
Investigation into the use of the Microsoft
Kinect and the Hough transform for

mobile robotics

Prepared by:

Katherine O’Regan
Department of Electrical Engineering

University of Cape Town

Prepared for:

Robyn Verrinder and Assoc. Prof. Fred Nicolls
—————

University of Cape Town

Submitted to the Department of Electrical Engineering at the University of Cape Town
in partial fulfilment of the academic requirements for a Master of Science degree in
Electrical Engineering, by dissertation.
The financial assistance of the National Research Foundation (NRF) towards this re-
search is hereby acknowledged. Opinions expressed and conclusions arrived at, are those
of the author and are not necessarily to be attributed to the NRF.

· May 2014 ·

i

Declaration

1. I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend
that it is one’s own.

2. I have used the IEEE convention for citation and referencing. Each contribution
to, and quotation in, this final year project report from the work(s) of other
people, has been attributed and has been cited and referenced

3. This dissertation is my own work

4. I have not allowed, and will not allow, anyone to copy my work with the intention
of passing it off as their own work or part thereof.

Signed:
Date: 8 May 2014

ii

“A picture is worth more than ten thousand words” - anonymous

iii

Acknowledgments

I would like to thank the following people:

• Robyn Verrinder and Assoc. Prof. Fred Nicolls for providing help wherever
needed, and for helping me to keep my project focused.

• Stefano De Grandis for helping me with problems I encountered along the way.

• Jatin Harribhai and the rest of the Robotics and Mechatronics and Digital Image
Processing Research Groups for providing insight into the problem.

• And, last but not least, my parents, for supporting me throughout my Under-
graduate and Postgraduate studies.

iv

Abstract

The Microsoft Kinect sensor is a low cost RGB-D sensor. In this dissertation, its cali-
bration is fully investigated and then these parameters are compared to the parameters
given by Microsoft and OpenNI. The parameters found were found to be different to
those given by Microsoft and OpenNI therefore, every Kinect should be fully calibrated.
The transformation from the raw data to a point cloud is also investigated.

Then, the Hough transform is presented in its 2-dimensional form. The Hough trans-
form is a line extraction algorithm which uses a voting system. It is then compared to
the Split-and-Merge algorithm using laser range finder data. The Hough transform is
found to compare well to the Split-and-Merge in 2 dimensions.

Finally, the Hough transform is extended into 3-dimensions for use with the Kinect
sensor. It was found that pre-processing of the Kinect data was necessary to reduce the
number of points input into the Hough transform. Three edge detectors are used - the
LoG, Canny and Sobel edge detectors. These were compared, and the Sobel detector
was found to be the best. The final process was then used in multiple ways - first to
determine its speed. Its accuracy was then investigated. It was found that the planes
extracted were very inaccurate, and therefore not suitable for obstacle avoidance in
mobile robotics. The suitability of the process for SLAM was also investigated. It was
found to be unsuitable, as planar environments did not have distinct features which
could be tracked, whilst the complex environment was not planar, and therefore the
Hough transform would not work.

v

Contents

Declaration ii

Acknowledgments iv

Abstract v

Table of Contents viii

List of Figures xiii

List of Tables xiv

List of Definitions xv

1 Introduction 1
1.1 Background to Study . 1
1.2 Objectives of the Study . 2
1.3 Software and Equipment . 3
1.4 Scope and Limitations . 4
1.5 Plan of Development . 4

2 Literature Review 6
2.1 The Kinect Sensor . 6

2.1.1 Application of the Kinect Sensor in Engineering and Computer
Vision . 6

2.1.2 Use of the Kinect sensor in Mobile Robotics 8
2.1.3 Calibration and Modelling of the Kinect Sensor 10

2.2 Feature Extraction . 10
2.2.1 Feature Extraction for Mobile Robotics 11
2.2.2 Hough Transform . 12
2.2.3 Split-and-Merge . 17

2.3 Use of other sensors in Mobile Robotics 17

vi

3 Characterisation of the Kinect Sensor 19
3.1 Operation of the Kinect depth sensor 19

3.1.1 Disparity calculation . 20
3.1.2 Disparity to Depth calculation 21
3.1.3 Depth to Point cloud calculation 24

3.2 Theoretical Meaning of the Calibration Parameters 26
3.2.1 Outputs of the Calibration Toolbox 28
3.2.2 Calibration of the Kinect Sensors 32
3.2.3 Verification of the parameters used in the disparity-to-depth map-

ping . 40
3.3 Reaction of the Kinect to different situations 48

3.3.1 Comparison of Black and White Surfaces 48
3.3.2 Reaction of the Kinect to different lighting conditions with Re-

flective and Non-reflective surfaces 50

4 Development of Feature Extraction Algorithms 53
4.1 The Algorithms . 54

4.1.1 Split-and-Merge . 54
4.1.2 2-Dimensional Hough Transform 56

4.2 Tests of the Split-and-Merge Algorithm 59
4.2.1 Determination of the optimal threshold for the Split-and-Merge

algorithm . 59
4.2.2 Test of the effect of the number of points in the dataset and

number of lines fit to the data on the time taken 64
4.3 Hough Transform . 66

4.3.1 Test to determine the effect of the discretisation of the angle θ on
the efficiency of the algorithm 66

4.3.2 Test to determine the effect of the grid number on the accuracy
of the algorithm . 68

4.3.3 Determination of the optimal grid number for the Hough trans-
form, based on the efficacy of the algorithm 69

4.3.4 Determination of the effect of the grid number on the speed of
the algorithm . 71

4.3.5 Test to determine the effect of the number of points in the set on
the efficiency . 72

4.3.6 Test to determine the effect of the number of lines fit to the data
on the efficiency . 74

4.4 Discussion and comparison . 75

5 Extension of Hough Transform into 3-Dimensions 77
5.1 Development of the 3-dimensional Hough Transform 77
5.2 Tests without pre-processing . 79
5.3 Pre-processing algorithms . 80

vii

5.3.1 Theory of the Edge Detectors 81
5.3.2 Testing of the edge detectors on the raw data 84
5.3.3 Reducing the noisy points in the output 86

5.4 Final 3D Feature Extraction Algorithm 88
5.5 Investigation into the suitability of the Hough Transform for Mobile

Robotics . 92
5.5.1 Suitability of the algorithm for obstacle avoidance purposes . . . 92
5.5.2 Suitability of the algorithm for SLAM pre-processing 94

6 Conclusions 100
6.1 Conclusions about Calibration . 100
6.2 Conclusions from the Feature Extraction 101
6.3 Conclusions from the Hough 3D . 101

7 Recommendations 104

A Calibration Tables 106
A.1 Tables of the calibration data used in section 3.2.2 106
A.2 Tables of the data used for the comparison of parameters in section 3.2.3 110
A.3 Tables showing the data used for the comparison of black and white

surfaces . 110
A.4 Tables showing the data used for the reflective and non-reflective surface

tests in section 3.3 . 112
A.5 Distortion Models . 113

B Tables of data used in chapter 4 114
B.1 Data for the threshhold determination in Split-and-Merge 114
B.2 Data for speed test of Split-and-merge algorithm 115
B.3 Data for the angle discretisation test for the Hough Transform 117
B.4 Data for grid size optimisation in Hough Transform 117

C Tables of data used in Chapter 5 120
C.1 Data for the speed test of the Hough 3D algorithm without pre-processing120
C.2 Data for the testing of the edge detectors 120
C.3 Data collected for the obstacle avoidance tests 122
C.4 Data collected for the tests of the Hough Transform on Real World Data 123

D Code 125
D.1 Code for the 2-D Hough Transform . 125
D.2 Code for the 3-D Hough Transform . 126

Bibliography 127

viii

List of Figures

1.1 Figure showing SLAM process, with the parts investigated in this study
shown in red. 2

3.1 Diagram of the Kinect sensor showing the locations of the laser projector,
IR receiver and RGB camera [18]. 20

3.2 Figure showing the relationship between disparity and depth. The laser
projector is on the right, and the IR camera is on the left. The value b
is the baseline — the distance between the two cameras. P is a point,
from the scatter pattern, produced by the laser projector, projected onto
an object in the scene. P ′ is the same point as it would appear on
the reference plane (i.e. how it appears in the reference pattern). The
focal length is f , d is the disparity, and z is the depth. Note that the
y-direction is into the page . 21

3.3 Figure showing the relationship between disparity and depth, where the
reference plane is at infinity. 22

3.4 Flow diagram showing the processes used to get from the raw IR image to
depth. All the parameters and processes used are shown in the diagram. 23

3.5 Test setup for determining the angular resolution of the Kinect sensor.
The grey block is the box used. The setup up is shown in top, side and
front views. The red lines represent the rays from the camera to the
corners of the box. All the relevant measurements are shown. 25

3.6 Diagram showing the angles and lengths for the trigonometry of finding
the point cloud. ρ is the distance from the origin to the point. r is
the distance from the origin to the point when it projected into the x-y
plane. The angle φ is the angle between the x-axis and this projected
point. θ is the angle from the x-y plane to the point. 26

3.7 Two of the images used for calibration. The images should include mul-
tiple angles. The left hand image shows an image where the camera is
pointing directly at the calibration board, and the right-hand one shows
the camera at an extreme angle. 27

3.8 Figure showing the corners of the grid, as extracted by the MATLAB
toolbox. The blue squares with the red dots inside should be directly
over the corners of the grid. 28

ix

3.9 Illustration of a standard pinhole camera projection model. c is the
centre point of the image plane, p is the point projected into the image
plane. The principle axis and camera centre are labelled. 29

3.10 Figure showing the “side view” of the pinhole camera model. The focal
length (f), centre point (c) and projected points are shown. 30

3.11 Boxplots showing the median and 25th and 75 percentiles of the focal
length and centre point for Kinect 1. (a) and (b) show the boxplots
relating to the focal length in the x and y directions. (c) and (d) show
the boxplots for the centre point in the x and y directions. The red +
signs represent the points which are considered by MATLAB to be outliers. 32

3.12 Boxplots showing the median and 25th and 75 percentiles of the tan-
gential and radial distortion for Kinect 1. (a) and (b) show the radial
distortions (left being the first coefficient, and right being the second
coefficient). (c) and (d) show the first and second tangential distortion
coefficients. 33

3.13 Figure showing the reprojection error for each point in each image after
calibration. The different coloured crosses represent different images.
The crosses are evenly distributed around the origin. The reprojection
error is low for all points. This shows that a second optimisation in the
calibration is unnecessary . 35

3.14 The position of the camera and the grid, relative to the world and to the
camera. This shows the variation in the images used for the calibration.
There is a wide range of distances and angles in the images taken, which
is necessary for the calibration procedure. 36

3.15 Boxplots showing the median and 25th and 75 percentiles of the focal
length and centre point for Kinect 2. 37

3.16 Boxplots showing the median and 25th and 75 percentiles of the tangen-
tial and radial distortion for Kinect 2. 38

3.17 Reprojection error after calibration for the second kinect camera. This
shows the how much and in what direction the points move after cali-
bration. 40

3.18 Figure showing the effect of the calibration parameters on the image
points. The original points are shown as + signs, and the reprojected
points are shown as circles. The direction of the change is shown by the
arrows. 41

3.19 Graphs showing the relationship between z and dk (on the left), as well
as the relationship between x and y (blue dots in the right-hand image),
and the least squares interpretation of them (the green line fitted to the
blue dots) . 42

3.20 Graphs showing the relationship between f and b, as well as the rela-
tionship between f × b and f . 44

x

3.21 Graph showing the difference between the depths obtained using the
calculated value, and those obtained using the Microsoft and OpenNI
values . 45

3.22 Graph showing the difference between the depths obtained using the
calculated value of b × f — with doff = 1090, and those obtained using
the Microsoft and OpenNI values for b× f and doff 46

3.23 Graph showing the percentage difference between the depths obtained
using the calculated value of b×f — with doff = 1090, and those obtained
using the Microsoft and OpenNI values for b× f and doff 47

3.24 Graph showing the percentage difference between the depths using dif-
ferent values of b× f . Each of the colours represents a different value of
b× f . 48

3.25 Picture of the test setup for the black and white tests. 49
3.26 Plot of the Maximum Distance minus the Actual Distance. The red

and blue lines represent this value for the black screen, and the green
and cyan lines for the white screen. There are two sets of data for each
screen, and these are represented by the different colours for each screen
(i.e. blue represents measurement 1 for the black screen) 50

3.27 Plot of the Actual Distance minus the Minimum Distance. The red and
blue lines represent this value for the black screen, and the green and
cyan lines for the white screen . 51

3.28 Plot of the number of errors vs. the distance from the screen for the
reflective surfaces. This shows that the number of errors increases as the
distance increases. The red and blue lines represent the two sets of data
in high-light conditions, whilst the green and cyan lines represent the
data for low-light conditions. 52

4.1 Figure showing two of the cases for Number 6 - (a) shows when θ1 > θ2
and (b) shows when θ2 > θ1. (a) shows that when θ1 > θ2, θ2 must be
subtracted from θ1 in order to obtain the correct angle. The opposite is
true for when θ2 > θ1 . 55

4.2 Geometric interpretation of the parameters r (ρ) and θ of a line. The
green and red dots represent two points in the x−y plane. The line that
passes between them is shown. This line can be represented by θ and r. 57

4.3 Figure showing the case where the threshold for the split and merge
algorithm is too small, and therefore the data are split more times than
they should be by the algorithm . 59

4.4 Figure showing a correct split (a) and an incorrect split (b) caused by a
threshold which is too high for the split and merge algorithm 60

4.5 Figure showing the point cloud when the box is placed at x = 3 m and
y = 3 m. The box is not properly resolved by the laser range finder,
however the result does appear to be a straight line, and is therefore still
used for this experiment. The laser range finder is at the origin. 61

xi

4.6 Bar graph showing the percentage of correct to incorrect splits using
various different threshold values for the split and merge algorithm. All
of the test datasets are represented - each dataset represents 5 percent
in this graph. 62

4.7 Graph showing the average time taken to complete the split-and-merge
algorithm across all the data sets for each different threshold. The stan-
dard deviation was approximately 0.016 s. 64

4.8 Graphs showing the average time taken to complete the split-and-merge
algorithm for different numbers of points. The red line represents the
datasets where 2 lines were fit and the blue line represents the data
where only 1 line was fit. 65

4.9 Figure showing the relationship between the time taken to run the Hough
transform and the angle discretisation. 67

4.10 Figure showing the results of the Hough transform algorithm for multiple
grid numbers . 68

4.11 Figure showing the results of the grid number test for the Hough transform 70
4.12 Figure showing the average time taken against the grid number. This

shows that the time taken increases as the grid number increases. There-
fore, the grid number should be kept as low as possible. 72

4.13 Figure showing the average time taken against the number of points in
the dataset . 73

4.14 Figure showing the average time taken against the number of lines fitted.
This shows that as more lines are fitted by the Hough transform, the time
taken also increases. 75

5.1 Figure showing the meaning of the parameters θ, φ and ρ in the Hesse
parameterisation. The vector labelled ρ is the normal vector to the plane.
The plane is not shown in this illustration. 78

5.2 Figure showing the average time taken against the number of points in
the set. This shows that the time taken by the 3D Hough transform
increases linearly with the number of points in the set. 80

5.3 The depth image used for the edge detection 84
5.4 Images showing the output of the Sobel detector without the alteration

of the data (a), and with the processed data (b). 87
5.5 The final output of the Sobel detector, showing the significant reduction

in the number of noisy points in the output. 87
5.6 Images showing the output of the LoG (left) and Canny (right) detectors

with the pre-processing . 88
5.7 Bar graph showing the number of correct fits for each of the thresholds 89
5.8 Graph showing the speed of the Hough transform depending on the

threshold . 90
5.9 Graph showing the effect of the number of points on the speed of the

algorithm . 91

xii

5.10 One of the depth images from the “rgbd dataset freiburg3 large cabinet”
dataset.[1] . 93

5.11 Images plotted with the extracted edges shown in red. Each of the images
has some edges extracted, however there are also some images with noisy
points. 96

5.12 One of the RGB images from the desk dataset. Only the RGB images
were used in this dissertation. 97

5.13 Bargraph showing the number of frames in which features are segmented,
not segmented, partially segmented or not in the screen. The screen and
table have high proportions of being fully segmented in frames, whilst
the mug and the can are not segmented in any frames. 98

A.1 Image showing the distortion model of the first Kinect IR sensor. . . . 113

xiii

List of Tables

3.1 Table showing the parameters found for Kinect 1 33
3.2 Table showing the parameters found for Kinect 2 37
3.3 Table showing the baseline, focal length and disparity offset given by

OpenNI and Microsoft for the Kinect sensor 41
3.4 Table showing the values for z and the corresponding dk value 43
3.5 Table showing the differences between the values of b×f and doff for the

Microsoft, OpenNI and the values calculated in this thesis 45

4.1 Table showing the line colours for each of the grid numbers 69

5.1 Table showing the number of correct and incorrect edge points found in
the image by each of the edge detectors 85

5.2 Table showing the average time taken for each of the edge detectors . . 86

xiv

List of Definitions

RGB-D sensor — a sensor which has both a colour sensor (RGB) and a depth sensor.

RANSAC — Random Sample Consensus - a parameter estimation and model fitting
algorithm

SLAM — Simultaneous Localisation and Mapping, an algorithm which allows a robot
to map an unknown environment, while localising itself within the map.

UAV — Unmanned Aerial Vehicle.

xv

Chapter 1

Introduction

1.1 Background to Study

Mobile robotics is an important field of study within the Electrical Engineering com-
munity. One very important part of the study of robotics is allowing robots to see, and
therefore interact with their environments. This can allow the robot to avoid obstacles
in its environment, as well as map and locate itself in its environment (using simulta-
neous localisation and mapping, or SLAM).

In order to allow complete autonomy in robotics, all processing that allows the robot
to interact with its environment needs to be performed in real-time on-board the robot.
One of the major problems with this is that typical sensors used in robotics output large
amounts of data - for example, the Kinect sensor, which is used in this dissertation,
outputs of the order of 300 000 points per scan. If this scan is performed 10 times a
second (as it is with the Kinect), the amount of data mounts very quickly.

In order to account for this, and reduce the amount of data that needs to be stored
by the robot, feature extraction algorithms are used. Many of these work well for sta-
tionary cameras, but do not work well for mobile robots, as the exact location of the
camera within the global reference frame is not always known

Therefore, in this study, the Hough transform is investigated. For the Hough Trans-
form, the exact location of the robot in a global reference frame is not necessary. The
location of objects in relation to the robot will simply be found. This is first compared
to another algorithm using 2-dimensional laser range finder data. This is performed
to evaluate whether the Hough transform compares well to other 2-dimensional algo-
rithms before extending it into 3-D. The Laser Range Finder is used for data collection
as it is a sensor which has been commonly used in robotics — and therefore provides
a good starting point for this study. Its extension into 3-dimensions is then described,
and its suitability for use in mobile robotics, both for obstacle avoidance, and feature
extraction for SLAM is investigated.

1

Before the Hough transform is investigated, the Kinect sensor is fully investigated
for its accuracy. The Kinect sensor is relatively low-cost, and as such may be more
suitable for use that laser range finders (such as time-of-flight sensors), which can be
prohibitively expensive. This dissertation will investigate the accuracy of the data col-
lected by the Kinect sensor, and then its use with the Hough transform as a sensor for
mobile robotics.

1.2 Objectives of the Study

The SLAM process involves many different “parts” or sections which make up the
SLAM algorithm. These are shown in Figure 1.1. In this figure, the parts of the SLAM
process which are investigated in this study are shown in red. These two parts are an
investigation of the processing and calibration of the sensor (in this case the Kinect),
and the use of the Hough transform as a feature extractor. Therefore, the main ob-
jective of the study is to determine whether the 3-D Hough transform along with the
Kinect sensor can be used in various different ways for Mobile robotics. Specifically,
the effectiveness of the Hough transform in reducing the amount of data that needs to
be stored on-board is investigated.

Figure 1.1: Figure showing SLAM process, with the parts investigated in this study shown in red.

First, the method for converting the raw disparity data output by the Kinect sen-
sor into a point cloud, is investigated. The camera system is also fully calibrated. The
focal length values provided by Microsoft are an average value for Kinect devices, and
are therefore likely to be inaccurate for individual devices. The OpenNI values will also
be used for comparison. The disparity values will then be converted into depth values
(after the conversion parameters have been found), for each of these three sets of val-
ues. The differences are determined, and the results are analysed. This is performed to
ensure that the data are as accurate as possible before feature extraction is performed.
The effects of lighting conditions as well as the reflectivity of the objects in the scene
on the output of the Kinect sensor are determined. The purpose of this is to evaluate
the Kinect depth sensor’s performance in indoor environments.

Second, a development and analysis of two feature extraction algorithms for use on

2

2D laser range finder data are conducted. These algorithms are the split-and-merge
algorithm and the Hough transform. The efficacy of each of the algorithms is deter-
mined. The speed and the accuracy of the algorithms are measured (by measuring the
processing time, and whether the correct lines are fitted to the data). This is performed
to determine how the Hough transform compares to the Split-and-Merge in 2D for line
extraction. The reason for using the 2D laser range finder is because it is a sensor which
is commonly used in robotics. It is also relatively easy to use, and provides useful data
to test the 2-dimensional versions of these two algorithms on.

Finally, the Hough transform will be extended into three dimensions. Any pre-processing
of the data that is required will be developed and tested, and finally the efficacy of the
Hough Transform for reducing the number of points input into SLAM will be deter-
mined.

Based on the above experiments, conclusions are drawn and recommendations for future
work will be made.

1.3 Software and Equipment

For this study, all of the code is developed by the author (with the exception of the
Calibration code used in Chapter 3, and the Edge Detectors used in Chapter 5). The
code was developed in MATLAB 2011b for Linux.

All the tests in this study were run on a Sony Vaio laptop with the following spec-
ifications:
Processor: Intel Core i7-2640M CPU at 2.80 GHz x 4
Memory: 4.8 GiB
Operating System: Ubuntu 12.04 LTS, 64 bit
Disk: 358.4 GB.

Two different sensors were used in this study. First, a Hokuyo Laser Range Finder
with the following details:
Model: Hokuyo URG-04LX Scanning Laser Range Finder.
Light source: infrared laser with wavelength 785 nm
Scan area: 240◦

Angular Resolution: 0.36◦

Scanning frequency: 10 Hz

The other sensor is an XBox 360 Kinect sensor. Two of these are used in this dis-
sertation, both of them with the same specifications.

3

1.4 Scope and Limitations

The scope of this project is to use the 3D Hough Transform as a feature extraction
algorithm on the output of the Kinect sensor. In this study, it is used as a data reduc-
tion technique to limit the amount of data that would need to be stored by a mobile
robot. The Kinect is also fully calibrated and the method for converting the disparity
data to depth data and then to a point cloud is investigated. Only the disparity data
collected from the Kinect sensor are used, the RGB data are ignored for the purposes
of this project. As the focus of this study is on characterisation and calibration of the
Kinect sensor and on the extension of the Hough Transform to 3D, feature tracking and
improvements of the SLAM algorithm itself are not investigated.

The data collected for this project will all be sparse data - one or two boxes in a
small (4 m x 4 m) environment with distinct walls. These data are sufficient to deter-
mine the suitability of the Hough Transform. The Kinect is moved around the boxes to
simulate the movement of a robot. It will not be placed on board a robot, nor is it used
in any other environments. The environment will be kept sparse, to aid the Feature
Extraction. Only two Kinects are used for the calibration, as this was all that was
available. Data from an online dataset created by Sturm et al [1] is used in Chapter 5.

1.5 Plan of Development

This dissertation contains seven chapters in total. The contents of each of these chap-
ters is described below.

The first chapter is this introduction. It contains a brief introduction to the prob-
lem, as well as the objectives of the study, the methodology used in this project and
the scope and limitations of the project.

The second chapter is a comprehensive literature review. It contains a more sub-
stantial background and history section, as well as a full review the current work with
the Kinect in computer vision applications. There is also a section describing how the
Kinect has been used for robotics up to now. Work on the calibration and methods for
converting the disparity data from the Kinect are also reviewed. Finally, the literature
about the Hough Transform and its development is reviewed, along with other feature
extraction algorithms that have been used with the Kinect and for robotics.

The Chapter 3 investigates the conversion of the disparity data from the Kinect to
depth data, and then to a point cloud. The Kinect sensors are then fully calibrated.
The focal length obtained is compared to the focal lengths given by OpenNI and Mi-
crosoft. The parameters for the disparity-to-depth mapping are then determined for
each of the focal lengths. The raw data are then converted to depth for each of the

4

sets of parameters, and the differences which the sets of parameters cause are analysed.
Finally, the effect of different environmental conditions on the Kinect output is deter-
mined.

The fourth chapter contains the theory behind the Hough transform in 2-dimensions
and the split-and-merge algorithm. Then, the two algorithms are tested for various
parameters (such as speed and accuracy), and are then compared to determine how
well the Hough transform compares.

The Chapter 5 contains the theory of the development of the Hough Transform from
2D to 3D. It also contains a basic speed test of the Hough Transform in 3D. Then, edge
detectors are tested, as it is decided that pre-processing of the data is required. The
theory of the edge detectors is discussed, and the algorithms are tested. Finally, the
best edge detector is chosen and used on the raw point cloud data before it is input into
the Hough Transform. The speed and efficacy of the Hough Transform at extracting
planes in the data is then determined. The final algorithms is run on multiple datasets
to determine these factors (speed and efficacy).

The sixth chapter contains the conclusions drawn from all the tests run in the earlier
chapters. The research objectives are analysed, and the research questions are answered.

The seventh chapter contains the recommendations for future work based on the work
done in this dissertation.

5

Chapter 2

Literature Review

This chapter gives an overview of the current state-of the art in using the Kinect sensor
for applications in computer vision. It also reviews the work in using the sensor for
mobile robotics. Feature extraction algorithms that could be applied to the resulting
data are identified and discussed, and their suitability for use in various applications in
mobile robotics is investigated.

First, the use of the Kinect sensor in various applications will be reviewed, followed
by a more specific review of the work using the Kinect for Mobile Robotics. The work
detailing the Calibration and Modelling of the Kinect Sensor will also be reviewed.
Thereafter, various feature extraction algorithms (as used in mobile robotics) will be
investigated.

2.1 The Kinect Sensor

This section will review the current state-of-the-art in terms of using the Kinect sen-
sor for various applications. The first subsection reviews the work using the Kinect
sensor for various computer vision applications. The second subsection will review the
literature that involves the applications of the Kinect sensor for mobile robotics.

2.1.1 Application of the Kinect Sensor in Engineering and
Computer Vision

The Kinect sensor has been used for many applications in Computer Vision and Engi-
neering. The Kinect has been used in a clinical context for rehabilitation [2, 3, 4, 5],
prevention of future ergonomic problems [6] and improving the quality of life of people
with disabilities [7]. Additionally, it has been used for applications in human-computer
interaction [8, 9, 10, 11], as well as in education [10, 12, 13]. It has also been used
extensively in robotics (Section 2.1.2).

6

For clinical rehabilitation, the Kinect was used in multiple ways. Most of the applica-
tions involve helping people with motor control disabilities (whether through a stroke
or SCI (Spinal Cord Injury) or TBI (Traumatic Brain Injury)). These rehabilitation
tools have taken multiple different forms [2, 3, 4, 5].

Lange et al.. present a game-based rehabilitation tool using the Microsoft Kinect sensor
in [2]. It is a novel, interactive game that can be used for balance training in adults with
a neurological injury (either SCI or TBI). The game is an interactive game where the
patient had to reach out to grab “gems” from the walls of a “cave”. One issue that they
discovered was that most of the patients could not perform the calibration pose, or could
not perform it for long enough for the camera to calibrate. The game itself was pos-
itively received by the patients and the doctors. A simpler game is also presented in [4].

Another rehabilitation tool is presented in [5], where the Kinect tracks whether or
not a specific movement is performed correctly by the patient. A baseline is formed by
the user before what is called an “intervention” phase — where the patient is required
to perform a specific movement a certain number of times. This was shown to have
positive effects on the ability of the patient to perform the movements. A similar tech-
nique is used in [3].

In [6], a system is developed to record the postures of people in the workplace. The
aim was to prevent musculo-skeletal injuries caused by bad posture. In [7], the Kinect
is used both to help with the rehabilitation process and to improve patients quality
of life while in rehabilitation. Tele-rehab is a fairly common method of helping stroke
patients. One of the major problems, however, is that most systems can not distinguish
between the paralysed and healthy sides of the body. This system monitors patients in
every day activities and relays the information to doctors so that they can adjust their
treatment.

The other main area in which the Kinect is used is for human-computer interaction. In
[8], a solution to the problem of recovering and tracking the position, orientation and
full articulation of the human hand is developed. The Kinect sensor is used so that
this can be done with markerless observations. The authors use a model-based system,
to track the hand. They achieve robust 3D tracking of hand articulation in close to
real-time. The study is theoretical, but they state that it could be used in a context to
allow for a robot to understand human grasping.

A more practical study is presented in [9]. Here, the authors investigate how a machine
can be made to understand human hand gestures using a Kinect sensor. They apply
their system to arithmetic computation and a rock-paper-scissors game. Their system
works well, and can detect a wide array of gestures. The rock-paper-scissors game can
determine the winner between the computer and a human, showing that the computer
can correctly identify which hand gesture the person is making.

7

The Kinect is used for hand-tracking and rendering for use in wearable haptics in
[11]. A hand-tracker is developed that allows for animation of a hand avatar in virtual
reality. The position of the fingertips is measured by the Kinect using a tracker that is
developed by the authors.

The Kinect has also been investigated for use in education. In [10], its use for teaching
natural user interaction is investigated. The authors propose that the Kinect offers a
novel way to teach natural interaction in a classroom setting. They present various
activities which can be used with the Kinect and the libraries given in OpenNI to teach
human-computer interaction and natural user interaction.

The use of the Kinect for robotics education is investigated in [12]. They propose
that the Kinect is a good sensor to introduce robot sensing to students. They show
that the Kinect can be used to teach students about the complexities of robotic sensing,
and to introduce various concepts, such as data fusion and obstacle avoidance.

Finally, in [13] the potential of the Kinect to be useful as an interactive technology
for use in a teaching and learning environment is investigated. The authors state that
the Kinect could be used to enhance the teachers’ use and manipulation of multimedia
in the classroom, as well as to encourage student interaction. They show that the im-
plementation of the Kinect has some technical constraints, for example large classroom
space, lack of easy-to-use development tools and long calibration time.

The Kinect has clearly been used for many different applications, and even within
applications has been used in various different ways.

2.1.2 Use of the Kinect sensor in Mobile Robotics

This section presents a review of related work in which a Microsoft Kinect has been
used on board a mobile robot.

One issue with using other sensors for mobile robotics is that sensors such as laser
range finders are usually expensive, and these costs can be prohibitive [14]. The Kinect
is fairly low-cost in comparison [15]. This means that the use of the Kinect sensor,
and other similar low-cost RGB-D sensors is growing rapidly within the field of Mobile
Robotics.

The Microsoft Kinect Sensor has, been used for three different applications in Mo-
bile Robotics. The first, and most common application, is that of putting a Kinect
sensor on a robot to allow it to interact with the environment, as well as to map and
navigate through this environment. This application is shown in [14, 16, 17, 18, 19].
The second application, shown in [20], uses the Kinect sensor to observe multiple robots

8

in a scene, identify them and determine how they move through the scene. This is used
to produce ground truth data of how the robots moved in the environment. The final
application of the sensor is shown in [21, 19]. In these studies the Kinect is used to
allow humans to interact with robots. The focus of this literature review is on the
first application — using the Kinect sensor to allow a mobile robot to interact with (or
interface to) its environment.

There are two main ways in which a Kinect can be used to help a robot interact
with its environment. First, it can be used on board a robot to allow detection of
objects and to help the robot manipulate them [19, 22] . The second is that the Kinect
data can be used by the robot to navigate in an environment. The latter will be the
focus of this review, as the Kinect is being investigated for navigation on Mobile robots.

The Kinect has been used for navigational purposes on different types of robots, and
in many environments. In [14], it is used in an indoor environment for navigation and
target tracking. The authors use a fuzzy logic controller on board the robot for control
and target tracking. They also send data over a network for processing with pattern
recognition software. The Kinect is used as a replacement for high-end expensive sys-
tems. The system works fairly well, but requires further work to achieve target selection
and registration.

The Kinect has also been used on-board UAVs (unmanned aerial vehicles) such as
quadrotors [18]. The Kinect has been used in applications such as basic localisation
using odometry [23], navigation and target tracking [14], depth based navigation and
localisation [16], and RGB-D Mapping [24], and RGB-D SLAM [17]. Some of these
implementations use both depth and RGB data from the Kinect [14], while others use
only the depth data [16].

In [20], the Kinect is used in a ground-truth detection system for use in RoboCup.
The authors use the Kinect because it is low-cost and portable. They used the Kinect
to map the location of the ball, and robots on the “field”. The sensor is only used
to observe the scene, rather than actually being mounted on-board a robot. Another
reason for using the Kinect is that no special identifiers on the robots are required; due
to the inclusion of depth information. They suggest that their system could be used in
any application where a low-cost ground-truth detection system is required.

In [19], the use of the Kinect in robotics is investigated. The authors give various
applications where it could be used in conjunction with robots. They say it can be
used for evaluating and sensing obstacles, grasping objects, and manipulating objects
in an environment. They believe it could also be used for human recognition. The
Kinect is used for human interaction in [21]. The authors designed a system which al-
lows a humanoid robot to interact with a non-expert user. It is used to identify natural
body gestures, which are used to control the robot.

9

2.1.3 Calibration and Modelling of the Kinect Sensor

Since the Kinect sensor is a fairly recent development, there is very little literature con-
cerning the calibration and modelling of the sensor. There are other range sensors that
have been investigated [25]. However, these are operationally different from the Kinect
sensor, as they are time-of-flight based depth sensors, rather than a stereo-camera pair
which uses triangulation to find depth. There are a few studies that do describe the
calibration parameters of the Kinect sensor [11, 25, 26, 27, 28, 29].

The most in-depth calibration of the Kinect is presented in [25]. In this study, the
disparity-to-depth mapping of the Kinect depth camera is described in detail. The
process is developed from first principles. This process is also described, though in less
detail, in [29].

In [25], the authors also describe the process of calibrating the IR-camera. They cal-
ibrate the resulting IR image, rather than the raw image, due to differences in pixel
density. They find that the pixels are square, and give a final focal length of 586 pixels
(px). The baseline is found for the stereo arrangement, for use in the disparity-to-depth
mapping. Finally, they determine the lens distortion of the IR-camera.

Many of the other papers assume that the lens distortion is negligible, but most do
not justify this assumption [26], [11]. Those that do account for lens distortion ([28],
[25]), obtain very similar results for the lens distortion parameters.

Intrinsic calibration is presented in all the papers described above, however, only one
paper ([25]) gives the results of this calibration. In [11], results are given for the cal-
ibration for the centre point of the image. They used the CLNUI platform to obtain
this. Both [25] and [28] use the MATLAB toolbox developed at CalTech [73].

A number of the papers discussed above [26], [27], [28] focus on the calibration of
the depth camera with respect to the RGB camera, rather than only the IR-camera.
In [27], the authors state that the calibration of the IR projector-camera pair, as given
by Microsoft, may not be accurate due to sensor drift, and therefore they choose to
re-calibrate the sensors.

2.2 Feature Extraction

This section will review the current state-of-the-art for Feature extraction used in Mo-
bile Robotics. There is also a review of the work related to the Hough Transform,
including its applications. The use of the split-and-merge feature extraction is also
reviewed.

10

2.2.1 Feature Extraction for Mobile Robotics

One concern with using the Kinect sensor for mobile Robotics is that many robots have
limited on-board computing power. The Kinect sensor outputs massive amounts of
data [16] (over 300 000 pixels per scan). The processing power on board most robots
is simply not fast enough to deal with the amount of data. This problem has been
addressed in a number of ways.

In [14], this problem is addressed by using a server to collect the data from a robot. The
Kinect sensor is used as the sensor for path-planning, navigation, obstacle avoidance
and object tracking. The server is used to recover all the data from the Kinect sensor,
as the processing power on-board the robot is considered to be incapable of real-time
processing of the data. The server processes the data, and provides a supervisory role
in the control of the robot.

Biswas and Veloso also address this problem in [16]. Instead of using a server to process
the data, they choose to reduce the volume of the point cloud. A new algorithm called
“Fast Sampling Plane Filtering” (FSPF) is introduced and used along with a local
RANSAC (Random Sample Consensus) to complete the objective. They develop the
new algorithm because most algorithms that are currently used for plane extraction on
raw 3D point clouds are unsuitable in robotic navigation and localisation due to their
high computational requirements. To test their algorithm, they perform a basic com-
parison between FSPF and a Simulated Laser Rangefinder localisation. Their results
were encouraging, although the tests were fairly basic, and therefore more testing needs
to be performed in order to determine the true efficacy of their algorithm.

The next problem to be solved to use the Kinect sensor for mobile robotics is that
of feature matching and registration. There are, once again, a few different approaches
that have been used.

One method that has been used extensively is using feature descriptors such as SIFT
(Scale Invariant Feature Transform), SURF (Speeded-Up Robust Features), BRIEF
(Binary Robust Independent Elementary Features), and ORB (Oriented FAST, Ro-
tated BRIEF). SIFT, SURF and ORB are used in [17] for the feature matching for the
SLAM front-end. SIFT and SURF are used because the authors consider them to be
the best known feature descriptors, and ORB (which is based on the BRIEF detector)
is used because it is significantly faster than SIFT and SURF. They are used in this
application as feature descriptors, rather than extractors, and the data used is RGB-D.

Another approach to feature matching is presented in [30]. This approach compares
two different types of scan matching techniques. First, matching as an optimisation
problem is investigated. They use Iterative Closest Points (ICP). The second method
used is feature based matching. This extracts edge points from the image and then uses

11

them to create pairs of points between two images.

Both of the techniques outlined in the above two paragraphs have their merits, although
the techniques presented in [17] are considered to be the current state-of-the-art method
for matching features in successive images (whether they are RGB images, depth im-
ages or RGB-D images).

RANSAC, SIFT, SURF and ORB all have problems in terms of their use for depth-
based SLAM. RANSAC requires the location of the camera to be known [31]. This
makes it unsuitable for SLAM applications. SIFT, SURF and ORB all require detailed
objects in the scene in order for them to work. This is unsuitable for depth data, which
is usually fairly sparse in detail.

In [32], a comparison is made between various line extraction algorithms for use with a
2D range finder. The authors conclude that the split-and-merge algorithm is the most
suitable for mobile robotics - specifically SLAM. The Hough transform is also used.
These two algorithms are investigated in detail in the two section below.

2.2.2 Hough Transform

The Hough transform was first described by Rosenfeld in [33], based on the work of
Hough in [34]. Since then, the Hough Transform has been developed in a number of
ways. The first development was to use the r-θ parameterisation of the lines, instead
of using the y = mx + c parameterisation. This was introduced by Duda and Hart in
[35] where the authors state that their reason for changing the parameterisation is that
Hough’s method of using the slope-intercept parameterisation is complicated because
neither the slope nor the intercept is bounded. Using the r-θ parameterisation solves
this problem.

The Hough transform was then extended to find curves, rather than lines in pictures.
This was first done by Duda and Hart in [35] and was also investigated in [36]. They
use an extension of the Hough Transform to find circles in pictures. Another extension
is given in [37] where the authors use the method given by Duda and Hart in [35] to
find any curve of specific orientation.

Ballard then extended this idea to detection of arbitrary shapes in grayscale images
[38]. The work describes how the Hough Transform can be used to detect analytic
curves (of the form f(x,y) = 0) in images. In this paper, Ballard describes a system
where any arbitrary non-analytic shape can be transformed into Hough space. This
mapping can then be exploited in a number of ways - to detect the same shape, but
rotated or scaled, through simple transformations. A method for detecting composite
shapes is also presented. The major difference in their work is that directional edge
information is used.

12

Bias and noise in the Hough transform is investigated in [39] and [40]. In [40], a
complete survey of the Hough Transform is presented, along with its uses. The authors
discuss ideas for implementation and compare it to other transformations, such as the
Radon Transform (of which the Hough Transform is a special case). The authors also
consider where the Hough Transform could be used, due to its usefulness in detecting
shapes in images containing noisy data.

The next advancement of the Hough Transform is the development of the Randomised
Hough Transform, first presented in 1990 [41]. In this method, instead of transforming
one pixel into parameter space, n pixels are chosen at random (where n is the number
of parameters in the curve that is to be detected). All of these points are then mapped
to parameter space. The authors do this by solving a simultaneous equation involving
the two parameters (note: this, in the case of the straight line, involves mapping two
points on a line, to a single point in parameter space - representing that line). The
improvement found using this method is investigated in [41], [42]. In [41], the Ran-
domised Hough Transform is further developed to make it more efficient.

Multiple algorithms are investigated along with the standard Hough Transform and
the Randomised Hough Transform in [42]. The first is the Probabilistic Hough Trans-
form, first presented by Kiryati in 1991 [43]. This algorithm makes the improvement of
using a probabilistic method for selecting a subset of the original point set to use for
the Hough Transform. The author suggests that the small decrease in performance is
justified by the large reduction in execution time.

The next algorithm investigated in [42] is the Adaptive Probabilistic Hough Transform
[44]. This algorithm monitors the voting grid. As soon as one (or more) significant
peaks are detected in the grid, the voting process is terminated. Only the cells in which
those peaks were detected are used in the rest of the algorithm. To do this, a list of
the cells with the highest voting number is kept and ordered after each vote is added.
To maximise efficiency, this list is only created after a group of points has been used
in voting. Once a “winner” emerges in the list, the voting process is terminated. This
process results in a faster, more efficient algorithm, due to the reduction in voting time.

In [42] the above methods (Standard HT, Randomised HT, Probabilistic HT and Adap-
tive Probabilistic HT) are compared in terms of their distinctive characteristics (whether
it is “complete” (deterministic), whether it contains a stopping rule, whether it con-
tains an adaptive stopping rule, whether it deletes selected planes from the point set,
whether it only touches one cell per iteration and whether it is easy to implement). The
Randomised Hough Transform has most of these characteristics (it is not deterministic
and it does not have an adaptive stopping rule. The algorithms are also compared on
the execution time, for which the randomised Hough transform is determined to be the
best on this parameter.

13

One of the main drawbacks to the Hough Transform is the high computational cost
of the voting scheme [45]. This is why many of the improvements and investigations
involving the Hough Transform have involved making the algorithm more computation-
ally efficient, particularly in the voting step of the algorithm [44, 43]. In [45] another
method for improving the voting schemes presented, that allows real-time use of the
Hough transform. It also provides a cleaner voting grid and makes the algorithm more
robust. The approach operates on clusters of points which are found to be nearly co-
linear. Votes are then cast for the cluster using an oriented elliptical-Gaussian kernel
which models the uncertainty in the line associated with that kernel.

Extension into 3-Dimensions

The Hough Transform has also been extended to allow plane fitting in 3Dimensions as
presented in [46, 47, 18]. Most extensions use a variation on the Randomised Hough
Transform [18, 48]. They all use the Hesse parameterisation of the plane:

px cos θ + py sinφ sin θ + pz cosφ = ρ (2.1)

This equation fully parameterises the plane in three-dimensions, and can therefore be
used in the same way as the Hough Transform in 2Dimensions. It is more fully ex-
plained in Chapter 5.

The Randomised Hough Transform is used in [18] for the flight control of a quadrotor
helicopter. They use it with the Kinect sensor to track the movement of the helicopter
in space. The Hough Transform is used to detect the ground plane. This allows the
Kinect data to be used as ground-truth data, so the control of the helicopter can be
optimised.

Dube and Zell also use the Hough Transform in conjunction with the Kinect sensor for
3D plane extraction [48]. They use a variation on the Randomised Hough Transform
to reduce to the amount of data stored. They use the Hough Transform in conjunc-
tion with the LO-RANSAC algorithm, which estimates model parameters in noisy sets.
The output is the set of parameters for the most likely model. They transform only
three points (output by the RANSAC algorithm) into parameter space - similar to the
approach of the Randomised Hough Transform. Their algorithm appears to work well
- allowing plane extraction in around 1 ms. However, the algorithm can only be used
to detect walls, rather than objects in a scene, due to the way the algorithm samples
the data. Another optimisation to the 3D Hough transform is proposed in [49]. They
address the problems of noisy data, high memory requirements and computational com-
plexity. They do this to allow the algorithm to be used in robotic applications.

The Hough transform has also been used for extraction of other objects, such as spheres
[50]. In this paper, Camurri et al. compare 4 different Hough transform algorithms for

14

finding spheres in dense point clouds. The algorithms are differentiated by the number
of points drawn together in teh computation. They also propose a new method which
combines the advantages of the algorithms for faster and more accurate detection.

Dumitru et al.. [51] present a method of using the Hough Transform with a 3D laser
scanner for interior reconstruction. They propose only reconstructing the architectural
features of a building by automatically removing cluttered and foreground data. The
software can detect openings, such as windows and doors.

In [31] a method is presented for creating a 3D plane-based map using a mobile robot.
The Hough Transform and RANSAC are used separately to extract 3D planes from
point cloud data, and these two algorithms are compared. The authors find that the
Hough Transform is more robust, as it is not as susceptible to noisy points as RANSAC.
They also find that RANSAC is considerably faster, running in about one third of the
time of the Hough Transform.

Finally, Woodford et al.. present two improvements to the Hough Transform in 3D
[52]. The first of these is the Intrinsic Hough Transform which solves the problem of
the large memory requirement of the Hough Transform by exploiting the fact that the
parameter space will be sparse. The second is “minimum-entropy” Hough, which re-
moves incorrect votes and substantially reduces the number of modes in the posterior
distribution. They demonstrate that these improvements make the Hough transform
highly accurate.

Applications of the Hough Transform

The Hough Transform has been used in medical applications [53, 54, 55, 56]; mobile
robotics [57, 58, 59, 61, 31, 18]; and in other applications [62].

The Hough Transform has been used in multiple applications in the medical industry. A
version of the Hough Transform is used in [53] for recognising tumours in radiographs.
The authors split the problem into five parts. First, the lungs within the radiograph
and secondly the potential tumour locations are found. Then, the boundaries of these
regions are found. These regions are used to search for nodules, and finally the nodules
are searched to detect tumours. Their procedure correctly found the tumour content
in 5 out of 6 radiographs.

The algorithm is also used in [54] with chest radiographs. In this study, the Hough
transform is used for automatic detection of the rib contours. The authors state that
this could be used in conjunction with an algorithm that detects tumours. The method
would be used to prevent the ribs from being segmented as tumours, finding the frame
of reference for the location of the lesions or tumours and finally computing the bound-
ary of the chest cavity. Their method works well, and can be implemented on a very

15

small computer (16-bit).

The Hough Transform has been used more recently on images of the eye [55], to track
the progression of tumours or other diseases. The authors’ method allows the identifi-
cations of lesions or tumours to be improved, or for information from other sources to
be compared. They use a point correspondence technique to achieve this.

Another way in which the Hough Transform has been used is for detection of the
longitudinal fissure in tomographic head images [56]. This is used to segment the left
and right hemispheres of the brain. This allows the ratios of inter-cranial structures to
be determined. It can also be used to develop a method for registering the head in a
scan-independent coordinate system. To achieve this, they use the Hough Transform
in conjunction with a Sobel edge detector. They find their algorithm to be robust with
respect to noise in the data, and to anatomic anomalies.

The Hough Transform has also been applied extensively in Mobile Robotics applica-
tions. It has been used for mapping environments using a robot [58, 31], SLAM [59, 61],
and to determine the location of robots in a system [57, 18].

In [59], the authors use the Hough Transform for Simultaneous Localisation and Map-
ping in an underwater environment. An imaging sonar is the sensor in the system. The
Hough Transform is then used to segment lines from these sonar data. One of the prob-
lems that they faced is that the robot was not stationary when the scan was performed,
and therefore they need to correct for this before applying the Hough Transform. The
technique was successful, although it was slow, and therefore the SLAM algorithm they
used was delayed.

In mapping applications, the Hough Transform has been used for mapping applica-
tions with two-dimensional range scan data [58] as well as Kinect–type depth data [31].
In [58] a 2D Hough Transform is used to fit a line to the data obtained. The result is
then used to map an area. In [31] a 3D Hough Transform is used with the Microsoft
Kinect sensor. They find the algorithm to be robust, but slow in comparison to other
algorithms.

The Hough Transform has been used for two robotics applications involving the track-
ing of robots in a system. Stowers et al.[18] use the Hough Transform to determine
ground-truth data in a quadrotor helicopter system. They use the Hough Transform
to segment the floor plane in the image, and therefore the ground truth of the robot
system can be determined. In [57] the Hough Transform is used to determine the pose
and location of robots in an environment.

The Hough Transform has been used in other applications too, for example in [62],
where it is used for a computer-based barcode recognition system. The transform is

16

used to segment the lines and spaces in the barcode. Their technique is found to be
robust and successful in solving the problem of automated barcode reading.

2.2.3 Split-and-Merge

The split-and-merge algorithm originates from the work of Pavlidis et al. in 1974 [63].
It has been used multiple times for mobile robotics [64], [65], [66], [67].

In [64], [65] and [67] the Split-and-Merge algorithm is used as a line extractor from
2D laser range finder images for use in mapping with a Mobile Robot. Borges and
Aldon [65] improve the algorithm to a Fuzzy Split-and-Merge algorithm, which incor-
porates fuzzy clustering on a Split-and-Merge framework. The authors show that their
algorithm is robust and compares well in both qualitative and quantitative tests with
other algorithms.

Einsele [66] uses the Split-and-Merge algorithm in a similar but not identical way.
It is used for localisation of a robot in unknown indoor environments. They use a
laser range finder on board a mobile robot to estimate the location of the robot. The
landmarks that may be useful for this process are segmented from the scans using the
Split-and-Merge algorithm.

2.3 Use of other sensors in Mobile Robotics

Other sensors have also been used extensively in mobile robotics, such as laser scan-
ners [32, 64, 65]; cameras [68, 69, 70] and sonar scanners [59, 61]. The laser scanners
and cameras are primarily used in above-ground environments [32, 64, 68], whilst the
sonar scanners are primarily use underwater [59], although they have also been used in
above-ground applications [60].

The above-ground environments in which these sensors are used include indoor en-
vironments [64], [69], aerial environments [68] and outdoor environments [70]. The
underwater environments explored include marinas [61].

These sensors have also been used extensively for SLAM. There has been a lot of work
on using a single camera for SLAM [68], [69], which has been dubbed Mono-SLAM.
The major issue with Mono-SLAM is that depth data can only be extracted once two
successive scans have been made - so that a form of stereo vision can be used. However,
using cameras has advantages in terms of tracking, as there is more detail in RGB
images.

Laser scanners and sonar scanners have also been used for SLAM [59]. These scan-
ners output depth data directly, which means that the problem that occurs with single

17

RGB cameras does not occur. However, most sonar scanners are 2Dimensional - mean-
ing that only a single “slice” of the scene is seen by the scanner.

18

Chapter 3

Characterisation of the Kinect
Sensor

This chapter covers the conversion of the raw Kinect data into a 3D point cloud, and
the calibration of the built-in IR camera. It also discusses the Kinect sensor’s operation.
The chapter is split into three sections. The first section deals with the interpretation
of the raw Kinect data. It also demonstrates the process of finding the point cloud from
the raw depth data. The second section covers the calibration of the sensor. The third
section will investigate how the Kinect sensor reacts to different environments.

The accuracy of the Kinect sensor is important, as the accuracy of the sensor directly
relates to the accuracy of the features that are extracted in a later section. Since these
features will be inputs to SLAM, their accuracy is an important factor. The accuracy
of the SLAM map depends on this accuracy, and therefore the Kinect’s accuracy must
be explored.

3.1 Operation of the Kinect depth sensor

The Kinect depth camera is a structured light type depth camera, which uses a dispar-
ity measurement to determine the depth (see Section 3.1.2).

The Kinect depth sensor consists of two devices — an laser projector and an IR camera
(see Figure 3.1). The laser projector and camera form a stereo pair of “cameras”. In a
standard stereo camera set-up, the two cameras both receive light from the scene, and
then the two images are compared to triangulate the distance from the cameras to an
object in the scene.

In the case of the Kinect arrangement, the laser projector projects a pattern of light
and dark points, known as a scatter pattern. This pattern is then reflected by the
scene, and the IR-camera receives these reflections. The scene will distort the pattern

19

Figure 3.1: Diagram of the Kinect sensor showing the locations of the laser projector, IR receiver and
RGB camera [18].

in various ways. Objects which are closer to the projector will distort the pattern more
than those at the “reference plane”. The reference plane is the plane where, when the
Kinect was originally calibrated, the scatter pattern was “set” as a reference pattern.
This “reference pattern” is then used along with the pattern received by the IR camera
to find the disparity between the reference pattern and the received pattern. For a
standard stereo camera arrangement, the reference plane is assumed to be at infinity
— because objects at infinity will appear identical to the two cameras. This is not true
for the Kinect sensor — this is discussed below. These disparity values can then be
converted into a depth map. Finally, this depth map can be converted into a point cloud.

This section will discuss how the Kinect sensor (or the post-processing) performs the
operations described above.

3.1.1 Disparity calculation

The first operation of the Kinect sensor is to determine the disparity between the IR-
image received by the IR camera and the reference pattern in memory generated by the
laser projector. This process takes place on-board the Kinect. The reference image is
stored in the firmware of the Kinect. Microsoft obtain the reference image at a known
distance of 6 m [74].

For every pixel in the IR image, the Kinect considers a small correlation window (9
by 9 pixels). This correlation window is used to compare the local pattern in a corre-
sponding neighbourhood with the reference pattern at that pixel. The best match will
give an offset from a known depth — the disparity [74].

Next, a further interpolation procedure is performed for the best match, giving a sub-
pixel accuracy of around 1/8 of a pixel [74]. Given the disparity for each pixel, and
the known depth of the reference image, the depth of the objects in the scene can be

20

determined from this process, which is described below.

3.1.2 Disparity to Depth calculation

A triangulation process is used to perform the disparity-to-depth calculation. This pro-
cess is illustrated in Figure 3.2.

Figure 3.2: Figure showing the relationship between disparity and depth. The laser projector is on
the right, and the IR camera is on the left. The value b is the baseline — the distance between the
two cameras. P is a point, from the scatter pattern, produced by the laser projector, projected onto
an object in the scene. P ′ is the same point as it would appear on the reference plane (i.e. how it
appears in the reference pattern). The focal length is f , d is the disparity, and z is the depth. Note
that the y-direction is into the page

Point P is a point in the scene which reflects a point from the scatter pattern pro-
duced by the laser projector to the IR camera. This point is offset from the reference
plane. Point P ′ is the same point projected onto the reference plane from the projector.
The “z” axis of the IR camera is orthogonal to the image plane and orthogonal to the
Reference plane. It also passes through the optical centre of the camera. The IR camera
and projector are aligned in the y and z directions, and parallel along the x-direction,
but they are offset by a parameter b — the baseline distance (or the distance between
the laser projector and IR camera)- in the x-direction. The reference plane shown in
the figure is the plane where the Kinect sensor will not find any distortion of the re-
ceived image from the reference image — i.e. it is the plane where the IR-camera will
see the reference image. It is important to note that, because the IR camera and laser
projector are offset only in the x-direction, the distortion of the image will only occur
along the x-axis.

21

The relationship between the baseline b in metres, the raw disparity d in pixels, the
focal length f in pixels and the depth z in metres is given by the following equation:

z =
f × b
d

(3.1)

Figure 3.3: Figure showing the relationship between disparity and depth, where the reference plane is
at infinity.

This equation can be derived by assuming the reference plane is at “infinity”. At
infinity, the rays that represent the “true image” (i.e. the rays to P ′ in Figure 3.2),
become parallel. This results in the figure shown in Figure 3.3. In this illustration, the
rays to the reference plane are shown in orange. The disparity, if there are no objects
in the scene, is zero (as the rays are parallel, and therefore the images for the left and
right cameras are identical). In this figure, there are two similar triangles — marked A
and B. These triangles allow one to derive this equation:

z

f
=
b

d
(3.2)

Therefore, by changing the subject of the formula to z, Equation 3.1 is derived.

The Kinect does not output disparity that agrees with the assumption that at zero

22

disparity, the depth is not infinite — because the Kinect arrangement is not the same
as a standard stereo camera arrangement, therefore the reference plane is not at infinity,
but at 6 m. This means that if there are only objects at 6 m in the scene, the disparity
output will be zero (as there will be no difference between the reference image and the
received image). Therefore, for the Kinect camera, for objects between 0 and 6 m, this
equation is true. The Kinect outputs the disparity in pixels for each (x, y) in the data.
The Kinect returns values between 0 and 2047 (i.e. an 11-bit integer) — linearly with
depth. The relationship between Kinect disparity, dk and the normalised disparity, nd,
is given by the following equation:

nd =
1

8
(doff − dk) (3.3)

The factor of 1
8

is there because the values of dk are in 1
8

pixel units. The factor doff is
known as the disparity offset and is particular to each Kinect device.

The final equation for the mapping from Kinect disparity dk to depth z is given by:

z =
b× f

(1
8
× (doff − dk))

(3.4)

A calibration of the Kinect IR-camera (as given in the section 3.2) will find the focal
length f , distortion parameters and lens centre of the IR-camera. We can then use
known points in disparity images to determine the baseline and the disparity offset us-
ing least squares. This process is described in section 3.2, where the “typical values” of
all the parameters are verified and errors resulting from uncertainty in these parameters
are quantified.

Figure 3.4: Flow diagram showing the processes used to get from the raw IR image to depth. All the
parameters and processes used are shown in the diagram.

Figure 3.4 shows a flow diagram of the entire process from the Raw IR image to the
calculation of the depth. The processes are shown in the boxes. Each process has a
name and a “location”, either in the firmware or in the pre-processing of the data which
shows where the process happens. The red parameters are parameters that come from
an external source (for example focal length). The blue parameters are those obtained
in the processes.

23

3.1.3 Depth to Point cloud calculation

For this section, data were obtained using a Microsoft Kinect sensor and OpenNI, and
these data were then used to convert the data into a point cloud. An image of a 500
mm by 500 mm box was taken with the camera 1 m and then 1.5 m away from the box.
A different method for performing this is shown in [25]. This method is not used here,
as it is not described in sufficient detail.

The raw data coming from the Kinect is the distance from the image plane to the
feature, or object, in the scene. Initially, the image plane was assumed to be at the lens
of the camera. This means that the data are the orthogonal distances in millimetres
from the object to the plane at the lens of the camera. If we assume that the z-axis
is orthogonal to the image plane, and the x-axis is horizontal in the image plane, and
the y-axis is vertical in the image plane, this means that every pixel in the data is the
z-coordinate for that pixel in the point cloud. In order to obtain a point cloud, the x-
and y- coordinates need to be determined from the data.

Determining the Angles

In order to find the x- and y- coordinates for every pixel in the point cloud, first the angle
from the centre of the image plane to every pixel needs to be determined. This was done
using basic trigonometry and the two images described at the beginning of the section.

The test set-up is shown in Figure 3.5 in top, side and front views.

At a distance of 1 m from the Kinect sensor, the length of the box in the image (in
pixels) is 288 pixels in both directions. The camera is in the centre of the box, and the
angles, θ and φ can be determined from trigonometry as follows (Note: θ is equal to φ).

tan θ = 0.25/1

θ = arctan (0.25)

θ = 14.0375◦

Therefore the angular resolution of the sensor is 0.0975◦ per pixel.

This is then verified by repeating the protocol at 1.5 m. The same result was ob-
tained for the box at this distance.

From the data sheet for the Kinect Depth Camera (a Micron MT9M001) [75], the
horizontal viewing angle is 57◦, and the resolution in the horizontal direction is 640
pixels. Therefore, the angular resolution is 57/640 = 0.0891◦ per pixel. This closely
matches the angular resolution calculated above (which is 0.0975◦ per pixel). This is
within 0.01 degrees per pixel. Note that, because pixels are square, the resolution in

24

Figure 3.5: Test setup for determining the angular resolution of the Kinect sensor. The grey block is
the box used. The setup up is shown in top, side and front views. The red lines represent the rays
from the camera to the corners of the box. All the relevant measurements are shown.

the horizontal and vertical direction is the same. The viewing angle in the vertical
direction is 47◦.

Finding the Point Cloud

The data can now be converted from the depth data into a 3-dimensional point cloud
using trigonometry. The angles for each pixel in the image are known from the previous
section, and the distance zr is known — this is the z distance from the image plane to
the object in the scene. The angles and lengths are shown in Figure 3.6.

So, working through the trigonometry to find xr:

ρ =
zr

sin (θ)

r = ρ× cos (θ)

xr = r × cos (φ) = ρ× cos (θ)× cos (φ)

→ xr = zr ×
cos (φ)

tan (θ)
(3.5)

25

Figure 3.6: Diagram showing the angles and lengths for the trigonometry of finding the point cloud.
ρ is the distance from the origin to the point. r is the distance from the origin to the point when it
projected into the x-y plane. The angle φ is the angle between the x-axis and this projected point. θ
is the angle from the x-y plane to the point.

And, to determine yr:

yr = r × sin (φ) = ρ× cos (θ)× sin (φ)→ yr = zr ×
sin (φ)

tan (θ)
(3.6)

We now have a point cloud. In order to check that the point cloud was correct, the two
images of the 500x500 mm box were processed using the above algorithm. Then, the
size of the box in mm in the final point cloud was checked. This conversion was found
to be correct, as in the converted image, the box comes out to be approximately 500
mm by 500 mm. For the image where the box is placed 1.5 m away, the box comes out
to be about 516 mm by 480 mm. This comes to an error of about 4 percent, which is
fairly small. This is probably due to noise in the image used to find the parameters,
and in the 1.5 m image.

3.2 Theoretical Meaning of the Calibration Param-

eters

To find the camera parameters for the Kinect IR-camera, the standard MATLAB cal-
ibration toolbox is used [73]. The images that are input into the calibration toolbox
are generated using a standard calibration grid with squares of size 4.5 cm which was
printed on standard printer paper. The black squares were then covered with heavy
duty black masking tape, to prevent any light from being able to get through them.

26

This calibration grid was then stuck against a window. Sunlight could therefore get
through the white squares of the grid, but not the black squares. Sunlight contains
light of all frequency — including IR. The IR-projector is then covered with a piece
of masking tape, so that the IR-camera did not pick up any points from the scatter
pattern. IR-images were taken from multiple angles and distances. Two of these im-
ages are shown in Figure 3.7. The two images shown in Figure 3.7 are two extreme
examples of the images used for calibrating the IR-camera. The image on the left is
an image taken by pointing the Kinect directly at the grid. The image on the right is
taken by pointing the Kinect at the grid from an extreme angle (note: the exact angle
is not known, as the calibration toolbox allows the user to calibrate without knowing
the exact angle and distance of the camera from the grid). At least 20 different images
are needed for the MATLAB toolbox to work correctly.

Figure 3.7: Two of the images used for calibration. The images should include multiple angles. The
left hand image shows an image where the camera is pointing directly at the calibration board, and
the right-hand one shows the camera at an extreme angle.

Twenty-one images of this type were taken for the experiments. These images are
input into the MATLAB toolbox. Then, the size of the grid (in this case 4.5 cm by 4.5
cm) and the corners of the grid are given to the system. The toolbox then automati-
cally finds the corners in the grid. This is shown in Figure 3.8 for the same two images
shown in Figure 3.7. The toolbox appears to extract the corners in the grid well. If the
corners are not correct, there is an option to input an initial guess for the distortion of
the image, until the correct corners are found.

The toolbox then performs the calibration using the 21 input images. The parameters
are found, and then optimised. As default, the skew and the 6th distortion coefficient
are set to zero. Initially, this is assumed to be a good assumption. This assumption
will be tested in a later section (Section 3.2.2).

27

Figure 3.8: Figure showing the corners of the grid, as extracted by the MATLAB toolbox. The blue
squares with the red dots inside should be directly over the corners of the grid.

3.2.1 Outputs of the Calibration Toolbox

The calibration toolbox outputs the following intrinsic parameters:

• fc(1) and fc(2) — these are the focal lengths in the x- and y-directions respec-
tively

• cc(1) and cc(2) — this is the location of the principal point of the camera in the
x- and y-direction

• kc(1) and kc(2) — these are the first two radial distortion coefficients of the lens
of the camera

• kc(4) and kc(3) — these are the first and second tangential distortion coefficients,
respectively.

• αc(1) and αc(2) are the skew coefficients — these are initially zero

The meanings of these parameters are described below, and their effects on the output
of the camera are described

Effect of the distortion parameters on the output of the camera

For this section, a standard pinhole camera model will be described. This model will
then be modified according to the parameters that were discussed above.

A standard pinhole camera model assumes that the projection of a point P onto the
image plane is found by connecting a line from the point P in the scene to the camera
centre. The point where this line passes through the image plane is the projection of
the point onto the image plane, p [71]. This process is illustrated in figure 3.9

28

Figure 3.9: Illustration of a standard pinhole camera projection model. c is the centre point of the
image plane, p is the point projected into the image plane. The principle axis and camera centre are
labelled.

From Figure 3.10 (which is a side view of Figure 3.9), and using similar triangles,
the following mapping for a point P = (X, Y, Z)T in the scene to a point p is:

(X, Y, Z)T → (
f ×X
Z

,
f × Y
Z

, f)T (3.7)

The last coordinate can be ignored as it is constant, and then any point P = (X, Y, Z)T

projects to a point at p = (f×X
Z
, f×Y

Z
)T in the image plane.

If a point P = (X, Y, Z) is in the scene, the normalised, pin-hole projection of this
point onto the image plane is given by:

pn =

[
X/Z
Y/Z

]
=

[
x
y

]
(3.8)

The projection equation for the system is given by:

p = KK × pn (3.9)

Where KK is a matrix. For a standard pinhole camera, the matrix KK is given by:

KK =

 f 0 0
0 f 0
0 0 1

 (3.10)

The equation KK is modified when parameters like principle point offset and skew are
introduced. Lens distortion causes a direct modification of p. The first distortion that

29

Figure 3.10: Figure showing the “side view” of the pinhole camera model. The focal length (f), centre
point (c) and projected points are shown.

will be considered is an offset of the principle point.

Initially, the principle point is assumed to be at the origin of the image plane (i.e.
c is at point (x, y) = (0, 0). In practice, this is not always true. This causes the coordi-
nates of point p to be offset. This offset means that point P = (X, Y, Z)T projects to
the point p = (f ×X/Z + cx, f × Y/Z + cy). This changes the matrix KK to be:

KK =

 f 0 cx
0 f cy
0 0 1

 (3.11)

This change in the equation KK fully accounts for an offset in the principle point,
which is given by the MATLAB toolbox as cc.

The second property that causes a distortion which causes a change in the matrix KK
is the skew parameter. Skew is caused when the angle between the x− and y−axes is
not 90o. The skew parameter causes the matrix KK to become:

KK =

 f αc cx
0 f cy
0 0 1

 (3.12)

Generally, the skew is considered to be zero. This assumption is tested later in the
section.

30

The final adjustment of the KK vector that needs to take place is the adjustment
that would account for a focal length that is different in the x− and y−directions. This
is accounted for by adjusting the KK vector as follows:

KK =

 f(1) αc cx
0 f(2) cy
0 0 1

 (3.13)

where f(1) and f(2) are the focal lengths in the x− and y−directions respectively.

The radial and tangential distortions, K1, K2, P1, P2 (Note that P1 and P2 are not
the same as the point in the scene, P = (X, Y, Z)T) are accounted for by directly
changing the point p. The following are the formulas required to change the point pn
to the distorted point pd:

pd =

[
pd(1)
pd(2)

]
= (1 +K1r

2 +K2r
4)× pn + dp (3.14)

where r2 = pn(1)2 + pn(2)2 and :

dp =

[
2× P2 × x× y + P1 × (r2 + 2× pn(1)2)
P2 × (r2 + 2× pn(2)2) + 2× P1 × x× y

]
(3.15)

This method for accounting for lens distortion is presented by Brown in [72].

The final formula for the mapping between the normalised pinhole projection point
pn and the final, corrected point pp is: pp(1)

pp(2)
1

 = KK

 pd(1)
pd(2)

1

 (3.16)

Where:

KK =

 f(1) αc cx
0 f(2) cy
0 0 1

 (3.17)

and:

pd =

[
pd(1)
pd(2)

]
= (1 +K1r

2 +K2r
4)× pn + dp (3.18)

where r2 = pn(1)2+pn(2)2 and dp is as described in Equation 3.15. The above equations
fully characterise the distortions in the IR-camera of the Kinect.

31

3.2.2 Calibration of the Kinect Sensors

The calibration toolbox described above is used in this section to find the relevant
parameters for the Kinect IR sensor. The calibration was run 30 times with a different
user input each time (the user input is different because the the user cannot click on
exactly the same pixel every time. It also changes because the user may click just
outside the grid, or just inside the grid). The results are shown in the table in appendix
A. These data are represented as box plots, shown below. Each box plot represents
one of the parameters output by the calibration algorithm. The red line on the boxplot
represents the mean of all the data collected. The bottom of the blue box represents
the 25th percentile of the data, whilst the top represents the 75th percentile. The black
dotted lines represent the rest of the data (that is not considered to be an outlier). In
some plots, there are “outliers” to the data. These are represented as a red cross.

Calibration of Kinect 1

The first figure (3.11) shows the boxplots for the focal length (in the x and y directions),
and the centre point (in the x and y directions). The next set of boxplots (Figure 3.12)
represents the first two radial and tangential distortion coefficients for the data.

Figure 3.11: Boxplots showing the median and 25th and 75 percentiles of the focal length and centre
point for Kinect 1. (a) and (b) show the boxplots relating to the focal length in the x and y directions.
(c) and (d) show the boxplots for the centre point in the x and y directions. The red + signs represent
the points which are considered by MATLAB to be outliers.

The following table shows the median of each of the sets of data:

32

Figure 3.12: Boxplots showing the median and 25th and 75 percentiles of the tangential and radial
distortion for Kinect 1. (a) and (b) show the radial distortions (left being the first coefficient, and right
being the second coefficient). (c) and (d) show the first and second tangential distortion coefficients.

Table 3.1: Table showing the parameters found for Kinect 1

Parameter Value
Focal Length x 586 px
Focal Length y 588 px
Centre Point x 347
Centre Point y 273

Radial Distortion 1 -0.12623
Radial Distortion 2 0.32846

Tangential Distortion 1 0.010565
Tangential Distortion 2 0.009265

Discussion of the calibration parameters of Kinect 1

The top two boxplots in Figure 3.11 represent the focal length data. From these box-
plots, it is clear that the focal length data has a fairly even distribution about the
norm. This is clear because the median is approximately in the centre of the box rep-
resenting the 25th and 75th percentiles, which means that the data are approximately
normally distributed. The median of the data for the focal length in the x-direction is
approximately 586 pixels. This is slightly higher than expected (Microsoft give a value

33

of 580 pixels as the focal length value for the Kinect). In the y-direction, the median
of the focal length is approximately 588 pixels. Once again, this is slightly higher than
expected. Also, the two focal length values are slightly different, which is unexpected
— they should be closer than they appear to be.

The bottom two boxplots represent the centre point of the camera. From these two
plots, it is clear that the distribution is not as well distributed as for the focal length.
For the centre point in the x-direction, there are three outliers which are in the region
of 305 pixels — these were excluded by Matlab as outliers. The median of the data
is very close to the 75th percentile, showing that the distribution is skewed. Another
way of showing this skew is to compare the median (347) and the mean (341). These
values are quite different, once again showing a skew in the data. The median of the
data is at 347 pixels. This value is higher than expected. The expected value is 320
pixels — the centre of the image. This is quite high in comparison. The effect of this
will be measured in the next section. For the centre point in the y-direction, there are
no points considered to be outliers, however, the median is almost identical to the 75th
percentile, showing a large skew in the data. The median is 273 pixels. Once again,
this is higher than expected. The expected value is 240.

The top two boxplots in Figure 3.12 represent the radial distortion of the data. The
first radial distortion coefficient is evenly distributed. Although the median is quite
close to the 75th percentile, the blue box is fairly narrow, showing that the data are
quite narrowly distributed. There is one outlier in the data. The median of the data
is -0.12623. This is small, but not necessarily negligible, and therefore the first radial
distortion coefficient should not be discounted. The fact that the first radial distortion
coefficient is negative is indicative of a “pincushion” type distortion. The second radial
distortion coefficient is distributed quite similarly to the first radial distortion coeffi-
cient, however the median is closer to the 25th percentile. There is, once again, one
outlier. The median is 0.32846. This is higher than the first radial distortion coeffi-
cient, although the second coefficient is multiplied by p4n, rather than p2n, and therefore
it contributes less to the problem. However, because it is higher the the first radial
distortion coefficient, it should not be discounted.

The bottom two boxplots in Figure 3.12 represent the tangential distortion of the
data. The distribution of the first tangential distortion coefficient is quite skew — the
median is very close to the 75th percentile of the data. The median of the data is
at 0.010565. This is very small. The distribution of the second tangential distortion
coefficient is also very skew. The median is, once again, very close to the 75th per-
centile of the data. There are two oultiers. The median of the data is 0.009265, which
is, once again, very small. Due to the fact that both the first and second tangential
distortion coefficients are very small, they can be discounted from the distortion matrix.

34

Figure 3.13: Figure showing the reprojection error for each point in each image after calibration. The
different coloured crosses represent different images. The crosses are evenly distributed around the
origin. The reprojection error is low for all points. This shows that a second optimisation in the
calibration is unnecessary

The reprojection error after calibration for each corner in each image is shown in Figure
3.13. This reprojection error is quite low, and therefore a second calibration optimisa-
tion is deemed unnecessary.

The position of the grid relative to the world can also be plotted using the MAT-
LAB toolbox. The world-centred and camera-centred views of this are shown in Figure
3.14.

The distortion model of these data, which is shown in Appendix A is very similar
to the distortion model for the Kinect found by other studies on the Kinect sensor [25].

Calibration of Kinect 2

The second Kinect sensor is calibrated in the same way as the sensor above, and the
data were collected, these data are shown in Appendix A. Boxplots are generated for
these data, and the discussion of these boxplots is below. The boxplots in Figure 3.15
show the data for the focal length and the centre point of Kinect 2. Figure 3.16 shows

35

Figure 3.14: The position of the camera and the grid, relative to the world and to the camera. This
shows the variation in the images used for the calibration. There is a wide range of distances and
angles in the images taken, which is necessary for the calibration procedure.

the boxplots for the first and second Radial Distortion Coefficients, and the first and
second Tangential Distortion Coefficients. The data used for these boxplots are shown
in Appendix A.

The following table shows the median of each of the sets of data:

36

Figure 3.15: Boxplots showing the median and 25th and 75 percentiles of the focal length and centre
point for Kinect 2.

Table 3.2: Table showing the parameters found for Kinect 2

Parameter Value
Focal Length x 599 px
Focal Length y 601 px
Centre Point x 350
Centre Point y 261

Radial Distortion 1 -0.13028
Radial Distortion 2 0.45278

Tangential Distortion 1 0.01189
Tangential Distortion 2 0.0154

Discussion of the parameters found for Kinect 2, and comparison with those
for Kinect 1

The top two boxplots in Figure 3.15 show the median and 25th and 75th percentiles
of the data collected for the focal length of the second Kinect sensor. The focal length
in the x-direction is fairly even about the norm. This can be demonstrated by the fact
that the mean and the median are very near — the median is 599.6126 and the mean
is 599.4915 (note: these numbers are quoted to 4 decimal places as the data generated
is given to 7 decimal places, and reduced to 5 for display in the Appendix. Therefore,
4 decimal places is used here to ensure that the quoted accuracy isn’t higher than it

37

should be). The median is also approximately in the centre of the 25th and 75th per-
centiles of the data. The focal length in the y-direction is also fairly evenly distributed
about the norm, as, once again, the median and the mean are very close together. How-
ever, for the y-data, there is a slight skew in the data — as is demonstrated by the fact
that the median is much closer to the 75th percentile than to the 25th percentile. The
median of the y focal length data is 601.5. As for the focal length for Kinect 1, the focal
lengths are much higher than expected. The focal lengths in the x- and y-direction are
also, once again, slightly different. They are also much higher than those for Kinect
1 — showing that the focal length of different sensors does differ quite substantially.
This means that the Kinect sensors are not consistent in their focal lengths. This is
probably due to differences in manufacturing.

Figure 3.16: Boxplots showing the median and 25th and 75 percentiles of the tangential and radial
distortion for Kinect 2.

The bottom two plots in Figure 3.15 show the median and 25th and 75th percentiles of
the data collected for the centre point of Kinect 2. The centre point in the x-direction
has a median which is slightly higher than the mean. The data appears to be well
distributed, as the median line is approximately in the middle of the box representing
the 25th and 75th percentiles. The box is also quite narrow. There are two outliers in
the data — one above and one below the rest of the data. The median is 350 pixels
— which is higher than expected, and also slightly higher than that for Kinect 1. The
boxplot for the centre point in the y-direction shows a clear skew in the data — the
median is much closer to the 25th percentile than to the 75th percentile. There are 3
outliers in the data — 2 in the region of 290 and one in the region of 240. The mean is

38

slightly higher than the median in this case. The median is 261.5 pixels — still quite
high in comparison to the expected value (240), but quite a lot lower than the value for
Kinect 1 (273). This shows that the centre point is not constant across Kinect sensors.

The top two plots in Figure 3.16 show the median and 25th and 75th percentiles of the
first two radial distortion coefficients for Kinect 2. The first radial distortion coefficient
appears to be fairly well distributed — the blue box is fairly narrow, and the median
line is approximately in the middle of the box. The mean and the median are also very
close — indicating that the data distribution is fairly evenly distributed. The median
of the data is -0.13028, which is, once again, small, but not necessarily negligible, and
therefore should not be discounted. There is also one outlier which appears to be pos-
itive. This was probably caused by a mistake during the calibration procedure, as a
positive coefficient means that for that test, the lens distortion changed shape (concave
to convex). Once again, the fact that the first radial distortion coefficient is negative
indicates and pincushion type distortion. The median is very close to that for the first
Kinect sensor — although not the same. For the second radial distortion coefficient,
the data are slightly skew — the median is closer to the 25th percentile than the 75th.
The box is also quite wide — indicating a wide distribution. The median for the data is
0.45278, which is quite different to the mean for the data (0.44597) — and therefore the
data are not evenly distributed. The coefficient is higher than that for the first Kinect.
It is also higher than the first radial distortion coefficient. Therefore, this coefficient
should also not be discounted.

The bottom two plots in Figure 3.16 shows the median and 25th and 75th percentiles of
the first two tangential distortion coefficients of the second Kinect sensor. The boxplot
for the first tangential distortion coefficient shows a large skew in the data — the median
is very close to the 75th percentile. There are three outliers in the data — two above the
median and two below. The box representing the 25th to the 75th percentile is narrow
— indicating narrowly distributed data. The median is at 0.01189, which is quite close
to the mean for the data. This is very close to that for the first Kinect sensor, and is
also very small. The second tangential distortion coefficient is much better distributed
— the median is approximately in the centre of the box indicating the 25th and 75th
percentiles. There is only one outlier in the data — possibly caused by a mistake during
the calibration procedure. The median is 0.0154, which is close to the mean. The value
is slightly higher than that for the first tangential distortion coefficient, but is still small
enough that both the first and second tangential distortion coefficients can be discarded.

The reprojection error after calibration for each corner in each image is shown in Fig-
ure 3.17. This reprojection error is quite low (although it is quite a lot higher than
for the first Kinect), and therefore a second calibration optimisation is deemed to be
unnecessary.

39

Figure 3.17: Reprojection error after calibration for the second kinect camera. This shows the how
much and in what direction the points move after calibration.

Discussion of the effect of the Radial Distortion on the output of the camera

The effect of the lens distortion on the image will now be discussed. The reprojection
of the points back onto the image, after applying the calibration parameters is shown
in Figure 3.18. The original image points are shown as + signs, and the reprojected
points are given by circles. The direction of the change is shown by the arrow. This
picture shows that the change in the points is very small — The circles are directly
above the + signs. Therefore the effect of the lens distortion is found to be negligible,
and can be discounted. This was done for each image in turn, and the effect of the lens
distortion was found to be negligible for both Kinects in all the images.

In earlier sections, it was assumed that the 6th distortion coefficient is zero. This
is now definitely a valid assumption, as the effect of the lens distortion caused by the
first two coefficients has been found to be negligible, and therefore the 6th one can be
discounted. The skew can also be discounted for the same reason (the image seems to
be well calibrated without including skew in the calibration procedure.)

3.2.3 Verification of the parameters used in the disparity-to-
depth mapping

This section will deal with the verification of the values given by Microsoft for the
parameters, b, f , and doff, used in the Kinect disparity-to-depth mapping shown in

40

Figure 3.18: Figure showing the effect of the calibration parameters on the image points. The original
points are shown as + signs, and the reprojected points are shown as circles. The direction of the
change is shown by the arrows.

section 3.1.2. The parameters given by Microsoft as “standard values”, and those
given by OpenNI as the values they use for their disparity-to-depth mapping, for these
parameters are:

Table 3.3: Table showing the baseline, focal length and disparity offset given by OpenNI and Microsoft
for the Kinect sensor

Parameter Microsoft standard value OpenNI value
Baseline (b) 7.5 cm 7.5 cm
focal length (f) 580 px 575 px
Disparity offset (doff) 1090 px 1090 px

The first value which can be verified is the focal length. In section 3.2.2, the focal length
is determined for the two Kinect sensors which were available. The first Kinect had
a focal length of 586. This are clearly quite different to the value given by Microsoft.
However, in the formula, the baseline b is multiplied by the focal length f , and therefore
such a difference in the focal length may not affect the disparity to depth mapping if
b×f is approximately constant (i.e. the baseline changes when the focal length changes).

The baseline and the disparity offset are calculated using an image which is a known
distance away, and then using least squares to solve for these two parameters in the fol-
lowing way. First, we need to rearrange formula 3.4 so that it is in the form y = mx+c,

41

and m and c involve the unknown variables, b and doff. This is done as follows:

z =
b× f

1
8
× (doff − dk)

1

8
× (doff − dk)× z = b× f

doff − dk =
8× b× f

z

doff = b× 8× f
z

+ dk

dk = −b× 8× f
z

+ doff (3.19)

y = m× x+ c (3.20)

Where:

y = dk

m = −b

x =
8× f
z

c = doff

Tests were performed to determine the dk value for various z values. These tests were

Figure 3.19: Graphs showing the relationship between z and dk (on the left), as well as the relationship
between x and y (blue dots in the right-hand image), and the least squares interpretation of them (the
green line fitted to the blue dots)

performed by taking images with the Kinect pointing at a blank screen. The centre

42

point of the image (347, 273) pixels — as found in the previous section, will be used to
determine the disparity value for seven z values — 800 mm, 1000 mm, 1500 mm, 2000
mm, 2500 mm, 3000 mm and 3500 mm. These z and dk values are given in the table
below.

Table 3.4: Table showing the values for z and the corresponding dk value

z [mm] dk [px]

800 640
1000 738
1500 857
2000 913
2500 951
3000 972
3500 989

These values for z and dk are now used in the least squares problem described in formula
3.19. The focal length used for this is 586 pixels (note that Kinect 1 was used for this).
These values are plotted on a graph in Figure 3.19. There is a second graph which
shows the values for x and y as determined by the formula above, along with the least
squares solution to the problem. It is clear from the first graph that as the depth
increases, so does the Kinect disparity. This is expected, because as depth (z) gets
larger, b× 8× f/z gets smaller (for all other factors held constant). This number will
always be smaller than the disparity offset doff (due to the derivation of the formula).
This means that as the “x” term becomes smaller, the “y” term gets larger, so this
makes sense. The second graph shows that the least squares fit to the values is very
good, as the data are clearly linear (as expected). The values that are obtained from
the least squares operation for doff and b are 1093 and 76.6996 respectively. This mean
that the values given for baseline and the disparity offset by Microsoft (and OpenNI)
are slightly different — the effect of this will be determined in the next chapter.

Determination of the effect of inaccuracy of b and doff on the dk to z mapping

The effect of the errors in the disparity offset and baseline will now be investigated.
The formula shows that if b× f is constant, the mapping from dk to depth will not be
affected. However, a change in doff will change the mapping, potentially in a significant
way. For this section, the value of the focal length will be changed, and the value for
the disparity offset will be calculated for all other factors constant. The factor b × f
will then be compared to the values given by Microsoft and OpenNI for these values.
Then the effect of the change in the focal length on the mapping from dk to z will be
determined by finding the value for z for various different values of dk for each of the
different values determined for f , b and doff, to determine what difference it will make
to the depth calculation if the Microsoft standard values, or the OpenNI values are
incorrect.

43

First, the effect of the focal length on the baseline b and disparity offset doff will

Figure 3.20: Graphs showing the relationship between f and b, as well as the relationship between
f × b and f

be determined. To do this, All the z and dk values in the above table will be used. The
focal length will be varied from 550 to 610 pixels in 5 pixel increments. The baseline
and the disparity offset are then determined for each of the focal lengths. The disparity
offset is found to be constant at 1093 pixels. The baseline, and baseline multiplied by
focal length are then plotted against the focal length. These plots are shown in Figure
3.20.

The focal length times the Baseline is clearly constant over the range that is being
considered. This means that a change in the focal length should not change the output
of the disparity-to-depth mapping, as long as the baseline changes proportionally to the
focal length. The product of the baseline and the focal length is 44946 for our values.
Microsoft give this value to be 43500, and OpenNI give this value to be 43125. The
percentage difference can now be calculated using the following formula:

%difference =
f1 − f2
f2

× 100 (3.21)

The Microsoft value (f1) has -3.2% difference to our calculated value (f2), whilst the
difference between the Microsoft (f1) and OpenNI (f2) values is only 0.86%.

To determine the effect of the difference in these factors, various values of Kinect Dis-
parity will be used. The corresponding depth for each of the values for b × f and doff

44

will be calculated. These values will then be compared to determine the effect of the
change in the parameters on the mapping. These outcome of these tests are shown in
Appendix A. The b× f and doff pairs for each of the pairs are:

Table 3.5: Table showing the differences between the values of b×f and doff for the Microsoft, OpenNI
and the values calculated in this thesis

Parameter Calculated Microsoft OpenNI
b× f 44946 43500 43125
doff 1093 1090 1090

The data in the tables in Appendix A are represented on the graph in Figure 3.21.
The red graph represents the depths obtained from the Calculated values, minus the
depth obtained using the Microsoft values. The blue line represents the values using
the Calculated values, minus the values obtained using the OpenNI values.

Figure 3.21: Graph showing the difference between the depths obtained using the calculated value,
and those obtained using the Microsoft and OpenNI values

The figure shows that up until dk = 975, the value obtained using the calculated values
is higher than that obtained using the Microsoft and OpenNI values. This is expected.
At these values, the small change in the value of doff has little effect on the disparity to
depth calculation. However, at 975, the difference between the calculated values and
the Microsoft and OpenNI values drops rapidly. This is due to the difference in the
value of the disparity offset. The Microsoft and OpenNI depths become greater than
those obtained using the values calculated. This is due to the influence of doff. As the
disparity values approach doff, the effect of the change in doff will become much more

45

noticeable, as the percentage difference of doff − dk becomes greater (although there
will still only be an absolute difference of 3 between the calculated and OpenNI val-
ues). This causes the great discrepancy between the values after the disparity becomes
greater the 975.

Figure 3.22: Graph showing the difference between the depths obtained using the calculated value of
b × f — with doff = 1090, and those obtained using the Microsoft and OpenNI values for b × f and
doff

Figure 3.22 shows the difference if we let doff = 1090 for the calculated values of b× f ,
as well as for the Microsoft and OpenNI values. This graph shows clearly that the
cause of the steep drop at dk = 975 in Figure 3.21 is caused by the small change in
doff, as there is no drop when the value of doff is constant for all of the different values
of b× f . This experiment shows that the value of doff is extremely important for large
depths (over 2500mm), as it begins to affect the values quite a lot at around 3000mm
(dk = 975). The value of z is affected before dk = 975, however the change is not large
(within the region of 30 mm).

It is also clear from Figure 3.22 that the value of b × f affects the disparity-to-depth
mapping a lot at high dk (within the region of 18 cm). This difference is plotted as a
percentage of the depth measurement calculated (Note: this is done holding doff con-
stant at 1090). Figure 3.23 shows the result of this test.

Figure 3.23 shows that the percentage difference between the calculated values for b×f
and those given by Microsoft and OpenNI is constant. The percentage difference for

46

Figure 3.23: Graph showing the percentage difference between the depths obtained using the calculated
value of b×f — with doff = 1090, and those obtained using the Microsoft and OpenNI values for b×f
and doff

our values compared to the Microsoft values is approximately 3.2%, and the differ-
ence between the calculated values and the OpenNI values is approximately 4%. The
percentage difference in the calculated value and the Microsoft value is approximately
3.22%, and the percentage difference between the calculated value and the OpenNI
value is approximately 4.05%. These two data points indicate that a certain percentage
increase in b × f corresponds to the same percentage increase in z. This will now be
tested more rigorously by using more data points. The value of b× f will be increased
and decreased by 2%, 4%, 6%, 8% and 10% from our calculated value, for 5 different
dk values (600, 700, 800, 900, 1000). Depths will then be determined for each of these
values, and the percentage difference calculated. The results of this test are shown in
Figure 3.24. Figure 3.24 clearly shows that a percentage difference in b × f causes an
equivalent percentage difference in z. This is as expected from previous experiments,
as well as from the formaula above (b × f is the factor by which everything else is
multiplied to get z).

In conclusion, the value of the focal length is important, as it changes the value of
doff. It also changes the value of b× f from the values given by Microsoft and OpenNI.
The value of doff has a significant impact on the disparity-to-depth mapping for depths
greater than 2500 mm. The value of b× f also affects the value of z — The percentage
by which the value for b × f is different from the actual value causes an equivalent

47

Figure 3.24: Graph showing the percentage difference between the depths using different values of
b× f . Each of the colours represents a different value of b× f

percentage difference in the value of z. This means that each Kinect sensor should
be calibrated separately as there is a large technical variation between the devices.
Uncalibrated devices will results in large errors in depth data.

3.3 Reaction of the Kinect to different situations

This section discusses how the Kinect sensor deals with different types of surfaces. First,
the Kinect will be tested using a black screen and a white screen, to determine if there
are any more errors for either screen. The same tests will then be used to determine
how the Kinect reacts to reflective and non-reflective surfaces under different lighting
conditions.

3.3.1 Comparison of Black and White Surfaces

A screen was covered in white fabric and then in black fabric, and then the Kinect was
used to take images of the screen from different distances. A picture of the equipment
setup is shown in Figure 3.25.

The Kinect was placed at seven different distances from the screen (800 mm, 1000
mm, 1500 mm, 2000 mm, 2500 mm, 3000 mm, 3500 mm). The maximum and mini-
mum distances for each image are then calculated. The exact distance to the screen is

48

Figure 3.25: Picture of the test setup for the black and white tests.

known, and therefore the difference between the maximum and minimum of the black
screen and the white screen will be determined. The data for this chapter are given in
Appendix A. Note that because the screen is slightly too small, all the images had to
be truncated to ensure that only the values for the pixels that are actually returns from
the screen are used. To do this, the image of the screen from the furthest distance is
used, and the rows and columns which are actually the image of the screen are deter-
mined. Only these pixels are used in the calculation of the maximum and minimum.
Also note that the OpenNI values for depth are used in this section. This is for the
sake of simplicity.

The results of this experiment are plotted in Figure 3.26 and Figure 3.27. The val-
ues that are plotted are the difference between the maximum value and the actual
value (Figure 3.26), and the difference between the actual value and the minimum
value (Figure 3.27).

In the plots of Figures 3.26 and 3.27, the blue and red lines represent the values for
the black screen, and the green and cyan lines represent the value for the white screen.
From Figure 3.26, the maximum distances for the Black screen are far more regular —
They seem to increase in a parabolic manner with the total distance from the screen.
This is true of both sets of measurements. However, the difference between the max-
imum and the actual distance is much higher for larger distances with a black screen
than with a white screen.

Figure 3.27 show that the values for the difference between the actual value and the
minimum value are much less regular than the value for the maximum minus the actual
value, for the black screen. However, the white screen is slightly improved, although

49

Figure 3.26: Plot of the Maximum Distance minus the Actual Distance. The red and blue lines
represent this value for the black screen, and the green and cyan lines for the white screen. There are
two sets of data for each screen, and these are represented by the different colours for each screen (i.e.
blue represents measurement 1 for the black screen)

the value for the black screen still appear to be more regular than those for the white
screen. The values are also much less varied. For the maximum values, there was a
large difference between the values for the black screen and those for the white screen.
For the minimum values, this is not so, the values for the white screen are lower, but
not drastically.

This test shows that the Kinect does not seem to react differently to black and white
surfaces under the same lighting conditions. Therefore, this does not need to be con-
sidered when using the Kinect sensor for depth measurements.

3.3.2 Reaction of the Kinect to different lighting conditions
with Reflective and Non-reflective surfaces

For this section, a very similar test setup is used to the one used in Section 3.3.1. The
screen was covered in aluminium foil. The lights in the room were turned on, and the
windows were opened. The Kinect was then placed at various distances (800 mm, 900
mm, 1000 mm, 1200 mm, 1400 mm, 1600 mm, 1800 mm, 2000 mm, 2200 mm, 2400mm,
2600 mm, 2800 mm, 3000 mm, 3200 mm, 3400 mm, 3600 mm). The number of ”error
points” (i.e. points which give a depth of 0, due to the Kinect not being able to calcu-
late the distance) is calculated, and then these are compared. Note that because the

50

Figure 3.27: Plot of the Actual Distance minus the Minimum Distance. The red and blue lines
represent this value for the black screen, and the green and cyan lines for the white screen

screen is slightly too small, all the images had to be truncated to ensure that only the
values for the pixels that are actually returns from the screen are used. To do this, the
image of the screen from the furthest distance is used, and the rows and columns which
are actually the image of the screen are determined. Only these pixels are used in the
calculation of the number of errors. The same thing is done with the screen covered
in white paper (to simulate a non-reflective surface). The number of errors for each
distance for the non-reflective and reflective surface is recorded in Appendix A.

The number of errors for the non-reflective screen is consistently zero. There is the
occasional exception, however, the numbers are very low in comparison to the total
number of pixels in the image. These are therefore discounted. The errors for the
reflective surface, however, are large. The errors for each of the 4 sets of measurements
(2 sets for high light and 2 sets for low light) are plotted in Figure 3.28. The red graph
represents the first set of high light measurements, and the blue graph the second set.
The green and cyan lines represent the first and second low light measurements, respec-
tively.

The graph shows that the number of error points in the data increases approximately
linearly with the distance from the screen (for distances between 1500 and 3000 mm). It
seems to ”level out” at low distances (800 mm to 1200 mm) and at high distances (3000
mm - 3600 mm), however at mid-distances it is fairly linear. The graphs of the low
light conditions appears slightly more linear than that for high light conditions. The

51

Figure 3.28: Plot of the number of errors vs. the distance from the screen for the reflective surfaces.
This shows that the number of errors increases as the distance increases. The red and blue lines
represent the two sets of data in high-light conditions, whilst the green and cyan lines represent the
data for low-light conditions.

low light conditions also appears to result in fewer errors at higher distances (within
the order of 10 000 errors). However, at low distances, the number of errors is much
closer to that for the high light condition.

The data collected in this section clearly shows that the Kinect reacts rather badly
to a reflective surface, as there are many more error points when a reflective surface
is placed in front of the sensor as opposed to a non-reflective surface. There are many
errors for reflective surfaces, whilst the number of errors for the non-reflective surface
is consistently zero, regardless of the distance from the target or the lighting condi-
tions. The number of errors for the reflective surface increases with the distance from
the target, and is also slightly worse under high light conditions compared to low light
conditions. This indicates that the Kinect should not be used in environments where
there are lots of reflective surfaces, however the lighting condition does not affect the
operation of the Kinect sensor.

52

Chapter 4

Development of Feature Extraction
Algorithms

Feature extraction is very important in mobile robotics, especially for SLAM. Mobile
robots generally have limited storage capacity, and therefore storing huge amounts of
data is impractical. In most common SLAM algorithms, (for example EKF-SLAM and
FastSLAM), the computational complexity also increases drastically with the num-
ber of features [79, 77]. For EKF-SLAM, the computational complexity is O(n3) [79]
where n is the number of landmarks. For FastSLAM, the computational complexity is
O(M logK), where M is the number of particles in the particle filter and K is the num-
ber of landmarks [77]. This chapter investigates algorithms that can be used for line
extraction on data collected using a Hokuyo Laser Range Finder. The data obtained
using the Hokuyo Laser Range finder are of a single box in a large room (so that the
walls are far enough away that they don’t affect the image). The settings for the range
finder are such that one measurement is taken per degree (so 240 points are output).
Most of the images, however, only have 22 - 68 data points. This is due to the fact that
the box is placed in various places around the range finder, and therefore the entire 240
degree range is not used. These datasets are used for the experiments in most of the
experiments shown in this chapter (with the exception of the few places where other
data is described). This is done so that the data is consistent.

A laser range finder is used as the primary input sensor in mobile robotic navigation
for a number of reasons. The first reason is that it outputs a 2-dimensional point-cloud
which is much simpler than the output of the Kinect sensor. This 2D point cloud, al-
though simple, provides a good basis for understanding of how similar algorithms work
on point cloud data. Secondly, the number of points output is much smaller than for
the Kinect sensor, and therefore the algorithms will run much faster.

Initially, two algorithms are tested in two dimensions for use on Laser Range Finder
Data for line extraction. These algorithms are a split-and-merge type algorithm and
a 2-dimensional Hough transform. These two algorithms are then used in a series of

53

tests designed to allow a comparison of their effectiveness. This is used to determine
whether the Hough transform performs well in 2-dimensions before extending it into
3-dimensions.

This chapter comprises of two main parts. The first part is the theory of the two
feature extraction algorithms. The two algorithms are then tested individually for pro-
cessing time, and to determine the best values for the parameters that are required for
the algorithm (for the split-and-merge algorithm this parameter is the threshold, and
for the Hough transform, these parameters are the discretisation of r (the depth) and
the discretisation of the angle, θ). The two algorithms are also tested for the effect of
the number of lines fitted to the data on the speed. Finally, the two algorithms are
compared based on the results presented.

4.1 The Algorithms

For this section, the data are assumed to be in the form of a set of (x, y) points, where
the sensor is at point (0, 0).

4.1.1 Split-and-Merge

The Split-and-Merge Algorithm as presented below is very similar to the algorithm
presented by Nguyen et al. in [32]. This algorithm takes as its input a 2D point cloud,
containing straight lines. The algorithm outputs the (m, c) parameters of each lines
found in the point cloud. The algorithm determines the placement of the lines by run-
ning through the point set and fitting lines to the set. A threshold is then used to
determine whether the line fitted is a “good” or a “bad” fit to the data. If the line is
considered to be a “bad” fit, the point cloud is split (see step 4). This process is repeated
until all the lines fit the data correctly. The lines are then checked to see if any of them
are co-linear. These lines are then merged. A step-by-step algorithm is presented below:

Step 1: A set s1 is initialised as follows:

s1 = (x,y) (4.1)

where s1 is a set containing all of the points in the data, x is a vector containing all of
the x-values of the points, and y is a vector containing all of the y-values in the set.

Step 2: A line y = mx + c is then created by joining the first and last points of
the set together. This is done as follows (assuming that the set contains a points):
1. p1 = (x1, y1) = (x(1),y(1))
2. p2 = (x2, y2) = (x(a),y(a))
3. m1 = (y2 − y1)/(x2 − x1)
4. c1 = y1 −m1x1

54

This gives a line defined by y = m1x+ c1.

Step 3: The orthogonal distance between each point pi = (xi, yi), for i between 1
and a in set s and the line defined by m1 and c1 is found. This is done using the
following algorithm:
1. p3 = (x(i), y(i)) = (x3, y3).
2. p4 = (0, c1) = (x4, y4).
3. m2 = (y4 − y3)/(x4 − x3).
4. θ1 = arctan(m1).
5. θ2 = arctan(m2).
6. if θ1 > θ2
−→ θ = θ1 − θ2.
if θ2 > θ1
−→ θ = θ2 − θ1
if θ2 = θ1
−→ The point is on the line
−→ θ = 0.
7. ds =

√
((x4 − x3)2) + ((y4 − y3)2).

8. Orthogonal Distance d = ds × sin(θ),
where m2 is the gradient of the line connecting the x-intercept of the line found in Step
2, and θ1 is the angle of the line found in Step 2 and θ2 is the angle of the line with
gradient m2. Number 6 determines which line has a larger gradient, and therefore how
to determine θ. In figure 4.1, the first two cases are shown.

Figure 4.1: Figure showing two of the cases for Number 6 - (a) shows when θ1 > θ2 and (b) shows
when θ2 > θ1. (a) shows that when θ1 > θ2, θ2 must be subtracted from θ1 in order to obtain the
correct angle. The opposite is true for when θ2 > θ1

Step 4: Determine whether the maximum orthogonal distance is greater than some
threshold. If it is, the set s is split at the point with the maximum orthogonal distance
from the line. This creates two new sets of points, s1 and s2.

55

Step 5: If the result of Step 4 is two new sets, repeat Steps 2 - 4. If the set is
not split in Step 4, end the program and return m1 and c1. Note: for the repeats of
Step 2, a least-squares fit is used on the points, rather than using the method of joining
the first and last points in the set.

Step 6: The lines are then checked to see if they are co-linear (or near-colinear, within
some range of m and c). These lines are then merged. Note that this step is regularly
unnecessary for the types of data that are created using a Laser Range finder. This is
discussed more in a later section.

It is important to note that, in this implementation of the algorithm, only angles
which are not vertical will be able to be found. This is because when the angle is
vertical, the gradient is infinite (or undefined) - and therefore not computable. This is
not considered to be a problem, and true vertical lines are very unlikely to occur in real
data.

4.1.2 2-Dimensional Hough Transform

The Hough transform is the second algorithm used for comparison. It uses an alterna-
tive method to find lines - a voting method, rather than a least-squares method.

The original algorithm by Hough [34] is as follows. Consider any point in the xy-plane,
(xi, yi). The general equation for any line through this point is given by yi = mxi + c
for any values of m and c. If this equation is written in terms of m and c, we get
c = −xim+ yi, which is a similar form. If this equation is plotted in the mc-plane, it is
a single line for any (xi, yi) pair. Now consider a second point (xj, yj) in the xy-plane.
This point will also correspond to a line in mc-space (also known as parameter-space,
or Hough-space). The point where these two lines intersect in mc-space is the (m, c)
value of the line that passes through both point (xi, yi) and point (xj, yj) in xy-space. In
fact, every point on that line will pass through that specific point (m, c) in Hough-space.

Conceptually, every point (x, y) could be transformed in this way, and then plotted
in Hough-space The principle line in xy-space could be determined by the intersections
of these lines. However, there is a practical problem with this approach. As the line
connecting the points tends towards the vertical, the magnitude of the gradient (m) of
the line tends towards infinity. One way around this problem (presented by Duda and
Hart [35]) is to use the polar representation of a line:

x cos θ + y sin θ = ρ (4.2)

Figure 4.2 shows the geometrical interpretation of the parameters ρ (r) and θ in the
xy-plane. It is important to note that a horizontal line has θ = 90o and ρ equal to the

56

Figure 4.2: Geometric interpretation of the parameters r (ρ) and θ of a line. The green and red dots
represent two points in the x− y plane. The line that passes between them is shown. This line can be
represented by θ and r.

positive y intercept. A vertical line has θ = 0o and ρ (r) equal to the positive x in-
tercept. This parameterisation converts each point into a sinusoid in parameter space.
Each of these sinusoids represents the family of lines that pass through a particular
point (xk, yk) in the xy-plane. The intersection of the sinusoids represents the (r, θ)
value of the line that passes through both of the points.

Once we have three or more points in xy-space, we require a voting scheme because the
points may not necessarily be on the same line. We, therefore, form a grid structure in
the Hough-space. Each cell in the grid is ”voted for” by the sinusoids that pass through
that cell. In this way, any number of points can be fit to a line in xy-space. The choice of
the grid number is very important for this. The size of the grid determines the accuracy
of the co-linearity between the points. However, due to the inaccuracies in the measure-
ment from either the Kinect or the laser range finder, making the grid number too small
will result in the Hough transform not being effective for extracting lines from the data.

From the theory described above, this is the algorithm that is used to perform the
Hough transform:

Step 1: A set s = (x,y) is initialised in the same way as the set was initialised
for the Split-and-Merge algorithm.

57

Step 2: All of the points in the set s, (xi, yi) are transformed into sine waves in
the Hough Space described by (r, θ) (where θ ranges from 1 : 180 degrees) through the
following formula:

r = xi cos(θ) + yi sin(θ) (4.3)

In the implementation used for this project, the value of the formula is evaluated at
discrete intervals of 1 degree. This is because the code uses a for loop to determine
all the values of the formula at intervals of 1 degree. This is the most efficient way of
implementing the code. The size of the interval could be changed if deemed necessary.

Step 3: A grid is then initialised. For this implementation, the grid only needs to
be initialised in the r direction, as the values for θ are discrete (in the code - this is
discussed in a later section). The grid in the r direction is initialised as follows:
1. The maximum (max(r)) and minimum (min(r)) values of r are determined
2. The range of r values is then determined by range(r) = max(r)−min(r)
3. The required number of grid lines (gridno) is then chosen (this is how the grid num-
ber is changed). The range of r is then divided by this number to get the borderlines
of the grid. gridnumber = range(r)/gridno
4. Each of the borderlines is then determined (the first line will be min(r), the second
min(r) + gridnumber, etc. up until the last line which will be max(r). These values
define the lines in the grid which will be used for the voting scheme.

Step 4: The voting matrix is filled. Each row represents one of the ranges of r (i.e. the
first line in the matrix represents r between min(r) and min(r) + gridnumber). Each
column in the matrix represents a single value of θ between 1 and 180 degrees (because
θ is discrete). The voting matrix is filled by determining which “blocks” each of the
sine wave found in Step 2 pass through. This is done by taking each of the values (for
each value of θ), and determining which r range it fits in. This is repeated for every
sine wave. In this implementation, the voting matrix is actually a 3-dimensional matrix
- the x-direction represents r, the y represents θ, and the z-direction represents each
sine wave. Each block (r, θ, zi) is either a 1, if the sine wave passes though the grid
block r, θ, or otherwise it is a 0.

Step 5: In this step, the maximum number of votes for each grid block (r, θ) is deter-
mined by adding all of the ”ones” in the matrix. The lines which pass through that
grid block are then removed from the matrix, and this process is repeated until there
are no ones left in the matrix. The line parameters are saved for the relevant grid block.

The above process describes the method used in the code given in the Appendix for the
Hough transform in 2-dimensions. This algorithm is tested fully in the next section.

58

4.2 Tests of the Split-and-Merge Algorithm

In this section, the first parameter to be determined is the optimal threshold for the
split-and-merge algorithm. The effect of the threshold on the efficacy of the algorithm,
for data at different distances is be determined. The algorithm will also be tested to
determine how well lines are fitted to the data.

4.2.1 Determination of the optimal threshold for the Split-
and-Merge algorithm

The aim of this test is to determine the best threshold to use for the type of data that
are output from the laser range finder. The threshold for these specific data should be
found, and the effect of this threshold on the outcome of the split-and-merge algorithm
determined.

It is expected that a threshold which is too small will result in too many lines be-
ing fitted to the data. This is because the threshold determines whether the furthest
point from the fitted line is “too far” from the line, and therefore whether the dataset
should be split. If the threshold is too small, this threshold will be exceeded too often,
and therefore the data will be split more times than it should be. This is illustrated in
Figure 4.3.

Figure 4.3: Figure showing the case where the threshold for the split and merge algorithm is too small,
and therefore the data are split more times than they should be by the algorithm

59

On the other hand, a threshold which is too high will cause too few lines to be fit-
ted to the data. This is because the threshold is never exceeded (or exceeded too few
times) for the data, and therefore the dataset is never split. This is illustrated in Figure
4.4. A correct threshold will result in the correct number of lines being fitted to the
data. This is also shown in Figure 4.4.

Figure 4.4: Figure showing a correct split (a) and an incorrect split (b) caused by a threshold which
is too high for the split and merge algorithm

To determine the correct threshold for the data, a test will be run on 20 different
point clouds, collected with the laser range finder. These datasets were generated by
placing a box at various distances in the x− and y− direction from the sensor (which
is at the origin). The range of distances from the laser range finder to the corner of the
box is from −3 m to 3 m in the x−direction and from 1 m to 3 m in the y−direction.
These distances are chosen for two reasons. The first is that the maximum range that
the laser range finder can determine is 4 m, therefore this chosen as the maximum
location for the box, because that has a distance of approximately 4 m to the corner
of the box from the origin. It is important to note that the laser range finder cannot
resolve the two sides of the box correctly at this distance, but the data are still useful,
as they are in a straight line (see Figure 4.5). The second reason for this range is that
with a mobile robot, objects within these ranges are important, whereas objects which
are further away have higher uncertainty associated with their measurement and can
therefore be discarded. The laser range finder has a maximum angle resolution of 270◦,
although for the purposes of this experiment, only objects in front of the laser range
finder (i.e. objects which are at a positive y distance) are considered.

60

Figure 4.5: Figure showing the point cloud when the box is placed at x = 3 m and y = 3 m. The box
is not properly resolved by the laser range finder, however the result does appear to be a straight line,
and is therefore still used for this experiment. The laser range finder is at the origin.

These data are then processed by the split-and-merge algorithm. The results are
recorded by determining the correct number of lines that should be fitted to the data.
The correct number of lines for each set of data was verified by the author, and is
entirely dependent on what parts of the box the laser range finder can “see”. This
means that when the box is directly in front of the sensor, only the front of the box
is visible, and therefore the correct number of lines is 1. When the box is offset, the
correct number of lines is 2 - as two sides of the box are visible to the laser range finder.
The exception is when the box is placed at 3 m is the y−direction and at either −3 m
or 3 m in the x−direction. At this distance, because the corner of the box is more than
4 m away, the sensor cannot correctly resolve two sides of the box, and therefore the
box appears as a straight line to the sensor (see Figure 4.5. Therefore, for this case, the
correct number of lines is 1. These numbers of lines are recorded in a table in Appendix
B, along with the location of the box for each dataset.

The number of lines fitted for each of the thresholds is then determined and com-
pared to the correct number of lines. These data are presented in a table in Appendix
B. The thresholds used range from 15 to 350. The results for this test are represented
and discussed below.

The bar graph in Figure 4.6 represents the results of this experiment. The percent-

61

age of correct and incorrect splits is shown as red and green sections of each bar. The
bargraph shows that the ideal threshold is between 75 and 250. Below 75, the number of
incorrect splits increases, and the same is true of thresholds greater than 250. Dataset
10 appears to have more incorrect fits than the others.

Figure 4.6: Bar graph showing the percentage of correct to incorrect splits using various different
threshold values for the split and merge algorithm. All of the test datasets are represented - each
dataset represents 5 percent in this graph.

In Figure 4.6, all “incorrect” splits recorded above a threshold of 250 are considered
to be incorrect because too few lines have been fitted to the data. It is important to
note that datasets for which 1 line is “correct” cannot have too few lines being fitted
to the data. The “incorrect splits” for thresholds lower than 125 are incorrect because
too many lines were fitted to the data.

These results show that the hypothesis that lower thresholds cause too many lines
to be fitted to the data and thresholds which are too high cause too few lines to be
fitted holds for this data. It also shows that the optimum values have a large range -
between 75 and 250. Although dataset 10 seems to only have correct fits for thresholds
between 125 and 250. This is because dataset 10 contains much more noisy data than
the other datasets, and therefore the low thresholds which are fine for the other datasets
are not suitable for more noisy data. This is an important result, as it shows that if
data are more noisy, the threshold needs to be higher to account for this. This means
that noisier datasets should be optimised differently.

The graph also shows that there is a very steep drop-off in correct fits above a threshold
of 250 and below a threshold of 75. This means that if the threshold is slightly incorrect,
or outside the optimum range, this will cause many incorrect fits to the data.

62

Therefore, the optimum threshold for the split-and-merge algorithm should be deter-
mined for each type of data. This includes data with more noise, as well as data which
have different maximum and minimum distances, and data with a different scale (if the
data were given in metres rather than millimetres, the optimum threshold would be
1000 times smaller). This optimisation should ensure that the number of correct splits
is as high as possible for the particular type of data.

Effect of the threshold on the speed of the algorithm

The aim of this test is to determine the effect of the threshold on the speed of the algo-
rithm. This test will use the results of the previous test to determine which thresholds
should be used to determine this effect.

It is expected that the threshold value should have no effect on the efficiency of the
algorithm. This is because the threshold for the split-and-merge is simply a number
which is compared to another number using the “>” function. This function should
not be affected by the size of either number being compared, unless the size of the
number causes the number to require more bits of storage. However, even this decrease
in efficiency should be negligible.

To achieve the aim of this test, eight threshold values were chosen from the results
of the previous test. These thresholds range from 75 to 250 in increments of 25. The
algorithm will be run for each of these thresholds for each different dataset used in the
previous experiment - with the exception of dataset 10, as this dataset did not result
in “correct fits” for all of the thresholds chosen for this experiment. The time taken
to run the algorithm for each combination of threshold and dataset is recorded. It is
important to note that the time taken may be affected by the number of points on the
dataset (see the next experiment), and therefore the average time taken across every
dataset will be determined to negate this effect.

The data collected for this experiment are shown in Appendix B. The average time
taken for each threshold is also shown in the table. These average times are plotted
against the threshold values in Figure 4.7. The graph shows that the time taken varies
very little on the threshold. The approximate value for the time taken across the dif-
ferent thresholds is 0.0379 s. The standard deviation on this was about 0.016 s.

This result is exactly as expected from the theoretical understanding of how the thresh-
old works given above. The time taken should be unaffected by the threshold, and the
results seem to prove this hypothesis. The reason for the high uncertainty (shown by
the high standard deviation) is that there were multiple number of different points in
the sets used - and this affects the data greatly. It is important to note that though
the result in the previous section would not hold for all types of data, the result in
this section does. This is because the threshold should not cause a difference in the

63

Figure 4.7: Graph showing the average time taken to complete the split-and-merge algorithm across
all the data sets for each different threshold. The standard deviation was approximately 0.016 s.

efficiency of the algorithm, and this is independent of the type of data used.

4.2.2 Test of the effect of the number of points in the dataset
and number of lines fit to the data on the time taken

There are two experiments in this section. The first experiment is to determine the
effect of the number of points in the dataset on the time taken to complete the algo-
rithm for that dataset. The second experiment is performed to determine the effect
of the number of lines fit to the data on the speed of the algorithm. These tests are
performed to determine whether the algorithm scales well with the number of points
and the number of lines fit.

It is expected that as the number of points on the set increases, this will not cause
the time taken to increase significantly. This is because, although the number of points
being processed will increase the time taken slightly, the function in which the points
are used is not a particularly processor-intensive process. Therefore, it is expected that
the small increase due to the number of points will be negligible.

However, it is expected that an increase in the number of lines fit will result in a
large increase in the time taken. This is because if no split is required, the algorithm
only has to run once. If however, two lines need to be fit to the data, the algorithm
will effectively have to run 3 times - once for the first iteration and twice after the set

64

has been split (once for each “part” of the split). This means that the time taken to
run the algorithm when two lines need to be fit to the data is expected to take 3 times
as long as when the algorithm is run on data which only requires one line to be fit to
the data.

The results for this experiment are the same as the data collected for the previous
experiment. The number of points is recorded for each dataset. Each dataset is then
processed by the algorithm with the same thresholds as used in the previous test. The
average time taken for each dataset is then calculated. It is important to note that the
threshold has been found to have very little effect on the time taken for the algorithm,
and therefore the time taken is effectively found 8 times for each dataset.

The data collected for this experiment are given in Appendix B. The average time
taken for each dataset is also shown in the table. These data are represented in Figure
4.8. The red line in this graph represents the average times for the datasets where 2
lines are fit, and the blue line represents the datasets where only one line is fit.

Figure 4.8: Graphs showing the average time taken to complete the split-and-merge algorithm for
different numbers of points. The red line represents the datasets where 2 lines were fit and the blue
line represents the data where only 1 line was fit.

The graph shows that the time taken is unaffected by the number of points in the
dataset. Both lines are fairly straight, and there is little deviation from the average
times for each of the different cases. However, the difference in the time taken for the
sets where one line is fit and where two lines are fit is large. The average time taken

65

for the sets where one line is fit to the data is 0.0115 s, whilst the average time for sets
where two lines are fit is 0.0474 s. This means that fitting one extra line to the data
causes the time taken to quadruple.

The first result (that the number of points in the set does not affect the processing
time) is as expected. The number of points in the set may affect the processing time
slightly for a greater increase in the number of points, but for these datasets the increase
is negligible.

The second result is also similar to what was expected. It was expected that there
would be an increase in the time taken by the algorithm of approximately 3 times the
processing time for one line fit in comparison to two lines fit. This increase is, in fact,
4 times for the experiment given above. This is unexpected — although, this extra
increase can be explained by looking at the process of splitting the data. This process
is fairly processor-intensive — the point in the set where the split is to be made has
to be found, and then the data has to be split into two new sets. This function would
never run when only one line is fit to the data, however it clearly has a negative effect
on the processing time, as it results in an extra increase in the time taken when two
lines are fit to the data.

4.3 Hough Transform

In this section, the Hough transform is tested in a similar manner to the Split-and
Merge algorithm. Note that for this section, “grid number” refers to the number of
grid blocks used. i.e. a grid number of 500 means that there are 500 distinct ranges of
r, and these will range from the minimum r to the maximum r.

4.3.1 Test to determine the effect of the discretisation of the
angle θ on the efficiency of the algorithm

The aim of the test in this section is to determine the effect of the discretisation of the
angle parameter on the efficiency of the algorithm. The angle in the implementation
used in this dissertation determines the value of r for each different value of θ given by
a discrete set of values within a given range. For example, a discretisation value of 1
degree means that the θ set is given by values from 1◦ to 180◦ is steps of 1◦.

It is expected that as the angle discretisation gets smaller, the time taken to run the
algorithm will increase. This is because decreasing the discretisation value has the ef-
fect of increasing the number of grid blocks in the θ direction. This means that each of
the points in the initial point set has to be evaluated more times as the discretisation
decreases. The value chosen should also be as small as possible, because this means
that the angle of the line found by the algorithm will be closer to the true angle.

66

The method for this test is to vary the value of the angle discretisation to the fol-
lowing values (0.25, 0.5, 1, 2, 3 and 4). The algorithm will then be run for each of these
values on a point cloud generated by a laser range finder. The algorithm will find two
lines for this set for all of the angles, which should negate the effect of fitting more lines
to the data. The grid number will be set at 80 for each of the runs. The algorithm will
be run for each value of the discretisation of the angle three times, so the an average
for the processing time can be determined.

These data are shown in a table in Appendix B. The average values are plotted against
the angle discretisation in Figure 4.9. The graph shows that as the angle discretisation
decreases, the time taken increases quickly. This relationship appears to be hyperbolic
(this can easily be seen by plotting the time taken against the inverse of the angle of
discretisation). The processing time is fairly consistent between 1 and 4.

Figure 4.9: Figure showing the relationship between the time taken to run the Hough transform and
the angle discretisation.

This result is as expected from the theory. The angle discretisation has a large ef-
fect on the time taken for the Hough transform. This effect is very noticeable below
one - the time taken increases very quickly below 1. Values of 1 and above have fairly
similar processing times. We know from the theory that a smaller value is better, as
this means that the angle found by the algorithm is closer to the actual angle of the
line. Therefore, an angle discretisation of 1 degree is chosen for the purposes of this
dissertation.

67

4.3.2 Test to determine the effect of the grid number on the
accuracy of the algorithm

This test is used to determine the effect of the grid number on the accuracy of the
lines generated as the output of the Hough transform algorithm. The effect of the grid
number on the speed and efficacy of the algorithm will be tested in a later section.
This test will simply test whether increasing the grid number has a positive or negative
affect on the accuracy of the line found by the algorithm.

It is expected that and increase in the grid number will have a positive effect on the
accuracy of the lines generated by the algorithm. This is because the grid number
defines the discretisation of the parameter r, and therefore the higher the gridnumber,
the closer the r value found by the algorithm will be to the actual value of r for the
data. This is because the ranges of r for each grid block will be smaller.

To perform this test, a set of points in a straight line at 45◦ is generated, and then
the algorithm is run on this set for 6 different values of the grid number - from 10 to 60
inclusive, in increments of 10. These lines are the plotted along with the “true” line,
and then the effect of the grid number on whether the algorithm find a line which is
closer to the true line or further away can be determined easily. Note that for this test,
and all future tests, an angle discretisation of 1◦ is used.

Figure 4.10: Figure showing the results of the Hough transform algorithm for multiple grid numbers

68

The results for this test are represented in Figure 4.10. Each of the different grid
numbers is represented by a different coloured line, as given in the table below:

Table 4.1: Table showing the line colours for each of the grid numbers

Grid number Line Colour
10 Blue
20 Green
30 Red
40 Cyan
50 Yellow
60 Magenta

From this figure, we can see that the line which is furthest from the “true line” (shown
by the blue dots) is the blue line - representing the output with the grid number at
10. This is as expected from the theory – a lower grid number results in a lower de-
gree of accuracy. The closest line is the magenta line, which falls directly on top of the
line that would connect the blue dots. The magenta line represents a grid number of 60.

This result shows that an increase in the grid number has a positive effect on the
accuracy of the algorithm, in terms of how close the line it finds is to the “true” line for
the dataset. This result will be further tested in the next test, to see whether increasing
the grid number too much causes the algorithm to find more lines than it should.

4.3.3 Determination of the optimal grid number for the Hough
transform, based on the efficacy of the algorithm

The aim of the test in this section is to determine the effect of the grid number on
the efficacy of the algorithm in finding the correct lines to fit to the data. The grid
numbers used in this section are not specific to the type of data used, as they simply
define the number of grid blocks in the r direction - the actual range for each grid block
is determined by the maximum and minimum values for the specific dataset.

If the grid number is too large, too many lines will be fit to the data. This is be-
cause the range of each grid block is much smaller, and therefore point which should
pass through the same block now pass through different blocks.

Two situations can arise if the grid number is too small. The first is that the algorithm
may not find all the lines that should be found in the data, because sine waves repre-
senting the points may pass through the same block, where they should pass through

69

different blocks. This is because the range of r value in the block will be greatly in-
creased. The second effect is that the line may not be a good representation of the line.
This can occur for the same reasons as detailed in the previous test - that the r value
is discrete, and therefore it is possible that if the range for each block is too wide, the
r value found will not be a good representation of the data.

The experiment used to determine the effect is as follows. Each of the datasets used in
the test for the split-and-merge algorithm is run through the algorithm with multiple
different grid numbers. It is determined whether the number of lines found by the
Hough transform is too many, too few, or simply not close enough to the data to be
considered a correct fit. The number of incorrect fits (defined as too many lines, too few
lines or not close enough) for each grid number is then determined. The grid numbers
used for this experiment range from 10 to 150. The actual values of these grid numbers
are shown in the results table for this test in Appendix B.

Figure 4.11: Figure showing the results of the grid number test for the Hough transform

All the data collected for this experiment are shown in Appendix B. The results for
this experiment are represented in Figure 4.11. This graph shows that the number
of correct fits increases up to a point (a grid number of 80) and then decreases. The
increase between 40 and 80 is very steep, but the downward slope that occurs after a
grid number of 80 is much shallower.

This result is exactly as expected from the theory. The best grid numbers seem to
be between 60 and 110. These values result in a fairly high number of correct fits in
comparison to the other values. The data in the table in Appendix B shows that the

70

grid number generates too many lines in the data for values above 110 and too few for
lower values, although the bounds of “correct” fits are very different for the different
sets of data. Incorrect fits are all found for values below 60 - which means that any
value below this does not result in a true representation of the data.

The range of values found in this test will be used in the next test to determine the
effect of the grid number on the efficiency of the algorithm.

4.3.4 Determination of the effect of the grid number on the
speed of the algorithm

This test will determine the effect of the grid number on the efficiency of the algorithm.
This will determine whether the grid number needs to be minimised, in order to prevent
a loss in efficiency.

The grid number is expected to have a negative effect on the speed of the algorithm.
This is because, firstly, when the grid is filled, there are more blocks that now need to
be filled, and therefore this process will take longer. Secondly, the process of running
through the blocks to determine the highest number of votes will also take longer for
the same reason.

For this test, as the algorithm did not find the correct lines for every grid number
between 60 and 110 for every dataset which was used in the previous test, datasets
need to be generated. These datasets contain 11 different numbers of points between
10 and 210. The data should only have one line fitted to it. This was tested with the
Hough transform, and found to be correct. Each set is then processed by the Hough
transform with 7 different grid numbers - ranging from 50 to 110. A grid number of
50 is included to give a better range to determine the effect of the grid number on the
efficiency.

Each dataset is processed by the Hough transform with the different grid numbers
and the time taken to run the algorithm is determined. The average for each grid num-
ber is also determined - this should negate any effect that the number of points has on
the efficiency.

The results of the test are shown in Appendix B. They are represented in the graph
in Figure 4.12. This graph shows that as the grid number increases, so does the time
taken. This trend seem to be linear within this range - the least squares gradient of the
line is approximately 0.0005 s/increase of 1 in grid number. In other words, if the grid
number is increased by 10, the time taken increases by 5 ms.

This result is as expected. The time taken does increase due to the grid number -
because of the reasons outlined above. However, the increase is not large enough that

71

Figure 4.12: Figure showing the average time taken against the grid number. This shows that the
time taken increases as the grid number increases. Therefore, the grid number should be kept as low
as possible.

the grid number should be optimised for efficiency. The grid number has to be between
60 and 110 for the algorithm to be accurate, and the increase in time taken over that
range is only 25 ms, and considering that the sensor only takes one measurement every
100 ms, it is not necessary to optimise this speed.

4.3.5 Test to determine the effect of the number of points in
the set on the efficiency

The aim of this test is to determine the effect of an increase in the number of points
in the set on the time taken to run the algorithm. This is tested to determine whether
the set needs to be pre-processed to reduce the number of points in the set.

There is expected to be an increase in the time taken when the number of points
in the set is increased. However, this change is expected to be negligible in terms of the
time taken to run the algorithm, as well as in terms of the time taken for the sensor
to take a scan. The increase in speed should be caused by the fact that there are now
more points that need to be converted and placed in the grid.

This experiment uses the same data as used in the previous experiment. However,
now the average is found across the different grid numbers - so as to negate the effect
of the grid number on the increase in speed of the algorithm.

72

The results are shown in a table in Appendix B. These data are represented in the
graph in Figure 4.13. This graph shows that the time taken to run the algorithm does
increase with the number of points in the set. Once again, this relationship appears to
be linear over this range. The least squares gradient of the line is 0.0004 s/point. This
means that for an increase of 100 points, the time taken increases by 40 ms.

Figure 4.13: Figure showing the average time taken against the number of points in the dataset

This result is as expected - the number of points does affect the time taken. This
increase is larger than expected. An increase of 40 ms for an increase of 100 points
is fairly large, in comparison to the increase due to the grid number in the previous
section. This means that if the sensor takes 100 more samples, half of the time between
that sample and the next sample will be taken in processing the extra points.

Having said that, the Laser Range Finder has a maximum number of points in a sample
of 270. Therefore, even if the maximum number of samples is taken, the time taken to
process the algorithm is only very slightly more than the minimum sampling time (0.1
s per sample). The solution to this problem would be to reduce the sampling frequency
slightly, and to ensure that every sample can be correctly processed by the algorithm
before the next sample is output by the sensor.

Another conclusion that can be drawn from this result is that the process of filling
the grid uses a lot of the time taken to run the algorithm. If a sensor with a higher
number of points in a sample, or a higher sampling frequency is used, this process would

73

need to be optimised to ensure that the Hough transform is able to process the data at
a sufficient rate.

4.3.6 Test to determine the effect of the number of lines fit to
the data on the efficiency

The aim of this test is to determine what the effect of fitting more lines to data is. This
will determine whether the complexity of the data input into the Hough transform is
an important factor.

It is expected that an increase in the number of lines fit to the data will increase
the time taken to run the algorithm, although this increase is expected to be fairly
small. The increase will be due to the fact that the maximum number of votes needs
to be found more than once. The increase will be fairly small, as the process of looking
for the maximum number of votes in the voting matrix is a fairly efficient process, and
should therefore not have a large effect on the efficiency of the algorithm.

The method used to determine the effect of the of the number of lines fitted is as
follows. Various datasets are created, each containing 500 points, but different num-
bers of horizontal lines that will be fitted to the data. This should mean that the
number of points will have no effect on the time taken to run the algorithm. The var-
ious numbers of lines used are 1, 2, 4, 5, 6, 8 and 10. The algorithm will then be run
three times for each of these sets of data, so that an average can be found for the time
taken to run the Hough transform. The grid size chosen for this test is 100.

The data collected from this test are recorded in Appendix B. The average across
the three runs is also shown in the table, and these average are plotted against the
number of lines fit to the data in Figure 4.14. The figure shows that there is a clear
upward trend in the time taken to run the algorithm as the number of lines fit increases.
The increase is fairly small - only increasing by approximately one third between one
line and ten, which is a fairly slow increase. There is a slight dip in the data at 6 lines
found. This is probably caused by a slight inaccuracy in the data used - and the dip is
very small, so its effect is considered to be negligible.

This result is as we expected from the theory. The total change between 1 line and 10
lines being fit is only about one third of the time it takes to run the algorithm on one
line. Therefore, it is considered not to be an important factor for the purposes of this
dissertation, as this study deals with the sensors in sparse environments.

74

Figure 4.14: Figure showing the average time taken against the number of lines fitted. This shows
that as more lines are fitted by the Hough transform, the time taken also increases.

4.4 Discussion and comparison

In terms of how well the two algorithms find lines in Laser Range Finder data, the two
algorithms are fairly similar. They both extract the right number of lines, assuming
that the correct threshold or grid number is chosen. For both algorithms, the threshold
(or grid size) requires the same process of optimisation, as they are equally important
in both algorithms. This means that in terms of how well it finds the lines, the two
algorithms are equally good.

In terms of accuracy, the Split-and-Merge algorithm appears to be more accurate than
the Hough transform. This is because it uses a Least Squares line fit, while the Hough
transform uses a discrete r and θ value to describe the line. The Hough transform is
very susceptible to the grid size in this sense (another reason for the grid size and angle
parameterisation to be carefully optimised). The Hough transform does, however (if the
grid size is correct), get a “close enough” line most of the time - even if the scale change
(at least it seems so), however, the Split-and-Merge would need to be re-calibrated for
every different scale.

In terms of the speed of the algorithm, the Hough transform is susceptible to many
different parameters (number of points, number of lines fitted and grid size). The Split-
and-Merge, however, is far more sensitive to the number of lines that are fitted to the
data than the Hough transform (the processing time quadruples for two lines in com-
parison to one line). The same is not true of the Hough transform, although there is an

75

increase, it is not significant enough to cause a problem. The Split-and-Merge, however,
is very susceptible, and although the sensor would be used in a sparse environment (less
than 4 lines fit), the Split-and-Merge is considered to be a worse candidate due to this
major increase in the time taken.

The final category for comparison is the ease of extension into a 3-dimensional al-
gorithm. The Hough transform has previously been extended into 3-dimensions [42].
The extension is relatively straight forward, as it simply requires an extension of the
parameterisation into 3D, and a 3-dimensional grid, instead of a 2-dimensional grid.

The Split-and-Merge algorithm, on the other hand, has not been extended into 3-D
before. It would be much more complicated to extend it into an algorithm for line
extraction, as it would require splits in two directions, and a least squares fit to a
plane, rather than a line. This makes it much more difficult to do, and is therefore not
considered to be a good candidate for extension.

In conclusion, the Hough transform performs well in comparison to the Split-and-Merge
algorithm in 2-dimensions. There are some factors for which is performs worse - such as
the accuracy, however this is expected. Due the fact that it is not susceptible to scale
(as the split-and-merge is), it is considered to be a good algorithm for mobile robotics
in 2-dimensions as robots will not always work in the same environment. It is also rel-
atively easy to extend into 3-dimensions. For this reason, it is considered to be a good
candidate for extension into 3D to determine its usefulness as a 3D algorithm for mobile
robotics. This will be demonstrated in the next chapter, along with an investigation
into the use of the Hough transform with the Kinect sensor in mobile robotics.

76

Chapter 5

Extension of Hough Transform into
3-Dimensions

In this section, the development of the Hough Transform from the 2-dimensional algo-
rithm for line extraction shown in the previous chapter, to an algorithm that can be used
for plane extraction on 3-dimensional Kinect data is investigated. The pre-processing
required (such as edge-detectors and smoothing algorithms) will also be presented and
tested. The efficacy of the Hough Transform will be investigated for use with SLAM
for Mobile Robotics.

5.1 Development of the 3-dimensional Hough Trans-

form

For the extension of the Hough Transform into 3-D, the parameterisation needs to
be extended into 3-D, and the grid needs to be a 3D grid (with cubes rather than
squares). The extension into 3D is presented in [42], [31]. This extension uses the
Hesse parameterisation of a plane, which is:

px cos θ sinφ+ py sin θ sinφ+ pzcosφ = ρ (5.1)

where (px, py, pz) is a point in the (x, y, z) plane, the normal vector to the plane on
which this point makes an angle θ with the z-axis, and its projection into the x − y
plane makes an angle φ with the x-axis, and the normal vector has length ρ to the
plane, as shown in figure 5.1. This is the extension of the parameterisation shown in
the previous chapter, which is used for the 2D Hough Transform. The theory behind
how this works is the same as for the 2D Hough Transform - each point in the (x, y, z)
plane is transformed into a 3D “sine wave” in the parameter space. A voting scheme is
then used to determine the plane that best fits the data.

Using this new transformation, this is the algorithm for the 3D Hough Transform:

77

Figure 5.1: Figure showing the meaning of the parameters θ, φ and ρ in the Hesse parameterisation.
The vector labelled ρ is the normal vector to the plane. The plane is not shown in this illustration.

Step 1: A set (matrix) s = (px,py,pz) is initialised, where each row in the matrix
represents one point in the (x, y, z) plane and each column represents the x, y or z coor-
dinate for every point in the set (this step is similar to that for the 2D Hough Transform

Step 2: All of the points in the set s (p(i)x, p(i)y, p(i)z) are transformed into 3D
sine waves in the Hough Space, each of which is described by (ρi, θi, φi) (where θ and
φ range from 1:180 degrees - this range is because angle “0” is equivalent to an angle
of “360” and therefore is not used. If increments of 1 are used, there are exactly 180
values between 1 and 180 inclusive). This is achieved using the following formula:

ρi = p(i)x × cos θi × sinφi + p(i)y × sin θi × sinφi + p(i)z × cosφi (5.2)

For the purposes of this project, this formula will be evaluated at discrete intervals of
1 degree for each of θ and φ.

Step 3: A 3D grid is then initialised. The grid will be determined in the ρ direc-
tion only, as both φ and θ are discrete in this formulation of the algorithm. The grid

78

in the ρ direction is initialised in the same way as for the 2D Hough Transform.

Step 4: In this step, the voting grid is filled. The matrix is now a 3D matrix. The
x direction in the matrix defines the different values for ρ, the y direction defines the
values of θ and the z direction defines the values for φ. The voting matrix is filled in
the same way as for the Hough Transform in 2D - by determining which cubes each of
the sine waves found in step 2 pass through. The voting matrix in this implementation
is, in fact, a 4-dimensional matrix (i.e. there is one 3D matrix per point) - it is filled
with 1s and 0s in the same way as the one for the 2D is filled.

Step5: In this step, the total number of votes for each cube in the matrix is de-
termined by adding all of the ones in the 4D matrix described in step 4. The maximum
number of votes is determined and recorded, and the waves that pass through that
particular cube are removed from the data. This process is repeated until all of the
blocks are empty.

Step 6: Finally, each of the recorded blocks is converted back into the (x, y, z) space
as a plane.

This process is used in the code implementation used for this dissertation. The code,
along with a block diagram of how it works is shown in the Appendices. The imple-
mentation of this algorithm is tested later in this section.

5.2 Tests without pre-processing

The aim of the test in this section is to determine the effect of the number of points on
the efficiency of the algorithm. This is performed to determine whether a pre-processing
procedure needs to be applied to the data before it is run through the Hough transform.
The data that comes from the Kinect contains over 300 000 points, and therefore if the
algorithm does not scale well with the number of points in the set, that number of
points will not be processable by the algorithm.

The number of points is expected to affect the efficiency of the algorithm negatively.
The algorithm is expected to run quite slowly for even small numbers of points (for
example 50 points). This is because, as seen in the previous section, the Hough 2D is
not particularly efficient, and the Hough 3D adds an extra dimension and increases the
size of the grid matrix. Therefore, it is expected to scale even more poorly with the
number of points in the set.

The data used for this test is “created” by the author for the purpose - a matrix
of (x, y, z) coordinates is created - each of the points in the dataset representing a point
cloud. All the points in the dataset will be on a single plane by design. Each set will

79

contain a different number of points - 9, 16, 25, 36, 49, 64, 81, 100 and 121. Each of
the sets is then used as an input to the Hough 3D algorithm. The time taken to run
the algorithm on those sets is then recorded.

Figure 5.2: Figure showing the average time taken against the number of points in the set. This shows
that the time taken by the 3D Hough transform increases linearly with the number of points in the
set.

The result of this experiment is shown in Figure 5.2. The figure shows that the time
taken increases approximately linearly against the number of points (for the range
shown). The gradient of the line is found by Least Squares to be 0.0058 s/point. This
means that a 100 point increase results in more than half a second of increase in the
time taken. This is as we expected from the theory and prior knowledge - that the time
taken would be negatively affected by the number of points in the set.

Based on the results above, some method of pre-processing the data is required before
the data are input in to the Hough transform. Methods for doing this are discussed in
the next section.

5.3 Pre-processing algorithms

Due to the nature of the environments that the Kinect is being used in, an edge-detector
is a good choice of pre-processing algorithm to use on the data before it is run through

80

the 3D Hough Transform. MATLAB has six different built-in edge detectors. These are
Sobel, Prewitt, Roberts, Laplacian-of-Gaussian, Zero-Cross and Canny. The Laplacian-
of-Gaussian Edge Detector is a special case of the zero-crossing edge detector. The three
that will be tested to determine which is the best for this project are Sobel, Laplacian-
of-Gaussian and Canny - due to the fact that these three cover the different types of
edge detectors. Each of these edge detectors is described briefly, and then tested below.

5.3.1 Theory of the Edge Detectors

This section will describe how each of the three edge detectors (Sobel, Laplacian-of-
Gaussian and Canny) work, and will list the advantages and shortcomings of each of
the algorithms.

Sobel Edge Detector

The standard Sobel formulation computes an approximation of the gradient of the
intensity function of the image. To achieve this, it uses two convolutions. The first is
the convolution of a 3x3 matrix Cx with the image intensity function, the second is the
convolution of a matrix Cy (also a 3x3 matrix) with the image function. The result
is two separate images - Rx and Ry which are the gradient approximations in the x
and y directions, respectively. The matrices Cx and Cy are both combinations of a
differentiation kernel and an averaging kernel. They are formed as follows:

Cx =

 1
2
1

× [1 0 −1] =

 1 0 −1
2 0 −2
1 0 −1

 (5.3)

Cy =

 1
0
−1

× [1 2 1] =

 1 2 1
0 0 0
−1 −2 −1

 (5.4)

where IM is the Image Intensity matrix, Rx and Ry are formed as follows:

Rx = Cx ∗ IM (5.5)

Ry = Cy ∗ IM (5.6)

Now, these two matrices are combined to find the approximation of the gradient mag-
nitude at each point in the image:

R =
√

Rx
2 + Ry

2 (5.7)

For the Sobel Edge Detector, the maximum of the matrix R is found, and these points
are returned as an edge.

81

The Sobel edge detector has a few drawbacks. The first is that it is very suscepti-
ble to noise, due to the small window size used. It is also rather inaccurate, although it
is still used in many image processing applications. Its great strength is that, because
of the small kernel size, it is a very fast edge detector.

The Laplacian-of-Gaussian edge detector

The Laplacian-of-Gaussian (LoG) Edge detector uses a similar method to that of the
Sobel Edge Detector, but instead of finding the first derivative of the image intensity,
it computes the second derivative. It uses an approximation to a Gaussian filter to do
this. The kernels can become rather large, because the larger the kernel is, the more
accurate the approximation to a Gaussian filter. Smoothing with a very small Gaussian
on a discrete grid can have no effect. The effect of increasing the size of the Gaussian
kernel is to change the variance σ2 of the Gaussian kernel. In order to compute a LoG
kernel, A Gaussian kernel is convolved with the Laplacian kernel L. L is given as:

L =

 0 −1 0
−1 4 −1
0 −1 0

 (5.8)

The edge detection is performed by finding “zero crossings” in the second derivative.
A “zero-crossing” is defined as a point in the second derivative where a positive value
passes through zero to become a negative value. These places define edges because at
an edge, the gradient will be very high, which means the change in the gradient should
be high around the point - and it should go from very positive to very negative. Areas
of constant intensity should be zero in the second-derivative.

The method for finding the zero-crossings in the image is to apply a threshold to the
LoG output - with the threshold equal to zero. This will produce a binary image. The
boundaries in the binary image could be easily detected - by finding every “1” in the
image that has at least one “0” neighbour. This will, however, bias the location of the
boundary to either the foreground or the background.

One drawback of this algorithm is that the edge will also be biased to the foreground or
the background, as the zero-crossing is likely to always fall between two pixels. Another
drawback is that it is also fairly susceptible to noise. It could be more accurate than
the Sobel detector due to the larger kernel size. It may, however be slower than the
Sobel detector for the same reason.

The Canny Edge Detector

The Canny edge detector consists of four stages. The first is noise reduction, the second
is to find the intensity gradient of the image, the third is a non-maximum suppression
stage, and the final stage is hysteresis thresholding.

82

The first stage (Noise Reduction) is used to prevent the edge detector from being
too susceptible to noise. It uses a Gaussian filter, similar to that used for the LoG
algorithm. It convolves a matrix that represents the Gaussian with the raw image.
This has the effect of filtering the image. This should prevent the algorithm from being
affected by any noisy pixels in the data.

The second stage is the same as that for the Sobel Edge detector. It uses an ap-
proximation of the gradient in the x and y direction to find the gradient magnitude for
each pixel. Because of the addition of step one, this should be less susceptible to noise
than the Sobel algorithm.

Step three is used for edge-thinning. This prevents the same edge from being found
more than once in the same image. It achieves this by conducting a search of each im-
age gradient (at each point). The algorithm then decides whether that pixel is a local
maximum. It does this by using not only the magnitude of the gradient, but also the
direction of the gradient. To determine whether the pixel is a local maximum, it uses
the direction of the change in gradient to determine how it compares to the surrounding
pixels (i.e. if the gradient direction is vertical, the point is considered to be an edge if
its gradient is greater than those of the two pixels around it in the horizontal direction
- the pixel immediately to its left, and the pixel immediately to its right). It does not
matter what the sign of the gradient is - i.e. it does not matter whether the gradient is
left-to-right or right-to-left.

The final step allows “strong” and “weak” edges to be found. This is done because
high intensity gradients are more likely to correspond to edge than low intensity gradi-
ents. It is very difficult to specify the gradient intensity when a the edge changes from
“strong” to “weak”. Therefore, a high and a low threshold are used. An assumption is
also made that edge are likely to be in a continuous line with other edges. This allows
single noisy points to be discarded. To start with, the high threshold is used. This
results in points that are likely candidates for being edges. Then, the lower threshold is
used while moving along a continuous line. This allows weak edges to remain, assuming
that they are in a continuous line with a strong edge. Other weak edges will be removed
from the data.

One problem with this algorithm is that it is slower than the other two, due to the
higher number of operations that are performed. It should, however, be less susceptible
to noise. It should also result in more accurate edges, due to the final two step in the
algorithm. The final step, in particular, should allow non-edge pixels to be removed
from the final output.

83

5.3.2 Testing of the edge detectors on the raw data

This section will test each of the algorithms described above for speed, accuracy and
whether they find the edges that are relevant in the image (or find edges which are
there, but are not relevant).

Comparison of the accuracy of the algorithms

In this experiment, the accuracy of each of the three edge detectors described above is
evaluated. This is performed to determine which of the algorithms would be best for
and input into the Hough transform. This input algorithm needs to be consistent in
the edge that it finds. For example, if there is a box in the scene, and the edges of the
box are the “targets” for the edge detector - any features detected other than the edge
of the box are essentially noise.

Due to the specific requirements of this dissertation, the Canny edge detector is ex-
pected to perform poorly, as it is very good at finding “weak” edges. This is undesirable
in this case, as only the strong edges of the edge of the box are desired.

The process for running this test is as follows. A depth image is taken using the
Kinect sensor. The scene is an empty room containing a 500 mm x 500 mm box placed
1.5 m in front of the camera. This image is shown in Figure 5.3. Each of the edge de-
tectors is then performed on this image, and the number of “correct” points is recorded
(correct point being those points which are on or near the edge of the box in the scene).

Figure 5.3: The depth image used for the edge detection

84

This table contains the correct number of edge points for each of the detectors, as
well as the total number of edge points found by the detector. The difference between
the total and the correct number gives the number of incorrect pixels.

Table 5.1: Table showing the number of correct and incorrect edge points found in the image by each
of the edge detectors

Detector Correct Total Incorrect
Sobel 940 5484 4544
LoG 894 7602 6708

Canny 913 13901 12988

From these data, we can see that each of the algorithms finds a similar number of cor-
rect points. This is expected, as the edge of the box has a constant number of pixels
that can be found. However, the total number of “edges” found by each of the algo-
rithm varies a lot – the Canny edge detector finds nearly double the number of edges
in comparison to the other two. This is once again, as expected, as the Canny detector
connects “weak” edge to “strong” edges, which means that some weak edge are not
discarded by the algorithm.

The first result (that all three algorithms find a similar number of correct points)
means that they all perform fairly well in finding the edge of the box. The disparity
comes in when the number of “noise” points is evaluated. The Sobel and LoG edge
detectors perform fairly similarly, but the Canny performs much worse.

Having said this, none of the algorithms perform particularly well - they all find large
number of incorrect points in comparison to the number of correct points. This would
indicate that some kind of pre-processing of these data may be necessary to reduce the
noisy edges. This is discussed in Section 5.3.3.

Comparison of the speed of the algorithms

This test will determine which of the edge detectors is the fastest. Speed is important,
as when SLAM is performed, it is imperative that the processing is finished for the
previous frame before the next frame is captured by the sensor.

It is expected that the Canny will take longer than the other two algorithms, due to
the nature of the way it finds edges - there are more operations that need to take place.
The LoG is also expected to perform slower than the Sobel detector for the same reason.

For this test, the same tests are used as for the previous test. For each test, the
time taken to run the algorithm is recorded.

85

The average time taken for each algorithm is recorded in the table below. The So-
bel performs best, followed by the LoG and then the Canny, which takes nearly double
the time of the Sobel detector.

Table 5.2: Table showing the average time taken for each of the edge detectors

Detector Average Time Taken
Sobel 0.1524
LoG 0.1942

Canny 0.2853

Both of the results above are, to some extent, expected. The time taken of the Canny
algorithm is expected to be higher than that of the other two, due to the extra opera-
tions that are performed. The LoG is also expected to take longer than the Sobel, due
to the increased size of the convolution matrix.

Based on the two experiments above, the Sobel detector is considered to the be the
best of the three, however, due to the number of “noisy” points in the output of all the
detectors, extra pre-processing is necessary to remove these points. This pre-processing
is discussed in the next section.

5.3.3 Reducing the noisy points in the output

This section will investigate how the raw data can be modified to reduce the number
of noisy (incorrect) edge points that are found by the algorithm. Many of the incorrect
edge points in the previous section were found because, when the Kinect gets no return
from the scan, it automatically makes than point a zero. This means that all of the
Kinect errors cause the gradient detector to find a large gradient. These are therefore
reported as errors. This will be rectified by changing every zero point in the original
image to a “NaN”.

The other problem is that the background causes noisy points to appear. These can
easily be removed with a threshold. Everything that has a depth of more than 4000
mm will also be given a “NaN” value.

In Figure 5.4, the difference between the output of the Sobel detector when the above
changes are not made (in the left hand picture) and when they are made (the right
hand picture) is shown. It is clear that including the processing described above, all
the noisy points have been removed. However, the right side and bottom of the box have
also been removed. This is because if we look at the original image (Figure 5.3), the
right hand side of the box is entirely bordered by errors (black in the image), as is the
bottom of the box. These are now “NaN”, and are therefore not considered for the edge

86

Figure 5.4: Images showing the output of the Sobel detector without the alteration of the data (a),
and with the processed data (b).

detector. The bottom of the left hand side of the box is also cut off, for the same reason.

This is a problem - it would be better to leave a few noisy points, but get at least
three sides of the box. Therefore, a slightly different approach is attempted. For this,
the matrix of numbers is run through, from the bottom of the image to the top, and
along the columns. The zero points are found, and if the point is zero, it is given the
value of the pixel directly below it in the original image. This has the effect of filtering
out all the zero values, and giving an approximation to what those pixels should have
been, if the Kinect had been able to read them. The output of this processing for the
Sobel detector is shown in Figure 5.5.

Figure 5.5: The final output of the Sobel detector, showing the significant reduction in the number of
noisy points in the output.

87

This figure shows that three of the four sides of the box have been correctly identi-
fied. Unfortunately, the line where the floor connects to the wall is also found. This
output is better than the previous outputs. Although there is more noise than for the
first attempt at removing the noise, now three sides of the box are identified. This
allows the box to be fully characterised in the Hough Transform. Therefore, this is the
final processing for the Sobel detector.

This same processing is now tested for the LoG and Canny edge detectors. The

Figure 5.6: Images showing the output of the LoG (left) and Canny (right) detectors with the pre-
processing

outputs are shown in Figure 5.6. The LoG algorithm (output shown on the left) results
in much more noisy points than the Sobel detector, especially on the line where the
floor meets the wall. The Canny results in even more noisy points than that.

From the above tests, it is decided that the Sobel edge detector will be used, in con-
junction with the pre-processing of the data as described above, as the pre-processing
for the Hough Transform algorithm. The results of this final processing are given in
the section below. It is important to note that the pixels with value “1” in the edge
detector output are the edges of the box (at the depth of the box). The number of
points is reduced to 500 - which should allow the Hough Transform to work correctly.

5.4 Final 3D Feature Extraction Algorithm

For this section, the pre-processing and edge detection that is described above is used
before processing with the Hough Transform. The points that are output in the edge
detector are 1s and 0s. The points at which the edge detector outputs a 1 are put into
3 vectors - one for the x value, one for the y value and one for the z value. These points

88

are the inputs to the Hough Transform.

To test the Hough Transform, the algorithm is run on multiple different sets. These
are all described below.

The first set of data is a simple cardboard box. It is placed 1.5 m and 1 m away
from the Kinect sensor, at different angles. The ideal threshold for the 3D Hough will
be determined. Each set has a “correct” number of planes that should be fitted. The
correct number is determined by the author. For example, if only one side of the box
is visible to the Kinect, the correct number of planes is one. However, if two sides are
clearly demarcated in the image, this will have a correct number of planes of 2. This
will be tested, along with the processing time for the data. The threshold is varied from
3 to 17, in increments of 2. The results are shown in tables in Appendix C.

Figure 5.7: Bar graph showing the number of correct fits for each of the thresholds

The data for the number of correct fits to the data for each of the thresholds is shown
in Figure 5.7. This figure shows that, as expected, when the threshold gets too high,
the algorithm starts to fit more planes to the data than it should (as for the lines fitted
in the 2D version). The threshold values are much lower for the 3D Hough than for the
2D Hough. This is for two reasons. The first is that when the threshold becomes too
high, the algorithm simply requires too much computing power. The second is that, it
is unlikely that more than two planes will need to be segmented, because of the way

89

that the data is pre-processed. Therefore, a low threshold is desired. However, using
a low threshold means that the accuracy may be compromised. Therefore, a higher
threshold is desired - up to a point, if the algorithm becomes too slow, this is also a
problem.

Figure 5.8: Graph showing the speed of the Hough transform depending on the threshold

Figure 5.8 shows the effect of the threshold on the speed of the algorithm for dataset
2. This graph shows that the threshold does have a great effect on the speed of the
algorithm. The algorithm is already rather slow (taking approximately 8 seconds to
run with the threshold at 11). The relationship between the speed and the threshold
appears to be linear, with a gradient of 0.402 seconds per increase of 1 in the threshold.
This is very bad. The threshold should therefore be high enough that the accuracy is
not compromised, but not so high that the algorithm does not fit the correct planes, or
the speed is too slow. Therefore, a threshold of 9 is considered to be ideal.

The final test is to determine the effect of the number of points on the speed of
the algorithm. The speeds (for a threshold of 9) for each of the different sets are plot-
ted against the number of points in the set. The result is shown in Figure 5.9. This
graph shows that there is an increase in time taken as the number of points increases
(as expected from the tests earlier in this section). The speed change is not large,
however. The difference between the algorithm running on 360 points to 590 points is
only 4 seconds. This is not too serious. Therefore, the edge detector is suitable for use

90

Figure 5.9: Graph showing the effect of the number of points on the speed of the algorithm

with the Hough Transform, as it reduces the number of points for all the test data to
a reasonable level. Note that there is a small decrease in the time taken between the
point at 567 points and 597 points (this increaase is less than 0.5 s). This is assumed
to be because of noise, as for the other thresholds tested, this time taken continues to
increase between these two sets.

The Hough Transform in 3D also achieves the task for reducing the number of points
that need to be input into the SLAM algorithm. The output of the algorithm can be
used to reduce the number of points to 4 per plane - one in each of the corners. More
points in each plane could be used, to increase the accuracy of the feature tracking.
This is a large reduction in comparison to the edge detectors (which reduce it from 300
000 to 500). This means that the Hough Transform does achieve the objective.

However, the Hough Transform is very slow. This may mean that it is unsuitable
for use with SLAM, as it requires in the order of seconds to complete the segmentation
of the planes from the data. This means that the Kinect could only take an image
approximately once every 10 seconds - much slower than the sampling frequency. It
also means that the robot would have to be very slow moving, or stationary until the
Hough has completed the segmentation. If this is not the case, the robot may move
too far, and therefore there may be no common features between two frames taken by
the Kinect. Therefore, although the reduction in the number of features is useful, the
speed which it takes to complete the segmentation is simply too slow. Therefore, the
Hough Transform is not considered suitable at this time, with the current processing

91

speeds available.

5.5 Investigation into the suitability of the Hough

Transform for Mobile Robotics

This section will investigate whether the process described in the previous sections is
useful for Mobile Robotics. First, it will be investigated for its usefulness as an aid
for obstacle avoidance. This is very important for Mobile Robotics. In order to test
this, we will determine whether the algorithm can extract planes from the raw data
accurately enough that the robot could avoid crashing into these obstacles. This will
be determined by calculating whether the planes extracted by the algorithm are “close
enough” to the actual obstacles in the data - and also whether the size of the plane in
the data is accurately extracted.

The second investigation will involve determining whether the algorithm is suitable
for use as an algorithm used in SLAM to reduce the number of features input into the
algorithm. Different types of environments will be used for this - sparse and cluttered
- to determine whether features could be tracked between frames, and whether planes
could be extracted accurately from the frames, so that they could be input into a SLAM
process.

5.5.1 Suitability of the algorithm for obstacle avoidance pur-
poses

For this section, tests will be run to determine the suitability of the Hough transform
process for obstacle avoidance in robotics.

The first test will be to determine whether the extracted plane is accurate in terms
of the parameters of the plane - i.e. if the obstacle is 2 metres from the robot directly
ahead, does the algorithm extract a plane which is 2 metres from the robot, directly
ahead. This is important, as, if the robot thinks the object is located at 3 metres, but
it is in fact 2 metres away, the robot may crash into the object.

The second test will be to determine whether the location of the plane in the x and y
directions is accurate. This means that if the object is directly in front of the robot,
and is 50 cm square, will the algorithm be able to say exactly where the object is. This
is important as if the robot thinks the object is 25 cm across, it may try and go around
it and end up crashing in to it.

92

Test of the accuracy in extracting the correct plane from the data

This experiment will determine whether the Hough transform and the pre-processing
described in this dissertation can correctly extract planes from simple planar data. The
aim of this is to determine whether the algorithm is useful for obstacle avoidance in
robotics.

The algorithm is expected to perform fairly well in both extracting the correct pa-
rameters of the plane and the correct corners of the planes. The grid number used is
9 and the angle parameterisation is 1 degree in both directions. The algorithm may,
however, struggle to find more than one plane, and may also perform poorly in terms
of the processing time needed.

In order to test this, the Hough transform will be run on 10 images from an online
dataset [1]. The dataset used is the “rgbd dataset freiburg3 large cabinet” dataset.
An example of an image from this set is shown in Figure 5.10. This is used as it is the
most useful one for simulating the movement of a robot with a Kinect sensor mounted
on it moving around a room with a single large cabinet in it. This cabinet is a planar
object, and is therefore suitable for this algorithm.

Figure 5.10: One of the depth images from the “rgbd dataset freiburg3 large cabinet” dataset.[1]

For each of these 10 images, the number of correct planes is determined - for images
of one side of the cabinet, this number will be 1, and where the Kinect is pointing at
the corner of the cabinet, this number will be 2. The algorithm is then run on each of

93

these images - the edge points detected are plotted, as well as the 4 corner points for
each plane found by the Hough transform. Note that in Figure 5.10, there are 7 planes
visible to us. The reason for the smaller number of planes being expected is that the
walls are removed from the image by the edge detector, as are the less significant edges
within the cabinet. Therefore, only the front and one side of the cabinet are expected
to be found.

From this plot, each of the planes in the image is defined as either “correctly extracted”,
“parameters extracted”, “corners extracted” or “incorrectly extracted”. “Correctly ex-
tracted” means that the plane has been correctly extracted for both the parameters
and the corners of the plane. “Parameters extracted” and “corners extracted” mean
that either the parameters or corners (respectively) have been correctly extracted, and
finally “incorrectly extracted” means that neither the parameters nor the corners are
correctly extracted by the algorithm. The time taken to run the algorithm on the image
is also given.

The results for this experiment are given in Appendix C. There were only 3 correct fits
- and only one of those (in Image 5), was the correct number of plane found. This is
a very poor performance. In most cases 2 planes were found - this is problematic, as
for most of those cases, only 1 plane was actually meant to be found. This means that
there were a lot of “false” planes found in the data.

Where the correct plane was found, the plane was considered to be correct in both
parameters and corners - there were no planes which were only partially found. There
were 2 cases in which the algorithm ran out of memory and therefore could not complete
- images 7 and 10. This is, once again, very problematic as then there are no planes at
all for the robot to use.

Where planes were found, the algorithm took a very long time to find them - in the
region of half a minute per image. This is also problematic for mobile robotics as the
robot will probably have hit the object before the algorithm can process the image.

Therefore, based on the results above, this version of the Hough transform is not consid-
ered to be useful for obstacle avoidance in mobile robotics, mainly because the algorithm
does not find the correct planes often enough. This is also a problem for SLAM, how-
ever, the next section will investigate whether, if the planes were correct, they would
be trackable - which is the second requirement for SLAM.

5.5.2 Suitability of the algorithm for SLAM pre-processing

In this section, the suitability of the edge detector and the Hough transform is investi-
gated for use as the feature extraction process for SLAM.

94

The first requirement (over and above those described in the previous section) is that
the processing should extract the same objects in all the frames used - this means that
the box must be extracted from all the frames. This has already been proved in the
previous tests.

The second requirement for SLAM is that the objects can be tracked between frames.
In order to prove this, we need to see whether there is enough detail in the output to
allow distinct tracking between frames. For this test, two different environments will
be investigated - first the environment described for the tests above - a simple cuboid
in a planar environment, and then a more complex environment.

Test of object tracking with planar data

The aim of this experiment is to determine whether the process described above can
extract suitable features for SLAM - that are distinct enough that they could be tracked
through multiple frames.

It is expected that the features extracted by the above process will not be suitable,
as they will not be distinct enough to track clearly between frames. This is because the
images used are very sparse, and one side of a simple box is fairly indistinct from another
side of the same box. Therefore, it will be difficult to track the features between frames.

The method used is the following. Ten images are chosen from the Sturm “rgbd dataset
freiburg3 cabinet” dataset [1]. These will be processed using the edge detector (note:

the Hough transform simply fits planes to the features output by the edge detector, and
therefore has no impact on the features extracted, only on the location of those fea-
tures). Then, the outputs will be compared to determine whether there are “distinct”
features in the frames.

For each of the 10 images, the edges detected are shown in Figure 5.11. These im-
ages show that some edges of the cabinet are extracted in every image. However,
there are no images in which all the edges are extracted correctly. There are also some
images where more than just the cabinet is extracted - these are effectively noisy points.

Based on the edges extracted, these data are not suitable for SLAM as there are not
enough features extracted in each image. This means that tracking the features through
the images would be very difficult, because the cabinet is non-unique and has no points
of reference. Non-unique means that two sides of the cabinet are indistinguishable from
one another. Having no points of reference means that there are no other features in
the scene which show where in the scene the camera is.

95

Figure 5.11: Images plotted with the extracted edges shown in red. Each of the images has some edges
extracted, however there are also some images with noisy points.

The next test will investigate whether more complex data is suitable for SLAM with
the Kinect.

Tests of object tracking with complex data

The experiment in this sections will determine whether the same features are segmented
in successive frames in the dataset. It is very important that the same features are seg-
mented, otherwise feature tracking is not possible.

It is expected that the process will be able to correctly segment the major features
within a frame. It may not be able to segment the smaller features in the frames.
The major features are the large features which stand out as being separate from the
background. For example, the computer screen would be a major feature, whilst the
keyboard would not (as - in a depth sense - is blends in with the background).

The images used for this experiment are images from the same online dataset as the
data used above [1]. This dataset is a set of images of a desk. One of the images from
the dataset is shown in Figure 5.12. On the desk are multiple objects - a computer
screen, a plant, a teddy bear, and many others. There are over 3000 images in the
dataset, but only 40 of them are used for the experiment in this section - the first
image and then every 40th image after that image, until there are 40 images. This will
gives a wide range of images.

For each of these images, the edge detection process is run on the image. The re-
sult of which features are correctly identified is recorded. The features are defined as
either “segmented”, “not-segmented”, “partially segmented” or “not in image”. The
reason for the last group is that most of the frames do not contain all the features in

96

Figure 5.12: One of the RGB images from the desk dataset. Only the RGB images were used in this
dissertation.

the scene (which is defined as all the features in all frames). The first 3 groups are
represented in Figure 5.13. Any features which are not segmented in any frames are
not in the table (for example, the keyboard).

The results of this experiment are shown in Appendix C. The results are represented
in the bargraph in Figure 5.13. This graph shows that some features are very well
extracted from the data, and could therefore be used for tracking the frames. These
are the computer screen and the table (desk) on which everything sits. The teddy is
also extracted in many frames, and could also be used for tracking, although it is not
planar, and so therefore would not be useful for use with the Hough transform.

Some features are partially extracted in a number of frames - for example, the plant
and the carton are partially extracted in a number of frames. Some objects are not
extracted in any frames - for example the mug and the can. There is a high proportion
of features not being extracted in subsequent of frames - for example, the book and
lamp are not found more times than they are extracted. The globe seems to be easily
segment-able, when it is in the frame (it was never not extracted when present in the
frame).

The reason that the table and the screen are so easily extracted by the edge detec-

97

Figure 5.13: Bargraph showing the number of frames in which features are segmented, not segmented,
partially segmented or not in the screen. The screen and table have high proportions of being fully
segmented in frames, whilst the mug and the can are not segmented in any frames.

tor is that they are fairly large objects (in relation to the scene), and they generally
do not have a close background (in other words, there is nothing behind them). This
means that they are easily extracted because there is a large difference between the
depth of the object (the screen or table) and the background. The same is true of the
globe - although it is obstructed by the table in many frames, and therefore would not
be as useful as the screen for tracking purposes.

The teddy is well extracted for the same reason as the table and the screen are well
extracted - the background is fairly far away from it. It is only partially extracted most
of the time, because it is a fairly complex object, and therefore is quite difficult for
the algorithm to handle it. This is not a serious problem, as the teddy is not useful in
this instance because it is not a planar object. It could, however, be useful for tracking
algorithms.

The mug and the can are never extracted from the scene for the opposite reason that
the others are extracted so often - they are small objects, and are “close” to the back-
ground. This means that the edge detector cannot detect an edge where the edge of
the object (can or mug) meets to background (in this case the table).

The plant is partially extracted a fair amount - this is because it is a complex ob-
ject, which is sometimes very distinct from its background, and sometimes not. It

98

could be useful as a tracking object, although would not be useful for application to the
Hough transform. The carton, on the other hand, is partially extracted a lot because
sometimes it is easily distinguishable from its background (when its background is the
wall), and sometimes not (when its background is the table). Most of the times it is
somewhere between the two, and is therefore generally only partially extracted from
the scene.

The above result is as expected - we expected that large object would be easily ex-
tractable, because they would show up as distinct object from the background. Small
objects were not segmented well - this is also as expected.

The objects which were successfully extracted from the scene (the screen in particular)
would be sufficient to allow tracking - especially of those objects which were segmented
but are not planar (such as the teddy and the plant) are used as well). Therefore, the
segmentation is considered to be acceptable for use with a tracking algorithm for SLAM.

The algorithm could, however, be improved so that it segments more of the objects
correctly - this could be achieved by using the RGB data as part of the segmentation
procedure.

Due to the above results, these data are not considered to be suitable for this type
of algorithm, and therefore no further tests will be run for these data. Planar data
which is more complex than a single box would be more suitable - as then objects could
(potentially) be tracked between frames. however, due to the problems found with the
algorithm, this will not be tested.

99

Chapter 6

Conclusions

This chapter will use the results and analysis in the previous chapters to draw conclu-
sions about the research questions. This section will be split into multiple sections, one
for each of the preceding chapters.

6.1 Conclusions about Calibration

The Calibration of the Kinect showed the following things:

1. That the calibration of the Kinect sensor using the MATLAB calibration toolbox
does give different results to those given for the focal length and centre point,
compared to those given by Microsoft and OpenNI. The calibration results in
differences in the disparity-to-depth mapping, particularly in the disparity offset,
which has a large effect on the depth value.

2. The lens distortion, although there, can be ignored. This is because, as seen in
Figure 3.18, the change in the points from original to reprojected is very small, and
therefore the lens distortion (which is applied during reprojection) is negligible.

3. The colour of the features in the scene do not affect the ability of the Kinect to
find the correct depth.

4. The reflectiveness of the surface affects the Kinect’s ability to identify the surface.
For non-reflective surfaces there are no error points (points where there is no
return recorded for a particular pixel). For reflective surfaces there are many
error points.

The above findings mean that every Kinect needs to be individually calibrated. Al-
though this may take time, it is very important, as the calibration values affect the
output of the disparity-to-depth mapping significantly, in comparison to the mapping
using the standard values given by Microsoft and OpenNI. The baseline and the dispar-
ity offset change according to the calibration parameters. However, the lens distortion

100

can be discounted, as it does not have a large effect on the image. This means that the
calibration needs only be done to determine the focal length and the centre point.

The environment in which the Kinect is operated can be in varying colours, as this
does not affect the output of the Kinect. The disparity value found is unaffected by
the colour of the object in view. However, care should be taken to ensure that there
are no reflective objects in the scene, as this causes an increase in the error points in
the Kinect output, in comparison to a non-reflective surface. This is because, with a
reflective surface, the IR-light will be reflected away from the projection. Sometimes,
this cannot be avoided, and in these situations, the colour camera could be used as an
aid to the depth camera. The Kinect is, therefore, suitable for sparse indoor environ-
ments. If this could not be ensured, the RGB data could be used for error-checking in
scenes with reflective objects.

6.2 Conclusions from the Feature Extraction

The feature extraction for 2-dimensional Laser Range Finder data showed the following:
1. Both the Split-and-Merge algorithm worked effectively on Laser Range Finder and
“perfect” data.
2. The Split-and-Merge algorithm is more accurate for 2D data than the Hough Trans-
form, as that it uses a least squares fit.
3. The Hough Transform runs slower than the Split-and-Merge algorithm.
4. It is less critical to find the correct threshold value for the Hough Transform than
for the Split-and-Merge algorithm. The threshold for the split-and-merge needs to be
carefully optimised, so that the correct number of lines is found, and the speed is op-
timised. For the Hough Transform, the threshold where the correct number of lines is
found is wider, and therefore does not need to be optimised as carefully.

This means that for data which are collected using the Laser Range Finder, the Split-
and-Merge algorithm generally out-performs the others, and would therefore be the
better choice for use on these data. However, care needs to be taken in finding the
threshold for the algorithm, as it is very susceptible to an incorrect threshold, particu-
larly if the data are of a different scale to previous data used with the algorithm (as the
threshold would then need to be changed). The Hough Transform is easier to set-up as
it does not require a different threshold for different scales of data. It is also much easier
to extend into 3-D, as there are existing extensions of the algorithm in the literature,
which there are not for the Split-and-Merge.

6.3 Conclusions from the Hough 3D

The Hough Transform was successfully extended into 3D. Please note that all conclu-
sions drawn here refer specifically to the Hough Transform as presented in this disserta-

101

tion. These conclusions are not general to all versions of the Hough transform. Initial
testing showed the following:

1. The Hough Transform is a rather slow algorithm - it takes 58 ms more per 10
point increase.

2. The Hough Transform is very susceptible to the number of points in the set.
The time taken to run the algorithm is negatively affected by an increase in the
number of points.

Based on the above findings, the Hough Transform is not practically suitable for use
in SLAM on its own. It would simply take too long for it to run on the raw data from
the Kinect sensor. Therefore, pre-processing is required to reduce the number of points
that are input into the Hough Transform.

To do this, three edge detectors were investigated. The first is the Sobel edge detector,
the second is the Laplacian-of-Gaussian edge detector, and the last is the Canny edge
detector. These edge detectors were compared to each other on speed and susceptibility
to noise. The following results were found:

1. The Sobel edge detector performs the best in terms of susceptibility to noise and
speed for Kinect-type depth data.

2. Even with the Sobel detector, there is still a lot of noise present in the output.
Many “edges” are detected due to the general features in the scene, rather than
because true “edges” are found.

To reduce this noise, the data required pre-processing. One issue encountered was that
the Kinect outputs a zero when there is an error return. This results in many edges
being found, where in fact, the Kinect had returned an error. This problem was solved
using a nearest-neighbour filtering technique. This worked effectively, and the Sobel
Edge detector was chosen for use on the pre-processed data. The edge detector was
able to reduce the number of points to around 500 as opposed to 300 000.

The Hough Transform was then tested in conjunction with the edge detector. The
edge detector allowed the Hough Transform to perform well. The algorithm was able to
successfully find planes in the data, and generally found the correct number of planes.
The threshold was, once again, fairly important, especially because the accuracy of the
output is higher for a higher threshold. Therefore, the threshold was tested. Increasing
the threshold caused a significant increase in the time taken for the algorithm.

The Hough Transform was found to be very slow (taking of the order of 10 seconds to
complete a segmentation). This is too slow for use on board a mobile robot, as the
robot would have to be moving very slowly, or stationary for the duration of the com-
puting of the Hough transform, otherwise Feature Tracking would become extremely

102

difficult. However, the Hough Transform and the Edge Detector can successfully reduce
the number of points that would need to be input into the SLAM algorithm from 300
000 to 4 per feature (one for each corner of each plane). The edge detector by itself
reduces it to 500 points.

The reduction by the edge detector took approximately 0.15 s for a full Kinect im-
age. The Hough Transform, reducing from 500 to 4 took 5 seconds. This means that
the reduction by the Hough Transform is very slow in comparison to the reduction by
the edge detector. Therefore, the Hough Transform is too inefficient to be useful, due to
the processing speed. Therefore, until processing speeds increase, the Hough Transform
was found not to be suitable. However, this may require further study as, in conjunc-
tion with SLAM, it may be better to reduce the number of features as much as possible.

The accuracy of the planes extracted by the Hough transform was found to be very
poor. The algorithm did not find the correct plane in most cases, and did not correctly
segment all planes in the scene in all but one case. In many cases, the algorithm ex-
tracted more planes than there were present in the data. This may have been caused
by one of two things - an angle parameterisation which is too low, or too many noisy
points. In this case, the second is the reason. The edge detector found many noisy
points in the data used for this experiment - and therefore, the Hough transform found
many false planes. This meant that, in terms of accuracy, the algorithm was not suit-
able for obstacle avoidance or SLAM. These noisy points could be reduced by looking
at pre-processing algorithms other than edge detectors.

In terms of the accuracy of the plane parameters extracted, the algorithm also per-
formed poorly. This was probably due to the low threshold. This caused the planes to
be extracted in the “correct” area for the Hough transform - but due to the discrete
nature of the grid, the grid block was too wide, and therefore the extracted plane was
incorrect. The threshold could not be increased as this caused the memory to run out
in MATLAB.

Finally, the ability of the algorithm to track objects between frames was tested. First,
this was tested on simple planar data. For this, it was able to consistently extract the
edges of the cabinet, however, due to the nature of the scene (sparse and simple), the
object could not be tracked as the object could not be identified uniquely across frames.
Then, more complex data were used. Here, the larger, more distinct object could be
used for tracking. However, due to the fact that the scene was non-planar, the data
was not suitable for use with the Hough transform.

103

Chapter 7

Recommendations

The following recommendations for future work are made, based on the results of this
study:

1. Due to the small number of Kinect sensors available for this study, and the varia-
tion in the parameters found for the two Kinects, the calibration should be tested
on more Kinect sensors, to get a wide range of values, to determine the variation
in parameters of Kinect sensors. This would give a greater understanding of the
Kinect sensor.

2. Due to the lack of studies into the extension of the Split-and-Merge algorithm into
3 dimensions, it was not used on Kinect data in this study. However, because it
was found to be more accurate and faster than the Hough Transform in 2D, it
should be investigated for extension into 3D. This could result in a very fast
and efficient feature extractor that could be used with SLAM. The method of
extension would involve using a 3-dimensional least squares algorithm.

3. Due to the fact that the Hough Transform was found to be inefficient (taking
around 58ms to run on 10 points), the 3D Hough Transform should be optimised,
to possibly make it more suitable for use with SLAM. This, once again, may result
in a faster plane extraction that could be used with SLAM.

4. The Hough transform should also be optimised in terms of the angle parameteri-
sation in both the φ and θ directions to make it more accurate.

5. Feature tracking was not investigated in this dissertation, and therefore the suit-
ability of the Hough Transform for use with Feature Tracking for SLAM is un-
known. Therefore, feature tracking should be implemented, for use with the
Hough Transform, to determine further the suitability of the Hough Transform
for use with SLAM.

6. The edge detectors used in this study were suitable for reducing the number of
points input into the Hough Transform, but there may be other, more suitable,

104

methods for achieving this. Therefore, other methods for reducing the number of
points input into the Hough Transform should be investigated.

7. Other Hough Transform variants should be investigated for use with SLAM. In
particular, more optimised algorithms such as the Randomised and Probabilistic
Hough transform should be investigated.

8. All the algorithms should be used in real-time on data collected from the Kinect
(and, in the case of the 2D algorithms, Laser Range Finder), as this was not part
of the scope of this study. The sensors should be placed on-board mobile robots,
and the algorithms should be used for SLAM in real-time. This would complete
the study of the Hough Transform for use in SLAM.

105

Appendix A

Calibration Tables

A.1 Tables of the calibration data used in section

3.2.2

The following tables show the data used to plot the graphs shown in section 3.2.2. The
discussion of the data in this section is shown in section 3.2.2. This is the data used
for the calibration discussion of Kinect 1:

106

Ex. No. f(x) f(y) c(x) c(y) K1 K2 P1 P2

1 586.04062 588.61077 347.18929 274.63528 -0.1256 0.32845 0.01104 0.00942
2 580.35654 581.74003 307.29755 234.60084 -0.1523 0.44276 -0.00581 -0.01058
3 591.08345 594.11913 351.13297 280.59514 -0.11984 0.30925 0.01246 0.01064
4 574.26383 577.98529 312.22428 249.29456 -0.12737 0.44038 -0.00406 -0.00527
5 586.04077 588.6109 347.19026 274.63789 -0.1256 0.32845 0.01104 0.00942
6 589.72008 592.21311 346.69073 263.6263 -0.11594 0.30271 0.00668 0.00783
7 584.29879 586.94946 343.5802 271.32472 -0.12317 0.32238 0.01009 0.008
8 586.04082 588.61086 347.18964 274.63475 -0.12561 0.32844 0.01104 0.00942
9 586.04261 588.61277 347.19101 274.63676 -0.1256 0.32846 0.01104 0.00942

10 586.04328 588.61351 347.19116 274.6387 -0.1256 0.32846 0.01104 0.00942
11 591.70095 594.22345 347.63114 273.81487 -0.1137 0.3058 0.01105 0.01019
12 585.67866 588.84668 341.5077 269.26527 -0.12755 0.33934 0.00931 0.00576
13 586.03974 588.61011 347.19043 274.63562 -0.1256 0.32844 0.01104 0.00942
14 587.21698 589.95695 348.25934 275.76825 -0.12849 0.33126 0.01132 0.00919
15 586.04215 588.61237 347.18999 274.6383 -0.12559 0.32842 0.01104 0.00942
16 586.25206 589.35645 305.01279 242.08601 -0.14112 0.44004 -0.00723 -0.01013
17 588.81379 592.51087 332.34978 256.87289 -0.12685 0.51359 0.00197 0.00227
18 581.01682 584.69299 340.17377 282.42488 -0.15063 0.42259 0.01541 0.00921
19 591.31662 593.54194 350.68008 278.73688 -0.13235 0.35348 0.01274 0.01206
20 580.20848 584.38829 341.52624 264.11806 -0.13038 0.23902 0.00609 0.006
21 585.40346 587.86506 352.92261 286.82467 -0.11239 0.3009 0.01528 0.01455
22 578.13612 580.88494 336.2151 269.078 -0.12835 0.34018 0.00837 0.00469
23 576.19339 579.74035 345.08101 282.02773 -0.1001 0.26145 0.0097 0.00946
24 576.91532 577.68644 352.3241 268.55414 -0.17446 0.39516 0.00544 0.00663
25 586.97497 589.7856 346.35726 274.15356 -0.13039 0.34083 0.01121 0.00932
26 584.30365 586.95822 337.42387 266.3556 -0.15178 0.43633 0.00524 0.00377
27 586.91017 589.76718 345.7446 272.8214 -0.11825 0.31866 0.01002 0.00878
28 584.78003 586.21157 350.5111 265.325 -0.14584 0.28583 0.00918 0.00776
29 595.85789 597.71524 350.26248 268.50792 -0.13362 0.34194 0.00936 0.00768
30 588.91044 591.33298 349.22536 277.98125 -0.12437 0.33556 0.01148 0.0109

This table shows the average and standard deviation of the data in the table above:

107

Parameter Mean [px] Std. Dev.

Focal Length x (f(x)) 585.77396 4.18750
Focal Length y (f(y)) 588.42104 4.13190
Principle Point x (c(x)) 341.91038 13.25127
Principle Point y (c(y)) 269.38315 12.04043
Radial Distortion 1 (K1) -0.12584 0.00846
Radial Distortion 2 (K2) 0.33953 0.04264
Tangential Distortion 1 (P1) 0.00855 0.04264
Tangential Distortion 2 (P2) 0.00678 0.00563

This table shows the data collected for the second Kinect camera:

108

Ex. No. f(x) f(y) c(x) c(y) K1 K2 P1 P2

1 601.14818 603.29438 348.25047 260.35587 -0.1299 0.47597 0.01121 0.0153
2 598.36925 600.34541 342.39417 263.58544 -0.13885 0.55521 0.01305 0.01237
3 589.30884 591.65213 346.64214 258.91832 -0.10705 0.34473 0.01454 0.01413
4 608.03787 610.13935 338.86447 274.15517 -0.16591 0.42494 0.00834 0.01188
5 601.74392 603.21244 353.4863 261.38766 -0.1421 0.5686 0.01116 0.01422
6 607.35712 605.72096 287.31798 238.83865 -0.07784 0.3878 -0.00355 0.01407
7 589.14784 594.8801 360.82353 295.72639 -0.07922 0.18813 0.02063 0.02052
8 599.81426 601.69883 352.12917 261.72948 -0.12943 0.45387 0.01258 0.01751
9 598.90658 600.56504 350.14196 260.36625 -0.1414 0.49395 0.01193 0.0152

10 633.33498 630.38919 380.42537 292.0621 0.00447 0.00638 0.02619 0.03485
11 599.61263 601.5785 350.03992 261.02494 -0.13028 0.45278 0.01194 0.01543
12 596.39598 598.24233 347.14404 258.93603 -0.17191 0.66538 0.01051 0.01556
13 599.61272 601.57856 350.04008 261.02531 -0.13028 0.45277 0.01194 0.01543
14 594.26147 596.12096 349.60796 261.52336 -0.13118 0.44512 0.01009 0.01503
15 597.80258 599.69584 348.55042 262.56294 -0.18398 0.82022 0.0105 0.01482
16 591.77163 595.05329 337.12899 272.94597 -0.12321 0.42744 0.00803 0.0108
17 593.3828 594.95345 354.23431 265.37417 -0.09875 0.25935 0.01112 0.01671
18 594.3305 595.22489 356.40908 256.15737 -0.13594 0.42624 0.01198 0.01671
19 596.30302 598.82103 339.59746 261.80398 -0.14247 0.53827 0.00879 0.01089
20 604.64901 605.55793 360.47988 255.87851 -0.12578 0.43102 0.01271 0.01799
21 584.15486 595.25208 353.58019 274.62642 -0.14147 0.32144 0.00816 0.02285
22 599.61248 601.57832 350.04009 261.02528 -0.13028 0.45278 0.01194 0.01543
23 599.61312 601.57896 350.03979 261.02504 -0.13028 0.45278 0.01194 0.01543
24 591.62061 594.25271 338.58092 265.3255 -0.15238 0.53156 0.0092 0.01137
25 594.14361 595.76394 353.554 268.9726 -0.1425 0.60442 0.01421 0.01982
26 603.25945 604.10249 356.84834 251.39067 -0.1651 0.58853 0.00757 0.01589
27 599.61352 601.57944 350.03925 261.02525 -0.13028 0.45276 0.01194 0.01543
28 604.54681 606.16204 365.66167 254.9122 -0.19936 0.2279 0.0119 0.0145
29 606.83571 609.03962 347.6542 263.73787 -0.12312 0.52774 0.01188 0.01537
30 606.05485 608.12048 347.73704 264.08277 -0.11848 0.40623 0.01097 0.01384

This table shows the mean and standard deviation of these data:

109

Parameter Mean Stan. Dev.

Focal Length x (f(x)) 599.49154 8.63673
Focal Length y (f(y)) 601.20516 7.75155
Principle Point x (c(x)) 348.91477 14.45711
Principle Point y (c(y)) 263.68272 10.61077
Radial Distortion 1 (K1) -0.13048 0.0.03642
Radial Distortion 2 (K2) 0.44597 0.15121
Tangential Distortion 1 (P1) 0.01145 0.0046
Tangential Distortion 2 (P2) 0.015968 0.004441

A.2 Tables of the data used for the comparison of

parameters in section 3.2.3

The following table shows the Kinect disparity and the corresponding depth value for
each of the b ∗ f and doff pairs:

Kinect Disparity Calculated Microsoft OpenNI

600 729.3469 710.2041 704.0816
650 811.6659 790.9091 784.0909
700 914.9313 892.3077 884.6154
750 1048.3 1023.5 1014.7
800 1227.2 1200 1189.7
850 1479.7 1450 1437.5
900 1863 1831.6 1815.8
950 2514.5 2485.7 2464.3
975 3047.2 3026.1 3000
1000 3866.3 3866.7 3833.3

A.3 Tables showing the data used for the compari-

son of black and white surfaces

The following table shows the maximum and minimum distances recorded by the Kinect
for the black and white screens at each of the distances.

110

Actual Distance Maximum - Minimum - Maximum - Minimum -
[mm] Black [mm] Black [mm] White [mm] White [mm]

800mm (1) 804 761 786 742
800mm (2) 806 761 788 743
1000mm (1) 1014 966 1020 953
1000mm (2) 1014 969 1020 948
1500mm (1) 1519 1455 1567 1431
1500mm (2) 1525 1443 1581 1413
2000mm (1) 2039 1947 2063 1915
2000mm (2) 2015 1947 2051 1915
2500mm (1) 2570 2443 2669 2426
2500mm (2) 2570 2443 2669 2409
3000mm (1) 3216 2845 3129 2893
3000mm (2) 3186 2869 3129 2893
3500mm (1) 3952 3216 3738 3341
3500mm (2) 3952 3277 3779 3277

111

A.4 Tables showing the data used for the reflective

and non-reflective surface tests in section 3.3

This table shows the number of errors recorded for the reflective and non-reflective
surfaces under high light conditions and low light conditions for each of the distances.

Distance Reflective - Non-reflective - Reflective - Non-reflective -
High Light High Light Low Light Low Light

800mm (1) 19391 0 23925 0
800mm (2) 21946 0 26475 0
900mm (1) 17534 0 23571 0
900mm (2) 18182 0 22439 0
1000mm (1) 17304 0 21938 0
1000mm (2) 19227 0 22271 0
1200mm (1) 21068 0 24259 0
1200mm (2) 22755 0 23009 0
1400mm (1) 22728 0 24163 0
1400mm (2) 25838 0 24502 0
1600mm (1) 31845 0 28214 0
1600mm (2) 31855 0 28271 0
1800mm (1) 39474 0 33106 0
1800mm (2) 40423 0 33380 0
2000mm (1) 48033 0 39857 0
2000mm (2) 49439 0 39178 0
2200mm (1) 53338 0 43576 0
2200mm (2) 53873 0 42996 0
2400mm (1) 60739 0 47916 0
2400mm (2) 59324 0 48477 0
2600mm (1) 65319 0 54807 0
2600mm (2) 64842 0 52145 0
2800mm (1) 70565 0 61218 0
2800mm (2) 68612 0 58994 0
3000mm (1) 74450 0 66404 0
3000mm (2) 77151 0 66585 0
3200mm (1) 80749 0 65607 0
3200mm (2) 80548 0 66427 0
3400mm (1) 80629 0 66900 0
3400mm (2) 76911 0 69274 210
3600mm (1) 80667 1 71374 258
3600mm (2) 78995 0 72254 382

112

A.5 Distortion Models

The following figure shows the distortion model for Kinect 1:

Figure A.1: Image showing the distortion model of the first Kinect IR sensor.

113

Appendix B

Tables of data used in chapter 4

B.1 Data for the threshhold determination in Split-

and-Merge

The correct number of lines for each of the datasets is shown in the table below. The
X location and Y location of the corner applies to when the box is placed at some
(x, y) location in relation to the Laser Range Finder (datasets 4 - 20). Otherwise, the
X location is not applicable, as the box is placed directly in front of the sensor.

Data set number Correct number of lines X location Y location
1 1 N/A 1
2 1 N/A 2
3 1 N/A 3
4 2 1 1
5 2 1 3
6 2 2 1
7 2 2 2
8 2 2 3
9 2 3 1

10 2 3 2
11 1 3 3
12 2 -1 1
13 2 -1 2
14 2 -1 3
15 2 -2 1
16 2 -2 2
17 2 -2 3
18 2 -3 1
19 2 -3 2
20 1 -3 3

114

The table below shows whether the the value of the threshhold results in the correct
number of lines, or greater or fewer. The total number of correct(=), greater (>) or
fewer (<) lines is given in the last two lines of the table (either classified as the correct
number of lines or an incorrect number of lines).

Threshhold value/ 350 325 300 275 250 225 125 100 75 50 35 25 20 15
Dataset Number

1 = = = = = = = = = = = = = >
2 = = = = = = = = = = = = = =
3 = = = = = = = = = = = = = =
4 < < < = = = = = = = = = > >
5 < < < < = = = = = = = = > >
6 < < = = = = = = = = > > > >
7 < < < = = = = = = = = > > >
8 < < < < = = = = = = > > > >
9 < < = = = = = = = > > > > >

10 < < < = = = > > > > > > > >
11 = = = = = = = = = = = = = =
12 < < < < = = = = = = = = = >
13 < < = = = = = = = = = = = =
14 < < < = = = = = = = = = = >
15 < < = = = = = = = = = > > >
16 < < < = = = = = = = > > > >
17 < < < < = = = = = = = > > >
18 < = = = = = = = = = = = > >
19 < < = = = = = = = = = > > >
20 = = = = = = = = = = = = = =

No. Correct 5 6 11 16 20 20 19 19 19 18 15 11 8 5
No. Incorrect 15 14 9 4 0 0 1 1 1 2 5 9 12 15

B.2 Data for speed test of Split-and-merge algo-

rithm

This section shows all the data used for the speed test of the split-and-merge algorithm.

This table shows the number of points for each of the datasets. It also shows the
time taken to run the algorithm for each dataset, for each of the different threshhold
values. These test were performed in MATLAB 2011b (for Linux) on a Sony Vaio Lap-
top with the following specifications:
Operating System: Ubuntu 12.04 64-bit

115

Processor: Intel Core i7-2640M CPU 2.80GHz x 4
RAM: 3.8 GiB

Set T/h 250 225 200 175 150 125 100 75 Ave S.Dev
no. No.pts

1 68 0.0113 0.0121 0.0122 0.0118 0.0119 0.0116 0.0126 0.0115 0.0119 0.0004
2 34 0.0115 0.0112 0.0110 0.0116 0.0113 0.0127 0.0113 0.0112 0.0115 0.0005
3 23 0.0114 0.0110 0.0107 0.0115 0.0107 0.0108 0.0108 0.0108 0.0110 0.0003
4 59 0.0481 0.0474 0.0465 0.0464 0.0483 0.0461 0.0467 0.0476 0.0472 0.0008
5 23 0.0459 0.0456 0.0464 0.0468 0.0448 0.0459 0.0457 0.04612 0.0459 0.0005
6 40 0.0463 0.0467 0.0468 0.0552 0.0460 0.0468 0.0459 0.0458 0.0475 0.0003
7 31 0.0463 0.0464 0.0457 0.0471 0.0467 0.0472 0.0473 0.0475 0.0468 0.0006
8 25 0.0465 0.0461 0.0459 0.0463 0.0450 0.0469 0.0503 0.0461 0.0467 0.0015
9 28 0.0466 0.0467 0.0459 0.0488 0.0517 0.0463 0.0461 0.0464 0.0474 0.0019

11 22 0.0114 0.0116 0.0114 0.0108 0.0107 0.0110 0.0109 0.0114 0.0112 0.0003
12 61 0.0547 0.0475 0.0474 0.0476 0.0478 0.0467 0.0485 0.0472 0.0485 0.0025
13 37 0.0476 0.0488 0.0465 0.0474 0.0498 0.0475 0.0480 0.0467 0.0478 0.0011
14 25 0.0523 0.0461 0.0467 0.0465 0.0462 0.0461 0.0470 0.0478 0.0474 0.0020
15 41 0.0469 0.0495 0.0469 0.0470 0.0471 0.0538 0.0481 0.0473 0.0484 0.0023
16 33 0.0488 0.0456 0.0462 0.0500 0.0467 0.0466 0.0478 0.0471 0.0474 0.0014
17 24 0.0491 0.0480 0.0490 0.0472 0.0484 0.0468 0.0465 0.0467 0.0478 0.0010
18 30 0.0474 0.0483 0.0481 0.0470 0.0460 0.0477 0.0462 0.0489 0.0475 0.0010
19 27 0.0477 0.0450 0.0472 0.0469 0.0461 0.0461 0.0471 0.0461 0.0466 0.0008
20 22 0.0115 0.0114 0.0111 0.0119 0.0120 0.0133 0.0113 0.0112 0.0118 0.0007

Ave 0.0385 0.0377 0.0375 0.0384 0.0378 0.0379 0.0379 0.0376
S. D. 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016

The following table shows the data used for the tests of the effect of the number of
data points on the time taken to run the algorithm. Each of the test is run 5 times (to
obtain an average time elapsed).

Number pts in set Test 1 Test 2 Test 3 Test 4 Test 5 Average
50 0.010928 0.011300 0.011939 0.010463 0.011734 0.0113

250 0.017402 0.022857 0.017412 0.018252 0.019956 0.0192
500 0.021076 0.018051 0.025184 0.024006 0.024488 0.0226
750 0.033693 0.028373 0.029393 0.031743 0.034325 0.0315

1000 0.037967 0.043282 0.034394 0.039287 0.039773 0.0389
1500 0.054541 0.049696 0.054049 0.050404 0.048996 0.0515
2000 0.074112 0.070112 0.092851 0.083258 0.072628 0.0786

116

B.3 Data for the angle discretisation test for the

Hough Transform

The table below shows the time taken to run the Hough Transform algorithm for vari-
ous different values of the angle discretisation.

Angle discretisation Time 1 Time 2 Time 3 Ave Time
0.25 0.07724 0.07705 0.79979 0.0781
0.5 0.04591 0.04695 0.04722 0.0467

1 0.03202 0.03541 0.03617 0.0345
2 0.02519 0.02519 0.03052 0.0270
3 0.02632 0.02329 0.02519 0.0249
4 0.02162 0.02173 0.02424 0.0225

B.4 Data for grid size optimisation in Hough Trans-

form

The table below shows whether the size of the grid results in the correct number of
lines, or greater or fewer. The total number of correct(=), greater (>) or fewer (<)
lines is given in the last two lines of the table (either classified as the correct number
of lines or an incorrect number of lines). There is also a category for ”incorrect fit” - a
line that is simply not representative of the data. This is given by ”i”.

117

Grid Size 10 20 30 40 50 60 70 80 90 100 110 125 135 150
Dataset Number

1 i = = > > > > > > > > > > >
2 i = = = = = = = = = = > > >
3 i = = = = = > > > > > > > >
4 i < < < = = = = > > > > > >
5 < < < < = = = = = = = = = >
6 < < i i = = = = = = = = > >
7 < i i i = = = = = = = = > >
8 < < i i = = = = = = = = = >
9 < i i i i = = = = = = = = >

10 < < i i i i = = = = = = = >
11 i i i i i = = = = = = = = =
12 i i i i = = = = = > > > > >
13 < i i = = = = = = = = = = =
14 < i i i = = = = = = = = = =
15 < i i i i i = = = = = > > >
16 < i i i i = = = = = = > > >
17 < < i = = = = = = = = = = >
18 < i i i i = = = = = = = = =
19 < < i i i i i = = = = = = =
20 i i i i i i = = = = = = = =

No. Correct 0 3 3 4 11 15 17 18 17 16 16 13 11 6
No. Incorrect 20 17 17 16 9 5 3 2 3 4 4 7 9 14

The following tables show the data used for the speed analysis of the Hough Transform.
The data is generated is in a striaght line at 45 degrees. The number of points is varied
from 10 to 410 in 20 point increments. The average across each dataset and across the
grid number is shown in the last column and last row (respectively).

118

Data- G. No 50 60 70 80 90 100 110 Ave
set No.points

1 10 0.03592 0.03774 0.03724 0.04089 0.03847 0.04040 0.04003 0.0387
2 30 0.04287 0.04482 0.04752 0.04717 0.04936 0.05179 0.05229 0.0480
3 50 0.04927 0.05169 0.05354 0.06019 0.05998 0.06359 0.06434 0.0575
4 70 0.05419 0.06269 0.06195 0.06513 0.06796 0.07195 0.07572 0.0657
5 90 0.05796 0.06341 0.06709 0.07614 0.07755 0.08246 0.08682 0.0731
6 110 0.06389 0.07161 0.07646 0.08333 0.08767 0.09327 0.09796 0.0820
7 130 0.07242 0.07832 0.08622 0.09154 0.09952 0.10696 0.11028 0.0922
8 150 0.07839 0.08716 0.09248 0.09921 0.11282 0.11449 0.12359 0.1012
9 170 0.08347 0.09241 0.10167 0.10454 0.11279 0.12689 0.13285 0.1078

10 190 0.08943 0.09923 0.10562 0.11015 0.12174 0.13637 0.14530 0.1154
11 210 0.09378 0.10027 0.11061 0.12067 0.13172 0.13638 0.14919 0.1204

Ave 0.0656 0.0718 0.0764 0.0817 0.0872 0.0931 0.0980

The following table shows the data collected for the speed tests across datasets where
more than one line is fitted. The number of lines fitted is varied to the following num-
bers (by adding more horizontal lines to the data, but not changing the total number
of points - which is 500) 1, 2, 4, 6, 8 and 10. Each test is run 3 times, to obtain an
average. Note that the gridsize used is 100.

Number of points Test 1 Test 2 Test 3 Average
1 0.30454 0.29912 0.30487 0.3028
2 0.32351 0.31552 0.31917 0.3194
4 0.32625 0.35315 0.33235 0.3372
5 0.33917 0.34115 0.33638 0.3389
6 0.32874 0.33759 0.34372 0.3367
8 0.34101 0.35829 0.35207 0.3505

10 0.38131 0.37446 0.37679 0.3775

119

Appendix C

Tables of data used in Chapter 5

C.1 Data for the speed test of the Hough 3D algo-

rithm without pre-processing

In this section, the data used for testing the Hough Transform without pre-processing
is presented. The table below shows the data used for the speed testing on different
numbers of points for the Hough Transform. Each set of points is contained on a single
plane, but has a different number of points. The scale and orientation of the plane are
kept constant. Each test is run 5 times, and the final column in the table gives the
average value.

No. points Test 1 Test 2 Test 3 Test 4 Test 5 Average
9 0.078244 0.074374 0.075106 0.085454 0.073411 0.0765

16 0.122961 0.120213 0.115418 0.119475 0.117022 0.1190
25 0.183623 0.186131 0.180537 0.178552 0.177216 0.1812
36 0.235600 0.234266 0.241445 0.242460 0.244232 0.2398
49 0.311320 0.324586 0.316869 0.326224 0.312841 0.3184
64 0.399005 0.408272 0.394926 0.402125 0.411927 0.4033
81 0.504059 0.484546 0.511512 0.506549 0.514516 0.5042

100 0.624370 0.614677 0.599386 0.597584 0.613164 0.6098
121 0.742740 0.714353 0.717057 0.732673 0.716942 0.7248

C.2 Data for the testing of the edge detectors

The following table contains the speed and accuracy data for the Sobel, LoG and Canny
edge detectors. Each test is run 10 times. The speed at which the algorithm ran is
recorded in seconds.

120

Test no. Sobel LoG Canny
1 0.153060 0.183715 0.292605
2 0.148045 0.191071 0.284494
3 0.151892 0.190805 0.281146
4 0.150328 0.187574 0.291359
5 0.147206 0.199866 0.289759
6 0.156228 0.191144 0.278600
7 0.153543 0.191304 0.290804
8 0.158614 0.198658 0.279902
9 0.155451 0.199178 0.285761

10 0.147959 0.208837 0.278112

The following tables show the results of the tests of the 3-D Hough Transform. The
first table shows whether the Hough Trasnform gives the correct result for each of the
different threshholds. The threshholds used are 3, 5, 7, 9, 11, 13, 15 and 17. Each set
should result in only one plane being output

Set no./Threshhold 3 5 7 9 11 13 15 17
1 = = = = = = = =
2 = = = = = = = =
3 = = = = = = = =
4 = = = = = = = =
5 = = = = = = > >
6 = = = = = = > >
7 = = = = = = > >
8 = = = = = = = =
9 = = = = = = = =

10 = = = = > > > >
11 = = = = = > > >

The following table shows the speed of the algorithm depending on the threshhold. The
time taken is given in seconds. The number of points in the set is also given. Note that
the time taken is only given for the threshholds where the correct number of planes is
found.

121

T/H No. 3 5 7 9 11 13 15 17
Set no. pts

1 399 5.0011 5.8879 6.6115 7.4638 8.3126 9.1233 9.9444 10.7598
2 386 4.7766 5.6046 6.3920 7.2228 8.0232 8.7592 9.5556 10.4724
3 493 6.0465 7.1444 8.1782 9.2612 10.2478 11.2418 12.3019 13.2234
4 527 6.5613 7.6802 8.8018 9.8487 10.9269 11.9829 13.1688 14.2508
5 485 5.9412 6.9448 8.0398 9.0797 10.0206 10.9297 N/A N/A
6 467 5.5920 6.7459 7.7256 8.7629 9.7069 10.8354 N/A N/A
7 490 6.0213 7.1189 8.1081 9.0932 10.2133 11.1001 N/A N/A
8 517 6.3666 7.5104 8.5952 9.6259 10.7788 11.6912 12.7925 13.8157
9 507 6.1629 7.3845 8.3614 9.3824 10.6415 11.5292 12.7092 13.7189

10 597 7.2663 8.6850 9.9711 11.2104 N/A N/A N/A N/A
11 567 6.8653 8.2802 9.4901 11.6019 11.8245 N/A N/A N/A

C.3 Data collected for the obstacle avoidance tests

The following table shows the correct number of planes for each image, as well as the
number of “correct”, “parameters correct”, “corners correct” and “incorrect” planes. a
“correct” plane means that both the parameters and the corners are close enough to
the actual data to be useful for obstacle avoidance. A plane is defined as “parameters
correct” when the parameters of the plane are correct, but the corners extracted are
not. Finally, “corners correct” means that the corners are correctly extracted but the
parameters are not. Where N/A is recorded as the time, the memory limit in MATLAB
was reached.

Image Actual Correct Parameters Corners Incorrect Time taken
1 2 1 0 0 1 28.37
2 1 0 0 0 2 24.59
3 1 0 0 0 2 19.56
4 2 1 0 0 1 37.19
5 1 1 0 0 1 25.99
6 2 0 0 0 2 17.22
7 1 0 0 0 1 N/A
8 1 0 0 0 2 33.25
9 1 0 0 0 2 19.27
10 2 0 0 0 2 N/A

122

C.4 Data collected for the tests of the Hough Trans-

form on Real World Data

The following table shows the features which are segmented from each of the 92 frames.
Each feature is “Fully segmented” (F), “Not segmented” (N), “Partially segmented”
(P), or “”Not in the fram” (-).

123

Feature Screen Grid Table Teddy Carton Book Lamp Mug Can Plant Globe
Frame 1 F P F N P P N N - - -
Frame 2 F P F F P P N N N - -
Frame 3 F - F N P P N N N P -
Frame 4 F - N N P P N - N P -
Frame 5 F - F P P N P - N P -
Frame 6 F - P P F N P - N P -
Frame 7 P - P F P N P - N P -
Frame 8 P - F F N N P - N P -
Frame 9 P - F F N N P - N P -
Frame 10 P - F F P N P - N P -
Frame 11 P - F F F N P - N P -
Frame 12 F - F F P N P - N P -
Frame 13 F - P P P N P - N P -
Frame 14 F - F - F P N N N P -
Frame 15 F N - P P P N N N N -
Frame 16 F P F F P P N N - - -
Frame 17 F P F P P N - N - - -
Frame 18 F P F P - - - N - - -
Frame 19 F P F N - - - N - - -
Frame 20 F P F N - - - N - - -
Frame 21 F P F N F N - N - - -
Frame 22 F P F N F P - N - - -
Frame 23 F P F N F P N N - - -
Frame 24 F - F N P P N N N - -
Frame 25 F - F N P P P N N P -
Frame 26 F - - P P N P N N P -
Frame 27 P - F F P N P N N N F
Frame 28 P - F F P N P N N N F
Frame 29 P - F P P N N - N N F
Frame 30 P - F P P N N - - N F
Frame 31 P - F P P N N - - N F
Frame 32 P - F P P N N - - N F
Frame 33 N - F P P N N - - N F
Frame 34 N - F P P N N - - N F
Frame 35 P - F P P N N N N N F
Frame 36 P - F P P N N N N N F
Frame 37 P - F F P N N N N P F
Frame 38 F - F F P P P N N P F
Frame 39 F - F F P P P N N P P
Frame 40 F - F - F P P N N P -
Total F 24 0 34 13 7 0 0 0 0 0 12
Total P 14 10 3 15 28 14 16 0 0 18 1
Total N 2 1 1 10 2 23 18 24 26 11 0
Total - 0 29 2 2 3 3 6 16 14 11 27

124

Appendix D

Code

D.1 Code for the 2-D Hough Transform

125

D.2 Code for the 3-D Hough Transform

126

Bibliography

[1] J. Sturm, N Engelhard, F. Endres, W. Burgard and D. Cremers, “A benchmark
for the evaluation of RGB-D SLAM systems”, in Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), Oct. 2012.

[2] B. Lange, C. Chang, E. Suma, B. Newman, A. Rizzo and M. Bolas, “Development
and evaluation of low cost game-based balance rehabilitation tool using the Mi-
crosoft Kinect sensor”, in Proceedings of the 33rd Annual International Conference
of the IEEE EMBS, Boston, Massachusetts, USA, Aug-Sept 2011, pp. 1831 - 1834.

[3] A. Da Gama, T. Chaves, L. Figueiredo and V. Teichrieb, “Poster: Improving motor
rehabilitation process through a natural interaction based system using Kinect
sensor”, 2012 IEEE Symposium on 3D User Interfaces (3DUI), pp.145 - 146, 2012.

[4] C. Chang, B. Lange, M. Zhang, S. Koenig, P. Requejo, N. Somboon, A. Sawchuk
and A. Rizzo, “Towards pervasive physical rehabilitation using the Microsoft
Kinect”, in 2012 6th International Conference on Pervasive Computing Technolo-
gies for Healthcare (PervasiveHealth) and Workshops, pp. 159 - 162, 2012.

[5] Y. Chang, S. Chen and J. Huang, “A Kinect-based system for physical reha-
bilitation: A pilot study for young adults with motor disabilities”, Research in
Developmental Disabilities, vol. 32, pp. 2566 - 2570, 2011.

[6] T. Dutta, “Evaluation of the Kinect sensor for 3-D kinematic measurement in the
workplace”, Applied Ergonomics, vol. 43, no. 4, pp. 645 - 649, 2012.

[7] H. M. Hondori, M. Khademi and C. V. Lopes, “Monitoring intake gestures using
sensor fusion (Microsoft Kinect and inertial sensors for smart home tele-rehab set-
ting”, in 1st Annual IEEE Healthcare Innovation Conference of the IEEE EMBS,
pp. 36 - 39, Houston, Texas, USA, November 2012.

[8] I. Oikonomidis, N. Kyriazis and A. A. Argyros, “Efficient model-based 3D tracking
of hand articulations using Kinect”, in BMVC, vol. 1, no. 2, pp. 3, 2011.

[9] Z. Ren, J. Meng, J. Yuan and Z. Zhang, “Robust hand gesture recognition with
Kinect sensor”, in Proceedings fo the 19th ACM International conference on Mul-
timedia, pp. 759 - 760, Nov. 2011

127

[10] N. Villaroman, D. Rowe and B. Swan, “Teaching natural user interaction using
OpenNI and the Microsoft Kinect sensor”, in Proceedings of the 2011 ACM con-
ference on Information technology education, pp. 227 - 232, Oct. 2011.

[11] V. Frati and D. Prattichizzo, “Using Kinect for hand tracking and rendering in
wearable haptics”, In 2011 IEEE World Haptics Conference (WHC), pp. 317 - 321,
June 2011.

[12] M. Tölgyessy and P. Hubinsky, “The Kinect sensor in robotics education”, in
Proceedings of the 2nd International Conference on Robotics in Education, pp. 143
- 146, 2010.

[13] H. J. Hsu, “The potential of Kinect in education”, International Journal of Infor-
mation and Education Technology, vol. 1, no. 5, pp. 365 - 370, Dec. 2011.

[14] P. Benavidez and M. Jamshidi, “Mobile robot navigation and target tracking sys-
tem”, in Proceedings of the 2011 6th International Conference on System of Sys-
tems Engineering, pp. 299-304, Albuquerque, New Mexico, June 2011.

[15] C. Park, S. Kim, D. Kim and S. Oh, “Comparison of plane extraction performance
using laser scanner and Kinect”, in 2011 8th International Conference on Ubiqui-
tous Robots and Ambient Intelligence (URAI), pp. 153 - 155, Incheon, Korea, Nov.
2011.

[16] J. Biswas and M. Veloso, “Depth camera based indoor mobile robot localization
and navigation”, in Proceedings of the 2012 IEEE International Conference on
Robotics and Automation, pp. 1697-1702, Saint Paul, Minnesota, May 2012.

[17] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers and W. Burgard, “An
evaluation of the RGB-D SLAM system”, in Proceedings of the 2012 International
Conference on Robotics and Automation, pp. 1691 - 1696, Saint Paul, Minnesota,
May 2012.

[18] J. Stowers, M. Hayes and A. Bainbridge-Smith, “Altitude control of a quadrotor
helicopter using a depth map from Microsoft Kinect sensor”, in Proceedings of the
2011 IEEE International Conference on Mechatronics, pp. 358 - 362, Instanbul,
Turkey, April 2011.

[19] R. El-Laithy, J. Huang and M. Yeh, “Study on the use of Microsoft Kinect for
robotics applications”, in 2012 IEEE/ION Position Location and Navigation Sy-
posium (PLANS), pp. 1280 - 1288, 2012.

[20] P. Khandelwal and P. Stone, “A low cost ground truth detection system for
RoboCup using the Kinect”, in RoboCup 2011: Robot Soccer Wrold Cup XV, pp.
515 - 527, Springer Berlin Heidelberg, 2012.

128

[21] L. Cheng, Q. Sun, Y. Cong and S. Zhao, “Design and implementation of human-
robot interactive demonstration system based on Kinect”, in 2012 24th Chinese
Control and Decision Conference (CCDC), pp. 971 - 975, May 2012.

[22] N. Chen, Y. Hu, J. Zhang and J. Zhang, “Robot Learning of everyday object ma-
nipulation using Kinect”, in Foundations and Practical Applications of Cognitive
Systems and Information Processing, pp. 665 - 647, Springer Berlin Heidelberg,
2014.

[23] N. Ganganath and H. Leung, “Mobile robot localization using odometry and kinect
sensor”, in 2012 IEEEInternational Conference on Emerging Signal Processing
Applications (ESPA), pp. 91 - 94, Jan. 2012.

[24] P. Henry, M. Krainin, E. Herbst, X. Ren and D. Fox, “RGB-D mapping: using
Kinect-style depth cameras for dense 3D modeling of indoor environments”, The
International Journal of Robotics Research, vol. 31, no. 5, pp. 647 - 663, February
2012.

[25] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of Kinect depth data
for indoor mapping applications”, Sensors, vol. 12, no. 2, pp. 1437 - 1454, Feb.
2012.

[26] P. Rakprayoon, M. Ruchanurucks and A. Coundoul, “Kinect-based obstacle detec-
tion for manipulator”, IEEE/SICE International Symposium on System Intergra-
tion (SII), pp.68 - 73, 2011.

[27] Z. Zhang, “Microsoft Kinect sensor and its effect”, Multimedia, IEEE, vol. 19, no.
2, pp. 4 - 10, 2012.

[28] J. Smisek, M. Jancosek and T. Pajdla, “3D with Kinect”, Consumer Depth Cam-
eras for Computer Vision, Springer London, pp. 3 - 25, 2013.

[29] R. Macknojia, A. Chávez-Aragón, P. Payeur and R. Laganière, “Experimental
characterisation of two generations of Kinect’s depth sensors”, in 2012 IEEE In-
ternational Symposium on Robotic and Sensors Environments (ROSE), pp. 150
-155, 2012.

[30] H. Surmann, A. Nüchter, J. Hertzberg, “An autonomous mobile robot with a
3D laser range finder fo 3D exploration and digitization of indoor environments”,
Robotics and Autonomous Systems, vol. 45, pp. 181 - 198, 2003.

[31] A. Nasir, C. Hille, H. Roth, “Plane extraction and map building using a Kinect
equipped mobile robot”, in Workshop on Robot Motion Panning, Online, Reactive
and in Real-time, 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 7 - 12, Algarve, Portugal, October 2012.

129

[32] V. Nguyen, A. Martinelli, N. Tomatis and R. Siegwart, “A comparison of line
extraction algorithms using 2D laser rangefinder for indoor mobile robotics”, in
Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 1929 - 1934, Alberta, Canada, Aug. 2005.

[33] A. Rosenfeld, “Picture processing by computer”, ACM Computing Surveys
(CSUR) vol. 1, no. 3, pp. 147 - 176, 1969.

[34] P.V.C. Hough, “Method and means for recognizing complex patterns”, U.S. 3 069
654, Dec. 18, 1962.

[35] R.O. Duda and P.E. Hart, “Use of the Hough transformation to detect lines and
curves in pictures”, Communications of the ACM, vol. 15, no. 1, pp. 11 - 15, Jan.
1972.

[36] C. Kimme, D. Ballard, J. Slansky, “Finding circles by an array of accumulators”,
Communications of the ACM, vol. 18, no. 2, pp. 120 - 122, Feb 1975

[37] P. M. Merlin and D. J. Farber, “A parallel mechanism for detecting curves in
pictures”, IEEE Transactions on Computers, vol. 24, no. 1, pp. 96 - 98, Jan 1975.

[38] D.H. Ballard, “Generalising the Hough Transform to detect arbitrary shapes”,
Pattern recognition, vol. 13, issue 2, pg. 111 - 122, 1981.

[39] C.M. Brown, “Inherent bias and noise in the Hough Transform”, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 5, pp. 493 - 505, Sept.
1983.

[40] J. Illingworth and J. Kittler, “A survey of the Hough Transform”, Computer Vi-
sion, Graphics and Image Processing, vol. 44, no. 1, pp. 87 - 116, 1988.

[41] L. Xu, E. Oja and P. Kultanen, “A new curve detection method: Randomised
Hough Transform (RHT)”, Pattern Recognition Letters, vol. 11, no. 5, pp. 331 -
338, May 1990.

[42] D. Borrmann, J. Elsberg, K. Lingemann and A. Nüchter, “The 3D Hough Trans-
form for plane detection in point clouds: A review and a new accumulator design”,
3D Research, vol. 2, no. 2, pp. 1 - 13, 2011.

[43] N. Kiryati, Y. Eldar and A. M. Bruckstein, “A probabilistic Hough Transform”,
Pattern Recognition, vol. 24, no. 4, pp. 303 - 316, 1991.

[44] A. Ylā-Jāāski, N. Kiryati, “Adaptive termination of voting in probabilistic cir-
cular Hough Transform”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, no. 9, pp. 911 - 915, 1994.

130

[45] L.A.F Fernandes, M.M. Oliveira, “Real-time line detection through an improved
Hough transform voting scheme”, Pattern Recognition, vol. 41, no. 1, pp. 299 -
314, 2008.

[46] J. Overby, L. Bodum, E. Kjems and P.M.Ilsøe, “Automatic 3D building reconstruc-
tion from airborne laser scanning and cadastral data using the Hough Transform”,
Int. Arch. of Photogrammetry and Remote Sensing, vol. 35, no. B3, pp. 296 - 301,
2004.

[47] G. Vosselman and E. Dijkman, “3D building model reconstruction from point
clouds and ground planes”, Int. Arch. of Photogrammetry and Remote Sensing,
vol. 34, no. 3/W4, pp. 37 - 43, 2001.

[48] D. Dube and A. Zell, “Real-time plane extraction from depth images with the
randomised Hough Transform”, 2011 IEEE International Conference on Computer
Vision Workshops, pp. 1084-1091, 2011.

[49] R. Hulik, M. Spanel, P. Smrz and Z. Materna, “Continuous plane detection in
point-cloud data based on 3D Hough transform”, Journal of Visual Communication
and Image Representation, vol. 25, no. 1, pp. 86 - 97.

[50] M. Camurri, R. Vezzani and R. Cucchiara, “3D Hough tranform for sphere recog-
nition on point clouds.” Machine Vision and Applications, vol. 25, no. 7, pp. 1877
- 1891, 2014.

[51] R.-C. Dumitru, D. Borrmann and A. Nüchter, “Interior reconstruction using the
3-D Hough Transform”, Int. Arch. of the Photogrammetry, Remoted Sensing and
Spatial Information Sciences, vol. 40, Feb. 2013.

[52] O.J. Woodford, M.-T. Pham and A. Maki, “Demisting the Hough Transform for
3D shape recognition and registration”, International Journal of Computer Vision,
vol. 106, no. 3, pp. 332 - 341, 2013.

[53] D.H. Ballard and J. Slansky, “A ladder-structured decision tree for recognising
tumors in chest radiographs”, IEEE Transactions on Computers, vol. 100, no. 5,
pp. 503 - 513, May 1976.

[54] H. Wechsler and J. Slansky, “Finding the rib cage in chest radiographs”, Pattern
Recognition, vol. 9, no. 1, pp. 21 - 30, 1977.

[55] F. Zana and J.C. Klein. “A multimodal registration algorithm of eye fundus images
using vessels detection and Hough Transform”, IEEE Transactions on Medical
Imaging, vol. 18, no. 5, pp. 419 - 428, May 1999.

[56] M.E. Brummer, “Hough Transform detection of the longitudinal fissure in tomo-
graphic head images”, IEEE Transactions on Medical Imaging, vol. 10, no. 1, pp.
74 - 81, Mar. 1991.

131

[57] P. Jensfelt, H.I.Christensen, “Laser based position aquisition and tracking in an in-
door environment”, International Symposium on Robotics and Automation - ISRA,
vol. 98, 1998.

[58] S. T. Pfister, S.I Roumeliotis and J.W. Burdick, “Weighted line fitting algorithms
for mobile robot map building and efficient data representation”, in Proceedings of
IEEE International Conference on Robotivs and Automation, ICRA 2003, vol. 1,
pp. 1304 - 1311, 2003.

[59] D. Ribas, P. Ridao, J. Neira and J. D. Tardós, “SLAM using an Imaging Sonar
for partially structured underwater environments”, in Proceedings of the 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5040
- 5045, Beijing, China, Oct. 2006.

[60] Adept Mobile Robots, “Pioneer 3 - DX Datasheet”, available:
http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-
RevA.sflb.ashx. accessed: 12 October 2014, 18:05.

[61] D. Ribas, R. Ridao, J. Tardós and J. Neira, “Underwater SLAM in a marina
environment”, in Proceedings of the 2007 IEEE/RSJ International Conference in
Intelligent Robots and Systems, pp. 1455 - 1460, San Diego, CA, USA, Nov. 2007.

[62] R. Muniz, L. juanco and A. Otero, “A robust software barcode reader using the
Hough Transform”, International Conference on Information Intelligence and Sys-
tems, pp. 313 - 319, 1999.

[63] T. Pavlidis and S.L. Horowitz, “Segmentation of plane curves” IEEE Transaction
on Computers, vol. 23, no. 8, pp. 860 - 870, 1974.

[64] G. Borges and M. Aldon, “A split and merge segmentation algorithm for line ex-
traction in 2-D range images”, in Proceedings of the 15th International Conference
on Pattern Recognition, vol. 1, pp. 441 - 444, Barcelona, Spain, September 2000.

[65] G. Borges, M. Aldon, “Line extraction in 2-D range images for mobile robotics”,
Journal of Intelligent and Robotic Systems, vol. 40, no. 3, pp. 267-297, 2004.

[66] T. Einsele, “Real-time self-localisation in unknown indoor environments using a
panorama laser range finder”, in Proceedings of the IEEE International Conference
on Intelligent Robots and Systems, vol. 2, pp.697 - 702, Sept. 1997.

[67] L. Zhang and B. K. Ghosh, “Line segment based map building and localisation
using 2D laser range finder”, in Proceedings of the 2000 IEEE International Con-
ference on Robotics and Automation, vol. 3, pp. 2538 - 2543, San Francisco, CA,
Apr. 2000.

132

[68] N. Sunderhauf, S. Lange, P. Protzel, “Using the unscented Kalman filter in mono-
SLAM with inverse depth parameterisation for autonomous airship control”, Pro-
ceedings of the 2007 IEEE International Workshop on Safety, Security and Rescue
Robots, pp. 1 - 6, Rome, Italy, Sept. 2007.

[69] A.J. Davison, I.D.Reid, N.D.Molton and O. Stasse, “Mono-SLAM: real-time single
camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 6, pp. 1052 - 1067, June 2007.

[70] J. Tardif, Y. Pavlidis, K. Danilidis, “Monocular visual odometry in urban envi-
ronments using an omnidirectional camera”, 2008 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 2531 - 2538, Nice, France, Sept.
2008.

[71] R. Hartley and A. Zisserman, Multiple view geometry, Second Edition, Cambridge,
UK: Cambridge University Press, 2003.

[72] D.C. Brown, “Decentering distortion of lenses”, Photometric Engineering, vol. 32,
No. 3, pp. 444 - 462, 1966.

[73] J. Bouget (2013, Oct. 10). Camera Calibration Toolbox for Matlab[Online] Avail-
able: http://www.vision.caltech.edu/bouguetj/calib doc/index.html.

[74] K. Konolige, P. Mihelich, “Technical description of Kinect calibration”, available:
www.wiki.ros.org/kinect calibration/technical. Accessed: 10:06AM (CAT) on 25
January 2014.

[75] Micron, “1/2-Inch megapixel CMOS digital image sensor”, MT9M001 datasheet,
2004.

[76] Hokuyo Automatic Company, “Scanning laser range finder URG-04LX Specifica-
tions”, URG-04LX Datasheet, 2005.

[77] M. Montemerlo, S. Thrun, D. Koller and B. Wegbreit, “FastSLAM: a factored
solution to the simultaneous localization and mapping problem”, AAAI.IAAI, pp.
593 - 598, 2002.

[78] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and mapping: part
1,” IEEE Robotics and Automation Magazine, vol. 13, no. 2, pp. 99 - 110, June
2006.

[79] J. Guivant and E. Nebot, “Optimisation of the simultaneous localisation and map-
building algorithm for real-time implementation”, IEEE Transactions on Robotics
and Automation, vol. 17, no. 3, pp. 242 - 257, June 2001.

[80] L. Paz, J. Tardos and J. Neira, “Divide and conquer: EKF-SLAM in O(n)”, IEEE
Transactions on Robotics, vol. 24, no. 5, pp. 1107 - 1120, October 2008.

133

