
Imaging-based lensless
polarisation-sensitive fluid

stream analyser for automated,
label-free, and cost-effective
microplastic classification

Author:

Fraser Derrick Charles Montandon

Supervisor:

Associate Professor Fred Nicolls

January 2024

Submitted to the Department of Electrical Engineering at the University of Cape

Town in fulfilment of the academic requirements for the degree of Master of Science in

Electrical Engineering.



Abstract

The presence of microplastics in the environment is of concern with the actual distribu-

tion of this pollution remaining relatively unknown. The ocean is of particular interest

as the monitoring of microplastics in this area presents a challenge in that in situ fluid

stream solutions are not readily available and traditional sampling methods are labour-

intensive and costly. Additionally, the lack of consensus on sampling techniques makes

comparing results difficult. Our proposed device demonstrates an imaging-based lens-

less polarisation-sensitive fluid stream analyser (FSA) for automated, label-free, and

cost-effective microplastic classification. The FSA performs analysis at high flow rates

with a custom-designed illumination circuit that reduces motion blur and provides quan-

titative sample information using a polarisation-sensitive image sensor. Digital in-line

holography (DIH) and birefringence numerical computation are utilised in the processing

workflow. The device can be used for either quantitative polarisation-sensitive imaging

and analysis or for further machine-learning-based activities, including the classification

of samples. Both abilities are demonstrated in this study. Our analyser computes the

two-dimensional birefringent characteristics of samples and we investigate the detection

of synthetic polymer birefringent textures due to the optical anisotropy of these materi-

als. We perform a comparative machine learning study with both learned and filter bank

feature generation being assessed to aid the microplastic classification process. The FSA

and classifier components are used to develop an end-to-end workflow that samples a

fluid stream and determines the composition of marine and microplastic particles. We

use two phytoplankton cultures to create a simplified marine environment for testing

purposes. To demonstrate the performance of our classification methods we tested our

device and workflow in a two-class configuration for marine microorganisms and plastics,

as well as a five-class configuration for marine microorganisms and four individual plastic

types (polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and

polystyrene (PS)). Our analysis shows that high accuracy is achieved from the classifier

implementation, with the simulated marine environment experiments further supporting

the ability of the proposed implementation.
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Chapter 1

Introduction

Microplastic detection is an active research area with many competing analysis tech-

niques [1–5]. However, low-cost fluid stream analysis of microplastics presents an unmet

need that this work attempts to address. This chapter provides a summary of the

document, offering details on the structure and implementation of the project.

The chapter starts by introducing the problem and providing background context. The

motivation that led to the project investigation is then discussed, followed by the problem

and thesis statement. The objectives of the project are detailed and this is followed by a

summary of the contributions. Next, the scope and limitations are discussed, and finally

the chapter concludes with the presentation of the thesis outline.

1.1 Introduction

Defined as synthetic polymers between 1 µm and 5 mm in diameter [6], the global

distribution of microplastics in ocean waters remains relatively unknown due to lack

of detailed measurement data [7]. Traditional sampling techniques are labour inten-

sive, costly, and require analytical equipment in laboratory settings [1–3]. Laboratory

techniques are sensitive and accurate but involve retrieval and thorough preparation

of raw samples before analysis can occur [5]. Therefore these existing techniques are

low-throughput and ex situ solutions. Due to resolution limits, current detection tech-

niques do not adequately cover the full range of microplastic sizes [4]. Although Fourier-

transform infrared spectroscopy and other spectral techniques employed in a laboratory

setting are well suited to microplastic detection, they are not readily adaptable to in situ

analysis; this is due to the strong water absorption bands that infrared sensing has to

contend with. Furthermore, the equipment is expensive, slow, and not readily suited to

multi-object heterogeneous solutions. Additionally, portable hyperspectral cameras are

1
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useful but prohibitively expensive, limiting their practicality as field-detection devices.

In situ analysis of microplastics remains a nascent area. Recent digital holographic

studies in static microplastic analysis move toward an imaging-based solution [8–10],

though these used less portable lensed off-axis holographic configurations [11] and were

limited to machine learning classifier implementations. Synthetic polymers are optically

anisotropic (birefringent) and polarisation microscopy provides an alternative analysis

tool to gain insight into the molecular arrangement of these materials [12]. Applying

lensless in-line holographic polarisation-sensitive sensing to in-stream analysis of mi-

croplastics may provide useful features for classification, as has been done in a lensed off-

axis study [13]. Formulating birefringence information into quantitative measurements

for use with temporal polarisers and traditional image sensors has been effective [14]. A

similar technique used in a static biomedical study employed a polarisation filter array

(PFA) sensor instead of multiple temporally separated images to quantitatively resolve

birefringence information in a single shot [15]. Imaging flow cytometry combined with

digital in-line holography (DIH) techniques is a lightweight and cost-effective approach

for marine fluid stream analysis, and this is further supported by recent advancements

in computer processing performance and smaller image sensor pixel sizes [16,17].

This project aims to work towards automating sampling and enhancing in-stream mi-

croplastic detection methods using lensless holographic polarisation-sensitive imaging.

However, in-stream detection presents a challenge in the form of a low signal-to-noise

ratio (SNR) due to turbidity and the presence of other particulates.

Although the main focus of this study is microplastic detection, the workflow presented

in this research can hopefully serve as a framework for future studies in imaging-based

fluid stream analysis, with the presented methodology and techniques being adapted

and extended to explore other applications.

1.2 Motivation

Environmental monitoring of microplastics, particularly in marine habitats, has emerged

as a significant concern [18]. The detection of microplastics in such settings calls for the

development of portable and low-cost detection systems. The University of Cape Town is

researching the development of sensing tools for microplastic detection, and this project

contributes towards that objective. Technological advances in optical sensors and more

affordable circuitry have created an opportunity to investigate the development of low-

cost optical detectors for microplastic classification, and these factors have motivated

this project’s direction.
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1.3 Problem and thesis statement

Detecting microplastics in marine environments is resource-intensive and time-

consuming. The sampling and analysis of microplastics in ocean water have been con-

ducted sparsely, resulting in a limited understanding of their distribution. There has

been insufficient exploration into developing affordable, deployable, or portable tech-

niques and devices for this purpose. Consequently, only limited progress has been made

in this field, with devices having low throughput or lacking portability. The absence of

portable and rapid testing detectors has presented a significant obstacle to researchers

who require in situ testing capabilities and thus has limited the mapping of the distri-

bution of plastic pollution in ocean water.

This thesis investigates optical methods for low-cost, label-free, automated fluid stream

detection of microplastic particles by developing and evaluating a fluid stream anal-

yser (FSA) that integrates DIH, and spatial polarisation sensing in combination with a

classification back-end, resulting in an end-to-end pipeline or workflow.

1.4 Objectives

This study aims to develop a low-cost FSA capable of classifying select synthetic poly-

mers (polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and

polystyrene (PS)) of size range 50 µm to 1000 µm present in mixed media solutions. The

mixed media solutions are created to simulate ocean water. We define three objectives

to support the development of our detector.

• Fluid stream analysis: Develop a low-cost high flow rate lensless polarisation-

sensitive imaging-based FSA.

• Microplastic classifier: Develop a microplastic classifier that uses the FSA.

• Pipeline: Develop an automated software workflow that combines the FSA and

classifier objectives to provide end-to-end microplastic detection.

1.5 Scope and limitations

The analyser developed in this study serves as a complementary tool to existing diagnos-

tic techniques. The instrument is intended to enhance sensing capabilities, particularly

in resource-limited settings, by providing the capability to detect microplastics in situ.

It can also function as an initial detection device, providing a preliminary assessment

that may guide the need for more comprehensive detection using traditional techniques
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where required.

Importantly, this study focuses exclusively on the detection of specific plastic types,

namely PE, PET, PP, and PS, and does not consider other types of plastics. The size

range of interest is 50 µm to 1000 µm and samples were used in their virgin state.

The recreated marine environment was designed to be easily reproducible for future

research. While it does not capture the more complex biological interactions present

in actual marine samples, it allows for generating a reliable ground truth that would

be challenging to determine in a real-world deployment. However, the study does not

address the potential effects of biofouling and other environmental factors, which could

impact the analyser’s performance in a natural marine environment.

The protocols, workflow, and detector developed in this work are intended to serve as a

proof of concept that supports the advancement towards in situ analysis of microplastic

particles. The feasibility of utilising polarisation-sensitive optical sensing is a theme in

this work and the study provides a foundational framework for its use. However, it

also acknowledges the need for further refinement and validation in real-world scenarios.

This project aims to present a conceptual framework that can be taken forward to be

optimised and integrated into embedded systems for future studies that may require

field testing and deployment.

1.6 Thesis outline

The thesis is organised as follows:

Chapter 2, Literature review: The literature review presents key works consulted

in this study. First, we briefly discuss the tertiary literature that forms part of the

general consulted works. This literature includes background on Fourier optics hologra-

phy, polarisation microscopy, and synthetic polymers. Next, we cover selected scientific

publications and primary literature on static imaging-based microplastic classification

and detection methods. This is followed by literature on imaging flow cytometry and

polarimetry applications. The chapter concludes with a summary of the current state-

of-the-art and a discussion of the significance of the proposed work.

Chapter 3, Approach and theoretical framework: This chapter outlines the ap-

proach underlying the development of an imaging-based microplastic detector. We pro-

pose the three subsystems or contributions for the project, namely: FSA, computer

vision classifier, and pipeline. We then detail the essential components used, such as the

polarisation image sensor and the flow cell.
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The chapter also addresses the theoretical framework, including encoder-decoder net-

works (for segmentation and some classification models), filter banks for feature extrac-

tion, lensless DIH techniques, polarisation, birefringence, and motion blur.

Chapter 4, Imaging fluid stream analysis: The FSA is introduced and developed

in this chapter. The analyser is configured in a lensless layout, incorporating DIH and

spatial polarisation sensing. The hardware elements are first detailed, including the

flow cell, polarisation image sensor, fibre-coupled laser diode, 3D printed supporting

components, and a custom-designed light pulse driver circuit.

An image preprocessing routine is established to reduce aberrations and artefacts in the

acquired frame. Following this, we detail software elements enabling the input image

frame from the FSA to expand into a seven-channel output. The output channels are de-

veloped by incorporating holography propagation and birefringence processing routines

for lensless optical anisotropic sensing. We apply Jones calculus [14, 19] and the angu-

lar spectrum method [11] to match our optical setup with the computational backend.

For pixel-wise particle segmentation, we train a customised supervised encoder-decoder

network.

In reviewing the results from the segmentation implementation, it is noted that our

proposed segmenter achieved a mean intersection over union (IOU) of 94.46%, which is

an improvement over a standard U-Net [20] configuration trained alongside it.

Next, we present the experimental demonstrations. Testing of the DIH propagation was

performed with a static resolution test target and an intensity profile analysis, yielding a

lateral resolution of 6.6 ±0.8 µm, and confirming the expected resolution of our system.

Subsequently, we passed microplastic samples through the FSA in a fluid stream.

For the polarisation birefringence demonstration, we first tested the subsystem with an

anisotropic liquid crystal depolariser, with results consistent with the manufacturer’s

specifications. Then, a sample of microplastic specimens was passed through the anal-

yser, and we mapped the retardance and slow axis to a hue and saturation colour space,

which is useful for visualisation purposes.

A segmentation demonstration was performed on various samples of both marine phyto-

plankton and microplastics, including challenging examples closer to the resolving limits

of the system.

A motion blur study was then conducted to assess performance improvement when

using the excitation driver for pulsed light driving. Finally, a calibration procedure

was performed with two types of scientific calibration spheres (including one unseen
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polymer type and size). The resulting calibration output agreed with the manufacturer’s

specifications of the spheres.

Chapter 5, Computer vision: This chapter develops and presents the microplastic

classifiers. These classifiers used the outputs from the FSA developed in Chapter 4 for

further feature extraction. Two approaches were explored: a neural network learned

feature classifier and a filter bank feature classifier. This investigation aimed to select

the most appropriate or suitable model for two different implementations, namely a

binary marine and microplastic classifier and a multi-class polymer classifier.

A small dataset of marine phytoplankton and microplastic samples was created for

classifier training. The learned feature classifier, employing a custom encoder-decoder

structure, was trained for the binary marine and microplastic problem. Following this,

the filter bank classifier was developed. A sequential routine of filter banks, feature

selection, and supervised dimensionality reduction led to the feature set used to train

multiple classifier implementations for analysis.

The results from the learned feature approach suggest that our proposed implementation

was the preferred candidate for the two-class (marine and microplastic) task with a

mean accuracy of 98.66%. Additionally, it achieved a false positive rate (FPR) of 1.25%

when treating microplastics as the positive class, representing an improvement over a

standard U-Net implementation used for comparative purposes. Regarding the multi-

class polymer classification problem, the routine using filter bank feature extraction

with a random forest classifier attained the highest mean accuracy at 95.03% for the

four microplastic types.

Chapter 6, Pipeline: This chapter develops and presents the pipeline designed to

amalgamate the FSA and classifier developed in the previous two chapters. Our method

also establishes a testing and evaluation protocol. The pipeline is intended to provide

a platform for testing and assessment beyond standard machine learning classifier re-

sults. The end-to-end workflow obtains an image frame from the FSA as an input and

performs preprocessing, segmentation, classification, and logging of each particle that

passes through the analyser within the specified size range. The protocol followed to

establish a simulated marine environment, acting as a ground truth for experiments is

detailed. Three experiments were developed to assess the pipeline.

Experiment 6A performed a combined microplastic analysis in a marine environment;

the concentration of a combined microplastic blend was adjusted whilst the marine

concentration was held constant. This experiment aimed to establish if the workflow

can detect microplastic particles as a single class amongst marine matter. Experiment 6B
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conducted a multi-class microplastic analysis in a marine environment; the concentration

of a single type of microplastic (PE, PET, PS, or PP) was adjusted whilst a solution

of marine and other plastic particles was held constant. This aimed to further classify

observed microplastic samples based on their individual class types. Experiment 6C

performed a PE and PMMA sphere comparison with the task of classifying similarly

shaped objects based on their birefringent texture.

Experiment 6A achieved an FPR of 0.66% ±0.1% (for microplastics), an improvement

over the 1.25% achieved by the stand-alone proposed encoder-decoder classifier. This

improvement is thought to be due to the ensemble effect of the adopted pixel-wise clas-

sification scheme. Experiment 6B produced noticeable stepped concentration changes

for a particular microplastic in response to when we adjusted its concentration, whilst

at the same time marine and other plastic particles in the solution showed less change.

Experiment 6C yielded promising results with 93.06% of PE and 79.41% of PMMA

spheres being correctly classified. These results support the view that the workflow may

offer further utility in fluid stream microplastic analysis.

Chapter 7, Conclusions: The final chapter of the thesis provides a summary of the

work and conclusions drawn. Recommendations for future work and improvements are

discussed. Finally the contributions are covered with additional comments.
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Chapter 2

Literature review

This chapter presents a literature review providing details on resources consulted in this

work. Aspects relating to digital holography for imaging analysis and select material

properties of plastics are essential and are introduced in this section. Additionally,

current state-of-the-art imaging-based microplastic classification, marine imaging flow

cytometry, and general polarimetry methods are documented.

We start by referencing general literature that has provided foundational support for

this study; these resources are used to develop the theoretical framework in Chapter 3.

Static microplastic classification is then covered, followed by imaging flow cytometry, and

polarimetry. The significance of the proposed work is then discussed, and we conclude

by dealing with the gaps in the prior works.

2.1 General literature

The key areas presented in the general literature are digital holography, polarisation

microscopy, and polymer birefringence. Digital holography is a technique that analyses

the amplitude and phase information of a light wave. By recording the interference

pattern created when a reference wave interacts with an object wave, detailed image

reconstruction can occur [11]; this study focuses primarily on its use in microscopy

applications. Polarisation microscopy uses polarised light to study the optical properties

of materials, particularly those that exhibit birefringence or optical anisotropy [12]. By

analysing how these materials interact with polarised light, polarisation microscopy can

provide insight into their compositional characteristics. Polymer birefringence is the

difference in refractive indices along different axes within a polymer material; this optical

property results from molecular alignment or orientation during polymer manufacture

and may be studied using polarisation microscopy [12].
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2.1.1 Digital holography

Goodman’s book [11] provides a comprehensive introduction to Fourier optics, offering

a solid foundation. The literature covers classical linear techniques that are particu-

larly relevant to holography, with the necessary support to delve deeper into this area.

The seminal work by Gabor [21] is thoroughly covered. Although modern computing

and sensing technologies are not discussed, the techniques presented are translatable to

contemporary environments.

Holographic methods, including both in-line and off-axis configurations, are valuable

for imaging applications. The off-axis method typically requires a more stable environ-

ment and is less portable due to the use of mirrors and lenses, but offers easier and

more practical phase recovery methods [11]. The in-line alternative is a compact and

lightweight setup that provides more stability but can produce images suffering from

twin-image artefacts [22]. This occurs especially in the case of dense samples such as

where the reference wave is limited and has to contend with strongly scattering object

waves. An advantage of the in-line approach in a lensless configuration is that it can

offer a wide field-of-view (FOV) equal to the image sensor area. This however depends

on the relative sample, sensor, and light source distances [22]. Both holographic meth-

ods use numerical propagation to computationally focus on a sample object, enabling

accurate imaging of the flowing particles.

In a high flow rate microfluidic environment, an “on-chip” lensless configuration may be

preferred for the image sensor as it eliminates restrictions imposed by a shallow depth

of field and limited focal area caused by using objective lenses in a lensed setup [16].

With this lensless configuration, the spatially resolvable resolution depends on the image

sensor’s pixel-pitch size. Thus, a smaller pixel size is helpful for improved resolution.

2.1.2 Polarisation microscopy

Sawyer and Grubb present microscopy methods for analysing polymers in their book [12].

The book covers a range of quantitative and qualitative techniques, providing detailed

insights into the structural properties of synthetic polymers. Birefringence information

is covered in detail and is particularly useful to this study. Chipman et al.’s book [23]

provides the polarisation and birefringence support necessary to apply Jones calculus [19]

to the tasks considered in this work.

Birefringence is a material property that exhibits different material refractive indices for

light polarised in different directions; this property gives rise to the formation of double-

refractive rays, which upon exiting the sample will cause interference [23]. Observing
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these changes allows valuable information about the sample’s optical anisotropy and

molecular orientation to be obtained [12].

A benefit to performing birefringence measurements in the micron resolution domain is

that they can serve as an analogue method to obtain quantitative information about

the molecular orientation of an optically anisotropic sample [12]. Polarised light mi-

croscopy is commonly employed to gain insights into anisotropic structures that cannot

be resolved using standard light microscopy techniques [14].

In polarising light microscopy, a transmission light microscope is used with additional

components such as a rotatable stage, a polariser in the illumination system, and an

analyser positioned between the objective lens and the eyepiece [12]. Typically, one or

both polarisers can be rotatable, allowing the selection of light transmitted to be in a

specific plane of polarisation. The polariser is dichroic, meaning it absorbs light of a

particular polarisation state [23]. Often, a cross-polarisation or orthogonal configuration

is used where no light is transmitted in the absence of an anisotropic object, while light

is transmitted in the presence of an optically isotropic object [12].

2.1.3 Polymer birefringence and texture

Synthetic polymers exhibit different types of textural features. Two broad birefringent

structural arrangements may be used to describe the synthetic polymers studied in this

work and are often observed in combination. Sawyer and Grubb [12] describe these

two structural arrangements as crystalline and amorphous. Crystalline structures are

repeating or periodic patterns observed due to the arrangement of atoms or molecules

in the crystal lattice. This leads to highly ordered chains and an optical arrangement

that results in periodic or regular refractive index variations when exposed to polarised

light. Amorphous structures are a less ordered arrangement in a molecular or structural

sense. This leads to more random variations in the refractive indices of the material,

resulting in general stochastic observations in polarisation states and refractive indices.

Crystalline structures are often used for their strength while amorphous structures can

be useful for transparency and clarity applications. The manufacturing process affects

these characteristics and their properties can be modified further with additives and

adjustments to the production process. Therefore, it is expected that same-class polymer

samples observed in the wild may vary under polarisation interrogation, not to mention

the effects of degradation and biofouling that provide further noise to the observed

measurement.
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2.2 Consulted scientific publications

Some consulted studies are discussed in this section. Their key uses of technologies

related to this project are presented and important aspects around their contributions

are covered, along with any challenges encountered. This allows us to formulate the

significance of our proposed work.

2.2.1 Static microplastic classification

Recent studies in developing static sample microplastic classification techniques using

imaging-based methods are now covered. Three prominent studies are documented to

provide background on what has been achieved and to indicate where further research

can be performed. The type of imaging methods employed, classifier models, and target

(or sample classes) analysed in their studies are of use in forming the foundation of our

study.

Bianco et al. presented a system that used lensed holographic imaging and machine

learning to classify static samples of microplastics as a single class against nine differ-

ent diatom species [10]. Objects were manually segmented, and they trained a linear

support vector machine (SVM) classifier on 28 global features. These features were

generated from the holographic wrapped phase and included phase roughness and tradi-

tional regional metrics such as area, perimeter, eccentricity, length, and breadth as well

as statistical features derived from the grey-level co-occurrence matrix. Object classifi-

cation was thereafter performed on a 28-length feature vector per object. However, the

holographic imaging system employed an off-axis interferometer, making it non-portable

and susceptible to vibrational disturbances.

The decision was made to keep the phase wrapped due to sudden jumps and discon-

tinuities observed when performing phase unwrapping on microplastic samples. The

specimens used in their study were static samples imaged independently, allowing for

accurate establishment and assignment of ground truth labels. No mixed-media tests

were performed, and the classifier achieved a classification accuracy of 99.31% ± 0.19%.

Nevertheless, the authors anticipated that the system would not perform similarly in the

real world. They expressed concerns that microplastic specimens, such as microbeads

(or microspheres), could be challenging to classify due to their morphological similarity

to certain marine phytoplankton.

Bianco et al. introduced another system to improve their previous approach by in-

vestigating the fractal properties of microplastics and diatoms [9]. They used the same

interferometer setup and performed the object segmentation process manually. A vector
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of 13 features was extracted from the wrapped phase contrast of sample objects. These

features included global measures of fractality, lacunarity, and regularity. To reduce the

dimensionality of the feature vector they applied principal component analysis (PCA),

resulting in a 2D mapping. Unlike their previous work, they did not rely on morpho-

logical measurements such as perimeter and area, however, they still computed a global

feature vector for each object patch.

In this subsequent study, the number of unique diatom species increased to 55, while

the number of microplastic types remained the same and were treated as a single class.

A commercial test slide of diatoms was used and included 50 of the species studied.

These diatoms were fixed between two glass slides and only one sample of each diatom

class was present; the acquired data was therefore augmented to grow the dataset.

The classification task was treated as a two-class approach: distinguishing diatoms

from microplastics. Segmentation was performed manually, and similar to their prior

work only static object classification was performed. No mixed microplastic and diatom

samples were tested. The classifier achieved a classification accuracy of 98.49%.

Běhal et al. conducted a detailed investigation into utilising polarisation-sensitive fea-

tures for polymer classification [24]. They explored the potential of polarisation-sensitive

optical analysis of microfibers to generate rich classification features in a microscopy

setting. Although they used limited raw data, they successfully classified four types of

synthetic and two types of natural fibres. This study was conducted without training a

classifier. Instead, it relied solely on observed values and focused specifically on derived

polarisation characteristics such as birefringence.

2.2.2 Imaging flow cytometry

Studies in developing imaging flow cytometry for marine and/or microplastic applica-

tions are now covered. The fluid stream analysis component of these studies is necessary

for the development of our project since we consider a marine application with biological

and plastic samples.

Göröcs et al. developed a lensless imaging flow cytometer aided by deep learning for

imaging phytoplankton samples in their study [16]. The device offered a flow rate of

100 mL/h, which is significantly higher than commercially available units. The system

employed DIH with red, green, and blue (RGB) imaging and used a peristaltic pump

to transfer the test fluid to a commercially available microfluidic channel. The fluid

under examination was illuminated by single 120 µs pulses from an RGB light emitting

diode (LED) that was triggered by the image sensor. The image sensor captured three
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frames per second. To aid the coherence of the LED, the spatial coherence was enhanced

by employing a convex mirror; the temporal coherence was improved using bandpass

spectral filters. Furthermore, the LED was overdriven due to the short excitation pulse

width and the limited photon budget.

The device’s primary purpose was qualitative imaging, with manual counting and logging

of different types of observed phytoplankton being performed by an observer. Given

the dynamic nature of the fluid sample, techniques like multi-height iterative phase

retrieval were unsuitable for phase recovery [25]. Therefore, a convolutional neural

network (CNN)-based approach was used for phase recovery, relying on the network

training on similar waterborne objects. Field testing involved performing a net trawl

to concentrate ocean water samples approximately 3000 times, which was subsequently

diluted with filtered ocean water at a ratio of 1:50.

Işıl et al. further advanced the lensless imaging flow cytometer developed by Göröcs et

al. to enable a phenotypic analysis of microalgae [17]. They introduced two methods to

monitor the health of microalgae.

The first method involved morphological feature analysis, where statistical changes were

measured by comparing histograms using Jefferies’ divergence. This approach aimed to

identify differences in the morphological characteristics of microalgae as an indicator of

their health status.

The second method used three binary deep neural networks to form a classifier to identify

three different microalgae species. The decision to employ three independent networks

to determine whether an object belonged to a specific species class was made due to

the difficulty in labelling unhealthy or non-class algae. Objects that did not belong to

the specific class of microalgae were labelled as such, including dust, dirt, and other

non-members of the target class. This approach was intended to improve performance

by reducing misclassification.

The experiments conducted in the study were extensive and comprehensive. They mon-

itored the algal population growth or decline in response to exposure to select heavy

metals. Cultured microalgae samples were used for these experiments, providing con-

trolled conditions for analysis.

Valentino et al. presented a system for lensed fluid stream detection of microfibers [13].

Building on the prior work of Bianco et al., this study employed polarisation-sensitive

techniques in an imaging flow cytometry setup. A Mach-Zehnder interferometer was

implemented using linear polarisers, beamsplitters, and lenses based on the theory of

Colomb et al. [26] to obtain vertical and horizontal eigenpolarisation holograms. Jones
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calculus [19] was applied to the propagated complex images to extract birefringent re-

tardance and polarisation orientation features.

Sample objects for this study included virgin samples of PA6, PA6.6, PET, PP, cotton,

and wool that were cut into uniform 200 µm lengths, although each class had a different

diameter. An RGB rolling shutter image sensor, coupled with a 5X/0.12 objective lens,

was attached to a commercially available microfluidic channel with a depth of 400 µm.

Global features were generated based on the morphological mask of the sample object.

Amplitude and phase reconstructions were performed for both eigenpolarisations at the

object’s focus distance and the phase was kept wrapped. For classification purposes,

training and testing objects were manually segmented. Shape, grey-level co-occurrence

matrix, and grey-level run-length matrix features were extracted for each channel. A

total of 228 features per object were obtained, which were reduced after conducting a

t-distributed stochastic neighbour embedding analysis and a Pearson correlation study

to eliminate highly correlated features.

A total of 432 object images were captured, with 72 images for each class. All sam-

ples were imaged separately. Standard traditional classifiers were tested. A cubic SVM

achieved 87.2% accuracy as a binary classifier (synthetic versus natural fibres), while the

multi-class classifier achieved 84.6% accuracy using 10% hold-out data for testing. Fur-

ther testing with an ensemble of the best-performing classifiers resulted in 100% accuracy

for the binary classifier and 95.3% accuracy for the multi-class classifier. The authors

noted poor birefringent homogeneity in synthetic fibres and observed that natural fibres

appeared more symmetric.

2.2.3 Polarimetry

Studies using PFA image sensors to extract birefringence information in a single shot

are now covered. The use of these sensors in microplastic studies is not common and

we therefore consult studies in the biomedical domain. Although these studies were not

performed on marine or microplastic samples, they provide insight into using spatially-

based polarisation sensing; this may have utility for fluid stream analysis where temporal

filtering is unsuitable.

In a biomedical study, Bai et al. [15] incorporated Jones calculus [19] and applied the

birefringence theory developed by Shribak and Oldenbourg [14] to display the birefrin-

gence retardance and slow axis orientation of monosodium urate (commonly known as
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gout) and other crystals present in synovial fluid. While the work of Shribak and Old-

enbourg relied on temporal-based polarisation filtering, Bai adopted a spatial-based po-

larisation filtering approach, taking advantage of the emergence of polarisation-sensitive

image sensors.

In their study, Bai and the team used a PFA image sensor, an LED light source, a

circular polariser, and a microscope. They developed an image processing and polarisa-

tion algorithm to support their hardware implementation. The system was designed for

the biomedical domain and retrofitted to a light microscope with a 20×/0.75NA objec-

tive lens. Their approach employed a single-shot method, simultaneously capturing all

four linear polariser directions (0◦, 45◦, 90◦, and 135◦). This enabled quantitative anal-

ysis, providing advantages over traditional qualitative techniques in polarisation light

microscopy. By utilising Jones calculus the captured intensity data could be computa-

tionally resolved, eliminating the need for a manual polariser analyser or compensator

rotation to comprehensively inspect the sample’s birefringence. However, this solution

was only implemented for visual analysis to enhance the observer’s ability to analyse

the sample.

Liu et al. conducted additional research on the project to develop a deep learning-based

holographic microscopy solution for gout diagnosis [27]. This work used a deep learning

network to visualise the birefringent activity present in a sample. The network relied

on training data comprised of specific examples of crystals.

2.3 Significance of proposed work

The following observations were made based on prior works.

Imaging flow cytometry combined with DIH techniques has been recognised as a

lightweight and cost-effective fluid microscopy approach, and this is further supported

by recent advancements in computer processing performance and smaller image sensor

pixel sizes [16,17]. These techniques used an RGB image sensor and have been applied

as a microscopy viewer [16] and a classifier for marine phytoplankton [17] with notable

performance.

Optical methods incorporating image sensors and generated features have been used in

studies for microplastic classification [9, 10, 13, 24]. The optical phase was intentionally

kept wrapped in all these studies due to variations in scattering. Additionally, global

features were used for training classifiers. The systems involved large and less portable

interferometers with lenses, which limited the potential processing throughput.
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Prepared samples of synthetic microfibers were compared to natural fibres in two stud-

ies [8, 13], while another two studies examined microplastics and marine phytoplank-

ton [9, 24]. Two of these studies analysed natural and synthetic fibres using samples of

the same length but with different uniform diameters [13,24].

Synthetic polymers exhibit birefringence [12], and techniques proposed by Colomb et

al. [26] were employed in both in-stream [13] and slide-based [8, 24] settings to extract

optical anisotropic features. While Valentino et al. [8, 13] trained a classifier for mi-

croplastic identification using a dual-arm interferometer, their systems lacked portability

and an automated classification workflow.

Although the studies involving the classification of microplastics [8–10, 13] produced

impressive classification results, none progressed toward an end-to-end workflow. Fur-

thermore, mixed sample tests were not performed and instead these studies only reported

classifier performance when tested on individual samples. Developing the experimental

design may present an opportunity to deliver a more robust detector. Additionally,

manual image segmentation was commonly used in these studies to obtain training and

testing images for the classifier, preventing an automated environment. Investigating

segmentation techniques would further assist in improving the detector workflow. It was

suggested by Bianco et al. [10] that classifying morphologically similar objects such as

microalgae and synthetic microbeads may pose challenges; thus, providing and assessing

classification in this area is important.

The quantitative computation of birefringence using Jones calculus, as described by

Shribak and Oldenbourg [14], has been used together with DIH for capturing static image

slides of gout crystals [15,27]. Specifically, Bai et al. [15] employed a PFA image sensor

for their experiments. While this study did not involve microplastics, the techniques

apply to studying other birefringent materials such as synthetic polymers.

The following proposed work deals with the gaps in prior works as follows:

• Developing a low-cost, high throughput method for microplastic detection that is

better suited to resource-limited settings.

• Using a lensless DIH polarisation sensitive fluid stream imaging-based configura-

tion to classify microplastics from background marine phytoplankton and debris.

• Implementing an end-to-end workflow (from image acquisition to sample measure-

ment and logging) to classify microplastics from background marine phytoplankton

and debris (ranging from 50 µm to 1000 µm in length).

• Developing a further assessment of analyser performance beyond machine learning
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classification results by introducing additional experimental design.

• Providing successful classification of morphologically similar items, such as poly-

mer microspheres and smooth marine phytoplankton by implementing a pixel-wise

approach for texture-based feature vector generation.

• Implementing a short pulse length illumination circuit to reduce motion blur.

The proposed work is similar to Valentino et al. [13], which involved classifying mi-

croplastic particles in a lensed off-axis holographic imaging flow cytometry setting using

polarisation-sensitive features. However, the following variations to improve outputs are

proposed:

• Implementing a more stable, cost-effective imaging-based analyser based on

polarisation-sensitive lensless DIH.

• Adopting a pixel-wise classification approach, rather than utilising global morpho-

logical features (to better handle morphologically similar objects).

• Establishing a system calibration protocol for accurate measurements.

• Investigating the effect of fluid flow rates and motion blur.

• Providing an end-to-end workflow that includes segmentation capable of handling

changes in captured image sensor illumination intensity.

• Conducting mixed sample experiments to support the use of the analyser as a

proof of concept.

2.4 Summary

This chapter reviewed literature applicable to detecting microplastics in an in-stream

configuration. Gaps in the existing state of the art have been discussed with an opportu-

nity for further development being identified. The significance of the proposed research

has been presented, and the general approach as well as a theoretical framework are

presented in the next chapter.
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Chapter 3

Approach and theoretical framework

This chapter expands on the objectives of this study to provide a high-level overview of

the development of the lensless polarisation-sensitive imaging-based FSA, microplastic

classifier, and the amalgamation of these subsystems to form an automated pipeline or

workflow. This is followed by information on the image sensor and flow cell. Finally,

some essential theory necessary for the project application is presented, specifically in

the machine learning, DIH, and polarisation domains.

3.1 Overview of approach

Developing an FSA for automated microplastic detection can be separated into key

objectives that allow the detector to be realised. The following main objectives are

defined:

• Development of a low-cost high flow rate lensless polarisation-sensitive imaging-

based FSA subsystem.

• Development of a microplastic classifier subsystem that uses the FSA subsystem.

• Development of an automated software workflow or pipeline that combines the

FSA and classifier subsystems to provide end-to-end microplastic detection.

The FSA is designed as a versatile device with potential for applications beyond its

current scope. It is conceptualised as adaptable to further applications and could be

used for tasks like biological detection and analysis in other environments. At its core,

the hardware prerequisites for a lensless imaging-based FSA comprise three essential

elements: an image sensor, a light source, and a microfluidic channel. Figure 3.1 illus-

trates this setup, wherein a fluid is introduced into the channel at one end and flows
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through it. In the course of its journey, the fluid is both illuminated and imaged simul-

taneously. Eventually, the fluid exits the channel from the opposite end. This study

applies polarisation-sensitive imaging and DIH to extract further object features. Both

hardware and software considerations are required to support these techniques.

Figure 3.1: Illustration of an imaging-based FSA.

Microplastic classification is a specialised application that builds upon the outputs of

the FSA. This process’ automation hinges on computational algorithms, with machine

learning being a necessary component. A comprehensive comparative analysis of suitable

algorithms and tools is prudent to support the development of an automated software

workflow for microplastic classification. As illustrated in Figure 3.2, sub-topics are

Figure 3.2: Project development.

identified to support the primary objectives. Chapter 4 focuses on implementing the

FSA, providing a comprehensive overview of its development. Chapter 5 is dedicated to

computer vision and the subset of machine learning techniques that support microplastic

classification. While Chapter 4 develops the FSA, which may have multiple applications

and can be considered a stand-alone device if required, the algorithms presented in

Chapter 5 specifically address the microplastic classification problem and build on the

base features produced by the FSA. The development of the classifier considers both filter
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bank and learned feature extraction computer vision techniques. Chapter 6 extends the

elements from the previous two chapters to create a pipeline and workflow for automated

end-to-end classification of microplastic particles; this workflow is effectively able to take

an input image stream from the FSA and output particle classification and measurements

for logging purposes. A proposal is formed for these subtopics and developed in the

following subsections.

3.1.1 Proposal for imaging-based FSA

The purpose of the FSA is to develop and implement the necessary hardware and soft-

ware so that a fluid stream can be processed as follows: image the fluid stream, provide

numerical propagation for the lensless holographic configuration, extract birefringence

features, and perform segmentation in a high throughput manner. This subsystem out-

puts multi-channel spatially-aware polarisation-sensitive information that may be useful

for downstream processes.

The FSA uses a prototype flow cell from Disa Scientific which provides the microfluidic

channel for this system. We have chosen a monochrome PFA image sensor to capture

polarisation-sensitive features. Our approach does not rely on RGB spectral data for

feature generation, although the selected sensor can be substituted for a multispectral

variant if required.

A light source excitation module is developed to mitigate the impact of motion blur and

enable a high flow rate within the microfluidic channel. Additionally, a lensless on-chip

DIH configuration is implemented that offers a stable large FOV, supported by numerical

propagation techniques. To quantitatively measure birefringence, a polarisation feature

extraction routine is established.

Segmenting individual foreground objects from the background when processing the

image stream must be done before a detected object may be sent to a classifier for iden-

tification. Segmentation methods have been proposed using either classical computer

vision [28] or learned feature neural network [20] approaches; it is vital to obtain reliable

segmentation for accurate object measurement reporting. A small labelled dataset is

created for supervised segmentation training. An encoder-decoder learned feature net-

work performs segmentation. The segmentation must be reliable for varying particle

concentrations, as well as changes in turbidity and mean image intensity.

The turbidity of the fluid under test may vary significantly depending on the sample’s

composition, particularly for diverse marine environmental samples. Therefore, it is

necessary to investigate an image preprocessing algorithm to improve image SNR and
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stability.

A series of experiments in the form of both performance metrics for quantitative anal-

ysis and experimental demonstrations are used to verify the proposed implementation.

Analyser calibration and motion blur analysis are performed by observing known-sized

calibration spheres. Tests with resolution targets are used to confirm the resolving abili-

ties of the analyser with the implemented DIH routine. Demonstrations with birefringent

samples and a depolariser are used to determine the quantitative birefringence-resolving

abilities. Segmentation performance is assessed through both performance metrics and

visual inspections.

3.1.2 Proposal for computer vision

The methodology for the computer vision task deals with processing an input (features

developed by the FSA) and providing an output (classification result). As marine and

microplastic datasets are not readily available, we must create a dataset to train the

classifier effectively.

Since this project investigates microplastic detection in a marine environment, the fluid

under observation contains two significant components within the size range from 50 µm

to 1000 µm: microplastics and marine microorganisms such as phytoplankton. This

study treats marine microorganisms and general non-microplastic debris as a single

class of objects. However, microplastics are treated as either a single class or multiple

classes, depending on the type of classification model that is considered. The ability to

distinguish microplastics from marine microorganisms is required. Additionally, we may

want to further classify detected microplastic samples according to the type of synthetic

polymer.

Micronised synthetic polymers and marine phytoplankton cultures obtained for this

study are used to create a simple dataset. Marine phytoplankton samples were supplied

courtesy of the DFFE Marine Research Aquarium in Cape Town, South Africa and

virgin micronised synthetic polymer powders were obtained from Shijiazhuang Tuya

Technology, China. Additionally, microscopy calibration spheres were procured from

Cospheric, USA.

Developing the microplastic classifier involves investigating two paradigms: a filter bank

feature extraction and a learned feature neural network. Each approach has advantages

and disadvantages, making it essential to conduct a comparative study to identify the

most suitable candidate for the classification workflow. These classification methods use

the multi-channel holographic polarisation-sensitive output from the FSA. A filter bank
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based feature extraction is used to train classifiers such as SVMs and random forests

in a pixel-wise feature vector approach. An analysis bank is created for feature extrac-

tion, with feature selection and dimensionality reduction being subsequently applied. A

learned feature approach is used to implement and train an encoder-decoder CNN for

pixel-wise inference.

Test datasets are used for algorithm assessment using standard machine learning per-

formance metrics [29]. In the context of this study, there may be scenarios where the

ratio of microplastic particles to marine organisms is low or the relative concentration

of microplastic particles is low. In such cases it is necessary for the classifier to have

a low false alarm rate or FPR, meaning it should avoid classifying real marine organ-

isms as microplastic particles (thus leading to false positives). A low false alarm rate

ensures that the classifier maintains a high level of specificity and must be appropriately

examined when designing and refining the algorithm.

The sample particle sizes in this study vary from one object to the next, and in one cap-

tured frame multiple object instances and classes may be present. Therefore, a classifier

must process objects of differing sizes, spanning more than one order of magnitude in

length.

Filter bank feature classifier

Due to the birefringence of synthetic polymers, either stochastic or periodic textures may

be available when using polarisation-sensitive analysis [12] and therefore may be used to

generate features. Methods of generating features and determining appropriate features

to train a classifier must be investigated. The curse of dimensionality becomes an issue

when the feature vector dimension is large. A high dimensional feature space makes

distance measurements difficult, and as a result meaningful metrics on which to train a

classifier are hard to establish; dimensionality reduction assists with this issue. Plastics

degrade to unique shapes, meaning that each microplastic particle can be considered

morphologically unique and may vary significantly; global morphological and geometric

features such as area and perimeter should not be solely relied upon to classify samples.

Learned feature classifier

The classifier needs to accommodate polarisation-sensitive feature channel inputs since

the classifier is not being fed with a standard RGB intensity image. Multiple particles

may be present in a single input image; individually classifying them accurately with

morphological details is necessary. Semantic pixel-wise approaches to classification can

be useful in this regard. The homogeneous appearance of smaller-sized diffraction rings
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produced by particles does not naturally lend itself to CNN image-based classifiers in a

multi-class exercise, as diffraction patterns may be challenging to interpret. Numerical

propagation assists in bringing the object into focus, making it less morphologically

homogeneous.

3.1.3 Proposal for pipeline

We develop an automated software workflow to classify microplastic particles in stream

from data delivered by the FSA. The development of the automated pipeline ties into

the imaging-based FSA and the selected classifiers to perform end-to-end detection,

classification, and logging of microplastic particles. In other words, the end-to-end

process obtains an image frame as an input and performs preprocessing, segmentation,

classification, and logging of each particle that passes through the analyser within the

specified size range. Moreover, this system must process a stream of input frames from

an acquisition session or experiment. The workflow must be assessed with different

microplastic concentrations (with low concentrations being of particular interest). The

key attribute of this subsystem is the ability to provide automated processing.

3.2 Hardware information

We briefly detail the image sensor and flow cell used in this study, as the additional

components and software were chosen and implemented to complement these items.

The image sensor was specifically employed for single-shot polarisation-sensitive fluid

stream analysis and is therefore a vital part of the FSA design. The flow cell and

customisation thereof are also important for the FSA development and are introduced

accordingly.

3.2.1 Image sensor information

Owing to the birefringence of synthetic polymers [12], measuring them effectively is

requisite as relying solely on intensity-only measurements from an image sensor may not

provide enough information on the sample to train a classifier effectively. We therefore

employ a linear polarisation image sensor as a basic component to support birefringence

sensing. This project moves away from using an RGB colour image sensor and instead

adopts a monochrome sensor. This removes any possible reliance a classifier may have on

RGB spectral-based measurements that can cue a classifier to target spectral components

for classifying microplastic classes. As microplastics vary in colour, the likelihood of poor

performance in a real-world setting would increase if the classifier relied on colour cues.

Additionally, gains in SNR are achieved by removing spectral filters on the sensor.
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Figure 3.3: Sony polarisation image sensor illustration [30].

Compact and affordable sensors have become available with the recent introduction

of PFA image sensors in the machine vision market. Figure 3.3 illustrates the Sony

IMX264MZR monochrome sensor [30], which offers four distinct nano-wire grating linear

polariser orientations (0◦, 45◦, 90◦, and 135◦) per block, known as a superpixel. Each

pixel on the sensor measures 3.45 µm×3.45 µm, providing polarisation-sensitive intensity

information through spatially arranged filters. This sensor offers an enhanced capability

compared to a standard image sensor as it enables capturing polarisation information

alongside traditional intensity data. Using this sensor means that linear polarisation

orientations of incident light may be resolved in a single shot.

3.2.2 Flow cell information

To provide a high throughput environment for fluid samples, the chosen lensless DIH

configuration is used with a prototype flow cell (Disa Scientific (Pty) Ltd, South Africa).

The flow cell provides the microfluidic observation channel and is not supplied with any

lighting or imaging components. Although commercial channels are readily available,

this unit allows for customisation in that the channel depth and width may be adjusted.

Furthermore, 3D-printed parts are designed and retrofitted to the unit to position the

image sensor and light source. Standard commercial microfluidic channel offerings are

typically limited to a few fixed channel widths and may not perfectly match the FOV

dimensions of this image sensor [31]. This limits throughput if the channel width is

narrower than the sensor width, with part of the image sensor not being used during

data acquisition. On the other hand, if the channel is too wide, some particles may not

pass over the sensor, leading to incomplete data capture [16]. Additionally, an unsuitable

fixed channel depth may limit sample throughput.

Figure 3.4(a) shows the unit in a base configuration. The optical configuration may be

likened to bright-field transmission mode microscopy. Figure 3.4(b) shows a cutaway of

the unit where the observation window is present. The unibody base of the flow cell
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(a) (b)

Figure 3.4: Illustrations of the prototype flow cell. (a) Prototype flow cell. 1. Fluid
entry point. 2. Cavity housing for an illumination source. 3. Fluid exit point. 4.
Cavity housing for an image sensor. (b) Prototype flow cell cutaway showing round
glass observation window.

provides a basic configuration for the FSA and can be customised by stacking spacer

rings to achieve the desired cavity dimensions. The round glass window used in the

flow cell is 2 mm thick borosilicate glass with a diameter of 45 mm and is removable if

servicing is required.

3.3 Theoretical framework

This section presents theory drawn upon in this study and provides background on the

concepts and methodologies employed. Selected machine learning, DIH, polarisation

birefringence, and motion blur topics are presented.

We start by covering background information on encoder-decoder networks; this archi-

tecture is useful in segmenting particles and is also used for some classification methods.

This is followed by filter banks, which are useful for feature extraction used for individ-

ual microplastic type classification. Next, lensless DIH is covered, which is necessary for

the structural layout of our optics and provides support for both hardware and software

development. Polymers and birefringence are then covered, which is again important

for the structural layout of our optical and analyser development. Motion blur is finally

covered to support the high throughput requirements of our device.

Additionally, and where relevant, further resources and recommended materials are

provided for readers seeking a more in-depth understanding of the theory or further
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exploration of the topics discussed.

3.3.1 Encoder-decoder networks for segmentation and classification

Encoder-decoder networks are useful for segmentation and classification tasks covered in

the development of the FSA. Therefore, we will briefly introduce key concepts relevant

to the subsequent chapters. This network structure was chosen because it is common

for multiple objects to coexist in a single scene. Therefore, this fine-grained pixel-

wise inference supports the detailed shape measurement analysis necessary for logging

purposes.

The global interest in and adoption of neural network approaches for image segmentation

provides an alternative to rule-based segmentation. A neural network can be supervised

to learn how to segment an image or region. In the supervised learning paradigm, pairs

of input examples and ground-truth labels form training data; this training data is

processed to construct a function that maps new input data to a predicted or expected

output label [32]. This means that instead of using rule or heuristic-based traditional

methods, a neural network can be trained to learn and optimise the segmentation process

by being provided with a raw example image (input) and a labelled segmentation mask

(expected output). Similarly, for classification purposes, this structure may be trained

in a multi-class format that provides pixel-wise inference for tasks beyond separating

background from foreground.

Using neural networks to perform segmentation or classification relies on having suffi-

cient training data: there is typically a correlation between the amount of well-curated

training data and the network’s performance [32, 33]. Although trainable approaches

are time-consuming to train initially, they are considered a once-off process and actual

inference speeds can be fast depending on the network structure. A widely recognised

network model for pixel-wise semantic segmentation is the encoder-decoder network U-

Net [20]. The standard implementation (depicted in Figure 3.5) is fully convolutional

and contains no fully connected layers. In this architecture the input image tile under-

goes a sequence of operations, starting with convolutions followed by rectified linear unit

(ReLU) activations in the encoding section. The image tile is halved and the number of

filters (or feature channels) is doubled for each sequential block. This encoding phase

captures context and compresses the input. In the decoding section the network employs

sequential transpose convolutions to expand the input to the same size as the output,

facilitating localisation. In each sequential decoding stage the tile size is doubled and

the number of filters is halved. Skip connections are used to merge features between the
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Figure 3.5: Standard U-Net structure [20].

encoding and decoding blocks to provide fine-grained detail or resolution. The archi-

tecture provides an output tile size that matches the input tile size, enabling pixel-wise

segmentation or classification.

Residual U-Net (ResUnet) [34] is a fully convolutional network that combines features

of U-Net [20] and residual learning. It uses U-Net as a foundation and incorporates

pre-activated residual blocks or skip connections into the model, substituting some con-

volutions from the original architecture. A benefit of combining the encoder-decoder

and residual ideologies is that U-Net assists with capturing fine-grained details and of-

fers compression through a series of encoder and decoder blocks, while residual learning

adds shortcut connections that may assist with potential vanishing gradient problems

that can occur in deeper neural networks. Res-Unet combines high-level feature ex-

traction with gradient flow optimisation. Skip connections are strategically positioned

between the encoder and decoder layers, facilitating the fusion of high and low-level

features, which is particularly useful for localisation, segmentation, or classification.

3.3.2 Filter banks

Filter banks incorporated in this work are briefly introduced here and were chosen specif-

ically for the task of texture analysis for the microplastic classifiers. When choosing

filters for texture analysis, it is beneficial to include spot and bar filters at various ori-

entations and scales to accommodate different border applications [35]. Having equally
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spaced orientational filters provides periodic feature maps oriented around objects of

interest, thus enhancing the ability to capture texture information from various angles.

Subsequent tasks like feature selection, dimensionality reduction or other types of com-

pression may be performed at a later stage. Consequently, it is important initially to

provide broad coverage across the range of objects or textures of interest without exces-

sive optimisation of the filter selection; this ensures flexibility and adaptability in the

later stages of processing.

Gabor filters

These filters, originally introduced by Gabor [36], can be employed in their 2D form as

feature extraction filters for images. They comprise a kernel with an oriented sinusoid

multiplied by a symmetric Gaussian function [35]. This design allows them to capture

both spatial and frequency characteristics, making them useful as texture discriminators

in image processing. Notably, Gabor functions have been used to model simple cells in

the mammalian visual cortex [37], and the frequency and orientation representations of

Gabor filters are believed to resemble those of the human visual system [38].

A 2D Gabor filter in its basic form is parameterised (and can be defined by its impulse

response) as follows [39]:

g(x, y) = exp

(
−x′2 + γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ ϕ

)
, (3.1)

where (x,y) are the spatial coordinates and (x′,y′) are the rotated coordinates that can

be obtained using the given transformations

x′ = x cos(θ) + y sin(θ) and y′ = −x sin(θ) + y cos(θ). (3.2)

The remaining parameters include γ, which represents the aspect ratio of the elliptical

Gaussian envelope, λ for the wavelength of the sinusoidal wave, ϕ for the phase of the

sinusoidal wave, θ for the filter orientation angle in degrees, and σ for the standard

deviation of the Gaussian envelope.

A Gabor filter is a tunable filter that is rotationally asymmetric, making it orientation-

sensitive. By creating a filter bank with multiple orientations and scales of Gabor

filters, textures at different scales and orientations can be simultaneously analysed. This

is especially useful for adapting to slight changes in objects detected in a real-world

setting. These filters capture localised spatial frequency variations that are helpful for

both fine and coarse texture analysis. Each filter can provide responses that serve as

a discriminative representation of texture patterns within an image, producing highly
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useful features for a classifier.

Root filter set

The root filter set (RFS), as described by Varma and Zisserman [40], is akin to the

established Leung-Malik (LM) filter set [41]. It encompasses a total of 38 filters, com-

prising:

• Anisotropic filters: including the first derivative of Gaussian (edge) and the second

derivative of Gaussian (bar), with six orientations and three scales each; and,

• Isotropic filters: consisting of a Gaussian and a Laplacian of Gaussian.

Edge filters detect changes in intensity along the alternate axis — if applied in the x-

direction (horizontal), they will detect changes in intensity along the y-direction and

highlight vertical edges. Bar filters detect changes in intensity along the alternate axis

— if applied in the x-direction (horizontal), they will detect changes in intensity along

the y-direction and highlight vertical bar-like or ridge structures. Notably, the isotropic

filters, Gaussian and Laplacian of Gaussian, can be condensed into a subset of eight

maximum response filters to achieve rotational invariance.

The Gaussian and Laplacian of Gaussian filters are defined in order as follows:

G(x, y, σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(3.3)

and

∇2G(x, y, σ) =

(
x2 + y2

σ4
− 2

σ2

)
G(x, y, σ), (3.4)

where σ is the standard deviation scale of the Gaussian envelope, and x and y are

coordinates of the filter kernel. The first and second order derivatives of Gaussian filters

in the x-direction are defined in order as follows:

∂G(x, y, σ)

∂x
= − x

σ2
G(x, y, σ) (3.5)

and
∂2(G(x, y, σ))

∂x2
=

(
x2

σ4
− 1

σ2

)
G(x, y, σ). (3.6)
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S filters

The S filter bank is based on a dense texture Gabor-like filter that is rotationally invari-

ant [42]. The filter is described as

F (x, y, τ, σ) = F0(τ, σ) + cos

(
x2 + y2πτ

σ

)
exp

(
x2 + y2

2σ2

)
, (3.7)

where τ is the number of cycles of the harmonic function within the Gaussian envelope

of the filter and F0(τ, σ) is the zero DC component. Although this filter is not used in

the base filter bank of this study, it is used as an extended filter set to test the ability

of the workflow to rely solely on internal textures when comparing two geometrically

similar but different plastic types.

3.3.3 Lensless DIH

We introduce concepts and theory of lensless DIH in a static sample context but they are

transferrable to imaging fluid stream analysis. Traditional light microscopy relies on the

magnification power of an objective lens to achieve high-resolution imaging. However,

this approach has limitations, including a reduced FOV due to the magnified area of

interest excluding the rest of the sample area from view. This means that covering

a wider working area (or FOV) requires significant processing time. Additionally, the

shallow depth of field further restricts the system’s ability to process samples with a

limited focal range.

Technological advancements have facilitated both the development of image sensors

with smaller pixel-pitch sizes and improved the processing capabilities of computers

and embedded devices [22]. These advancements have created favourable conditions for

implementing lightweight, cost-effective, and simplified hardware designs coupled with

image reconstruction algorithms and digital image processing [43,44]. Lensless DIH takes

advantage of these advancements and uses them to address the challenges presented by

lens-based microscopy. Numerical reconstruction techniques replace an objective lens to

achieve focused imaging on the object of interest [45]; this creates a virtual or numerical

lens of sorts. The technique relies on a coherent or partially coherent light source and

an image sensor, so it is compact and lightweight [46]. For further information, readers

are directed to an extensive Fourier optics resource [11].

Although different configurations of this method exist, this work provides information

on an on-chip configuration where the light source to object distance (z1) is substantially

larger than the object to image sensor distance (z2) [43,44]. The close proximity of the

object and sensor means that the distance z2 is usually no more than a few millimetres,

Fraser Derrick Charles Montandon - Electrical Engineering



3.3. THEORETICAL FRAMEWORK 31

leading to its “on-chip” descriptor; the distance z1 is generally a few centimetres [22].

An example of this configuration is shown in Figure 3.6. By eliminating the need

Figure 3.6: Basic on-chip DIH setup.

for an objective lens, lensless DIH allows for a wider FOV compared to traditional

microscopy [46]. Using the entire image sensor plane as the FOV means that modern

image sensors can range from 5×10−4 m2 to 5×10−2 m2. In contrast, an objective lens

typically offers a FOV range from 0.1× 10−5 m2 to 1× 10−5 m2 (for similar resolution).

Angular spectrum of plane waves

As described by Goodman [11], we can formulate the angular spectrum method with a

plane wave approximation. Due to the on-chip configuration of the FSA, the distance

z1 between the light source and the object is substantially larger than the distance from

the object to the image sensor z2, which allows for the Fresnel plane wave approximation

to be employed. Therefore, the Fresnel diffraction integral approximates the phase and

amplitude variations across the wavefront.

We illustrate an ideal model using coherent collimated illumination and consider a spa-

tially sensitive image sensor that is noiseless with infinitely small pixels. The light wave

complex amplitude incident on an image sensor plane with spatial coordinates (x, y)

can be described by the superposition of the reference wave Aref and the scattered wave
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from the object aobj(x, y):

U(x, y) = Aref + aobj(x, y). (3.8)

The complex amplitude Aref is a non-spatially varying strong uniform plane wave; in

contrast, the complex amplitude aobj(x, y) is weakly scattering and spatially varying.

Image sensors only recover the intensity distribution of the light wave, which means that

the absolute phase is lost. The intensity incident on the image sensor may be described

as [11]

I(x, y) = |Aref + aobj(x, y)|2 = |Aref |2 + |aobj(x, y)|2 +A∗
ref .aobj(x, y) +Aref .a

∗
obj(x, y),

(3.9)

where A∗
ref .aobj(x, y) is proportional to the scattered wave, |Aref |2 is a constant, and ∗ is

the complex conjugate of the complex magnitude. Both A∗
ref .aobj(x, y) and |Aref |2 are

desired terms whereas Aref .a
∗
obj(x, y) and |aobj(x, y)|2 are undesired artefacts due to the

intensity image not containing phase information. The Aref .a
∗
obj(x, y) term is commonly

referred to as the twin-image artefact — an out-of-focus representation of the desired

in-focus term. Similarly, if Aref .a
∗
obj(x, y) were to instead become the desired term and

be propagated accordingly, A∗
ref .aobj(x, y) would become an undesired and thus an out-

of-focus term. The reconstruction of the object improves when the light scattered by

the object is significantly less than the reference wave Aref >> aobj(x, y), in which case

just the defocused term Aref .a
∗
obj(x, y) is undesired and affects the complex distribution

at the image sensor plane.

To propagate from the image sensor plane to the object, we can employ the angular

spectrum method [11]. This provides a Fourier optics approach to modelling propagation

and diffraction of coherent light inside a homogeneous medium. A given complex optical

wave field on the plane z = 0 is described as U(x, y; 0). The angular spectrum of

U(x, y; 0) is given by its 2D Fourier transform:

A(fx, fy; 0) =

∫ ∫
U(x, y, 0).exp [−i2π(fxx+ fyy)] dxdy, (3.10)

where i2 = −1.

The transfer function,H(fx, fy; z0) of wave propagation acting as a linear space-invariant
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system is given by

H(fx, fy; z0) =


exp

i2πnz0
λ0

√
1−

(
λ0fx
n

)2

−
(
λ0fy
n

)2
 √

f2
x + f2

y <
1

λ0

0 otherwise,

(3.11)

where λ0 is the optical wavelength in a vacuum and n is the refractive index of the

medium.

The angular spectrum of the optical field on a given parallel plane z = z0 can be

calculated by

A(fx, fy; z0) = A(fx, fy; 0).H(fx, fy; z0). (3.12)

Finally, the optical wave field on the plane z = z0 is obtained by the 2D inverse Fourier

transform of its spectrum:

U(x, y; z0) =

∫ ∫
A(fx, fy; z0).exp [i2π(fxx+ fyy)] dfxdfy. (3.13)

3.3.4 Polarisation and birefringence

Anisotropic objects exhibit optical activity that depends on the polarisation state of the

incident light or, similarly, the object’s orientation with respect to the incident light.

Polarisation-sensitive sensing is helpful in the microplastic classification problem, as the

detection of optically anisotropic features inherent in synthetic polymers can help re-

duce the reliance on traditional intensity-derived features that may be less robust [12].

However, as particles in suspension travel through the microfluidic channel, their ori-

entations change. This may lead to misclassification if polarisation features are only

captured at a certain orientation because the classifier might be unable to match the

sample feature against its training features. It is therefore advisable to obtain a full

orientation birefringence map of the sample [14]. In the context of this project, it is

necessary to detect and register particles’ optical activity in situ for all possible 2D ori-

entations. Particle reorientation during flow is not feasible, highlighting the importance

of capturing birefringent optical activity across various particle orientations.

Since the fluid stream analysis involves dynamic samples in motion, using temporal-

based polarisation filtering is not feasible. Instead, spatially-based polarisation filtering

becomes necessary. These hardware considerations can be combined with a software

backend to resolve 2D birefringent activity (including retardance and slow axis orienta-

tion) [14].
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Birefringence formulation

The following important polarisation definitions from Chipman et al. [23] are used in

this study:

• Eigenpolarisation: a wave polarisation state that is the same polarisation state

when entering and exiting a system or optical element, but where changes in

amplitude or absolute phase can occur. Eigenpolarisations are eigenvectors of the

corresponding Jones or Mueller matrix.

• Retardance (∆): the optical path difference between eigenpolarisations, commonly

specified in radians.

• Slow axis (θ): eigenpolarisation with a larger optical path length, which is analo-

gous to the mode with a higher refractive index in a material, commonly specified

in radians.

• Fast axis: eigenpolarisation with a smaller optical path length, which is analogous

to the mode with a lower refractive index in a material, commonly specified in

radians.

• Birefringence: material property that creates retardance associated with propaga-

tion, which can apply to transmission, reflection, diffraction, or scattering.

Formulating birefringence information into quantitative measurements was studied by

Shribak and Oldenbourg [14] for use with temporal polarisers and traditional image sen-

sors. A similar technique was recently applied to biomedical applications using a PFA

sensor instead of multiple temporally separated images to quantitatively resolve polar-

isation birefringence information [15]. The transition from temporal to spatial-based

techniques enables a frame to capture four linear polarisation orientations, facilitating

the calculation of birefringence information in a single shot.

We employ this spatial technique in the FSA and now describe the required components

and theory. To model the system using Jones calculus, the resulting output field is

calculated using a light source and three elements: a left-hand circular polariser (gener-

ating polarised light), an object under interrogation, and a spatially-aware PFA sensor.

A linear combination of Jones matrices [19] implements these elements. Each Jones

matrix can be described modularly and sequentially combined to form the final system.

The convention in this paper is from the viewpoint of the receiver. As such, starting
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with the first component, a left-hand circular polariser is described as

ELHCP =
E0√
2

1

i

 , (3.14)

where E0 is the amplitude of the incident light.

The birefringent sample is modelled as the Jones matrix

Mobject =

cos
∆

2
+ isin

∆

2
cos2θ isin

∆

2
sin2θ

isin
∆

2
sin2cos2θ cos

∆

2
− isin

∆

2
2cosθ

 , (3.15)

where ∆ is the retardance magnitude and θ is the azimuth or slow axis orientation.

The Jones matrices for four different orientations of linear polarisers can be represented

as

Mdetector =

1 0

0 0

 ,
1

2

1 1

1 1

 ,

0 0

0 1

 , or
1

2

 1 −1

−1 1

 , (3.16)

for orientations 0◦, 45◦, 90◦, or 135◦, respectively.

The product of Jones matrices that describe the final electric field is

Eout = MdetectorMobjectELHCP. (3.17)

As an example, the product of Jones matrices that describe the final electric field for a

0◦ linear polariser is

E0
out =

1 0

0 0

 .

cos
∆

2
+ isin

∆

2
cos2θ isin

∆

2
sin2θ

isin
∆

2
sin2cos2θ cos

∆

2
− isin

∆

2
2cosθ

 .
E0√
2

1

i

 . (3.18)

The image sensor only captures the intensity of the electric field and can be described

for the 0◦ linear polariser as

I0 ∝ |E0
out|2 = E0

out.E
0
out

∗. (3.19)
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Relating the captured intensity to birefringence measurements is treated as follows:

I0 =
I

2
(1− sin∆.sin2θ),

I45 =
I

2
(1 + sin∆.cos2θ),

I90 =
I

2
(1 + sin∆.sin2θ),

I135 =
I

2
(1− sin∆.cos2θ),

(3.20)

where I is the intensity of the incident illumination source, and I0, I45, I90, and I135 are

the respective 0◦, 45◦, 90◦, and 135◦ oriented linear polarisation intensity channels from

the image sensor.

We can introduce the following auxiliary variables:

A1 =
I90 − I0
I90 + I0

= sin∆.cos2θ,

A2 =
I45 − I135
I45 + I135

= sin∆.cos2θ.

(3.21)

Finally, retardance (∆) and azimuth or slow axis orientation (θ) is computed as

∆ = arcsin
√

A2
1 +A2

2,

θ =
1

2
arctan

A1

A2
.

(3.22)

3.3.5 Motion blur

When an object or particle is present at the analyser’s observation window, it can be

captured by the image sensor. It is important to ensure that the analyser supports a

suitable flow rate to function effectively as a high throughput device. However, there

is a trade-off: increasing the flow rate can result in objects traversing multiple pixels

during a single frame exposure, thus generating motion blur artefacts. One solution is to

operate the image sensor at a shorter exposure time, but this approach is constrained by

the camera’s minimum required exposure time. Moreover, decreasing the exposure time

might require an increase in the intensity of the light source, given that the exposure

takes place over a limited time and therefore only has access to limited incident photons.

Another strategy to mitigate the motion blur is to increase the flow channel depth, as

this would reduce the mean flow velocity while maintaining the desired flow rate. How-

ever, increasing the channel depth can negatively impact the holography reconstruction

quality of the analyser, and the assumption of a small object-to-image sensor distance
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(z2) might not hold. A deeper channel may also increase the likelihood of particle occlu-

sions, as multiple objects with the same x, y coordinates but at different z coordinates

(i.e. depths) in the flow channel could obscure each other from image sensor acquisi-

tion. An alternative is to reduce the exposure time by pulsing the illumination source;

this benefits the analyser system by overcoming the image sensor constraints and is a

suitable workaround to achieve shorter effective exposure time and reduce motion blur.

A simplified model can be generated to calculate the effect of motion blur. This model

ignores the effects of any other lighting and assumes that the particle flows in a straight

line, perpendicular to the optical axis, and is imaged by a global shutter image sensor.

We can calculate the maximum exposure time (T ) required to achieve motion blur of

less than a pixel in a given scenario:

T =
P

2V
, (3.23)

where V is the particle’s velocity in meters per second, P is the pixel pitch of the

image sensor in meters and T is the exposure time of the camera sensor in seconds.

We set the blur value to half the time it takes to traverse one pixel to align with the

Nyquist-Shannon sampling theorem.

As an example, if one works with a required flow rate (Q) of 20 mL/minute and a

flow channel depth (z) of 500 µm and a channel width (w) of 7.07 × 10−3 m, we can

calculate the particle velocity. Assuming plug flow fluid transport, we solve for the

particle velocity (V ) as follows:

V =
Q

A
, (3.24)

where A is w × d.

If we aim to limit blur to less than one pixel and allow for a 20% margin, an exposure time

of at most 14 µs is needed with sampling considerations. Current polarisation-sensitive

image sensors offer minimum exposure times of the order 30 µs to 100 µs. Therefore,

implementing a light source pulsing circuit to create a reduced effective exposure time

environment would be beneficial. The consideration of overdriving the light source might

also be necessary given the short pulse duration and limited photon budget.

3.4 Software development and workstation specifications

General code was developed in MATLAB®. Neural network modelling was developed

and performed in Python and Keras Tensorflow.
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The following digital workstation was used for this study:

Intel®CoreTM i7-12700 3.6 GHz, NVIDIA®GeForceTM RTX 3050 8 GB, 32 GB RAM

DDR4.

General software environments:

Microsoft Windows 11 Pro, MATLAB®/ Simulink®2022a, Keras Tensorflow 2.8.0,

NVIDIA®CUDA®11.3.58, Python 3.9.7, ImageJ 2.3.0.

PCB design: KiCad version 7.0.

CAD and 3D printing: Autodesk Fusion 360, Prusu Slicer, Prusa Mini + 3D printer.

3.5 Conclusion

This chapter detailed the project approach which provided the developmental foundation

for the FSA in Chapter 4, the classifier in Chapter 5, and the pipeline or workflow in

Chapter 6. Furthermore, we provided theoretical support for the development of each

subsystem. In the next chapter, we move to the first stage of development, which is the

complete implementation and analysis of the FSA.
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Chapter 4

Imaging fluid stream analysis

Flow cytometers lack detailed morphological information about particles and the abil-

ity to simultaneously accommodate particles of varying sizes. Imaging flow cytometry

addresses these limitations, but such devices are often costly, large, and have limited

throughput. This chapter introduces an FSA developed for particle analysis. It incorpo-

rates DIH and spatially aware polarisation sensing. The FSA is configured in a lensless

layout to facilitate high-throughput sample analysis and is equipped with sample seg-

mentation capabilities for isolating particles within the fluid stream. This work includes

demonstrations and performance testing of our device. We assess the numerical prop-

agation capabilities of DIH and conduct a resolution test using a standard resolution

target. Additionally, we determine the FSA’s ability to resolve birefringent particles

by validating it with a liquid crystal depolariser. The segmentation performance is

evaluated using samples of marine phytoplankton and birefringent microplastics. A

calibration procedure with two types of scientific microspheres (including one unseen

polymer type and size) is also presented. This study demonstrates the versatility and

adaptability of the FSA, which can be configured for various sensing requirements.

4.1 Preliminaries

Traditional optical fluid stream analysis has typically been performed using devices such

as flow cytometers for cell analysis or particle analysers for general material analysis.

These devices often rely on coherent excitation and several band-pass photodetectors to

obtain distinct spectral signatures of fluid contents [47]. Regularly used in the biomedical

field for cell counting and analysis, these techniques face limitations when dealing with

complex mixtures of heterogeneous objects. Since cells are analysed in a single-file

manner, these devices are less suitable for concurrently analysing diverse cell sizes and
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cannot provide detailed information about cell or object shape and geometry [47]. As an

analyser is configured for a specific sample type, reconfiguration is required if different

sample sizes are interrogated.

This study investigates the development of an analyser for both biological and synthetic

particles within a marine context. Furthermore, the size range of interest demands an

approach that can accommodate various object sizes at a given time. Based on these

considerations and the intersection of cell and synthetic material analysis, we adopt the

term for our device as a “fluid stream analyser” (FSA) which is developed in this chapter.

Imaging-based solutions tend to be computationally demanding, which has been an

obstacle in this domain. However, leveraging recent advancements in computational

capabilities alongside machine learning and computer vision tools provides a pathway

for making this technique more accessible and practical.

Traditionally, imaging flow cytometers are configured with objective lenses that lead to

a limited flow rate and depth of field [16]. These devices are costly and primarily offer

transmission-mode (and sometimes fluorescence) intensity measurements. As an alter-

native option, the device presented in this chapter offers a low-cost implementation of

an FSA that is lensless for high throughput analysis. This is combined with holographic

techniques, allowing for greater field depth. In addition, this system is demonstrated

with polarisation-sensitive abilities due to its linear PFA image sensor that is coupled

with an illumination source and software backend to compute birefringence parameters.

This chapter starts with the proposed analyser development that covers the hardware

configuration of the FSA which includes the flow cell, optical components, and sup-

porting electronics. Next, the software workflow is detailed by covering the image

preprocessing routine, followed by implementing the DIH and birefringence resolving

workflow. Particle segmentation from background is then studied in which a super-

vised learned encoder-decoder network is deployed. We used marine phytoplankton and

polymer samples to create a small dataset for network training. The implementation

delivered favourable segmentation performance. We demonstrate the resolving ability

of the system through the use of a resolution test chart, as well as a visual example.

The birefringence workflow is verified by using a liquid-crystal depolariser and demon-

stration on polymer samples. Example outputs of the supervised segmentation model

are displayed and discussed.

The issue of motion blur and its reduction is then covered, in which the custom-developed

light pulse engine (LPE) is compared against the standard non-assisted illumination

method. The ability of the FSA to perform accurate measurements is a priority and
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this includes the 2D projected area of particles. A calibration protocol for the FSA was

implemented and performed with PE scientific microspheres. We assessed the calibration

with two different sample types including an unseen polymer type and diameter (PMMA,

53 µm to 63 µm).

The FSA appears to therefore demonstrate versatility and adaptability, which can

be configured for various sensing requirements. It is particularly suited for resource-

constrained environments and offers a low-cost alternative to traditional flow-based mi-

croscopy.

4.1.1 High-level overview of propagation

Figure 4.1: Polarisation propagation. Light propagates from the excitation source as
randomly polarised light (RPL). It then passes through the circular polariser to produce
circularly polarised light (CPL). Next, it illuminates an optically anisotropic sample
(in this example) to become elliptically polarised light (EPL), and finally this light is
captured by the PFA. The PFA shows the four different linear polarisation orientations
per a super-pixel.

The high-level operation of the FSA is detailed to give the reader a sense of the impor-

tant components in the signal chain. This chapter develops these high-level concepts

into realising the FSA. This layout is incorporated into the flow cell to analyse moving

fluids. Figure 4.1 shows the basic polarisation propagation. Working through the signal

chain, we commence with the illumination source, namely a laser diode that is pulsed by

a custom-developed excitation module. The laser diode is mated to a single-mode fibre

optic line, producing partially coherent light. This generated light enters a left-handed
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circular polariser, converting it into left-handed circularly polarised light. This circularly

polarised light then propagates to the sample (which is within a flowing fluid), where its

polarisation state may either remain unaltered or change to elliptically polarised light if

the material is optically anisotropic. Finally, the light reaches the image sensor, which

is spatially sensitive to four different linear polarisation directions. The measured inten-

sity is then processed through our developed workflow to extract polarisation-sensitive

measurements.

4.2 Materials and methods

4.2.1 FSA

The basic components of the analyser comprise the image sensor and the flow cell.

The rest of the components and associated software were designed to complement and

support these core elements. A polarisation-sensitive camera (MER2-503-36U3M-POL,

Daheng, China) was selected due to the birefringent samples investigated in this work;

it was also the most affordable unit with polarisation sensitivity that could be found in

the market to fulfil the low-cost aspect of the project. This camera has a monochrome

PFA sensor (IMX264MZR, Sony) and uses a complementary metal-oxide-semiconductor

array with four linear polariser orientations. The sensor has an 11 mm diagonal format

with a pixel pitch of 3.45 µm, offering a 2448× 2048 pixel resolution. Communication is

through general purpose input/output and USB 3.0 for data acquisition, configuration,

and trigger control. Other sensor options may be employed depending on the specific

application. The FSA has been tested with standard monochrome and RGB sensor

variants.

The prototype flow cell, sourced from Disa Scientific, was configured with a channel

depth of 500 µm. Normally, copper channel shims are stacked to set the channel depth

by placing them between the two observation windows. However, in this specific case,

where the image sensor is rectangular and the observation window is circular, the shims

were engineered to match the FOV dimensions of the image sensor, i.e. the sensor plane.

These optimised shims now serve two purposes, firstly to set the required depth of the

fluid channel, and secondly to ensure that the fluid only traverses the image sensor’s

active area and not around it. This, in combination with the lensless configuration,

further supports a high sample throughput.

Particles passing through the flow cell are present at varying depths within the channel;

this may lead to occlusions if particles are present at the same (x,y) spatial location

but at different depths (z) especially at high particle concentrations. An alternative
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1 2 

34 5

(a) FSA overhead. 1. Peristaltic pump. 2. Light pulse engine. 3. Fibre-coupled
laser diode (with polariser and mountings inside). 4. Additional spacer cylinders.
5. Main flow cell.

7
9

8 

6

(b) FSA alternative view. 6. Fluid under test entry point to flow cell. 7. Mid-
line of the flow cell, location of the fluid channel inside the flow cell (where fluid
is illuminated and imaged). 8. Fluid under test exit point. 9. Image sensor and
mountings.

Figure 4.2: The realised FSA from two different views indicating important components
and areas.

is to use a shallower channel depth, but that would restrict the achievable flow rate

due to motion blur and introduce limitations on the maximum object size fractions

for analysis. The base flow cell initially had a source-to-object distance of 3.5 cm.

However, this distance was insufficient to meet the z1 ≫ z2 requirement and maintain

the approximate (or near) unit object magnification assumption. Additionally, providing

sufficiently uniform illumination to the sensor’s active area was a concern. Four spacer

cylinders, each measuring 3.5 cm in depth, were milled out of polyoxymethylene acetal
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and added to the in-line configuration to increase the overall source-to-object distance

(z1). The spacer cylinder stack can be seen in Figure 4.2(a). The FSA is presented in

Figures 4.2(a) and 4.2(b) with important areas and parts of the analyser being indicated.

Light source and mounting

A partially coherent laser diode was chosen for this study, primarily due to its low

cost and sufficient coherence properties. The DIH application requires suitable spatial

coherence from the light source to produce strong diffraction rings, making the laser

diode an appropriate choice. Although recent studies have explored the use of LEDs

with spectral (bandpass) and spatial (convex mirror) filters or pinholes to improve their

coherence properties in holography settings [16, 48], a single mode 405 nm laser diode

(SLD3233VF, Sony) was preferred for this study. The wavelength was selected based

on the low-cost commercial availability of the diode and the extinction ratio curve of

the polarisation image sensor, in which wavelengths with a higher extinction ratio are

preferred.

The laser diode was coupled to a 3.0 µm diameter single-mode fibre (460HP, Nufern)

and terminated on an FC-PC connector. This connector was mated to a single-mode

coupler (RS-536-7718, RS) and fixed to a laser-cut stainless-steel end cap (304 SS, 2

mm) to create a stable mount on the flow cell. The fibre coupling of the laser diode pro-

vides partial spatial and temporal coherence as only the fundamental mode propagates

through the fibre.

Excitation driver

A stable light source was necessary for analysing moving fluids, and a custom driver

circuit (Figure 4.3) was designed and fabricated to support the laser diode. The circuit,

termed the light pulse engine (LPE), serves two primary tasks. Firstly, it provides a

controlled constant injection current to ensure the laser diode outputs a stable, partially

coherent beam. Secondly, it offers an adjustable pulse width triggered by the rising

edge of the image sensor’s exposure window activation. The adjustable pulse width

mitigates motion blur that may ordinarily be encountered when running the laser diode

in continuous wave operation, and where the minimum supported exposure time of the

image sensor is not short enough. The components for this prototype were selected

based on meeting the low-cost aspect of this project and being in stock from the PCB

fabricator (JLCPCB, China); the circuit diagram can be found in Appendix B.

The excitation driver unit employs a dual monostable multivibrator (74HCT4538, Nex-

peria) in a non-retriggerable configuration. The driver circuit is designed to output a
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Figure 4.3: LPE circuit illustration.

pulse width that is shorter than the minimum exposure time supported by the image

sensor. The resulting effect is a shorter equivalent or effective exposure time since the

flow cell chamber lacks ambient light and relies solely on the laser diode source for sam-

ple illumination. This is especially useful for high flow rates where motion blur becomes

more likely as particles may traverse multiple pixels during a single exposure. Reduc-

ing the effective exposure time offers particles less opportunity to cross multiple pixels

during exposure, resulting in sharper images.

Generating an extremely short pulse reduces the time that the laser diode is active and

decreases the number of incident photons per exposure to illuminate particles. The

laser diode was overdriven during its short duty cycle by implementing a stable and

adjustable current source circuit, which aims to counter the effect of the limited photon

issue. For additional excitation applications, we included three driver channels. Each

driver channel has its own voltage-controlled current source (transconductance ampli-

fier) that comprises a high-speed operational amplifier (AD8042, Analog Devices) and

NPN-bipolar junction transistor (SS8050, Onsemi). We use a CMOS switch (ADG715,

Analog Devices) to activate individual excitation channels, controlled through an I²C

connection to an ESP-32 development board. Custom code was written for the devel-

opment board to control the unit. The LPE was fitted with additional capacitors to

source the necessary current on demand to overdrive each light source. The resulting

effect is the generation of enough photons to maintain the required intensity for effective

imaging whilst reducing motion blur simultaneously.

Verification of the pulse width shortening circuit was performed with an oscilloscope

(DSO-X 1102A, Keysight Technologies) and the signal trace is shown in Figure 4.4.

The bottom signal (1, green) is an input pulse and the top signal (2, orange) is the
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Figure 4.4: Oscilloscope trace from LPE analysis.

output pulse from the circuit. The rising edge of the signal (such as the camera expo-

sure start) triggers the pulse start and the output signal ends after a set duration (here

approximately 7 µs). The exposure window signal continues for a longer time (here ap-

proximately 100 µs) and the output pulse will not start until it detects another rising

edge from the exposure trigger waveform. The three excitation channels may be used

to support additional use cases such as multi-band excitation. This may be useful if

the unit is used in an RGB-type excitation and image sensor environment for further

spectral feature analysis, or multi-modal applications such as multi-band fluorescence

and polarisation combinatory imaging. The unit is also suitable for pairing with less

coherent imaging setups using LEDs. The LPE included a PWM-controlled driver for

a peristaltic pump that used a complementary Darlington configuration (MJD122, On-

semi) also controlled by the ESP-32.

3D printing, polarisation equipment, and FSA costing

Custom fittings were designed for the project to achieve accurate alignment and mount-

ing of the image sensor and light source. These components were 3D-printed to en-

courage the rapid prototyping nature of this project. A 3D-printed polariser mount

(Figure 4.5(b)) was created to link the output of the single-mode coupler to a 15 mm

glass zero-order left-hand circular polariser (CP42HE-#19-927, Edmund Optics). Since

the image sensor was run in a lensless configuration, the original C-mount lens mount-

ing and sensor enclosure were removed; a custom camera mount was created to cradle

the image sensor. See Figure 4.5 (c) and 4.5 (d) for the designs of the mountings and
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(a) Excitation source
mount.

(b) Polariser mount. (c) Image sensor cradle. (d) Image sensor mount.

Figure 4.5: Custom designed components.

cradles. The 3D prints were produced in polylactic acid filament on a low-cost printer

(MINI+, Prusa).

The complete hardware cost for the project is $1 290 and is designed to be paired with

a laptop as a proof of concept. This is significantly cheaper than commercial variants

of non-polarisation sensitive imaging flow cytometers (upwards of $40 000) [16] and

supports the low-cost aspect of the project. This cost includes all of the fittings, the

image sensor, and the illumination source. The polarisation image sensor (at $800) is

the largest cost driver and the total system cost could be significantly reduced in bulk

quantities. A full cost breakdown can be found in Appendix A.

4.2.2 Software workflow development

This section covers the software designed to interact with the hardware detailed in the

preceding section. Since this chapter focuses on the development of the holographic

polarisation-sensitive FSA, it places attention on the tasks of image capture, prepro-

cessing, base feature extraction, and segmentation of objects present within a fluid

sample. Figure 4.6 shows the output channel development of the FSA from the initial

captured hologram. The base feature extraction includes the DIH methods to numer-

ically propagate the imaged hologram as well as the birefringence measurements from

the polarisation-sensitive hardware. A single image capture may encompass multiple ob-

jects, which is a consideration particularly relevant for the case involving diverse marine

and synthetic polymer specimens within a designated size range. Further feature extrac-

tion and classification of these objects is considered in Chapter 5, while the processing

pipeline up to the point of completing object segmentation is considered here.
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Raw intensity hologram Preprocess Propagate

Stokes parameters

BirefringencePolarisation extraction
I_0º, I_45º, I_90º, I_135º

1. Processed hologram

2. Amplitude

3. Phase

4. Retardance (Δ)

5. Slow-axis (θ)

6. I_0º-I_90º (Q)

7. I_45º-I_135º (U)

Figure 4.6: Processing workflow of the FSA. The input frame is processed and expanded
to seven output channels. The output channels can either be used for qualitative obser-
vation or further downstream quantitative processes.

Preprocessing

The intensity image captured by the sensor may exhibit speckle artefacts due to the

partial coherence of the source, as well as aberrations caused by static particles present

in the flow channel or along the optical path. Since the device was designed to be

deployable for multiple capture events with limited maintenance between each run, we

wish to reject as many unwanted artefacts and as much noise as possible. A preprocessing

algorithm was therefore implemented to improve the SNR. Corrections to an image under

analysis may be required due to artefacts and noise. In microscopy settings, background

correction or normalisation is often performed by capturing two images: one image is

the static background frame (captured before introducing an object of interest into the

scene), and the other image is the pertinent frame with the object of interest included.

For a background correction procedure, the background frame is subtracted from the

pertinent frame and a standard uniform mean intensity value may be added back. On

the other hand, for a background normalisation procedure the pertinent frame may

be divided by the background frame and then normalised by adding back a standard

uniform mean intensity.

The described standard correction techniques are unsuitable for an automated fluid

stream imaging workflow, as a recent object-free image frame is not always available.

Instead, a simple algorithm was implemented for correction. Firstly, it averages the 90

previous frames to produce a mean background image. Next, this frame is subtracted

from the current frame to produce the background corrected frame. Finally, the mean

intensity of the background frame is uniformly added back to the newly corrected image

to produce the resulting output. Naturally, any moving objects present in the previous 90

frames are averaged out by those frames, leading to minimal presence in the background

frame. Any static objects in the 90 preceding frames will, however, create a strong

component in the background image of a similar intensity, providing a reference for
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what needs to be corrected in the frame and assisting in removing such interference.

(a) Raw hologram. (b) Background hologram. (c) Post-processing result.

Figure 4.7: Image correction routine. Scale bar in all figures indicates 50 µm.

An example of the image correction technique can be seen in Figure 4.7, where PE

spheres were passed through the detector. The diffraction rings and particles shared by

the raw and background holograms are visibly removed from the post-processed output

image. Looking closely at the images, the speckle patterns present in the raw and back-

ground holograms appear similar. This suggests that the unwanted pattern may be due

to the coherent source reflecting off debris and surface imperfections. These artefacts are

maintained throughout the average frame capture and therefore the correction process

yields a considerably cleaner image in the post-processing result.

Since we consider objects of interest to always be in motion when passing through the

flow cell, this correction routine is also beneficial when an object detector or classifier

is used in a follow-on stage from the FSA. When the corrected image is used for object

detection purposes, it may be less prone to false detections from artefacts that are near-

stationary but may vibrate. Additionally, the corrected image provides a more stable

input to a classifier, especially in the presence of variations in illumination intensity. The

variation in an object’s scattering, and by extension transparency properties, results in

objects that may have regions of intensity greater or less than the background mean

intensity. This can make segmentation more of a challenge.

4.2.3 DIH

Following the approach outlined by Goodman [11], the angular spectrum method is

incorporated into our workflow to enable the numerical reconstruction of plane wave

propagation within the wavefront. This methodology aligns effectively with the on-chip

lensless configuration employed in this research, and since the object-to-sensor distance
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(z2) is substantially less than the source-to-object distance (z1), a near-unit object mag-

nification is achieved. Consequently, the image sensor’s pixel pitch determines the ana-

lyser’s spatial resolution. The propagation function is supplied with the preprocessed

hologram as an input and the following parameters: propagation distance, wavelength

of the excitation source, dimensions of the input frame, and pixel pitch of the image sen-

sor. The function uses two separate Fourier transforms to obtain the resulting complex

propagation output.

Determining the object propagation distance for numerical focusing requires knowing

the object-to-sensor distance beforehand, using an autofocus criterion or setting a coarse

propagation metric. Depending on user requirements, two propagation options were

implemented:

• Individual object propagation: an object can be selectively brought into fo-

cus by cropping the object and subsequently applying an autofocus metric cal-

culation that measures the sparsity of the gradient [49]. This approach demands

greater computational resources as each object must undergo an iterative indi-

vidual autofocus routine, which involves multiple propagation steps but ensures

object sharpness.

• Global propagation distance: since we do not know the exact object-to-sensor

distance but do know the working range of the flow channel, a uniform global

propagation distance can be set. This is typically equal to the mid-depth distance,

which in this instance is 2.25 mm. This distance is uniformly applied to all objects

present and is considered to be a coarse propagation of sorts. One drawback

of this method is that objects at either the minimum (2.00 mm) or maximum

(2.50 mm) depths within the channel may exhibit less sharp details, and this

would be especially applicable for fine features closer to the sensor resolution limit.

Nevertheless, this approach offers greater computational efficiency.

4.2.4 Polarisation sensitive birefringence imaging

Developing the FSA for birefringence sensing requires the integration of a subsystem

block to process the propagated intensity image and create two output channels to

accommodate the birefringent retardance (∆) and slow axis orientation (θ). We compute

two further channels to include Stokes parameters 1 and 2 (Q and U). They are defined

as [50]:

Q = I0 − I90,

U = I45 − I135.
(4.1)
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The propagated intensity output image from the DIH stage is supplied as an input

to this subsystem. To access subsets of the 2D array and perform grouping based on

their polarisation orientation, a small script was created to divide the array into four

separate 2D arrays each corresponding to a distinct polarisation orientation (0°, 45°, 90°,

and 135°), aligned with the image sensor’s configuration. Consequently, a minor spatial

displacement exists among the four pixels comprising these orientations. This shift is

however considered insignificant relative to the minimum size of the sample objects of

interest and registration is not required.

Given that the excitation source produces left-hand circularly polarised light and a linear

PFA image sensor is employed, a subsequent script applied the Jones calculus method for

the computation of relative birefringent retardance and slow axis orientations across the

pixels detected by the sensor [14]. As this method requires four unique linear polarisation

orientations to output one pixel’s birefringence retardance and slow axis calculation, the

resultant output image undergoes bilinear interpolation to revert to its initial resolution.

The outcomes of this process yield two distinct periodic 2D maps measured in radians: a

retardance map and a slow axis orientation map. The slow axis map undergoes further

refinement to eliminate any artefacts originating from instances where the computed

retardance value falls below a threshold of 0.1 radians. This adjustment prevents the

computation of a slow axis value in scenarios where no particles are present — and is

therefore not physically meaningful — or where the birefringent signal is too weak to

produce a reliable outcome. The two additional Stokes channels (Q and U) are computed

and also added to the channel stack. We upsample all channels by a factor of two using

a bilinear kernel, to restore the original image pixel dimensions.

4.2.5 Segmentation

Segmentation is helpful as many particles of interest may be present in a moving fluid

that is imaged by the FSA. The goal is to extract these object patches for use in various

downstream processes in the pipeline, including visual inspection or classification. In

this study, the segmentation of marine phytoplankton and synthetic polymer samples

from background is of interest. Segmenting both of these sample types concurrently in

a single frame as foreground is necessary, even if they exhibit different intensity char-

acteristics. We implemented a supervised (neural network) approach. This choice was

due to the operational requirements of the FSA, which excluded optimisation-based or

unsupervised-trainable methods as they were either computationally demanding or less

automated and therefore unsuited to the application. Rule-based thresholding methods

were also investigated but were deemed unsuitable.
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Procedure

We used a circulatory configuration to move particles in solution between a holding

vessel and the FSA. The plastics considered in this study (PE, PET, PP, and PS) are

considered non-polar hydrophobic synthetic polymers [51], so mixing these samples with

water to form a solution required consideration as each type has a different density and

they tend to bind to surfaces. The phytoplankton samples were somewhat easier to work

with but still required a well-mixed solution. The following protocol was adopted when

dealing with any sample type: the samples were placed in a beaker (Glassco, India)

with laboratory water and a small amount of dish soap (0.1% v/v) and ethanol (0.1%

v/v) was added to act as a surfactant. The soap and ethanol help reduce hydrophobic

interactions that cause the particles to bind together or cling to the FSA and associated

equipment. The beaker was placed on top of a magnetic stirrer (MSH10, Labcon South

Africa) to agitate the solution and mix the particles in the solution despite the differing

sample densities. Using a peristaltic pump (NKP-DCS-10B, Kamoer), the sample in

solution was circulated between the beaker and the FSA where they were imaged for

analysis.

Trainable supervised segmentation

An encoder-decoder approach was chosen because it is common for multiple objects

to be present in a scene and a fine-grained pixel-wise inference supports more detailed

shape measurement analysis for logging purposes.

We tailored the base structure to better suit the fluid analysis segmentation require-

ments. Although pre-trained models provide a transfer learning approach that leverages

larger datasets and offers benefits when used appropriately, the unique characteristics of

the FSA’s output base features make them well-suited to a “from scratch” network imple-

mentation. Transfer learning has been well applied in the general microscopy arena [52]

and could be useful in future studies using the FSA with limited channel inputs. The

seven channels delivered from the FSA are: preprocessed hologram, mid-depth prop-

agated intensity, mid-depth propagated phase (unrecovered), birefringence retardance,

birefringence slow axis orientation, Stokes parameter 1, and Stokes parameter 2.

Dataset for trainable supervised segmentation

A small dataset was created to provide representative examples of foreground and back-

ground regions for segmentation network training. This enables the network to learn

from the examples and apply its model to new, unseen data. Synthetic polymers and

marine phytoplankton were used as foreground objects for the segmenter. The marine
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phytoplankton samples included Isochrysis galbana and Chaetocerous calcitrans, while

the synthetic polymer samples comprised PE, PET, PS, and PP. These foreground ob-

jects exhibit regions of both high and low intensity and it is necessary for the network

to generalise effectively and segment various types of unseen foreground objects.

A primary objective of this segmentation process is to train the network to distinguish

background regions based on texture. This enables the network to accurately segment

unseen foreground objects, even when they differ from objects used to train the network,

particularly in terms of shape. Many imaged objects have unique shape and intensity

properties, making it necessary for the network to recognise the background texture

concept to identify new foreground objects effectively.

The FSA was configured in the standard circulatory configuration and a collection of 20

image sequences was acquired, including phytoplankton and synthetic polymers. These

capture routines were conducted separately for different classes; for instance, marine

phytoplankton were captured in a distinct session from the synthetic polymers and each

synthetic polymer class was captured individually. Each image sequence comprised 200

frames and 50 images were selected for the segmentation dataset, including ten images

of each object class. These images had dimensions of 2448× 2048 pixels and contained

multiple objects within each frame. Standard preprocessing procedures were applied to

each sample image and run through the holography and birefringence routines to obtain

the resulting seven-channel stack per frame (2448× 2048× 7 pixels).

The Matlab image labeller tool was used to manually annotate the regions of interest

in the images to generate the ground-truth labelled masks in a pixel-wise manner. The

propagated intensity channel was selected from the seven-channel stack to locate the

object area of interest for the labelling process. A value of zero was assigned for the

background pixels and one to five was assigned to specific foreground object classes:

PE, 1; marine, 2; PS, 3; PET, 4; and PP, 5. This extended label indexing was done in

preparation for the upcoming classification chapter. However, in this instance, once the

training masks had been created, the pixels with class values greater than one were all

set to one for this binary segmentation training task.

Augmentation

Typical augmentation for 2D image inputs is applied globally and includes geomet-

ric transformations, colour processing and intensity transformations [53]. Given the

monochrome environment, our dataset does not require colour processing but intensity

adjustments may be made. In terms of geometric transformations, reflection, rotation,
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and translation may be performed, as would normally be done with non-holography in-

tensity problems. However, shear transformations are unsuitable as a shear translation

at the hologram plane does not translate to a shear transformation at the object plane

and therefore does not create a physically meaningful relation.

The following augmentations were applied to the training dataset with a 0.5 probabil-

ity: vertical and horizontal flip, random rotation 90◦, random brightness contrast, and

custom function — random propagation (up to 250 µm from channel centre).

The custom propagation augmentation technique was developed to address potential op-

tical misalignments within the system. This function randomly propagates the intensity

channel up to a distance of 250 µm from either side of the mid-depth position within the

flow cell channel. The rationale behind this approach was as follows: while the training

label mask and raw hologram remain constant, minor discrepancies in the optical sys-

tem may exist. For instance, if the image sensor is slightly further away from the flow

channel glass, a mid-depth propagation routine might yield suboptimal performance be-

cause it propagates to an area that is slightly out of focus, potentially leading to less

accurate segmentation. Instances where the boundary regions of the propagated image

exhibit poorly defined edges may challenge a segmenter and lead to greater uncertainty.

However, with the proposed approach, the network can learn the relationship between

the label mask and the raw hologram, enhancing the reliability of segmentation even in

the presence of minor discrepancies. These augmentations were applied exclusively to

the training dataset following the dataset split and no augmentation was performed on

the validation and test sets.

Network implementation

In this project, the background region often contributes a significant portion of the

captured image due to the large field of view provided by the lensless configuration.

This is especially true when smaller objects are present. For example, one such object

might have an area of 50 µm × 50 µm (2.5 × 10−9m2) compared to the active area of

the image sensor, which is 5.96 × 10−5m2. This means that this example object is

approximately 1/23840 of the sensor’s active area. However, in the developed dataset,

multiple objects are present in a single shot.

The 2448× 2048 pixel input image was divided into smaller patches of 128× 128 pixels

to improve computational efficiency. These patches served as inputs to the model and

assisted in reducing the computational burden associated with a larger single frame.

Furthermore, patches containing only background pixels, devoid of any object pixels,
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were excluded from the dataset during model training. This exclusion provided balanc-

ing assistance to the dataset, as in general the frames were dominated by background.

Our proposed implementation modified certain hyperparameters and functions within

the ResUnet [34] model. As mentioned, the input stack from the FSA was divided

into smaller patches. The kernel size of 3 × 3 was maintained, as was the layer depth

of seven. In particular, we set the number of input channels to five: defocused raw

hologram, propagated intensity hologram, phase (wrapped), birefringence retardance,

and birefringence slow axis orientation. The remaining two Stokes parameter channels

from the FSA were not used. In our adjusted model, we set the input filter number to

128 and used a five-channel input to accommodate the FSA stack with a patch size of

128× 128. In other words, we concatenate the five channels from the FSA into a single

matrix and feed the network with patches sized 128 × 128 × 5 pixels (which includes

each chosen FSA channel).

Instead of a binary cross-entropy (BCE) loss function as used in U-Net, a combination

of Dice [54] and focal loss [55] was employed in this model. Both the Dice and focal

loss functions effectively enable networks to learn from imbalanced datasets, especially

in scenarios with significant background components as is expected for this application.

An equal weighting was given to these functions. Dice loss (DL) and focal loss (FL) are

presented as follows:

DL = 1− 2 · p · y
p2 + y2

(4.2)

and

FL = −α · (1− p)γ · log(p), (4.3)

where p represents the predicted probability of the positive class (class 1), y represents

the true binary label (1 for positive, 0 for negative), α is the scaling parameter, and γ

is the focusing parameter.

A sigmoid output activation function was used since this network was trained as a binary

segmenter for background (BG) and foreground (FG). The sigmoid function maps the

input to a probability estimate output (0,1) and is represented as follows:

σ(x) =
1

1 + exp(−x)
. (4.4)

Before training, the dataset was normalised and split into training (60%), validation

(20%), and test (20%) sets. The augmentation routine was applied only to the training

set. We set the class weightings to the inverses of their respective proportions to assist

with the background and foreground class imbalance.
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The Adam optimiser [56] was used, along with a batch size of 16. The resulting model

was trained for 34 epochs — a value determined by an early stopping condition. We

trained an additional three network implementations to provide a comparative measure

of performance with the model already presented: a vanilla U-Net structure with BCE

loss function and 5-channel input, a vanilla U-Net structure with Dice and focal loss

function and 5-channel input, and a ResUnet structure with Dice and focal loss function

and 3-channel input. The base U-Net implementation results in a similar number of

learnable parameters but a different number of filters and depths due to the lack of

residual blocks; this implementation used 64 filters in the first layer to make up the

training parameter difference. An early stopping condition determined each additional

model’s epoch number.

Performance metrics

Standard machine learning metrics such as accuracy and loss were not used to evaluate

the pixel-wise model’s segmentation performance. Instead, the metrics IOU and F1-

measure were used. This choice was due to the dominant background region, which can

often skew metrics like accuracy and report misleading figures. By using IOU and F1-

measure, which consider true positives, false positives and false negatives, the evaluation

provides a more accurate representation of the model’s segmentation performance. IOU

is represented as

IOU =
TP

TP + FP + FN
, (4.5)

where TP are the true positive predictions, FP are the false positive predictions and FN

are the false negative predictions.

F1-measure is represented as:

F1-measure =
2× precision× recall

precision + recall
. (4.6)

4.3 Results

In this section, we first present the results from the segmentation network training.

Next, we present our experimental demonstrations where the FSA is analysed in its

ability to perform both holographic and birefringence resolving tasks. A segmentation

study follows this. Finally, we cover the calibration of the unit.
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Table 4.1: Binary segmentation results.

Model Mean IOU Mean F1 IOU BG IOU FG F1 BG F1 FG

ResUnet (proposed) 94.56 97.14 99.38 89.74 99.69 94.59

ResUnet 3-channel 94.43 97.07 99.37 89.49 99.68 94.45

U-Net DL+FL 90.94 95.07 99.01 82.88 99.50 90.64

U-Net BCE 88.74 93.75 98.52 78.97 99.25 88.25

4.3.1 Trainable segmentation results

The results from the trainable segmentation are displayed in Table 4.1. The vanilla

U-Net with BCE loss exhibited less competitive performance than the Dice and focal

loss implementations (all other models), and may suggest some form of bias due to the

dominant background regions that encouraged a preference to predict the background

class. A performance improvement was noted for all metrics when the same-sized pa-

rameter U-Net model was used with Dice and focal loss. When assessing our proposed

implementation, further improvements in all metrics were noted. As a form of ablation

study, the 3-channel ResUnet network that excluded the two birefringence channels saw

a minor performance decrease due to their exclusion. This suggests that the network can

sufficiently learn to segment without using the additional birefringence channels, which

may be excluded for improved inference speed at the sacrifice of minor performance.

4.3.2 Experimental demonstration

DIH

We demonstrate the lateral resolving abilities of the FSA by imaging a USAF 1951

resolution test target (HCM01-63R, Dongguan Hongcheng Optical Products). The test

target was placed between the image sensor and the illumination source (with the FSA

channel glass removed due to the test target size being larger than the flow channel).

The acquired hologram was propagated to its focus distance (1.28 mm) using an auto-

focus criterion [49]. The propagated intensity image (Figure 4.8) is displayed with no

background correction routine as this was a static target and we wish to demonstrate the

pure resolving abilities of the system. We cropped the orange bounded area for closer

inspection. Figure 4.9(a) shows the cropped region before propagation and Figure 4.9(b)

shows the same region after propagation. The propagated image shows more resolvable

detail but quantification is necessary.

Upon further inspection of Figure 4.9(b) we note some elements in groups 5 and 6 are vi-

sually resolvable. These smallest groups appear resolvable by inspection and are selected

for further analysis. The high-intensity transparent regions on the target substrate are
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considered background regions, whilst the low-intensity regions are the chrome elements

printed on the test target. For an analysis to be performed, an intensity profile is created

along the perpendicular direction of the elements under inspection. We apply the fol-

lowing criterion to consider an element being resolved: the central peaks (high-intensity

regions) must rise over 27% above the dip intensity (chrome printed regions) [11].

Looking at the intensity profile of selected group 5 elements (G5-E4, G5-E5, and G5-E6)

in Figure 4.10, we observe two distinct peaks that separate each middle element from

their outer neighbour on each side; the rise is above the required threshold and therefore

meets the resolving criterion. If we now look at group 6 elements (G6-E2 and G6-E3),

we observe that G6-E2 is resolved, however G6-E3 does not satisfy the criterion. G6-E2

corresponds to approximately 7.0 µm and G6-E3 corresponds to approximately 6.2 µm.

We take the mean value 6.6 µm ±0.8 µm as the resolving ability of the FSA.

The results agree with the image sensor’s expected resolution ability and our optical

setup. The influence of twin image noise and no preprocessing routine does impact the

observed curves. We would expect more regular transitions in the absence of additional

interference.

Figure 4.8: Resolution test target — full frame (propagated).

To further demonstrate the DIH propagation imaging, a sample of synthetic polymers

was mixed in solution and passed through the FSA. The intensity image acquired from

the image sensor exists as a single 2448 × 2048 2D array, though the figures presented
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(a) Raw hologram. (b) Propagated intensity.

Figure 4.9: Resolution test target analysis — cropped orange region from Figure 4.8.

(a) G5-E4, G5-E5, and G5-E6. (b) G6-E2 and G6-E3.

Figure 4.10: Intensity profile resolution test target analysis. (a) Successfully resolved
elements. (b) Point of failure.

throughout this example are cropped parts of this larger original frame. This array

undergoes the standard preprocessing and mid-depth propagation routine (Figure 4.11),

resulting in a processed and propagated intensity array that is suitable for either visual

analysis or for a subsequent stage in the workflow.
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Figure 4.11: Preprocessed propagated mid-depth intensity of microplastic samples (low-
intensity regions).

Birefringence imaging

To verify the quantification of birefringence, we imaged a birefringent depolariser (DPP-

25B, Thorlabs). This liquid crystal polymer depolariser is sandwiched between two glass

plates and has a pattern of varying retardation that has been imprinted in the liquid

crystal polymer. When illuminated with a linearly polarised monochromatic source, its

polarisation state will become spatially varied. The periodic retardation is expected

to vary between 380 nm and 430 nm. We used a 650 nm laser diode (SLD1133VS,

Sony) for this experiment due to the anti-reflective coating on the depolariser and the

reference data available from the manufacturer. Figure 4.12(a) shows a cropped por-

tion of the captured raw intensity frame with no general periodic variation in intensity.

Figure 4.12(b) shows the computed birefringence retardance of the same raw intensity

frame. The computed retardance shows the spatially periodic variation in retardation

as one moves diagonally across the frame and this agrees with the manufacturer’s spec-

ifications.

The birefringence computation provides a quantitative measure of optical anisotropy

that can be used for visual inspection when using the FSA in a visual capacity. Alterna-

tively, these measurements can serve as inputs for machine learning algorithms geared

towards particle classification.

To further demonstrate the polarisation-sensitive birefringence imaging, we use the same
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(a) Raw intensity. (b) Birefringence retardance.

Figure 4.12: Depolariser analysis at 650 nm.

example shown in the propagation section of some synthetic polymers mixed in solution

and passed through the detector. The two-channel output (retardance and slow axis)

can be combined for visualisation to generate a unified map, as depicted in Figure 4.13.

This map was created by employing a hue and saturation colour space transformation,

subsequently translated back into the RGB colour space. Birefringence retardance cor-

responds to saturation, while slow axis orientation refers to hue.

Figure 4.13: Pseudo-coloured retardance and slow axis orientation (cropped).
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The advantage of using the birefringence data with the hue and saturation visualisa-

tion technique is its ability to display both metrics in one image. Furthermore, the

birefringence computation suppresses both optically isotropic particles and background

intensity with a notable reduction in twin-image interference. This aids users in isolating

the quantifiable birefringence activity. However, as is evident from the output image,

specific pixels within the borders of the sample specimens exhibit minimal to no bire-

fringence which is indicated by near-zero intensity pixels. We select a smaller particle

(a) (b) (c) (d)

Figure 4.14: Birefringence processing of PET. (a) Preprocessed hologram. (b) Propa-
gated intensity. (c) Pseudo-coloured birefringence retardance and slow axis orientation.
(d) Pseudo-coloured birefringence retardance and slow axis overlay/fused with propa-
gated intensity. Scale bar in all figures indicates 50 µm. Colour scale legend available in
Figure 4.13.

from the original hologram to demonstrate the processing workflow and illustrate the

lower regions of anisotropy (Figure 4.14). The workflow moves from left to right as the

preprocessed hologram (Figure 4.14(a)) is propagated (Figure 4.14(b)) and processed for

birefringent activity (Figure 4.14(c)), which is then fused with the propagated intensity

image (Figure 4.14(d)). Some edge pixels and a few of the centre pixels suggest low

anisotropy. Although these pixels may have legitimately low activity regions, observing

clusters of a few pixels is recommended to determine overall presence of activity. Simi-

larly, if these pixels were to be used for feature vector generation, a single pixel may not

provide a sufficiently dependable input. Grouping a few pixels within a neighbourhood

or using filters for further feature extraction would therefore be advisable.

Segmentation

We provide cropped frames (2448 × 2304) as a reference example to demonstrate the

wide FOV for a single-shot multi-particle application (Figure 4.15). The scale bars

present illustrate the ability of the FSA to capture many particles of the size range

of interest in a single frame for high throughput processing. In Figure 4.15(a) the

raw hologram is shown before the preprocessing routine has taken place to correct and

remove any static particles or artefacts. In Figure 4.15(b) the output from the network
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is displayed, bearing in mind that any particles below the size threshold of interest can

be removed with morphological processing. Although the input image was partitioned

into patch sizes of 128 × 128 and fed to the segmentation network, the output patches

were reassembled to make up the larger frame with pixel-wise segmentation.

(a) Raw hologram frame. (b) Network segmentation output.

Figure 4.15: Comparison of the raw hologram at beginning of pipeline and the resulting
segmentation output (cropped).

If we select a challenging segmentation example and pass it through the network-based

approach (Figure 4.16), we obtain a relatively acceptable result. It is observed that

the high and low intensity diffraction rings that surround each particle have little effect

on the segmentation performance which suggests that particle measurements should be

reliable for downstream logging purposes. Additionally, if these object pixels were to

be sent for a foreground classification task further down in the pipeline it may result

in fewer background pixels being sent to the classifier, thus reducing the likelihood of

performing inference on a non-category pixel.

(a) Preprocessed intensity frame. (b) Segmented frame.

Figure 4.16: Image segmentation when applying workflow for network-based segmenta-
tion (cropped).
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(a) Polymer. (b) Prediction of (a). (c) Phytoplankton. (d) Prediction of (c).

(e) Polymer. (f) Prediction of (e). (g) Phytoplankton. (h) Prediction of (g).

(i) Phytoplankton. (j) Prediction of (i). (k) Polymer. (l) Prediction of (k).

(m) Polymer. (n) Prediction of (m). (o) Polymer. (p) Prediction of (o).

(q) Polymer. (r) Prediction of (q). (s) Polymer. (t) Prediction of (s).

Figure 4.17: Propagated intensity and predicted output patches (128×128) pixels. Scale
bar in all figures indicates 50 µm.
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A selection of ten examples is shown in Figure 4.17 to demonstrate the learnable seg-

mentation performance qualitatively. Our proposed implementation with the 5-channel

input was used to generate these predictions. The model has not encountered these

examples during training and includes synthetic polymer and phytoplankton samples.

These examples were taken straight from the output of the segmenter with no further

post-processing being performed. We chose these examples for display as they are gen-

erally more challenging segmentation instances of particles in a fluid stream. We found

that the smaller particles of only a few pixels were often more difficult to segment,

whereas the larger objects presented less of an issue. Many of the examples used in this

section illustrate the performance near the lower particle size cut-off (50 µm) to demon-

strate the segmentation abilities and weaknesses. Looking at all of the examples, the

spatial awareness of the network is evident. The ability of the segmenter to associate the

background texture as well as the surrounding diffraction rings (low and high intensity

regions) as non-particle elements is useful in our application.

This study considers microplastics from 50 µm to 1000 µm in length to be of interest,

and the diameter of the PE spheres range from 63 µm to 75 µm (to provide a reference

of the working range). Figure 4.17(a) presents an example of a sphere that has passed

through the detector, with its corresponding segmentation output (Figure 4.17(b)) being

reasonably performed. In Figure 4.17(c), a microalgae sample is shown. This example

was selected to illustrate the presence of both light and dark intensity areas within the

region of interest, which makes it more challenging to accurately segment compared

to the previous microsphere example. The segmentation result (Figure 4.5(d)) shows

effective segmentation of both regions. In Figure 4.17(k), a plastic sample is shown

and the resulting output (Figure 4.17(l)) displays suboptimal segmentation. While the

model has successfully found the general region of interest, the boundary areas have not

been delineated accurately and could be improved upon.

The remaining examples were deemed reasonably segmented and are provided for further

analysis. Notably, the fine small particles near the resolution limit in Figures 4.17(g),

(i), and (s) were set as background pixels by the segmenter as it was trained to consider

them as background. These fines were below the detection size threshold of this project

and were therefore considered to be artefacts that are equivalent to background noise.

The training data used to create the model had equivalently sized objects that fell under

the general background label. These examples demonstrate the segmentation capability

to allow these fines to pass through the segmentation process without contributing to

false positive detection results.
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Motion blur

Observing or resolving finer details of the particles in motion is necessary for further

visual or machine-learning activities in the pipeline. Since motion blur can be an issue

in a fluid stream setting, we performed a stepped flow rate test with PE spheres and

three flow rates (20, 40, and 60) mL/minute to determine the impact of motion blur

with and without using the LPE.

The image sensor’s frame rate (five frames per second) and exposure time (80 µs) were

set and held constant for all sequence captures. When testing the system without the

LPE, we supplied a constant current (50 mA) to the 405 nm fibre-coupled laser diode

with the resulting beam being the continuous wave output. When testing the system

with the LPE, the LPE’s pulse width was set to 7 µs and the constant current source

(1 250 mA) was used to overdrive the same fibre-coupled laser diode but this time in a

low-duty cycle pulsed configuration.

(a) Continuous wave operation. (b) LPE operation.

Figure 4.18: Motion blur test (40 mL/minute).

Image sequences were captured for both configurations at the three flow rates and all

sequences underwent the standard preprocessing routine. We show an example (Fig-

ure 4.18) of the propagated intensity channel for each configuration at one flow rate (40

mL/minute). It is noticed that the LPE (Figure 4.18(b)) frame shows a smoother back-

ground texture whereas the continuous wave operation (Figure 4.18(a)) shows “wave-

like” ripples. We inspected the other two flow rate sequences and they presented similar

patterning, but when a static sample was tested the ripples were found to be absent. It

is possible that flow-induced vibrations were introduced when delivering fluid with the
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peristaltic pump. The flow-induced vibrations are not apparent when using the LPE

configuration as it effectively minimises the integration time of the image sensor.

(a) (b) (c)

Figure 4.19: Propagated intensity images of PE spheres using continuous excitation. (a)
20 mL/minute. (b) 40 mL/minute. (c) 60 mL/minute. Scale bar in all figures indicates
50 µm.

(a) (b) (c)

Figure 4.20: Propagated intensity images of PE spheres using the LPE. (a) 20
mL/minute. (b) 40 mL/minute. (c) 60 mL/minute. Scale bar in all figures indicates
50 µm.

Upon closer inspection, three examples of each configuration are provided to view the

effect of the stepped change in flow rate. The particle flow direction in all of these

examples was from the top to the bottom of the page. The continuous wave operation

(Figure 4.19) shows that as the flow rate increases, the particle becomes more elongated

and loses its circular appearance even though a global shutter image sensor was used

in this study. This is an issue for the accuracy of shape measurement performance and

the smearing of the object also means that any further derived characteristics such as

birefringent texture might be less useful for a classifier later in the pipeline. The LPE

operation (Figure 4.20) shows the particles retaining their circular projected area at all

flow rates, and even at the lowest flow rate there is noticeably less smearing compared to

its non-assisted counterpart. Furthermore, the LPE-assisted frames’ non-object regions
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show finer detail with more defined diffraction rings and less noticeable flow-induced

vibrations.

4.3.3 Calibration

It is important that the detector yields meaningful quantitative information about the

particles that have passed through the flow channel. Although the maximum distance

between the object and the image sensor is significantly less than the distance between

the light source and the object, the theoretical unit magnification approximation needs

to be validated appropriately. Spheres are widely employed as calibration standards for

imaging and general flow cytometry applications prior to their use. These calibration

spheres are available in various materials and size fractions. They are typically charac-

terised by either a diameter range, with a specified percentage of particles falling within

that range (e.g., 50 µm to 60 µm with 80% of particles within this range and unknown

distribution), or a mean diameter with a standard deviation (e.g., 50 µm ± 5 µm). Such

specifications allow for accurate calibration of the FSA.

Although we consider near unit magnification of the sample due to the short object-

to-sensor distance, the thickness of the glass viewing discs in the flow cell suggests it

would be prudent to implement a calibration protocol to ensure measurement accu-

racy. Additionally, the system has two sources that may contribute to measurement

inaccuracy: firstly if the image sensor is not precisely aligned with the glass plate due

to manufacturing tolerances of the image sensor housing and other optical alignment

issues, and secondly if the developed segmentation network introduces inaccuracies in

the segmentation process. To deal with this, we imaged calibration spheres of known

size and applied a correction factor in the processing pipeline to account for a difference

between the expected value and the observed value. This process should be performed

following the FSA assembly or any adjustments to the segmentation network.

The calibration process simply involved passing calibration spheres in solution through

the FSA and analysing several of them. PE spheres were added to a solution of labora-

tory water, with 0.1% v/v dishwashing soap and 0.1% v/v ethanol acting as a surfactant.

The solution was placed in a beaker and pumped into the flow cell with the peristaltic

pump. Image data was captured by the FSA, which subsequently performed the pre-

processing and finally the segmentation. The segmented data objects, including the

2D projected area, were logged and recorded. The manufacturer specifies the diame-

ter range of 63 µm to 75 µm with more than 90% of particles within this range. Since

these particles are not supplied with a coefficient of variation, we could not consider the

size distribution to be normal and rather made a conservative assumption of a uniform
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Table 4.2: PE sphere measurement run.

Measurement Count Mean Median Standard deviation 90th percentile

1 233 290.14 288.04 64.39 370.57

2 263 287.37 286.52 61.33 358.56

Mean, median, standard deviation, and 90th percentile are given in units of pixels.

distribution with the expected size being the midpoint.

The 63 µm to 75 µm diameter particles cover 261 pixels to 371 pixels of 2D projected

area at unit magnification and acceptable segmentation. We coarsely filtered the range

of analysed particles from 200 pixels to 432 pixels so that any fines or outliers did not

skew the process. From the logged data, 200 spheres were used for calibration and

the mean area was calculated. We use the ratio of the actual and expected area as a

calibration factor. This factor was applied at the end of the processing pipeline as an

adjustment to the projected 2D area that is logged. In other words, this calibration does

not impact the region that is segmented by the workflow and is purely for measurement

logging accuracy.

Calibration assessment

We first tested the FSA pipeline on a new measurement of 100 frames of PE spheres, done

in duplicate. Particles such as fines with an area of less than 125 pixels were excluded

from the analysis. The particle area data was used to create a normalised histogram,

which approximates a probability density function (PDF) based on the experimentally

measured data. The following approach is used to generate the measured PDF:

fi =
ci

B.wi
, (4.7)

where fi is the ith histogram bin, wi is the bin width, ci is the number of elements

in the bin, and B is the number of bins in the histogram. The normalised histograms

for both acquisitions are presented in Figure 4.21 and provide an approximate particle

size distribution for the PE spheres. Both histograms demonstrate peaks in the 296

to 308 bin with the tendency to taper off on either side, and are more in line with a

weak normal distribution. Further analysis was performed and is presented in Table 4.2.

The two measurement runs yield closely related mean and median values. The observed

mean for both measurements is within the specified size range from 261 pixels to 371

pixels, although it is below the midpoint value. We also calculated the 90th percentile

value for the observed data since it specified that 90% of spheres should fall into the size

range. Both measurements yield 90th percentile values that fall into the expected size
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(a) (b)

Figure 4.21: Normalised histogram (PDF approximation) PE. (a) PE initial run. (b)
PE duplicate run.

Table 4.3: PMMA sphere measurement run.

Measurement Count Mean Median Standard deviation 85th percentile

1 853 227.54 221.92 48.14 256.12

2 786 232.01 225.72 53.44 258.85

Mean, median, standard deviation, and 85th percentile are given in units of pixels.

range, thus suggesting agreement with the specified data and calibration procedure.

We also performed an additional experiment with PMMA spheres (Cospheric, USA).

This sphere class is considered unseen because it is a different type of plastic and the

samples themselves have not been used to train the network. This test was used to

further ascertain if the network can use the background holographic texture to discern

background and foreground classes as well as provide a measurement of the calibration

performance. Similar to the PE spheres, these PMMA scientific calibration spheres

were also provided with a known but different diameter range (53 µm to 63 µm) and a

percentage of spheres (85%) within this range. The same acquisition process was followed

and the normalised histograms for both capture runs are displayed in Figure 4.22.

The histograms for both runs illustrate different distributions to the PE runs performed

earlier. It is noticed that the distributions are packed considerably tighter and are less

spread out than the PE runs. When further assessing the statistical data in Table 4.3

it is observed that the standard deviation is smaller than the PE run, supporting the

difference in histogram appearance. The mean for both PMMA measurements falls
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(a) (b)

Figure 4.22: Normalised histogram (PDF approximation) PMMA. (a) PMMA initial
run. (b) PMMA duplicate run.

close to the mid-band (223 pixels) of the expected area range (185 pixels to 261 pixels)

and the calculation for the 85th percentile is within the expected range, which agrees

with the specifications. The ability of the network to segment this unseen type of

plastic supports the addition of further object types for background and foreground

segmentation, enabling the network’s use as a form of object detector.

4.4 Discussion

Phase recovery is not covered in this study due to the weakly and strongly scattering

variations in synthetic polymers [10], which make phase unwrapping algorithms unpre-

dictable. Since the particles flow in solution, static particle multi-height iterative phase

recovery methods are also impractical, but deep learning [57] or multi-wavelength exci-

tation phase recovery methods could make for interesting future studies. Deep learning

approaches have already made their mark in the autofocus and phase recovery do-

mains [57]. However, they typically require training on meticulously curated datasets

that are often tailored to very specific object types that can sometimes lead to halluci-

nations when presented with a more exotic example of the same object type. This has

not been considered in this work but again offers an opportunity for further investiga-

tion. It is thought that the LPE would be useful for other use cases where the pixel

pitch sizes are smaller than the example presented in this work, or if the flow channel

depth is decreased. These constraints would lead to a shorter effective exposure time

requirement for the same given flow rate.
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4.5 Conclusions

In this chapter, we developed the FSA, a low-cost digital holographic imaging tool

that includes polarisation-sensitive sensing and can extract 2D birefringence features.

The device is intended for fluid stream studies and includes an LPE to reduce motion

blur. A trainable segmentation routine was also developed. The analyser was assessed

regarding holographic propagation, birefringence sensing, segmentation, motion blur,

and calibration. We feel that the device provides an opportunity for further development

in imaging-based sensing in many environments (not solely our microplastic use case).

The next chapter uses the FSA to sample fluid streams of both microplastic and phy-

toplankton samples to develop a dataset. This dataset is used to train classifiers for

microplastic analysis in a recreated marine setting. Both learned feature extraction and

filter bank feature extraction are explored to select the most suitable candidates.
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Computer vision

Classification of microplastics presents a challenge in that they are found in differing

shapes and sizes, leading to unique samples. This complexity is further compounded

when attempting classification within a fluid stream, as these microplastic samples of-

ten coexist with debris and microorganisms, such as phytoplankton, particularly in

marine applications. To address these challenges, we leverage both the hardware and

software components of the FSA, which were introduced in the previous chapter, to

facilitate the development of multiple microplastic classifiers. A small dataset is cre-

ated for the purpose of classifier training including plastics and phytoplankton. Using

polarisation-sensitive imaging generates essential birefringent features required for the

classifier models. Our approach encompasses a comprehensive examination of learned

feature extraction and filter bank feature extraction techniques, which serve as inputs

for training various classifiers. Among these classifiers, the customised ResUnet im-

plementation delivered the highest classification performance and achieved the lowest

FPR in the context of binary marine and microplastic classification. A sequential rou-

tine of filter banks, supervised dimensionality reduction, and a random forest model

contributed to the best-performing multi-class polymer classifier. This work effectively

supports the approach that birefringent features are useful in enhancing the classification

of microplastics in imaging-based fluid stream analysis.

5.1 Introduction

This chapter develops methods for classifying microplastic samples amongst marine

matter. The classification process uses the FSA presented in Chapter 4 as a base. The

techniques developed aim for polarisation-sensitive machine learning driven classification

of microplastic particles. However, these methods are not intended to replace traditional
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microplastic classification techniques. Instead, they complement them by providing

quick and cost-effective classification for resource-limited settings or when used as a

prescreening tool. Should more detailed analysis be required, samples can be further

processed and analysed through existing laboratory-based methods.

The FSA developed in Chapter 4 has a lensless holographic imaging system that can

sample flowing fluid and spatially resolve intensity and birefringence features. These

features serve as inputs to the classification pipeline developed in this chapter. Two

pathways are explored to obtain a suitable classifier: one through manual feature devel-

opment and the other through learned feature extraction. Manual feature development

relies on a more hand-crafted approach to generate and extract features for classifier

training, which often includes the use of filter banks. In contrast, learned feature ex-

traction may rely primarily on neural networks to automatically extract features. Both

pathways have their strengths and weaknesses, which are thoroughly examined in this

chapter.

The suggested workflow may vary depending on the specific use case, such as the abil-

ity to classify microplastic particles as a distinct class from marine microorganisms or

classifying different types of synthetic polymers separately from marine microorganisms.

Furthermore, the adopted approach may be influenced by the available computing re-

sources, processing duration restrictions, classification accuracy, and limits of detection.

This chapter’s classifier development task treats the segmentation step as a preliminary

preprocessing stage in the classification workflow that has already taken place. Conse-

quently, the metrics assessed are limited to the classification performance and not the

segmentation performance, which was dealt with separately in Chapter 4.

The chapter commences by covering the creation of a small dataset comprising ma-

rine phytoplankton and plastic samples. Subsequently, implementing a learned feature

classifier in the form of an adapted encoder-decoder U-Net-syle structure is assessed,

demonstrating promising results for the binary (microplastic and marine) classification

problem.

Filter bank manual feature extraction is then explored, implementing both Gabor and

MR filter sets to create a high-dimensional pixel-wise feature vector. Feature selection

and supervised dimensionality mapping were applied to streamline the expanded feature

set, and this process resulted in a more suitable feature vector length for training a

machine learning classifier. Multiple machine learning models were tested for the multi-

class polymer classification problem, with the random forest classifier showing promise.

For the purposes of the binary (microplastic and marine) classifier it was felt that the
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learned feature approach was most suited to this application, whilst for the multi-class

synthetic polymer classifier the filter bank feature extraction route with a random forest

was preferred. The results suggest that the selected classifiers are capable of performing

classification on the binary (microplastic and marine) problems as well as multi-class

polymer problems, and that the birefringence-resolving capabilities of the FSA provide

a suitable input to this workflow.

5.2 Materials and methods

5.2.1 Dataset

The preceding chapter created a small base dataset comprising synthetic polymers and

marine phytoplankton samples for the purpose of training a supervised binary segmenter.

Since microplastic and phytoplankton datasets are not readily available, a larger dataset

is created to train classifiers effectively. Given this study’s exploratory nature, the

developed dataset is limited to a proof of concept approach but encompasses sufficient

examples representing each class to facilitate training. It is acknowledged that this

dataset is not extensive and there is a recognised need to expand its content over time

to accommodate a broader and more diverse sample set.

Samples

Marine phytoplankton cultures of Chaetocerous calcitrans and Isochrysis galbana were

obtained from the DFFE Seapoint Marine Research Aquarium. These cultures served

as a comparison class of non-plastic particles or objects commonly found in marine

environments that fall within or below the size range of interest. This comparison class,

or negative class, enables evaluation of the classifier’s performance by offering alternative

objects that aid in identifying instances of misclassification.

Since only two phytoplankton cultures were used in this study, it is highlighted that

the approach creates a simplified marine-like environment. The aim is not to replicate

the complex and diverse phytoplankton composition typically found in regular seawater

samples; rather, the intention is to establish a controlled setting that allows for effec-

tive validation of outputs in response to known inputs without the risk of potential

microplastic contamination. This approach provides a reliable foundation for assessing

the performance of the developed workflow as a proof of concept.

Micronised synthetic polymer powder samples (Shijiazhuang Tuya Technology Ltd.,

China) included PET, PP, PE, and PS. Additionally, scientific calibration microspheres
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of both PE and PMMA (Cospheric, USA) were obtained for dataset development and ex-

periments. The micronised synthetic polymer powder samples exhibited varying shapes

and sizes, ranging from under 1 µm to over 2 mm. When visually inspecting these sam-

ples with the FSA, it was observed that the particle size distribution varied considerably

among different plastic types. While achieving a collection of synthetic polymers with

the same size distribution but diverse shapes is challenging, a step toward enhancing

comparability amongst the samples’ size ranges was necessary. Additionally, some syn-

thetic polymer samples contained many very fine or small plastic particles that were

near or below the image sensor’s resolution limit. These tiny particles created an ex-

tremely turbid environment and overwhelmed the image sensor without contributing

objects within the desired size range for imaging. As a result, a dry screening mechan-

ical sieving process was employed to refine and enrich these plastic samples, aligning

them more closely with the size fractions of interest.

Stainless steel laboratory test sieves (Endecotts Ltd., UK) with aperture sizes of 25 µm,

53 µm, and 105 µm were used for the dry screening process along with a vibratory shaker

(Analysette 3 Pro, Fritsch GmbH., Germany). The screening process ran three five-

minute program intervals at an amplitude of 0.1 mm that were performed separately

for each synthetic polymer type. After the screening process, samples measuring 25 µm

and below were set aside, while the particles ranging from 25 µm upwards were grouped

into equal parts by mass. While this process significantly improved the availability of

particles of interest in the processed sample batches, it was noted that fine particles

were still present, albeit in reduced quantities. This occurrence can be attributed to the

electrostatic nature of the micronised plastic particles, causing them to adhere to various

parts of the metal sieves, particularly the walls of the sieve bands. Consequently, these

remaining fines would be retained in the refined sample batches, potentially contributing

to background noise levels. This suggests that these smaller particles may contribute

to the particle count distribution being positively skewed as the lower size range may

contain many particles. Please refer to Appendix A for a comprehensive description of

the full dry screening procedure.

Dataset creation

Once the samples were within the size range of interest, they could be used to generate

a dataset for classifier training. The following points regarding the dataset creation

process are deemed important for reproducibility:

• Flowing samples: Images were captured while samples were in motion; static

sample imaging was not employed to generate the dataset.
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• Solution preparation: Sample solutions for each object class were prepared by

firstly creating a saline solution (3.5% salinity and laboratory water) to which 0.1%

v/v ethanol and 0.1% v/v dish soap were added, acting as a surfactant. Finally,

object class samples were added.

• Marine and non-microplastics: Creating individual classes for microalgae,

debris, and other particulates would be an intractable task due to the substantial

variations among marine organisms and their states of health. Therefore, we have

categorised these entities under a single, all-encompassing “marine” class, which

includes all particles except synthetic polymers.

• Sample classes: The dataset included the following classes: PET, PE, PP, PS,

and marine. Individual solutions were prepared for each class type so that they

could be imaged through the FSA without contamination from other classes. The

phytoplankton present in the “marine” class consisted of mixed Chaetoceros calci-

tans and Isochrysis galbana samples, which were imaged together as they belonged

to the same object class in the view of the classifier.

• Solutions and concentrations: Each synthetic polymer class had a concentra-

tion of 0.32 g/L, while the marine class was a 1:1000 dilution from each stock.

Since the objects imaged in the acquisition runs are used to generate samples for

the dataset only, the intention here is not to specify the exact suitable concentra-

tions and dilutions for dataset creation but rather to state what was chosen for

our experiments. The stock dilution factor is purely based on what was observed

when studying the raw stock and thus will vary depending on the cell concen-

tration of the culture. We did not want extremely sparse frames, which would

require capturing many frames to include sufficient objects. Similarly, we aimed

to avoid having too many objects in the frame so that the image sensor was not

overwhelmed.

• Capture sessions: Each class was run through the detector in separate image

capture sessions to preserve the known ground truth. Multiple objects of the

same sample class were present in a single frame and a collection of these frames

formed a session. Each image session comprised 200 frames with standard image

dimensions of 2448× 2048 pixels.

• FSA settings: The image sensor settings remained consistent with the previous

chapter, namely, five frames per second with the LPE generating 7 µs pulses to

reduce motion blur. The flow rate was set to 20 mL/minute and the standard

preprocessing procedure was applied to each capture session.
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• Maintenance and handling: The flow cell, piping, and glassware were disman-

tled and cleaned in soapy water between each sample class run. Cotton laboratory

overalls were worn during the procedures to avoid any (synthetic) fibre contami-

nation from clothing.

Images were selected from the capture runs to represent each object class and formed a

total set of 90 images that provided the foundation for the small dataset generated in

this study. Each of these 90 images had seven primary feature channels as generated

and delivered by the FSA, namely: preprocessed hologram, mid-depth propagated in-

tensity, mid-depth propagated phase, birefringence retardance, birefringence slow axis

orientation, Stokes parameter 1, and Stokes parameter 2.

For generating the ground-truth labelled masks, Matlab Image Labeller was used to

manually label the regions of interest in the images, assigning values of 0 - 5 for back-

ground, PE, marine, PS, PET, and PP, respectively, for the object or foreground class

in a pixel-wise manner. The propagated intensity channel was used as the reference

image for the labelling process.

Given that the dataset follows a pixel-wise labelling approach, it exhibits certain levels of

class imbalance. Nonetheless, subsequent phases of classifier development offer suitable

opportunities to address this imbalance by selecting a subset of the dataset or generating

synthetic data through augmentation techniques to supplement lacking classes.

5.2.2 Learned feature classifier

We continue with the pixel-wise approach for this classification application, in a similar

fashion to what was implemented for the segmentation block of the FSA in Chapter 4.

This encoder-decoder approach was chosen because it is common for multiple objects

to be present in a scene. Therefore, a fine-grained pixel-wise inference supports more

detailed shape measurement analysis for logging purposes. The network was trained

from scratch as pre-trained backbones are not readily available for the non-traditional

seven-channel FSA input used in this work, even though transfer learning has been well

applied in the general microscopy arena [52].

In approaching the binary classification task of categorising marine and synthetic poly-

mer particles, we investigated many variants of the encoder-decoder scheme. The resid-

ual U-Net (ResUnet) [34] is a fully convolutional network that combines features of

U-Net [20] and residual learning. It uses U-Net as a foundation and incorporates pre-

activated residual blocks or skip connections into the model instead of the convolutions

found in the original U-Net.

Fraser Derrick Charles Montandon - Electrical Engineering



5.2. MATERIALS AND METHODS 79

Our proposed implementation modifies certain hyperparameters and functions within

the ResUnet model. The input stack from the FSA was divided into smaller patches

rather than a single large frame as it is more computationally efficient. The kernel size

of 3× 3 was maintained, as was the seven-layer network depth. In our adjusted model,

we set the input filter number to 128 and used a seven-channel input to accommodate

the FSA stack with a patch size of 128 × 128. In other words, we concatenated the

seven channels from the FSA into a single matrix and fed the network with patches

sized 128 × 128 × 7 pixels (which included each FSA channel). The network layout is

illustrated in Figure 5.1 and the network structure and feature extraction are presented

in Table 5.1.

Input or output

DecoderEncoder

3-channel output tile
128 x 128 x 3

Concatenation
Addition

Activation

Batch normalisation

Upsampling

Convolution

Bridge

128 x 128 x 7
7-channel input tile

Figure 5.1: Layout of adapted ResUnet classifier.

The original ResUnet used mean-squared error as a loss function, however, a combination

of Dice [54] and focal loss [55] were employed in this model in softmax form. Similar to

the segmentation problem noted in Chapter 4, these loss functions are useful in scenarios

with class imbalance in datasets and are given a 50/50 weighting. Categorical Dice loss

(CDL) and categorical focal loss (CFL) are defined as follows:

CFL = −
N∑
i=1

(αi · (1− pi)
γ · log(pi)) , (5.1)

CDL = 1−
2
∑N

i=1 pi · gi∑N
i=1 p

2
i +

∑N
i=1 g

2
i

, (5.2)

where N is the number of classes, γ is the focusing parameter, αi is the balancing factor

for each class i, pi is the predicted probability over class i, and gi is the ground truth

label.
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Table 5.1: Adapted ResUnet structure.

Level Convolutional layer Feature size Stride

Input 128× 128× 7

1
1
2

128× 128× 128
128× 128× 128

1
1

Encoder 2
3
4

64× 64× 256
64× 64× 256

2
1

3
5
6

32× 32× 512
32× 32× 512

2
1

Bridge 4
7
8

16× 16× 1024
16× 16× 1024

2
1

5
9
10

32× 32× 512
32× 32× 512

1
1

Decoder 6
11
12

64× 64× 256
64× 64× 256

1
1

7
13
14

128× 128× 128
128× 128× 128

1
1

Output 15 128× 128× 3 1

A softmax output was used since this network is trained as a three-class output: back-

ground, synthetic polymer, and marine. The softmax output assigns a probability esti-

mate to each class and is represented as follows:

s(vi) =
exp(vi)∑N
j=1 exp(vj)

, (5.3)

where (vi) represents the vector of raw outputs from the neural network, i denotes the

ith entry of the softmax output vector, and N is the number of classes.

The dataset exhibited a distribution of 58% synthetic polymer and 42% marine pixels.

To account for this imbalance, class weightings were applied to the model and the class

weights were calculated as the inverses of their respective proportions.

Before training, the dataset was normalised and split into training (60%), validation

(20%), and test (20%) sets. The augmentation routine developed earlier in this work

was applied only to the training set. The Adam optimiser [56] was used, along with a

batch size of 16. The resulting model was trained for 45 epochs — a value determined

by an early stopping condition.

For testing and model evaluation purposes, it is assumed that the segmentation process

has already occurred and that only the two class classification results are of interest. This

decision was made to facilitate accurate comparisons with filter bank feature extraction

methods later in this work as the inclusion of background segmentation in this section

would introduce inconsistencies in these comparisons.
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A traditional U-Net was used as a base implementation for performance comparison

against the ResUnet model. The U-Net implementation results in a similar number

of learnable parameters, but naturally a different number of filters and depths. This

implementation uses 64 filters in the first layer to make up the training parameter

difference. The learned feature approach was only implemented for the binary marine

and polymer classification problem as initial exploration into a learned feature multi-

class polymer classifier yielded poor results.

5.2.3 Filter bank classifier

Birefringent texture

If we consider the multi-class synthetic polymer classification problem and examine

Figure 5.2, which displays the mid-depth intensity of four different synthetic polymer

samples processed with the FSA, it is observed that the images reveal differences in ge-

ometric appearance, particularly in terms of random shapes rather than interior object

intensity. While these shapes might prove useful for specific filters like edge detectors,

the edges themselves may vary randomly from one sample to the next. It is possi-

ble that the edges themselves exist due to a sample-unique degradation process and

thus are possibly not unique to a specific polymer type. Given that this study pri-

oritises the use of interior features over global geometric measurements, our attention

now turns to polarisation-assisted feature development. Examining Figure 5.3, we find

(a) (b) (c) (d)

Figure 5.2: Intensity mid-depth propagation of synthetic polymer samples, where objects
are the low-intensity regions in the frame. (a) PS. (b) PE. (c) PET. (d) PP. The small
particle fines mentioned in the sample refining process are visible in (b). Scale bar in
all figures indicates 50 µm.

that the birefringence retardance channel exhibits clear optical anisotropy. It is well-

established that different synthetic polymers display varying degrees of birefringence

owing to their manufacturing processes. Moreover, micron-resolution imaging combined

with polarisation-sensitive analysis offers insights into the sub-micron molecular arrange-

ment of the lattice, even when it falls below the resolving capabilities of the imaging
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system [12]. Given the presence of birefringent activity in these samples, as well as

(a) (b) (c) (d)

Figure 5.3: Retardance channel of the same four samples from Figure 5.2. (a) PS. (b)
PE. (c) PET. (d) PP.

noting that the manufacturing process of polymers leads to crystalline or amorphous

structures [12], it is conceivable that the birefringence channels may contain periodic

or stochastic texture features that could prove valuable for feature extraction when

subjected to appropriate image filters.

The FSA delivers baseline feature channels, and we wish to generate further derived

features by using them as an input to generate multiple outputs. The input signal is

convolved with different filters and is decomposed into sub-bands. This filter bank is

also referred to as an analysis bank [35,58]. The resulting decomposed sub-bands reveal

low-level features that a machine-learning classification algorithm may find useful.

In the case of the synthetic polymer samples, an expectation is that periodic features or

stochastic structures may be present in the birefringence data. In that respect, filters

for texture-based analysis are appropriate for this use case. However, texture is a global

characteristic so relying on filters to gain insight into low-level neighbourhood features

that may describe part of the texture is vital and should form a significant contribution

to the feature vector. Since the segmentation process has already been performed by the

FSA further up in the processing pipeline, these filters are primarily intended for internal

feature extraction and less emphasis is placed on external edge detection. Moreover, this

is not considered a texture segmentation problem but rather a texture representation

and classification problem.

Out of the synthetic polymers considered in this study, PE, PET, and PP may exist

in crystalline or amorphous structures, or a combination of the two (semi-crystalline).

In the PE domain, HDPE may have a higher degree of crystallinity when compared to

LDPE. PS is generally primarily amorphous but can be modified to exhibit some degree

of crystallinity [12]. As far as features and textures are concerned, a combination of

filters is required to extract a periodic and stochastic view of texture, especially on the
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birefringence channel considering the order and random textural arrangement of pixels.

It is established that the plastic particles present in this study will exhibit non-uniform

shapes or sizes. The marine phytoplankton samples are expected to be more uniform

in shape but with varying dimensions, especially for Chaetocerous calcitrans in terms of

chain length. Naturally, plastics as well as non-plastic debris (considered marine class)

will vary in both shape and size. During a particle’s movement through the FSA, its

orientation will vary as it traverses the flow channel and as such the image sensor has

no control over which orientation it will be presented with during this process.

Filter bank implementation

The filter bank approach for feature extraction and the design of the pixel-wise classi-

fication workflow was not developed for speed but rather as a proof of concept for an

acceptable standard of synthetic polymer classification. The choice of filters for feature

extraction, therefore, was not based on computational demands but rather on which are

the most appropriate for the texture features.

The input frame from the FSA is a multi-channel image due to the holography and

polarisation principles applied to generate digitally propagated birefringent features;

these channels are referred to as primary or base feature channels. Three of these

channels (mid-depth propagated intensity, birefringent retardance, and birefringent slow

axis orientation) are used for further feature extraction with the analysis bank. We

therefore refer to these derived features as extended features. This creates a higher-

dimensional feature space compared to applying the same filter set to a single-channel

monochrome image. Training a classifier in such a higher-dimensional space may pose

challenges and performing classification in a lower-dimensional feature space is preferred,

thereby necessitating methods for dimensionality reduction.

We implement two filter banks for feature extraction: a Gabor and an MR set.

The Gabor filter bank broadly covers a range of wavelengths (λ), orientations (θ), and

standard deviations (σ). The aim is to provide general coverage and not be overly tuned.

The selected parameters for the filter bank are as follows: λ = [10 20 30 40], θ = [0 45

90 135] degrees, and B = [0.5 1 1.5 2], where B = 1
2πσ .

The MR filter bank [40] is employed with its complete set of 38 filters in this study.

The authors of the filter bank implemented a 49 × 49 kernel size for their study, as

they used 200 × 200 pixel texture patches. However, in our study some particles were

considerably smaller than this kernel size. As a result, the kernel size was adjusted

to 13 × 13 through experimentation and the following parameters were used for these
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Table 5.2: Feature list

Feature number Input Filter bank

1-7 Fluid stream analyser base features None

8-71 Propagated intensity Gabor

72-135 Birefringent retardance Gabor

136-199 Birefringent slow axis Gabor

200-237 Propagated intensity RFS

238-275 Birefringent retardance RFS

276-313 Birefringent slow axis RFS

Gabor bank: λ = [10 20 30 40], θ = [0 45 90 135] degrees, and B = [0.5 1 1.5 2].
RFS bank: kernel size [13], scales [1 2 4], θ = [0 60 120 180 240 300] degrees, and rotationally
invariant filters [2].

anisotropic filters: scales [1 2 4] and orientations [0 60 120 180 240 300] degrees.

We commence the construction of a feature space using the aforementioned filters. The

resulting analysis bank is outlined in Table 5.2. This feature bank aims to offer compre-

hensive coverage for texture analysis, with subsequent application of feature selection

and dimensionality reduction techniques to refine it. Consequently, not all the features

in this list are used in the final workflow.

Feature selection

Filter-based feature selection was performed through a Pearson correlation analysis;

Pearson correlation measures the normalised linear relationship or covariance between

two variables.

The Pearson correlation coefficient (c) is calculated as follows [59]:

c =

∑
i (Xi − X̄)(Yi − Ȳ )√∑

i (Xi − X̄)2
∑

i (Yi − Ȳ )2
, (5.4)

where c is the Pearson correlation coefficient, Xi is the value of the variable X for the

ith data point, X̄ is the mean of variable X, Yi is the variable Y for the ith data point,

and Ȳ is the mean of variable Y.

The dataset was used in conjunction with the analysis bank to create an extended feature

dataset, which was then examined for correlations. A correlation matrix was generated

from the feature dataset which, combined with a predefined correlation threshold (set

at 0.8), identified highly correlated features. The correlation score served as a criterion

to select and discard the most redundant features. The feature selection served as a

first-pass attempt in the greater dimensionality reduction campaign and is considered a

broad approach to removing only very highly linearly correlated features.
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The feature selection process identified 171 features from the original list of 313 features

for retention. All seven primary feature channels provided by the FSA were selected.

Additionally, out of the 102 filters in the analysis bank, each applied to the mid-depth

intensity, retardance, and slow axis channels. The following numbers of derived features

were retained for each primary or parent feature:

• Mid-depth propagated intensity derived features: 39

• Birefringent retardance derived features: 69

• Birefringent slow axis orientation derived features: 56.

This suggests greater linear redundancy when applying the analysis bank to the mid-

depth intensity channel on our dataset. However, when applying the bank to birefringent

primary features one can extract richer, less linearly correlated features.

Dimensionality reduction

Initial exploration using PCA successfully accounted for 95% of the variance by reducing

the feature set to five eigenfeatures. However, the performance was substandard when

this mapping was further tested in classifier training and real-world experiments. The

issue appeared to be the linear nature of the PCA mapping, which failed to establish

well-defined relationships among the features, particularly in cases where non-linear

relationships were present. Instead, we employed uniform manifold approximation and

projection (UMAP) for graph-based supervised non-linear dimensionality reduction [60].

We employed a non-parametric training approach for UMAP. Although the algorithm

is not entirely deterministic, the authors suggest that it is near deterministic. We used

a supervised approach to assist in mapping the higher-dimensional feature space to a

lower-dimensional feature space that can be clustered based on class. The resulting

model subsequently performs future mappings on new, unseen, and unlabelled data.

This dimensionality reduction model occupies the position between the output of the

selected features (primary and analysis bank) and the classification model input within

the workflow.

We first performed mapping with reference to the multi-class polymer classification

problem. The input data used to train the model was balanced to prevent potential bias

towards a specific class. This approach ensured that the training routine had adequate

examples from each class, enabling it to establish meaningful distance relationships for

cluster mapping. The input features were normalised using a standard scoring approach.

For the training set, a random sample of 20 000 feature vectors was selected from each
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class of synthetic polymer, resulting in a total training set of 80 000 labelled feature

vectors each with a length of 171.

A supervised learning approach was used for this model, where class labels were provided.

The criteria for hyperparameter selection was to maximise inter-class cluster distances

and minimise computational overhead, with the generated feature vector mapping being

suitable as an input into traditional machine learning classifier models like random

forests, k-nearest neighbours (KNN)s, or SVMs. The chosen hyperparameters were a

five-dimensional vector mapping, ten nearest neighbours, and a minimum distance of

0.7. These parameters were selected to balance feature mapping quality and support

efficiency as computing additional nearest neighbours is computationally demanding.

Additionally, balancing global and local distance relationships is important for sensitivity

to outliers and reducing overfitting risks.

After the model was constructed, an additional set of 160 000 unseen samples was

drawn, in which each synthetic polymer class was equally represented. This sample set

(devoid of their class labels) was processed by the constructed model. The generated

feature mapping transformed the original 171-dimensional feature space into a reduced

five-dimensional space. These newly selected samples were intentionally chosen to be

independent of the earlier sample data used to construct the model; this approach was

undertaken to reduce the risk of classifier overfitting and support robustness in the

forthcoming stage of the workflow.

Although the mapping was performed in five-dimensional space, Figure 5.4 displays

three of these dimensions, revealing clusters for the four different polymers that were

generated with unseen data. The class labels were added after the mapping process for

display purposes and were not used to generate this mapping. It is evident that some

polymers (and their clusters) have tighter distributions than others, raising questions

about the influence of noise. All five dimensions were interrogated but without loss of

generality this figure is used for discussion.

Suppose a cluster is extremely small and tight; it may lead to model overfitting. Con-

versely, if the cluster is too large and close to other clusters, it might be susceptible

to influence from non-class particles, resulting in misclassification. Hyperparameters

such as the minimum distance span, the distance metric, and the number of nearest

neighbours considered are important for tuning purposes. However, as can be seen from

the plot, different polymers have different spreads and therefore hyperparameters were

selected to accommodate the differing distributions fairly.

This also prompts a discussion about post-classification processing and how the workflow
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Figure 5.4: Dimensionality reduction four-class (PE, PP, PS, and PET), showing three
of five dimensions.

should handle classification output. Using an ensemble-type approach to take the class

mode of the model’s output for a given object patch could lead to more reliable inference,

especially when encountering noise.

We also generated a model for the two-class (polymer and marine) problem with the

filter bank methodology. This served as a contrast to the ResUnet neural network

implementation discussed in the previous section. A similar approach to the multi-

class polymer-only dimensionality reduction was followed, but this time mapping to a

three-dimensional space was suitable.

For the supervised training set, we randomly selected 10 000 feature vectors from each

synthetic polymer class, combining them into a single polymer class of 40 000 vectors.

Additionally, 40 000 marine feature vectors were randomly selected, resulting in a to-

tal training set of 80 000 labelled feature vectors to construct the model. The same

hyperparameters were used as for the multi-class polymer approach.

After constructing the model, we drew an additional set of 100 000 unseen samples,

including 50 000 from the single polymer class and 50 000 from the marine class. Fig-

ure 5.5 shows a two-dimensional orientation of the 3D mapping of these 100 000 unseen

and unlabelled samples. The visualisation suggests that these two classes each have

prominent clusters, but they share significant overlap in between.
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Figure 5.5: Dimensionality reduction for two classes (marine and polymer).

Following the mapping process, the class labels were reintroduced to these lower dimen-

sional datasets and were available for use with supervised learning approaches.

Training classifiers

The resulting lower dimensional feature set provides a more suitable input to a classical

machine learning model. We batch-ran the training of multiple supervised learning

classifiers and optimised hyperparameters to determine the most suitable model. Given

the nature of the dataset, it was felt that a random forest would be a useful classifier in

this instance. Random forests are particularly well-suited to this dataset because they

use random splits in trees; this characteristic makes them less susceptible to overfitting

and enhances their ability to generalise, effectively handling variations in the data.

The reduced risk of overfitting can be particularly advantageous for the marine class,

given the limited dataset size. In the two-class classification scheme, marine particles

encompass varying phytoplankton and debris, which poses a challenge for classifiers

with rigid boundaries. In this context, a random forest classifier may be less sensitive

to outliers and noise than models such as an SVM.

Examining the clusters again in Figure 5.4, it is evident that PS and PET clusters are

small and tight, which may make them prone to overfitting and sensitive to noise in

new data. Additionally, boundary regions where the inter-class cluster distance is the

shortest also pose a risk. Compared to the clusters generated in the marine-polymer task,
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multi-class polymer classification is a more difficult problem. Therefore, a consistent

preprocessing protocol and normalisation routine are important for new data processing,

and using an ensemble-type scheme to take the mode of classification output might prove

beneficial for the workflow.

The classifiers were modelled separately for two problems: a microplastic and marine

classifier to compare with its learned feature neural network counterpart and a multi-

polymer classifier. Two dimensionality-reduced datasets were available from the previ-

ous section: a three-dimensional 100 000 feature vector set for the binary marine-polymer

problem and a five-dimensional 160 000 feature vector set for the multi-class polymer

problem. Both sets were normalised using the standard-score approach.

Binary (microplastic-marine) classifier

The dataset of 100 000 three-dimensional feature vectors was used to train binary clas-

sifiers to predict marine and synthetic polymer classes. The pool of feature vectors was

equally divided between the two classes and subsets were created by partitioning the

dataset into training and test sets using an [80, 20] distribution with five-fold cross-

validation. Several traditional machine learning models were trained; each model used

a 30-iteration Bayesian optimisation routine to minimise the objective function in aid

of appropriate hyperparameter selection.

Four class (multi-polymer) classifier

The dataset of 160 000 five-dimensional feature vectors was used to train multi-class

classifiers to predict PE, PET, PP, and PS samples. The pool of feature vectors was

equally divided amongst the four classes and subsets were again created by partition-

ing the dataset into training and test sets using an [80, 20] distribution with five-fold

cross-validation. Several traditional machine learning models were trained and the same

iterative optimisation routine was used for hyperparameter selection as was used previ-

ously in the binary classifier section.

Hyperparameters and tuning

The tuning of the classifier model’s hyperparameters was limited to the standard set-

tings during training and no additional tuning of the model’s decision boundary was

performed after training. This decision aimed to avoid overfitting and maintain the

model’s ability to generalise effectively to real-world data, and moreover to ensure the

general reproducibility of our methods.
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Table 5.3: Learned feature two-class classifier results (mean).

Model Accuracy Precision Recall F1-score FNR FDR FPR

ResUnet 98.66 98.57 98.67 98.62 1.33 1.43 1.33

U-Net 98.18 98.17 98.06 98.11 1.94 1.84 1.94

Table 5.4: ResUnet classifier results — individual classes.

Class Accuracy Precision Recall F1-score FNR FDR FPR

Polymer 98.66 99.12 98.59 98.85 1.41 0.88 1.25

Marine 98.66 98.02 98.75 98.38 1.25 1.98 1.41

5.3 Results

Learned feature results

The mean results in Table 5.3 show that the ResUnet network style implementation

yields a modest advantage compared to the baseline vanilla U-Net setup in terms of

all performance metrics. Table 5.4 details the individual classes in the ResUnet imple-

mentation, and shows that its FPR is 1.25% when considering the polymer class. This

metric is important as we want to limit any false detections of the polymer class and

thus it should be as low as possible. The U-Net implementation (Table 5.5) obtained an

FPR for the polymer class of 2.57%. The accuracy and precision results are similar for

each class. This suggests that the classifiers did not favour one class over another and

therefore shows limited bias. These results are further discussed in the analysis section

and examined in the mixed-media experiments in the next chapter. This learned feature

approach appears to offer an appropriate solution to the binary classification problem

with the customised ResUnet implementation being put forward as the selected model.

Filter bank feature extraction — binary results

Table 5.6 displays the model performance, based on the 20 000 feature vector test set.

The random forest and KNN implementations demonstrated the most favourable perfor-

mance metrics, but all of the classifiers produced competitive results. Tables 5.7(a) and

5.7(b) present the confusion matrices for the two best-performing models (random forest

and KNN) where again the performance is comparable. Detailed confusion matrices and

Table 5.5: U-Net classifier results — individual classes.

Class Accuracy Precision Recall F1-score FNR FDR FPR

Polymer 98.18 98.23 98.70 98.46 1.3 1.77 2.57

Marine 98.18 98.10 97.43 97.76 2.57 1.90 1.30
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Table 5.6: Feature extraction — two-class classifier results (mean %).

Model Accuracy Precision Recall F1-score FNR FDR

KNN 97.06 97.08 97.06 97.06 2.94 2.92

Random forest 97.03 97.07 97.05 97.05 2.95 2.93

Tree 96.88 96.94 96.88 96.87 3.12 3.06

SVM 96.80 96.82 96.81 96.80 3.19 3.18

Discriminant 96.50 96.31 96.71 96.51 3.50 3.50

Naive Bayes 96.83 96.87 96.83 96.82 3.18 3.13

Table 5.7: Confusion matrices two-class with TPR on diagonal: random forest (left),
KNN (right).

Predicted %
SP Marine

Actual %
SP 96.10 3.90
Marine 2.00 98.00

Predicted %
SP Marine

Actual %
SP 95.97 4.03
Marine 1.85 98.15

hyperparameters for all models can be found in Appendix A.

The hyperparameters obtained from the Bayesian optimisation routine for the top two

performing classifiers are as follows:

• KNN: distance metric, Chebyshev; number of neighbours, 216; distance weight,

inverse.

• Random forest: number of learners, 44; number of splits, 283.

The FPR results (in percent) when considering polymer as the positive class are as

follows: tree, 1.27; naive Bayes, 1.69; KNN, 1.85; random forest, 2.00; SVM, 2.34, and

discriminant, 3.71. While the KNN achieved the highest accuracy among the classifiers,

it did not attain a suitable FPR and was therefore not selected to be put forward as a

candidate. The lowest FPR was achieved by the tree model at 1.27% and this result is

comparable to the 1.25% FPR achieved by the learned feature approach. However, the

general mean metrics in terms of accuracy, precision, recall, and F1-score were all lower

than the learned feature approach, thus showing less promise.

Filter bank feature extraction — four class results

Based on the test dataset, the performance metrics of the six different model implemen-

tations are displayed in Table 5.8. The hyperparameters obtained from the Bayesian

optimisation routine for the top two performing classifiers are as follows:

• KNN: distance metric, Minkowski (cubic); number of neighbours, 268; distance

weight, squared inverse.
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• Random forest: number of learners, 496; number of splits, 12747.

Upon reviewing the classifier performance metrics in Table 5.8, it can be seen that

the random forest model achieved the best overall classification accuracy of 95.03%,

closely followed by the KNN classifier. The naive Bayes model sits at the bottom of

the classification accuracy ranking at 91.53%. It was hoped that the SVM classifier

would achieve stronger performance. However, it only presented accuracy figures in the

mid-band of the accuracy ranking, possibly due to its sensitivity to noise or outliers.

Figure 5.6 displays the confusion matrices for all of the classifiers. If we consider the

performance of different polymers with the different classifier models, it is observed that

PE exhibits the highest classification accuracy in each of the models and also has the

lowest variance across the models. PET, on the other hand, had the highest variance,

whereas both PP and PS have a variance in between.

When examining the misclassification performance of individual polymers across various

models, we observe that misclassifications were relatively evenly distributed among all

classes for random forest (Figure 5.6(a)), tree (Figure 5.6(e)), and KNN (Figure 5.6(f))

models. However, the SVM model (Figure 5.6(b)) exhibited a higher frequency of mis-

classifications, with PET and PS often being mistaken for PP. The discriminant model

showed a reasonably balanced distribution of misclassifications, except for PS which was

frequently classified as PET. On the other hand, the naive Bayes model (Figure 5.6(d))

displayed the highest number of misclassifications, particularly with PP and PET being

frequently classified as PS. This suggests that an ensemble approach of implementing

multiple different classifiers could achieve better overall performance and may be worth

investigating in future studies.

Upon reviewing the confusion matrix for the random forest ensemble (Figure 5.6(a)), it

is evident that PS has the lowest performance with a true positive rate of only 86.3%.

A significant portion of PS false negatives occurred when a PS particle was misclassified

as a PP particle. This suggests a certain textural similarity between these two plastics,

leading to confusion in their classification. The false negatives of PP are more evenly

distributed among the other three classes and a similar pattern is observed with PS.

Both PP and PET exhibit similar classification performance, with true positive rates of

85.6% and 86.6%, respectively. On the other hand, PE shows the best performance with

a true positive rate of 94.8%, but it also displays an equal distribution of false positives

among the other three plastics.
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(a) Random forest.
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(b) SVM.

P
E

P
P

P
S

P
E
T

PE

PP

PS

PET

96.4 1.7 0.8 1.1

7.5 82.8 4.8 4.9

5.9 4.8 79 10.3

7.9 3.5 6.9 81.8

Predicted (%)

A
ct
u
al

(%
)

20

40

60

80

(c) Discriminant.
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(d) Naive Bayes.
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(e) Tree.
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(f), KNN.

Figure 5.6: Classifier confusion matrices showing the TPR on the diagonal. (a) Random
forest. (b) SVM. (c) Discriminant. (d) Naive Bayes. (e) Tree. (f) KNN.

Table 5.8: Feature extraction four-class classifier results (mean).

Model Accuracy Precision Recall F1-score FNR FDR

Random forest 95.03 90.08 90.06 90.04 9.94 9.92

KNN 94.58 89.29 89.17 89.13 10.83 10.71

Tree 94.94 86.33 94.76 87.37 12.59 12.46

SVM 92.96 87.84 85.93 86.04 14.07 12.16

Discriminant 92.47 85.17 84.94 84.83 15.06 14.83

Naive Bayes 91.53 84.42 83.06 82.96 16.94 15.58
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Table 5.9: Random forest classifier results — individual classes.

Class Accuracy Precision Recall F1-score FNR FDR FPR

PE 96.06 90.44 94.20 92.28 5.80 9.56 3.32

PP 94.51 88.23 90.05 89.13 9.95 11.77 4.00

PS 94.89 91.75 87.44 89.54 12.56 8.25 2.62

PET 94.65 89.91 88.54 89.22 11.46 10.09 3.31

5.4 Discussion and analysis

In the learned feature implementation, an attempt was made to transition from binary

synthetic polymer and marine classification to a five-class classification exercise using

encoder-decoder methods. However, this performed poorly. Given that the synthetic

polymers in this study exhibit varying shapes, pure geometric measurements are believed

to be less critical to a feature extractor and, rather, textures may be more useful.

Improving performance in this context may require an expanded dataset, enhanced

resolution through the development of software super-resolution, or the use of lens-based

imaging to capture finer details (at the expense of analyser throughput). This presents

an opportunity for future studies to explore further development in this domain.

Since the learned feature ResUnet model offered the lowest FPR for the polymer class,

it is recommended as the appropriate candidate for the binary classification task. Fur-

thermore it outperformed the other classifiers in terms of all other performance metrics.

While adjusting the classifier’s decision boundary to achieve a lower false positive rate

is possible, we opted to keep the decision boundary unchanged, where the class achiev-

ing the highest probability is the class output for a pixel. To ensure reproducibility,

the decision was made to present the workflow and classifier performance in a raw and

unadulterated state. Should one wish to optimise based on the FPR, either the decision

boundary could be shifted or an offset applied to the logging output of the workflow. If

an offset were to be applied, a percentage of the total positive counts could either be

added or subtracted from the measurement log and applied to the negative class. How-

ever, this remedy only partially satisfies more complex scenarios such as considering

individual particle areas and measurements over and above a raw particle count.

While the filter bank feature extraction workflow performed fairly well in the binary

task of classifying synthetic polymer and marine particles, it exhibits slower processing

compared to its neural network counterpart. More importantly, the FPR for polymer

was higher in all instances and similarly the mean metrics were all less suitable in the

classical approach. Now, if the focus is shifted towards being able to classify specific

classes of synthetic polymers efficiently, it would make sense to use the neural network
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model as a first stage to separate marine and plastic particles and the second stage

purely for plastic classification. The benefit to this is that particles classified as ma-

rine do not require the extensive filter setup and overhead of the filter bank workflow.

Hence, these particles can be swiftly processed and discharged without further action.

Considering that marine particles might outnumber the sparse presence of microplastics

in a real-world scenario, this approach may be a more resource-efficient choice. The

method also facilitates the isolation of marine particles. This effectively creates a clear

boundary for the polymer classification scheme, which has a strategy tailored specifically

to polymer classification (considering the textural intricacies inherent to this task) and

can be further developed for additional microplastic classification without affecting the

marine and polymer decision boundary.

Although a pixel-wise approach was adopted in our classifiers, a shift to a global object

feature vector could be integrated with our design. This could improve classification

inference time and may be investigated in a future study where the trade-off between

inference time and classification performance can be studied. Additional statistical ap-

proaches to texture analysis through computing object patch metrics such as local binary

patterns, co-occurrence distributions, autocorrelation, power spectrum, Laws’ texture

energy, and Markov random fields are available resources for future studies. Texture

compression techniques in the form of textons and histogram matching, as described in

Varma and Zisserman’s work [40], also offer potential for future studies. While being

suited to a multi-polymer classification problem, sufficient object pixels are required for

reliable inference. Unfortunately the minimum size of our object patches would not

provide enough pixels, making this approach impractical. Enhancing FSA resolution

through super-resolution research could render this implementation more attractive.

5.5 Conclusions

In this chapter, we used the FSA and crafted classifiers for microplastic analysis. A

small dataset including marine phytoplankton and microplastics was created. Both

learned feature and filter bank feature classifiers were investigated and implemented. In

the binary (microplastic and marine) classification task, a customised ResUnet learned

feature network was selected as the most suitable choice. For the multi-class polymer

problem, the filter bank feature proposal was the most promising candidate. This filter

bank approach incorporated filter banks, supervised dimensionality reduction, and a

random forest classifier. The amalgamation of these subsystems is developed in the

next chapter and comprehensive mixed-media experiments are conducted to assess this

end-to-end workflow.
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Chapter 6

Pipeline

Conventional microplastic detection methods are often labour-intensive, costly, and offer

limited sample throughput. A processing pipeline was established which is presented

for automated end-to-end microplastic classification in a fluid stream. Our method inte-

grates the FSA and classifiers developed in the previous chapters to produce a pipeline

or workflow and protocol to support microplastic testing beyond standard classification

results. A simplified marine environment was created and spiked with varying concen-

trations of microplastics to allow for workflow evaluation. The assessment encompassed

testing with mixed media samples, including binary microplastic-marine classification,

a five-class classification involving marine and individual microplastic types, and the

classification of geometrically similar polymer calibration spheres composed of two dif-

ferent plastic types. The results obtained support the FSA and classification techniques

developed as a proof of concept; this suggests that our workflow has the potential for

further development as an analyser suitable for resource-limited, time-sensitive, or point-

of-sampling testing.

6.1 Preliminaries

Automated detection and classification of microplastic particles in a fluid stream re-

mains challenging. Existing microplastic detection techniques often require human in-

volvement, which impacts the ability to support a high throughput analysis. Samples

either need significant pretreatment steps or certain tasks in the processing chain are

human-aided and could therefore benefit from automation. We wish to move towards au-

tomating the detection and classification of microplastics in a fluid stream in a low-cost

manner.

This chapter establishes and presents a processing pipeline for end-to-end microplastic
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classification in a fluid stream. Our method puts together a pipeline and protocol to

support the FSA and classifiers developed in the previous chapters. This was done to

provide a more holistic assessment of the system.

The developed FSA and classifiers show utility but must be more formally assessed.

In general, existing studies on microplastic classification using optical imaging methods

often conclude their experiments by presenting classification results on their designated

test datasets. These test datasets typically consist of sample images captured concur-

rently with the training data sample images for their models, and the analysis is often

limited to a focused approach closely aligned with a well-defined ground truth. While

this approach is commendable, it suggests the need for additional real-world experiments

to ascertain the methods’ broader applicability to polymer classification.

This motivation led to the pipeline development in our study. We further introduced

a hybrid-classifier workflow following the positive results that were obtained from both

a learned and filter bank feature approach in Chapter 5; the hybrid workflow includes

both an encoder-decoder and a random forest in a sequential approach. This workflow

accepts an image sequence stream from the FSA developed in Chapter 4 and produces

class predictions along with key shape metrics for logging purposes.

A simplified marine environment was created and spiked with varying concentrations of

microplastics. The workflow’s performance was assessed through mixed media samples

testing, including the binary (microplastic-marine) and five-class (marine and individual

microplastic type) classification problems. This chosen approach enables the compre-

hensive testing of the proof of concept FSA through end-to-end experiments. Using

mixed media experiments in a simulated marine environment allows for a move toward

assessing the system’s performance in more diverse and realistic scenarios that still have

well-defined ground truths.

We also address a unique scenario where we trial a PMMA and PE spheres workflow.

These spheres exhibit similar morphology but differ in birefringent characteristics. Here,

we implement a condensed workflow with the target to classify these particles based on

their interior texture and without the influence of any shape characteristics.

The remainder of this chapter starts by introducing the experiments and detailing the

implementation of the comprehensive end-to-end workflow. This is followed by dis-

cussing the establishment of a simulated marine environment, which includes using two

phytoplankton cultures. The general techniques and procedures adopted to ensure the

reproducibility of our methods are covered. Next, we cover the experimental design

adopted for our workflow assessment in which three experiments are performed. This
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is followed by the results, where we evaluate the workflow’s performance as a binary

classifier for marine and polymer classes, yielding promising results and a low FPR. We

then assess multi-class polymer classification. Finally, the classification of geometrically

similar polymer calibration spheres of two different plastic types (PMMA and PE) is

interrogated.

Results suggest that our workflow may be useful for further development of an analyser

for resource-limited, time-sensitive or point-of-sampling testing and support the proof

of concept for the FSA and classification techniques.

6.2 Workflow

This chapter aims to develop a workflow that amalgamates the FSA and microplas-

tic classifiers alongside further structures to provide an end-to-end classification of mi-

croplastic particles. The workflow must be appropriately designed, implemented, and

trialled to determine suitability. A simulated marine environment and a protocol were

established to support the experiments.

We developed three experiments to assess the workflow and refer to them as follows:

• Experiment 6A: Combined microplastic analysis in a marine environment.

• Experiment 6B: Multi-class microplastic analysis in a marine environment.

• Experiment 6C: PE and PMMA sphere comparison.

The aim of Experiment 6A is to establish if the workflow can detect and distinguish

microplastic particles from marine particles as a single class, whereas 6B aims to further

categorise observed microplastic samples by their individual class types. Finally, 6C

aims to classify similarly shaped objects based on their birefringent texture in which we

study PE and PMMA spheres.

We start by designing the workflow (which is adaptable if required). Then we implement

the experimental protocol, and finally we carry out the three experiments.

6.2.1 Algorithm implementation

Our complete end-to-end workflow is presented here and this architecture is used for

all three experiments (with Experiment 6C using a lightweight implementation). The

processing chain from image acquisition to output classification is detailed in Figure 6.1.

We make use of three sub-systems from the previous chapters: the developed FSA

including both hardware and software elements, the marine-polymer ResUnet network
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developed in the learned feature study, and the multi-class polymer classifier from the

filter bank feature study.

Filter bankSegmentation and 
binary classifier

Dimensionality 
reduction

Random forest7-channel 
stack

Input frame Preprocessing, 
propagation, and 
birefringence 
computation

Continue if flagged
as polymer

Pixelwise output Pixelwise output

Prediction: PE, PET, PS, or PPPrediction:      marine     or   polymer

Figure 6.1: Pipeline overview. The input frame acquired by the FSA undergoes the
preprocessing and base feature extraction routine. The expanded seven-channel stack
is passed to the neural network for segmentation and classification. The particles iden-
tified as polymer type are then sent for further feature extraction with the filter bank.
This high-dimensional feature vector undergoes dimensionality reduction. Finally, the
random forest classifier will perform a pixel-wise prediction on whether the polymer
flagged sample is PE, PET, PS, or PP.

The initial monochrome raw hologram input image undergoes preprocessing as described

in Chapter 4, where the image is first background corrected. The channels are then

expanded to seven through the FSA functionality, which includes using the angular

spectrum method to obtain mid-depth propagated intensity and unrecovered wrapped

phase. The mid-depth intensity frame is demosaiced to access each of the four linear

polarisation orientations and is held in four separate 2D matrices. These matrices are

sent for birefringence and Stokes parameter 1 and 2 calculations.

Birefringence retardance and slow axis orientation are calculated using the method de-

scribed by Shribak and Oldenbourg [14]. However, slow axis orientation values are paired

with their corresponding retardance values only if the computed retardance exceeds a

certain threshold (to be considered valid). Specifically, instances of slow axis orienta-

tion are only chosen when the computed retardance is greater than 0.1 radians. This

criterion is applied to prevent the inclusion of artefacts and ensure that the slow axis

orientation data is grounded in physically meaningful retardance values. Otherwise, the

slow axis result for that pixel will remain at 0 radians. The resulting retardance and

slow axis maps are upsampled by a factor of two using a bilinear kernel to restore the

original image pixel dimensions.
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The seven-channel frame is now directed to the custom ResUnet network for segmenta-

tion and classification of both marine and polymer particles. The frame is partitioned

into 128 × 128 patches and fed into the network. The network’s output is a pixel-wise

classification frame of the same size as the input, labelled 0 for background, 1 for poly-

mer, and 2 for marine. The 128 × 128 output mask patches are reassembled to create

the original frame size.

The image mask obtained will likely contain multiple objects in a frame. This mask

undergoes morphological processing to eliminate connected components containing fewer

than 125 pixels. This step removes smaller, non-relevant objects and artefacts that

fall below the interest threshold, reducing processing overhead by avoiding unnecessary

object extraction and classification stages for these objects. In diverse settings, the

detector may encounter particles like fines or small objects that are close to the image

sensor’s resolving limit, especially in more turbid environments. As a criterion for this

project, objects with a length exceeding 50 µm are of interest to the classifier. Given

that this project uses a 3.45 µm pixel pitch image sensor, a radius of approximately 7.25

pixels is necessary to accommodate the circular area projection of a minimum-length

object (50 µm). Thus, a minimum object area of 164 pixels is required for a circular

object.

Following the removal of objects falling below the area threshold, each retained con-

nected component in the image mask is assigned a distinct object identifier in a desig-

nated data repository, along with their class (polymer or marine). The class is deter-

mined by an ensemble voting approach, where the class prediction of each pixel in the

object patch contributes a vote. Additionally, dimensions including the projected 2D

area, centroid coordinates, and bounding box coordinates are computed and assigned to

the identifying tag.

The workflow could terminate at this stage if it is only used as a two-class marine and

polymer classifier. Should a five-class classification be required, the next stage of the

workflow would classify the specific polymer group of any object patches that are flagged

as a general (non-marine) polymer.

A subset of the FSA channels (mid-depth propagated intensity, birefringence retardance,

and birefringence slow axis orientation) are supplied as individual inputs to the analysis

bank as described in the previous chapter. The selected feature vectors are normalised

based on the standardised score approach. The standard deviation and mean values

calculated over the training dataset are used in this process.

Each polymer-identified object is cropped through the obtained segmentation mask.
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The periphery of the analysed object, stemming from the segmentation process, is more

prone to uncertainty than the central pixels. This concern prompted the processing

of the object mask by applying a 40% radial erosion, which is limited to the polymer

classification process and does not affect the actual recorded object dimensions.

The eroded object patch is now processed to obtain each pixel and assign the appropriate

high-dimensional feature vector to its designated pixel; the feature vector is normalised

according to the standard score approach. Each feature vector now undergoes a di-

mensionality reduction through the trained UMAP model to obtain a feature vector of

length five.

The random forest classifier developed in Chapter 5 accepts the feature vectors from

the pipeline and outputs a class label for the polymer type (1, PE; 2, PP; 3, PS; and

4, PET). The classifier output contains all pixels related to the specific object under

analysis. To determine the class of that object, the mode of the output is taken (in case

some pixels are misclassified). This class label is then assigned to its appropriate object

identifier in the system log. The process is repeated for the next object in the frame,

and once all objects in the frame have been logged the workflow continues to the next

frame.

6.2.2 Recreated marine environment and protocol

A marine stock was created to simulate a basic marine environment containing marine

phytoplankton. The stock was maintained at a salinity level of 3.5% and was care-

fully prepared to minimise the introduction of unwanted microplastic contamination.

Phytoplankton cultures of Chaetoceros calcitrans and Isochrysis galbana were sourced

from the Marine Research Aquarium in Cape Town, South Africa to create the stock.

The cultures were stored in Schott borosilicate media bottles and the concentration of

microorganisms could be adjusted using sterile saline (NaCl and laboratory water) to

create a stock representative of approximate mean ocean phytoplankton concentrations.

The two microorganism species used in this study exhibit a size range of 5 µm to 500 µm

in length. Notably, Chaetoceros calcitrans, in particular, forms long chains or clusters

consisting of multiple cells [61], resulting in significant size variations within a single

object. The classification approach adopted in this study treats marine microorganisms

as a unified class of objects, acknowledging their potential geometrical variations.

A baseline cell count of the acquired cultures was performed to be able to adjust the

stock concentration quantitatively. The obtained phytoplankton cultures were analysed

with a haemocytometer counting chamber (Helber Z3000, Hawksley) and a bright-field
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Table 6.1: Cell count of phytoplankton cultures.

Species Count 1 / mL Count 2 / mL Mean / mL Std. dev / mL

C. calcitrans 13 437 500 16 562 500 15 000 000 1 608 978.70

I. galbana 22 500 000 20 625 000 21 562 500 29 612.14

microscope (CX-43, Olympus) with a 100X oil immersion objective lens (1-U2B235,

Olympus). Counts were performed in duplicate and are shown in Table 6.1. While it

is not the intention of this study to accurately recreate a marine environment solely

based on two types of phytoplankton, the dilution of the stock concentrations must be

reasonable in terms of either what may be encountered when sampling a raw marine

solution or when concentrating a marine solution by an appropriate factor. In previous

imaging-based phytoplankton studies, raw ocean water samples were concentrated up

to 3000 times using trawl net methods and then further diluted, resulting in an effective

concentration of 60 times the raw sample. High-concentration samples were defined

as containing 2000 to 3000 objects/mL [16]. Chaetocerous is a common and abundant

phytoplankton genus in typical marine waters. Some studies have reported it to consti-

tute as much as 91% of total phytoplankton in certain areas, with Chaetocerous blooms

reaching concentrations of up to 31 000 cells/mL [62].

In our experiment, the two obtained cell cultures were diluted in a sterile saline solution

to create a 1:1000 dilution. Subsequently, equal parts of Chaetocerous calcitrans and

Isochrysis galbana were mixed to form a solution of Chaetocerous calcitrans (7 500 ±

804.49 cells/mL) and Isochrysis galbana, (10 781.250 ± 14.81 cells/mL). This resulting

net cell concentration is expected to be higher than what is typically observed in the

wild but falls within the range observed in extreme cases. This concentration level

also encompasses scenarios where a standard or typical sample has undergone some

pre-concentration steps.

Since we lack a well-defined working range for expected microplastic concentrations in

marine waters, we opted for significantly more marine particles than synthetic polymer

particles. This approach allowed for effective assessment of the system’s performance

in low microplastic concentration environments and emphasised the importance of the

FPR. Although seawater samples containing phytoplankton could have been directly

obtained from the ocean, this was avoided due to concerns about potential contamination

with microplastic particles. Ensuring a reliable and uncontaminated ground truth was

the priority.
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Figure 6.2: Raw cultures. Left: Chaetocerous calcitrans. Right: Isochrysis galbana.

General techniques and configuration

Upon conducting early investigations with mixed media samples, it was observed that

attempting manual injection of samples into the flow cell using syringes or a peristaltic

pump led to poor sample mixing and presented the workflow with an unrepresentative

sample for analysis. This was primarily due to the varying densities of the different

types of plastics and their hydrophobic propensity to adhere to the walls of the system

and glassware. As a result, fewer particles could pass through the detector and the

plastic proportions were significantly unbalanced. This presented further challenges

when attempting stepped concentration processes such as serial dilution experiments,

thus making them highly inaccurate in practice.

The adhesion made creating a well-mixed solution that could effectively be circulated

between the flow cell and a holding container difficult. Moreover, if the solution is not

well circulated, comparison against a ground truth leads to inaccuracy. The manual

sample injection approach was abandoned in favour of developing a specific protocol to

address the challenges posed by adhesion and to ensure effective fluid circulation within

the system. This protocol was consistently applied to all flow cell experiments in a re-

circulating configuration. The following steps were taken to ensure optimal experimental

conditions:

• Surfactant addition: To reduce particle adhesion to surfaces, a mixture of sur-

factants was added to each litre of the stock solution. This included dishwashing

soap (0.1% v/v) and ethanol (0.1% v/v). These additives helped reduce the ten-

dency of particles to stick to the surfaces within the system.
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• Circulation and mixing: A 600 mL borosilicate beaker served as the contain-

ment vessel for the flow cell and it was placed on a magnetic stirrer (MSH10,

Labcon South Africa) operating at approximately 150 revolutions per minute. A

peristaltic pump (NKP-DCS-10B, Kamoer) maintained a continuous flow. This

pump pushed the solution (at a constant flow rate of 20 mL/minute) from the

beaker through the flow cell’s inlet, allowing it to pass through the imaging system

before being returned to the beaker. This controlled circulation ensured consistent

and controlled testing conditions throughout all experiments.

• Stock media holding configuration: A holding vessel, namely a 1000 mL

borosilicate beaker that is independent of the circulatory setup described above,

was placed on a second magnetic stirrer (MSH10, Labcon South Africa) operating

at approximately 150 revolutions per minute to keep the stock solution in a mixed

state (whether solely marine, polymer, or a hybrid marine-microplastic mix as used

in some experiments). Fluid was retrieved from this beaker with the peristaltic

pump and transferred to a 500 mL measuring cylinder to perform fluid dilution

when needed.

• Cleaning: After each processing run and between different experiments a thor-

ough cleaning was done. The flow cell, pipes, and glassware were cleaned using

soapy water to remove any residue that might interfere with subsequent runs.

Although the synthetic polymer samples used for these experiments were from the same

batch originally procured, only virgin samples were used in the experiments and no

samples were reused. The plastic samples used in each dataset acquisition or experiment

were discarded after each data capture session and fresh samples from the batch were

introduced for subsequent data capture sessions.

6.3 Materials and methods

The established workflow was examined through a series of experiments to assess the

performance when encountering varying concentrations of microplastics in a marine

simulated environment. These experiments were conducted on separate dates from

when the original sample dataset was captured, constructed, and used to train the

classifiers used. Furthermore, specifically for Experiments 6A and 6B, the phytoplankton

culture samples used were obtained from a different, independent batch. This approach

aimed to expose the workflow to a more real-world environment with the possibility of

the phytoplankton being at different stages in their development, leading to geometric

differences between samples. This could help expose any biases that may have been
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overlooked.

6.3.1 Experiment 6A: Materials and methods

Combined microplastic analysis in a marine environment

The workflow’s performance was evaluated with regard to its ability to differentiate be-

tween microplastics and marine microorganisms. Specifically, microplastics (PP, PE, PS,

and PET) were grouped as one class and marine microorganisms (Chaetoceros calcitrans,

Isochrysis galbana, and debris) were combined as another class, forming a two-class clas-

sifier. A serial dilution approach was adopted where the concentration of marine stock

is kept constant whilst the microplastic concentration is varied. A well-functioning clas-

sifier should detect little change in marine particle concentrations and the microplastic

concentrations should vary in step with the serial dilution process.

The experiment began with an initial measurement of the stock solution, with no mi-

croplastics added. This measurement served as the baseline or “zero plastic” reference.

The marine stock solution was placed in a separate magnetic stirrer vessel. Initially, a

volume of 200 mL of the stock solution was withdrawn from the vessel and transferred

into the beaker on the circulatory setup. The system was left to circulate the media

for two minutes as a settling period, after which 100 frames were recorded. This was

carried out in duplicate.

Subsequently, serial dilution measurements were executed, involving the introduction of

microplastics into the solution. To achieve a solution with a microplastic concentration of

0.08 g/L, equal quantities of the four plastic types were weighed using a scale (AS220.R2,

RADWAG). While the PP, PS, and PET samples were used from the micronised powder

samples, which are of various mixed shapes and sizes, the PE sample was an equal blend

of both the PE micronised powder sample and the spheres of a defined shape and size.

The reasoning for mixing two sample types of PE is that it allows the classifier to be

tested on non-defined shapes as well as uniform spherical smooth shapes. The smooth

spheres may provide an additional challenge when classifying against smooth round

phytoplankton marine objects.

These plastic samples were added to the standard marine stock that was already present

in the circulatory system configuration. This procedure creates a solution containing

the highest desired microplastic concentration.

Each serial dilution was executed in duplicate and involved the following steps:
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• A measurement run consisting of capturing 100 image frames was initiated. Fol-

lowing the completion of each capture cycle, 100 mL of the solution from the

circulatory configuration beaker was directed into a separate measuring cylinder

and subsequently discarded.

• To replenish the circulatory configuration beaker with fresh solution, 100 mL of

marine base stock that was devoid of any plastic particles was added from the

second independent magnetic stirrer holding vessel. This addition resulted in the

beaker retaining its original fluid volume of 200 mL, while the concentration of

plastic particles was approximately halved compared to the previous measurement.

• After introducing the fresh solution, a waiting period of two minutes was observed.

This interval allowed for the solution to circulate effectively and ensure uniform

distribution.

• The next batch of 100 frames was captured for analysis of the new solution com-

position, completing the measurement cycle.

Although this serial dilution process aimed to halve the plastic concentration at each

stage, residual static plastic particles might still adhere to surfaces in both circulatory

and holding configurations. However, despite this limitation, this approach offered a

viable means of systematically diminishing the plastic concentration in the solution over

successive measurement runs while maintaining a consistent marine concentration.

6.3.2 Experiment 6B: Materials and methods

Multi-class polymer analysis in a marine environment

The workflow’s performance was evaluated regarding its ability to make predictions in

the multi-class polymer problem. Specifically, microplastics, including PP, PE, PS, and

PET, were treated as unique classes while marine microorganisms (Chaetocerous cali-

trans, Isochrysis galbana, and general debris) were grouped as a separate class resulting

in a five-class classification system.

Four sub-experiments involving serial dilutions were conducted to assess the detector’s

effectiveness. In these experiments, the concentration of a specific plastic of interest was

systematically varied through serial dilution while maintaining a constant concentration

of the marine stock and the remaining three baseline plastics.

An able workflow should exhibit minimal fluctuations in detected marine particles and

non-selected plastic concentrations throughout these sub-experiments. Conversely, the

concentration of the plastic of interest should track the changes induced by the serial
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Table 6.2: PE and PMMA microsphere comparison.

Polymer Size range (µm) Particles within size range (%) Density (kg.m3)

PE 63 to 75 90 960

PMMA 53 to 63 85 1 200

Particle size specified by their diameter.

dilution process. This approach ensures the detector can differentiate accurately between

the various plastic types and marine microorganisms, even when subjected to varying

concentrations and complex mixtures.

The experimental setup followed the same procedures and used the same equipment as

presented in the marine-polymer two-class run, with one difference: the baseline stock

concentration now included three non-selected plastic types in addition to the marine

stock. This baseline marine-microplastic stock had a microplastic concentration of 0.04

g/L that was set by equally weighing three non-selected baseline plastic types and mixing

them with the standard marine stock.

Considering the added presence of baseline microplastics, and that the investigation of

the marine-microplastic problem had been interrogated in the previous section, we opted

for a lower concentration in the baseline marine stock to avoid overwhelming the image

sensor. A concentration equal to 25% of the standard marine stock concentration was

used, except in the case of the PP mixed media experiment where a 50% stock dilution

was performed in error. The serial dilution was initialised for each experiment with a

concentration of 0.16 g/L for the microplastic of interest.

6.3.3 Experiment 6C: Materials and methods

PE and PMMA sphere analysis

Given the task of classifying similarly shaped objects, this study assessed the workflow’s

ability to differentiate between two types of plastics with similar geometry as a Bernoulli

trial. This experiment used two types of synthetic polymer spheres (Cospheric LLC,

Santa Barbara, USA): (i) PE (CPMS-0.96, 63 µm to 75 µm, Lot#100923-4); and (ii)

PMMA (PMPMS-1.2, 53 µm to 63 µm, Lot#1961-306-3). The spheres were used to

train a classifier using a stripped-down version of the established workflow. However,

this classifier was exclusively trained on the binary pair of plastic types, one of which

(PMMA) has not been used in the dataset or classifier training before and may also

serve to show the pipeline’s ability to support the addition of further plastics on which

to train.
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(a) PMMA propagated intensity. (b) PE propagated intensity.
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(c) PMMA birefringence retardance.
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(d) PE birefringence retardance.

Figure 6.3: PMMA and PE sphere propagated intensity and birefringence retardance
channels. (a) PMMA propagated intensity. (b) PMMA birefringence retardance. (c)
PE propagated intensity. (d) PE birefringence retardance. Scale bar in Figures 6.3(a)
and 6.3(b) indicates 50 µm.

Samples of PMMA spheres were passed through the FSA and imaged. These particles

underwent the standard preprocessing procedure and were labelled pixel-wise as when

the original project dataset was constructed. Existing labelled PE sphere data was

available from prior sample acquisition. A visual inspection was also performed. Looking

at the focus intensity channels of both types of plastics in Figures 6.3(a) and 6.3(b) it

is noticed that the focus intensity channels of both plastics look similar, with minor

geometrical differences. Now if we look at the retardance map in Figures 6.3(c) and

6.3(d), a significant difference is visible as the birefringent activity is higher in the PE

sample. This is expected, as PE should possess a greater optical path difference between

the slow and fast axis refractive indices than PMMA.

As shown in Table 6.2, there are differences in the size fractions of the two test particles.

This discrepancy poses a challenge, as the output features generated by the analysis

bank in the filter bank machine-learning setup can be influenced by the particle size.

Larger particles inherently have a greater boundary region with a higher percentage

of total area pixels that make up these regions. Given that the area of the circular
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projected area increases proportionally to the square of its radius, the peripheral pixels

in the outer region of the PE spheres will considerably outnumber those of the PMMA

spheres. We adopt four techniques to reduce the risk of the classifier exploiting these

size differences for inference.

Firstly, we replace our filter analysis bank in the pipeline with a reduced filter bank

comprising only the rotationally invariant Schmid filter set [42], and adjust the kernel

to size 3× 3. These kernels focus on more localised regions of the object and are much

smaller than the typical object area of between 155 and 320 pixels in this application.

Secondly, we radially erode the observation area of the object by 60% to analyse only

the inner region. This eliminates the potential effects of varying boundary pixel ratios

between classes. The filter supports are not expected to straddle regions on or over the

boundary as well as these inner regions concurrently. Therefore we only use this extreme

inner region on the object to create the pixel-wise feature vectors.

Thirdly, we introduce random sampling into the dataset and use a balanced 50/50 split

of training data between the two classes. This safeguards against the classifier holding

bias or relying on size-related distinctions when generating predictions.

Fourthly, after tuning the hyperparameters, no manual decision boundary adjustments

are made after training.

The standard pixel-wise labelling procedure was performed to provide a ground truth

for the smaller dataset. The reduced dataset containing PMMA and PE underwent a

limited feature extraction process employing the small analysis bank and the standard

FSA features only. Subsequently, augmentation was implemented and the feature set

underwent a similar dimensionality reduction procedure as the previous classification se-

tups, albeit this time to a 3D mapping. The UMAP model was tested with unseen data.

The post-mapping output is illustrated in Figure 6.4, where we have added back the

class labels for visualisation. The two synthetic polymers manifest as modest clusters,

although certain overlaps exist between them.

Following the classifier implementation, mixed-media serial dilution experiments were

performed in the same manner as for the previous mixed-media experiments. The con-

centrations of the two sample plastics were varied in two separate sub-experiments.

Firstly, a constant background concentration of PE was maintained in the solution while

the concentration of PMMA was adjusted. Secondly, the background concentration of

PMMA was kept constant while the concentration of PE was varied. This allowed for

evaluating the classifier’s performance in distinguishing geometrically similar plastics

under varying concentration conditions.
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Figure 6.4: PE and PMMA mapping.

Due to the significant difference in density between the two synthetic polymers, there

was a noticeable variation in the distribution of particles when preparing each stock

solution. When using the standard magnetic stirrer setup for both stock solutions, the

PE spheres tended to accumulate more on the liquid surface. This contrasts the PMMA

spheres, which were well dispersed within the solution. This effect was more pronounced

in the 1 L beaker stock solution compared to the 600 mL flow cell feed beaker: the 1 L

stock beaker typically contained between 600 mL to 1000 mL of stock during different

stages of the serial dilution experiment, depending on the specific stage. Running the

magnetic stirrer at the same speed for both batches resulted in significantly different

mixing profiles for the two synthetic polymers.

On the other hand, the primary agitation stirrer in the flow cell loop had a fixed volume

of 200 mL in a 600 mL beaker. This meant that the same mixing speed resulted in more

vigorous agitation and provided satisfactory mixing for both synthetic polymers. Nev-

ertheless, issues such as mild adhesion to glass surfaces and piping could still influence

particle circulation, even with the surfactant protocol in place.

6.4 Results

In this section, we start by reviewing the results from the combined microplastic analysis

experiment (6A) in which the marine concentration was held constant and the synthetic

polymer concentration was adjusted in stepped increments. Additionally, the particle

size distributions for both classes are analysed. Next, the multi-class experiment (6B)
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is assessed in which the stock concentration of marine and polymer particles was held

constant whilst an individual polymer type was adjusted in stepped increments. We

conclude by running through the performance of the PE and PMMA classifier workflow

experiment (6C) where morphologically similar polymers were analysed.

6.4.1 Experiment 6A: Combined microplastic analysis in a marine en-

vironment

The combined microplastic analysis experiment adjusted the concentration of a mixed

polymer sample whilst the marine concentration was held constant. After completing the

data acquisition session, the captured sequences were processed through the workflow.

The recorded number of detected particles (both marine and synthetic polymer) are

presented in Figures 6.5(a) and 6.5(b). An approximately linear trend is observed in

Figure 6.5(b) as the polymer concentration is adjusted. In Figure 6.5(a), it is evident

that the total particle counts exhibit a slight decline as the synthetic polymer concen-

tration is increased. This decrease could be attributed to some larger synthetic polymer

particles potentially occluding smaller marine particles at higher concentrations. In

other words, a single large synthetic polymer object may occlude many small marine

particles at one instance, reducing the overall particle count. On the other hand, if the

particle size distributions vary slightly between the two classes, this may also lead to

the variation in particle counts. From low to high polymer concentrations, the num-

ber of polymer particles constitutes approximately 1% to 7% of the total particle count

(combining marine and polymer particles). This suggests the analyser’s ability to cope

in environments where the ratio of polymer particles to marine particles is low, as may

be encountered in the wild. However, when the same experiment assesses the total pro-

jected area of the detected particles (Figure 6.6), a contrasting trend emerges indicating

an increase in the total projected area with rising microplastic concentration. These

outcomes assist in determining the upper threshold of microplastic concentration that a

detector like this one can handle effectively. In cases of high concentrations, the sample

can be diluted or an image sensor with a larger active area combined with an increased

channel width can be employed, thereby offering an expanded field of view within the

existing configuration.

In the same experiment, when focusing solely on the synthetic polymer particles as

depicted in Figure 6.5(b), the increase in detected polymer area becomes apparent as

the synthetic polymer concentration is adjusted in stepped increments.

Reviewing the FPR is important, especially due to the unknown but potentially low
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(a) Synthetic polymer concentration adjustment
— particle counts.

(b) Synthetic polymer concentration adjustment —
polymer particle counts.

Figure 6.5: Synthetic polymer concentration adjustment. The error bars indicate the
standard deviation and the sample points indicate the mean value of the repeated runs
of the experiments.

Figure 6.6: Synthetic polymer concentration adjustment — area analysis.

presence of synthetic polymer samples in real-world marine settings. The FPR achieved

in this case was measured at 0.66% ±0.01% with the known fixed pure marine sample

concentration and a 0.00 g/L synthetic polymer concentration. An additional obser-

vation is that in both Figures 6.5(a) and 6.6, the increase in polymer concentration

does not lead to an increase in detected marine particles or area. This may be inter-

preted as the workflow demonstrating limited bias towards predicting marine particles

and suggests that the classifier is balanced.

The FPR from the two-class ResUnet classifier confusion matrix was calculated at 1.25%

when treating the synthetic polymers as the positive class, and is comparable to the
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0.66% ±0.01% achieved in this experimental application. This suggests that the model

was not overfit and that the augmentation protocol as well as the ensemble approach to

the pixel-wise prediction output may have contributed to this improved result. Addi-

tionally, this workflow could be applied to more diverse datasets and samples for model

development with the potential for further real-world experimentation.

Particle size distributions

The particle area data from the synthetic polymer concentration adjustment experiment

was used to create a normalised histogram, which approximates a PDF based on the

experimentally measured data. The following approach is used to generate the measured

PDF:

fi =
ci

B.wi
, (6.1)

where fi is the ith histogram bin, wi is the bin width, ci is the number of elements in

the bin, and B is the number of bins in the histogram. The normalised histograms pre-

(a) Marine samples. (b) Synthetic polymer samples.

Figure 6.7: Normalised histogram (PDF approximation). Synthetic polymer and marine.

sented in Figure 6.7 provide an approximate particle size distribution for both marine

(Figure 6.7(a)) and synthetic polymer particles (Figure 6.7(b)). The distribution of the

two object types shows that both exhibit peaks in the 133 to 267 pixels range, and that

the marine particles are dominant in a more tightly bound area distribution. It is not

anticipated to see many marine particles in larger size fractions due to the small size

of the individual cells. This suggests that these larger size fractions would be owing

to linked clusters or chains of cells and otherwise non-synthetic polymer particulates.

The frequency of marine particles sharply declines beyond 533 pixels. The synthetic
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polymer particles also experience a drop-off but, in contrast, maintain a noticeable pres-

ence up to the sample area limit of 3 500 pixels. This suggests that the particle size

distributions of the two classes are similar, with marine particles contributing more to

the lower end of the area range and synthetic polymers occupying the upper end of the

area distribution. This common overlap between the two classes allows for meaning-

ful comparisons, providing the classifier with objects with similar area characteristics.

However, since the analysis is only on the projected surface area of the object, the actual

volume distribution may be a different consideration entirely.

6.4.2 Experiment 6B: Multi-class microplastic analysis in a marine

environment

We now look at the multi-class experiment results where a base concentration of syn-

thetic polymers and marine particles was held constant whilst an individual polymer

type of interest was adjusted in stepped changes. After completing the data acquisi-

tion session, the captured sequences were processed through the workflow. A metric

derived from the output log is the total projected area occupied by particles at different

concentrations, as illustrated in Figure 6.8 for PET, PS, PE, and PP.

Starting with the PET plot in Figure 6.8(a), it is observed that the stock areas at the

lowest and highest spike concentrations are similar and in agreement with expectations.

However, a slight increase in the stock concentration is noted during the transition from

0.01 g/L to 0.02 g/L, possibly due to some particle adhesion during the serial dilution

process. The concentration of PET particles follows a near linear trend with the stepped

changes in concentration, although the transition from 0.02 g/L to 0.04 g/L does not

display a significant change, possibly also due to adhesion.

Moving to the PS plot in Figure 6.8(b), a similar approximately linear trend is observed

with the stepped increases in PS concentration. However, there is also an increase in the

classified stock area, indicating that some PS particles might be misclassified as other

polymer particles.

Next, examining the PE plot in Figure 6.8(c), a similar approximately linear trend is

present with the stepped increases in PE concentration. The increase in stock area is

however smaller, suggesting fewer misclassifications.

Finally, looking at the PP plot in Figure 6.8(d), the weakest linear trend of all four

plastics is observed as the PP concentration is varied. PP is the least dense polymer

of the four and is more prone to general adhesion, as it is likely to make contact with
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(a) PET serial dilution run. (b) PS serial dilution run.

(c) PE serial dilution run. (d) PP serial dilution run.

Figure 6.8: Mixed media experiments.

the liquid-free parts of the glassware where it could bind and remove itself from ana-

lysis. Additionally, a few misclassifications are present, although the stock area at the

maximum PP concentration is only slightly higher than the area at the minimum PP

concentration. The spike in the stock at 0.02 g/L could be attributed to the presence

of other plastics in the stock causing a concentration spike.

A general observation is that the noted stock area value for a particular experiment

is similar at the lowest and highest plastic concentrations, albeit slightly higher at the

highest plastic concentration. This suggests that although some misclassifications occur,

they are mild. Given the low FPR of the marine-polymer classifier in the workflow, these
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Table 6.3: PE and PMMA confusion matrix — model test set.

Predicted (%)
PE PMMA

Actual (%)
PE 84.1 15.9
PMMA 23.9 76.1

Table 6.4: PE PMMA confusion matrix live data capture.

Predicted (%)
PE PMMA

Actual (%)
PE 93.06 6.94
PMMA 20.59 79.41

discrepancies are likely due to inter-plastic misclassifications that were also present in

the confusion matrix of the random forest classifier. Density differences among plastics

make some more prone to adhesion to glass surfaces exposed to air and may impact the

general composition of the mixture in circulation. Additionally, as we analyse the 2D

projected area, differences in volumetric characteristics may exist among plastic classes,

impacting the observed area. Unfortunately we cannot further investigate these factors,

as we are working with a mass of plastics for sample stock creation.

6.4.3 Experiment 6C: PE PMMA sphere analysis

The assessment of the PE and PMMA classifier workflow is now presented. The same

classification learning methodology was applied as from the previous chapter’s filter bank

feature extraction process, with a random forest model emerging as the top-performing

choice. The random forest results are presented as a confusion matrix in Table 6.3.

These results, predicting on a single pixel-wise feature vector input, can be deemed

reasonably satisfactory.

In examining the mixed media results in Figure 6.9, it is evident that there is a dif-

ference in the base stock particle counts. In Figure 6.9(a) the mean PE base count is

considerably lower than the PMMA base count in Figure 6.9(b), which could be due to

density and area differences. Both adjusted synthetic polymers PMMA and PE exhibit a

roughly linear trend that supports the stepped concentration changes but, as mentioned

previously, adhesion issues may slightly impact this trend. The misclassifications in

both instances are noticed with the slight change in the polymer that was held constant

while the other polymer was adjusted.

Since we have a classifier that makes predictions on a single feature vector and it is a

Bernoulli trial, it was anticipated that a performance improvement should be observed

when taking the mode of a group of feature vectors that make up an object patch. This
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(a) PMMA spike run. (b) PE spike run.

Figure 6.9: Stepped concentration analysis for two synthetic polymers. (a) PMMA
concentration is changed whilst PE is held constant. (b) PE concentration is changed
whilst PMMA is held constant.

Table 6.5: PE PMMA live data capture counts.

Predicted
PE PMMA

Actual
PE 389 29
PMMA 118 455

is considered somewhat of an ensemble approach.

The results of running pure samples through the FSA and workflow from the two sep-

arate 100-frame capture runs for each synthetic polymer are displayed in Table 6.4 and

Table 6.5. We show objects within a range of 20% above and below the maximum and

minimum projected object area. These tables provide insight into the false detections

of the workflow when applied to independent flowing samples. We can see that the clas-

sification improvement for the PE class is more than twice the improvement achieved

by the PMMA class when comparing the original classifier performance (Table 6.3) to

the observed mixed media trials (Table 6.4). Although a slight overall improvement in

classification performance is noted when shifting to a capture session using the process-

ing pipeline, it falls short of the expected improvement and suggests that the pipeline

could be refined to improve resilience to noise. Considering that this is a stripped-down

version of the analysis bank, it may benefit from using additional feature descriptors. Al-

ternatively it may benefit from more input pixels in an object patch, as this experiment

only considers a few pixels given the radial erosion process.
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6.5 Discussion and analysis

6.5.1 General workflow

Since these experiments used virgin plastics, biofouling does not come into consideration.

The impact of biofouling on microplastics adds complexity to sample analysis and could

make for a useful future study. Particle adhesion proved a challenge in most of the

experiments and further work is required to deal with this issue. Although the system is

not optimised, the workflow could benefit from investigating the following: performing

mixed media tests with reduced filter sets for comparative purposes or building a larger

dataset that could make a learned feature multi-class polymer model more accessible.

This approach could offer some performance gains. Since it has been observed that the

device may offer benefits for low-cost, in-stream analysis of microplastics, the analyser

could move to further refinement and field testing. Furthermore, the workflow can be

adapted to sensing different sample types, including additional marine microorganisms,

which should be encouraged for future studies.

6.5.2 Experiments 6A and 6B: Mixed media

For the mixed media binary experiment, the observed performance was an improvement

over the standard classifier results from Chapter 5. This included an improved FPR

and, as stated previously, the user could tune the decision boundary depending on their

requirements. The histogram comparison showing similar particle distributions for the

marine and synthetic polymer samples supports the argument that the workflow can

perform classification without relying strictly on size metrics, although it is suggested

that future studies could benefit from a more diverse number of phytoplankton cultures.

The multi-class polymer experiments produced acceptable results, with some misclas-

sifications that were noted amongst polymer types and not due to marine-polymer in-

teractions. Further work is necessary to reduce the misclassification issues. Generally

the stock concentrations at the lowest and highest polymer spikes were similar, which

suggests low misclassifications. It was also observed that stepped concentration changes

in a polymer of interest led to a concentration change in classified particles of interest,

supporting the view that the workflow can distinguish one sample type from another.

6.5.3 Experiment 6C: PE and PMMA spheres

The PE and PMMA workflow task proved challenging in classifying morphologically

similar polymers. However, the results support the idea of using filter-based feature

extraction to develop a birefringent texture that a classifier may find useful.
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6.6 Conclusions

The pipeline presented in this chapter was developed for automated end-to-end classifi-

cation of microplastic particles. The combination of the FSA and developed classifiers

was used to create the pipeline and three experiments were performed to assess its suit-

ability. The results suggest that the work presented in this chapter has potential for

further development and supports the effectiveness of the FSA and classifiers.
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Chapter 7

Conclusion

In this final chapter, we summarise the main topics presented, provide concluding re-

marks, discuss future work, and highlight the contributions made throughout this re-

search.

7.1 Summary of main topics

This work details the development, design, and implementation of a fluid stream analy-

sis device dedicated to end-to-end microplastic detection. The analyser detects particles

in a fluid stream using a lensless polarisation-sensitive holographic imaging-based ap-

proach. The development process included three objectives: the creation of the FSA,

the development of classifiers, and the establishment of a robust pipeline.

FSA

The FSA integrates the necessary hardware and foundational software for fluid stream

imaging. Outputs from the FSA serve as inputs for the subsequent objectives. The

hardware components encompass a PFA image sensor, a custom-designed light pulse

circuit (LPE), a prototype flow cell, a fibre-coupled laser diode, an optical polariser,

and 3D printed components. Together these components form the FSA, which is a

lightweight hardware implementation.

Software development included the integration of the following: an image preprocessing

routine, a DIH propagation routine, a birefringence computation procedure, an encoder-

decoder network for image segmentation, and control software for the LPE.

Experimental results and demonstrations validate the FSA’s capabilities, supporting

its ability to numerically propagate to a sample of interest in a fluid stream, execute

segmentation, and retrieve birefringent features.
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Computer vision classifier

The microplastic classifiers developed for this objective performed either of two tasks: a

binary (marine and microplastic) classification, or a multi-class polymer classification.

These classifiers use the outputs from the FSA as inputs to perform further feature

extraction. Two approaches were explored: a neural network learned feature classi-

fier and a filter bank feature classifier. A small dataset was created including marine

phytoplankton and microplastic samples.

We found that a customised encoder-decoder network was most suited for the binary

(marine and microplastic) problem. For the multi-class polymer problem, we found that

a texture-sensitive filter bank was useful for polarisation-sensitive feature extraction in

the case of birefringent plastics. Extracted features underwent selection and supervised

dimensionality reduction, resulting in a 5D feature vector for classifier training. A

random forest proved to be the most suitable model implementation.

Pipeline

The pipeline developed for this objective amalgamated the FSA and microplastic classi-

fiers alongside further support tasks to provide end-to-end classification of microplastic

particles.

This workflow automates accepting an image sequence stream as an input and provides

particle class predictions along with key shape metrics for logging. In other words, the

algorithm integrates developed subsystems including preprocessing, segmentation, and

classification to output particle information. Additionally, we established a protocol

and simulated marine environment for comprehensive assessment beyond classifier test

results.

The pipeline underwent testing using different types of synthetic polymers and marine

phytoplankton, demonstrating its capability to classify microplastics as a distinct class

from phytoplankton in a laboratory setting. Furthermore, the system was tested for the

classification of individual classes of synthetic polymers, yielding promising results.

7.2 General conclusions

The analyser, protocols, and workflow developed in this work are intended to serve as a

proof of concept that supports the advancement toward in situ analysis of microplastic

particles. The feasibility of using polarisation-resolved optical sensing for microplastic

feature generation was presented in this work and provides a foundational framework

for its use. However, it also acknowledges the need for further refinement and validation
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in real-world scenarios.

This project aims to present a conceptual framework that can be taken forward to be

optimised and integrated into embedded systems for future studies that may require

field testing and deployment. It is envisioned that this concept can be further developed

as a tool for use in other environments or for various types of studies, not necessarily

limited to the applied microplastic classification problem. The interchangeability of the

camera system, the customisability of the light source system, and the software code

facilitate its adaptability and encourage further development.

Should a future project wish to continue on the microplastic classification task, it may

benefit from increasing the number of sample types. This study took an initial step

in providing a workflow that had been introduced to four microplastic types and two

phytoplankton types. Therefore, broadening the coverage of sample types could make

the concept more suitable for real-world deployment. The same workflow and assessment

could be followed.

An investigation into using the deep learning space to develop methods to improve

lensless image reconstruction based on a raw hologram would also make for an inter-

esting study. This would be especially useful in the microplastic space and it has been

successfully used in other environments.

7.3 Contributions

On a final note, we visit the contributions and provide a brief comment. Our key

contributions are that we:

• Present an analyser concept that provides a cost-effective, label-free, and auto-

mated analyser using DIH and polarisation-sensitive techniques to provide quan-

titative birefringence-resolved sensing for microplastic classification. This concept

may provide the foundation to be developed into a stand-alone prototype.

• Develop a pixel-wise classification scheme for microplastic particles in a fluid

stream using DIH and polarisation resolved sensing. The move to a pixel-wise

approach deviates from the global object feature vector approaches that are more

common in the literature for learned feature classifier implementations.

• Illustrate the appropriateness of using a PFA image sensor for dynamic fluid stream

analysis of microplastic particles in a single-shot manner. These sensors are ef-

fective when coupled with a software backend to extract full birefringence maps
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of particles; this helps avoid a complex and sensitive optical setup. Future devel-

opment for polarisation-sensitive deployable fluid stream analysers could benefit

from using these sensors.

• Highlight lensless birefringent texture of microplastics and its usefulness over stan-

dard intensity measurements to train a classifier. While the birefringence of mi-

croplastics is a known property and has been used in machine learning classifiers,

the lensless imaging domain’s use of microplastic birefringence analysis has been

relatively unexplored.

• Formulate a pipeline to incorporate birefringence sensing and machine learning to

create an end-to-end automated routine. The end-to-end workflow is something

that has been lacking in the literature and this pipeline provides some of the glue

to assess our models out of isolation. The reconfigurability of the pipeline also

makes it suitable to exchange models and functions depending on the analyser

requirements.

• Develop a simulated mixed media protocol and test procedure that moves beyond

standard classifier model results for microplastics. While this protocol is not ex-

haustive, it moves in the right direction for research to benchmark the microplastic

classification process more thoroughly.
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Appendix A

Supporting data

A.1 Confusion matrices for filter bank feature extraction

Table A.1: Confusion matrices two-class with TPR on diagonal: random forest (left),
KNN (right).

Predicted %
SP Marine

Actual %
SP 96.10 3.90
Marine 2.00 98.00

Predicted %
SP Marine

Actual %
SP 95.97 4.03
Marine 1.85 98.15

Table A.2: Confusion matrices two-class with TPR on diagonal: tree (left), SVM (right).

Predicted %
SP Marine

Actual %
SP 95.02 4.98
Marine 1.27 98.73

Predicted %
SP Marine

Actual %
SP 95.95 4.05
Marine 2.34 97.66

Table A.3: Confusion matrices two-class with TPR on diagonal: naive Bayes (left),
discriminant (right).

Predicted %
SP Marine

Actual %
SP 95.34 4.66
Marine 1.69 98.31

Predicted %
SP Marine

Actual %
SP 96.71 3.29
Marine 3.71 96.29

A.2 Dry screening procedure

Adapted from the Centre for Minerals Research, University of Cape Town.

Pre-inspection:

• Inspect electrical parts and connections for defects. Apply a lock-out procedure

before the inspection. Inspect all mechanical parts such as belts, locking screws,
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A.2. DRY SCREENING PROCEDURE 131

and guards for defects.

• Ensure that the correct PPE is worn at all times

• Ensure all equipment and surrounding areas are free of any traces of another

sample.

• Ensure that all samples are labelled correctly.

Procedure:

• Ensure that no holes are present and that the screens have no tears.

• Check that the screens are not clogged.

• Stack the selected screens and a pan in the sieve shaker machine with the biggest

aperture at the top and the smallest at the bottom.

• Pour the dry sample onto the top screen.

• Set the time and vibration to the required amounts.

• At the end of the screening period remove the screens and the bottom pan.

• Weigh the sample on each screen and record the screen size and mass.

• Clean the screens after use in an ultrasonic bath and air dry.

• Calculate the mass distribution by size.
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A.3. COSTING OF THE FSA 132

A.3 Costing of the FSA

Table A.4: Costing of the FSA.

Item Price (USD)

Polarisation image sensor 800

Laser diode and fiber line 160

Machining prototype flow cell, copper shims, glass channels, and end cap 180

Circular polariser 40

3D printer filament 20

Peristaltic pump, piping, and mountings 20

LPE circuit 70

Total: $1 290

Total converted to rands (1 USD = ZAR 18.56): ZAR 23 942.40
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Appendix B

Figure B.1: LPE circuit.
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