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Abstract

This dissertation explores the feasibility of learning the patterns that people walk

in everyday scenarios. This information can be used to aid security personnel by

drawing their attention to unusual events.

A segmentation algorithm is developed for the fast detection of a marker on a per-

son within an office environment. This is used to create a database of movements.

The DTW (dynamic time warping) algorithm is presented as an efficient method

for comparing signals of different length. The DTW is used in conjunction with

three clustering algorithms (graph theoretic, Batchelor and Wilkins’ and hierar-

chical) to determine which performs best on 15 data sets with between 14 and

60 movements each. The graph theoretic clustering method correctly classifies

96% of the data, Batchelor and Wilkins algorithm classifies 94% correct and the

hierarchical clustering algorithm 73% correct.

The WINEPI (window episode) algorithm is used to generate rules based on se-

quences of movements that are found in the database. Three tests are run to

demonstrate its effectiveness at finding rules in long sequences of events.
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Chapter 1

Introduction

The automation of security and surveillance is an area of research that has seen

a large amount of development recently. The desired product is a smart system

that will be able to analyse video data in real-time and provide security personnel

with additional useful information. This can take on a variety of forms, from sig-

nalling when someone enters a room to recording and alerting security personnel

to suspicious or unusual behaviour. Most of these systems are not intended to re-

place the security personnel, but rather to aid them in their task. This is especially

useful since in many cases security personnel must analyse many video sequences

simultaneously. The chances of them missing an event whilst looking at another

one are quite high. This can be greatly reduced by having a smart system that will

alert the officers to all unusual events.

The most common smart systems in place at the moment can perform various

tasks:

• Event Detection

These systems detect when a specified event takes place. This may be some-

one entering a room, the number of people in a room reaching a certain

threshold or a person walking too quickly.

• Person Tracking

The exact location of people can be tracked as they move around a room or

1



Chapter 1: Introduction

building. This information can be used to trigger events.

• Static Object Detection

A room can be monitored to see if any new object has been stationary for a

long period of time. When this happens, security personnel can be alerted

to the presence of the object in the room being monitored. This can be

especially useful for the detection of potential bombs.

• Gesture Recognition

Although this is not used extensively in most security systems, certain ges-

tures can be detected. These can be used for a variety of purposes. For

instance, a system can be created that turns off the lights in a room when a

person waves their arms above their head.

Most of the systems that are implemented have been designed for their specific

environment and are therefore not easily portable to different surroundings. New

research is being done into systems that will be able to adapt to changing condi-

tions (such as lighting changes). Research is also being done into systems that

can be used in many different environments. An example of such a system is the

SEDOR (selflearning event detector) system [2] from the company Ascom. This

system is able to ‘learn’ areas in which people tend to move, send alarms when

there is movement in other areas and perform static object detection. The SE-

DOR system goes through a training stage, where it learns the usual behaviour of

people. After this it runs continuously.

This work aims to provide an introduction to methods for finding patterns in peo-

ple’s movements. By learning the various movements that people make on regular

occasions in an office environment, a smart security system will be able to detect

abnormal behaviour and alert security personnel. Apart from the detection of reg-

ular movements, the system will be able to analyse the sequences in which these

movements occur and make predictions as to what movements are likely to be

made next. These predictions can be used to draw the attention of security per-

sonnel to events that do not match the predictions.

2
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1.1 Overview

The work presented here is broken up into three main sections:

1.1.1 Data collection

This section deals with the collection of data from an overhead camera. The video

stream from the camera needs to be analysed to determine the location of people in

the room being analysed. This is a highly complex task in itself. Since this is not

the main focus of the work presented here, the segmentation of only one person

in the room was performed. Furthermore, to simplify the task and to enable real-

time segmentation of the video sequence, a marker was used to identify the person

being tracked. Post-processing of the output signal to make the data ready for the

pattern matching stage is also discussed.

1.1.2 Automatic pattern matching

The DTW (dynamic time warping) algorithm is introduced as a suitable distance

measure to use for comparing signals that have different durations. Various con-

siderations and constraints that can be placed on the DTW are discussed and op-

timal parameter settings are determined. Three different clustering techniques are

compared to find out which will perform the best at determining which movements

in various data sets are similar.

1.1.3 Rule generation

Finally the WINEPI (window episode) algorithm of Manilla and Toivonen [20,

21, 28] is introduced as an efficient method for finding rules based on a sequence

of events that have taken place over a long period of time. These rules can be

used for predicting future movements as well as setting off alarms when unusual

movements occur.

3
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1.2 Limitations

This work was limited by the unavailability of a segmentation algorithm with

the ability to correctly identify numerous people in a room over long periods of

time. For this reason, a simple segmentation algorithm was designed to track one

person. Ideally the data source would consist of numerous people’s locations in

the room. It would then be a trivial task to convert the system discussed here

to one that would learn each person’s individual patterns. This would result in a

system where person A might be allowed to do certain movements, whilst person

B doing the same movement would result in the sounding of an alarm.

The unavailability of a very large data set containing video and segmented data

over a long period of time was also a disadvantage. This meant that most of the

testing had to be performed on relatively small data sets. The result of this is that

some of the results (especially those based on the implementation of the WINEPI)

algorithm did not perform as well as could be expected on larger data sets. This is

simply because that the test data sets were small.

This project is a feasibility study for the various components that would fit into

a larger security system. Before a final implementation can be created, a well-

defined set of constraints needs to be established. In particular, good domain

knowledge is required with respect to the types of movements that one is intending

to analyse.

1.3 Literature review

Data mining (also referred to as KDD, knowledge discovery from databases) has

emerged as an effective technique for finding association rules, sequences and

classifiers [1]. Data mining is frequently described as [17]:

The non-trivial process of identifying valid, novel, potentially useful,

and ultimately understandable patterns from data.

4
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Implementations of various data mining techniques come in a variety of forms

depending on the input data and desired output form. Neural networks have been

used to find structure in time series [7]. However, the output from neural networks

is generally not in a very usable form and can be difficult to interpret with regard

to rule creation in data mining [1]. Chappelier and Grumbach attempted to use

a Temporal Kohonen Map to detect the temporal sequences found in signature

authentication [4]. Their method of padding with zeros to ensure all sequences

are of the same length is not suited to the task at hand.

One of the main issues with data mining is the exceptionally large amount of

data that needs to be analysed in many cases. An example given by Keogh and

Smyth [16] tells of NASA’s shuttles sending back 20 000 readings from various

sensors every second. This amounts to approximately 1.7 billion readings a day.

Much work is being done on simultaneous compression and data mining for useful

information.

In particular, Keogh and Pazzani have worked on using a piecewise linear repre-

sentation for the data in combination with a DTW algorithm that works on this

data representation [15]. They have also done work on making use of suitable

indexing schemes to increase the speed of searches in databases [12], an investi-

gation into the automatic weighting of certain features [14] and the use of APCA

(adaptive piecewise constant approximation) for the compression of data streams

[13].

The current database size used for the tracking of people and the detection of

their movements in this project does not yet warrant the increased complexity in

implementation of one these aforementioned schemes. Especially since the final

implementation will perform a training stage, whereafter the system will be run in

real-time. This means that all new data will be analysed and sorted as it arrives,

eliminating the need for large database support.

There are numerous clustering techniques that have been developed over the years.

Jain et al. [11] provide an overview of many of these algorithms. It is important to

note that many algorithms may not be suited to a particular problem. In this work,

many algorithms that require the desired number of clusters to be specified before

the clustering begins, are of no use. This is because this number is unknown.

5
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Various different methods of finding sequential patterns in data sets have been in-

vestigated. In particular, four of them that are frequently used are the WINEPI and

MINEPI (minimal episodes) algorithm [20, 21, 28, 19], the GSP (generalised se-

quential patterns) algorithm [27] and the SPADE (special pattern discovery using

equivalence classes) algorithm [32, 33, 31].

In a study that compares these four algorithms, Ikizler [9] states that the SPADE

algorithm outperforms the GSP algorithm by a factor of two. She also points out

that the WINEPI algorithm is more suited to the analysis of telecommunication

alarms and gene sequences rather than the analysis of so called basket data (data

generated in supermarkets). The data being analysed in this project is more similar

to alarm and gene data than it is to basket data.

6
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Data Collection

In order to detect the various recurring patterns that take place in people’s move-

ments, it is necessary to have a large database of location data. This data should

be a person’s x and y co-ordinates in a plan view of their work environment for

long periods of time. The data should also indicate when the person is not present

in the work environment.

2.1 Database generation

A large database of movements was not readily available, so it was necessary

to generate one. This meant devising an algorithm that could identify a person’s

location from a stream of video data. This is a very difficult segmentation problem

to solve unless various constraints are placed on the work place environment. In

order to be able to generate such a database quickly, the following constraints

were placed on the work environment:

• Only one camera would be used.

• The lighting in the work place would be controlled so that it stayed at a

constant level.

7
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• The subject being tracked would wear a pink hat (marker) to make identifi-

cation easy.

• Only one person in the work place would be tracked at a time. This would

be the person wearing the pink hat.

• Only one pink hat would be present in the environment at any time.

• No pink objects other than the hat were to be in the work place.

A pink hat was used because pink was not present in the work environment. This

meant that it would be easier (and therefore quicker to process) to find than a blue

or green hat.

(a) (b) (c)

Figure 2.1: Three frames of video showing a person in the work environment

wearing the pink hat.

2.2 Segmentation algorithm

The segmentation algorithm was optimised for speed so that it could be run in

real-time at a high frame rate (15 frames per second). In order to achieve this, it

was necessary to have a simple segmentation algorithm that would run quickly. A

certain amount of robustness had to be sacrificed in order to achieve this. These

sacrifices are in effect the constraints mentioned above.

The algorithm for segmentation runs through the following steps for every frame

in the video sequence. It does not make use of any information from the previous

frame(s).

8



Chapter 2: Data Collection

1. Load the current frame.

2. Detect all pink areas in the image.

3. Label all of the pink areas.

4. Determine which of the pink areas is the largest.

5. Determine the centroid of this area.

The pink areas in the image were detected by placing various thresholds on the

R,G,B (red, green, blue) values of the pixels in the image. It was noted that

the colour of the hat in terms of R,G,B values differed when the person was in

various locations in the work place. In particular, the centre of the work place and

the edges differed greatly. This is shown in figure 2.2

R

R G

G B

B

Figure 2.2: TOP: Histograms of R,G,B values of the pink hat when the subject

is at the centre of the work place; BOTTOM: Histograms of R,G,B

values of the pink hat when the subject is at the edge of the work

place.

Based on these histograms and further analysis of the colour pink, four decision

criteria were determined to distinguish the pink from other colours:

• R,G,B values must all be greater than 90.

9
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• The value of R - B must be greater than 15.

• The value of G - B must be less than 20.

• The values of (R,G,B) must not be in the ranges (120±30,93±30,63±30).

(a) (b) (c) (d)

Figure 2.3: (a) Original frame; (b) pink regions; (c) largest pink region; (d) cen-

troid (indicated by the black marker).

The centroid of the largest pink region (the hat) is used to determine the person’s

x and y co-ordinates. Since the hat will normally appear as either an ellipse or a

circle, the centroid will give a good indication of its centre.

The centroid is defined as:

C = (Cx,Cy) (2.1)

where

Cx =
∑

i

xi

Area
Cy =

∑
i

yi

Area
(2.2)

and Area is the number of pixels present.
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Chapter 3

Pre-Processing

Once the database of x and y co-ordinates is available, it is necessary to convert it

to a database that contains the individual movements of the person being tracked.

In other words, it is necessary to remove all of the data when the person was not

in the work environment as well as when the person was remaining stationary for

any significant period of time. Once this has been done, all that will remain is

the individual movements that the person made. These movements can then be

further analysed so as to ‘learn’ the patterns of movement that have been made.

3.1 Median filtering

As mentioned previously, the segmentation algorithm that detects the person’s

hat (and therefore their location) is not very robust. This means that it might

incorrectly indicate that the person being tracked is in the room when they are

not. This normally only happens for a very short period of time. Because of this,

filtering can be used to eradicate such spurious outputs from the segmentation

algorithm.

A median filter was chosen instead of various other filter types (mean, gaussian)

as it is very good at removing salt and pepper noise. This is non-gaussian noise

that has extreme values and is very similar to the noise shown in figure 3.1. The

11
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(a) (b)

Figure 3.1: The effects of median filtering. (a) The x and y co-ordinates of a

person being tracked. Five erroneous “spikes” are present, caused by

errors in the segmentation algorithm. (b) The x and y co-ordinates

after the “spikes” have been removed by median filtering.

median filter also has an edge-preserving property which is very important. There

are many sharp edges in the data and it is important that they are maintained when

filtering is performed. The edges are formed when the subject being tracked leaves

the work environment. If the filtering process did not preserve the edges, it would

appear as if the person had ‘teleported’ a large distance.

A seven point running median filter was applied to the data stream. As can be

seen in figure 3.1 this results in the minimisation of spurious data. One of the

unwanted side effects of the filtering process is the rounding off of some of the

sharp edges in the data. This is not a problem since the rounding off of the edges

should happen in a similar manner to all of the edges in the data. Also, this will

be accounted for when the dynamic time warping function is used with relaxed

endpoint constraints (see chapter 4). Not all of the spurious data is removed from

the data (figure 3.1). This is not a major problem, as it is more important to remove

the spurious data that is present when the subject is in the work environment, than

it is to remove spurious data when there is no one present. Furthermore, if there is

too much spurious data present, the movement will not be selected from the data

stream for further processing.

12
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3.2 Detecting movement with variance

When the person being tracked is standing still or is out of the work environment,

his x and y co-ordinates will remain constant for a certain period of time. The

variance of a set of constant data will always be zero. This fact can be used to

determine whether or not motion is taking place in the work environment.

The sample variance unbiased estimator (s2) for σ2 is used in this work.

s2 =
1

N −1

N

∑
i
(xi− x)2 (3.1)

For each data point in the data stream, the variance of the data point and the ten

data points on either side of it is calculated. This gives an indication of whether

or not the data point is part of a movement.

A threshold is then applied to both the x and y variance streams. This is used as the

basis of whether or not movement is happening. Once this has been done, the two

streams are merged, by taking the maximum value of the two streams. This is the

same as the logical OR command. This is done because a person can walk around

the office environment so that one of his co-ordinates remains constant while the

other one varies.

3.3 Further pre-processing

After applying a threshold to the variance, further pre-processing needs to be done.

The first stage is to search through all of the areas of movement in the data stream

and to determine if any adjacent movements should be combined into one move-

ment. This is done by determining the size of the gap between the two movements,

and merging them together if the gap is considered small. This means that if the

person being tracked stops very briefly and then continues walking, it will be con-

sidered to be one movement.

Whenever the person being tracked leaves the work environment, there is a sharp

edge in the data stream. This means that the there will be a large variance in the

13



Chapter 3: Pre-Processing

X co-ordinate Y co-ordinate

Variance Variance

Thresholded Variance Thresholded Variance

Areas of Movement

Figure 3.2: Determining areas of movement by calculating the thresholded vari-

ance for both co-ordinates and merging these results.

local neighbourhood. A result of this is that it will be marked as a movement.

This is not desirable, as the movement should only start when the person is in

the work environment, not before. This problem is illustrated in figure 3.4. The

segmentation algorithm sets the x and y co-ordinates in the output data stream to

(−1,−1) when the person being tracked is not in the work environment. This

means that it is relatively easy to fix this problem. All that needs to be done is to

check for leading and trailing values of −1 on the movements. If they are present,

they are removed.

A similar problem occurs when the person being tracked moves out the detection

area. In this case, what would have been an area of minimal variance (no move-

ment) is replaced with one of high variance. The result is that what should be

defined as two separate movements is combined into one movement. This time,

14
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X co-ordinate

Thresholded Variance

Merged Movement

Figure 3.3: The two thresholded variance signals are merged because they are

close to one another. This ensures that the movement does not get

classified as two movements.

a search is done for values of (−1,−1) inside the movement. If these values are

found, then the movement is subdivided into the appropriate number of segments.

Sometimes there is a sharp edge in the data stream at a place that otherwise had

minimal variance. This means that when the segmented area is divided into two

movements, they must have their variance levels checked again. If this is not

done, then a portion of the data stream in which there is no movement might be

incorrectly classified. This is shown in figure 3.5 where no movements are present,

but the edge effect of having left the work environment is present.

Two more checks are also done on all of the movements. These are:

• Making sure that their length is greater than a user-specified threshold (7

samples).

• Ensuring that there are no large discontinuities in the movement. This is

also a heuristically-derived user-specified threshold.
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(a)

(c) (d)

(b)

Figure 3.4: (a) Incorrect segmentation. The segmentation includes times when

nobody is present; (b) correct segmentation of (a); (c) incorrect seg-

mentation. There should be two separate movements; (d) correct

segmentation of (c).

Figure 3.5: An example of how a false movement can be detected when the per-

son being tracked is no longer in the ‘detection area’.
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Figure 3.6: Segmentation of a large data set. The black indicates the individual

movements after the segmentation has been performed. The red and

blue indicate the person’s x and y co-ordinates.
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Chapter 4

Dynamic Time Warping

4.1 Distance measures

In order to be able to perform pattern recognition or classification, one needs to

have a measure of similarity/dissimilarity between the two (or more) inputs that

are being compared [3]. These inputs can take on various different forms: con-

tinuous signals, discrete signals, sequences or strings. There are many different

distance measures used in various applications.

The euclidean distance is perhaps the most frequently used distance measure. It

is given by the mathematical formula:

d(x,y) =

√√√√ i

∑
k=1

(xk − yk)2 (4.1)

where x and y are vectors of dimensionality i. It is important that the relative

sizes of the dimensions of the vectors are correctly chosen, otherwise the resulting

distance measure could be meaningless. For instance, if the first dimension is

measured in centimetres and the second dimension in millimetres, then clearly the

second dimension will be more dominant in the resulting distance measure. This

problem can be overcome by normalising the data before applying the distance
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measure, by using the weighted euclidean distance [3], or by using a different

distance measure such as the mahalanobis distance.

Difficulties arise when these standard distance measures are applied to compare

signals of different lengths. This situation occurs in various applications such

as speech recognition, signature verification and the matching of people’s move-

ments. Since the signals are of different length, they are not members of the same

vector space [29].

4.2 Linear time normalisation

If the two signals being compared are known to have a rate variation that is pro-

portional to the duration of the signal, then linear time normalisation 1 (LTN) is a

good method for determining an error measure between the two signals. One such

method of performing linear time normalisation is to use the distance measure:

d(x,y) =
Tx

∑
ix=1

d(ix, iy) (4.2)

where ix and iy satisfy

iy =
Ty

Tx
ix (4.3)

Because ix and iy are of integer value, it is implied that some kind of rounding off

rule is applied. It is also possible to have the sum in equation 4.3 run from iy = 1

to iy = Ty if desired [23].

The distance measure d(ix, iy) in equation 4.2 can be any of the standard distance

measures such as euclidean distance or mahalanobis distance.

If the rate of variation is not proportional to the length of the signal, then LTN

does not perform well. This is shown in figure 4.2.

1Also known as linear time alignment
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Original Signal 1

Original Signal 2Time Normalised Signal

Error Signal

Figure 4.1: An example of linear time normalisation. The shorter input signal is

converted so that it has the same length as the other input signal. The

euclidean distance measure can then be used to find the error.

Input Signal 1

Input Signal 2Time Normalised Signal

Overlay of Signals

Error Signal

Figure 4.2: If the signals being compared do not have a rate of variation propor-

tional to the length of the signal, then the resulting error signal will

be large.
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4.3 Dynamic time warping

Dynamic Time Warping (DTW) performs a more generalised time alignment than

LTN. It makes use of two warping functions, φx and φy to warp the input data

points onto a common time axis, k. If one defines the two input signals being

compared as:

X = (x1,x2, ...xTx) (4.4a)

Y = (y1,y2, ...yTy) (4.4b)

then the warping functions, which relate the indices of the input signals (ix, iy) to

the common time axis, k, are defined as:

ix = φx(k) k = 1,2, ...,T (4.5a)

iy = φy(k) k = 1,2, ...,T (4.5b)

Based on these definitions, a global dissimilarity measure, dφ(X,Y) can be defined

as the accumulated distortion over the two signals:

dφ(X,Y) =
T

∑
k=1

d(Xφx(k),Yφy(k))m(k)/Mφ (4.6)

where m(k) is a non-negative weighting co-efficient, Mφ is a path normalisation

factor and d(Xφx(k),Yφy(k)) is a user-defined distance measure. Once again, the

euclidean distance measure is usually used.

At this point the warping path, φ = (φx,φy), has not been defined. Clearly there

are an extremely large number of possible paths that could be chosen. The desired

warping path is the path that optimally aligns the two input signals. This will

be the warping path that minimises the total accumulated distortion as defined in

equation 4.6 [25]. The formula for the error value between two signals is given by

the dynamic time warping formula:

d(X,Y) ≡ min
φ

dφ(X,Y) (4.7)
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1
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Ty

1

1

1

1
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k

Ty

Tx

i =x Ö (k)x
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Figure 4.3: A warping path and its associated warping functions.
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4.4 Constraints

The addition of a few logical constraints to the dynamic time warping problem

helps to reduce the number of possible warping paths allowed [24]. Without the

addition of these constraints, the minimisation would be able to conceivably re-

sult in a near-perfect match for two distinctly dissimilar input signals [23], thus

rendering the comparison between the two signals useless.

4.4.1 Monotonicity constraints

Monotonicity constraints are perhaps the most fundamental of the constraints ap-

plied to the DTW. The monotonicity constraint maintains temporal order whilst

aligning the two inputs. It eliminates the possibility of reverse warping along the

time axis. It also implies that the slope of the warping path can never be negative

[23]. It is specified as:

φx(k +1) ≥ φx(k) (4.8a)

φy(k +1) ≥ φy(k) (4.8b)

4.4.2 Endpoint constraints

In many cases, such as in speech recognition, the two inputs being compared have

well defined endpoints that mark both the start and the end of the signal. In such a

situation it makes sense to ensure that these endpoints are aligned and that warping

takes place in between. The endpoint constraints for the warping function are of

the form:

φx(1) = 1 φy(1) = 1 (4.9a)

φx(T ) = Tx φy(T ) = Ty (4.9b)

In some situations, there might be a certain degree of uncertainty about the accu-

racy of the start and endpoints of the signals. In such circumstances, the endpoint

constraints can be relaxed to take this into account.
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4.4.3 Local continuity constraints

Local continuity constraints ensure proper time alignment while keeping the loss

of information to a minimum [23]. Local continuity constraints also help to ensure

that excessive compression or expansion of the time scales is avoided [22]. They

are a more highly constrained version of the monotonicity constraints, as they

specify the set of movements that are allowed to be made in the warping lattice.

Local continuity constraints are based on heuristics. This means that there is no

way of determining the optimal local continuity constraints other than performing

tests on various options so as to see which one performs the best. One common

local continuity constraint proposed (see figure 4.4a) by Sakoe and Chiba [25] is

defined as:

0 ≥ φx(k +1)−φx(k) ≤ 1 (4.10a)

0 ≥ φy(k +1)−φy(k) ≤ 1 (4.10b)

Such definitions of local continuity constraints are often difficult to interpret, so

they are often shown graphically or defined as a set of incremental path move-

ments, P .

The distinction should be made between symmetrical and asymmetrical local con-

tinuity constraints. The former allows for the warping of both input signals to a

common time axis, whereas the latter only allows for the warping of one input sig-

nal onto the other. Sakoe and Chiba [25] have shown that the symmetrical form is

superior to the asymmetrical form.

(a) (b)

Figure 4.4: (a) Symmetrical local continuity constraints; (b) asymmetrical local

continuity constraints [30].
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Figure 4.5: An example of various local continuity constraints [23].
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4.4.4 Global path constraints

Because of the introduction of local continuity constraints, there are large areas of

the (ix, iy) plane that are excluded from the set of possible paths that the warping

path may take. The area of allowable paths is usually in the shape of a parallel-

ogram with vertices at (1,1) and (Tx,Ty). The other vertices are defined by the

local continuity constraints. The slopes of the parallelogram depend on the type

of local continuity constraints being used. They are typically found to be either

(2 , 1/2) or (3 , 1/3).

Sakoe and Chiba have have proposed a further global path constraint [25]:

|φx(k)−φy(k)| ≤ T0 (4.11)

T0 represents the maximum allowable time deviation between the two patterns at

any moment [23]. This constraint also helps to prevent any excessive stretching or

compressing of the signals during the comparison. It also helps to limit the search

space for a suitable warping path, φ.

Legal R
ange

(1,1)

(T ,T )x y

Figure 4.6: An example of a global path constraint without Sakoe and Chiba’s

additional constraint (Type II).
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Legal R
ange

(1,1)

(T ,T )x y

Figure 4.7: An example of a global path constraint with Sakoe and Chiba’s ad-

ditional constraint (Type II).

4.4.5 Slope weighting

The slope weighting constraint is denoted by m(k) (see equation 4.6). The slope

weighting can be used to set a preference for the different possible movements as

specified in the local continuity constraints. As with local continuity constraints,

there are many heuristic slope weighting functions that have been proposed. A

larger value of slope weight indicates less preference for that path to be taken.

The path normalisation factor, Mφ(k) (see equation 4.6), is incorporated into the

DTW formula in order to provide normalisation such that the total accumulated

distortion is independent of the length of the two signals being compared. Because

of this, it is usually set to be the sum of the slope weighting coefficients:

Mφ =
T

∑
k=1

m(k) (4.12)

Depending on the slope weighting coefficients used, the path normalisation factor

is often equal to either Tx or Tx +Ty. This means that the path normalisation factor

is a constant and can be taken out of the summation in equation 4.6 resulting in:

dφ(X,Y) =
1

Mφ

T

∑
k=1

d(Xφx(k),Yφy(k))m(k) (4.13)
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and an updated version of the minimisation equation 4.7:

d(X,Y) ≡ 1
Mφ

min
φ

T

∑
k=1

d(Xφx(k),Yφy(k))m(k) (4.14)

The path normalisation factor is often set to either Tx or Tx + Ty even when this

is not the correct value. This is because having the path normalisation factor as

a constant value makes the minimisation problem of equation 4.7 much easier to

solve [23]. This can lead to a bias in the type of warping path followed.

4.5 Dynamic programming

In order to find the optimal warping path, it is necessary to solve the minimisation

problem in equation 4.14. If one were to use a standard recursive implementation

to solve the minimisation, it would be of the order N 2M2 [29], where N and M are

the lengths of the two input signals.

A dynamic programming solution to the minimisation problem can be imple-

mented in order NM [29]. The execution time of the minimisation problem is

dependent on the local and global path constraints used. The smaller the paral-

lelogram in the search lattice, the quicker the execution time. The principle of

dynamic programming was created by Richard Bellman [5], which was based on

his principle of optimality:

An optimal policy has the property that whatever the initial state and

the initial decision are, the remaining decisions must constitute an

optimal policy with respect to the state which results from the initial

decision.

Cooper and Cooper [5] have simplified the principle of optimality to the following:

Every optimal policy consists only of optimal sub-policies.
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The minimal partial accumulated distortion can be defined for the optimal path

from (1,1) to (ix, iy) as:

D(ix, iy) ≡ min
φ,T ′

T ′

∑
k=1

d(Xφx(k),Yφy(k))m(k) (4.15)

where

φx(T ′) = ix (4.16a)

φy(T ′) = iy (4.16b)

Implementing the principle of optimality, this means that:

D(ix, iy) = min
i′x,i′y

[D(i′x, i
′
y)+ζ((i′x, i

′
y),(ix, iy))] (4.17)

where ζ is the weighted local distance between point (i′x, i′y) and (ix, iy). It can also

be expressed in terms of the local continuity constraints. For example, if TYPE I

constraints were being used, then the minimal partial accumulated distance from

(1,1) to (ix, iy) can be expressed as:

D(ix, iy) = min

⎡
⎢⎣

D(ix, iy−1)+d(ix, iy)
D(ix −1, iy−1)+d(ix, iy)
D(ix −1, iy)+d(ix, iy)

⎤
⎥⎦ (4.18)

The algorithm operates by starting at the point (1,1) in the lattice of possible

warping paths. The lattice is traversed by moving up each column incrementally,

and then moving on to the next column. In this way each point in the lattice

is visited just once. Also, when it is visited, the minimal partial accumulated

distance for that point can be calculated, because the partial distance for all of its

legal predecessors will already have been calculated. When the endpoint (Tx,Ty)
is reached, the total accumulated distortion will have been calculated. This can

then be divided by the path normalisation constant, Mφ, to arrive at the final error

between the two signals.

If it is desired to know what the optimal warping path is, it is necessary to keep a

back-pointer for each point in the lattice. This pointer indicates which predecessor

was optimal. These pointers can be traced backward from (Tx,Ty) to (1,1) to find

the optimal warping path.
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4.6 Considerations in dynamic time warping

Various considerations have been suggested by Rabiner and Juang [23] and Ra-

biner et al. [24] with regard to optimising the DTW algorithm for specific condi-

tions.

4.6.1 Relaxed endpoint constraints

If the endpoint constraint is relaxed, then it is possible to find better matches

between the inputs when the segmentation of the signals is poor. The resulting

‘optimal match’ between the two signals may not contain all of the sample values

for each of the inputs. The disadvantage of relaxing the endpoint constraints is

that the computational expense is increased. This is because the number of points

in the lattice that need to be checked is larger.

Figure 4.8: Relaxed endpoint constraints. The dark grey shows possible warp-

ing paths with endpoint constraints. The light grey shows possible

warping paths with relaxed endpoint constraints. The ringed points

show possible start and endpoints.
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4.6.2 Localised range constraints

Rabiner et al. [24] also refer to this technique as UELM (unconstrained end-

points, local minimum). This method is used to reduce the computation time by

only allowing warping paths that are close to the instantaneous locally minimum

warping path. This is shown in figure 4.9. This algorithm does not guarantee that

the optimal path will be found.

Figure 4.9: Allowable warping path region with localised range constraints [23].

4.6.3 Multiple time alignments

It has been suggested [23] that it might be more meaningful to look at a certain

number of best paths. This is useful when the single best path might be too sen-

sitive or not robust enough. By analysing the K-best paths, better results may

be obtained. Serial and parallel algorithms are available to find the K-best paths

[23].
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Optimising the DTW

In order to successfully make use of the dynamic time warp to compare two dif-

ferent movements, the generic form of the DTW needs to be optimised so that

its output is useful and meaningful. This chapter presents the various ways in

which the DTW was optimised for determining the similarity between individual

movements.

5.1 Distance measure

It was decided that the euclidean distance measure would be used in the DTW

to compare the various sample points. This is because the euclidean distance

measure is widely used in many applications and is known to perform well.

d(x,y) =

√√√√ i

∑
k=1

(xk − yk)2 (5.1)

Since this was a prototype system, the computational requirements of the eu-

clidean distance measure were ignored. However, if more speed is required, other

distance measures (which are optimised for speed) can be used. The squared eu-

clidean distance is a good example of this. It can be calculated quicker as no
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square root operation needs to be performed. The other effect of the squared eu-

clidean distance is that it places more emphasis on points that are further apart

from each other. The formula for squared euclidean distance is:

d(x,y) =
i

∑
k=1

(xi − yi)2 (5.2)

Initial work was done by performing two individual DTWs, one for the set of x co-

ordinates and one for the set of y co-ordinates for the movements being compared.

It was expected that the warping paths for each of these calculations would be

similar. The errors for the two paths were then added together to determine the

total error between the two movements.

(a) (b)

Figure 5.1: Two movements being compared in figure 5.2.

Figure 5.2: The optimal warping paths for the x and y co-ordinates of two move-

ment patterns.

As can be seen from figure 5.2 the warping paths for the x and y co-ordinates

differ quite substantially. For this reason, it was decided that it would be better
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to match the x and y co-ordinates simultaneously by using a two-dimensional

distance measure in the DTW. This means that the optimal warping path is optimal

in terms of both sets of co-ordinates and is therefore a more reliable measure of

the difference between the two signals.

5.2 Local continuity constraints

The local continuity constraints that have been suggested by Sakoe and Chiba [25]

are optimised for use in speech recognition applications. This does not however

mean that they are optimal for determining a relevant distance measure between

two movements. In particular one of the assumptions of their local continuity

constraints is that the lengths of the two signals being compared are very similar.

Although in theory, with a local continuity constraint that has a maximum slope

of 2 (and minimum slope of 1/2), one can effectively find the best warping path

for two signals one of which is twice the length of the other, this is not really the

case. This is shown in figure 5.3.

(a)

(b)

Figure 5.3: (a) Possible warping paths with a maximum slope of 2; (b) Possible

warping paths with a maximum slope of 1. The dotted line indicates

the linear warping path.

If local continuity constraints which have a maximum slope value of 2 (and mini-
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mum slope of 1/2) are used, then the number of possible warping paths that can be

utilised is minimal. Many warping paths which would be suitable are not allowed.

This means that the likelihood of obtaining a useful output from the DTW is not

very high. The image in figure 5.3(b) shows the possible warping paths with a

maximum slope of 1 and a minimum slope of 1/4. As can be seen this is a better

setup. Many more suitable warping paths can be assessed and the likelihood of a

more suitable output value is higher.

Since the duration of two similar movements can be quite different from one an-

other, new local continuity constraints need to be introduced. A set of numerous

movements was collected. The lengths of similar movements were compared to

determine the maximum ratio between the lengths of similar movements. A his-

togram showing the ratios of the lengths of individual movements to the shortest

length similar movement is shown in figure 5.5.

(a)

(b)

Figure 5.4: Two signals that represent the same movement. However, the dura-

tions of the movements differ by a large amount.
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Figure 5.5: Histogram showing ratios of signal length to length of smallest sim-

ilar signal.

As can be seen in the histogram (figure 5.5), most movements (82%) differ in

length at most by a factor of 1.5, while very few (2%) differ in length by a factor of

greater than 2. Based on these numbers, the following local continuity constraints

were devised:

Type A Type B Type C

Figure 5.6: The local continuity constraints that were devised.

These various local continuity constraints would be implemented depending on

the ratio of the lengths of the two input signals.
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Input Signal Length Ratio Local Continuity Constraint Type

> 4
15 and < 3

4 B

≥ 3
4 and ≤ 3

2 A

> 3
2 and < 15

4 C

By using these three different sets of local continuity constraints, signals that have

a length ratio that is between 4
15 (≈ 0.27) and 15

4 (3.75) can be compared using

the DTW. Signals that have length ratios that fall outside this range are considered

to be too extreme to have a meaningful distance measure between them. Their

distance is set to an arbitrarily high value that indicates that the two signals are

highly dissimilar.

5.3 Endpoint constraints

Since the segmentation of the movement data stream into individual movements

is done automatically, it cannot be guaranteed that the start and endpoints of the

individual movements are perfectly aligned. By relaxing the endpoint constraints,

the DTW can effectively find a signal within another one. The degree to which

this can be achieved can be varied by adjusting the degree to which the endpoint

constraints are relaxed.

Two different methods of relaxing the endpoint constraints were investigated. In

the first method (figure 5.7a), the endpoints of only one signal were relaxed. This

meant that the whole of the one signal had to be found in the other one. The

second method (figure 5.7b) involved relaxing the endpoint constraints on both of

the input signals.

Care must be taken when relaxing the endpoint constraints. If they are relaxed

too much, then highly dissimilar signals can still be given a very low dissimilarity

score. An example of this is shown in figure 5.8.

The relaxed endpoint constraints as shown in figure 5.7(b) were used in the final

implementation. This is because the order in which the signals being compared

are presented to the DTW is not important. This is equivalent to:
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(a) (b)

Figure 5.7: The two different endpoint constraints types and their associated

possible warping paths. The ringed lattice points indicate possible

start and endpoints.

(a)

(b)

Figure 5.8: Two signals being compared with endpoint constraints as in figure

5.7b. The black areas indicate the regions that have been matched.

Although the signals are highly dissimilar, a reasonable match is

found.
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DTW (a,b) = DTW (b,a) (5.3)

This is not the case for the relaxed endpoint constraints shown in figure 5.7(a).

5.4 Slope weighting

Many different slope weighting functions have been suggested [23], however,

there is no guarantee that any of them are optimal for any given problem. Be-

cause of this, it was decided to implement a simple slope weighting scheme. All

of the slope weights were set to a value of one. This means that no preference

is made to any of the possible moves that can be made through the lattice. This

is reasonable since all of the possible moves (as specified in the local continuity

constraints) do not skip out any intermediate points in the lattice. If local conti-

nuity constraints are such that they skip lattice points and they do not have higher

slope weightings, then there will be a much greater tendency for these paths to be

found in the optimal warping path.

This is shown in figure 5.9. Path A consists of two movements, A1 and A2, while

path B consists of just one movement. Both paths have the same start and end-

points. If path B did not have a slope weighting of 2, it is highly likely that the

distance measure following path B would be approximately half the distance mea-

sure of following path A. For this reason path B is given a higher slope weight.

5.5 Global path constraints

No global path constraints were added to the DTW other than those caused by

the local continuity constraints. This was done so as to be able to match signals

that might have large variances in their rate of movement. For example when

someone starts walking fast and then slows down drastically. This will result in

a warping path that is quite far from the linear time warp path. The additional

global path constraints suggested by Sakoe and Chiba [25] limit the amount of
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Figure 5.9: Two similar local continuity constraints and their associated path

weightings.

deviation between the two signals at any time. An example of two signals where

the deviation is quite high is shown in figure 5.10. It can be clearly seen that

there is a large change in speed of movement in the upper signal, whereas the

lower signal experiences a more constant speed of movement. This results in the

warping path deviating greatly from the linear warping path.

5.6 False negatives and false positives

If the algorithms developed in this work are to be implemented in an online secu-

rity system, it will be necessary to have a target for the allowable number of false

negatives and false positives allowed. It is highly likely that both of these values

may not be achieved and that it will be necessary to decide on a suitable tradeoff.

A false positive is any movement that was identified as being similar to another

movement when in fact it was not.

A false negative is any movement that is similar to another movement, but was

not identified as similar by the system.

A high false positive rate will alert the security personnel to many events, most of

which will be normal movements. This is generally more effective than having a

high false negative rate in which many abnormal movements are not brought to

the security personnel’s attention as they are thought to be normal.
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(a)

(b)

Figure 5.10: Signals with differing degrees of speed of movement.

By knowing the desired level of false positives and false negatives before the

implementation of a final system, the global and local path constraints can be

suitably adjusted. For example, setting the allowable warping region to a very

small area will result in only highly similar movements being considered similar.
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Clustering

The application of clustering is found in many different scientific fields, including

life sciences, statistics, mathematics and computer science [26]. The objective of

clustering is to partition a set of items into various subsets. Each of these subsets is

called a cluster. It is desired that the partitions formed are such that the resulting

clusters are homogeneous and well separated. Mathematically, the data can be

represented as a set of n objects:

O = {o1,o2, ...,on} (6.1)

The clusters can then be defined as:

C = {c1,c2, ...,ck} (6.2)

where k is the number of clusters present and the following constraints apply:

c1 ∪ c2 ∪ c3...∪ ck = C (6.3a)

ci ∩ c j = φ ∀ i 	= j (6.3b)

This means that each object must be a member of only one cluster. It is desired

that objects that are part of the same cluster have a high degree of natural associa-

tion, and that those which are from different clusters have a low degree of natural

association. How this natural association is measured is dependent on the similar-

ity measure (distance measure) used. As with most problems that use a distance
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measure, the choice of distance measure can affect the outcome of the process.

The euclidean distance measure is a popular choice [11]:

d(x,y) =

√√√√ i

∑
k=1

(xk − yk)2 (6.4)

As mentioned in section 4.1, it is important to ensure that the dimensions of the

data are in proportion to one another so that one dimension does not dominate the

others. It is also important to ensure that one uses all of the known information

about the problem. Extracting useful features is also important. Jain et al. point

out that choosing the wrong co-ordinate system can make results incorrect. The

semi-circle in figure 6.1 is likely to be fragmented if one were to use Cartesian

co-ordinates. Polar co-ordinates on the other hand, would all have a very similar

radius value, resulting in a better clustering solution [11].

Figure 6.1: Data which would best be represented using polar co-ordinates.

Jain et al. [11] have described the various different clustering techniques available,

and have come up with the taxonomy of clustering approaches that is shown in

figure 6.2.

Clustering problems can be further divided in two: those in which the number of
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Figure 6.2: A taxonomy of clustering approaches [11].

clusters is known before the clustering process takes place, and those in which

the number of clusters is unknown. The methods that will be discussed are those

which can be used for the latter case. This is because the number of clusters is

unknown in this work.

6.1 Hierarchical clustering

The solution to the hierarchical clustering problem generally takes the form of a

dendrogram. This is a tree type structure that indicates how the individual ob-

jects are clustered together. Hierarchical clustering is usually done in either an

agglomerative (bottom-up) or a divisive (top-down) manner.

6.1.1 Agglomerative clustering

All of the objects are divided into n clusters, one for each object. The next step is

to reduce the number of partitions to n−1. To achieve this, the two nearest clus-

ters are merged together. This process is repeated until there is only one cluster.

The definitions for exactly how the clusters are merged and which distance mea-
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sure is used to calculate the closest clusters can take on a large variety of forms.

Depending on the methods used, the outcome of the clustering may vary.
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Figure 6.3: A typical dendrogram for hierarchical clustering.

6.1.2 Divisive clustering

Divisive clustering is similar to agglomerative clustering. The difference being

that instead of starting with all of the objects as clusters, the algorithm begins

with one cluster containing all of the objects. This cluster is then split repeatedly

until only clusters that contain one object remain. The computation of divisive

clustering is usually more complicated than that of agglomerative clustering [6].

45



Chapter 6: Clustering

6.1.3 Finding divisions

Once the dendrogram has been created, the final clusters can be determined in two

ways. If the desired number of clusters is known, then the objects that fall into

these clusters can be easily determined. For example, dividing the data in figure

6.3 into two clusters results in:

c1 = {o3,o4,o5}

c2 = {o1,o2}

while dividing the data into three clusters results in:

c1 = {o3,o5}

c2 = {o1,o2}
c3 = {o4}

If, however, the desired number of clusters is unknown, the task is more difficult.

One way to determine the number of clusters is to look at the inconsistency value

for each of the links. The inconsistency value is an indication of how similar in

length a link is to those links beneath it. If the lengths of the links are similar, it

indicates that the objects are likely to be of the same type. If they differ greatly,

then it is likely that the link forms a natural division in the data set [10].

The cophenetic correlation coefficient can be used to determine whether the den-

drogram fits the data well or not [8]. This is computed by finding the element-wise

correlation of Z with d. Z is defined as the cophenetic matrix, where each element

Zi j contains the level at which oi and o j are in the same branch of the dendrogram.

The distance matrix, d, contains the distance between oi and o j at location di j.

The higher the value of the cophenetic correlation coefficient, the better the fit of

the dendrogram. It has been suggested that the value of the cophenetic correlation

coefficient should be greater than 0.8 for one to assume that the data are not just

one big cluster [8].
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6.2 Graph theoretic methods

In many clustering algorithms the order in which the objects are presented to

the clustering algorithm can affect the outcome of the method. Graph theoretic

methods were introduced to try to eliminate this problem by processing all of the

samples simultaneously [3]. The downside of graph theoretic methods is that they

can result in an increase in computational time [3].

6.2.1 Similarity matrix

A similarity matrix is used to show the similarity between all of the objects to be

clustered. Firstly, a definition of similarity is required. Two objects are considered

similar if:

d(oi,o j) ≤ θ (6.5)

As usual, it is up to the user to provide a suitable distance function, d(oi,o j). θ
is a user-specified threshold value. The similarity matrix, S, is then defined as the

N ×N matrix (where N is the number of objects) whose individual elements are

given by:

si j =

⎧⎪⎨
⎪⎩

1, d(oi,o j) ≤ θ
i, j = 1,2, ...,N

0, d(oi,o j) > θ
(6.6)

Once the similarity matrix has been created, the following algorithm can be used

to determine the number of clusters:
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Repeat:

1. Determine the row in S with the maximum number

of 1’s in it. If there is more than one row with the

maximum number of 1’s, choose any row. Call this

row i.

2. Form a cluster with object oi and all objects that are

similar to oi. That is, add object o j to the cluster if

si j = 1.

3. Add all objects that are similar to the objects already

in the cluster to the cluster. That is, for all objects o j

in the cluster, add ok if s jk = 1.

4. Remove all the columns and rows that correspond to

the objects in the cluster from the similarity matrix.

until no more clusters can be formed.

The choice of θ is a vital one, as it will effectively determine the number of clusters

that will be formed. The larger it is, the fewer the clusters generated. It is also

important to notice that the similarity matrix holds a total of N 2 elements. This

can cause computational difficulties when N is large.

As with most clustering techniques, a few simple changes can be made to change

how the clustering works. Two examples for how this can be done when using a

similarity matrix are:

Complete-link similarity matrix

If one removes step 3 from the previous algorithm, then it ensures that all of the

points in each cluster are within the specified threshold distance, θ, from each

other.
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Single-link similarity matrix

If one modifies step 3 of the previous algorithm to:

Repeatedly add all objects that are similar to the objects in

the cluster to the cluster. Do this until no more objects are

added.

then the clustering performed will be a single linkage. This means that the clusters

will be long and ‘stringy’ as opposed to ‘clumpy’.

6.2.2 Minimal spanning trees

A minimal spanning tree is defined [3]:

The minimal spanning tree is that spanning tree of minimal weight

(amongst all possible spanning trees).

The following definitions are useful [3]:

1. An edge is a connection between two points.

2. The weight of an edge is the distance between the two points it connects.

3. A path is a sequence of edges connecting two points.

4. A loop is a closed path.

5. A connected graph has one or more paths between any pair of points.

6. A tree is a connected graph with no closed loops.

7. A spanning tree is a tree that contains every point.

8. The weight of a tree is the sum of the weights assigned to each edge.

Clusters are created by removing edges that have a value greater than a user-

specified threshold. For example, see figure 6.4 where the threshold has been set

at a value of 5, resulting in three clusters being formed.
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Figure 6.4: A minimal spanning tree and its clusters.

6.2.3 Batchelor and Wilkins’ algorithm

This algorithm is based on the furthest neighbour clustering technique. It works

as follows [3]:

1. Select a random object, and make it the centre of cluster number 1.

2. Select the object furthest from this cluster, and make that the centre of clus-

ter 2.

3. Calculate the distances to all of the objects to the clusters.

4. Determine the minimum distance to a cluster for each object.

5. Chose the maximum of these minimum distances.

6. If this distance is greater than a fraction of the typical distance between the

clusters, then let this be the centre of a new cluster.

7. Repeat steps 3 to 6, until no new clusters are formed.

8. Classify objects according to their nearest cluster.

This algorithm was modified by changing step 6 to:

6. If this distance is greater than a user-specified threshold, then let this be the

centre of a new cluster.
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Figure 6.5: A flow diagram of the modified Batchelor and Wilkins’ algorithm.
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The Batchelor and Wilkins clustering method can have differing results depend-

ing on the order in which the data are presented to the clustering algorithm. To

overcome this problem, the data were presented in a random order. This process

was repeated fifteen times. This resulted in fifteen sets of clusters. The output that

occurred the most was selected. This was used as the output from the clustering

algorithm. This resulted in a considerable increase in the amount of time taken to

cluster the data, but also resulted in more consistent results.
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Finding The Optimal Clustering

Algorithm

As has been mentioned in the previous chapter, there are a large number of clus-

tering methods that can be used. It is unlikely that all of them will perform equally

well, so it is necessary to test the clustering algorithms on a number of data sets to

see how well they perform. Once this has been done, it will be possible to select

the best clustering algorithm for this task. It should be noted that although a clus-

tering algorithm might outperform others for this data set it will not necessarily

outperform other clustering algorithms on all data sets.

The testing of the individual clustering algorithms not only determined which

algorithm performed best, but also determined the optimal settings for each algo-

rithm’s parameters.

7.1 Data set generation

In order to be able to test the different clustering algorithms, it is necessary to have

a test data set that can be given to all of the clustering algorithms. The outputs

of the algorithms can then be compared to see which one has performed better.

It is also required that there be some benchmark against which the outputs of the
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clustering algorithms can be compared in order to determine how effective they

are.

Since no data sets were available from external resources, it was necessary to

generate some. The process for extracting the sets of x and y co-ordinates from

the video input is the same as the one described in chapter 2. In total, fifteen data

sets were generated. Each data set had various movements that were made, and

had different durations.

Ideally the data set would have consisted of ‘long term data’. That is data that

were collected over a number of days, observing normal behaviour. Unfortunately

it was impractical to do this because of the large amounts of video data that would

need to be stored. It would also be a monumental task to segment this data by

hand. For these reasons subjects were asked to walk sets of patterns.

Different people were used in the generation of the data sets. This was done

because people have differences in the way they walk. It also meant that there

was a larger degree of freedom in how the task was interpreted.

The subjects were asked to walk various patterns around the office space. They

were asked to go from one point to another, and then to stop there for approxi-

mately 3 or 4 seconds. They were then to walk somewhere else.

It was noted that some of the subjects did not pay particular attention to their start

and endpoints of their movements, as well as not always remaining still for long

enough (this helps the pre-processing stage identify individual movements. See

chapter 2).

This process was used to created fifteen data sets that had between 14 and 60

movements each. Table 7.1 shows the details of the benchmark data set.
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Data Set Person Total Different

Number Walking Movements Movements

1 Gordon 33 15

2 Gordon 33 11

3 Gordon 27 16

4 Gordon 34 4

5 Gordon 29 5

6 Gordon 32 7

7 Gordon 46 9

8 Gordon 34 10

9 Gordon 14 6

10 Gordon 26 10

11 Liza 44 14

12 Liza 45 10

13 Roshan 60 18

14 Roshan 37 16

15 Brett 46 21

Total Movements 540

Table 7.1: The data sets used for clustering.

7.2 Algorithms tested

Three clustering algorithms were tested against the benchmark output. The three

algorithms used were:

• Modified Batchelor and Wilkins’ Algorithm

• Graph Theoretic Clustering

• Agglomerative Hierarchical Clustering

Each of these algorithms was used to cluster the fifteen data sets into groups of

similar movements. These groups (clusters) of movements were then compared
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Figure 7.1: Some of the movements walked in the test data sets.

with those generated by hand (the benchmark data set). Since there are two pa-

rameters that can be adjusted for each of the algorithms, the clustering algorithms

were each run with various parameter settings. These settings are shown in the

table 7.2.

Clustering Relaxation Similarity Level Inconsistency

Algorithm of Endpoints Threshold Cuttoff

Graph Theoretic 0 to 19 5 to 295 n/a

Batchelor and Wilkins 0 to 19 5 to 295 n/a

Hierarchical 0 to 19 n/a 0.75 to 1.5

Table 7.2: Table of parameters for various clustering algorithms.
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7.3 Comparing data sets

Comparing the output data sets generated by the clustering algorithm with those

generated by hand is not as straight forward as conventional comparisons are. If

data are to be clustered into various different categories, for instance A, B, C and

D, it can easily be checked against the output of hand clustering. For example if

the computer’s output is:

Object number 11 is of type A

and the hand clustering output is:

Object number 11 is of type B

Then clearly object number 11 is incorrectly classified. The situation is more

complex when dealing with sets. What should be done in the following scenario

where the computer’s output is:

Objects number { 1,3,4,5,11 } form set A

and the hand segmentation was:

Objects number { 2,3,4,5 } form set A?

Clearly it would not be optimal to mark the computer clustering generated set as

completely incorrect, as it is a much better solution than if the clustering algorithm

had provided the answer as:

Objects number { 1,6,7,9,11 } form set A

Based on this, it was decided that the error value would be determined by the

number of incorrect objects in the set. This would include both objects missing

from the correct data set as well as extra objects that were not present in the correct
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data set. This, however, leads to a very large error value as all of the incorrect data

are incorporated into the error value twice, once for being in the wrong place and

once for not being in the right place. The algorithm was therefore modified to

only count each error once. The algorithm is discussed below.

7.3.1 Similarity matrix

Since the output from the clustering algorithms do not label the output sets, it

was necessary to first determining which sets were the most similar. To do this a

similarity matrix was used. Each element in the similarity matrix, si j is equal to

the number of corresponding elements between the benchmark data set number i

and the clustering algorithm’s data set number j. For example if the benchmark

data set consists of:
b1 = {o3,o4,o5,o6,o8}
b2 = {o1,o2}
b3 = {o7,o9,o10}

(7.1)

and the clustering algorithm’s data set consists of:

c1 = {o7,o8,o9,o10}
c2 = {o1,o3}
c3 = {o2,o4,o5,o6}

(7.2)

Then the similarity matrix would be:

S =

⎛
⎜⎝

1 2 3

1 1 1 3

2 0 1 1

3 3 0 0

⎞
⎟⎠ (7.3)

Once the similarity matrix has been calculated, each cluster in the benchmark

data set is matched to a data set from the clustering algorithm. If there are fewer

data sets from the clustering algorithm, then it is possible that a data set from the

benchmark set will be matched with a null (empty) set. If there are more data sets
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in the clustering algorithm, then some of them will not be matched. The algorithm

used is shown below.

Repeat:

1. Determine the maximum number of matches for each set in the benchmark

data set.

2. Determine which set has the most matches.

3. Mark this benchmark data set and the clustering data set as similar sets.

4. Remove both of these sets from the similarity matrix.

until all the benchmark data sets have been removed, or until all of the cluster-

ing data sets have been removed. If the latter is the case, mark the unmarked

benchmark sets as similar to the null (empty) set.

After this has been done, the total number of correct matches can be easily de-

termined. The error value between the data sets is set as the number of incorrect

matches.

7.3.2 An example

Based on the similarity matrix in equation 7.3:

1. The maximum values for the matches between the benchmark data set and

the clustering data set is

max(S) =

⎛
⎜⎝ 3

1

3

⎞
⎟⎠ (7.4)

2. The maximum of these values is 3, which occurs twice. The first occurrence

is arbitrarily chosen, so cluster b1 is linked with cluster c3.
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3. These clusters are removed from the similarity matrix, leaving:

S =

( 1 2

2 0 1

3 3 0

)
(7.5)

4. The new maxima are calculated:

max(S) =

(
1

3

)
(7.6)

5. The largest value is 3, so clusters b3 is linked to c1

6. This leaves b2 to be linked with c2

7. The results of determining the similar clusters are shown in the table below:

Benchmark Benchmark Computer Computer

Cluster Data Data Cluster

b1 {o3,o4,o5,o6,o8} {o2,o4,o5,o6} c3

b2 {o1,o2} {o1,o3} c2

b3 {o7,o9,o10} {o7,o8,o9,o10} c1

8. The objects that are present in the benchmark that are not present in the

computer cluster are counted to determine the errors. This table should not

be mistaken for an indication of the errors in the matching of the classes.

For instance, b3 is not a perfect match with c1, although it might appear this

way from the table.

Benchmark Cluster Error Objects

b1 o3 , o8

b2 o2

b3

9. There are a total number of 3 error objects, so these sets are given a similar-

ity value of 7/10 = 70%.
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7.4 Results

The graph theoretic, hierarchical and Batchelor and Wilkins’ clustering methods

were all applied to the fifteen data sets with various parameter settings. Optimal

parameter settings were determined for each clustering algorithm.

7.4.1 Graph theoretic

As can be seen from the error surfaces in figure 7.2, it is important that the sim-

ilarity threshold (match level) parameter is not too small. When this happens,

very few patterns are deemed similar, resulting in a high error rate. It can also be

seen that in some cases, when this parameter is too high, dissimilar patterns are

matched together, again resulting in high error rates.

The 15 different error surfaces were merged to determine the effect of the pa-

rameters over all of the data sets. The resulting error surface is shown in figure

7.3.

From this error surface, the minimum value was located, and the appropriate pa-

rameter values were determined:

Similarity Measure (Match Level) 85

Endpoint Relaxation (DTW K) 0
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Number of Incorrectly Correctly Percentage

Movements Classified Classified Correct

Data Set 1 33 1 32 97

Data Set 2 33 1 32 97

Data Set 3 27 1 26 96

Data Set 4 34 0 34 100

Data Set 5 29 0 29 100

Data Set 6 32 0 32 100

Data Set 7 46 0 46 100

Data Set 8 34 0 34 100

Data Set 9 14 0 14 100

Data Set 10 26 0 26 100

Data Set 11 44 2 42 95

Data Set 12 45 1 44 98

Data Set 13 60 7 53 88

Data Set 14 37 1 36 97

Data Set 15 46 7 39 85

Total 540 21 519 96

Table 7.3: Results from clustering using graph theoretic methods.
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Figure 7.2: Various error surfaces for graph theoretic methods.

Figure 7.3: Total error surface for graph theoretic methods. The yellow square

indicates the minimum.
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7.4.2 Hierarchical clustering

The error surfaces for the hierarchical clustering technique vary quite consider-

ably. However, one common feature is that the error rate seems to be low when

the inconsistency cutoff parameter is in the order of 1 to 1.2. The total error sur-

face (shown in figure 7.5) indicates that the optimal value for the inconsistency

cutoff is 1.125.

Inconsistency Cutoff 1.125

Endpoint Relaxation (DTW K) 5

The overall results of the hierarchical clustering are much worse than those of the

graph theoretic methods. This is due to the nature of the clustering process which

requires a very precise inconsistency cutoff parameter. This parameter varies from

data set to data set. This means that it is not a feasible method for clustering this

data as the parameter needs to be set before the clustering process begins. A table

showing the results of the optimal parameter settings on the data set is shown

below:
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Number of Incorrectly Correctly Percentage

Movements Classified Classified Correct

Data Set 1 33 11 22 67

Data Set 2 33 7 26 79

Data Set 3 27 10 17 63

Data Set 4 34 4 30 88

Data Set 5 29 4 25 86

Data Set 6 32 4 28 88

Data Set 7 46 11 35 76

Data Set 8 34 9 25 74

Data Set 9 14 3 11 79

Data Set 10 26 1 25 96

Data Set 11 44 17 27 61

Data Set 12 45 23 22 49

Data Set 13 60 16 44 73

Data Set 14 37 9 28 76

Data Set 15 46 16 30 67

Total 540 145 395 73

Table 7.4: Results from clustering using hierarchical clustering.
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Figure 7.4: Various error surfaces for the hierarchical clustering method.

Figure 7.5: Total error surface for the hierarchical clustering method.
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7.4.3 Batchelor and Wilkins

The error surfaces from the Batchelor and Wilkins maximum distance clustering

algorithm are similar to those of the graph theoretic methods. However the mini-

mal value occurs at a much larger match level value. This is because of step 3 in

the graph theoretic method which effectively makes its true match level twice the

specified match level value. This is why the Batchelor and Wilkins method has a

match level value of approximately twice that of the graph theoretic method.

The optimal parameter settings found were:

Similarity Measure (Match Level) 155

Endpoint Relaxation (DTW K) 2

A table showing the results of the optimal parameter settings on the data set is

shown in table 7.5:
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Number of Incorrectly Correctly Percentage

Movements Classified Classified Correct

Data Set 1 33 0 33 100

Data Set 2 33 0 33 100

Data Set 3 27 2 25 93

Data Set 4 34 0 34 100

Data Set 5 29 0 29 100

Data Set 6 32 0 32 100

Data Set 7 46 0 46 100

Data Set 8 34 0 34 100

Data Set 9 14 0 14 100

Data Set 10 26 3 23 88

Data Set 11 44 3 41 93

Data Set 12 45 3 42 93

Data Set 13 60 7 53 88

Data Set 14 37 7 30 81

Data Set 15 46 5 41 80

Total 540 39 510 94

Table 7.5: Results using Batchelor and Wilkins’ clustering method.
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Figure 7.6: Various error surfaces for Batchelor and Wilkins’ maximum distance

clustering method.

Figure 7.7: Total error surface for Batchelor and Wilkins’ maximum distance

clustering method. The yellow square indicates the minimum.
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7.5 Optimisation

Two optimisations can be performed to increase the speed at which the clustering

algorithms operate. Depending on certain parameter settings, they can affect the

actual clustering output (though not necessarily in a negative way). They can also

be implemented such that the clustering is not affected, the speed of computation

being merely increased. A method of applying a variable distance measure to the

warping path is also suggested.

7.5.1 Endpoint checking

One of the simplest checks that a human will use to decide on whether or not two

movements are similar is to look at where the person being tracked started walking

from and where they finished walking to. If these points are different in the two

movements, then the movements will be considered different. If they are the same,

then further analysis is needed. One must still decide whether the intermediate

points are suitably similar. This technique can be easily implemented. It can also

be processed very quickly and so a lot of time consuming DTW comparisons can

be ‘tossed out’ by quickly determining that the patterns are dissimilar.

One simple method that achieves this is to compare the first and last six (this

number is derived heuristically) data points of each movement. The one signal’s

first six data points are slid across the other one’s. A subtraction is performed,

the values are then squared and the lowest three numbers are summed and stored.

After all possibilities have been checked, the lowest value of the stored numbers

is used as a representative of the similarity between the two start points. A low

value means they are very similar.

The same process is repeated for the endpoints. If both the similarity values for the

start and the endpoint are beneath a certain threshold (also derived heuristically),

then the DTW is used to determine a final similarity value. If one (or both) of

them is above the threshold, no DTW is performed and they are given a very low

similarity value.
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7.5.2 DTW accumulator check

The DTW algorithm can be easily modified so that once the total accumulated path

distortion increases above a critical value, the algorithm is stopped and the signals

being compared are give an extremely low value for their similarity measure. This

will cause a large increase in speed for cases where highly dissimilar signals are

being matched.

The value to stop the DTW algorithm on can be set easily by taking the maximum

desired similarity value and multiplying it by the normalisation factor of the DTW

algorithm. However, this does not guarantee that all dissimilar signals will not be

processed, but rather that all signals that are not processed to completion are dis-

similar. It is expected that a lower value can be used while still getting extremely

good results, but one cannot guarantee that a set of signals will not be discarded

when they in fact are similar. If a lower value is used, it is important to perform a

set of tests so that an appropriate value can be found.

7.5.3 A variable distance measure

A method that incorporates the idea of the endpoint checking technique described

above could be used to further enhance the ability of the DTW algorithm to pro-

vide similarity measures between various movements. As has been mentioned

before, for movements to be deemed similar, it is imperative that the start and

endpoints are very similar. The intermediate points are not as important, although

clearly they must still be within a reasonable distance of each other.

As can be seen in figure 7.8, the start and endpoints have a stronger weighting

and so it is more important that they have a good match than the centre of the

movement.

The implementation of such a system is not easy. The initial increase in weighting

of the distance measure at the start point is simple enough to introduce, as the

number of moves in the warping lattice from the start point is always known.

However, the same is not necessarily true for the endpoint, as the optimal path has
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Figure 7.8: The proposed variable distance measure.

not yet been found. It is always possible to estimate the number of moves to the

endpoint, but the accuracy of such an estimate has yet to be determined.

7.6 Conclusions

From the results, it can be clearly seen that the agglomerative hierarchical cluster-

ing algorithm does not perform as well as the other clustering techniques on this

data set. This is due to the need of fine-tuning the inconsistency cut-off parameter

for each data set. Since this parameter needs to be different for each data set it is

impossible to find one value that will result in a good clusters for all data sets.

Both Batchelor and Wilkins’ maximum distance clustering algorithm and the

graph theoretic method produce good results. It should also be noted that the

optimal parameters for both methods are similar.

Although the graph theoretic method outperformed the Batchelor and Wilkins

clustering algorithm, some differences in their operation may still affect which

algorithm should be used in a final implementation:

• The graph theoretic method uses all of the data present to train the system.

This means that if more data are collected at a later stage, the whole system

will need to be retrained. This could be time consuming.
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• The Batchelor and Wilkins method is dependent on the order in which the

data are presented to it. This means that different clusters could be generated

for the same input data set. However, since the data are processed in a

serial manner, all new data can be quickly trained without the requirement

of retraining over the whole data set.
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Chapter 8

Discovering Frequent Episodes

Most of this chapter is based on the work by Manilla and Toivonen [20, 21, 28]

on the WINEPI algorithm.

8.1 Event sequences

Once the data stream of movement data has been analysed, and the individual

movements clustered into similar ones, the original data stream can be trans-

formed into an event sequence. This is in effect a highly compressed form of

the data that was present in the initial data stream. In this work, each event corre-

sponds to either an individual movement, or to a duration of no movement. The

latter is not always used. In some cases it is more useful to ignore the times of no

movement between the individual movements.

The event sequence created from the data stream in figure 8.1 is:

A B C B C B C B D E A F

This sequence does not contain any events for areas of no movement. A new

event, Z, can be used to indicate areas of no movement. This results in a new
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B D E A F

B B BA C C C

Figure 8.1: Transforming a data stream to an event sequence.

event sequence:

A Z B C Z B C Z B C Z B Z D Z E Z A Z F

It is necessary to have a user-specified threshold value for the amount of time that

must pass without any movement occurring that will result in the inclusion of a

Z event. This idea can be modified further to insert multiple Z events between

movements depending on the duration of no movement (i.e. the longer the period

of no movement, the more Z events that will be included into the event sequence.)

An example of such a sequence is:

A Z Z B C Z Z B C Z Z B C Z Z B Z D Z Z E Z Z A Z Z F (8.1)

A final method for obtaining an event sequence is to store the time at which each

event occurred. This eliminates the need for the Z event, but does not lose any of

the information with regard to the intervals of no movement between the individ-

ual events. An example is given below:

B D E A FB B BA C C C

Figure 8.2: An alternative method for storing an event sequence.

It is necessary to decide whether the time marker for each event will be marked at

its start point, midpoint, or endpoint. The choice of marking point could influence

the output of further computation as similar events have different durations.
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For the rest of this section, the event sequences dealt with will be of the same type

as that shown in figure 8.2. However, it is a relatively simple task to transform the

other methods of representing the event sequence to this style of representation.

8.1.1 Notations

The notations and formulae used in this section are based on those of Manilla

et al.[20, 21, 28]. E is the set of event types. For the event sequence in figure 8.2,

E = {A,B,C,D,E,F} (8.2)

Each event is a pair (A, t) where A is an event type (A ∈ E) and t is the time at

which the event occurred (this is usually given as an integer value, but the system

can be transformed to deal with real values as well.)

An event sequence, s, is a triple (s,Ts,Te), where

s = 〈(A1, t1),(A2, t2), ...,(An, tn)〉 (8.3)

s is an ordered sequence such that ti ≤ ti+1 for all i = 1, ..,n−1. Ts is the starting

time and Te is the ending time (both integer values). Ts ≤ ti ≤ Te for all i = 1, ...,n.

Figure 8.1 is the graphical representation of the event sequence s = (s,1410,2100)
where

s = 〈(A,1410),(B,1483),(C,1518),(B,1590), ...,(F,2046)〉 (8.4)

8.1.2 Windows

A window on an event sequence s = (s,Ts,Te) is an event sequence w = (w, ts, te)
where ts < Te, te > Ts and w is formed from the pairs (A, t) from s where ts ≤ t < te.

The width of the window is the time span te−ts. ω(s,win) is the set of all windows

on s such that width(w) = win.
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The first and last windows on a sequence extend outside the sequence. This en-

sures that an event will occur in the same number of windows irrespective of

where it is located in the sequence.

8.2 Episodes

An episode is a partially ordered collection of events occurring together [20]. Gen-

erally they take the form of either serial or parallel episodes. However, more com-

plex episodes can easily be generated by using combinations of serial and parallel

episodes. Episodes can be easily described as directed acyclic graphs [20]. A few

examples are shown below in figure 8.3.

B

C
A C

A

B
E

(a) (b) (c)

Figure 8.3: Graphic representation of various episodes [20].

Figure 8.3(a) shows a serial episode. Such an episode will occur when event C

follows event A. Event C does not necessarily have to follow A immediately for

the episode to occur, however if it is desired that event C follows immediately, this

can be easily achieved by selecting the appropriate window (width(w) = 2).

Figure 8.3(b) shows a parallel episode. For this episode to occur, both the B and

C events must be present in the window. However, the order in which they occur

is not important.

Figure 8.3(c) shows a more complicated episode that is neither serial nor parallel.

For this episode to occur, both the A and B events must precede the E event. The

order in which the A and B events occur is not important.

Serial episode detection is useful when the temporal order of the events is impor-

tant. Since people will only make one movement at a time it seems likely that
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serial episode detection will be the most effective method for finding patterns in

people’s movements.

Parallel episode detection is suited to detecting when certain events happen at

the same time or close together in time. This is suited for the analysis of alarm

systems. For example it is useful to know that in a fire alarm system, a rapid

increase in temperature and the smoke detector going off normally happen very

soon after each other. But the order in which they occur might vary.

8.3 Finding frequent episodes

By searching through large volumes of data that store the various movements that

a person has made over a long period of time, one can determine which episodes

occur frequently. Once this has been done, this information can be used to predict

future movements made by the person being tracked.

The frequency of an episode is defined as the fraction of windows in which that

episode occurs. The frequency of episode α is:

f r(α,s,win) =
|{w ∈ ω(s,win) | α occurs in w }|

|ω(s,win)| (8.5)

We can now say that an episode is frequent if f r(α,s,win)≥min fr. Where min fr

is a user-defined threshold.

This is particularly useful because if, for example, it is known that the serial

episode {A,C} occurs in 7% of the windows and that the serial episode {A,C,E}
occurs in 6% of the windows then it means that once the events {A,C} have been

detected in a window there is a 6
7 = 85.7% chance that event E will follow.

Unfortunately it is not as simple to generate such predictive rules from parallel

episodes. This is due to them not containing any temporal information about the

order of the events. For example if one knows that episode {A,B,C,D} (window

width of 4) occurs 20 times in an event sequence, and episode {A,B,C} (window

width of 3) occurs 25 times, it does not follow that episode {A,B,C,D} will occur
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80% of the time after episode {A,B,C} has occurred. An example of this is shown

below:

A B C E A B C E A C D B A D B C (8.6)

Parallel episode {A,B,C} is present twice in the event sequence. Parallel episode

{A,B,C,D} occurs three times, but never as a continuation of the {A,B,C}
episode. For this reason it is best to use parallel episodes to check for unusual

behaviour only. This can be achieved by marking all episodes that occur above a

user-specified threshold as frequent. Any episode that does not match one of the

frequent episodes can be brought to security personnel’s attention.

8.4 General algorithm

The algorithm for discovering which episodes are frequent is quite simple. It

effectively loops through two main procedures:

• Candidate episode generation

• Candidate episode testing

The backbone of the search procedure is the lemma:

If an episode is frequent in an event sequence, then all sub-episodes

are frequent as well.

The algorithm starts by creating a list of candidate episodes. This is the entire al-

phabet of events. It then searches through the event sequence to determine which

of these candidate episodes are frequent. A new set of candidate episodes is gen-

erated from the set of frequent candidate episodes. This process continues until

the candidate episodes are the same size as the window or until no new candidate

episodes are generated. An example of candidate generation for serial episodes is

given below:
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8.4.1 Candidate generation

Suppose that the following episodes have been found to be frequent in the event

sequence:

A, B, C

A, B, G

A, B, H

B, C, H

C, D, E

F, F, C

Episodes that have the same first length-1 events must be merged together. Start-

ing from the top:

A, B, C and A, B, G → A, B, C, G (8.7)

The sub-episodes of length length-1 must all be frequent for the candidate to be

accepted. In this case, the sub-episodes are:

A, B, C

B, C, G

However, the sub-episode B, C, G is not frequent. This means that the episode

A, B, C, G cannot be frequent. Therefore it is discarded, and the next episodes are

merged:

A, B, C and A, B, H → A, B, C, H (8.8)

The sub-episodes are:

A, B, C

B, C, H

Both of these sub-episodes are frequent, so A, B, C, H is added to the list of new

candidate episodes.

This process is repeated until all possibilities of new candidate episodes have been

exhausted.
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The generation process for parallel and serial episodes is very similar. The only

difference being that the parallel episode generation is quicker as it does not have

to check as many possibilities as the serial case. For example, when merging

A, B, C and A, B, E, the serial generation has two possible candidates: A, B, C, E

and A, B, E, C. However, these two episodes mean exactly the same if describing

a parallel episode, and so the latter case can be ignored.

8.5 Finding episodes in sequences

8.5.1 Serial algorithm

Frequent serial episodes are found by making use of finite state automata. Each

state of a finite state machine will correspond to an event. The complete automata

will accept the various candidate episodes that have already been generated.

The algorithm works by moving through the event sequence from the start, one

event at a time. Each time the first event of an automaton enters the window, a new

state machine is created. When an automaton for episode α reaches its accepting

state, the starting time of the window is saved in the variable α.inwindow. When

the automaton leaves the window, the variable α.count is incremented by the

number of windows for which α was entirely in the window. This is only done if

there are no other α automata in the accepting state.

8.5.2 Serial algorithm example

An example is given when looking for the candidate episodes:

α = A,B,D

β = A,C,E

in the event sequence:

s = A B A D C E (8.9)
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The window width is set to 4.

Each automaton column can contain one automaton of either type α or β. The sub-

script indicates the time at which the automaton started, and the brackets hold the

events that have already happened, i.e. the state of the automaton. The st column

indicates the start time at which the automaton reached its acceptance state (this

does not necessarily always happen). αcnt and βcnt both hold the total number of

occurrences of α and β. Note that this number only gets increased when the accep-

tance state is no longer present in the window. The horizontal lines indicate times

at which automata get destroyed as their starting state is no longer present in the

window. This is equivalent to when Current Time − Automaton Start Time

= Window Length.

Time Window Automaton st Automaton st Automaton st Automaton st αcnt βcnt

1 w =
⊔ ⊔ ⊔

A α1(A) β1(A)
2 w =

⊔ ⊔
AB α1(A,B) β1(A)

3 w =
⊔

ABA α1(A,B) β1(A) α3(A) β3(A)
4 w = ABAD α1(A,B,D) 4 β1(A) α3(A) β3(A)
5 w = BADC α3(A) β3(A,C) 1

6 w = ADC E α3(A) β3(A,C,E) 6 1

7 w = DC E
⊔

1 1

8 w = C E
⊔ ⊔

1 1

9 w = E
⊔ ⊔ ⊔

1 1

8.5.3 Parallel algorithm

Frequent parallel episodes are found by keeping track of how many events of the

episode are currently in the window. When this counter is equal to the length

of the episode, then the episode is in the window. Once again, the start time at

which the entire episode is present in the window is noted. When the episode is

not present in the window any more, the length of time it was present is calculated

and added to the main counter.
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8.5.4 Parallel algorithm example

An example is given when looking for the candidate parallel episodes (order of

events does not matter):

α = A, B, D

β = A, C, E

in the event sequence:

s = A B A D C E (8.10)

The window width is set to 4.

The columns αevents and βevents show which events from the associated candidate

episode are currently in the window. To the right of each of these columns is an st

column which indicates the start time when the entire episode was present in the

window. αcnt and βcnt both hold the total number of occurrences of α and β. Note

that this number only gets increased when the all of the events in the episode are

no longer present in the window.

Time Window αevents st βevents st αcnt βcnt

1 w =
⊔ ⊔ ⊔

A A A

2 w =
⊔ ⊔

AB AB A

3 w =
⊔

ABA AB A

4 w = ABAD ABD 4 A

5 w = BADC ABD 4 AC

6 w = ADC E AD ACE 6 2

7 w = DC E
⊔

D CE 2 1

8 w = C E
⊔ ⊔

CE 2 1

9 w = E
⊔ ⊔ ⊔

E 2 1

8.6 Complicated episodes

Complicated episodes (those that are neither serial nor parallel) are more difficult

to search for. They are not as easy to define as serial and parallel episodes because

they encompass such a large variety of possibilities. However, some of these
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more complicated episodes can be described as a collection of serial and parallel

episodes combined. For example, the complicated episode shown in figure 8.3

can be decomposed. This is shown in figure 8.4.

A

B
E

(a) (b)

A

B
E

Figure 8.4: Graphic representation of the decomposition of a complex episode

[20]; (a) original episode; (b) decomposed episode.

It now consists of a serial episode that has a parallel episode embedded within it.

A practical way of searching for the presence of such complicated episodes is to

first check whether or not all of the events are in the window. When they are all

present, the ordering within the window can be checked.
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Chapter 9

Finding Episodes in Real Data

The methods described in chapter 8 were applied to various sets of data to demon-

strate their effectiveness at finding patterns in large sets of data. Unfortunately,

only artificial data sets (data sets that were generated by specifically walking set

patterns, rather than data sets generated by analysing usual behaviour over a long

period of time) were present to test the algorithms on. There is no reason to ex-

pect poor performance on less artificial data sets. This is because the WINEPI

algorithm guarantees to find all episodes in an event sequence.

Three different tests were performed to demonstrate the effectiveness of the

WINEPI algorithm at finding episodes in data streams.

9.1 Test 1

The sequence of test data used in this test contained a person walking two set

patterns. The first pattern involved four movements and was repeated five times.

The second pattern consisted of three movements, and was repeated three times.

It is important to note that the data used were the movements themselves, and not

the start and endpoints of the movements. The start and endpoints are analysed in
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test 2. The sequence of movements that was analysed is shown below:

C D A B C D A B C D A B C D A B C D A B E A B E A B E A B

This sequence was analysed to determine what frequent serial episodes existed.

Window sizes varied from a width of two to six units. The results of the test are

shown in tables 9.3 and 9.4. The rules generated in table 9.4 show only a selection

of the rules that can be generated from the output (the rest can be found on the

attached CD-ROM). It is a fairly simple task to automate the process to create

various sets of rules. For example, all rules that have a confidence level of 75% or

greater might be required. It is also possible to determine all rules concerned with

a certain event or all of the rules that start or end with certain events. All of the

rules generated can be used for the prediction of upcoming movements based on

where the person being tracked has been. All rules that are not present (i.e. have a

0% chance of occurring) can be considered as unusual behaviour. If one of these

movements takes place, an alarm can be activated to alert security personnel that

an unusual activity is occurring.

9.2 Test 2

Test 2 used the sequence of locations of the person being tracked (whilst sta-

tionary) as the event sequence to search for frequent serial episodes. The same

movement data is used as in test 1. The new set of events, and their corresponding

locations in figure 9.1 is shown in table 9.2.

The event sequence for test 2 is:

A B C D A B C D A B C D A B C D A B C D A C D A C D A C D A

Once again, the sequence was analysed to determine what frequent serial episodes

existed. Window sizes varied from a width of two to six units. The results of the

test are shown in tables 9.5 and 9.6.
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2 3

4

1

Figure 9.1: Start and endpoints for the various movements made in tests 1 and 2.

Movement Start Point Endpoint

A 3 4

B 4 1

C 1 2

D 2 3

E 1 3

Table 9.1: Movement labels and their corresponding start and endpoints as used

in test 1.
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Event Location

A 1

B 2

C 3

D 4

Table 9.2: Locations and their corresponding events.

9.3 Test 3

Test 3 was designed to see how effectively the WINEPI algorithm could find a set

of fixed rules. At each of the locations 1,2,3 and 4, a set of rules was placed that

told the person being tracked where to move next, depending on the role of a die.

This meant that the person being tracked did not decide where they would walk

next. It was hoped that the algorithm would be able to find rules very similar to

those implemented. The rules are shown in table 9.7.

23

4

1

Figure 9.2: The four locations used in test 3.

Once again, the outputs from the segmentation and clustering algorithms were a

set of movements rather than the set of locations visited. The table below shows
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Episode No. Episode No. Episode No.

Occurrences Occurrences Occurrences

A 8 AB 8 ABC 4

B 8 BC 4 ABE 3

C 5 BE 3 BCD 4

D 5 CD 5 BEA 3

E 3 DA 5 CDA 5

EA 3 DAB 5

EAB 3

ABCD 4 ABCDA 4 ABCDAB 4

ABEA 3 ABEAB 3 ABEABE 2

BCDA 4 BCDAB 4 BCDABC 3

BEAB 3 BEABE 2 BCDABE 1

CDAB 5 CDABC 4 BEABEA 2

DABC 4 CDABE 1 CDABCD 4

DABE 1 DABCD 4 CDABEA 1

EABE 2 DABEA 1 DABCDA 4

EABEA 2 DABEAB 1

EABEAB 2

Table 9.3: Results from test 1: frequent serial episodes.

No. Rule %

1 ABC → DAB 100

2 DAB →CDA 80

3 C → DAB 100

4 C → DABC 80

5 C → DABE 20

6 D → ABCDA 80

7 D → ABEAB 20

Table 9.4: Some of the rules generated as output from test 1. The “ →” means

“ is followed by”
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Episode No. Episode No. Episode No.

Occurrences Occurrences Occurrences

A 9 AB 5 ABC 5

B 5 AC 3 ACD 3

C 8 BC 5 BCD 5

D 8 CD 8 CDA 8

DA 8 DAB 4

DAC 3

ABCD 5 ABCDA 5 ABCDAB 4

ACDA 3 ACDAC 2 ABCDAC 1

BCDA 5 BCDAB 4 ACDACD 2

CDAB 4 BCDAC 1 BCDABC 4

CDAC 3 CDABC 4 BCDACD 1

DABC 4 CDACD 3 CDABCD 4

DACD 3 DABCD 4 CDACDA 3

DACDA 3 DABCDA 4

DACDAC 2

Table 9.5: Results from test 2: frequent serial episodes.

No. Rule %

1 A → B 55

2 AB →CDA 100

4 C → DABCD 50

5 C → DACDA 38

6 D → A 100

7 D → ABCDA 50

8 D → ACDAC 25

Table 9.6: Some of the rules generated as output from test 2. The “ →” means

“ is followed by”
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Current Die New Current Die New

Location Roll Location Location Roll Location

1 1,2,3 2 4 1,2,3 2

1 4,5,6 3 4 4,5,6 3

2 1,3,5 4 3 1,4,6 2

2 2,3 3 3 2,3 4

2 6 1 3 5 1

Table 9.7: Rules based on die throws for test 3.

the different movements detected, and how they relate to the locations show in

figure 9.2

An event sequence was generated by walking to locations, rolling a die, and walk-

ing to the new location specified by the rules. The event sequence generated was:

B I L I K E H F L H E I L H F L G A E H F K F K F L H

F K F K E I L G A F K F L H E G B I K E H F L I K D

Due to the large number of events in this test, the list of results is very large. The

full results can be found on the attached CD-ROM. A single case is considered,

which demonstrates the effectiveness of the algorithm at finding patterns.

The results were analysed to see whether the rules for what to do when leaving

location 2 had been detected. To achieve this, the events that have location 2 as

their endpoint needed to be analysed. These events are A,H,K.

Table 9.9 shows the various episodes that resulted in the person being tracked

arriving at location 2. It also contains the various locations that the person went

to after arriving there. From the table it can be seen that when leaving location

2, movement D is performed 1
17 = 6% of the time, movement E is performed

6
17 = 35% of the time and movement F is performed 10

17 = 59% of the time.

The results shown in table 9.10 show that the rules ‘learnt’ are similar to those

created. They show that the patterns as defined by the rules have been detected.

There is some dissimilarity in the chance of the rule being executed. This is due
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Movement Start Point Endpoint

A 1 2

B 1 3

C ∗ 1 4

D 2 1

E 2 3

F 2 4

G 3 1

H 3 2

I 3 4

J ∗ 4 1

K 4 2

L 4 3

Table 9.8: Movement labels and their corresponding start and endpoints for

test 3.
∗Impossible to appear in the event sequence (see table 9.7).

to the small period of time for which test data were generated. If a larger event

sequence were present, the percentages would be closer to the desired values.

9.4 Discussion

The WINEPI algorithm of Manilla and Toivonen [20, 21, 28] performs very well at

finding frequent occurrences of serial and parallel episodes in large data streams.

There are a number of considerations that must be taken into account when trying

to automatically determine frequent patterns in a data set.

9.4.1 Domain knowledge

As with many machine learning problems, the system cannot be expected to learn

effectively without making use of as much knowledge about the work domain as
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Episode No. Episode No. Episode No.

Occurrences Occurrences Occurrences

A 2 H 7 K 8

AE 1 HE 2 KD 1

AF 1 HF 5 KE 3

KF 4

Table 9.9: Results from test 3: frequent serial episodes.

Movement Discovered Desired

D 6% 17%

E 35% 33%

F 59% 50%

Table 9.10: Results from test 3, showing the probability of certain movements

happening compared to the probability as specified by the rules (see

table 9.7.)

is possible. By applying this knowledge to the system, the task becomes more

effectively constrained, and therefore the chances of success are increased. This

knowledge can come in a variety of forms. For example, if it is known that there

will be no correlation between events that happen more than 10 minutes apart

from each other, then the window size can be effectively set. If it is known what

form the patterns should take on, this information can be used to design a suitable

template based on the serial and parallel episodes.

9.4.2 Serial or parallel episodes

Should the search be for serial episodes, parallel episodes or both? This question

is related to the amount of knowledge that is present about the domain that is

being worked in. In the case of searching for patterns in people’s movements,

both serial and parallel episodes are useful. Serial episodes are the most intuitive

and will provide rules such as:
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When the person goes to his desk, there is a 45% chance that his next

movement will be to go and make coffee.

Parallel episodes are also useful as they describe movements that will often happen

in close proximity to each other, but not necessarily in a specific order. Serial

episodes can be considered as being a special case of parallel episode.

9.4.3 Location data or movement data

As was shown in tests 1–3, the rules generated vary quite substantially depending

on whether movement data or location data is used. Intuitively, location data

seems to be a better choice, as it will provide rules such as where people move

to after visiting certain locations. However, it does not contain any information

on the movement between the two locations. For instance, if the person being

tracked walked via a different route. This information is present in the movement

data. The movement data also contains the location data, although it needs to

be extracted from the data. This is not a problem if the final system learns the

frequent patterns and make predictions on what is most likely to happen next. It

is only a matter of concern if the desired output is a set of rules extracted from the

process. In this case it might be better to make use of both data sets, although this

will take considerably more processing time.

9.4.4 Data sets

When using a system to learn certain patterns in an environment, it is necessary

to ensure that there is sufficient training data in the data set. As mentioned earlier

in the results of test 3, the more training data that is available, the better. It is

also necessary that the training data contain numerous occurrences of all of the

cases that are to be detected. This can easily be monitored by placing a threshold

value on the number of occurrences that must take place before rule generation is

performed.
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9.4.5 Event sequence representation

The event sequence representation (as discussed in section 8.1) can also affect the

outcome of the episode detection process. If the Z events are used, then the event

sequence will increase in length dramatically, especially if there are large time

intervals between movements. This means that the window size will need to be

extremely large to detect any useful patterns.

9.4.6 Multiple event sequences

The addition of an extra event sequence that contains different kinds of events

such as time markers: 7:00 am, lunch time, etc. could be analysed with the move-

ment event sequence. This could be used in conjunction with a search for parallel

episodes to result in many useful rules such as:

The person goes to his desk soon after 7:00 am.

9.4.7 FPGAs

Lipson and Hazelhurst [18] have shown that FPGAs (field programmable gate

arrays) can be effectively used for the fast detection of patterns in DNA sequences.

It is highly possible that such techniques could be useful for increasing the speed

of searches for specific patterns in data sets that are used in the WINEPI algorithm.

The reconfigurability of FPGAs means that they could be used to search for all

different patterns required. However, the time required to set up the FPGA could

result in FPGAs only being useful in systems with extremely large data sets. This

means that the additional time overheads for configuring the FPGA would need to

be minimal compared to the overall time savings.
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Conclusions

10.1 Segmentation

A system has been developed that can effectively segment out a marker in a specif-

ically constrained environment. This is particularly useful for generating large

quantities of data that indicate a person’s location over a long period of time. It is

important to note that this segmentation algorithm has been designed for a highly

constrained environment in which it performs well (real-time processing up to 15

frames per second). The segmentation system will not perform well under other

conditions. A more robust segmentation algorithm that can accurately determine

the locations of numerous people should be developed. Suitable post-processing

functions that take account some of the short falls of the segmentation algorithm

have been implemented to ensure a reliable data stream as output from the seg-

mentation module.

10.2 Clustering

The DTW has been shown to be an extremely useful distance measure for deter-

mining the similarity between signals of differing lengths. It outperforms other
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techniques such as linear time normalisation and the euclidean distance measure.

It is important to note that there are numerous constraints and optimisations that

can be performed on the DTW in order to achieve better results. Certain optimi-

sations have been performed to ensure that the DTW is best suited for matching

the various movements made by people.

Three clustering techniques were tested to see how effectively they could perform

unsupervised classification on fifteen data sets of people’s movements. Each data

set contained between 14 and 60 movements. Hierarchical clustering performed

the poorest of the three clustering algorithms, achieving only 73% correct classifi-

cation. The Batchelor and Wilkins algorithm achieved 94% correct classification

and the graph theoretic method 96% correct classification.

It should be noted that this does not necessarily mean that the graph theoretic clus-

tering method should always be used instead of Batchelor and Wilkins’ clustering

method since both algorithms have different advantages and disadvantages.

10.3 Finding frequent episodes

The WINEPI algorithm can effectively find both serial and parallel episodes in

event sequences. This can be put to great effect in a security system as it can be

used to predict people’s movements. When the predictions are incorrect, the secu-

rity personnel can be alerted to the fact that an something unusual has happened.

The downside of this algorithm is that it can take a very long time to process

large data sets. However, this need not be a big constraint as the most likely

final implementation of a system will use the WINEPI algorithm in a set training

phase. This means that the algorithm can be run to completion in an offline mode.

It does not have to deal with all of the subsequent data that will be present when

the system is running online.
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10.4 Implementation

This feasibility study has shown that it is possible to automatically detect the

various patterns that are present in people’s movements. It has also shown that it is

possible to make predictions based on these movements. If the methods developed

here are to be used in an online system, it is important that further investigations

into the specific requirements of the system are performed. This is required so

that the optimal parameter settings can be found.

10.5 Further Investigation

The obvious continuation of this feasibility study is to attempt to use the methods

developed here for a system that makes use of location data that has been acquired

from a normal work environment. This will pose numerous new problems to deal

with, including:

• the real-time segmentation of multiple people from multiple cameras. This

is an area of ongoing research and should be considered a separate project.

• the determining of the optimal parameters for the various algorithms pre-

sented. These include the various DTW constraints, clustering algorithm

parameters, and window widths for the data mining algorithms. It is ex-

pected that there will not be one optimal set of parameters, but rather that

there will be optimal parameter settings for different operating environ-

ments.

• the porting of some of the algorithms developed from Matlab to another

language such as C++, in order to increase their execution times.

Other areas of further investigation include the simultaneous use of data streams

from other algorithms to enhance the data mining algorithm’s output. For example

if the location data, is used in conjunction with a datastream indicating who is
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being tracked, and a data stream indicating the time of day, more meaningful

rules might be extracted.

It would also be interesting to see how well these algorithms work on different

data stream types (e.g. instrumentation and other signal processing outputs). The

data streams would need to be similar to the walking data in that there are no large

discontinuities in the data (unless the discontinuities are used for segmentation

purposes).
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Attached CD-ROM

The following files can be found on the attached CD-ROM:

A.1 Raw data

This file contains the raw data that were created by the pink hat segmentation

algorithm. The raw data for the fifteen data sets used are shown.

A.2 Individual movements

This file contains the output from the pre-processing stage and the movement

detection algorithm. The data for the fifteen data sets used are shown.

A.3 Clustering

This file contains the various outputs from the clustering techniques used on the

fifteen data sets. The benchmark data set is also present.
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A.4 Event sequences

This file contains the various event sequences that were generated from the fifteen

data sets after graph theoretical clustering had been performed.

A.5 Serial episodes

This file contains the various serial episodes that were detected from the fifteen

test event sequences.

A.6 Parallel episodes

This file contains the various parallel episodes that were detected from the fifteen

test event sequences.

A.7 Serial rules

This file contains the serial rules that were generated from the fifteen test event

sequences. Only rules which have a percentage certainty greater than or equal to

fifty percent are shown. Furthermore, rules are only shown if they have occurred

at least twice in the event sequence.

A.8 Test results

This file contains the results from the three tests performed. Only rules which

have a percentage certainty greater than or equal to fifty percent are shown. Fur-

thermore, rules are only shown if they have occurred at least twice in the event

sequence.
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