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Abstract

As homes and workplaces become increasingly automated, an efficient, inclusive and
language-independent human-computer interaction mechanism will become more
necessary. Isolated gesture recognition can be used to this end.

Gesture recognition is a problem of modelling temporal data. Non-temporal models
can be used for gesture recognition, but require that the signals be adapted to the
models. For example, the requirement of fixed-length inputs for support-vector ma-
chine classification. Hidden Markov models are probabilistic graphical models that
were designed to operate on time-series data, and are sequence length invariant.
However, in traditional hidden Markov modelling, models are trained via the max-
imum likelihood criterion and cannot perform as well as a discriminative classifier.
This study employs minimum classification error training to produce a discrimina-
tive HMM classifier. The classifier is then applied to an isolated gesture recognition
problem, using skeletal features.

The Montalbano gesture dataset is used to evaluate the system on the skeletal
modality alone. This positions the problem as one of fine-grained dynamic gesture
recognition, as the hand pose information contained in other modalities are ignored.
The method achieves a highest accuracy of 87.3%, comparable to other results re-
ported on the Montalbano dataset using discriminative non-temporal methods. The
research will show that discriminative hidden Markov models can be used success-
fully as a solution to the problem of isolated gesture recognition.
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Chapter 1

Introduction

As the world becomes more connected, homes and workplaces become more auto-
mated. An efficient, inclusive and language-independent human computer interac-
tion (HCI) will prove very desirable.

1.1 Gesture recognition

Gestures are present in daily human activity. They participate in or facilitate com-
munication by complementing speech, or are the primary medium such as for people
with hearing disabilities. Gestures also substitute themselves to spoken language in
situations requiring silent communication like noisy environments, under water or
in secret communication (Escalera et al., 2017). The process of detecting and classi-
fying gestures using computer hardware is termed gesture recognition. Applications
for it are countless: HCI, communication, entertainment, security, commerce and
sports. It can also have an important social impact in assistive-technologies for the
handicapped or the elderly (Escalera et al., 2017).

Effective gesture detection and classification is challenging due to several factors:
differences in the tempos and styles of articulation of individuals, infinitely many
kinds of out-of-vocabulary motion, and real-time performance constraints (Neverova
et al., 2014). Gesture recognition can be isolated or continuous. Isolated gesture
recognition involves one at a time gestures that are easier to segment and can be
processed on the knowledge that only one input will be required. Continuous gesture
recognition is the process of recognising words or sentences from constant streams
of movement and presents a much more challenging scenario. Such is the case for
sign language recognition. A practical sign language recognition system should pre-
side over a large vocabulary of words, and employ sub-unit cheremic (analogous to
phonemic, but for gestures) models. Sub-unit models for sign language are still an
unsolved problem (Koller et al., 2015). Isolated gesture recognition can also be a
challenging problem owing to the large intra-class variability and inter-class similar-
ity of gestures (Liang and Zheng, 2014).

The field of gesture recognition will keep benefiting from the availability and im-
provements of low cost depth sensors.
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1.2 Generative and discriminative classifiers

The generative-discriminative dichotomy is discussed. Generative classifiers learn
a model of the joint probability P (X, Y ), of the inputs X and the label Y . They
make their predictions by using Bayes’ rule to calculate P (Y |X), and then picking
the most likely label Y . Discriminative classifiers model the posterior P (Y |X) di-
rectly, or learn a direct mapping from the inputs X to the class labels Y (Ng and
Jordan, 2002).

There are benefits to the use of generative models. Since generative classifiers op-
erate on a set of modelled distributions, adding a class to the classifier just means
adding another model for the new distribution. The entire system must be retrained
when a class is added to a discriminative classifier. A generative model, as the name
implies, can synthesise new data by sampling from the distribution it has modelled.
Ng and Jordan (2002) report that their findings support that generative classifiers
need less training data to reach their asymptotic error than discriminative classifiers
do.

There are several compelling reasons for using discriminative rather than gener-
ative classifiers, one of which is that the classification problem should be solved
directly and not by solving a sub-problem like modelling P (X|Y ) (Ng and Jordan,
2002). Intuitively, discriminative classifiers should have lower asymptotic errors than
generative classifiers.

1.3 Discriminative hidden Markov models

A hidden Markov model (HMM) is natively a generative model. HMMs are proba-
bilistic graphical models that were designed to model time-series data. They have
been successfully employed in a wide range of fields, most notably in speech recog-
nition. As generative models, HMMs model the probability P (X|Y ) for sequences
X, and HMM classifiers use Bayes’ rule to pick the best corresponding label Y . The
current state-of-the-art in speech recognition is still based on HMMs as phonemic
models where deep learning methods have become the new paradigm for language
and acoustic modelling (Saon et al., 2015), (Fohr et al., 2017).

HMMs are well suited to the problem of isolated gesture recognition as they are
temporally invariant. The first-order Markov property allows for a simple tempo-
ral structure in which only the previous state and current observation is relevant
for determining the system’s current state. HMMs are not good at modelling state
durations naturally. State duration is modelled implicitly by the self transitions of
the states as an exponential distribution. The models can however be augmented to
explicitly model state duration (Rabiner, 1989). This makes an HMM in its usual
form unsuitable for modelling say a melody, since it will be better at modelling the
series of notes than the timing. However, this idiosyncrasy makes complete sense
for modelling gestures, where durations present problematic variance which most
modelling techniques are not immune to. Non-temporal model based solutions to
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gesture recognition (such as convolutional neural networks or SVMs) require fixed
length inputs. This necessitates interpolating original sequences to fixed length vec-
tors or sampling at multiple temporal scales to represent the signal. Using HMMs
to model sequences is a natural way of dealing with temporally variant data since it
negates data preprocessing steps to account for varying sequence lengths.

Discriminative training of HMMs comes from the speech recognition literature. The
maximum mutual information (MMI) criterion surfaced as early as in Bahl et al.
(1986). There are very limited examples in the literature of discriminative HMMs be-
ing used for gesture recognition. According to Minka (2005), discriminative trained
generative models are not generative models but are in fact a type of discrimina-
tive model since the parameters no longer embody the original underlying process.
The discriminative training of HMMs via the minimum classification error objec-
tive turns the distribution estimation problem into one of modelling the classifier
decision boundary directly. Especially in the M -class isolated recognition case, it
turns an HMM from a distribution model to a discriminant function. However, the
first-order Markov property still applies, and so does the new discriminant func-
tion’s robustness toward state duration. Discriminative HMMs still possess the rich
mathematical structures for dealing with temporally varying signals, even after they
are no longer generative models. The simplest type of HMM allows for sequence
length invariant function evaluation using the forward or Viterbi algorithms. It is
argued here that for the problem of gesture recognition, discriminative HMMs offer
the performance benefit of a discriminative classifier while preserving the benefit of
sequence length invariance.

1.4 Dynamic gesture recognition on skeletal data

Dynamic gesture recognition is a sub-field that considers dynamic movements as
opposed to poses. The recognition of finger-spelling alphabet letters is an example
of a static gesture recognition problem where the information is contained in hand
poses. Dynamic gesture recognition is generally concerned with larger-scale body
movements. The Montalbano data set is a large commercial depth-sensor based ges-
ture recognition data set, and contains gestures with mixtures of dynamic and pose
components. The data set was designed and used for the Chalearn looking at people
(LAP) 2013 and 2014 challenges (Escalera et al., 2013) (Escalera et al., 2014). The
competitions pose different problems of multi-modal gesture recognition on twenty
Italian anthropological signs. The gestures contain fine hand articulation so as to
require RGB, depth, user-segmented depth and skeleton model frames. However,
even the gestures with fine hand articulations have some dynamic component rep-
resented in the skeletal modality. The dataset thus offers a unique test case for
fine-grained dynamic gesture recognition. This study uses the Montalbano dataset
to evaluate an HMM classifier for fine-grained dynamic gesture recognition on the
skeletal modality. Findings suggest that maximum likelihood (ML) HMMs are trou-
bled with the similarity of some classes on this problem, and that discriminative
training offers a good solution. Using non-temporal discriminative methods, Liang
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and Zheng (2014) present the following classification results on the segmented Mon-
talbano test set: 92.80% accuracy using all modalities and 83.02% as the highest
accuracy using only the skeletal modality. Evangelidis et al. (2014a) report a 90%
classification accuracy on the segmented test set using the skeleton modality alone.
Using only the skeletal modality this study achieves as a highest accuracy 87.3% as
seen in chapter 5.

1.5 Objectives of the study

This study investigates discriminative training of HMMs via the minimum classifi-
cation error (MCE) criterion as a solution to isolated gesture recognition problems
such as a simple HCI system that uses skeletal features. Particularly, it is concerned
with the case where the skeletal features are at their carrying capacity in terms of
representing the gestures. The study however assumes that the gestures are already
segmented. For the sequence modelling part of the system, the study advocates the
use of discriminative HMMs. The study aims to:

• Show that MCE-HMMs can be used successfully for isolated gesture recogni-
tion,

• Provide useful findings for the implementation of a MCE-HMM gesture recog-
nition system.

1.6 Contributions

There are various preliminary problems to solve in the design of an HMM-based
discriminative gesture classifier. Problems such as finding good initialisations and
model selection limit the performance that can be harnessed from an HMM classifier.
The study highlights important underlying problems in both the gesture modelling
and optimisation parts of the design. Modelling suggestions tend to be domain
specific whereas optimisation suggestions tend to be general. This study provides
optimisation recommendations that stem from the modelling of particularly long
sequences found in gestures sampled at twenty frames per second (FPS). It is the
intention of the study to offer a thorough treatment of MCE-HMM gesture classifier
design.

1.7 Overview of the work

Chapter 2 lays out the relevant literature for the study but is intended to be read
as an argument for discriminative instead of ML HMMs as a solution to isolated
recognition problems. The chapter starts off with a treatment of the history and
current status of HMMs in the gesture recognition literature, and then details the
technical backdrop to discriminative HMMs. In chapter 3 the implementation de-
tails for the discriminative classifier design are elucidated. Common problems that
cannot be overlooked are discussed along with their suggested solutions. Thereafter
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particular problems with the discriminative optimisation are discussed, along with
the solutions employed in the study. Chapter 4 discusses the set up for deploying
the implementation onto the Montalbano gesture dataset. First the specifications of
the dataset are discussed and choices relating thereto. Then, other work on the ges-
ture dataset is discussed along with the results that can be directly compared to the
results from this study. Then more general gesture modelling topics are discussed
such as the feature extraction, filtering and decorrelation. The chapter presents the
benchmark performance results for the ML manifestation of the gesture classifier.
In chapter 5 the experiments conducted on MCE training and the resulting dis-
criminative HMMs are laid out. Finally the conclusions are presented in chapter 6.
The appendix provides detailed information on the analytical gradients as well as
derivations for some of the underlying formulae.
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Chapter 2

Literature

This chapter details the literature on HMMs and discriminative training. It is in-
tended to serve as an argument for the use of discriminative HMMs over ML HMMs.
First, the history and current status of HMMs in gesture recognition are discussed.
Then the technical backdrop to discriminative HMMs is defined from the relevant
literature.

2.1 History and current status of hidden Markov

models in gesture recognition

According to Juang and Rabiner (2005), the idea of hidden Markov models seems
to have originated in the late 1960’s at the Institute for Defence Analysis (IDA) in
Princeton New Jersey. Baum (1972) referred to an HMM as a set of probabilistic
functions of a Markov process. This implies two nested distributions, one pertaining
to the Markov chain, and the other to the set of distributions associated with the
states of the Markov chain (Juang and Rabiner, 2005). This doubly stochastic pro-
cess was found to be useful in stock-market prediction, crypto-analysis of a rotary
cipher (which was widely used during the second World War), and in the late 1970’s,
speaker identification systems (Juang and Rabiner, 2005). In the 1980’s the field of
speech recognition had undergone a change in methodology from a template-based
pattern recognition paradigm, to a more rigorous statistical framework based on
HMMs. Although HMMs were known and understood early on in laboratories such
as IBM and the IDA, the methodologies were not complete until the mid 1980’s,
and only after widespread publication of the theory did they become the preferred
method for speech recognition (Juang and Rabiner, 2005).

According to Mitra and Acharya (2007), probably the first publication to address
the problem of hand gesture recognition using HMMs is the celebrated paper by
Yamato et al. (1992). The authors used vector quantisation and discrete HMMs to
recognise six classes of tennis strokes from image sequences. The image sequences
underwent low-pass filtering to remove noise and background subtracted to extract
the moving objects. Blobs that roughly represent the human poses were formed by
transforming the extracted moving object images to binary images. A feature vector
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was then formed by applying a grid to the blob images and finding the black pixel
ratio in each cell. The ratios of the cells made up the elements of the vector. These
feature vectors were then quantised into symbols to be processed by discrete HMMs.
In the isolated recognition of three individuals with three-hundred test sequences per
individual, their system achieved an accuracy of 96%.

In Starner (1995) an HMM-system is described that recognises sentence level Amer-
ican Sign Language (ASL) based on a forty-word lexicon. Signs were modelled by
HMMs on the word level where strong rules of context and grammar were used
to make the recognition tractable. Viterbi decoding was used with and without a
strong grammar, based on the known forms of the sentences (Mitra and Acharya,
2007). The user sits on a chair in front of a camera wearing distinctly coloured gloves
to facilitate stable hand tracking. Instead of attempting to extract fine hand shape
features, the tracking process produces only a coarse description of the hand shape,
orientation, and trajectory. The pixel coordinates, angle of axis of least inertia, and
the eccentricity of the bounding ellipse of each hand formed the feature vector fed
to the HMMs (Starner, 1995). The system achieves a word accuracy of 97% using a
strong grammar, and a word accuracy of 91% using no grammar. These results were
later improved upon by Starner and Pentland (1997) to a word accuracy of 99.2%
using the strong grammar and 91.3% using no grammar.

Campbell et al. (1996) conducted an investigation into invariant features for ges-
ture recognition. The authors compared the recognition performance of different
feature sets on sequences of continuous T’ai Chi using HMMs. The dataset com-
prised 108 six-gesture ”sentences” based on eighteen T’ai Chi moves. The study
utilized a stereo vision system which produces three-dimensional world coordinates
of the head and hand positions to a 2cm approximate accuracy at up to 30 FPS.
Several feature vectors derived from this data were input to an HMM recognition
system (Campbell et al., 1996). All ”sentences” were performed by one individual.
The performer, seated in a swivel chair, performed the movements with the upper
body and hands. Each sequence begins with the hands in a rest position. From
there the six gestures are performed in a flowing manner characteristic of T’ai Chi.
The hands then return to the rest position (Campbell et al., 1996). Two thirds of
the dataset had the performer sitting in the same position and orientation; this was
called the ”original” set. A ”shifted” set (constituting a sixth of the dataset) was
performed with a translational shift of 14 inches from from the original position.
A further ”rotated” set (the remaining sixth) was performed with both an 8 inch
shift and 45 degree rotation. Training and testing sets were divided half-half. The
training set sequences were collected randomly from the three groups, where the
testing set kept them separated. This allowed performance to be measured individ-
ually for shifted and rotated data (Campbell et al., 1996). Using velocities of the
points in a cylindrical-coordinate system as features, a highest recognition rate of
95%, averaged over original, shift, and rotate test sets was achieved.

In Liang and Ouhyoung (1997) and Liang and Ouhyoung (1998) a real-time user-
dependent continuous sign language recognition system is described that uses a
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sensor-glove and presides over a vocabulary of 250 words. The system uses HMMs
to model fifty-one fundamental hand postures, six orientations, and eight motion
primitives that are based on semantic analysis of Taiwanese Sign Language (Liang
and Ouhyoung, 1998). The hand postures are found from flex sensors corresponding
to ten finger joints on the glove. Azimuth angle, elevation and roll form the orienta-
tion features that are calculated from a three-dimensional tracker embedded in the
glove. Lastly, motion trajectories are also extracted from the tracker. The critical
problem of end point detection is first solved using time-varying parameter disconti-
nuity detection. Several gesture-level hypotheses are then formed using the different
modalities along with information from the language model. After that the most
likely sentence is selected from sentence-level hypotheses. The average recognition
rate for continuous sign language was 80.4%.

Starner et al. (1998) presented two real-time HMM-based continuous ASL recog-
nition systems that use only a colour camera to track unadorned hands. Both
systems preside over a forty word lexicon. The first system observes the user from
a desk mounting, and achieves a 92% word accuracy. The second system has the
camera mounted in a hat that is worn by the user and achieves 98% word accuracy.
As in Starner (1995), the feature extraction does not attempt a fine description of
hand shape, instead it focuses on the larger spatio-temporal evolution of the ges-
ture. Vogler and Metaxas (1998) presented a methodology for recognizing isolated
and continuous ASL based on HMMs. Using three orthogonally placed cameras and
sophisticated physics-based vision algorithms to extract three-dimensional features,
the system achieves a (continuous) word accuracy of 87.71% over a fifty-three sign
lexicon. Furthermore, using a context-dependent HMM modelling to learn from the
co-articulation of signs, the system achieves a 89.91% word accuracy.

From the early 2000’s onwards, an abundance of publications dealing with work
done on HMM gesture recognition can be found in the literature. Assessing the cur-
rent status of the HMM as a gesture recognition tool is a complicated endeavour. By
looking at competitive gesture recognition events and their associated publications,
one can get a sense of what methods researchers deem most competitive. Work
done on the ChaLearn Looking at People 2013, 2014 and 2017 challenges reflect
many of the currently popular techniques employed by the gesture recognition com-
munity. Section 4.2 provides a discussion of some publications and general trends
on the 2013 and 2014 competitions. The 2013 competition saw the HMM as the
most widely applied classifier among contestants, whereas for the 2014 competition
it made up less than a third of preferred methods. The 2014 competition had SVMs
and different ensemble methods widely applied. These choices of classifiers also say
something interesting about the rest of the methodologies put towards a solution
for gesture spotting and recognition. It means that fewer contestants put their faith
in Viterbi decoding over an HMM network (or using the level-building algorithm)
for simultaneous segmentation and recognition. Instead, strategies are used such
as interval sub-sampling to capture temporal evolution in a sliding window(s), and
then passing it as input to a non-sequence classifier for per frame classifications.
The latter method seems much more of a lower-level approach to the problem. This
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of course has the benefit of being simpler and, possibly, leaves room to focus on
a discriminative feature representation. However if the number of classes were to
increase, the temporal distribution of the sequence itself will be, to a larger degree
than present, a discriminative feature. This might give sequence classifiers the up-
per hand. Wan et al. (2017) provides the results and analyses of the 2017 ChaLearn
Looking at people challenge. Track one and two represent large-scale isolated and
continuous gesture recognition challenges respectively. The methodologies employed
by the contestants for the isolated and continuous tracks were predominantly deep
learning strategies, some of which used recurrent neural networks for sequence learn-
ing (Wan et al., 2017).

2.2 The hidden Markov model as a Bayesian net-

work

Bayesian networks are graphical models for representing the conditional indepen-
dences between sets of random variables. They offer a graphical way of representing
a particular factorisation of a joint distribution (Ghahramani, 2001). For HMMs, the
Bayesian network framework serves as a compact unified way of listing the assump-
tions that make the basic problems, evaluation, decoding and learning, tractable.
Figure 2.1 shows that the observations are governed by an underlying sequence of

Figure 2.1: an HMM represented as a Bayesian network. It illustrates the forward temporal
probabilistic structure and conditional independence of the observations.

discrete random variables (denoted as squares). These random variables are called
the states of the system and capture the transient information, while the observa-
tions are sampled from distributions that belong to these respective states. The
figure also illustrates the first-order Markov property, by which the next state of
the system is only determined by the current state and, given the current state, is
conditionally independent of all previous states. This allows the factorisation of the
joint probability of the state sequence q that generated the observation sequence X:

P (q|λ) = P (q1)
T∏
t=2

P (qt|qt−1, λ). (2.1)

Also shown in figure 2.1 is that the observations themselves are independent, given
the state sequence from which they were generated:

P (X|q, λ) =
T∏
t=1

P (xt|qt, λ). (2.2)
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Thus, the joint distribution of the observations and the corresponding state sequence,
given the model, is factorised as (Ghahramani, 2001)

P (X, q|λ) = P (X|q, λ)P (q|λ) = P (q1|λ)P (x1|q1, λ)
T∏
t=2

P (qt|qt−1, λ)P (xt|qt, λ).

(2.3)
Given the complete HMM parameter set λ = {π,A, {b(x)}Ni=1}, it can be restated
as

P (X, q|λ) = πq1bq1(x1)
T∏
t=2

aqt−1,qtbqt(xt). (2.4)

Finally to find the probability of the observation sequence given the model, the joint
probability is marginalised over all possible state sequences q of length T:

P (X|λ) =
∑
q

P (X|q, λ)P (q|λ) =
∑
q

πq1bq1(x1)
T∏
t=2

aqt−1,qtbqt(xt). (2.5)

2.3 Structure

A N -state HMM consists of an initial state distribution vector π, a state transition
probability matrix A and the parameter set of its output distributions {bi(x)}Ni=1.
The output distribution can be multinomial (discrete), Gaussian, Gaussian mixtures
or a neural network (Ghahramani, 2001). Figure 2.2 shows the transition diagrams
of some well-known HMM topologies. Figure 2.2(a) shows the fully ergodic model
in which any state can be transitioned to from any other state in a single step. This
is appropriate for modelling signals known to be cyclic. Figure 2.2(b) shows the
transitional structure of a left-to-right HMM. In a LR-HMM, as time increases the
state either transitions to a higher state index or remains in its current state. This
makes the transition matrix upper triangular with aij = 0 if j < i (Rabiner, 1989).
This configuration is more appropriate for modelling acyclic sequences that have
some trajectory from beginning to end, like speech or gesture data. It is important
to note that the transition diagrams are graphical representations of the transition
matrix and should not be confused with the graph in figure 2.1, which depicts the
model’s statistical independence assumptions. The transitional structure can further
be constrained by limiting jumps to higher state indices by some predefined value
∆, in other words, the model cannot skip more than ∆− 1 states in any transition.
This makes for an upper triangular transition matrix with ∆ diagonals as aij > 0
if i ≤ j ≤ i + ∆. Models with this kind of transitional structure are called left-
right-banded (LRB) models. The LRB structure acts as a regularisation since, for
appropriate acyclic data, a banded-looking transition matrix will form naturally
by the zeroing out of infrequent transitions during training. By forcing a banded
structure a similar distribution is formed with fewer parameters, which generalises
better. This study uses LRB models with N/2 bands.
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(a) Fully ergodic

(b) Left-to-right

Figure 2.2: Transition diagrams for well known model topologies. Adapted from (Rabiner, 1989).

2.4 The MAP classifier decision rule

Given a set of M competing models Λ = {λi}Mi=1, and an observation sequence X to
be classified, the classifier decision is defined by

C(X) = Ci if P (λi|X) = arg max
j

P (λj|X), (2.6)

where the posterior probability is found from Bayes’ rule:

P (λi|X) =
P (X|λi)P (λi)

P (X)
. (2.7)

Given a uniform prior distribution over the model classes and noting that P (X) is
constant, the decision rule reduces to

C(X) = Ci if P (X|λi) = max
j
P (X|λj). (2.8)

2.5 Model selection

The basic philosophy of HMMs is that an observation sequence can be well modelled
if the parameters of the HMM are carefully and correctly chosen. The problem with
this philosophy is that it is sometimes inaccurate. There is no guarantee that the
signal, sampled from the real underlying distribution, will obey the constraints im-
posed by the model parameters (Rabiner, 1989). The models have to be selected a
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priori and then trained on finite data. Overfitting is prevalent when the training set
is small relative to the complexity of the model. Overfitting refers to the scenario
where a model fits the training set very well but generalises poorly to unseen data
from the same distribution (Ghahramani, 2001). There exists however some optimal
model in structure and parameter set size. This model will relate closest to the ac-
tual data distribution given the modelling assumptions stated in section 2.2. Model
selection or learning model structure is the problem of selecting a particular model
structure from several alternatives. For an HMM, the ’structure’ would include ev-
erything from the number of states to the topology and the choices regarding output
distributions.

A principled way of addressing overfitting is by means of a hyper-parameter se-
lection procedure. The traditional way of model selection is known as grid search or
parameter sweep. It is done by an exhaustive search through a manually specified
subset of the hyper-parameter space, guided by a performance metric (Hsu et al.,
2003). Performance metrics such as cross-validation (or evaluation on a held-out
validation set if enough data is available) provides an estimate of the true gener-
alisation error, however it is only computationally practical for determining a few
hyper-parameters (Ghahramani, 2001). This study employs a grid search strategy
for model selection as discussed in section 3.1.3.

2.6 Discriminative training

So far HMM classifier design was discussed in terms of the maximum likelihood
methodology. The goal is to capture the true distribution for each modelled class,
and accordingly, parameter estimation happens on a per-model basis. However,
as previously mentioned, the models aren’t perfect and make assumptions on the
distributions they model for tractability. More importantly, a classifier based on
maximum likelihood is oblivious to distributional overlap. If it so happens that for
any two classes the features that are to be modelled are very similar, the particular
differences won’t necessarily be learned via the model parameters and will result
in misclassification. That said, a validated or cross-validated likelihood score is a
good metric for how well the particulars of a true distribution are modelled. Model
selection can optimise an estimate of the true distribution but is in general either
computationally expensive or hard to implement.

A practical design would thus be one based on discriminative training. The goal
is to optimise the performance of the classifier directly over the entire parameter
set. It uses the training data to learn HMM parameters that optimally separate
the modelled classes by their likelihoods. The two main discriminative criteria for
HMM training are maximum mutual information (Bahl et al., 1986) and minimum
classification error (MCE) (Chou et al., 1992) (Juang et al., 1997). The following
sections discusses the MCE criterion, first from the function definition and then from
the perspective of optimisation.
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2.6.1 Objective functions and optimisation

Discriminative training is guided and controlled by an objective function. It is a
scalar function f(Λ) of the HMM classifier parameter set Λ evaluated on the training
data. Objective functions are useful because they express in a compact form the
goal of the particular training technique and are suitable for optimisation. For an
M -class problem with a training set D = {{X l

i}
Li
l=1}Mi=1, with Li samples per class,

the maximum likelihood objective as discussed in the preceding sections is expressed
in functional form as

fML(λi) =

Li∑
l=1

logP (X l
i |λi). (2.9)

The function aims to maximise the posterior P (λ|X) by approximating P (X|λ) as
closely as possible. Given a model, the function is traditionally optimised using the
Baum-Welch (BW) algorithm, but a very efficient alternative based on the most
likely path is the segmental k-means (SKM) algorithm (Juang and Rabiner, 1990).

Discriminative training of HMMs is a harder optimisation problem than training
them for maximum likelihood. There is also no update rule as convenient and
provably correct as the Baum-Welch algorithm for discriminative criteria, and ac-
cordingly early work on discriminative training used gradient descent for optimi-
sation (Povey, 2005). The two most well-known discriminative criteria for HMM
estimation, MMI and MCE, brought about the evolution of their own correspond-
ing, well-established optimisation algorithms.

2.6.2 The minimum classification error objective function

The minimum classification error objective aims to change classifier design from a
distribution estimation problem into one of estimating parameters for minimal error
directly. The difficulty associated with such a training approach lies in the derivation
of an objective function that has to be consistent with the performance measure and
also suitable for optimization (Juang et al., 1997). MCE estimation is a discrim-
inant function based approach to pattern recognition, where the classifier decision
is treated as comparisons among a set of discriminant functions and where parame-
ters are estimated to minimise the expected error over the training data when these
decisions are applied (He et al., 2008). The MCE objective function was originally
defined for isolated-word speech recognition, where each utterance can belong to
one of a fixed number M classes (Povey, 2005). The loss function is constructed
in such a way that the recognition error rate of the classifier is represented as a
smooth, differentiable function. Minimising the MCE function has a direct relation
to classifier error rate reduction (He et al., 2008). The MCE objective function is
constructed from likelihood-based generative models as described below.

The MCE criterion defines a class conditional likelihood function on the entire clas-
sifier parameter set Λ:

gi(X,Λ) = logP (X|λi). (2.10)
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The classifier decision in (2.8) can then be restated as

C(X) = Ci if gi(X,Λ) = max
j
gj(X,Λ). (2.11)

The key to the error criterion is to express the operational decision rule above in a
smooth functional form (Juang et al., 1997). If an error count function is defined
for the class i such that

ei(X,Λ) =

{
1 X ∈ Ci and gi(X,Λ) 6= maxj gj(X,Λ)

0 otherwise,
(2.12)

and this function is averaged over a data set to find an empirical estimate of the
classifier error, the estimate would be a piecewise constant function of the classi-
fier parameters and a poor candidate for optimization (Juang et al., 1997). Thus
the function cannot merely count the incorrect classifications over the data, it must
contain a measure of correctness so as to have the error be represented over a con-
tinuous interval of the parameter space. Furthermore, besides optimisation, the
inability of such an empirical error rate function to distinguish near miss and barely
correct cases will most likely impair the performance of the recognizer on indepen-
dent data (Chou et al., 1992). Using the definition of gi(X,Λ) as a probabilistic
distance, a misclassification measure is defined as

di(X,Λ) = −gi(X,Λ) + log

[
1

M − 1

∑
j 6=i

egj(X,Λ)η

] 1
η

, (2.13)

which not only indicates correct or incorrect classification but assigns a measure of
distance for how correct or incorrect a classification is. This misclassification measure
is a continuous function of the classifier parameters that attempts to emulate the
classifier decision rule (Juang et al., 1997). For an observation sequence X ∈ Ci, a
value of di(X,Λ) > 0 indicates misclassification and di(X,Λ) ≤ 0 a correct decision.
The bracketed term in the misclassification function is a Lη-norm approximation to
the highest competing class likelihood maxj 6=i P (X|λj) = ‖P (X|λj)‖∞ as η → ∞.
To complete the definition, the misclassification measure with its large unbounded
dynamic range is embedded in the logistic function

`i(X,Λ) =
1

1 + e−γdi(X,Λ)
. (2.14)

Any member of the sigmoid family will be a good candidate. However, the logistic
function squeezes the aforementioned dynamic range into a zero-one interval that
neatly approximates the classifier error count in (2.12). The parameter γ controls
the centre slope of the logistic function. On a random training sample X, the
performance of the classifier Λ is thus measured by

`(X,Λ) =
M∑
i=1

`i(X)δ(X ∈ Ci), (2.15)
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where δ is an indicator function. For a classification problem with M different
classes, the expected loss of the classifier Λ is defined as

L(Λ) =
M∑
i=1

∫
X∈Ci

`i(X,Λ)P (X)dX (2.16)

= EX [`(X,Λ)]. (2.17)

Minimising L(Λ) is the basis for using the generalised probabilistic descent method
described in section 2.6.4. To evaluate the performance of the classifier on a data
set of P samples, (2.15) is averaged over the data,

LP (Λ) =
1

P

M∑
i=1

Li∑
l=1

`i(X
l
i ,Λ). (2.18)

For simplicity the data set is divided per class. The empirical loss of the classifier
LP (Λ) can be directly optimised with gradient descent or a second order method.
However, doing so will be computationally expensive for complex models or large
data sets since in each iteration the gradients have to be accumulated over all of the
data for each parameter. The empirical loss, defined on the P independent samples,
will converge to the expected loss as the data set size P →∞ (Juang et al., 1997).

2.6.3 The relation of MCE to other discriminative criteria

Besides the obvious conclusion that both MMI and MCE objectives will improve the
performance of a classifier Λ, it can be shown that they are in fact mathematically
very similar. The uniform prior distribution isolated recognition case is considered.
Given the settings of the MCE function parameters M = 2, η = 1 and γ = 1, (2.13)
is restated as

di(X,Λ) = − logP (X|λi) + log
∑
j 6=i

P (X|λj). (2.19)

With this distance measure substituted in (2.14), the loss for the training sequence
X is rewritten as

`i(di(X,Λ)) =
1

1 + P (X|λi)∑
j 6=i P (X|λj)

(2.20)

=

∑
j 6=i P (X|λj)∑

j 6=i P (X|λj) + P (X|λi)
(2.21)

=

∑
j 6=i P (X|λj)∑
j P (X|λj)

. (2.22)

From the loss function, a corresponding utility function can be defined as

ui(di(X,Λ)) = 1− `i(di(X,Λ)) (2.23)

= 1−
∑

j 6=i P (X|λj)∑
j P (X|λj)

(2.24)

=
P (X|λi)∑
j P (X|λj)

. (2.25)
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The MCE utility evaluates to the same posterior probability as the MMI function
for a single training sequence X. The important difference is that the individual
MMI functions of X are multiplied to form the aggregate over the dataset, whereas
for MCE loss, or utility, they are summed (He et al., 2008).

2.6.4 Generalised probabilistic descent optimisation

The generalised probabilistic descent (GPD) algorithm minimises the expected loss
of the classifier Λ, defined in (2.16). The update is essentially a preconditioned
stochastic gradient descent (SGD) operation

Λ̃n+1 = Λ̃n − εnUn∇`(Xn,Λ)|Λ=Λn (2.26)

in a transformed parameter space, where εn is a sequence of positive numbers known
as the learning rate and Un a positive definite preconditioning matrix. The gradi-
ent vector ∇`(X,Λn)|Λ=Λn is calculated w.r.t the transformed parameters of the
loss function (2.15) evaluated on a random sample X at time n. The set of pa-
rameter transformations T (Λ) = Λ̃ maintains the original constraints on the HMM
parameters. Thus for minimising a function of HMMs, SGD as an unconstrained
optimisation technique can be used. The following transformations apply to HMMs
with Gaussian mixture output distributions:

aij → ãij aij =
eãij∑N
j=1 e

ãij
(2.27)

cjk → c̃jk cjk =
ec̃jk∑K
k=1 e

c̃jk
(2.28)

µjkd → µ̃jkd µ̃jkd =
µjkd
σjkd

(2.29)

σjkd → σ̃jkd σ̃jkd = log σjkd. (2.30)

Notice that for the sum-to-one constraints, only transformations out of the new pa-
rameter space can be specified, whereas the last two transformations are reversible.
The inverse transforms are thus used to update the parameters using gradients
calculated with respect to the transformed parameters, in terms of the original pa-
rameters. For clarity, the transition probability update of the i’th model a

(i)
ij ∈ λi

of the classifier is shown below. First the step in the separate parameter space is
found,

∆ã
(i)
ij = ã

(i)
ij {n+1} − ã

(i)
ij {n} = −εn

∂`i(Xn,Λ)

∂ã
(i)
ij

∣∣∣∣
ã
(i)
ij =ã

(i)
ij {n}

, (2.31)

and then substituted into the inverse transform

a
(i)
ij {n+1} =

a
(i)
ij {n}e

∆ã
(i)
ij∑N

j=1a
(i)
ij {n}e

∆ã
(i)
ij

. (2.32)

This produces an update for a
(i)
ij that can be calculated entirely from the current

non-transformed parameters Λ.
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Chapter 3

Implementation

This chapter discusses the implementation of the HMM classifier used in the study.
First, general problems encountered with HMM classifiers are elaborated upon, along
with the solutions employed in the study. Thereafter useful recommendations for
the discriminative optimisation procedure presented in section 2.6.4 are detailed,
mostly from the neural networks literature. For illustration, results are presented
below on real or toy problems all of which are based on the Montalbano gesture
dataset. Details on the dataset are discussed in chapter 4.

3.1 Solutions to general problems

This section details general problems to modelling with HMMs and solutions em-
ployed in the study. The results from this section are the actual solutions used for
the classifier design for the twenty-class Italian cultural gesture classifier. Every
gesture is modelled with a single HMM.

3.1.1 Initialization

According to Rabiner (1989), initialisation is crucial for finding a good solution
during ML training of HMMs. In this study, it was found that the most important
parameter subset to initialise was the mean vectors of the output distributions. Two
initialisation heuristics are discussed, flat-initialisation and averages along sequences.
In flat initialisation the global mean and variance are first found from the training
data set, and then used to initialise every Gaussian component of every output
distribution in the model. This study uses an improvised method of binning all
of the training sequences into N (the number of model states) bins. The average
of each bin is then used to initialise the mean vectors of the corresponding output
distribution. The study employs both the segmental k-means and Baum-Welch
algorithms for ML training. It was found that segmental k-means is more robust to
initialisation. Figure 3.1 shows the relative magnitudes of the converged SKM pre-
training likelihoods for flat and binned initialisation. Twelve out of twenty bar-pairs
indicate higher convergence likelihoods for binned initialisation.
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Figure 3.1: A bar plot showing the relative convergence likelihoods for a SKM pre-training of
the classifier, for flat- and binned initialisation respectively.

3.1.2 Local optima

To curb the effects of local optima in the ML parameter space, a combination of the
segmental k-means and Baum-Welch algorithms was used. SKM was found to be
more robust to initialisation than the BW algorithm, although the BW algorithm on
average reaches higher asymptotic maxima. Figure 3.2 shows the training curves of
a BW, SKM and SKM-BW optimisation. The BW optimisation (displayed in red)
seems to get stuck in a local optimum while the SKM likelihood (in green) increases.
The blue curve represents a SKM-BW pair which is identical to SKM up to a point
and then uses BW to arrive at a final optimum. This study uses the SKM algorithm
for pre-training and the BW algorithm for further training as it ensures that all
parameters are changed. In order to lessen the gravity of local optima, data can

Figure 3.2: Baum-Welch and segmental k-means training on the same data and initialisation
for the gesture ”furbo”.

be centred so as to have a zero mean, and scaled so as to have unit variance in all
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dimensions. This is called data standardisation and will improve the optimisation
surface in the parameter space. Section 3.2.1 details how standardisation was applied
in MCE training. If the data is also decorrelated, all of the data points will be
distributed in the shape of a hypersphere centred on the origin. Principal component
analysis (PCA) whitening can be used to this end, and is evaluated in terms of MCE
training in chapter 5.

3.1.3 Model selection

For finding an optimal set of models for the ML classifier, a grid search strategy
is implemented. Here a two-dimensional space of hyper-parameters is exhaustively
searched for the optimal pair. The whole number interval [6, 20] for N , the number
of states, and the whole number interval [5, 20] for K, the number of mixtures in
the output distributions, form the space to be searched. For every combination of
hyper-parameters, a model is trained using the procedure outlined in section 3.1.2,
and evaluated on a held-out validation set as explained in section 3.1.4. The model
with the highest validation likelihood is then stored. This is done on a per-class basis
and can be run separately on multiple machines to save time. All grid searches were
performed using the University of Cape Town ICTS HPC Cluster (http://hpc.uct.
ac.za). Table 3.1 compares a grid searched model set with a high-complexity model
set and shows that for each class the grid searched model generalises better. The
high-complexity model set is likely over-fit on the training data. Higher validation
set performance translates to higher test set performance.

Table 3.1: A table showing the validation likelihoods of a large uniform model set and that of a
grid searched set.

Name N K Validation likelihood N K Validation likelihood
basta 20 30 33306.6 19 29 34076.9

buonissimo 20 30 50752.3 9 16 52629.6
cheduepalle 20 30 48853.7 20 29 49429.3

chevuoi 20 30 47276.3 15 27 53453.3
combinato 20 30 62224.9 14 21 69154.7
cosatifarei 20 30 39225.9 11 22 43492.7
daccordo 20 30 48067 13 28 48768.5

fame 20 30 61049.2 16 25 65329.7
freganiente 20 30 47576.1 18 29 49778.5

furbo 20 30 49096.2 20 22 51186.7
messidaccordo 20 30 55487.6 20 27 56281.6

noncenepiu 20 30 40521.7 18 21 44892.1
ok 20 30 43382.4 18 17 43667.2

perfetto 20 30 41641.3 16 17 44665.9
prendere 20 30 42636.9 11 28 47243.3
seipazzo 20 30 59236.7 16 28 60977.6
sonostufo 20 30 37163.2 13 29 46738.3

tantotempo 20 30 38538.9 20 27 39166
vattene 20 30 38635.5 20 26 39403.2
vieniqui 20 30 35636.5 8 29 38390.3
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3.1.4 Over-training

The Left-Right Banded Structure

This study only uses left-right banded HMMs (see section 2.3) with the number
of bands fixed at N/2. Figure 3.3 shows the relative magnitudes of the validation
likelihoods for each class given its LR, and LRB modelling. Sixteen out of twenty
bar-pairs indicate that the LRB structure generalises better than LR.
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Figure 3.3: A bar plot showing the relative final validation likelihoods for a classifier based on
LR and LRB models.

Held-out validation set

As discussed in section 2.5, given enough data, a held-out validation set can serve as a
generalisation metric as opposed to doing expensive cross-validation. Furthermore,
cross-validation is not feasible for discriminative training of HMMs, and the use
of a validation set is crucial to be able to do early stopping. With enough free
parameters the system will learn the data perfectly along with its noise, and will
generalise poorly to unseen samples. Figure 3.4 shows a plot of the well-known early
stopping scenario.

3.2 Stochastic gradient descent

The discriminative optimisation is now discussed. Some of the results from this
section are produced from toy problems based on the data used in the study. In
implementing stochastic gradient descent (the GPD algorithm), some recommenda-
tions in Bottou (2012) and LeCun et al. (2012) proved very useful. In summary they
are:

• Randomising the training samples.

• Transforming the training samples to have zero mean and unit variance.

• Keeping track of both training and validation error.
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Figure 3.4: A figure showing a typical example of over-training. The red dot indicates the
optimal point to stop training.

• Choosing a learning schedule using a subset of the training data.

The rest of this section details the particular choices used for the discriminative
optimisation along with the reasoning behind them.

3.2.1 Preconditioning

Preconditioning a gradient descent operation either means pre-multiplying the gra-
dient with some rotation matrix or transforming the data. Discussed here are the
MCE preconditioning matrix and the data standardisation technique used in this
study.

Pre-conditioner matrix for MCE HMM gradients

The preconditioning matrix Un is used in GPD training to address the sensitivity of
the mean parameter update µjkd, which is affected by the size of the corresponding
variance value. The matrix Un is an identity matrix with entries of σ2

jkd along all
of the diagonal elements that correspond to the µjkd entries of the gradient vector.
Since the derivative with respect to µjkd is a weighted sum of ratios with σ2

jkd as the
denominator, the preconditioning matrix decouples the update from the variance
values (Chou et al., 1992). The Un pre-multiplication is entirely embodied by the µ
parameter transform, as finding a derivative w.r.t µ̃ and transforming it back is equal
to multiplication of the original gradient with σ2

jkd. A complete list of derivatives
w.r.t transformed parameters can be found in the appendices.

Data transformation scheme

The data standardisation procedure outlined in LeCun et al. (2012) is used in this
study to improve GPD training, however there are a few important hurdles to doing
so. For MCE training, models are required to be initialised with a ML training pro-
cedure. The models were also to operate on test data from the original distribution.
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This means that the models, trained on the original data, had to be transformed
along with the training data to the zero mean, unit variance region of the feature
space, and transformed back to be evaluated on validation data from the original
distribution. The procedure is as follows: two sets of models are kept in memory
during the optimisation, one for the standardised data distribution and one for the
original. The original data mean and variance vectors are stored, and used to trans-
late the first set of ML trained models to the centred and scaled region. This is
done by translating and scaling all output distributions from all models by the data
mean and variance respectively. After every MCE update, the second set of models
is updated from the first set by adding the original mean and scaling up with the
original variance. Figure 3.5 shows how the standardisation procedure improves the
conditioning of an optimisation for a five-class toy problem based on the gesture
dataset. In the figure, the standardised error can be seen to decrease in a smoother
fashion than that of the unstandardised error.

Figure 3.5: Training curves before and after applying standardisation. The curve shows the
MCE functions for a five-class classifier on which the sparsest optimisation of section 5.1 was
applied.

3.2.2 Sigmoid central slope

The parameter γ in (2.14) controls the central slope of the sigmoid loss-function.
This value is normally set to γ ≥ 1 (Juang et al., 1997). However, by means of
experimentation it was found that the value γ = 0.1 led to better conditioning of
the optimisation. Figure 3.6 shows how the value γ = 0.1 achieves a steeper descent
and a lower final minimum than the value γ = 1. The optimisations were run on
identical data and models for the PCA version of the feature set in (4.12). Setting the
γ value to a value less than one does unfortunately cause the empirical loss function
to no longer directly correspond to the error rate on the training set. However, the
validation error function is evaluated with γ = 1 in all MCE experiments, and can
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be seen in chapter 5 to follow the training error for lower γ values. For all of the
MCE experiments up to section 5.4, a slope value of γ = 0.1 is used. Section 5.4
investigates the effect of further decreasing the slope value, and concludes that lower
values allow better conditioning but that at some point the loss function no longer
corresponds to the problem. The experiment shows that given lower slope values,
the validation error still follows the loss function and that for the current problem,
over-training is only seen when the slope value is set to γ = 0.01.

Figure 3.6: A figure showing two five-class MCE runs from the data set, with a gamma value
of 0.1 showing improved conditioning of the optimisation.

3.2.3 Norm value

The parameter η controls the norm in the second term of the misclassification mea-
sure (2.13). In a sense it controls the relative contribution of the competing models
to the distance measure, and correspondingly the relative influence an example se-
quence has on the model parameters. When it is set to one, all models contribute
equally. When it is set to infinity, the highest-scoring competitor makes the sole
contribution. At high η values, the optimisation will become slightly more robust as
it approximates the infinity norm case. This is because fewer parameters are allowed
to change drastically at the presentation of a new sample. This study only considers
the η = 1 and η −→∞ cases.

3.2.4 Learning Schedule

Stochastic gradient descent is guaranteed to converge for the following conditions
on the learning rate (Chou et al., 1992):

∞∑
n=1

εn −→∞ and
∞∑
n=1

ε2n <∞. (3.1)

In order to converge, the learning rate is annealed so as to take smaller steps as
the optimisation approaches the minimum. Usually the learning rate is empirically
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chosen, and a good method of doing so is finding it on a subset of the training
data (Bottou, 2012). A linearly decreasing learning schedule

εn = ε0

(
1− n

nmax

)
(3.2)

was chosen for the GPD optimisation. Empirically it was found to be quite ro-
bust and worked well with momentum. Although SGD is independent of dataset
size (Bottou, 2012), it was decided as a matter of convenience to specify the max-
imum number of iterations nmax and cost function evaluations in epochs over the
training set.

3.2.5 Momentum

To accelerate learning, a classical momentum operation (Sutskever et al., 2013)

vn+1 = θvn − εnUn∇`(Xn,Λ)|Λ=Λn (3.3)

Λ̃n+1 = Λ̃n + vn+1 (3.4)

is embedded in the update. The same momentum constant of θ = 0.2 is used in
all experiments and was also empirically chosen. The figure below shows how an
optimisation is accelerated using the momentum operation.

Figure 3.7: Training curves for the exact same scenario before and after applying momentum.
The curve shows the MCE functions for a five-class classifier on which the densest optimisation of
section 5.1 was applied.

3.3 Overview

The entire process for arriving at the discriminative HMM classifier is described.
From the data set, labelled gesture intervals are used to segment, from the skeleton
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stream, joint coordinate trajectories of interest. The joint coordinate trajectories
are fed into a per-frame feature extraction function to produce feature sequences.
Section 4.3 describes the feature extraction processes. As certain joints are noisy
(in particular the hands), the sequences are first smoothed using a low-pass filter
as described in section 4.3.3. Feature optimisation forms a further dimension of
investigation in the study and is described in section 4.3.4. With feature sequences
extracted and smoothed, a maximum likelihood classifier is constructed using the
methodologies described in section 3.1. The maximum likelihood classifier is ei-
ther a uniform set of models or one produced from individual grid searches (see
section 2.5). In chapter 4, three maximum likelihood performance benchmarks are
presented for different feature sets. The performance of the classifier is then im-
proved with discriminative training using the methodology described in section 3.2.
Chapter 5 presents results from multiple experiments with minimum classification
error training. All algorithms were implemented in C++ using the Eigen library for
handling matrices (http://eigen.tuxfamily.org). With methods borrowed from
the HMM toolbox by Kevin Murphy and the highly optimised linear algebra routines
from Eigen, the MCE training implementations can run within hours what would
otherwise take days for a naive implementation. Training on the highest density
updates (see section 5.1) for all classes and data would otherwise be infeasible. Be-
cause the MCE optimisations are stochastic, multiple runs were conducted for peace
of mind. The University of Cape Town ICTS HPC Cluster (http://hpc.uct.ac.za)
was used for the multiple runs of all major experiments.
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Chapter 4

Dataset and set-up

This chapter discusses the gesture recognition part of the study. First the spec-
ifications of the data set are detailed, along with its particular use in the study.
Thereafter the similarity problem is explained, which forms an important reference.
The chapter then discusses feature sets, filtering, decorrelation and the ML bench-
mark results.

4.1 The Chalearn LAP 2014 gesture dataset

According to Escalera et al. (2014), the Montalbano dataset was the largest com-
mercial depth-camera based gesture dataset in the literature in 2014. Table 4.1
summarises the layout of the dataset. It is an extension of the 2013 ChaLearn
multi-modal gesture recognition challenge data, and was used in the third track of
the 2014 competition. The aim of this competition was to do simultaneous spotting
and recognition on multi-modal data, with the Jaccard index as the evaluation met-
ric. The dataset consists of 20 Italian cultural or anthropological gesture classes.
For each labelled gesture in the set there are four visual modalities: RGB, depth,
user-segmented depth, and joint coordinates from the Kinect skeletal model (see
figure 4.1).

(a) RGB (b) Depth (c) User mask (d) Skeleton

Figure 4.1: The different modalities for the Montalbano dataset (Escalera et al., 2014).

4.1.1 Departure from dataset original intent

For this study, the use of the dataset differs from the intent of the competition in two
important ways. Firstly, this study only considers the classification problem and as
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Table 4.1: Characteristics of the Montalbano dataset (Escalera et al., 2014).

Training sequences Validation sequences Testing sequences Sequence Duration FPS
393 (7,754 gestures) 287 (3,362 gestures) 276 (2,742 gestures) 1-2 min 20

Modalities Number of users Gesture categories Labelled sequences Labelled frames
RGB, Depth, User mask, Skeleton 27 20 13,858 1,720,800

such employs the truth spotting labels to segment a test set, just as with the training
and validation sets. Secondly, the study only considers the skeleton modality and
is therefore geared toward a dynamic gesture recognition problem. The gestures
contain varying degrees of hand pose articulation, where some gestures are almost
entirely static with the hand pose containing all of the information. This is visible
in the confusion matrices as some gestures are classified correctly with substantially
higher frequencies than others. This is illustrated next.

4.1.2 Similarity of gestures given single modality

Since skeletal joint trajectories are the only features considered, some classes in the
Montalbano dataset have high false positive rates. Those gestures rely on hand
shapes that live mainly in the RGB modality and only leave traces of discernible
patterns in the skeletal modality. An example is shown in figure 4.2 where the
gestures ”ok” and ”noncenepiu” occupy the same upper body skeletal pose. The
dynamic difference between the two is that for ”ok”, the hand translates forward
and backward slightly, where for ”noncenepiu” the wrist rotates the hand pose from
left to right. In a stream of skeletal points these gestures look very similar and cause
overlap in classification. This especially affects the ML classifier as distributional
overlap will be prevalent, it is argued, in such cases. Figure 4.3 shows how a uniform

(a) ok (b) noncenepiu

Figure 4.2: Two gestures from the Montalbano dataset that look very similar when represented
only in skeletal features. Images taken from Escalera et al. (2013).

ML model set performs on the test data. It can be seen that certain gestures tend to
have false positives, especially the portion from ”freganiente” to ”prendere” along
the diagonal. This illustrates the problem of similarity and provides a reference for
evaluating confusion matrices presented later.
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4.1.3 Training to validation ratio

As can be seen from table 4.1, the training to validation ratio is roughly 3 : 1.
Since the validation data is used only to track generalisation error while training,
the datasets are re-divided into a 4 : 1 ratio for training and validation.

Figure 4.3: The test set confusion matrix for a uniform six-state, twenty-mixture model set on
the feature set (4.12). A high number of false positives can be seen in the rows and columns of
some of the gestures. Accuracy: 76.42%.

4.2 Methods and results of the contestants

After the conclusion of the challenge a rich set of academic papers citing it came
about as the majority of the contestants published their work. This section is con-
cerned with that work done on the 2014 challenge. First a general overview of
methods used and results brought forward are discussed. Then the results that can
be directly compared with the work in this study are discussed.
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4.2.1 General overview

There were many sophisticated methodologies for the gesture segmentation and
recognition problem to be found in the solutions of the participants. However as a
matter of practicality, only the winning method is detailed here and other method-
ologies are treated in overview.

The evaluation metric

The data for the competition is organised as a massive set of RGB-D video sequences
with the accompanying skeleton streams. Each sequence documents a single user
performing various gestures (about ten per sequence), and comes with a file providing
the segmentations and ground truth labels. As previously mentioned the competition
employs the Jaccard index as the evaluation metric. For a gesture category n in
sequence s, the Jaccard index is defined as:

Js,n =
As,n ∩Bs,n

As,n ∪Bs,n

, (4.1)

where As,n is the ground truth of gesture n at sequence s, and Bs,n is the prediction
for gesture n at sequence s. Both As,n and Bs,n are binary vectors where unity val-
ues correspond to the frames in which the n-th gesture is being performed (Escalera
et al., 2014). The Jaccard index is unity for a gesture n only at the intersecting
frames of the ground truth and predictions. For false positives, where a gesture is
predicted but does not show up in the ground truth, the index evaluates to zero (Es-
calera et al., 2014). The test set evaluation metric by which contestants were scored
is the mean Jaccard index (averaged over all classes n) over all sequences.

First place

Neverova et al. (2014) used a multi-scale deep learning architecture to land first
place on the gesture recognition track of the competition. The architecture operates
on multiple spatial and temporal scales to capture information out of all modalities
and to accommodate varying length gestures respectively. The modalities used are
the skeleton stream, the depth video stream and the RGB video stream which they
convert to grey scale. The skeleton stream is used to extract a feature descriptor they
call the articulated pose. It is made up of normalised skeletal joints, their velocities
and accelerations, various angle features and pairwise joint distances to form a 183-
dimensional feature vector for each frame. This articulated pose descriptor serves
as an efficient feature representation for the upper body dynamic component of the
gestures. Based on it alone, the system achieves a Jaccard index of 0.808. Unfortu-
nately no test set classification results are available to compare with. The depth and
grey scale modalities are used for convolutional representation learning of the finer
hand articulations. The left and right hands are first cropped out. Their positions
are then stabilised within the new frames and then the frames are normalised to
zero mean and unit variance. Finally the left hand frames are flipped vertically and
combined with the right hand frames in a single training set. For each channel, a
two-stage convolutional learning of the representation is done independently. The
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two streams are then fused with a set of fully connected hidden layers to form the
left- and right hand paths. The left- and right hand paths are then fused along
with the output of the articulated pose layer using a fully connected shared hidden
layer. This allows the learning of correlations across modalities. This architecture
is applied at three temporal scales by uniformly sampling an input data sliding win-
dow using different between-frame intervals. For each temporal scale (or interval),
a prediction is formed by the deep architecture described earlier. The predictions
are then fused with a simple voting strategy using a single weight per model. Using
frame aggregation and temporal filtering, the network outputs a prediction for every
frame. An additional binary classifier based on the articulated pose feature descrip-
tor is used to distinguish periods of activity from periods of rest. This improves
localisation and accordingly, the Jaccard index as pre- and post stroke frames tend
to produce erroneous classifier output. Neverova et al. (2014) achieve a Jaccard
index of 0.85 on the test set, placing them first in the competition rankings. The
strength in their methodology lies in powerful per frame classifications that are then
better localised using the binary classifier.

Table 4.2: A table showing modalities, temporal segmentation strategies and classifiers used by
the participants of the LAP 2014 challenge, along with their rankings. SK - skeleton, DNN - deep
learning neural network, RF - random forrest, RT - regression tree, MRF - Markov rondom field,
kNN - k-nearest neigbors. Adapted from Escalera et al. (2014).

Team Score Rank Modalities Segmentation Classifier
LIRIS 0.849987 1 SK, Depth, RGB Joints motion DNN

CraSPN 0.833904 2 SK, Depth, RGB Sliding windows Adaboost
JY 0.826799 3 SK, RGB MRF MRF, kNN

CUHK-SWJTU 0.791933 4 RGB Joints motion SVM
Lpigou 0.788804 5 Depth, RGB Sliding windows DNN

stevenwudi 0.787310 6 SK, Depth Sliding windows HMM, DNN
Ismar 0.746632 7 SK Sliding windows RF
Quads 0.745449 8 SK Sliding windows SVM

Telepoints 0.688778 9 SK, Depth, RGB Joints motion SVM
TUM-fortiss 0.648979 10 SK, Depth, RGB Joints motion RF, SVM
CSU-SCM 0.597177 11 SK, Depth Sliding windows SVM, HMM

iva.mm 0.556251 12 SK, Depth, RGB Sliding windows SVM, HMM
Terrier 0.539025 13 SK Sliding windows RF

Team Netherlands 0.430709 14 SK, Depth, RGB DTW SVM, RT
VecsRel 0.408012 15 SK, Depth, RGB DTW DNN
Samgest 0.391613 16 SK, Depth, RGB Sliding windows HMM

YNL 0.270600 17 SK Sliding windows HMM, SVM

Overview of remaining methodologies

In the original 2013 competition, the three most popular classifiers (in descending
order) were HMMs, random forests and neural networks. Dynamic programming
techniques such as dynamic time warping along with HMMs constituted the se-
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quence learning methods used in the competition and represents a fair portion of
proposed solutions. Figure 4.4 shows a bar graph with the relative proportions
of various classifiers used in the solutions of the contestants. Random forest and
neural network variants were the second and third most popular techniques respec-
tively (Escalera et al., 2013).

Figure 4.4: The relative proportions for the choice of preferred classifiers among the participents
of the 2013 LAP challenge. Taken from Escalera et al. (2013).

The majority of participants of the 2014 challenge preferred non-temporal classifiers
in their solutions to the simultaneous gesture segmentation and recognition problem.
Table 4.2 summarises the modalities, segmentation strategies and classifiers used
by the contestants of the 2014 challenge. The table is a shortened version of the
one presented in Escalera et al. (2014). From the table it can be seen that only
five participants used HMMs in their solutions, whereas eight participants used
SVMs, four participants used deep convolutional neural networks and at least four
used ensemble methods such as random forests or boosting. It can be seen that
the majority of participants make use of the skeleton modality as it facilitates the
recognition of large scale upper body gestures, but that the winning methods make
use of more than just one modality. For a successful solution to the detection and
recognition task, especially in light of the Jaccard index as evaluation metric, it is
necessary to integrate the temporal segmentation and classification strategies so as
to optimally localise gestures. The dataset contains cases where one gesture follows
directly on another without a discernible pause in between. For this reason, using
a binary classifier to detect gestures of variable length and simply feeding them
to a sequence classifier is not a good solution. In such cases, however, per-frame
classification automatically handles the segmentation. Wu and Shao (2014) use an
interesting strategy for segmentation and recognition. They use deep belief networks
and convolutional neural networks on the skeleton and depth modalities respectively,
to estimate the emission probabilities of a set of HMMs. An ergodic state is added
to the looped network of parallel-connected HMMs so that Viterbi decoding can
be used for per-frame segmentation and recognition. Their software submission
landed in sixth place with a Jaccard index of 0.787310, which in their publication
is cited as the result when only the skeleton modality is used. The publication
reports a Jaccard index of 0.8162 using all modalities. The top-performing teams
implement non-temporal per-frame classifiers. However it is suspected that such
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solutions will eventually struggle if more gesture categories were to be added, since
partial gestures will then be harder to discriminate. With the exception of the
convolutional neural network strategies, the per-frame classifiers mentioned used
very sophisticated feature extractions to produce sufficiently discriminative features,
a task that will become harder as more classes are introduced.

4.2.2 Results concerning the single skeleton modality and
segmented test data

From table 4.2 it can be seen that almost all contestants use the skeletal modality.
However, most publications report their results in terms of simultanious segmen-
tation and classification. For comparison with this work, publications that report
classification results on the segmented test set are cited. The paper submissions of
the contestants in eighth and eleventh places present classification results on the
test set using the skeleton modality alone. These results are the only results that
are directly applicable in the context of this work, and comparable to the results
presented here.

Eighth place

Evangelidis et al. (2014a) place particular emphasis on how their system outper-
forms other methods when only skeletal data is used. Their software submission to
the judges of the competition placed them eighth out of seventeen contestants. In
the journal paper accompanying their work, they state that a fixed software bug
re-ranks the solution up to fourth place. The original software submission achieved
a Jaccard index of 0.745, and the revised solution an index of 0.816. They also
present a ranking of the contestants who published results using only skeletal fea-
tures, in which their fixed bug places them first with and index of 0.768. For their
multi-modal result they use a skeletal feature descriptor along with colour features
from histograms of flows. Forming the base of their skeletal descriptor are skeletal
features they call quads. Quads encode the geometric relation of joint quadruples
leading to a low-dimensional feature vector. A quad is formed from an ordered set
of four skeletal joints in R3 [x1 x2 x3 x4], where (x1,x2) is the most widely separated
joint pair (Evangelidis et al., 2014b). A new local coordinate system is formed where
x1 is the origin and x2 is mapped to [1 1 1]T . The two in-between joints are then
translated, rotated and scaled into the new coordinate system. These transformed
in-between joints are then vertically concatenated to form a R6 quad feature vec-
tor. Fourteen such ordered sets of joints are used to describe the full upper-body
pose. To complete the definition of the descriptor, a temporal sequence of quads
are represented by a Fisher vector with a GMM as the underlying generative model.
The GMM is first trained via EM on the quads of the training set, thereafter it
can be used to generate a Fisher vector for any sequence of quads. Using three
sliding windows, per-frame Fisher vectors (belonging to the window’s center frame)
are fed to a multi-class linear SVM to produce per-frame labels and their associated
costs. Continuous gesture recognition is then formulated as the problem of finding
a per-frame gesture labelling for a long sequence as a piece-wise constant function.
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The problem of finding the appropriate piece-wise constant function is cast into an
energy minimisation framework, whereby the per-frame labelling cost along with
a penalty term for smoothness are jointly minimised. To solve this global optimi-
sation problem, Evangelidis et al. (2014a) use a dynamic programming algorithm
that recursively populates a cost table and then backtracks to find the minimum
energy labelling. The no-gesture class labelling is provided by an additional binary
classifier. For the articulated pose 1536-dimensional Fisher vectors are formed from
a 128-component GMM, and for colour features 6144-dimensional Fisher vectors are
formed from a 64-component GMM. An early fusion of the modalities is performed
by simply concatenating the vectors into a single input to be classified. Using their
sophisticated skeletal descriptor on its own, Evangelidis et al. (2014a) was able to
achieve a 90% accuracy in the isolated classification of the testing set.

Eleventh place

Liang and Zheng (2014) placed eleventh out of seventeen contestants with a Jac-
card index of 0.597. They employ a late fusion of three classifiers based on different
modalities. Spatio-temporal skeleton features are classified using a concatenated
HMM-SVM classifier pair. The per-category probability scores of the HMM gesture
evaluations are thus passed on to the SVM classifier as features. The authors claim
that the cascade classifier performs better on the validation set than the HMM clas-
sifier alone. Additionally they use a SVM with a radial basis function (RBF) kernel
to classify higher level, so called holistic features, of the skeleton modality. The vari-
ance, mean, minimum and maximum of the skeleton descriptor are aggregated over a
gesture interval to form the holistic features fed to the RBF-SVM. Lastly the depth
modality is used with the two-dimensional motion trail model (2DMTM) (Liang and
Zheng, 2013) to capture motion region information. The 2DMTM is a clever and
very efficient representation of a gesture. It reduces a series of depth maps into four
gray-scale images that capture the distributions of the motion- and static regions
of the gesture. From the 2DMTM gesture representation, pyramid histograms of
oriented gradient (PHOG) features are extracted to be classified by a linear SVM.
Late fusion of the three classifiers is done with a weighted sum of their output scores.
The weights were empirically defined on the validation set. For the spatio-temporal
skeletal features, the authors use pairwise joint distances and bone orientations of
twelve upper body joints. The joints of the head, shoulder-center, spine, hip-center,
shoulders, elbows, wrists and hands form the basis of the descriptor. Before ex-
tracting features, the world coordinates of each joint are made person-centric for
invariance to a user’s position in the scene. Pairwise distance features were also nor-
malised by the sum of all pairwise distances of the subject. From the Kinect skeleton
stream, bone rotation features are available as quaternions. The authors normalise
the quaternion of each joint by its L2-norm to produce the bone-orientation features
that are concatenated to the pairwise distances to form the final descriptor. Liang
and Zheng (2014) use a hand-location based gesture detector for segmentation of
continuous gestures. The gesture boundaries are detected by a rule-based filtering of
the vertical coordinates of the hands. To limit the effects of noise on the hand joints,
they use the average of each hand’s y-coordinates over the frames of a short sliding
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window as that hand’s location. Assuming that all gestures are correctly classified,
the authors evaluate the spotting module on the test set and find that it scores
0.8196 as a Jaccard index. The authors also present results on the isolated classi-
fication of the test set using their separate and combined modalities. They report
an accuracy of 77.47% for the HMM-SVM on the spatio-temporal skeleton features,
83.02% for the RBF-SVM on the holistic skeleton-statistics features, 76.99% for the
linear-SVM on the depth image features, and 92.8% for the combination of the clas-
sifiers. It is important to understand that the Jaccard score of the spotting module
cannot simply be multiplied by the multi-modal classifier accuracy to arrive at the
authors’ competition ranking. This is due to the presence of deliberately distracting
gestures and gestures following on one another so as to be spotted as one gesture in
the test data.

4.3 Feature extraction

Feature extraction is the most important part of an HMM classifier design. The most
suitable feature extractions for certain tasks is the topic of countless publications
in the field of pattern recognition (Fink, 2014). This section discusses the features
used and the optimisations that were found useful.

4.3.1 Normalised skeletal points

Raw skeleton joint coordinates carry much information about the gesture being
performed, but need to be approximately centred and normalised to account for
multiple users. By using joint coordinates relative to some central skeleton joint,
the hip-center in this case, the features are invariant to a user’s position in the scene.
Furthermore, scaling all coordinates by some characteristic body dimension, in this
case the distance from hip- to shoulder-center, the features become less dependant
on body size. The normalised skeletal feature set used was the twelve-dimensional
concatenated vector

xt = [jle, jlw, jre, jrw] , (4.2)

where

jle =
jleft−elbow − jhip−center

s
(4.3)

jlw =
jleft−wrist − jhip−center

s
(4.4)

jre =
jright−elbow − jhip−center

s
(4.5)

jrw =
jright−wrist − jhip−center

s
(4.6)

s = ‖jshoulder−center − jhip−center‖. (4.7)

Figure 4.5 shows the test set result of a model set formed by grid search on the
feature set (4.2).
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Figure 4.5: The test set confusion matrix using grid searched models for the position features
of (4.2). Accuracy: 76.8%.

4.3.2 Spherical angles of limbs

Kim and Kim (2015) used spherical angles of limbs for dynamic gesture recognition.
The same feature set was employed in this study. Spherical angles offer a denser
representation than joint coordinates since only two dimensions are required to rep-
resent a bone orientation if the radial distance is ignored. This feature set considers
only directional information and is thus invariant to bone length. Figure 4.6 shows
the pose vectors from which the angles are calculated. First the pose vectors are
found from the shoulder, elbow and wrist coordinates of both arms. The four pose
vectors are then transformed into their polar and azimuth angles respectively using

θ = arccos

(
vz
‖v‖

)
(4.8)

ϕ = arctan

(
vy
vx

)
, (4.9)

where r = ‖v‖ is omitted from the representation. Using information from six joint
coordinates, an eight-dimensional feature vector is formed as

xt = [θrs−re, ϕrs−re, θre−rw, ϕre−rw, θls−le, ϕls−le, θle−lw, ϕle−lw] . (4.10)
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Figure 4.6: Pose vectors from which spherical angles are calculated. Figure adapted from Kim
and Kim (2015).

Appending additional features

Using the spherical angles as base features, two feature sets were formed by adding
hand joint information to the vector (4.10). The first is formed with further angle
vectors calculated from the wrist-hand pose vectors

[θrw−rh, ϕrw−rh] and [θlw−lh, ϕlw−lh] , (4.11)

and the second with the hand vectors relative to the head

[(jh − jlh)] and [(jh − jrh)] . (4.12)

This forms a twelve and fourteen-dimensional feature vector respectively. The fea-
ture set (4.12) performs best given the grid search test set results from figures 4.5,
4.7 and 4.8.

4.3.3 Exponential filtering

The hand joint coordinates of the skeletal stream tend to be noisy on the Monalbano
dataset. Tang and Dannenberg (2013) use exponential filtering to smooth oversam-
pled skeletal data as a preprocessing stage in a gesture recognition problem. The
exponential filter is a discrete version of an analogue first-order low-pass filter

x̂t = αxt + (1− α)x̂t−1, (4.13)

where 0 ≤ α ≤ 1. A filter value of α = 1 results in no filtering. The vector xt
represents the observations of a gesture sequence X, and x̂t the observations of a
filtered gesture sequence. In this study a minimal filtering, with α = 0.8, is used
across all experiments.

4.3.4 Principal component analysis

A PCA transform was used to decorrelate and whiten data to investigate its effect
on discriminative training. The transform

zt = Λ−1ΦT (xt − x̄) (4.14)
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was first calculated on the training data, and then applied to all sets. The ma-
trices Λ and Φ are the eigenvalues and eigenvectors of the training scatter matrix
respectively. The vector x̄ is the training data mean and xt the observation at time
t for any sequence X of the training, validation or testing sets. The decorrelation
and whitening transform brought about a great improvement in ML performance.
It was found however that dimension reduction via the transform had little effect.
Dropping the two least informative dimensions resulted in a very similar accuracy,
and further reduction caused a notably worse result. Figure 4.9 shows the test set
results for the grid search performed on the PCA version of feature set (4.12).

Figure 4.7: The test set confusion matrix using grid searched models for the angular features in
(4.11). Accuracy: 77.8%.
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Figure 4.8: The test set confusion matrix using grid searched models for the combined features
in (4.12). Accuracy: 79.4%.
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Figure 4.9: The test set confusion matrix using grid searched models for the PCA version of
the features in (4.12). Accuracy: 83.41%.
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Chapter 5

Experiments

This chapter details the experiments on MCE training. All experiments are con-
ducted on the feature set of (4.12) and its PCA-whitened version. The following
dimensions are investigated: the forms of the objective function, post-optimisation
distributional changes, decorrelated features, and the slope of the loss function.

5.1 Objective functions

There are design choices to make when training HMMs with the MCE criterion.
These choices manifest in how an HMM is used as a discriminant function and the
particular form of the objective function. The second term in the misclassification
measure (2.13) can be substituted for its infinity norm case, so that

di(X,Λ) = −gi(X,Λ) +G(X,Λ), (5.1)

where
G(X,Λ) = max

j 6=i
gj(X,Λ). (5.2)

A loss function with this misclassification measure embedded in it is discontinuous.
However, as will be shown later, such a loss function can still be optimised stochas-
tically with the GPD algorithm. As for an HMM discriminant function, this study
considers two cases: first the standard data sequence likelihood

gi(X,Λ) = logP (X|λi) = log
∑
q

P (X|q, λi)P (q|λi), (5.3)

which involves all of the parameters in the model, and then the likelihood along the
most probable path in the summation

gi(X,Λ) = logP (X, q̄|λi) = logP (X|q̄, λi) + logP (q̄|λi). (5.4)

Using (5.4) as the discriminant function considers only the parameters along the
Viterbi path. The optimisation of the MCE scheme based on Viterbi decoding is
called the segmental GPD algorithm as originally intended in (Chou et al., 1992).
From (5.1) and (5.2) it can be seen that only two models will have non-zero gradients
in the gradient vector. These choices thus have the effect of controlling the sparsity
of the overall parameter update. Table 5.1 ranks the four possible objective function
combinations in terms of the density of their parameter update.
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Table 5.1: A layout of the different versions of the MCE objective function.

Name update along discriminant f. Competing term

A all paths of all models logP (X|λi) log
[

1
M−1

∑
j 6=i e

gj(X,Λ)η
] 1
η

B all paths of 2 models logP (X|λi) maxj 6=i gj(X,Λ)

C Viterbi path of all models logP (X, q̄|λi) log
[

1
M−1

∑
j 6=i e

gj(X,Λ)η
] 1
η

D Viterbi path of 2 models logP (X, q̄|λi) maxj 6=i gj(X,Λ)

5.1.1 Hypothesis

Using the sparsest update scheme lightens the computational load tremendously
since gradients need only be calculated for a small subset of the total parameter
vector Λ. The gradients of all of the parameters that are not considered in the most
likely path of the two competing models will evaluate to zero. Using a denser update
means that more parameters are influenced by the presentation of each example.
Intuitively, given a good choice of optimisation parameters, a dense optimisation
will start converging in fewer iterations even if the iterations take longer. However,
by the same reasoning, a sparser optimisation is less sensitive to step size. It is
hypothesised that given a complete optimisation, the choice of objective function is
of little consequence to the final test set performance improvement. This justifies
the use of the sparsest form for large-scale problems.

5.1.2 Experiment

To investigate the effect of the forms of the objective function, each function must
be evaluated on its optimisation performance. To this end the performance on the
validation set and the test set need to be considered. The validation set performance
is tracked during the optimisation and the test set performance is found from a con-
fusion matrix. A standardised validation performance function is employed in order
to directly compare between runs. Regardless of the particular objective function
being optimised, the validation set performance is tracked using the first row func-
tion of table 5.1. Here the parameter settings γ = 1 and η = 1 are used so that
the function would correspond directly to the error rate on the validation set. The
optimisations based on the four versions of the objective function are shown in fig-
ure 5.1. The optimisations were all conducted on a uniform N = 10, K = 20 model
set and non-PCA data. The use of non-PCA data meant that the standardisation
procedure from section 3.2.1 had to be used.
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(a) function A. Best final validation ac-
curacy: 83.23%

(b) function B. Best final validation accu-
racy: 83.82%

(c) function C. Best final validation accu-
racy: 83.55%

(d) function D. Best final validation ac-
curacy: 83.46%

Figure 5.1: Eight runs for each objective function on non-PCA data. In all figures the top
curves represent the performance on the training set and the bottom curves the performance on the
validation set. Functions B and D run for more iterations as their optimisations take longer to
plateau.

5.1.3 Findings

Figure 5.1 shows the eight runs for each function’s optimization. Overall there
is a larger spread in final values for the validation set than for the training set.
This is to be expected since the training data is used directly in the optimisations.
Table 5.2 summarises the training results in terms of training time per iteration
(expressed as a factor relative to the sparsest optimisation), the validation and test
accuracies. The final validation recognition rates can be seen to be very close to
the test set accuracies, although the validation accuracies are systematically slightly
higher. This is likely due to the model set in the experiment, as it was chosen
initially for its good performance on the validation set. It is concluded that the
particular form of the objective function does not significantly affect the final test
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set performance. As an additional finding, the densest optimisation reaches its
asymptotic error in the least number of iterations.

Table 5.2: A summary of the objective function experiment.

Training time factor Final Validation recognition rate Test set accuracy
A 5.597 83.23% 83.05%
B 1.658 83.82% 83.35%
C 1.609 83.55% 83.14%
D 1 83.46% 83.11%

5.2 Distributional changes

The following section examines the changes to the distributions in individual model
states after minimum classification error training. From the previous experiment
it is easy to verify that the new optimisation results in increased classifier accu-
racy, but from the objective function equation it is not clear what happens to the
distributions when training for maximum discrimination. It could be argued that
the new training regime simply changes an HMM from a distribution model to a
function that helps describe a decision boundary, and thus that the distributions are
no longer really distributions. However, the way in which the distributions change
could be enlightening when tied to an example of distributional overlap and how it
is mitigated on a gesture recognition problem.

5.2.1 Hypothesis

Up to now it is understood that an MCE training takes ML pre-trained models, and
that the distance function still relies on the likelihood-score of the correct gesture.
Thus the score of the distribution of the correct model on its own data sequence
is still of high importance since the MAP decision rule requires the correct model
to have the highest score. In the context of gesture recognition, it is interesting
to relate the changes in the distributions of generative and discriminative HMMs’
per state distributions to the data-points of the actual sequence. It is hypothesised
that discriminative training worsens the modelling of the data for both the correct
and incorrect models, while worsening the wrong-class models a bit more than the
correct-class models. This has the effect of forcing the MAP decision rule to pick
the correct class more often, since competitor class probabilities will tend to score
low.

5.2.2 Experiment

To see the effect of MCE training on the state distributions of the classifier, it is
necessary to find representative cases in the data where these distributional changes
can be tied to a correct classification of a previously misclassified sample. The dis-
tributional overlap problem will be illustrated as well as how discriminative training
mitigates this effect. Toward this goal generative- and discriminative classifications

43



on the validation set were mined for samples where the generative set misclassified
and the discriminative set classified correctly. A six-state, five-mixture model set
was used. Three such cases were found and are shown in figures 5.3, 5.4 and 5.5.

The characteristic motions of the gesture classes in question are briefly described.
The gesture ”Perfetto” (”Perfect” in Italian) starts with a closed hand at the mouth
as if to kiss it, and then translates away from the face while the hand opens to
its ending pose. The gesture ”Non me ne frega niente” (”I don’t give a damn”)
starts with the back of the fingers placed under the chin, and moved outward in a
scraping motion from under the chin to a flat upright hand with the palm facing
the signer. The gesture ”Le vuoi prendere” (”Do you want to take these?”) starts
with a flat hand placed next to the body with the palm facing up. The hand then
moves slightly in front of the body with a chopping motion generated from the wrist.
The gesture ”Che vuoi” (”What do you want?”) is the quintessential Italian gesture
often seen in films, where both hands are closed at the fingertips in front of the body
and shaken slightly back and forth. Finally the gesture ”Viene qui”, which must
be the global gesture for ”Come here”, starts with a flat hand in front of the body,
and then moves in a waving motion inward to the signer. The figures also show the
Viterbi clusterings of the data points into the correct and incorrect model states on
a confused gesture given the generative and discriminative model sets.

(a) Axes for gesture RGB images. (b) Axes for distribution plots.

Figure 5.2: Accompanying figure to explain the systems of axes used in the plots to follow. The
axes used for the gesture images are the absolute X-Y-Z axes. The axes used for the distribution
plots are the components of the relative vector between the right hand and the head.
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(a) Perfetto. (b) Non me ne frega niente.

(c) ”Perfetto” generative model.

(d) ”Non me ne frega niente” generative model.

(e) ”Perfetto” discriminative model.

(f) ”Non me ne frega niente” discriminative model.

Figure 5.3: The figures show, from the top: the characteristic poses, the Viterbi-clustering and
accompanying distribution plots for the classes ”Perfetto” and ”Non me ne frega niente”. The
data points come from a sample in the validation set where ”Perfetto” is misclassified as ”Non
me ne frega niente” in the generative case, and classified correctly in the discriminative case. The
plots show the Y-Z dimensions of the head to right-hand distance features, which are the last two
elements of the feature vector (4.12).
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(a) Le vuoi prendere. (b) Che vuoi.

(c) ”Le vuoi prendere” generative model.

(d) ”Che vuoi” generative model.

(e) ”Le vuoi prendere” discriminative model.

(f) ”Che vuoi” discriminative model.

Figure 5.4: The figures show, from the top: the characteristic poses, the Viterbi-clustering
and accompanying distribution plots for the classes ”Le vuoi prendere” and ”Che vuoi”. The data
points come from a sample in the validation set where ”Le vuoi prendere” is misclassified as ”Che
vuoi” in the generative case, and classified correctly in the discriminative case. The plots show the
Y-Z dimensions of the head to right-hand distance features, which are the last two elements of the
feature vector (4.12).
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(a) Viene qui. (b) Non me ne frega niente.

(c) ”Viene qui” generative model.

(d) ”Non me ne frega niente” generative model.

(e) ”Viene qui” discriminative model.

(f) ”Non me ne frega niente” discriminative model.

Figure 5.5: The figures show, from the top: the characteristic poses, the Viterbi-clustering and
accompanying distribution plots for the classes ”Viene qui” and ”Non me ne frega niente”. The
data points come from a sample in the validation set where ”Viene qui” is misclassified as ”Non
me ne frega niente” in the generative case, and classified correctly in the discriminative case. The
plots show the Y-Z dimensions of the head to right-hand distance features, which are the last two
elements of the feature vector (4.12).
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5.2.3 Findings

The plots in figures 5.3, 5.4 and 5.5 show the Y-Z dimensions of the head-to-hand
relavite vector, the last two elements of the feature vector (4.12). The rest of the
features are angles and result in very compact distribution plots. The distributions
from the last two elements were plotted bacause they were deemed the most interest-
ing visually. The distributions contain information obout the translation of the right
hand in the Y-Z plane. All the gestures in question contain translations away from
the body along the Z-axis. Figure 5.3 shows two distinct blobs in the Z direction.
Notice that for ”Perfetto” and ”Non me ne frega niente” there is a translation of the
right hand away from the body into the direction of the negative Z-axis. This can be
seen as the distributions in the positive Z-axis region are stronger for the beginning
states and the distributions in the negative Z-axis region are stronger at the ending
states for both gestures. This is also the case for gestures ”Viene qui” and ”Non
me ne frega niente” in figure 5.5. In figure 5.4, the effect of the sideward diagonal
chopping motion of the gesture ”Le vuoi prendere” can be seen as distributions are
elongated slightly along the Y-axis.

The distribution plots in figures 5.3, 5.4 and 5.5 show that the majority of the
points get clustered into the final states. This is a result of using LRB models, since
the transitional structure forces the observations to move up on the list of ascending
states. They also show that most of the distributional change seems to be found
on the competitor-class model states, relative to the data points belonging to the
appropriate class. Further, it can be seen that distributions tend to get smaller and
more concentrated as well as translate slightly, especially at the ending states. Some
of the final state distributions have translated in such a way that data points lie out-
side (or rather weakly inside) of distributions for both correct and incorrect classes.
Accordingly, the likelihood score of the entire sequence decreases on account of the
unrepresented data points. In these cases the data points are represented slightly
better for the correct class.

In light of these findings it is concluded that the distributional changes brought
on by MCE training, at least to the emission models, generally cause lower likeli-
hoods on the data points, even for those belonging to the ”correct” class. These
distributional changes ensure that for any class, the training data points are better
represented than for competitors.

5.3 Decorrelated features

The cepstral coefficients used as features in the majority of speech recognition sys-
tems can be assumed to be approximately decorrelated (Fink, 2014). The results pre-
sented on MCE training in Juang et al. (1997) employ such features. Decorrelation
improves the conditioning of an optimisation as it removes dependencies between
feature dimensions, which causes more efficient steps in the parameter space (LeCun
et al., 2012). A PCA transform is used to decorrelate features in this study.

48



5.3.1 Hypothesis

PCA decorrelation is considered a feature optimisation, especially when combined
with a whitening operation. It can be seen from comparing the confusion matrices
in figures 4.8 and 4.9, that PCA-whitening improved the performance of the ML
classifier using feature set (4.12). It is hypothesised that decorrelation improves the
robustness of the optimisation and allows reducing the error function down to a
lower minimum given sufficient model capacity.

5.3.2 Experiment

The data transformation scheme described in section 3.2.1 is a way of normalis-
ing the training data without applying a PCA-whitening transform to the train-
ing, validation and testing sets. It translates and scales to produce zero-mean and
unit-variance training data while preserving the correlation among the feature di-
mensions, and leaves the validation and testing sets unchanged. To accomplish this
two model sets are kept in memory during the optimisation, one transformed to
fit the new training data and one for the original feature space. For every MCE-
GPD iteration, the transformed model set is first updated, and then the original
feature space model set is updated from it using the reverse scaling and translation.
The reverse transformation of the models for every update should incur some error.
However the optimisation, being stochastic, uses noisy updates anyway and is seen
in section 5.1 to also optimise validation set performance. Given PCA-transformed
data the model set transformations are not required, and the data already has a
zero-mean and unit-variance. Regarding the comparison of the data transformation
scheme to PCA-transformed data, the study makes two assumptions: that the error
due to the model set transformations is negligible, and that the two cases have equiv-
alent normalisation of the training data. It is therefore reasoned that the difference
in optimisation friendliness and performance between MCE runs using feature set
(4.12) and its PCA counterpart is purely due to correlation among feature dimen-
sions.

To test the hypothesis that decorrelation allows higher asymptotic maxima for suffi-
cient complexity, MCE optimisations are run for the transformation scheme and for
PCA data across a series of model structures. The experiment is done in the same
multiple run fashion as in section 5.1. Structures with fewer parameters will have
higher bias error than that of larger structures. The bias error will eventually close
in on some irreducible error value as the parameter set size increases. If the hypoth-
esis is correct, the PCA runs will land on a lower irreducible error for the largest
parameterisations. At the same time this experiment tests the effect of decorrelation
on the robustness of the optimisation, as a common set of optimisation parameters
are used. A constant set of optimisation parameters will cause step sizes to be a bit
too large for some structures, and a bit too small for others. Generally, the training
curves will be notably more noisy for the lower complexity models and smoother
for the higher complexity models. The higher complexity models have been found
in the study to be more robust in their optimisation. If the hypothesis is correct
the PCA-optimisation will reach its asymptotic minimum in fewer iterations and its
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lower parameterised runs will generally be less noisy.

Average curves are calculated from all runs and stuctures and are plotted in fig-
ure 5.6 for the transformation scheme and PCA-data respectively. The shaded area
is enveloped by the lowest and highest number-of-parameter structures, and shows
the degree of variation.

5.3.3 Findings

Figure 5.6 shows that indeed the asymptotic maxima (which is just unity minus the
minima multiplied by one hundred) are higher for the high number of parameter sets
of the PCA-optimisations. This can be seen from the upper surfaces of the shaded
areas. An interesting thing to note from the curves is that there seems to be a closer
grouping of final maxima for the transformation scheme. It indicates that some of
the lower parameterised models have a lower final training error than those using
PCA data. This is likely due to the inter-dimensional correlations being learned by
the emission distributions of the models. From the curves it can also be seen that
for PCA-transformed data the asymptotic maxima are reached earlier. This can be
seen from the average curves (the dashed lines) on both figures. Looking at the
bottom ends of the shaded areas, the optimisations are generally less noisy in the
PCA case. It is concluded that decorrelation improves the optimisation robustness
and the post optimisation performance of the classifier.

(a) MCE runs for multiple structures us-
ing the data transformation on feature set
(4.12).

(b) MCE runs for multiple structures us-
ing the PCA-whitened version of feature set
(4.12).

Figure 5.6: The figures show the MCE training curves for multiple model structures. The
structures are formed from all combinations of the following hyperparameters: N = {4, 5, 6, 7, 8}
and K = {3, 4, 5, 6, 7, 8}. The runs use the sparsest update and a common set of optimisation
parameters based on the linear annealing schedule described in section 3.2.4. The parameters are
ε0 = 0.05, nmax = 200 epochs and θ = 0.2.
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5.4 The slope value of the sigmoid function

So far no over-training has been seen in the MCE experiments. What was seen in-
stead is a plateau of both the training and validation error. It is known that although
SGD reaches an asymptotic minimum rather quickly, it takes long to converge rel-
ative to deterministic gradient descent (Bottou, 2012). As an explanation for the
lack of over-training, it is worth considering that the SGD operations might hop
around the minimum and not reach the point where it learns the training noise, de-
spite the substantial improvement on the validation performance. One might think
that by adding capacity to the models, the training noise will eventually be learned.
This assumption makes sense, however it has not been encountered for the current
problem. Figure 5.7 shows the training curves of a very high-complexity model set.
The optimisation was not run to convergence, but stopped after 1000 epochs. The
values of the training curve indicate that the optimisation is still minimising training
error, however the curve also indicates a problem with step size. For the training a
small constant step size was used in an attempt to run brute force until convergence.
Unfortunately it seems that the small step size at some point remains too large to
allow for further fine tuning. An important point to mention is that the optimal step
size decay is difficult to find. There are sophisticated methods from the neural net-
works literature that find the principal eigenvalue of the Hessian using only gradient
information. LeCun et al. (2012) cite a method that finds an approximation to the
gradient-Hessian product using finite differences and the power-method, Pearlmutter
(1994) presents a method to find an exact version of the product, analitically, using a
differential operator that can be applied to the graidient equations. These methods,
however, rely on stable gradients and are therefore mostly meant for deterministic
descent since stochastic gradients are noisy. The optimisation considered here uses
no second-order information, and this leads to an optimisation that is difficult to
parameterise well when convergence is expected.
As explained earlier, lowering the slope of the sigmoid loss function means that the
function no longer directly corresponds to training error. However, it was also found
earlier that lowering the slope to a value of γ = 0.1 yielded an objective function
that is easier to optimise while still decreasesing the validation error, which employs
γ = 1, along a similar trajectory as the training error. Schluter and Macherey (1998)
use a probability scaling constant ρ in the form P ρ to improve the convergence of
MMI training for speech recognition. It is used as a standard method and is known
to lead to good test-set performance (Povey, 2005). If such a scaling constant is
applied to MCE training using the sparsest update (function D in table 5.1), it is
equivalent to lowering the central slope of the sigmoid. The argument is briefly de-
veloped below. If the scaled probability is substituted into the discriminant function,
it becomes

gi(X,Λ) = logP (X|λi)ρ = ρgi(X,Λ). (5.5)

If this is substituted into the distance measure, it becomes

di(X,Λ) = −ρgi(X,Λ) + log

[
1

M − 1

∑
j 6=i

egj(X,Λ)ρη

] 1
η

, (5.6)
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Figure 5.7: A figure showing the training curves for a massive twelve state, thirty-five mixture-
component model set. The training was run for 1000 epochs and stopped before convergence. The
final training and validation accuracies are 99.74% and 84.7% respectively.

where the infinity-norm case is

di(X,Λ) = −ρgi(X,Λ) + ρmax
j 6=i

(gj(X,Λ)) = ρdi(X,Λ). (5.7)

Embedded in the loss function the slope value is then directly multiplied by the
scaling constant as

`i(X,Λ) =
1

1 + e−γρdi(X,Λ)
. (5.8)

The scaling constant does not behave as well in the η-norm case, as can be seen from
the distance measure to model parameter derivative. In the presence of the scaling
constant the distance measure gradient (see appendix A) becomes

∂di(X)

∂θ
= −ρ∂gi(X)

∂θ
+

1

η

∂

∂θ

[
log

(
1

M − 1

)
+ log

∑
j 6=i

egj(X)ρη

]

= −ρ∂gi(X)

∂θ
+

1

η

[∑
j 6=i e

gj(X)ρη ∂gj(X)

∂θ
ρη∑

j 6=i e
gj(X)ρη

]

= −ρ∂gi(X)

∂θ
+

∑
j 6=i e

gj(X)ρη ∂gj(X)

∂θ
ρ∑

j 6=i e
gj(X)ρη

=

{
−ρ∂gi(X)

∂θ
θ ∈ λi

ρφi,k(X)∂gk(X)
∂θ

θ ∈ λk 6=i,
(5.9)

where

φi,k(X) =
egk(X)ρη∑
j 6=i e

gj(X)ρη
. (5.10)
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The value η weights the contribution of a competitor model by a function of its
score on the input X. The value ρ now also influences this contribution function
so that equal contributions require the product of η and ρ to be unity. However,
for the the infinity norm case, such as the sparsest update, the scaling is equivalent
to relaxing the sigmoid slope. The formulations above are intended to justify the
lowering of the sigmoid function by relating it to a well known scaling term from
the MMI literature. The lowered sigmoid slope is already used throughout all MCE
experiments in the study.

5.4.1 Hypothesis

The HMM evaluation functions (5.3) and (5.4), when used on long observation se-
quences, tend to result in small probabilities since those sequences imply long multi-
plication chains. When these probabilities are represented in log-scale, the dynamic
range of the misclassification distances will be large. For the gesture data considered,
log-probabilities of around −1000 are not uncommon. The problem of gesture data
might call for a much lower slope of the logistic function, so as to broaden the range
of barely-correct and near-miss examples reflected in the gradients. Figure 5.8 shows
the sigmoid functions for different values of the central slope γ. In the large range
of values di(X,Λ) can occupy, it can be seen that γ = 1 is a good approximation
to a misclassification counter function, but that it does not acceptably reflect in the
range of barely-correct or near-miss cases. Figure 5.9 on the other hand shows the
gradients of those loss functions in terms of misclassification distance value di(X,Λ).
Essentially it shows that lowering the γ value broadens the range of distances that
will reflect gradients. Here it can be seen why an optimiser for a slope value of γ = 1
is almost impossible to choose parameters for, given large fluctuations in di(X,Λ).

Figure 5.8: A figure showing the sigmoid function for three values of gamma.

It is anticipated that γ values lower than 0.1 will not only yield more optimisation-
friendly objective functions, but will still lead the validation performance and further
more, allow over-training to be seen on the validation set. It is hypothesised that
as the value of the slope is decreased, better performance on the validation set will
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Figure 5.9: A figure showing the gradients of the loss function w.r.t the misclassification distance
measure for different values of γ.

be seen up to some optimal point. Thereafter validation performance will again
decrease.

5.4.2 Experiment

To investigate the effects of relaxing the sigmoid slope on optimisation performance,
a series of MCE optimisations were set up using the same model set with varying
slope values. The experiment is done in the same multiple-run fashion as before,
and the averaged training curves accross the runs are plotted. The plots will show
over-training behaviour and higher maxima for lowered slope values if the hypothesis
is correct. When the slope is notably further decreased, over-training behaviopur
is expencted but at lower maxima, indicating that the function being learned no
longer corresponds with the training set error. There then clearly exists an optimal
value somewhere in between. For the experiment in figure 5.10, a twelve-state,
eleven-mixture component model set was used. This time a decay function of

εn =
ε0

1 + ωn
(5.11)

was used for the step size annealing, where ω is a small positive constant. The
parameters ε0 and ω were tailored to each γ value.

5.4.3 Findings

Figure 5.10 shows the optimisation curves for five MCE runs with varying slope
values. From the curves it is clear that the value γ = 1 does not optimise performance
on the training or validation sets. The value γ = 0.1 (used throughout all previous
MCE experiments) does optimise the training and validation performance, but does
not over-train. The value γ = 0.01 shows over-training with the validation optimum
around the tenth iteration. It also achieves the highest validation performance of
87.6%, indicating that the increase in conditioning helps to dig out a little more
information out of the training data. The value γ = 0.01 is thus the empirical
optimum slope value. The value γ = 0.005 shows very clear over-training and a
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(a) Slope value γ = 1, initial step size
ε0 = 0.05. Final training performance:
95.8%. Maximum validation performance:
83.2%.

(b) Slope value γ = 0.1, initial step size
ε0 = 0.5. Final training performance:
98.7%. Maximum validation performance:
85.8%.

(c) Slope value γ = 0.01, initial step size
ε0 = 2.75. Final training performance:
99.7%. Maximum validation performance:
87.6%.

(d) Slope value γ = 0.005, initial step
size ε0 = 2.75. Final training performance:
99.7%. Maximum validation performance:
87.4%.

(e) Slope value γ = 0.001, initial step
size ε0 = 2.75. Final training performance:
98.8%. Maximum validation performance:
85.7%.

Figure 5.10: Five runs of MCE-GPD training using varying gamma values. The optimisations
were performed on the PCA version of feature-set (4.12) using the sparsest update. Eight runs
were made for every value. The average curves for all runs are represented above.
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higher validation performance than that of γ = 0.1, but slightly lower than that of
γ = 0.01. When comparing the training curves of γ = 0.01 and γ = 0.005, the latter
case looks slightly over-smoothed. This is obvious in the case of γ = 0.001, where the
training performance function surpasses the validation performance function around
the twentieth iteration. In this case the highest validation performance is 85.7%,
just below that for γ = 0.1. It is concluded that a lower slope value is both easier to
optimise and achieves better performance, where the empirical optimum is γ = 0.01.

5.5 Best result

The experiment in section 5.1 determined that the sparsest update can be used as a
faster MCE optimisation for large problems, despite that the underlying function is
actually discontinuous. Section 5.2 attempts to elucidate the underlying mechanism
that allows minimum classification error of the training data. Section 5.3 shows how
PCA-decorrelation can improve performance of MCE-training and the final classi-
fier. Section 5.4 compares the value of the sigmoid slope to a known scaling constant
in MMI-training for speech recognition and shows that it is related to the dynamic
range of the misclassification measure. An empirical best slope value of γ = 0.01
was found.

Using the accumulated findings of previous experiments, a best result model set
was trained and tested. The PCA-version of feature set (4.12), and a twelve-state,
eleven-mixture component model set was used. Further, a slope value of γ = 0.01
and the decay function (5.11) for step size annealing was used. The decay function
used the values ε0 = 2.75 and ω = 1/P , where P is the number of training sam-
ples (see (2.18)). Using an early stop, the result in figure 5.11 was produced. The
model set achieves a test set accuracy of 87.3%. This result is noteworthy because
it competes well with two powerful methods from other studies. Liang and Zheng
(2014) use RBF-SVMs on holistic features of a skeletal gesture sequence. The mean,
variance, minimum and maximum of their skeletal feature vector is accumulated
over the frames of a segmented gesture. It is a very dense feature set that, given
good segmentation, should be quite discriminative. On the segmented test set this
method achieves 83.02%. Evangelidis et al. (2014a) perform SVM classification on
a 1536-dimensional Fisher vector representation calculated from a sliding window of
skeletal features. This is a powerful discriminative representation that uses an un-
derlying probabilistic model. The method achieves 90% on the isolated classification
of the test set.
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Figure 5.11: A test set confusion matrix for the best performing model set. The model set uses
uniform twelve-state, eleven-mixture component models. Accuracy: 87.3%.
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Chapter 6

Conclusions

There are very few examples of discriminative HMMs being used in the gesture recog-
nition literature. This study successfully implements discriminative HMMs for the
recognition of fine grained dynamic hand gestures. The dataset used is intended for
gesture recognition from multiple modalities, and because only the skeleton modal-
ity is used, many gestures are very similar given their features. From the discussion
on other work performed on the dataset in section 4.2, the top-performing teams
seemed to have used quite high-dimensional feature descriptors for classification on
the skeleton stream. Evangelidis et al. (2014a) use 1536-dimensional Fisher vec-
tors calculated from windows of so called quads as features for SVM classification.
These vectors do contain the temporal signature of the gestures, but are still very
high-dimensional as descriptors. Relatively, this study employs a very small feature
vector of only fourteen dimensions while performing competitively.

Given only skeletal features, the maximum likelihood classifier in this study suf-
fers from distributional overlap. This can be seen from the first confusion matrix
in chapter 4. The confusion matrices in the rest of the chapter show the results of
a ML-based mitigation strategy, one of model selection for the maximum likelihood
of each respective class’s validation data. Chapter 5 details the results of discrimi-
native training as a mitigation. It is clear that if distributional overlap is a threat,
then discriminative training offers a reasonable solution. Section 5.2 attempts to
visualise the differences in the emission distributions that account for the increases
in classifier accuracy. In the plots, the distributional overlap problem is clearly il-
lustrated. From the difference in distributions an important observation was made.
That despite that MCE training lowers the overall likelihoods, the likelihood of the
”correct” model will be higher than its competitors. This is because the embedded
MAP rule still requires the ”correct” model to have the highest likelihood. It is ar-
gued accordingly that other uses such as Viterbi decoding over sequences of gestures
could also benefit from MCE training.

This study successfully detailed the design of a maximum likelihood and a discrim-
inative HMM gesture classifier. The study has shown that a discriminative HMM
classifier is a good solution to an isolated gesture problem in the light of feature
similarity. It does so with a performance result of 87.3% accuracy being achieved on
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an over 4000-sequence test set using the skeletal modality alone. This result com-
pares to the 83.02% reported in Liang and Zheng (2014) and the 90% reported in
Evangelidis et al. (2014a). The study further serves as a roadmap for implementing
a similar gesture classifier.

Given the evaluation of this study’s methodology on a gesture dataset that is de-
signed for simultaneous spotting and recognition, it is regrettable that automatic
segmentation and recognition using some variant of the Viterbi algorithm could not
be investigated. It is after all the main reason for the use of HMMs in speech recogni-
tion. The study thus recommends as a direction of further enquiry the incorporation
of a Viterbi-based segmentation and recognition strategy. It would facilitate a much
wider comparison to other work on the dataset, and if co-articulation needs to be
modelled, there are sentence level forms of the MCE objective function in the liter-
ature.

As low-cost depth sensors become increasingly more available and the technology
therein improves, more gesture datasets with more sophisticated skeletal articula-
tion will surface. Better function approximation methods that would otherwise be
too data-hungry will become more viable, such as the use of convolutional neural
networks in conjunction with HMMs, as is the case in speech recognition.
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Appendix A

Derivatives for the Minimum
Classification Error function for
Stochastic Gradient Descent

This appendix deals with the derivatives of the various forms of the MCE loss func-
tion and some underlying derivations.

A.1 The loss function

The expected loss per sample X is considered for SGD:

L(Λ) = E[`(X; Λ)]

= `i(X; Λ) X ∈ Ci. (A.1)

The loss function gradient

∂`i(X)

∂θ
=
∂`i(X)

∂di(X)

∂di(X)

∂θ
(A.2)

can belong to any model in the classifier Λ. The first term in the chain-rule expansion
is the derivative of the loss function with respect to the misclassification measure

∂`i(X)

∂di(X)
= γ`i(X) (1− `i(X)) . (A.3)

A.2 Misclassification measures

The second term in the expansion (A.2) is the misclassification measure derivative.
The misclassification function has two cases considered in the study, the max and
η-norm functions.
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A.2.1 Max norm case

When the norm value η −→ ∞ is used, only the highest scoring competitor model
is considered in the misclassification measure. The derivative is as follows:

di(X) = −gi(X) + max
j 6=i

(gj(X))

= −gi(X) + gk(X)

∂di(X)

∂θ
=


−∂gi(X)

∂θ
θ ∈ λi

∂gk(X)
∂θ

θ ∈ λk
0 θ 3 λi, λk.

(A.4)

A.2.2 General η-norm case

In the general case, the value η weights the contribution of a competitor model by
a function of its score on the input X. The derivative is as follows:

∂di(X)

∂θ
= −∂gi(X)

∂θ
+

1

η

∂

∂θ

[
log

(
1

M − 1

)
+ log

∑
j 6=i

egj(X)η

]

= −∂gi(X)

∂θ
+

1

η

[∑
j 6=i e

gj(X)η ∂gj(X)

∂θ
η∑

j 6=i e
gj(X)η

]

= −∂gi(X)

∂θ
+

∑
j 6=i e

gj(X)η ∂gj(X)

∂θ∑
j 6=i e

gj(X)η

=

{
−∂gi(X)

∂θ
θ ∈ λi

φi,k(X)∂gk(X)
∂θ

θ ∈ λk 6=i,
(A.5)

where

φi,k(X) =
egk(X)η∑
j 6=i e

gj(X)η
. (A.6)

A.3 Discriminant functions

Regarding the discriminant function, the study considers two cases: the standard
HMM evaluation function and the Viterbi probability.

A.3.1 Viterbi probability

In the standard HMM evaluation function, the dominant term in the summation
over all possible state paths is the joint observation and path probability along the
single most likely path:

gi(X,Λ) = logP (X, q̄|λi) = logP (X|q̄, λi) + logP (q̄|λi)

= log πq̄1 +
T−1∑
t=1

log aq̄t,q̄t+1 +
T∑
t=1

log bq̄t(xt). (A.7)
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Transformed parameter gradients

Using the chain-rule expression

∂ logP (X, q̄|λ)

∂θ̃
=
∂ logP (X, q̄|λ)

∂θ

∂θ

∂θ̃
, (A.8)

the transformed parameter derivatives are found as:

∂ logP (X, q̄|λ)

∂ãij
=

T−1∑
t=1

δ(q̄t, i)δ(q̄t+1, j)(1− aij), (A.9)

∂ logP (X, q̄|λ)

∂c̃jk
=

T∑
t=1

δ(q̄t, j)
N (xt, µ̄jk, σ̄jk)

bj(xt)
cjk(1− cjk), (A.10)

∂ logP (X, q̄|λ)

∂µ̃jkd
=

T∑
t=1

δ(q̄t, j)
N (xt, µ̄jk, σ̄jk)

bj(xt)
cjk

(
xdt − µjkd
σjkd

)
, (A.11)

∂ logP (X, q̄|λ)

∂σ̃jkd
=

T∑
t=1

δ(q̄t, j)
N (xt, µ̄jk, σ̄jk)

bj(xt)
cjk

[(
xdt − µjkd
σjkd

)2

− 1

]
. (A.12)

A.3.2 General sequence probability

The general evaluation function case of the discriminant function is now consid-
ered. First the standard parameter derivatives are found and then from them the
transformed parameter derivatives. The general evaluation function is as follows:

P (X|λ) =
∑
q

P (X, q|λ)

=
∑
q

P (X|q, λ)P (q|λ)

=
∑
q

πq1

T∏
t=2

aqt−1,qtbqt(xt). (A.13)

To efficiently calculate the product summation of P (X|λ), the forward process is
used:

α1(i) = πibi(x1) 1 ≤ i ≤ N (A.14)

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(xt+1) 1 ≤ t ≤ T − 1 (A.15)

1 ≤ i ≤ N

P (X|λ) =
N∑
i=1

αT (i). (A.16)
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To state this process in a single differentiable equation, we use a more compact
matrix notation. Let ᾱ, β̄ be column vectors of the forward and backward variables
at time t. The N × N transition matrix is here denoted as A. Let B be a N × N
diagonal matrix of the observation distributions at time t (Qin et al., 2000):

Bt =

 b1(xt)
. . .

bN(xt)

 . (A.17)

In this case the observation at time t, xt, is in fact a vector of continuous values and
dimension D, xt = [x1

t , x
2
t , x

3
t , ..., x

D
t , ]. The emissions are modelled by multivariate

mixture of Gaussian distributions

bj(xt) =
K∑
k=1

cjkN (xt, µ̄jk, σ̄jk). (A.18)

The forward and backward recursions can now be expressed as follows:

ᾱτt+1 = ᾱτtABt+1 (A.19)

β̄t = ABt+1β̄t+1, (A.20)

and the likelihood function as

P (X|λ) = ᾱτT ū

= π̄τB1.AB2.AB3.AB4...ABT ū. (A.21)

The parameter derivative employs the product rule and the definitions of (A.19) and
(A.20):

∂P (X|λ)

∂θ
=
∂π̄τB1

∂θ
β̄1 + ᾱτ1

∂AB2

∂θ
β̄2 + ᾱτ2

∂AB3

∂θ
β̄3 + ...+ ᾱτT−1

∂ABT

∂θ
β̄T

=
∂π̄τB1

∂θ
β̄1 +

T−1∑
t=1

ᾱτt
∂ABt+1

∂θ
β̄t+1. (A.22)

Since the derivative of a matrix is a matrix of its differentiated elements, and θ is a
specific parameter, the resulting matrix expressions contain only one non-zero term.
Therefore the summations run only across the affected transitions of states. For
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derivatives w.r.t θ ∈ {πi, aij}, i, j ∈ [1, N ]:

∂P (X|λ)

∂πi
=
∂π̄τB1

∂πi
β̄1

= β1(i)bi(x1) (A.23)

∂P (X|λ)

∂aij
=

T−1∑
t=1

ᾱt
∂ABt+1

∂aij
β̄t+1

=
T−1∑
t=1

αt(i)bj(xt+1)βt+1(j). (A.24)

For derivatives w.r.t θ ∈ {cjk, µjkd, σjkd}, j ∈ [1, N ], k ∈ [1, K], d ∈ [1, D]:

∂P (X|λ)

∂θ
=
∂P (X|λ)

∂bj(xt)

∂bj(xt)

∂θ
(A.25)

∂P (X|λ)

∂bj(xt)
=

∂π̄τB1

∂bj(x1)
β̄1 +

T−1∑
t=1

ᾱτt
∂ABt+1

∂bj(xt+1)
β̄t+1

=
∂π̄τB1

∂bj(x1)
β̄1 +

T∑
t=2

ᾱτt−1

∂ABt

∂bj(xt)
β̄t

= πjβ1(j) +
T∑
t=2

N∑
i=1

αt−1(i)aijβt(j)

= πj

(
bj(x1)

bj(x1)

)
β1(j) +

T∑
t=2

[
N∑
i=1

αt−1(i)aijbj(xt)

](
1

bj(xt)

)
βt(j)

=
α1(j)β1(j)

bj(x1)
+

T∑
t=2

αt(j)βt(j)

bj(xt)

=
T∑
t=1

αt(j)βt(j)

bj(xt)
. (A.26)
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Transformed parameter gradients

∂ logP (X|λ)

∂ãij
=
∂ logP (X|λ)

∂P (X|λ)

∂P (X|λ)

∂aij

∂aij
∂ãij

=

(
1

P (X|λ)

)(T−1∑
t=1

αt(i)bj(xt+1)βt+1(j)

)
aij(1− aij)

=
T−1∑
t=1

ξij(1− aij). (A.27)

∂ logP (X|λ)

∂c̃jk
=
∂ logP (X|λ)

∂P (X|λ)

P (X|λ)

bj(xt)

bj(xt)

cjk

cjk
c̃jk

=

(
1

P (X|λ)

)( T∑
t=1

αt(j)βt(j)

bj(xt)

)
N (xt, µ̄jk, σ̄jk)cjk(1− cjk)

=
T∑
t=1

γt(j, k)cjk(1− cjk). (A.28)

∂ logP (X|λ)

∂µ̃jkd
=

T∑
t=1

γt(j, k)cjk

(
xdt − µjkd
σjkd

)
. (A.29)

∂ logP (X|λ)

∂σ̃jkd
=

T∑
t=1

γt(j, k)cjk

[(
xdt − µjkd
σjkd

)2

− 1

]
. (A.30)
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