that according to the maximum estimation error the
key parameter to control in generating histograms is the depth, or height, of bins and
not the width. They introduced the equi-depth histogram which takes the data and
partitions it into n equal depth distribution steps. The process sorts the data using the
natural ordering of the data domain and splits them into equal-sized steps. The effect of
this is to create narrower bins in high density regions, and to have wider bins at regions
of lower density. This makes intuitive sense if you are looking to characterise the “crux”
of the data as you are paying more attention to more of the data. This, however, has
the adverse effect of smoothing out outliers. This sort and step method works to make
the bins exactly equi-depth, but what it fails to account for is the values sitting on the
bin edge. These values would either get split across the bins depending on what index
the step happens at, or if all of a bin’s values were on the bin edge it would produce a
zero-width bin. Scott [41] suggests taking instead a percentile mesh on the data, which
does not create perfectly equi-depth bins, but negates the edge effects encountered from
doing distribution steps.

The equi-width and equi-depth histograms both have minor shortcomings. The
equi-width histogram does not handle spikes well, and has greater estimation error
than the equi-depth histogram. However, it performs better at characterising outliers.
By contrast, the equi-depth histogram gives greater detail to high-density regions but
sacrifices resolution in the low-density regions. Denby and Mallows [13] propose a
compromise between the two methods, which they term the diagonal histogram (d-
hist). They use the empirical cumulative distribution function (ecdf) of the data to cre-
ate their histograms, noting that equally-spaced partitions of the ecdf domain equates
to creating an equi-width histogram, and equally-spaced partitions of the ecdf range
equates to the equi-depth histogram. These partitions are illustrated in Figures 2.2.2b
and 2.2.2c. From this perspective, the shortcomings of each can be explained: at high-
density values the ecdf climbs sharply, which is lumped together by the equi-width
histogram and better partitioned by the equi-depth histogram, whereas regions of low
density will result in a flatter ecdf, which is better captured by the equi-width histo-
gram and lumped together by the equi-depth histogram. Their proposition is to take
equally-spaced diagonal partitions of the ecdf as in Figure 2.2.2d, which will make a

11
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(a) The ecdf of the intensity values of Figure 2.2.1a.
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(b) Partitioning the domain of the ecdf generates
the equi-width histogram.
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(c) Partitioning the range of the ecdf generates the
equi-depth histogram.
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(d) Diagonally partitioning the ecdf generates the
diagonal histogram.

Figure 2.2.2: The way in which the empirical cumulative distribution function (ecdf)
is partitioned determines the type of histogram generated.

compromise between capturing high-density regions, thereby capturing spikes, as well
as capturing low-density regions, thereby capturing the outliers.

2.3 Histogram Distances

Histograms, being estimates of data distributions, have similarity measures (referred
to as “distances”) which can be calculated between them, much like their continuous
counterparts. The distance, in effect, tells one how dissimilar two data distributions
are, based on the estimates represented by the histograms. There are two main types of
histogram distances: 1) the bin-to-bin type distances and 2) the cross-bin type distances.
A comprehensive survey of distance measures is provided in [11]. For the following,
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let P,Q ∈ Rn be two vectors representing histograms with n bins.

2.3.1 Bin-to-bin distances

A bin-to-bin type distance computes the distance between the histograms in a bin-
wise fashion. This is usually fast to compute, but can suffer from binning effects and
histogram shifting. Binning effects occur when related values are incorrectly split into
separate bins due to the position of the bin edge. Histogram shifting occurs when
similar histograms are offset from one another, perhaps due to global effects such as
lighting or shadows. This shift means incorrect bins are being compared when using
bin-to-bin distances, as in Figure 2.3.1. The most common bin-to-bin distances are of
the Minkowsky-form based on the Lp norm:

Lp(P,Q) =

(∑
i

|Pi −Qi|p
) 1

p

(2.3.1)

which is a metric for p ≥ 1. From this family we get the most widely used distances,
the L1 or Manhattan distance, and the L2 or Euclidean distance. A related distance
that can handle histograms of different sample sizes is called the histogram intersection
distance:

HI(P,Q) = 1−
∑

i min(Pi, Qi)∑
iQi

(2.3.2)

which is equivalent to the L1 distance when both histograms are normalised.
The Kullback-Leibler (KL) divergence is an information-theoretic distance which

measures how inefficient on average it would be to code samples from P when using a
code based on Q:

KL(P,Q) =
∑
i

Pi log

(
Pi

Qi

)
. (2.3.3)

The KL divergence is non-symmetric, sensitive to histogram binning and equals infinity
when P 6= 0 and Q = 0. To overcome some of these problems the Jenson-Shannon
( JS) divergence was developed:

JS(P,Q) = KL(P,M) + KL(Q,M) (2.3.4)

where
M =

P +Q

2
.
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From statistics we get the popular and effective χ2 distance:

χ2 =
∑
i

(Pi −Mi)
2

Mi

(2.3.5)

which measures how unlikely it is that one distribution was drawn from the population
represented by the other, with M being the same as above.

Another statistical distance, the Bhattacharyya distance, started as a geometric sim-
ilarity measuring the angle between two multinomial populations in a k-dimensional
space, and it was shown in [3] that the Bhattacharyya coefficient could be derived to
measure the similarity between two normalised histograms:

BH(P,Q) =
∑
i

√
PiQi. (2.3.6)

It is shown in [3] that the Bhattacharyya coefficient embeds the distance into a constant
error space, which ensures that the minimum distance between two points is always a
straight line between them. This property negates the need to evaluate the minimum
of a curved path integral for Poisson like errors which one needs to do with the χ2

distance. It is also shown that the Bhattacharyya distance approximates the χ2 distance
for small distances as well as avoids the singularity problem of χ2 when comparing
empty bins.

2.3.2 Cross-bin distances

Rubner [38] provides an illuminating illustration of the shortcomings of bin-to-bin
distances. Figure 2.3.1 [38] shows that for the simple example of a shifted histogram
the computed bin-to-bin distances do not match perception. This is due to the fact
that the distances assume that the histograms are perfectly aligned. This makes them
very sensitive to contrast and lighting changes which introduce shifts in the histogram.
The bin-to-bin distances are also unduly affected by binning effects, which then greatly
affects the distance produced.

Cross-bin distances attempt to overcome these shortcomings by taking into account
the intra-bin values, which allows for a more robust comparison amongst histograms.
The quadratic-form (QF) distance enlists a bin-similarity matrix A ∈ Rn×n, with aij
being a value indicating how similar bin i is to bin j. The QF distance is then defined
as

QF(P,Q) =
√

(P −Q)TA(P −Q). (2.3.7)
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> 
P1 P2

Q1 Q2

(a) Assuming normalised, L1(P1, Q1) = 2, L1(P2, Q2) = 1.

< 
P1

Q1

P2

Q2

(b) Distance should be based on correspondence between bins.

Figure 2.3.1: An example of where the L1 bin-to-bin distance does not match percep-
tion. Source: [38].

If A is chosen as the inverse of the covariance matrix, the distance reduces to the Ma-
halanobis distance. A common choice of A is to use the L1 or L2 distance between
bins. The QF essentially maps each bin in one histogram with every bin in the other
histogram, which overstates the mutual similarity for histograms without a pronounced
mode. This produces distances which do not align with perception, as can be seen in
Figure 2.3.2.

The earth mover’s distance (EMD) [38] represents the distance between histograms
as a transportation problem, also known as Monge-Kantorovich amongst others. It is
a measure of how difficult it is to transform the smaller histogram into part of the
bigger histogram, while taking into account the distances between bins. The sizes
here refer to the number of samples in each histogram. It measures this difficulty of
transformation by seeing the smaller histogram as piles of dirt in a space endowed with
a ground distance, which is defined as the amount of work to move a unit of dirt from
one location to another, and sees the bigger histogram as holes in that same space. The
EMD is then the minimum amount of work to move all of the dirt into the holes.
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(a) QF overstates mutual similarity.

< 
P1
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Q2

(b) Distance should be based on correspondence between bins.

Figure 2.3.2: An example of where the QF distance does not match perception. Source:
[38].

Formally:

EMD(P,Q) = min
{Fij}

∑
i,j FijDij

min(
∑

i Pi,
∑

j Qj)
s.t. (2.3.8)∑

j

Fij ≤ Pi,∑
i

Fij ≤ Qj,∑
i,j

Fij = min(
∑
i

Pi,
∑
j

Qj), and

Fij ≥ 0.

The optimal flow Fij from Pi to Qj is computed using the linear programming al-
gorithm, the transportation simplex. Most research takes the ground distance Dij

between bin i and bin j to be the L1 distance due to its attractive computational prop-
erties, but in this dissertation we will be using the L2 distance to make use of the per-
ceptual uniformity of colour in the CIELAB space, as explained earlier in Section §2.1.

The diffusion distance (DD) [32] is similar to the EMD, but instead of a transport-
ation problem, it models the difference between histograms as a temperature field and
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relates the distance to an integrated norm of the diffusion process. For computational
efficiency a Gaussian pyramid is used to discretise the continuous diffusion process, and
the diffusion distance is then defined as the sum of norms over all pyramid layers. If
x ∈ Rn represents a point in the underlying data space, then the diffusion distance is
defined as

DD(P,Q) =
L∑
l=0

k(|dl(x)|) (2.3.9)

where

d0(x) = P (x)−Q(x), and

dl(x) = [dl−1(x) ∗ φ(x, σ)] ↓2

are different layers of the pyramid, with ↓2 denoting half-sized downsampling, L being
the number of layers, and φ(·) a Gaussian filter with standard deviation σ. The authors
note that as long as k(·) is a metric, DD(P,Q) also forms a metric on histograms. They
choose to use L1, reducing Eq. 2.3.9 to

DD(P,Q) =
L∑
l=0

|dl(x)|. (2.3.10)

Using the example from [32] in the style of [38] it can be seen in Figure 2.3.3 that what
would produce equal distances using the EMD is slightly better handled perceptually
by the diffusion distance. The difference is marginal, but thanks to the downsampling
and reuse of the Gaussian kernel, it produces results with a computational complexity
of O(n).

2.4 Saliency

In understanding vision, Gestalt psychologists believe that the whole precedes the part,
that we register unitary objects and only later, if necessary, do we analyse these ob-
jects further into components or properties. A turning point came when Treisman and
Gelade introduced the feature-integration theory of attention [44], which states that
features are registered early, automatically, and in parallel across the whole visual field,
while objects are identified separately and only at a later stage, requiring focused atten-
tion. The physiological evidence [49] of specialised cells for features such as orientation
and motion, coupled with numerous behavioural experiments, gives great weight to the
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(a) EMD does not account for symmetry (after [38]).

(b) Diffusion distance captures the symmetry (after [32]).

Figure 2.3.3: An example of where EMD does not match perception.

validity of this theory.
In a world as complex as this it makes intuitive sense to have levels of processing. It

would be prohibitively expensive and computationally taxing to maintain a complete
representation of the entire world at every instant. Yet we still need to be able to
identify potential predators, prey, mates, and complete basic survival tasks. One of
nature’s solutions to this challenge is the attentional mechanism found in humans and
many animals. To quote William James [24]:

“Every one knows what attention is. It is the taking possession by the
mind, in clear and vivid form, of one out of what seem several simultan-
eously possible objects or trains of thought... It implies withdrawal from
some things in order to deal effectively with others.”

In other words, attention is the focus on one object or a small area of interest to the
exclusion of the rest. This mechanism provides us with enough information to navigate
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our world while allowing us to allocate our finite brain’s limited energy and processing
power most effectively. For this system to be successful it requires a mechanism for
directing the “spotlight” of attention, which in the case of vision is called visual saliency.

Visual saliency is a measure of how much a certain stimulus in the visual field stands
out from its surrounds, or in other words how much it “pops out”. A saliency map is
a topographical map indicating the saliency of a location in the visual field, formed by
combining elements of individual feature maps such as colour, edges, orientation and
motion. Koch and Ullman proposed a theoretical foundation for the saliency map and
how it might be implemented in the primate brain [27].

The first computational implementation of a saliency map was developed by Niebur
and Koch [34] and further extended by Itti et al. [23]. Their model consisted of an in-
put image, processed into a Gaussian pyramid [2], from which they compute intensity,
colour, orientation and temporal change features. These features are linearly combined
into a saliency map, having a greater weight for the temporal change feature based on
perceptual observations made by the authors. They select the most salient location in
the saliency map by means of a winner-take-all process. Interestingly, they also imple-
ment an inhibitory return signal, reasoning that the saliency map does not just find the
most salient region and then stop, but rather it finds the most salient region, allows
processing of it, finds the next most salient, allows processing of it, and so on. To
allow for this, the inhibitory signal coming from the winner-take-all process applies a
transient Mexican hat, or difference of Gaussians, at the location where the signal ori-
ginated. This has the dual effect of inhibiting the most salient region but also of slightly
raising the saliency of regions nearby, which might prevent the attention jumping too
rapidly or drastically around the scene. For the interested reader, Itti and Koch [22]
provide a more thorough review of the biologically plausible saliency maps and their
computational counterparts.

Not all saliency maps are biologically based. Studies of the statistics of natural
images show that there is an invariance to scale in natural images [39]. The property
is known as the 1/f law and states that the amplitude A(f) of the averaged Fourier
spectrum of an ensemble of natural images obeys a distribution E{A(f)} ∝ 1/f . Hou
and Zhang [18] show that the analysis of 2277 natural images revealed local linearity
in the log spectrum of the images, with each image containing a similar trend with
some statistical singularities. They reason that if there is a similarity in the log spectra
across a wide variety of images, the information that deviates from these smooth curves
is what should be attended to. They therefore apply a local averaged filter to the log
spectrum to generate the smooth trend curve, and compute the spectral residual of the
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image as the difference between the local average spectrum and the image spectrum.
The authors claim that the spectral residual contains the innovation of the image, and
it is this innovation which is defined as being most salient. Due to this method being
based on the global Fourier transform, which works directly on image intensity values,
the results are not always aligned with what is perceptually salient.

Li et al. [31] explored this concept further and discovered that the spectral residual
is of little significance, and show that by replacing it with random white noise with
the same average value and maximum as the spectral residual they are able to achieve
almost the same saliency map. They deduced that the spectral residual, which can
be approximated by a horizontal plane, actually acts a high pass filter on the image.
The amplitude spectrum of natural images always has higher amplitudes at lower fre-
quencies, so when the amplitude spectrum is replaced by a horizontal plane it is, in
effect, treating all frequencies equal. By virtue of this, the lower frequencies are sup-
pressed and the higher frequencies are enhanced. This is almost equivalent to a gradient
enhancement operation, which is why it discovers small salient objects but will only
highlight the edges of larger objects and of textured regions in an image. They then
turn the saliency identification on its head, and choose to search for nonsalient regions
based on the fact that salient objects come in many shapes and forms, and can be spread
across the image, whereas the backgrounds and nonsalient regions are generally repeat-
ing or uniform, which they then suppress to highlight the salient objects. The authors
show that a repeated pattern in a signal corresponds to a sharp peak in the amplitude
spectrum in the Fourier domain. Convolving the amplitude spectrum with a Gaussian
kernel effectively suppresses the periodic background and nonsalient regions, leaving
behind the salient objects which they highlight with some post-processing. The size of
the smoothing kernel affects the size of the detectably salient region, so they introduce
a scale-space representation and use the concept of entropy to select the appropriate
scale. To include more features they replace the Fourier transform by the hypercom-
plex Fourier transform, using the opponent colour channels as the quaternion values.

Bruce and Tsotsos [9] approach saliency from an information-theoretic standpoint,
defining saliency in terms of the self-information of local patches of the image with
respect to their surrounds. To the authors, saliency is synonymous with surprise, or
the expected number of guesses it would take to predict the local patch based on its sur-
roundings. To achieve this, a bank of filters is learned from a database of natural images
using independent component analysis (ICA), forming a suitable basis of Gabor-like
filters that correlate well with the V1 cortical cells found in the primate visual system.
An estimate of the distribution of each basis coefficient is learned across the entire im-
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age via non-parametric density estimation. The probability of observing a local patch
centered at any image location is then evaluated by independently considering the like-
lihood of each corresponding basis coefficient, with the product of all likelihoods yield-
ing the joint likelihood of the entire set of basis coefficients. Shannon’s measure of
self-information is used to translate the joint likelihood into the resulting saliency map.

The rest of this dissertation focuses on the next model of saliency by Liu et al. [33],
which, in a similar vein to Bruce and Tsotsos [9] above, uses global and local features
to compute a saliency map. In particular, a statistical approach is taken, almost akin to
outlier detection, whereby the global nature of the image is characterized by colour and
motion histograms as features, and then compared via distance functions with smaller,
homogeneous, edge-preserving regions called superpixels to generate the resulting sali-
ency map. The model is made up of a colour saliency map and a motion saliency map,
and is adaptively fused to generate a spatio-temporal saliency map. This dissertation
looks at the specific effects histogram types and distances have in the calculation of col-
our saliency, which extend naturally to the temporal saliency map by virtue of using
the same formulations. A brief review of the colour saliency map generation follows.

2.4.1 Colour Saliency

To aid in visualising the workings of this saliency model, Figure 2.4.1 shows the model
output for an example image at various stages of the calculation. Each frame or image Ft

(Figure 2.4.1a) is transformed into the CIELAB colour space, and is segmented into su-
perpixels spi(i = 1, . . . , n), where n is the total number of superpixels (Figure 2.4.1b).
Superpixels create an oversegmentation of an image, being generally homogeneous in
colour and edge-preserving of the structures in the image [1, 46]. Working with su-
perpixels is more meaningful in the context of an image, due to predefined blocks or
circular regions destroying or ignoring the natural structure in an image.

Colour histograms are used as the features to determine colour saliency in an image.
Each of the frame’s CIELAB channels is uniformly quantised into qb bins, generating
a colour quantisation table CQ with qC = qb × qb × qb bins. The authors set qb to
16, claiming that it is sufficient for quantising colour images. Colour histograms, be-
ing 3-dimensional, have greater memory requirements than their 2-dimensional coun-
terparts. However, by limiting the number of bins per histogram to 4096 and using
superpixels to segment the image into a small number of regions, an upper limit on
the memory requirement is induced. Using CQ, the global or frame-level colour his-
togram CH0 is calculated using the entire frame’s pixels, and normalised such that
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(a) Original image. (b) Superpixels.

(c) Global contrast. (d) Spatial sparsity.

(e) Superpixel-level spatial saliency. (f) Pixel-level spatial saliency.

Figure 2.4.1: The process for generating spatial saliency based on colour.
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∑qC
k=1 CH0(k) = 1. The quantised colour for each bin, qc(k), is calculated as the mean

colour of all pixels that fall into bin k. Local or superpixel-level histograms, CHi (i =

1, . . . , n), are then calculated and normalised such that ∀sp :
∑qC

k=1 CHi(k) = 1.
The authors make two assumptions to generate their colour saliency map: 1) sa-

lient regions generally show contrast with the surrounding background regions, and
2) salient object colours are generally more sparsely distributed over the scene than
background colours. They quantify the first assumption as the global contrast in the
frame, which is defined by comparing each superpixel-level colour histogram with the
frame-level histogram

SGC(spi) =

qC∑
j=1

[
CHi(j)

qC∑
k=1

‖qc(j)− qc(k)‖2 .CH0(k)

]
(2.4.1)

where ‖·‖2 is the L2 norm. This states that the global contrast for a superpixel in
relation to the frame is calculated as a sum of occurrence-weighted distances between
the quantised colours present in the superpixel and the frame. Figure 2.4.1c shows the
global contrast saliency value for each superpixel.

To quantify the second assumption of the colours of salient objects being more
sparsely distributed, they define the spatial sparsity measure. To compute the spatial
sparsity, each superpixel is compared with every other superpixel to create an intra-
frame similarity value

λintra(spi, spj) =

qC∑
k=1

√
CHi(k).CHj(k) .

[
1−
‖µi − µj‖2

d

]
, (2.4.2)

where µi and µj are the centroids of spi and spj respectively, and d is the diagonal
length of the frame. The first term is the Bhattacharyya coefficient as described in
Eq. 2.3.6, which measures the similarity between the two superpixel colour histograms,
and the second term is a distance weighting function. The equation will evaluate higher
for superpixels with more similar colour distributions to one another, and which are
spatially closer to one another. Now for each superpixel the spatial spread of its colour
distribution is calculated by

SD(spi) =

n∑
j=1

λintra(spi, spj).D(spj)

n∑
j=1

λintra(spi, spj)
(2.4.3)
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where D(spj) is the Euclidean distance from µj to the center of the frame. This, in
effect, uses the center of the frame as a reference point to calculate the dispersion of the
current superpixel’s colour distribution. The spatial sparsity measure is then defined
by an inverse normalisation of the above spread measure for each superpixel:

SSS(spi) =
max [SD(sp)]− SD(spi)

max [SD(sp)]−min [SD(sp)]
. (2.4.4)

The image in Figure 2.4.1d shows the spatial sparsity value for each superpixel.
The final spatial saliency value for each superpixel spi is then defined as a superpixel-

wise multiplication of the global contrast with the spatial sparsity

SS(spi) = SGC(spi).SSS(spi), (2.4.5)

and an example of the output at this stage is seen in Figure 2.4.1e.
To generate the pixel-level spatial saliency map, the pixel-level spatial saliency SS(pi)

for each pixel pi is defined as the sum of spatial saliency from the superpixel neighbour-
hood of the pixel, weighted by the pixel colour’s probabilities in the corresponding
superpixel-level colour histograms

SS(pi) =

∑
spj∈N(pi)

SS(spj).CHj[bin(pi)]∑
spj∈N(pi)

CHj[bin(pi)]
(2.4.6)

where N(pi) is the local neighbourhood of superpixels of pi, including the superpixel
containing pi, and bin(pi) denotes the entry number for the quantised colour of pi
in the colour quantisation table CQ. The superpixel neighbourhood is defined as all
superpixels that make contact with the superpixel in question. The final saliency map
with pixel-level saliency values is shown in Figure 2.4.1f.

The paper was implemented and validated against the results obtained for the DS1
dataset defined in their paper, and results are presented in Figure 2.4.2. The current im-
plementation uses a different superpixel implementation from [46] and a newer optical
flow method called edge-preserving patchmatch (EPPM) [4] which is much more effi-
cient than the large displacement optical flow (LDOF) [8] used in the original paper,
and also better preserves the edges of the flow boundaries. The current implementation
marginally outperforms the original.
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Figure 2.4.2: Saliency implementation AUC scores for dataset DS1 from [33].

2.5 Scoring Saliency

Saliency has its roots in the biological workings of the primate, and especially the hu-
man, visual system. It was shown by Hoffman and Subramaniam [17] and confirmed
by Salvucci [40] that visual spatial attention and saccadic eye movements are related,
finding that human subjects cannot move their eyes to one location and attend to a dif-
ferent one. This implies a tight coupling between visual attention and eye movements,
and it is based on this fact that the most prevalent saliency scoring mechanisms are
based on eye-tracking data of human subjects.

The most common form of saliency model test is to use the free-viewing task [28],
which is accomplished by tracking the eye movements of human subjects using com-
mercial grade eye-tracking systems while they freely view image or video databases.
More recently, specific task-based viewing and object segmentations have also been
used. Based on this eye-tracking data, a number of measures for how well a saliency
map predicts or accounts for the spatial attention have been developed.

Eye-tracking data generally provides a set of (xi, yi) points of fixation per subject
per image, but we know that the high quality foveal area covers approximately 2° of the
visual field [20]. We can then create a map with 1 at each fixation point, and convolve
it with a Gaussian the same size as the visual field, generating a heat map of where the
subjects were looking. If we view both the saliency map S and the eye-tracking ground
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truth G as random variables, we can calculate the correlation coefficient (CC) as

CC(G, S) =

∑
x,y (G (x, y)− µG) . (S (x, y)− µS)√

σ2
G.σ

2
S

(2.5.1)

where µG and µS are the means and σ2
G and σ2

S are the variances of the values in G
and S respectively. This produces a single number in the range [-1, 1], where 0 indicates
no correlation, 1 indicates perfect correlation and -1 indicates perfect anti-correlation
between the two random variables.

The normalised scanpath saliency (NSS) [35] tests the correspondence of the human
fixation points with the model-generated saliency maps. The model-generated saliency
map is linearly normalised to have zero mean and unit variance:

Snorm(x, y) =
S(x, y)− µS

σS
. (2.5.2)

Then, to account for inaccuracies in human fixation locations, the authors in [30] com-
pute the NSS value for each fixation using a neighbourhood around the fixation:

NSS(xi, yi) =
∑
j∈Ω

Kh(xi − xj, yi − yj).Snorm(xj, yj) (2.5.3)

where K is a kernel with bandwidth h and Ω is a neighbourhood. The NSS is then
computed as the mean of NSS(xi, yi) for all fixations M of an observer:

NSS =
1

M

M∑
i=1

NSS(xi, yi). (2.5.4)

Due to the normalisation, positive values indicate a greater than chance correspondence
of the human fixations with the saliency map, zero indicates no correspondence and
negative values indicate anti-correspondence.

The most popular measure in the research is the area under the ROC curve (AUC)
[43]. Receiver operating characteristic (ROC) is used to evaluate a binary classifier
system by varying its discrimination threshold. The model-generated saliency map
S is treated by a varying threshold on the saliency values, creating a binary fixation
map for each level of the threshold. The human fixations are then used as the ground
truth. The ROC curve is drawn as the false positive rate Fp (incorrectly labelling non-
fixated locations as fixated) versus the true positive rate Tp (correctly labelling fixated
locations as fixated), and the total area under the curve indicates how well the saliency
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model predicts human eye fixations. An AUC value of > 0.5 means the model is
able to discriminate fixations from non-fixations greater than chance, 1 being perfect
discrimination, and an AUC value of < 0.5 means the model performs worse than
chance, with an AUC value of 0.5 meaning the model contains no discrimination power
at all. As a variation of this, the human fixations are taken as the positive set, and some
uniformly sampled points from the image are chosen as the negative set [7].

A problem has been identified in the literature, common to all saliency evaluation
methods, which has been termed the center bias [45]. It has been observed through
many experiments that subjects’ fixation points are biased toward the center of static
images as well as in videos. The issue arises in not being able to evaluate saliency models
accurately, due to it being unknown as to whether the bias is induced by visually salient
regions or by other contributing factors. One of the most prominent factors affecting
the center bias is that of the photographer’s bias, being that photographers generally
place objects of interest towards the center of the frame. This is not bad in and of itself,
due to photographers generally focusing on salient or interesting regions. Another
factor, known as the viewing strategy, is when subjects reorient upon new stimuli with
greater frequency toward the center of the frame, usually after repeated exposure to
photographer-biased stimuli. This is also due to many datasets requiring subjects to
fixate on the center of the screen prior to being shown a new stimulus.

The problem of center bias is illustrated by Zhang et al. [50] and Judd et al. [25]
when they use a centered Gaussian blob as the saliency map and obtain much greater
than chance AUC scores, even higher than some saliency models. In the recent review
of saliency scoring methods, Borji et al. [7] show that the center bias and smoothing
of the fixation points into a heatmap affect all scores previously mentioned. They
propose the shuffled AUC (sAUC) [50] as a viable measure, whose only difference is
instead of taking a uniform sampling from the image as the negative set, all fixations
from all other images are used as the negative set. They show that the sAUC value for
a centered Gaussian is close to 0.5, meaning that it manages to account for the center
bias sufficiently.

2.5.1 Image Dataset and Viewing Tasks

The selection of a specific dataset can have a big influence on the saliency scores gener-
ated. The number of images and the diversity of categories they belong to can play an
important role in determining accurately and objectively how well a saliency model is
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Figure 2.5.1: Example images from the dataset.

performing. The image dataset3 selected for this dissertation was introduced recently in
[28]. It consists of 800 photos of both indoor and outdoor scenes, either taken by the
authors or obtained from existing datasets and online search engines. The images were
specifically chosen to contain lateral (left/right) contextual information of a tangible
object. Example images are shown in Figure 2.5.1.

Using this dataset, the authors attempt to uncover the relationship between bottom-
up and top-down saliency with a host of carefully crafted experiments. What makes this
dataset unique is that they provide eye-tracking data for three different tasks, as well as

3The dataset can be found at https://labs.psych.ucsb.edu/eckstein/miguel/research_

pages/saliencydata.html.
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mouse click location data for an explicit selection task. The images were displayed
to participants so as to subtend 15° × 15° of visual angle, and were shown on a grey
background. First was the typical free-viewing task with recorded eye movements.
Second, participants were asked to decide whether the left or right half of the image
was more salient while tracking their eyes. Third, participants were asked to explicitly
select the object or region from the images that they considered to be most salient using
mouse click selections. And fourth, participants were cued with object descriptions
prior to viewing an image, and asked to report whether the object was present or not,
which was missing 50% of the time, also while having their eyes tracked. The definition
of “salient” given to the participants was something that stood out or caught their
eye. They were given an example of a red flower among a field of white daisies when
prompted for clarification. Examples of the recorded eye tracking data and explicit
click selections are displayed in Figure 2.5.2.

An interesting finding of this paper was that saliency models were better able to
predict the explicit saliency judgement tasks. One of the possible reasons given is that
free-viewing is not without a top-down goal, but rather each individual would have an
intrinsic goal or set of goals in the absence of an extrinsic one, which could vary across
participants, and even for the same participant over many trials. When told explicitly
to determine the salient regions or objects, it is thought the goals of the top-down and
bottom-up systems have aligned.
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(a) Free-view task. (b) Saliency left/right task.

(c) Explicit-click task. (d) Object proposal task.

Figure 2.5.2: Example eye-tracking and explicit click data displayed on an image from
Figure 2.5.1.

30



Chapter 3
Experiment 1: The Effects of
Histogram Construction Methods on
Saliency Detection

As seen in Section §2.2, histograms come in many shapes and forms, and Section §2.4.1
shows that histograms can play a fundamental role in saliency detection. The literature
that uses histograms rarely uses anything other than the most common technique for
histogram construction, namely the equi-width histogram. Due to the known short-
falls of the equi-width histogram, such as being susceptible to binning effects, incor-
rectly characterising the data or not partitioning the space finely enough, the question
of what impact the histogram construction method has on saliency detection arises.
This chapter details the experiment conducted in order to answer this question. The
aim of the experiment is clearly stated in Section §3.1, followed by the hypothesis in
Section §3.2 and details of the tools utilised are provided in Section §3.3. The methods
employed by the experiment are laid out in Section §3.4, with the results and conclu-
sions following in Sections §3.5 and §3.6 respectively.

3.1 Aim

The aim of this experiment is to elucidate the role the histogram construction method
plays in detecting colour saliency in images.

3.2 Hypothesis

A histogram is used for saliency detection primarily for two reasons, firstly to make
the computation tractable by greatly reducing the computational requirements, and
secondly to summarise the data so as to illuminate the underlying structure of the
image to identify salient regions. The proposed hypothesis is that being better able to
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characterise the image by using variable bin-width construction methods will result in
improved saliency detection.

3.3 Apparatus

The histogram construction methods under consideration will be the methods de-
scribed in Section §2.2. As previously mentioned, histograms are used to summarise
the data, which is also known as clustering. As a benchmark for how well histograms
summarise the data, a k-means clustering algorithm will be used for comparison. The
way k-means clustering works is to initialise k clusters by their means in the data space
using a variety of methods, often by randomly placing them in the data space or us-
ing some form of sub-sampling of the data. Each data point is then classified by those k
means by assigning it to the closest cluster mean. Each cluster mean is then recomputed
based on the members in the cluster, and this process of reclassifying the data and re-
calculating the means is iterated until some specified convergence threshold is reached.
This process can also be repeated multiple times with different initialisations and the
best run’s solution kept. It is a fairly simple approach to clustering, and is sensitive
to outliers, but due to its more flexible structure is better able to capture the underly-
ing structure in the image than the fixed nature of histograms. In this experiment k is
chosen to be 256 as it provided a good tradeoff between performance and computation
time, allowing comparison with the histogram-based methods.

The experiment was conducted on an Asus UX303LN laptop computer, containing
an Intel i7-4510U 2.0GHz CPU, 12GB RAM and 256GB SSD HDD, running MAT-
LAB R2013a on Microsoft Windows 8.1.

3.4 Method

3.4.1 Quantisation Error

One of the primary uses for histograms are for their summarisation ability. We can
test how well they summarise an image’s pixel data by computing the quantisation
error when using each of the histogram construction methods to quantise our image
dataset [10, 14]. This is equivalent to clustering the data and then using the cluster rep-
resentative, in our case the mean colour, for each member’s pixel colour and comparing
it to the original image. This will give an indication of how well the histogram captures
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the underlying information in an image, and will allow us to make a comparison with
the effect of the histogram construction method on detecting saliency.

Each image is quantised in both the RGB and CIELAB spaces by using each of the
histogram construction methods detailed in Section §2.2, namely the equi-width, equi-
depth and diagonal histograms (α = 5 as per the authors’ recommendation), as well as
with the k-means algorithm (k = 256). The experiment is conducted in both the RGB
and CIELAB spaces so as to determine whether the histogram construction methods
are sensitive to the chosen colour space. The mean squared error (MSE) [14]

MSE =
1

MN

M∑
i=1

N∑
j=1

[(
Rij − R̂ij

)2

+
(
Gij − Ĝij

)2

+
(
Bij − B̂ij

)2
]

(3.4.1)

is then calculated for the RGB space, with (R,G,B) and (R̂, Ĝ, B̂) being the RGB pixel
values at position (i, j) for the original and quantised image of height M and width N
respectively. The delta E (∆E) metric [14]

∆E =
1

MN

M∑
i=1

N∑
j=1

√
(Lij − L̂ij)2 + (aij − âij)2 + (bij − b̂ij)2 (3.4.2)

is calculated for the CIELAB space as the Euclidean distance between CIELAB pixel
values (L, a, b) and (L̂, â, b̂).

3.4.2 Histogram Construction Method

To determine the effect of the histogram construction method on saliency detection,
the colour saliency calculation from Section §2.4.1 is computed using each of the con-
struction methods as above to construct the global and local colour histograms, CH0

and CHi respectively. The resulting saliency maps are then scored using the metrics
explained in Section §2.5 (CC, NSS, AUC, sAUC). This will highlight the differences
between the various construction methods and their effects on saliency detection.

3.5 Results

3.5.1 Quantisation Error

Figure 3.5.1 shows an example image and the different quantised images with their L1

errors. It can be seen in Figure 3.5.1b that the equi-width histogram is not able to
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Table 3.5.1: Mean run times for computing the quantised image in seconds (error indi-
cates one standard deviation).

Equi-width Equi-depth d-Hist k-Means
0.168± 0.0158 0.280± 0.0279 0.336± 0.0259 53.7± 13.7

characterise the slight gradient of the wall colour due to its fixed bin widths, whereas
the equi-depth histogram is able to provide more granularity to the densely-populated
colours in the image. This means the error will be higher in the low-density colour
regions, as can be seen by the brighter spots in Figure 3.5.1c, but due to this low density
they have a small effect on the overall quantisation error. The d-hist method makes a
compromise between the equi-width and the equi-depth histograms, as can be seen
by the slightly higher error in the wall gradient, but then slightly less error in the
windowsill’s low-density colour features, as indicated in Figure 3.5.1d. The k-means
method has a much smaller colour palette (256 versus 4096 colours), but due to its more
flexible nature, the errors are spread fairly evenly across the colour space, and therefore
across the image, as shown in Figure 3.5.1e. The results in Figure 3.5.2 indicate that
the equi-depth histogram provides a smaller quantisation error in the RGB space, and a
virtually on-par result with the d-hist method in the CIELAB space. It also matches the
k-means method for quantisation error, and does so in a fraction of the time. The results
also show an invariance to the selected colour space, with proportional quantisation
errors between the colour spaces. Table 3.5.1 shows the average time for quantising the
image running on an Intel i7-4510U 2.0GHz CPU, which shows just how much more
efficient some histogram methods are.

3.5.2 Histogram Construction Method

Figure 3.5.3 shows some example saliency maps generated using the different histogram
construction methods. Due to the equi-depth histogram assigning more bins to the
higher-density regions, the lower-density regions are forced to spread out into the re-
maining bins. This tends to lump together the low-density or outlier regions, having an
equalising and spreading effect on the saliency map as can be seen in the top row. The
road and sidewalk are fairly homogenous in colour and so require more bins to char-
acterise, leaving the sparser colours like the red sign and car shadows to be given equal
weighting. Images with small salient regions and colours amongst large homogenous
backgrounds will be most affected, with very busy and non-homogenous images start-
ing to look like the equi-width based saliency. The bottom row shows the similarity
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(a) Original image.

(b) Equi-width.

(c) Equi-depth.

(d) d-Hist.

(e) k-Means.

Figure 3.5.1: An example image with its quantised images and L1 errors.
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(b) ∆E in CIELAB.

Figure 3.5.2: Quantisation error in RGB and CIELAB spaces using different histogram
construction methods (error bars indicate one standard deviation).

of the saliency maps when the distinction between background and saliency becomes
more difficult to identify. The d-hist is again a compromise between the equi-width and
equi-depth histogram methods, a softer equalising that still retains some of the peaks of
the equi-width saliency map.

Figure 3.5.4 shows the results of computing the aforementioned metrics on the
image database for each task. One cannot help but notice the large variance of the NSS
metric, especially for the explicit-click task (Figure 3.5.4c). To understand why this is
so, Figure 3.5.5 shows the 3 highest and lowest NSS scoring saliency images overlaid
with the participants’ explicit-click locations along with their equi-width saliency maps.
The high NSS scores are thanks to the saliency map being very localised, and most of
the click positions landing on the high saliency locations. The low NSS scores highlight
a feature of this saliency model which is not obvious from the outset, that being its
built-in center bias. Recall Eq. 2.4.3, which is a weighted sum of distances to the center
of the frame, weighted by intra-superpixel similarity and distance. This evaluates higher
when there are more similar superpixels closer together and they are further from the
center of the frame, and especially for both. The inverse normalisation in Eq. 2.4.4 then
reverses this so that superpixels that were closer to the center, and not similar to any
others will be ranked as more salient. This can clearly be seen in the low NSS scoring
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examples in Figures 3.5.5c and 3.5.5d, where the red blanket, pool and red couch all
have much lower saliency, although they are salient in terms of global contrast, as seen
in Figure 3.5.7, as well as for humans as pointed out by the human click locations.

For all of the eye-tracked tasks, the equi-depth histogram construction method
marginally improves all the metrics over the equi-width histogram, except for the sAUC
where it remains practically constant. Figure 3.5.6 shows the top 3 and bottom 3 NSS
scoring images overlaid with the participants’ fixation locations with their equi-depth
histogram constructed saliency maps. It can be seen here and in Figure 2.5.2 that the
eye-tracking data is much more noisy than the explicit-click data, as well as having a
heavy center bias. A possible reason for the marginal score increase might come from
the equi-depth saliency maps being more “spread out” and not so peaky, which in turn
maps better onto the more spread out eye-tracked fixation locations. The high-scoring
maps correlate fairly well with the eye-tracking data, whereas with the low-scoring
maps the eye-tracking data is either spread uniformly about the image, which might
represent there not being anything universally salient in the image, or there are some
forms of higher context in the image, such as people, faces or recognisable objects which
naturally draw our attention [25], which colour alone is not able to characterise.

The equi-depth histogram causes a drop in NSS score for the explicit-click task
(Figure 3.5.4c), which can be explained by the opposite reasoning as above. The click
locations are much more accurate and grouped more tightly together, which means that
if the saliency map has higher peaks at the click locations, it will result in higher NSS
scores. This peakiness also means that when it misses, the resulting score will be much
lower, as can be seen in the larger variance of the equi-width NSS score.
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Figure 3.5.3: Example images and their saliency maps computed with different histogram construction methods.
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(b) Saliency left/right task.
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(c) Explicit-click task.
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(d) Object proposal task.

Figure 3.5.4: Results for using different histogram construction methods to detect
colour saliency (error bars indicate one standard deviation).

39



Experim
ent1:TheEffectsofH

istogram
C
onstruction

M
ethodson

Saliency
D
etection(a) High NSS with click loca-

tions overlaid.
(b) Equi-width. (c) Low NSS with click loca-

tions overlaid.
(d) Equi-width.

Figure 3.5.5: The 3 highest and lowest NSS scores’ images and their equi-width saliency maps for the explicit-click task.
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Figure 3.5.6: The 3 highest and lowest NSS scores’ images and their equi-depth saliency maps for the free-viewing task.
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Figure 3.5.7: Global contrast only saliency maps of the images in Figure 3.5.5d.

3.6 Conclusion

The aim of this experiment was to investigate the role of the histogram construction
method in saliency detection. It was shown that equi-depth histograms are better able
to characterise the underlying structure of an image and produce less quantisation error
than the more common equi-width histogram. It does so by providing more bins, and
therefore more quantised colours, to the more densely populated colours of the image.
This means the errors are larger for the low-density colours. They, however, have less
effect on the quantisation error due to their low density.

It was also shown that for the eye-tracking tasks the equi-depth histogram was able
to marginally improve the saliency scores. This was largely attributed to the equi-depth
histogram assigning more bins to the high-density colours, forcing the low-density
colours to clump together. This clumping equalises the saliency values of the low-
density colours and causes the saliency map to become less peaky and more spread out,
which correlates better with the noisy eye-tracking fixation data. The opposite holds
true for the more accurate explicit-click task, due to the higher peaks leading to higher
scores, albeit with greater variance due to lower scores when the clicks do not match
the saliency map.
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Chapter 4
Experiment 2: The Effects of
Histogram Distances on Saliency
Detection

As indicated in Section §2.3, there are many ways to compare histograms to one an-
other. The colour saliency calculation in Section §2.4.1 uses two distance measures
between histograms to calculate the saliency of a region in the image. The global con-
trast (Eq. 2.4.1) uses a type of cross-bin distance to calculate the distance between a su-
perpixel’s colour distribution and the frame’s colour distribution, and the intra-frame
similarity (Eq. 2.4.2) uses the Bhattacharyya coefficient (Eq. 2.3.6) to calculate the simi-
larity between superpixel colour distributions. Due to the variety of distance methods,
as well as their varying strengths and weaknesses, we would like to identify the ef-
fect the histogram distance measure has on computing the colour saliency in an image.
This experiment is performed to measure this effect. The aim, hypothesis, apparatus
and method are stated in Sections §4.1, §4.2, §4.3 and §4.4 respectively. This is fol-
lowed by an explanation of how the results are presented in Section §4.5. The results
are presented in Section §4.6 and the conclusion is drawn in Section §4.7.

4.1 Aim

The aim of this experiment is to determine what effect, if any, the histogram distance
measure has on detecting saliency in an image.

4.2 Hypothesis

Bin-to-bin distances have the benefit of being simple to implement and can be compu-
tationally attractive to use. They, however, cannot handle shifts in histograms, which
are easily produced by lighting and shading in an image, and are sensitive to binning
effects, as illustrated in Section §2.3. Cross-bin distances, on the other hand, handle
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histogram shifts much better and do not suffer from binning effects, but are computa-
tionally expensive to run. The hypothesis of this experiment is that cross-bin distances
will improve the saliency scores generated by negating the effects mentioned, but due
to perceptually-similar regions being close distance-wise in the CIELAB space they will
not improve the saliency score sufficiently to warrant the greatly increased computation
time.

4.3 Apparatus

The experiment was conducted on an Asus UX303LN laptop computer, containing an
Intel i7-4510U 2.0GHz CPU, 12GB RAM and 256GB SSD HDD, running MATLAB
R2013a on Microsoft Windows 8.1.

4.4 Method

The original implementation uses two distance measures to compute the colour saliency,
namely the global contrast (Eq. 2.4.1) and the spatial sparsity (Eq. 2.4.4). This experi-
ment substitutes the distance measure in each of those equations and calculates the spa-
tial saliency using Eq. 2.4.5. For the global contrast equation the distances computed
are the original or pseudo-quadratic-form (PQF), the Jenson-Shannon divergence ( JS)
(Eq. 2.3.4), the earth mover’s distance (EMD) (Eq. 2.3.8), and the diffusion distance
(DD) (Eq. 2.3.10). The spatial sparsity, which is made up from the intra-frame similar-
ity (Eq. 2.4.2), will be computed with the original or Bhattacharyya coefficient (BH)
(Eq. 2.3.6), JS, EMD, and DD. When referring to which combination is used to pro-
duce the final spatial saliency map, the spatial saliency equation is modified to:

SS(GCdist, SSdist) = GCdist.SSdist, (4.4.1)

where GCdist ∈ {PQF, JS,EMD,DD} is the global contrast computed with the refer-
enced distance and SSdist ∈ {BH, JS,EMD,DD} is the spatial sparsity, which is com-
puted using the intra-frame similarity with the referenced distance. This gives a total
of 16 combinations of spatial saliency. For example, the original spatial saliency is
referenced as SS(PQF,BH) and the spatial saliency using EMD for the global contrast
and DD for spatial sparsity is referenced as SS(EMD,DD). All calculations for this
experiment use the equi-width histogram as per the original paper [33].
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4.5 Presentation of Results

The 4 combinations of global contrast and 4 combinations of spatial saliency create 16

saliency maps, with which 4 metrics (CC, NSS, AUC, sAUC) are calculated on the 4

tasks from the dataset detailed in Section §2.5.1, giving a total of 4 × 4 × 4 × 4 = 256

scores. To collate all this information the grid system in Table 4.6.1 is used.
At the finest level, the individual cells will represent the scores computed using com-
binations of distances for global contrast and spatial sparsity (the top magnified grid).
These 4× 4 grids make up the cells to a larger 4× 4 grid which score the saliency maps
using different scoring measures across different dataset tasks (the bottom grid).
For example, assuming we wish to find the AUC scores computed on the explicit-
click task for the equi-width histogram construction method. Using Table 4.6.1 as a
reference, we see that the results lie in the third row and third column of the lower
grid. This provides a 4 × 4 grid of results obtained by using all the combinations of
global contrast and spatial sparsity distance measures, laid out as in the magnified grid.

4.6 Results

Following the presentation format described in Section §4.5, the results for this experi-
ment are displayed in Table 4.6.2.

Looking at the results, the highest score in each grouping indicates that the original
saliency formulation SS(PQF,BH) (position (1, 1) in each grouping) outperforms most
of the other combinations, meaning that using different histogram distances is actually
detrimental to the saliency scores. To further understand this, Figures 4.6.1 and 4.6.2
show two example images and the 16 different saliency maps generated using all the
combinations of global contrast and spatial sparsity, indexed using Table 4.6.1. What
immediately stands out is the contrast in the saliency maps. The first two columns,
which correspond to bin-to-bin type spatial sparsity distances (BH and JS), have a much
lower contrast saliency map than the last two columns, which are the cross-bin type
distances (EMD and DD). This can be seen especially well in Figure 4.6.2 where there is
a medium saliency value that permeates the images in the first two columns, with much
lower background saliency values in the last two columns. This is a result of the spatial
sparsity calculation. The cross-bin distances provide a much more continuous distance
measure between the colour histograms, whereas the bin-to-bin distances require the
bins to intersect. Histograms tend to become sparser as the dimensions increase due
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Table 4.6.1: Grid used to index into the results tables. The 4 × 4 bordered cell shown magnified at the top represents the scores
for a particular scoring measure and dataset task, and contains the scores using each of the global contrast distance measures (rows)
and each of the spatial sparsity distance measures (columns). In the larger 4× 4 grid at the bottom, each row represents a constant
scoring measure and each column represents a constant dataset task. For clarity, bold items represent rows and underlined items
represent columns.
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Table 4.6.2: Equi-width histogram results (bold and underlined indicates highest score for combination of global contrast and
spatial sparsity per scoring measure and dataset task).

0.440 0.382 0.236 0.372 0.437 0.385 0.237 0.367 0.350 0.318 0.197 0.280 0.397 0.344 0.219 0.351

0.449 0.387 0.221 0.365 0.441 0.384 0.217 0.355 0.331 0.295 0.164 0.253 0.421 0.363 0.217 0.356

0.367 0.316 0.190 0.324 0.369 0.323 0.193 0.322 0.312 0.283 0.173 0.257 0.327 0.279 0.174 0.302

0.457 0.391 0.217 0.364 0.447 0.387 0.213 0.353 0.335 0.294 0.159 0.248 0.428 0.367 0.213 0.356

0.714 0.624 0.383 0.598 0.726 0.646 0.407 0.604 1.055 0.996 0.717 0.799 0.659 0.572 0.370 0.583

0.717 0.619 0.347 0.575 0.719 0.633 0.357 0.571 0.910 0.846 0.514 0.631 0.693 0.597 0.358 0.583

0.588 0.508 0.301 0.511 0.610 0.540 0.331 0.527 0.970 0.918 0.654 0.760 0.526 0.450 0.282 0.489

0.726 0.622 0.336 0.571 0.724 0.631 0.345 0.563 0.891 0.803 0.485 0.592 0.697 0.599 0.347 0.579

0.692 0.667 0.601 0.663 0.691 0.667 0.601 0.663 0.719 0.701 0.635 0.681 0.680 0.654 0.600 0.660

0.686 0.657 0.588 0.655 0.686 0.659 0.588 0.654 0.701 0.679 0.609 0.661 0.679 0.651 0.593 0.656

0.652 0.628 0.574 0.636 0.653 0.632 0.576 0.638 0.688 0.669 0.613 0.665 0.637 0.614 0.570 0.631

0.691 0.659 0.586 0.656 0.688 0.659 0.586 0.653 0.697 0.670 0.604 0.653 0.682 0.653 0.589 0.657

0.542 0.538 0.521 0.523 0.549 0.545 0.529 0.531 0.614 0.611 0.583 0.580 0.530 0.525 0.520 0.519

0.524 0.520 0.510 0.511 0.532 0.529 0.516 0.517 0.583 0.580 0.556 0.551 0.518 0.514 0.511 0.509

0.524 0.520 0.509 0.510 0.532 0.531 0.516 0.520 0.596 0.592 0.567 0.572 0.511 0.509 0.505 0.507

0.523 0.517 0.505 0.508 0.528 0.524 0.511 0.512 0.574 0.566 0.548 0.539 0.514 0.510 0.504 0.505

Object Search Task

CC

NSS

AUC

sAUC

Free View Task Saliency Left/Right Task Explicit Click Task
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Figure 4.6.1: Example image with its 16 saliency maps generated using combinations of global contrast and spatial sparsity. Indexed as defined in Table 4.6.1.
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Figure 4.6.2: Another example image with its 16 saliency maps generated using combinations of global contrast and spatial sparsity. Indexed as defined in Table 4.6.1.
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to the exponential increase in number of bins. This means the bin-to-bin distances
become increasingly less adept at generating valid distances. The histograms could be
shifted one bin over or an entire histogram width away, and still produce the same
distance value. The spatial sparsity (Eq. 2.4.4) uses the distances to determine how
prevalent and spread out the colours are in the image. If superpixels are being assigned
similar similarity scores regardless of their actual distance in the colour space, they will
generate largely the same saliency score, hence the permeating grey background.

Subjectively, it appears that the cross-bin distances improve the saliency maps, so to
understand why the scoring would be lower we need to look at the fixations and click
locations in Figure 4.6.3, which shows the same two example images overlaid with their
fixation and click locations alongside the heatmaps generated from those locations. A
human eye makes a saccade 3 to 4 times per second and it is unlikely that every saccade
will land on a salient region throughout the image. This is especially due to the viewing
strategy found in human observers coupled with us having our own ulterior motives
and goals, even when free-viewing an image. This results in the eye-tracking data being
quite haphazard and spread out around the image. For the bin-to-bin distances, these
spread out fixations are still falling in relatively salient regions, which are contributing
to the scores, albeit marginally, whereas with the cross-bin distances the background
is being more effectively suppressed, which means the fixations falling there are ac-
tually detracting from the scores. Take the AUC measure for example, discussed in
Section §2.5, which slides a discrimination threshold over the model generated saliency
map, generating many thresholded saliency maps and computing the area under a pre-
cision versus recall graph. Due to the permeating saliency, the bin-to-bin distance maps
will have more fixations in the thresholded area for longer, thereby increasing the AUC
score.

Interestingly, most combinations score relatively higher for the explicit-click task,
except for the CC scoring measure. Going back to Figure 4.6.3, the third row repre-
sents the explicit-click task. It is remarkable how tight and consistent the participants’
choices are, here as well as throughout the dataset. Because they keep picking the same
object, which usually involves a salient colour or shape, the saliency maps generally
predict that selection quite well. This tightness of click locations is also why the CC
score drops; due to the click locations heatmap becoming very peaky, it does not corre-
late very well with the generated saliency maps. By giving the participants an explicit
goal, as well as the autonomy and freedom to choose when their choices are made, their
top-down and bottom-up goals become aligned to detect saliency, thereby providing a
better assessment of the saliency in the image. It is posited that allowing participants to
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choose up to n salient regions in the image within a certain time frame would produce
similar saliency maps to those created by the cross-bin histogram distances. That is un-
fortunately out of the scope of this dissertation and will be left for future work.
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Figure 4.6.3: Two example images overlaid with their eye-tracking and click data for all 4 dataset tasks. From top to bottom: free-view, saliency left/right, explicit-click, object search.
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4.7 Conclusion

The goal of this experiment was to establish whether different histogram distance mea-
sures used in a colour saliency algorithm would affect its performance. Saliency maps
were generated using combinations of histogram distances and measured on a database
of four viewing tasks. Out of all the histogram distance combinations, the original
saliency equations scored highest on the most metrics, but, perceptually, the cross-bin
distances seem to generate better saliency maps. A reason for the scoring disparity was
provided on the basis of the bin-to-bin distances not being able to adequately suppress
background regions, which in turn map better to the more spread out eye-tracking
fixation locations. It was observed that the cross-bin type methods generated higher-
contrast saliency maps, and it is this higher accuracy that lowered the scores due to the
random and haphazard eye movements tracked during tasks. Based on the explicit-click
task and how well it matches perception, a new experiment is proposed which could
improve the current saliency scoring mechanisms: participants are asked to select up
to some small n of the most salient regions in an image, perhaps under a time limit,
instead of having their eyes tracked. The act of using a mouse is more directed and
precise than eye-tracking data, which also aligns the goal-driven top-down and auto-
matic, feature-driven bottom-up goals to isolate saliency detection from any intrinsic
free-viewing goals.
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Chapter 5
Experiment 3: The Effects of
Histogram Construction Methods and
Distances on Saliency Detection

The previous two experiments look at the impact the histogram construction method
and the histogram distances have on saliency detection in isolation. The purpose of this
experiment is to run through all combinations of histogram construction methods and
histogram distances to determine what combined effect they might have. The experi-
ment is laid out as follows: the aim is clarified in Section §5.1, the hypothesis is stated
in Section §5.2 and the apparatus used is detailed in Section §5.3. The experimental
method is provided in Section §5.4, a reference to how the results are presented is given
in Section §5.5, the results are presented in Section §5.6 and the conclusions drawn are
discussed in Section §5.7.

5.1 Aim

The aim of this experiment is to determine the effects of combining various histogram
construction methods with histogram distances on saliency detection.

5.2 Hypothesis

Due to some improvements from the prior experiments in isolation, it is hypothesized
that a combination of histogram construction methods and histogram distances used
in the saliency calculation will improve the results even further.

5.3 Apparatus

The experiment was conducted on an Asus UX303LN laptop computer, containing an
Intel i7-4510U 2.0GHz CPU, 12GB RAM and 256GB SSD HDD, running MATLAB
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R2013a on Microsoft Windows 8.1.

5.4 Method

This experiment will use the methods from both previous experiments, Section §3.4
and Section §4.4. For this experiment, 4 metrics (CC, NSS, AUC, sAUC) from Sec-
tion §2.5 are computed across the 4 database tasks detailed in Section §2.5.1, using the
3 histogram construction methods introduced in Section §2.2, with 4 global contrast
distances and 4 spatial sparsity distances explained in Section §2.3.

5.5 Presentation of Results

The results for this experiment are presented in the same fashion as in Section §4.5.
Table 4.6.1 is again used to index into the results tables, the only difference being that
there will now be 3 tables of 256 scores, one for each histogram construction method.

5.6 Results

The results for all the equi-width combinations are the same as in Section §4.6 and are
repeated in Table 5.6.1 for convenience, the equi-depth combination results are found
in Table 5.6.2 and the diagonal histogram combination results are found in Table 5.6.3.
As discovered and discussed in Experiment 1, there is a slight improvement moving
from equi-width to equi-depth histogram construction methods for most tasks, with
the d-hist method more-or-less falling in-between them. Interestingly, it seems to be
the opposite for the explicit-click task. To illustrate this point, the percentage increase
(or decrease) in moving from the equi-width to the equi-depth histograms is shown
in Table 5.6.4, with green indicating that using equi-depth histograms improved scores
and red indicating that they worsened scores. A possible cause of the worsening scores
for the explicit-click task is that the equi-depth histogram tends to flatten out the low-
density regions, pooling them together and thereby reducing their overall peak saliency,
which when coupled with the highly accurate and selective explicit-click task lowers the
resulting scores. This might also explain the reason for the increase in scores for the eye-
tracking tasks: due to the fixation locations being more spread out, the scores benefit
from having a more distributed saliency map.
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Table 5.6.1: Equi-width histogram results (bold and underlined indicates highest score for combination of global contrast and
spatial sparsity per scoring measure and dataset task).

0.440 0.382 0.236 0.372 0.437 0.385 0.237 0.367 0.350 0.318 0.197 0.280 0.397 0.344 0.219 0.351

0.449 0.387 0.221 0.365 0.441 0.384 0.217 0.355 0.331 0.295 0.164 0.253 0.421 0.363 0.217 0.356

0.367 0.316 0.190 0.324 0.369 0.323 0.193 0.322 0.312 0.283 0.173 0.257 0.327 0.279 0.174 0.302

0.457 0.391 0.217 0.364 0.447 0.387 0.213 0.353 0.335 0.294 0.159 0.248 0.428 0.367 0.213 0.356

0.714 0.624 0.383 0.598 0.726 0.646 0.407 0.604 1.055 0.996 0.717 0.799 0.659 0.572 0.370 0.583

0.717 0.619 0.347 0.575 0.719 0.633 0.357 0.571 0.910 0.846 0.514 0.631 0.693 0.597 0.358 0.583

0.588 0.508 0.301 0.511 0.610 0.540 0.331 0.527 0.970 0.918 0.654 0.760 0.526 0.450 0.282 0.489

0.726 0.622 0.336 0.571 0.724 0.631 0.345 0.563 0.891 0.803 0.485 0.592 0.697 0.599 0.347 0.579

0.692 0.667 0.601 0.663 0.691 0.667 0.601 0.663 0.719 0.701 0.635 0.681 0.680 0.654 0.600 0.660

0.686 0.657 0.588 0.655 0.686 0.659 0.588 0.654 0.701 0.679 0.609 0.661 0.679 0.651 0.593 0.656

0.652 0.628 0.574 0.636 0.653 0.632 0.576 0.638 0.688 0.669 0.613 0.665 0.637 0.614 0.570 0.631

0.691 0.659 0.586 0.656 0.688 0.659 0.586 0.653 0.697 0.670 0.604 0.653 0.682 0.653 0.589 0.657

0.542 0.538 0.521 0.523 0.549 0.545 0.529 0.531 0.614 0.611 0.583 0.580 0.530 0.525 0.520 0.519

0.524 0.520 0.510 0.511 0.532 0.529 0.516 0.517 0.583 0.580 0.556 0.551 0.518 0.514 0.511 0.509

0.524 0.520 0.509 0.510 0.532 0.531 0.516 0.520 0.596 0.592 0.567 0.572 0.511 0.509 0.505 0.507

0.523 0.517 0.505 0.508 0.528 0.524 0.511 0.512 0.574 0.566 0.548 0.539 0.514 0.510 0.504 0.505

Object Search Task

CC

NSS

AUC

sAUC

Free View Task Saliency Left/Right Task Explicit Click Task
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Table 5.6.2: Equi-depth histogram results (bold and underlined indicates highest score for combination of global contrast and
spatial sparsity per scoring measure and dataset task).

0.490 0.446 0.236 0.435 0.481 0.442 0.235 0.422 0.363 0.338 0.187 0.300 0.454 0.414 0.222 0.421

0.516 0.470 0.223 0.434 0.490 0.448 0.211 0.406 0.321 0.294 0.133 0.249 0.510 0.467 0.230 0.441

0.442 0.400 0.207 0.402 0.434 0.397 0.207 0.391 0.331 0.306 0.169 0.280 0.407 0.368 0.192 0.386

0.516 0.454 0.217 0.420 0.493 0.430 0.209 0.391 0.335 0.275 0.141 0.234 0.505 0.453 0.222 0.429

0.783 0.713 0.375 0.687 0.787 0.728 0.396 0.675 0.949 0.897 0.608 0.695 0.751 0.683 0.371 0.692

0.810 0.737 0.341 0.672 0.781 0.718 0.335 0.631 0.706 0.652 0.330 0.455 0.836 0.765 0.376 0.720

0.698 0.630 0.320 0.628 0.707 0.650 0.346 0.622 0.870 0.820 0.560 0.653 0.657 0.593 0.309 0.623

0.810 0.705 0.333 0.645 0.789 0.679 0.334 0.600 0.776 0.568 0.381 0.393 0.825 0.734 0.360 0.693

0.715 0.694 0.600 0.692 0.713 0.695 0.602 0.688 0.725 0.709 0.629 0.686 0.706 0.687 0.602 0.692

0.720 0.698 0.593 0.688 0.713 0.693 0.589 0.678 0.688 0.671 0.583 0.637 0.719 0.699 0.603 0.696

0.688 0.669 0.581 0.673 0.688 0.670 0.582 0.671 0.697 0.680 0.606 0.670 0.676 0.659 0.579 0.671

0.719 0.691 0.587 0.681 0.713 0.684 0.584 0.670 0.698 0.651 0.589 0.618 0.716 0.692 0.597 0.688

0.531 0.528 0.518 0.513 0.541 0.539 0.526 0.520 0.592 0.588 0.574 0.549 0.524 0.521 0.518 0.514

0.501 0.499 0.498 0.485 0.507 0.505 0.501 0.485 0.520 0.520 0.517 0.467 0.504 0.501 0.505 0.495

0.523 0.519 0.505 0.507 0.531 0.529 0.513 0.513 0.574 0.569 0.555 0.541 0.512 0.511 0.505 0.506

0.503 0.489 0.496 0.478 0.509 0.493 0.500 0.476 0.534 0.494 0.528 0.446 0.502 0.493 0.503 0.488

Object Search Task

CC

NSS

AUC

sAUC

Free View Task Saliency Left/Right Task Explicit Click Task
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Table 5.6.3: Diagonal histogram results (bold and underlined indicates highest score for combination of global contrast and spatial
sparsity per scoring measure and dataset task).

0.472 0.423 0.235 0.410 0.466 0.422 0.235 0.402 0.362 0.335 0.194 0.296 0.433 0.388 0.218 0.392

0.491 0.440 0.219 0.404 0.471 0.425 0.210 0.384 0.326 0.297 0.142 0.251 0.478 0.430 0.223 0.405

0.401 0.357 0.197 0.365 0.399 0.360 0.199 0.361 0.322 0.298 0.177 0.276 0.362 0.322 0.179 0.345

0.492 0.438 0.213 0.400 0.472 0.422 0.205 0.380 0.329 0.294 0.141 0.247 0.477 0.426 0.216 0.400

0.761 0.682 0.379 0.653 0.766 0.701 0.401 0.649 1.051 1.005 0.703 0.781 0.716 0.642 0.367 0.646

0.776 0.694 0.336 0.630 0.758 0.688 0.337 0.604 0.810 0.761 0.408 0.536 0.784 0.704 0.364 0.661

0.639 0.568 0.310 0.575 0.655 0.597 0.340 0.582 0.966 0.926 0.667 0.760 0.587 0.521 0.292 0.560

0.774 0.686 0.325 0.619 0.756 0.678 0.325 0.593 0.805 0.723 0.398 0.505 0.776 0.692 0.348 0.649

0.707 0.683 0.599 0.681 0.705 0.684 0.601 0.677 0.727 0.711 0.634 0.689 0.696 0.674 0.599 0.679

0.708 0.683 0.589 0.675 0.703 0.681 0.587 0.669 0.697 0.680 0.591 0.650 0.705 0.683 0.597 0.680

0.669 0.649 0.575 0.657 0.669 0.652 0.577 0.656 0.696 0.682 0.614 0.674 0.657 0.638 0.573 0.653

0.709 0.683 0.584 0.672 0.704 0.679 0.582 0.665 0.695 0.671 0.587 0.641 0.704 0.681 0.592 0.678

0.534 0.530 0.519 0.517 0.542 0.540 0.528 0.524 0.606 0.604 0.582 0.568 0.525 0.522 0.518 0.516

0.507 0.505 0.500 0.496 0.513 0.512 0.505 0.498 0.548 0.548 0.532 0.510 0.506 0.505 0.503 0.500

0.524 0.520 0.511 0.511 0.531 0.530 0.517 0.519 0.589 0.589 0.568 0.565 0.514 0.511 0.509 0.509

0.506 0.501 0.495 0.491 0.512 0.506 0.501 0.494 0.545 0.536 0.527 0.498 0.504 0.500 0.499 0.496

Object Search Task

CC

NSS

AUC

sAUC

Free View Task Saliency Left/Right Task Explicit Click Task
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Table 5.6.4: Percentage increase (or decrease) in scores when using equi-depth histograms over equi-width histograms. Green
indicates that using equi-depth histograms improved scores and red indicates that they worsened scores.

11% 17% 0% 17% 10% 15% -1% 15% 4% 6% -5% 7% 14% 20% 1% 20%

15% 22% 1% 19% 11% 17% -3% 14% -3% 0% -19% -2% 21% 29% 6% 24%

20% 26% 9% 24% 18% 23% 7% 21% 6% 8% -2% 9% 25% 32% 11% 28%

13% 16% 0% 15% 10% 11% -2% 11% 0% -6% -11% -6% 18% 23% 4% 21%

10% 14% -2% 15% 8% 13% -3% 12% -10% -10% -15% -13% 14% 19% 0% 19%

13% 19% -2% 17% 9% 13% -6% 11% -22% -23% -36% -28% 21% 28% 5% 24%

19% 24% 6% 23% 16% 20% 5% 18% -10% -11% -14% -14% 25% 32% 10% 28%

12% 13% -1% 13% 9% 8% -3% 7% -13% -29% -21% -34% 18% 23% 4% 20%

3% 4% 0% 4% 3% 4% 0% 4% 1% 1% -1% 1% 4% 5% 0% 5%

5% 6% 1% 5% 4% 5% 0% 4% -2% -1% -4% -4% 6% 7% 2% 6%

5% 7% 1% 6% 5% 6% 1% 5% 1% 2% -1% 1% 6% 7% 2% 6%

4% 5% 0% 4% 4% 4% 0% 2% 0% -3% -2% -5% 5% 6% 1% 5%

-2% -2% -1% -2% -2% -1% -1% -2% -4% -4% -2% -5% -1% -1% 0% -1%

-4% -4% -2% -5% -5% -5% -3% -6% -11% -10% -7% -15% -3% -3% -1% -3%

0% 0% -1% -1% 0% 0% -1% -1% -4% -4% -2% -5% 0% 0% 0% 0%

-4% -5% -2% -6% -4% -6% -2% -7% -7% -13% -4% -17% -2% -3% 0% -4%

Object Search Task

CC

NSS

AUC

sAUC

Free View Task Saliency Left/Right Task Explicit Click Task
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5.7 Conclusion

This experiment was conducted to study the effects of all the combinations of histogram
construction methods and histogram distances on saliency detection. It was confirmed
that using equi-depth histograms can improve saliency scores, but only for eye-tracking
tasks, and actually decreases the scores for the explicit-click saliency task. This is mainly
attributed to the equi-depth histogram’s spreading out of the saliency map due to it
lumping low-density regions together, thereby reducing the overall saliency. This fact
aids the eye-tracking tasks because eye-tracking data is much more random and dis-
tributed over the image, whereas the explicit-click task is more precise and focused.
This again points to a problem with the scoring mechanisms, as the saliency maps gen-
erated by combinations with lower scores are more aligned with what seems perceptu-
ally salient. Additional selections for the explicit-click task will allow a more complete
view of the salient regions in an image, and will not unnecessarily penalise the higher
contrast saliency maps.

It was observed that the eye-tracking data and even some of the click data is quite
random and spread out around the image in a somewhat haphazard manner, whereas
the saliency maps generated have pixel-level accuracy and retain object boundaries rel-
atively well. It was questioned as to what would happen to the saliency scores if the
saliency maps were smoothed slightly so as to better accommodate the randomness in
the data. This auxiliary experiment is not critical to the dissertation and can be found
in Appendix A, but an interesting finding is how much the scores increase simply by
smoothing the saliency maps with a Gaussian filter with σ = 0.5° of visual angle, as can
be seen in Table A.5. This reinforces the idea that the scoring mechanisms are highly
susceptible to variations and new and more robust methods are needed.
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Chapter 6
Experiment 4: Removing the Center
Bias

During the process of working with the cross-bin histograms and noticing that the spa-
tial sparsity (Eq. 2.4.4) has a built-in center bias, it was investigated whether there could
be another way to compute the spatial sparsity of a superpixel without introducing a
heavy center bias. The aim, apparatus and method of the experiment are stated in Sec-
tions §6.1, §6.2 and §6.3 respectively, while the results and conclusions are presented in
Sections §6.4 and §6.5 respectively.

6.1 Aim

The aim of this experiment is to determine whether a novel computation for the spatial
sparsity measure can be developed without a center bias.

6.2 Apparatus

The experiment was conducted on an Asus UX303LN laptop computer, containing an
Intel i7-4510U 2.0GHz CPU, 12GB RAM and 256GB SSD HDD, running MATLAB
R2013a on Microsoft Windows 8.1.

6.3 Method

The assumption that the spatial sparsity measure is working on is that salient ob-
jects’ colours are sparsely distributed around the frame with the converse being that
background and non-salient objects’ colour distributions are more densely distributed
around the frame. Liu et al. [33] realise this assumption by calculating a sum of dis-
tances from all superpixel centroids to the center of the frame, weighted by how similar
and nearby the superpixels are to the superpixel in question (Eq. 2.4.3). This, in effect,
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Experiment 4: Removing the Center Bias

does what is intended by giving an indication of the spread of a certain colour distribu-
tion in the image, but has the negative effect of introducing a center bias. This center
bias improves saliency scores but generates less perceptually-meaningful saliency maps.

While experimenting with the EMD between superpixel colour distributions, it was
noted that the EMD distances between each superpixel are much more continuous than
their bin-to-bin counterpart, the Bhattacharyya coefficient. Thus, it was easier to gain
access to very similar colour distributions in the frame, based on perceptual distance
rather than bin overlap. A method was developed which, for every superpixel, would
compute the EMD between its and every other superpixel’s colour distribution. A
similarity measure is then obtained by inverse normalising these distances. Superpixels
with similar colour distributions are identified by thresholding the similarity values.
The spatial distribution of each superpixel is then computed as the sum of distances
from the joint centroid of all superpixels with a similar colour distribution to the one
in question:

DEMD(spi, spj) = EMD(CHi,CHj), (6.3.1)

λintraEMD(spi, spj) =
max [DEMD(sp)]−DEMD(spi, spj)

max [DEMD(sp)]−min [DEMD(sp)]
, (6.3.2)

SD(spi) =
∑
j

‖µj − µc‖2 , (6.3.3)

where µj is the centroid of a superpixel with λintraEMD(spi, spj) ≥ t and µc is the joint
centroid of all the superpixels with similarity values above the threshold t. The final
spatial sparsity is calculated as an inverse normalisation, as in Eq. 2.4.4. This is equiva-
lent to switching the center of the frame in the original formula to the mean location of
a superpixel’s most similar superpixels. If the superpixel has similar superpixels spread
around the frame, then µc approaches the center of the frame and it works much like
the original equation. However, if the superpixel has similar superpixels that are tightly
bunched, µc will be close to all of them and results in a small spatial distribution sum
as expected. In the experiments t = 0.9 produced satisfactory results, and corresponds
to patches being “90% similar in terms of colour” as defined by the EMD distance.

6.4 Results

Removing the center bias drastically lowers most of the scores, as can be seen in the
first 3 scores of Figure 6.4.1. What is surprising is the increase in sAUC across all 4
dataset tasks. The sAUC measure was designed to cater for the center bias, which would
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Experiment 4: Removing the Center Bias

naturally lower the original method’s AUC score, as is clearly seen. The fact that the
newly-proposed method is unaffected by using sAUC as opposed to AUC indicates that
it has successfully removed the center bias from the saliency calculation.

Figure 6.5.1 shows some example images with the saliency maps generated using the
original method and the proposed method. The new method reduces the center bias
and better implements the assumption of spatial sparsity provided in Liu et al. [33].
The third row makes this very clear by firstly removing the center bias, which can be
seen in the original map as a permeating saliency value increasing towards the center.
Secondly, it enhances the no entry sign’s saliency value (because it is the only red object
in the scene) and lowers the lamp posts’ saliency values, because although they are fairly
salient as individuals they are spread out across the image and are therefore not quite as
salient.

6.5 Conclusion

This experiment was conducted to reduce the center bias present in the colour saliency
calculation found in Liu et al. [33]. The proposed method removes the center bias by
moving the frame-center fixed-point reference from the original equation to the mean
position of very similar superpixels, which are calculated using the more continuous
cross-bin histogram distances. It is shown that the method does indeed remove the
center bias by showing invariance in the AUC and sAUC scores generated from the
dataset as well as from visual inspection. The removal of the center bias significantly
affects the CC, NSS and AUC scores, reiterating how susceptible these scoring methods
are to the center bias.
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Figure 6.4.1: Results of using the newly proposed spatial sparsity measure (error bars
indicate one standard deviation).
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Experiment 4: Removing the Center Bias

Figure 6.5.1: Example images with their original saliency maps and saliency maps generated with the proposed method for spatial sparsity.
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Chapter 7
Final Conclusions

Saliency research has seen a lot of activity in recent years, starting from a biological
standpoint and migrating into the computational realms. Many models ranging from
biologically plausible, to information theoretic, to statistical in nature have been pro-
posed, each contributing to the overarching field of visual saliency. This dissertation
focuses on a particular statistical saliency model which computes the saliency at a re-
gion by comparing the local region’s colour distribution with the global frame’s colour
distribution, and assuming that salient objects are local and sparsely distributed across
the frame. The original model achieves state-of-the-art performance on existing datasets
across most current metrics, which is why it was chosen as the focus.

The dissertation designed and implemented experiments to assess whether the his-
togram construction methods and histogram distances, which make up the crux of the
algorithm, would affect the saliency scores it generated. It was shown that equi-depth
histograms are better able to characterise the global frame colour distribution, which
allows for better discovery of salient regions. It was also shown that cross-bin his-
togram distances create a perceptually more meaningful saliency map, but fall prey to
the center and search bias present in eye-tracking saliency-scoring. The explicit saliency
selection task is more indicative of the salient regions in the image, and future experi-
ments requesting participants to select multiple salient regions is proposed. This would
alleviate the random eye movements, as well as align the top-down and bottom-up tasks
to provide a more meaningful saliency measure.

Future work might aim to improve the cross-bin distance computation times via
parallel programming, or to take these findings into the spatiotemporal and depth-
of-field realms. Vision is an extremely powerful and information-rich sensory input,
which saliency allows us to make computationally tractable and deepens our knowledge
of how we see and perceive the world.
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Appendix A
Smoothed Saliency Map Experiment

It was observed that the click and eye-tracking data were quite random and haphazardly
spread across the images, whereas the saliency maps have pixel-level accuracy and pre-
serve object boundaries quite well. It was questioned as to what effect accommodating
the randomness in the data by smoothing the saliency maps would have on the saliency
scores. To test this, the exact same experiment as detailed in Chapter 5 is run except
for smoothing the saliency maps with a Gaussian filter with σ = 0.5° of visual angle,
or 9px [28], before computing the scores.

The smoothed equi-width, equi-depth and diagonal histogram results tables are
found in Table A.1, Table A.2 and Table A.3 respectively, with the percentage increase
in using the smoothed saliency maps with equi-depth histograms over the equi-width
histograms found in Table A.4. In addition, a percentage increase in using the smoothed
saliency maps over the unsmoothed saliency maps is presented in Table A.5. As can be
seen there are significant improvements in scores, with only the sAUC metric being rel-
atively invariant to the smoothing. This again highlights the sensitivity of these scoring
methods and calls for more robust methods to be designed.

72



Sm
oothed

Saliency
M
ap

Experim
ent

Table A.1: Equi-width histogram results using smoothed saliency maps (bold and underlined indicates highest score for combina-
tion of global contrast and spatial sparsity per scoring measure and dataset task).

0.506 0.454 0.308 0.437 0.502 0.457 0.308 0.431 0.399 0.372 0.250 0.326 0.457 0.410 0.286 0.411

0.512 0.458 0.292 0.428 0.502 0.454 0.288 0.416 0.376 0.347 0.217 0.298 0.479 0.428 0.284 0.415

0.442 0.393 0.260 0.392 0.443 0.399 0.263 0.389 0.369 0.343 0.227 0.307 0.394 0.349 0.238 0.365

0.514 0.458 0.286 0.425 0.503 0.452 0.281 0.412 0.376 0.343 0.210 0.291 0.480 0.428 0.279 0.412

0.817 0.737 0.497 0.701 0.820 0.751 0.511 0.699 1.081 1.037 0.765 0.857 0.754 0.676 0.479 0.679

0.816 0.731 0.461 0.676 0.809 0.736 0.464 0.664 0.949 0.901 0.595 0.711 0.781 0.698 0.467 0.677

0.706 0.629 0.412 0.621 0.720 0.654 0.434 0.629 1.029 0.985 0.718 0.831 0.635 0.560 0.388 0.590

0.816 0.727 0.447 0.668 0.805 0.728 0.448 0.653 0.930 0.864 0.567 0.677 0.778 0.694 0.453 0.669

0.725 0.703 0.639 0.697 0.724 0.705 0.640 0.695 0.745 0.730 0.668 0.709 0.711 0.690 0.636 0.691

0.723 0.698 0.624 0.688 0.720 0.699 0.624 0.685 0.730 0.715 0.642 0.689 0.712 0.689 0.628 0.687

0.693 0.670 0.614 0.671 0.695 0.675 0.616 0.673 0.722 0.709 0.651 0.695 0.677 0.655 0.610 0.665

0.724 0.699 0.620 0.688 0.722 0.699 0.620 0.684 0.727 0.707 0.635 0.681 0.713 0.690 0.624 0.686

0.548 0.546 0.528 0.530 0.557 0.556 0.537 0.537 0.619 0.619 0.593 0.588 0.534 0.532 0.525 0.522

0.532 0.527 0.512 0.514 0.538 0.535 0.519 0.519 0.590 0.590 0.562 0.557 0.520 0.517 0.512 0.509

0.532 0.529 0.515 0.516 0.542 0.541 0.525 0.526 0.605 0.607 0.582 0.580 0.518 0.516 0.511 0.511

0.526 0.522 0.505 0.510 0.533 0.531 0.512 0.514 0.582 0.577 0.553 0.544 0.515 0.512 0.506 0.505

CC

NSS

AUC

Saliency Left/Right Task Explicit Click Task Object Search TaskFree View Task

sAUC
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Table A.2: Equi-depth histogram results using smoothed saliency maps (bold and underlined indicates highest score for combina-
tion of global contrast and spatial sparsity per scoring measure and dataset task).

0.545 0.508 0.304 0.492 0.535 0.503 0.302 0.477 0.403 0.383 0.238 0.340 0.505 0.471 0.286 0.474

0.556 0.520 0.289 0.484 0.528 0.496 0.276 0.454 0.350 0.330 0.181 0.284 0.546 0.512 0.293 0.488

0.507 0.470 0.274 0.464 0.499 0.466 0.274 0.451 0.380 0.359 0.220 0.324 0.467 0.432 0.255 0.444

0.555 0.502 0.283 0.469 0.531 0.476 0.273 0.437 0.363 0.310 0.188 0.268 0.541 0.497 0.283 0.474

0.871 0.812 0.484 0.779 0.862 0.813 0.495 0.758 0.995 0.959 0.680 0.776 0.830 0.773 0.474 0.777

0.874 0.816 0.448 0.753 0.833 0.784 0.433 0.704 0.757 0.720 0.429 0.549 0.891 0.834 0.479 0.795

0.803 0.742 0.428 0.727 0.798 0.747 0.443 0.712 0.946 0.909 0.639 0.748 0.753 0.695 0.413 0.717

0.874 0.781 0.439 0.724 0.840 0.744 0.431 0.672 0.816 0.646 0.474 0.493 0.880 0.801 0.462 0.766

0.742 0.726 0.636 0.719 0.739 0.725 0.636 0.715 0.746 0.735 0.659 0.711 0.730 0.715 0.636 0.716

0.745 0.729 0.626 0.713 0.734 0.721 0.620 0.701 0.711 0.699 0.610 0.665 0.741 0.727 0.636 0.718

0.722 0.704 0.619 0.704 0.720 0.704 0.622 0.700 0.726 0.716 0.642 0.699 0.708 0.691 0.617 0.699

0.744 0.720 0.621 0.705 0.735 0.711 0.617 0.692 0.720 0.681 0.616 0.649 0.738 0.718 0.629 0.711

0.538 0.534 0.523 0.516 0.546 0.544 0.532 0.523 0.597 0.595 0.580 0.554 0.526 0.524 0.522 0.514

0.504 0.501 0.497 0.484 0.506 0.505 0.499 0.483 0.522 0.522 0.517 0.473 0.503 0.501 0.503 0.492

0.530 0.526 0.512 0.510 0.537 0.535 0.523 0.516 0.581 0.582 0.567 0.548 0.517 0.515 0.511 0.507

0.506 0.490 0.496 0.477 0.509 0.492 0.501 0.473 0.538 0.499 0.528 0.455 0.502 0.492 0.501 0.487

CC

NSS

AUC

sAUC

Free View Task Saliency Left/Right Task Explicit Click Task Object Search Task
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Table A.3: Diagonal histogram results using smoothed saliency maps (bold and underlined indicates highest score for combination
of global contrast and spatial sparsity per scoring measure and dataset task).

0.532 0.490 0.307 0.470 0.524 0.488 0.305 0.460 0.406 0.385 0.247 0.339 0.488 0.449 0.285 0.448

0.540 0.498 0.288 0.459 0.518 0.482 0.278 0.437 0.360 0.339 0.192 0.289 0.522 0.483 0.288 0.456

0.471 0.431 0.267 0.431 0.468 0.434 0.269 0.425 0.376 0.355 0.230 0.324 0.426 0.389 0.244 0.406

0.537 0.493 0.281 0.453 0.516 0.476 0.271 0.431 0.362 0.334 0.190 0.284 0.517 0.476 0.280 0.450

0.855 0.789 0.492 0.749 0.852 0.797 0.506 0.738 1.070 1.039 0.748 0.844 0.802 0.739 0.475 0.736

0.853 0.787 0.449 0.718 0.824 0.769 0.440 0.685 0.843 0.810 0.494 0.620 0.851 0.786 0.472 0.744

0.752 0.688 0.423 0.680 0.759 0.706 0.446 0.680 1.021 0.992 0.728 0.835 0.690 0.629 0.397 0.659

0.847 0.774 0.435 0.705 0.818 0.755 0.426 0.671 0.840 0.779 0.485 0.595 0.838 0.771 0.453 0.729

0.737 0.719 0.637 0.709 0.734 0.719 0.637 0.705 0.749 0.737 0.664 0.713 0.722 0.706 0.635 0.705

0.737 0.720 0.623 0.703 0.729 0.714 0.619 0.694 0.720 0.709 0.621 0.675 0.731 0.714 0.632 0.706

0.707 0.688 0.616 0.690 0.707 0.691 0.620 0.689 0.726 0.716 0.652 0.702 0.693 0.675 0.614 0.684

0.736 0.716 0.618 0.700 0.728 0.710 0.615 0.691 0.720 0.700 0.617 0.667 0.729 0.711 0.626 0.702

0.541 0.538 0.526 0.521 0.550 0.549 0.535 0.527 0.611 0.608 0.589 0.573 0.528 0.526 0.524 0.517

0.510 0.510 0.499 0.496 0.514 0.514 0.503 0.497 0.552 0.554 0.534 0.512 0.507 0.505 0.505 0.499

0.532 0.529 0.518 0.517 0.541 0.540 0.529 0.525 0.599 0.598 0.583 0.573 0.520 0.517 0.516 0.513

0.508 0.503 0.495 0.492 0.512 0.509 0.501 0.493 0.550 0.540 0.530 0.501 0.504 0.501 0.501 0.496

CC

NSS

AUC

sAUC

Free View Task Saliency Left/Right Task Explicit Click Task Object Search Task
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Table A.4: Percentage increase (or decrease) in scores when using smoothed saliency maps generated with equi-depth histograms
over equi-width histograms. Green indicates that using equi-depth histograms improved scores and red indicates that they worsened
scores.

8% 12% -1% 13% 6% 10% -2% 11% 1% 3% -5% 4% 10% 15% 0% 15%

9% 14% -1% 13% 5% 9% -4% 9% -7% -5% -16% -5% 14% 20% 3% 18%

15% 20% 5% 19% 13% 17% 4% 16% 3% 5% -3% 6% 18% 24% 7% 22%

8% 10% -1% 10% 6% 5% -3% 6% -3% -9% -10% -8% 13% 16% 2% 15%

7% 10% -2% 11% 5% 8% -3% 8% -8% -8% -11% -9% 10% 14% -1% 14%

7% 12% -3% 11% 3% 6% -7% 6% -20% -20% -28% -23% 14% 20% 3% 17%

14% 18% 4% 17% 11% 14% 2% 13% -8% -8% -11% -10% 19% 24% 6% 22%

7% 7% -2% 8% 4% 2% -4% 3% -12% -25% -16% -27% 13% 15% 2% 14%

2% 3% 0% 3% 2% 3% -1% 3% 0% 1% -1% 0% 3% 4% 0% 4%

3% 5% 0% 4% 2% 3% -1% 2% -3% -2% -5% -4% 4% 6% 1% 4%

4% 5% 1% 5% 4% 4% 1% 4% 1% 1% -1% 1% 5% 6% 1% 5%

3% 3% 0% 3% 2% 2% 0% 1% -1% -4% -3% -5% 3% 4% 1% 4%

-2% -2% -1% -3% -2% -2% -1% -3% -4% -4% -2% -6% -2% -2% -1% -2%

-5% -5% -3% -6% -6% -6% -4% -7% -11% -12% -8% -15% -3% -3% -2% -3%

0% -1% -1% -1% -1% -1% 0% -2% -4% -4% -3% -5% 0% 0% 0% -1%

-4% -6% -2% -6% -5% -7% -2% -8% -7% -13% -5% -16% -3% -4% -1% -4%

Object Search Task

CC

NSS

AUC

sAUC

Free View Task Saliency Left/Right Task Explicit Click Task
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Table A.5: Percentage increase (or decrease) in the equi-width scores using the smoothed saliency maps over the unsmoothed
saliency maps.

15.0% 18.9% 30.3% 17.4% 14.8% 18.5% 29.9% 17.2% 13.9% 17.1% 27.1% 16.7% 15.2% 19.1% 30.4% 17.1%

14.0% 18.3% 32.3% 17.3% 13.9% 18.1% 32.3% 17.2% 13.7% 17.7% 32.0% 17.6% 13.7% 17.9% 30.9% 16.6%

20.4% 24.2% 36.6% 21.0% 20.1% 23.6% 35.9% 20.8% 18.5% 21.3% 31.2% 19.6% 20.7% 24.8% 37.2% 20.8%

12.5% 17.1% 32.1% 16.6% 12.5% 16.9% 32.1% 16.6% 12.3% 16.8% 32.2% 17.3% 12.3% 16.7% 30.5% 15.9%

14.4% 18.2% 29.8% 17.4% 12.9% 16.2% 25.6% 15.7% 2.4% 4.1% 6.7% 7.3% 14.3% 18.2% 29.3% 16.4%

13.8% 18.1% 32.8% 17.6% 12.6% 16.4% 29.7% 16.3% 4.3% 6.5% 15.7% 12.6% 12.8% 17.0% 30.3% 16.1%

20.1% 23.9% 36.8% 21.4% 18.1% 21.2% 31.2% 19.2% 6.1% 7.3% 9.8% 9.4% 20.6% 24.6% 37.4% 20.7%

12.4% 16.9% 33.1% 17.0% 11.3% 15.4% 29.8% 15.9% 4.3% 7.6% 16.9% 14.4% 11.7% 15.9% 30.7% 15.6%

4.8% 5.5% 6.3% 5.1% 4.7% 5.7% 6.4% 4.8% 3.5% 4.2% 5.1% 4.1% 4.6% 5.5% 6.1% 4.7%

5.4% 6.2% 6.2% 5.0% 5.0% 6.0% 6.1% 4.8% 4.1% 5.3% 5.4% 4.3% 4.9% 5.8% 6.0% 4.9%

6.2% 6.7% 7.0% 5.6% 6.4% 6.7% 7.0% 5.5% 5.0% 6.0% 6.2% 4.5% 6.3% 6.5% 7.1% 5.4%

4.8% 6.0% 5.9% 4.8% 4.9% 6.0% 5.8% 4.7% 4.3% 5.5% 5.2% 4.3% 4.6% 5.5% 5.9% 4.4%

1.2% 1.5% 1.3% 1.4% 1.4% 1.9% 1.6% 1.1% 0.8% 1.3% 1.7% 1.4% 0.8% 1.2% 1.0% 0.7%

1.4% 1.3% 0.3% 0.5% 1.1% 1.2% 0.7% 0.3% 1.2% 1.7% 1.2% 1.1% 0.4% 0.6% 0.2% 0.1%

1.5% 1.7% 1.2% 1.2% 2.0% 1.9% 1.7% 1.1% 1.6% 2.5% 2.6% 1.3% 1.3% 1.3% 1.2% 0.8%

0.6% 1.0% 0.0% 0.4% 1.0% 1.4% 0.3% 0.3% 1.3% 1.8% 0.9% 0.9% 0.3% 0.4% 0.4% -0.1%

Object Search Task

CC

NSS

AUC

sAUC

Free View Task Saliency Left/Right Task Explicit Click Task
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