
Enhancing Cross-Dataset Performance in

Distracted Driver Detection using Body Part

Activity Recognition

Submitted by:

Frank Zandamela

Supervisor: Associate Professor Fred Nicolls

Co-Supervisor: Dr. Gene Stoltz

Department of Electrical Engineering

University of Cape Town

Submitted in fulfilment of the requirements for a Master of

Science in Electrical Engineering

May 2024

Declaration of originality

I know the meaning of plagiarism and declare that all the work in the document, save for that which
is properly acknowledged, is my own. This thesis/dissertation has been submitted to the Turnitin
module (or equivalent similarity and originality checking software) and I confirm that my supervisor
has seen my report and any concerns revealed by such have been resolved with my supervisor.

Signature: .
Name: Frank Zandamela
Date: 03 May 2024

i

Ethics Clearance Document

ii

Abstract

Detecting distracted drivers is a crucial task, and the literature proposes various deep learning-
based methods. Among these methods, convolutional neural networks dominate because they can
extract and learn image features automatically. However, even though existing methods have re-
ported remarkable results, the cross-dataset performance of these methods remains unknown. A
problem arises because cross-dataset performance often indicates a model’s generalisation ability.
Without knowing the model’s cross-dataset performance, deployment in the real world could result
in catastrophic events.

This thesis investigates the generalisation ability of deep learning-based distracted driver detection
methods. In addition, a robust distracted driver detection approach is proposed. The proposed
approach is based on recognising distinctive activities of human body parts involved when a driver
is operating a vehicle.

Representative state-of-the-art deep learning-based methods have been trained exclusively on three
widely used image datasets and evaluated across the test sets of these datasets. Experimental
results reveal that current deep learning-based methods for detecting distracted drivers do not gen-
eralise well on unknown datasets, particularly for convolutional neural network (CNN) models that
use the entire image for prediction. In addition, the experiments indicated that although current
distracted driver detection datasets are relatively large, they lack diversity.

The proposed approach was implemented using a state-of-the-art object detection algorithm called
Yolov7. The cross-dataset performance of the implemented approach was evaluated on three bench-
mark datasets and a custom dataset. Experimental results demonstrate that the proposed approach
improves cross-dataset performance. A cross-dataset accuracy improvement of 7.8% was observed.
Most importantly, the overall balanced (F1-score) performance was improved by a factor of 2.68.
The experimental results also revealed that although the proposed approach demonstrates com-
mendable performance on a custom test set, all algorithms encountered challenges when dealing
with the custom test set, mainly due to lower image quality and difficult lighting conditions.

The thesis presents two main contributions. Firstly, it evaluates the performance of current deep
learning-based distracted driver detection algorithms across different datasets. Secondly, it proposes
a robust algorithm for detecting distracted drivers by identifying key human body parts involved
in operating a vehicle.

iii

Acknowledgements

I want to express my deepest gratitude to all those who have contributed to the completion of this
thesis. The journey was filled with challenges and opportunities, and I am thankful to have had
the support of so many wonderful individuals.

First and foremost, I wish to thank my mother, N’wa Mhlanga, for her unconditional support and
selflessness, which allowed me to dedicate time to complete this thesis while she was taking care of
my son, Enelo.

I want to thank my supervisors, Professor Fred Nicolls and Dr. Gene Stoltz, for their invaluable
input, guidance, and support to assist me in completing this thesis.

I thank the CSIR for the resources, time, and financial assistance to complete this thesis. I also
wish to thank the CSIR’s Optronic Sensor Systems Impact Area and Dumisani Kunene for allowing
me to use their computational resources and the CSIR dataset used in this study.

I would like also to thank my girlfriend, N’wa Ntshana, for her support.

Finally, I would like to thank Dr. Michael Harmse and Dr. Rigardt Coetzee for proofreading this
thesis.

iv

Dedication

This thesis is dedicated to my mother, N’wa Mhlanga.

v

Contents

1 Introduction 1
1.1 Problem statement . 1

1.1.1 Background to research problems . 1
1.1.2 Identified gaps . 2

1.2 Overview of existing methods . 3
1.3 Research questions . 4
1.4 Research goal and objectives . 4
1.5 Overview of the methodology . 5
1.6 Overview of the outcomes . 6
1.7 Contributions . 7
1.8 Research outputs . 8
1.9 Delimitations . 8
1.10 Document structure . 9

2 Background 10
2.1 Distracted driver detection . 10

2.1.1 What is distracted driver detection . 10
2.1.2 Measurement methods for distracted driving 11

2.2 Artificial neural networks . 12
2.3 Convolutional neural networks . 14

2.3.1 Convolutional layer . 14
2.3.2 Non-linearity layer . 16
2.3.3 Feature pooling layer . 16
2.3.4 Fully connected layer . 17
2.3.5 Batch normalisation layer . 17
2.3.6 Dropout layer . 18

2.4 Training deep learning algorithms . 18
2.5 Generalisation and regularisation . 20
2.6 Object detection . 22

2.6.1 YOLO working principle . 22
2.7 YOLOv7 architecture . 24

2.7.1 Architecture optimisation . 26
2.7.2 Training process optimisation . 27

2.8 YOLOv7 model training . 28

vi

vii Contents

2.8.1 Object detection performance metrics . 29
2.9 Summary . 30

3 Literature review 31
3.1 Datasets . 31

3.1.1 Public datasets . 31
3.1.2 CSIR test dataset . 34

3.2 Deep learning in distracted driver detection . 35
3.2.1 CNN feature classification-based methods . 36
3.2.2 Robust distracted driver detection methods 39

3.3 Cross-dataset performance evaluation . 44
3.4 Summary . 44

4 Cross-dataset performance evaluation 46
4.1 Experimental setup . 46

4.1.1 Algorithms . 46
4.1.2 Datasets . 47
4.1.3 Evaluation metrics . 47
4.1.4 Evaluation method . 48
4.1.5 Training procedure . 50

4.2 Results and analysis . 51
4.2.1 Training results . 51
4.2.2 Cross-dataset performance results . 52

4.3 Summary . 59

5 Enhancing cross-dataset performance 60
5.1 Proposed approach . 60
5.2 Implementation . 63

5.2.1 YOLOv7 model setup . 64
5.2.2 Training . 68
5.2.3 Model evaluation . 68

5.3 Summary . 69

6 Experimental results and discusion 70
6.1 Main experiment: proposed approach . 70

6.1.1 Baselines . 71
6.1.2 Results and analysis . 71

6.2 Multi-class object detection vs multiple class-specific object detectors 73
6.2.1 Results and analysis . 74

6.3 Summary . 75

7 Conclusions and future work 77
7.1 Conclusion . 77
7.2 Limitations . 77
7.3 Future work . 78

A Distribution of images per class in the distracted driver detection datasets 87

viii Contents

B Per-class F1-score performance results of the algorithms 89

C Class Activation Maps 92

D Confusion matrices of the algorithms 100

List of Figures

1.1 Proposed framework for distracted driver detection. Step 1: The driver’s body parts
are detected, and the activity of each body part is classified. Step 2: The detected
activities are used to make a final prediction using a decision tree-based approach. . 6

2.1 Typical structure of a multilayer perceptron. For a single neuron, input values are
multiplied by the individual weights. The weighted sum is then computed and passed
to the activation. 13

2.2 Commonly used activation functions in deep learning. Top left: Sigmoid activation
function. Mid-top: Hyperbolic tangent. Top right: Rectified linear unit (com-
monly used activation function for deep neural networks). Bottom left: variant of
the ReLU that allows for negative values. Mid-bottom: Exponential linear unit.
Bottom right: Scaled exponential linear unit. 13

2.3 Step 1: At each convolutional layer in a CNN, K filters are applied to the input.
Step 2: Each filter is convolved with the input volume. Step 3: The output of each
convolution operation is a 2D feature map. 15

2.4 The concept of sparse connections and receptive field in a CNNs [58]. 16
2.5 The concept of dropout layers. Left: Two layers of neurons that are fully connected.

Right: Two layers of neurons with a dropout probability of 50%. Image adapted
from [57]. 18

2.6 Typical relationship between model capacity and error. The red line separates op-
timal model capacity from underfitting (left end of the graph) and overfitting
(right end of the graph). Optimal model capacity is reached when the generali-
sation and training error curves are level. As model capacity increases, the training
error decreases but the generalisation gap increases. Ultimately, the model overfits
to the data when the size of the generation gap outweighs the training error. Note:
illustration adapted from Goodfellow et al., page 113 [64]. 21

2.7 Processing pipeline of YOLO object detectors. The input image passes through a
feature extractor that generates the feature map. Thereafter, the detection head
is applied directly to the feature map to generate bounding box predictions and
corresponding class probabilities. Note: illustration inspired by PyimageSearch. . . . 23

ix

x List of Figures

2.8 Working principle of the YOLO algorithm: (a) the input image is first divided into
an S x S grid; (b) A grid cell is responsible for detecting an object if the centre of the
object falls into it. Each grid cell is responsible for predicting B bounding boxes and
the confidence score for each box; (c) Final detections are determined by refining
the bounding boxes based on the confidence scores. Note: image from [69]. 24

2.9 Extended efficient layer aggregation networks. Left: Structure of ELAN; Right:
Structure of the extended ELAN (E-ELAN) used in YOLOv7. For each layer, E-
ELAN expands the feature maps (expand cardinality), shuffles the feature maps
(shuffle cardinality), and combines the feature maps (merge cardinality). All this
is done without destroying the original gradient path. These three key features
allow the YOLOv7 to improve the learned features and the training process. Image
obtained from [36]. 27

2.10 Overall implementation process to train and fine-tune the YOLOv7 model to custom
data. 29

2.11 An example of calculating the IoU between a predicted and a ground-truth bounding
box for detecting a stop sign [85]. 30

3.1 Example images from the SEU dataset: (a) grasping the steering wheel; (b) oper-
ating the shift lever; (c) eating a cake; and (d) talking on a cellular phone (source:
[88]). 32

3.2 Representative samples images from the State Farm dataset. 33
3.3 Sample images from the CSIR distracted driver detection dataset. 35
3.4 Distribution of images per class in the public and CSIR datasets. (a): Training

datasets. (b): Testing datasets. 35
3.5 Themes in deep learning distracted driver detection. 36
3.6 Typical framework used by CNN feature extraction methods. 37
3.7 Traditional setup for training a supervised machine learning model. Model A trained

on a specific task or domain A is expected to perform well on unseen data from the
same domain. When given data from another domain or task B, new labelled data
from the same task or domain will be required again. The new data can be used to
train a new model B that is expected to perform well on new unseen data from task
or domain B. Note: figure adapted from [93]. 38

3.8 Transfer learning setup for supervised machine learning. In transfer learning, stored
knowledge that is learned from a previous related task or domain A, known as the
source task and source domain is used to train a model B on the source domain and
is applied to the target task and target domain B. Note: figure adapted from [93]. . 38

3.9 Original Raw images (a) are pre-processed to produce the HOG feature image (b)
which does not have background noise [19]. 41

3.10 Sample outputs from a pose estimation-based method: (a) safe driving class pre-
dicted; (b) reach behind class predicted; (c) drinking class predicted; and (d) talk
right class predicted. 42

4.1 Cross-dataset evaluation method employed. Example showing how model A, trained
on the STF dataset, is evaluated across the three test sets to produce three indepen-
dent results (STF model A results, AUC2 model A results, and EZZ2021 model A
results). 49

xi List of Figures

4.2 Grad-CAM example for the safe driving class. 57
4.3 Grad-CAM example for the Make-up class. 58

5.1 Driver ROI detection approach proposed by Wang et al. [30]. 61
5.2 Driver ROI detection approach proposed by Sajid et al. [29]. 61
5.3 Proposed framework for distracted driver detection. Step 1: The driver’s body parts

are detected, and the activity of each body part is classified. Step 2: The detected
activities are used to make a final prediction using a decision tree-based approach. . 63

5.4 Overall development process to train and fine-tune the YOLOv7 model to custom
data. 64

5.5 Step 1.1: Installation. 65
5.6 Step 1.2: Data preprocessing. 66
5.7 Step 1.3: Model selection. 67
5.8 Step 1.4: Selecting hyperparameters. 68

6.1 Sample qualitative results from the CSIR dataset. 73

C.1 Grad-CAM example for the ”Text right” class. 92
C.2 Grad-CAM example for the ”Talk right” class. 93
C.3 Grad-CAM example for the ”Text left” class. 94
C.4 Grad-CAM example for the ”Talk left” class. 95
C.5 Grad-CAM example for the ”Adjust radio” class. 96
C.6 Grad-CAM example for the ”Drinking” class. 97
C.7 Grad-CAM example for the ”Reach behind” class. 98
C.8 Grad-CAM example for the ”Talking to passenger” class. 99

D.1 Confusion matrices of the algorithms on the EZZ2021 test set. 101
D.2 Confusion matrices of the algorithms on the STF test set. 102
D.3 Confusion matrices of the algorithms on the AUC2 test set. 103
D.4 Confusion matrices of the algorithms on the CSIR test set. 104

List of Tables

1.1 Overview of existing methods and identified research gaps. 4

2.1 YOLO architectural differences [78]. 25

3.1 Ten-class commonly used distracted driver detection image datasets. The highlighted
dataset names have links to the datasets. 34

3.2 Methods that focus on improving the robustness of deep learning-based distracted
driver detection. 39

4.1 List of algorithms evaluated. 47
4.2 Procedure followed to train the selected algorithms. 50
4.3 Hyperparameters used for training the algorithms. 51
4.4 Coefficients obtained for the CNN-Pose estimation algorithm. 51
4.5 Training (Train) and validation (vali) accuracy performance of the algorithms. . . . 52
4.6 Accuracy performance results of the algorithms when trained on the EZZ2021 train-

ing set.*The Average was calculated using only the STF and AUC2 test sets. . . . 53
4.7 Accuracy performance results of the algorithms when trained on the STF training

set.*The Average was calculated using only the EZZ2021 and AUC2 test sets. . . . 53
4.8 Accuracy performance results of the algorithms when trained on the AUC2 training

set.*The Average was calculated using only the EZZ2021 and STF test sets. 53
4.9 F1-score performance results of the ResNet50 model on the safe driving class. *In

each case, the Average F1-score excludes the intra-dataset F1-score. 54
4.10 F1-score performance results of the EfficientNetB0 model on the safe driving class.

*In each case, the Average F1-score excludes the intra-dataset F1-score. 54
4.11 F1-score performance results of the convLSTM model on the safe driving class. *In

each case, the Average F1-score excludes the intra-dataset F1-score. 55
4.12 F1-score performance results of the CNN LSTM model on the safe driving class. *In

each case, the Average F1-score excludes the intra-dataset F1-score. 55
4.13 F1-score performance results of the Leekha GrabCut model on the safe driving class.

*In each case, the Average F1-score excludes the intra-dataset F1-score. 55
4.14 F1-score performance results of the CNN-Pose model on the safe driving class. *In

each case, the Average F1-score excludes the intra-dataset F1-score. 56

5.1 Official YOLOv7 model versions. ∗ FPS comparisons were done on the Tesla V100
GPU. 67

xii

xiii List of Tables

6.1 Hyperparameters used to train the Yolov7 model and the corresponding training
performance metrics. 71

6.2 Hyperparameters used to train the three baseline algorithms. 71
6.3 Accuracy performance of the algorithms across the four test sets. *The Average

accuracy was calculated using only the EZZ2021, AUC2 and CSIR test sets. 72
6.4 F1-scores of the algorithms across the four test sets. *The Average F1-score was

calculated using only the EZZ2021, AUC2 and CSIR test sets. 72
6.5 Training details: multi-class object detection vs. multiple class-specific object detec-

tors experiment. 74
6.6 Accuracy performance comparison: multi-class object detector vs. class-specific ob-

ject detectors. *The Average accuracy was calculated using only the EZZ2021,
AUC2 and CSIR test sets. 75

6.7 F1-score performance comparison: multi-class object detector vs. class-specific ob-
ject detectors. *The Average F1-score was calculated using only the EZZ2021,
AUC2 and CSIR test sets. 75

A.1 Distribution of images in the EZZ2021, STF, and AUC2 training sets. 87
A.2 Distribution of images in the EZZ2021, STF, and AUC2 validation sets. 88
A.3 Distribution of images in the EZZ2021, STF, AUC2, CSIR test sets. 88

B.1 Per-class F1-score results and overall accuracy of the ResNet50 model on the three
datasets. 89

B.2 Per-class F1-score results and overall accuracy of the EfficientNetB0 model on the
three datasets. 89

B.3 Per-class F1-score results and overall accuracy of the convLSTM model on the three
datasets. 90

B.4 Per-class F1-score results and overall accuracy of the CNN-LSTM model on the three
datasets. 90

B.5 Per-class F1-score results and overall accuracy of the Leekha GrabCut model on the
three datasets. 90

B.6 Per-class F1-score results and overall accuracy of the CNN-Pose model on the three
datasets. 91

Chapter 1

Introduction

Road accidents causing fatalities are a major global issue, impacting society and the economy [1].
The impact is particularly significant in developing countries such as South Africa, where distracted
driving is a leading cause [2]. It is generally agreed that if driver distractions could be measured
and addressed quickly through alerts, crash rates could be reduced [3]–[5]. Consequently, effective
driver distraction measurement methods are crucial to address the issue of distracted driving.

Various driver distraction measurement methods have been proposed in the literature. However,
these methods have their limitations. In particular, while deep learning-based methods have shown
promise, they struggle with cross-dataset performance. This thesis aims to evaluate and assist
in improving deep learning-based detection of distracted drivers using human body part action
recognition. The study aims to fill gaps in the current literature and enhance the effectiveness of
detecting distracted drivers for safer roads.

This chapter provides background to the identified research problems and reviews existing methods
and their shortcomings. The fundamental research questions are articulated, serving as the founda-
tion for this study. Moreover, the research goal and objectives that address the identified research
problems are provided, along with an overview of the selected methodology to solve the identified
problems and the research study’s objectives.

Furthermore, the chapter provides an overview of the research study’s outcomes and contributions.
Additionally, the research outputs of this study are summarized. Finally, the chapter provides the
scope of the research study. The chapter concludes by outlining the structure of the subsequent
sections.

1.1 Problem statement

1.1.1 Background to research problems

Fatalities due to road accidents cost countries about 3% of their annual gross domestic product
(GDP) [1]. The World Health Organization (WHO) reports that road accidents result in approxi-
mately 1.3 million deaths yearly. More than 90% of these fatalities come from developing countries

1

2 Chapter 1. Introduction

like South Africa [1]. South Africa is one of the African countries with the highest road traffic
accidents [1]. In 2020, the South African Road Traffic Management Corporation (RTMC) reported
that the total road traffic fatalities reached 12,503. Amongst others, a significant percentage results
from driver distractions such as talking to the phone while driving and texting [2]. According to the
National Highway Traffic Safety Administration (NHTSA), most road accidents and near-accidents
can be accredited to driver distraction and lack of attention [6].

Due to the detrimental effects of distracted driving on society and the global economy, there is a
need for driver distraction measurement methods. A consensus is that if driver distractions could be
measured and addressed quickly through alerts, crash rates could be reduced [3]–[5]. Researchers
have proposed various methods to measure driver distractions. These methods can be broadly
categorised into four groups [7]:

• Physiological methods: Physiological methods measure driver distraction using the driver’s
physiological characteristics. Most research focuses on five physiological areas [8]: cardiac
activity, respiratory activity, eye activity, speech measures, and brain activity.

• Vehicle-based methods: Vehicle-based methods use data about the vehicle’s operation
gathered from internal and external sources recorded by onboard diagnostic systems [9]. The
data from the vehicle includes driving speed, steering wheel position, acceleration, and lane
departure, among others.

• Vision-based methods: Vision-based methods, or behavioural methods, focus on the
driver’s behaviour captured using camera systems. These methods typically use image pro-
cessing and computer vision techniques to monitor the driver’s status. Most research analyses
driver activities such as facial expression characteristics, eye closure, body posture, head pos-
ture, and hands on the wheel.

• Hybrid methods: Hybrid methods combine at least two of the above methods to develop a
robust system that benefits from the features of the combined methods.

Deep learning’s success in real-world vision problems has led to significant attention towards us-
ing convolutional neural networks (CNNs) to detect distracted drivers. Researchers favour CNNs
because they can automatically extract image features and perform classification [10]. Promising
results have been reported in the literature, demonstrating high accuracy within individual datasets
(i.e., intra-dataset accuracy). However, despite the remarkable success, the performance of current
deep learning-based vision methods remains limited in cross-dataset testing scenarios. Cross-dataset
performance is crucial since it indicates a learning model’s robustness and generalisation ability.
The generalisation ability of a model gives a good indication of the model’s likelihood of failure
when deployed in a real-world system. Deploying a model in the real world without knowing its
cross-dataset performance might result in catastrophic events. For example, a driver was fatally
injured in an accident because a Tesla car crashed into a roadside barrier and caught fire while on
autopilot [11].

1.1.2 Identified gaps

Few to no comprehensive studies evaluate distracted driver detection algorithms across datasets.
Research papers on detecting distracted drivers using deep learning techniques often include com-

3 Chapter 1. Introduction

parative performance evaluations. However, such evaluations could be more comprehensive and
consider cross-dataset performance.

It was also found through preliminary experiments that current deep learning distracted driver
detection algorithms do not generalise well on unknown datasets, particularly CNN-based methods
that utilise the entire image for prediction. For example, a ResNet50 model fine-tuned on a dis-
tracted driver detection image dataset obtained an intra-dataset classification accuracy of 95.91%
but an average classification accuracy of 72% on the other three datasets not used for training.

The identified problems are (1) a need for comprehensive studies investigating the general-
ising ability of deep learning distracted driver detection algorithms and (2) a lack of robust
deep learning distracted driver detection algorithms with consistent performance across dif-
ferent distracted driver detection image datasets.

1.2 Overview of existing methods

A literature survey was conducted to identify existing methods to solve the problems identified in
Section 1.1.2. The focus was narrowed to three key areas to identify research topics and review
existing methods. These areas include:

• Deep learning-based distracted driver detection: This focus area looked at research
conducted to tackle the issue of detecting distracted drivers using deep learning, focusing on
convolutional neural networks and static images.

• Robust distracted driver detection: This study area narrowed down the scope to only
research that aimed at improving the generalisation ability of distracted driver detection.

• Cross-dataset performance evaluation: This area focused on whether existing research
evaluates model generalisation ability across new image datasets.

Various academic databases, including IEEE Xplore, ScienceDirect, Springer, Wiley, and Google
Scholar, were used to gather the literature reviewed in this study. The search used key terms such
as robust distracted driver detection, deep learning, convolutional neural networks, cross-dataset
performance, and generalization.

Table 1.1 provides an overview of the existing methods and their consideration for the three identi-
fied focus areas. The green check marks in the table indicate that a method meets the corresponding
focus area of comparison. In contrast, the red crosses indicate specific focus areas that a method
does not fulfil. Chapter 3 will present a detailed literature review of the existing methods.

4 Chapter 1. Introduction

Table 1.1: Overview of existing methods and identified research gaps.
Approaches Sources CNN-based

approach
Robust
distracted
driver detec-
tion

Cross-
dataset
performance
tested

CNN feature classifica-
tion

[12]–[14] ✓ ✗ ✗

Ensemble [15], [16] ✓ ✓ ✗
Data augmentation [17], [18] ✓ ✓ ✗
CNN features + HOG
features

[5], [19], [20] ✓ ✓ ✗

CNNs + RNNs [21], [22] ✓ ✓ ✗
3D CNNs [23], [24] ✓ ✓ ✗
Pose estimation [25], [26] ✓ ✓ ✗
Driver segmentation [27], [28] ✓ ✓ ✗
Driver ROI detection [9], [29]–[31] ✓ ✓ ✗

Based on the literature presented in Table 1.1, it was found that much effort has been put into
developing robust methods for detecting distracted drivers. However, it is still unclear how effective
these approaches are in generalising to other datasets. Existing research studies do not evaluate
their methods on other distracted driver detection datasets. Additionally, current approaches only
utilize object detection to identify the driver’s region of interest (ROI) and distraction objects like
mobile phones and drinking bottles. None of the existing approaches focus on identifying crucial
driver body parts, classifying their state into activities, and then making a final prediction.

1.3 Research questions

Reviewing existing methods (Section 1.2) gives rise to two primary search questions this study seeks
to answer. These research questions are:

• RQ1: To what extent can deep learning distracted driver detection algorithms generalise on
unknown image datasets not used for training?

• RQ2: Can the performance of CNN-based distracted driver detection be improved across
different datasets by detecting driver body parts and classifying their state into activities?

1.4 Research goal and objectives

To answer the research questions stated in Section 1.3, the main goal of this study is to develop a
robust approach based on human body part recognition. The approach is expected to enhance the
ability of CNN-based distracted driver detection to generalise well.

To achieve the goal of the study, the following research objectives (ROJs) have been identified:

• ROJ1: To investigate current techniques for detecting distracted drivers using single static
images with convolutional neural networks.

5 Chapter 1. Introduction

• ROJ2: To investigate the cross-dataset performance of deep learning distracted driver de-
tection algorithms.

• ROJ3: To develop an approach that uses human part action recognition to improve distracted
driver detection on unknown datasets.

• ROJ4: To evaluate the proposed approach using benchmark datasets and a custom dataset.

1.5 Overview of the methodology

This section provides an overview of the overall research methodology that is used to achieve the
research objectives outlined in Section 1.4:

• Deep learning in distracted driver detection (METHOD1): As discussed in Sec-
tion 1.2, to conduct the literature survey, the focus is first narrowed to three key areas:
deep learning-based distracted driver detection, robust distracted driver detection, and cross-
dataset performance evaluation. The three focus areas form the basis for the identification of
research topics as well as reviewing existing methods. The literature reviewed is obtained from
academic databases such as IEEE Xplore, ScienceDirect, and Google Scholar. The reviewed
methods are then grouped and synthesised based on themes discovered in the literature, di-
rectly addressing ROJ1.

• Cross-dataset performance evaluation (METHOD2): The generalisation ability of a
model refers to the variance in its performance when trained and fine-tuned on one or mul-
tiple datasets and subsequently tested on an entirely novel dataset, which the model has not
previously encountered [32]. Consistent with this definition, METHOD2 will address ROJ2
by evaluating the cross-dataset performance of distracted driver detection algorithms using a
three-step quantitative approach. Step 1 involves collecting image datasets and splitting the
datasets into training, validation, and test sets. Step 2 involves selecting the algorithms and
training them on each training set prepared in Step 1. The final step involves evaluating each
algorithm on each of the test sets.

• Robust distracted driver detection using human part action recognition
(METHOD3): Current image datasets are relatively large but not diverse. These datasets
mainly come from experiments in simulators or real car environments [17], which produce
images with similar backgrounds and within a narrow range of distracted driving scenarios.
Creating a large and diverse image dataset is the apparent option from these observations.
However, increasing the amount of data presents two challenges. First, considerable data
is required to achieve notable performance improvement [33]. Second, acquiring large and
diverse in-car driver poses for distracted driver detection is a challenge due to the reluctance
of drivers to compromise their privacy and the cost associated with using multiple devices for
data collection, not to mention the labour-intensive annotation process [34]. The challenges
of increasing the training dataset also make the apparent solution of fine-tuning a model to
a task-specific dataset less attractive [35]. As a result, METHOD3 will address ROJ3 by
focusing on the key human body parts involved when a driver is operating a vehicle and using
their activities to predict if a driver is distracted. The proposed approach is based on the
hypothesis that focusing on only the key body parts of the driver will reduce input variance
from dataset to dataset. Figure 1.1 provides an overview of the proposed approach.

6 Chapter 1. Introduction

• Evaluation on benchmark and custom datasets (METHOD4): To achieve ROJ4, the
same cross-dataset performance evaluation approach will be utilised as the one outlined above
for achieving ROJ2.

Figure 1.1: Proposed framework for distracted driver detection. Step 1: The driver’s body parts
are detected, and the activity of each body part is classified. Step 2: The detected activities are
used to make a final prediction using a decision tree-based approach.

1.6 Overview of the outcomes

Using the methodology (METHOD1 to METHOD4) discussed in Section 1.5, the outcomes of this
thesis can be summarised as follows:

• ROJ1 outcomes: Two major themes emerged from the literature survey. The themes include
CNN feature classification and robust distracted driver detection. CNN feature classification
methods extract driver features using a CNN and then use fully connected layers or a mul-
tilayer perceptron (MLP) to classify the driver behaviour. However, CNN feature extraction
methods often overfit the training data and subsequently fail to generalise well on new data
not used for training. To overcome the issue of overfitting, robust distracted driver detection
methods use various approaches such as the ensemble approach, data augmentation, combin-
ing CNN features with HOG features, hybrid CNN-RNN approaches, 3-dimensional CNNs,

7 Chapter 1. Introduction

combining CNN features with human key points obtained using pose estimation algorithms,
driver segmentation, and driver ROI detection.

• ROJ2 outcomes: Based on the cross-dataset performance evaluation results, it was found
that, in general, deep learning distracted driver detection algorithms do not perform very well
on testing datasets that do not come from the same dataset as the training dataset. This
observation holds particularly true for CNN models that employ the entire image without
removing background noise or utilising less variable features. In addition, it was found that
although current distracted driver detection image datasets are large, they lack diversity – a
characteristic that negatively affects their ability to generalise on data. As a result, models
often resort to shortcut learning when trained on the current datasets.

• ROJ3 outcomes: The proposed approach (Figure 1.1) was successfully implemented using
the Yolov7 [36] algorithm in three steps. In the first step, images randomly selected from
a dataset were split into training, validation, and test sets. Images from the training and
validation sets were manually annotated to highlight key human body parts involved when
a driver operates a vehicle and common distraction objects such as cell phones and drinking
bottles. In the second step, the Yolov7 model was adapted for the task of distracted driver
detection using the source code provided by the Yolov7 authors on their official GitHub
repository1. A standard Yolov7 model, pre-trained on the Microsoft COCO dataset [37], was
fine-tuned to the annotated training dataset.

• ROJ4 outcomes: A classification accuracy improvement was observed, along with a signif-
icant overall balanced (F1-score) performance improvement. Further details regarding these
improvements will be discussed in Chapter 6.

1.7 Contributions

The contributions of this thesis are derived from the review of existing methods presented in Section
1.2. Based on this review, it was found that existing approaches do not evaluate the generalisation
ability of proposed methods, and no study evaluates the cross-dataset performance of existing
distracted driver detection methods. In addition, existing driver ROI detection methods only use
object detection to detect the driver ROI and common distraction objects such as cell phones and
drinking objects. As a result, the methods proposed in this thesis (Section 1.5) to reach the study’s
research objectives (Section 1.4) will be new. The main contributions of the study are:

• Evaluating the cross-dataset performance of current deep learning-based dis-
tracted driver detection algorithms: Insights drawn from this study will indicate the
readiness of existing methods for deployment in the real world. The study could also serve as
a general guideline for selecting distracted driver detection algorithms and provide direction
for future research.

• Developing a robust distracted driver detection algorithm that relies on detecting
key human body parts involved when a driver is operating a vehicle: Even though
existing research uses object detection to detect the driver ROI and common distractions [9],
[29]–[31], a more robust approach that zooms into the key human body parts involved when

1https://github.com/WongKinYiu/yolov7

https://github.com/WongKinYiu/yolov7

8 Chapter 1. Introduction

a driver is operating a vehicle is required to reduce the cross-dataset variance and thereby
improve the generalisation ability of distracted driver detection.

• Evaluating the cross-dataset performance of the proposed approach on benchmark
datasets and a custom test set: The cross-dataset performance of the proposed approach
will indicate its generalisation ability, an important indicator for the readiness of a model for
deployment and integration in real-world applications.

1.8 Research outputs

The contributions of this work have led to one published conference paper titled ”Cross-dataset
performance evaluation of deep learning distracted driver detection algorithms” [38] and a pub-
lished journal article titled ”Enhancing Distracted Driver Detection with Human Body Activity
Recognition using Deep Learning” [39].

The first paper, published in the Proceedings of the 2022 RAPDASA-RobMech-PRASA-CoSAAMI
conference, was the first work on cross-dataset performance evaluation on deep learning distracted
driver detection algorithms. The paper’s focus was evaluating and analysing the cross-dataset
performance of state-of-the-art deep learning-based distracted driver detection approaches. This
work demonstrated that, in general, the deep learning-based distracted driver detection algorithms
do not generalise well on new data. It was also found that current distracted driver detection
datasets are relatively large but not diverse. As a result, algorithms trained on these datasets often
resort to shortcut learning, significantly reducing their ability to generalise to new data.

The journal article focuses on the development of a robust distracted driver detection approach
by detecting and classifying the state of key human body parts that are involved when a driver is
operating a vehicle. The paper forms part of Chapters 5 and 6.

1.9 Delimitations

This work must contend with the following delimitations:

• Algorithms: This study only focuses on vision-based deep learning distracted driver detec-
tion algorithms. In the research area of distracted driver detection, vision-based deep learning
algorithms have demonstrated superior performance to traditional algorithms [19], [40]. In
addition, due to financial constraints, algorithms using vehicle information will not be con-
sidered – only vision-based algorithms will be considered to avoid collecting and analysing
vehicle data.

• Input data: This study only focuses on single static images instead of video data.

• Performance: The primary goal of this work is to improve the generalising ability of dis-
tracted driver detection. Therefore, the focus is only on improving distracted driver detection
accuracy across different datasets. Other performance indicators, such as processing speed,
are not considered.

• Deployment: Deployment and testing of the proposed approach in a real-world environment
(car) are beyond the scope of this work.

9 Chapter 1. Introduction

1.10 Document structure

The structure of this document is as follows:

• Chapter 2 provides background on distracted driving, fundamental concepts of convolutional
neural networks, and brief details on the training of deep learning neural networks. In addition,
the chapter covers the concepts of machine learning generalisation and regularisation. The
chapter concludes by introducing object detection and fundamental object detection concepts
relevant to this thesis.

• Chapter 3 provides a detailed literature review on the key focus areas identified in Section
1.2. In addition, the chapter will introduce common datasets used to train distracted driver
detection methods. The literature review will support the first research objective (ROJ1)
outlined in Section 1.4.

• Chapter 4 sets out to achieve the second objective (ROJ2) of this thesis. It evaluates how
well deep learning-based distracted driver detection algorithms perform on unfamiliar image
datasets not part of their training.

• Chapter 5 focuses on achieving the third research objective (ROJ3) of this thesis. Specifi-
cally, the chapter focuses on developing a robust distracted driver detection approach based
on recognising distinctive activities of human body parts involved when a driver is operating
a vehicle.

• Chapter 6 presents two experiments that focus on evaluating the robustness of the proposed
approach. The activities carried out in this chapter support the fourth research objective
(ROJ4) of this thesis.

• Chapter 7 provides a conclusion to this study. The chapter concludes with a summary of
the outcomes of this thesis and recommendations for future work.

Chapter 2

Background

This chapter sets the foundation for subsequent chapters by providing essential background
knowledge. It briefly introduces distracted driver detection (Section 2.1) and the different methods
used to measure distracted driving (Section 2.1.2). The chapter then introduces artificial neural
networks (Section 2.2) and the fundamental building blocks of convolutional neural networks that
form the basis for the methods introduced throughout this thesis (Section 2.3).

Subsequently, the chapter elaborates on the typical procedure for training deep neural networks
(Section 2.4). Moreover, it delves into the concepts of machine learning generalisation and regular-
isation in Section 2.5. Section 2.6 introduces object detection and outlines fundamental concepts
pertinent to this thesis. In Section 2.7, the details of the YOLOv7 architecture are presented.
Finally, Section 2.8 concludes the chapter by furnishing a high-level overview of the implementa-
tion process for customising a YOLOv7 model, while also introducing commonly used performance
metrics for evaluating object detectors.

2.1 Distracted driver detection

The purpose of this section is to provide a comprehensive overview of distracted driving detection
methodologies, starting with a delineation of distracted driving, which categorises the causes of
distraction. Following that, three fundamental methods of measuring distracted driving are dis-
cussed: physiological, vehicle-based, and vision-based. For each methodology, the technologies used
are described, along with their advantages and disadvantages. The section concludes by focusing
attention on vision-based approaches, primarily emphasising the use of deep learning methodologies
utilising Convolutional Neural Networks (CNNs). Their commendable performance in real-world
applications and promising outcomes in the field of distracted driver detection support this focus.

2.1.1 What is distracted driver detection

In the literature, the terms driver distraction and driver inattention are often used interchangeably.
Although the two terms may refer to the same concept, this work will use the term ”driver distrac-
tion”. The National Highway Traffic Safety Administration (NHTSA) defines distracted driving as

10

11 Chapter 2. Background

any activity that draws away a driver’s attention from the task of driving [6]. Distracted driving in-
cludes, amongst other non-driving activities, talking or texting on the phone, talking to passengers
in the car, and eating and drinking. Engaging in non-driving activities is a potential distraction
and constitutes unsafe driving. Driver distractions can be categorised into three groups as follows:

• Visual distractions: tasks that require the driver to take their eyes off the roadway.

• Manual distractions: tasks that require the driver to take their hands off the wheel.

• Cognitive distractions: mental workload associated with tasks or activities that take the
driver’s attention off driving.

2.1.2 Measurement methods for distracted driving

Chapter 1 briefly introduced three primary categories of methods for detecting distracted drivers:
physiological, vehicle, and vision-based methods. The technology and techniques used in each of
these categories are summarised as follows [27]:

• Physiological-based methods: Driver distraction can be detected by monitoring the
driver’s physical state using physiological-based methods. These methods assume that in-
creased mental load leads to an increased physical response from the body [8]. Researchers
typically focus on five physiological areas: cardiac activity, respiratory activity, eye activity,
speech measures, and brain activity. Electro-physical devices such as electroencephalograph
(EEG) [41], electrooculogram (EOG), and electromyograph (EMG) [42] are commonly used
to measure the driver’s physical state. While these methods have been reported to be highly
accurate, some researchers argue that they can reduce user experience and increase hardware
costs due to the need for wearable sensors [43].

• Vehicle-based methods: Vehicle-based methods rely on sensors to gather data about a
vehicle’s acceleration, deceleration, steering angle, heading angle, and speed. This data is then
sent to a classifier model, such as a support vector machine (SVM) or multilayer perceptron
(MLP) [44], which determines the driver’s action based on the input data.

• Vision-based methods: Vision-based methods utilise vision sensors such as cameras to cap-
ture visual information about the driver through video or images. Most vision-based methods
follow a two-step process, i.e., feature extraction and classification. Initially, researchers
used hand-engineered low-level features such as the scale invariant feature transform (SIFT),
speeded-up robust features (SURF), or histogram of oriented Gradients (HOG). These fea-
tures are then passed to a classical machine learning model for classification. Commonly used
classical machine learning models include support vector machines (SVM) [45] and random
forest algorithms. However, in recent years, researchers have focused on using deep learning
to solve the problem of distracted driver detection due to its success in other computer vision
tasks such as number plate recognition [46]. Most deep learning-based distracted driver detec-
tion methods use convolutional neural networks (CNNs) due to their ability to learn features
from images automatically.

Other methods that combine two of the three methods above to create hybrid methods have also
been proposed in the literature. For example, Omerustaoglu et al. [47] proposed a hybrid method

12 Chapter 2. Background

combining a vehicle-based method with a vision-based one.

This thesis mainly explores vision-based techniques, particularly deep learning-based methods that
utilize convolutional neural networks (CNNs). The reason for selecting CNNs is their proven track
record in solving real-world vision problems like skin cancer classification [48] and fire and smoke
detection [49]. Moreover, compared to traditional algorithms, CNNs have shown tremendous results
in identifying distracted drivers [19], [40].

2.2 Artificial neural networks

Before introducing CNNs it is important to briefly introduce artificial neural networks (ANNs)
since CNNs are simply ANNs that use convolution instead of general matrix multiplication in at
least one of their layers [50].

ANNs are the foundation for developing deep learning models. ANNs are computer systems that
mimic the connections between neurons in the human brain. The main objective of ANNs is to
estimate a function that associates inputs with outputs using patterns derived from previously
observed data.

A well-known and widely used type of artificial neural network is the multilayer perceptron (MLP)
[51]. Figure 2.1 shows a typical architecture of an MLP. It is important to notice that every output
neuron is connected to every input neuron. The MLP processes data in three steps. The input
values are multiplied by individual weights (wi) in the first step. In the second step, all weighted
inputs are summed, and a bias term (b) is added to obtain (z), which is then passed through
an activation function. The output of the neuron is the activated weighted sum and if a linear
activation function is used, then the neuron’s output ends up being the weighted sum z. Eq. 2.1
shows how the neuron’s output is calculated for the single neuron shown in Figure 2.1:

z = b+
∑
i

wi · xi. (2.1)

The final step is to pass the weighted sum, denoted as z, through an activation function. Activation
functions serve a crucial purpose: they introduce non-linearity into the neural network [52]. The
non-linearity introduced by activation functions is essential for addressing real-world problems,
which frequently exhibit non-linear patterns. Moreover, activation functions enable artificial neural
network (ANN) models to effectively represent and approximate complex functions. Additionally,
activation functions play a role in regulating the flow of information within the network and
improving its stability and convergence during the training process [53].

Figure 2.2 displays common activation functions used in deep neural networks. For an in-depth
analysis of activation functions in deep neural networks, refer to [52].

13 Chapter 2. Background

Figure 2.1: Typical structure of a multilayer perceptron. For a single neuron, input values are
multiplied by the individual weights. The weighted sum is then computed and passed to the
activation.

Figure 2.2: Commonly used activation functions in deep learning. Top left: Sigmoid activation
function. Mid-top: Hyperbolic tangent. Top right: Rectified linear unit (commonly used activa-
tion function for deep neural networks). Bottom left: variant of the ReLU that allows for negative
values. Mid-bottom: Exponential linear unit. Bottom right: Scaled exponential linear unit.

14 Chapter 2. Background

2.3 Convolutional neural networks

The success of AlexNet on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2012 marked a significant milestone and a breakthrough in deep learning by demonstrating
the power of deep CNN architectures for image recognition tasks. However, the history of CNNs
goes back to 1959 when David Hubel and Torsten Wiesel conducted groundbreaking experiments
on the visual cortex of cats [54], identifying the presence of simple and complex cells that laid
the foundation for understanding the hierarchical processing of visual information. In 1980,
Fukushima then introduced a neural network model for pattern recognition called Neocognitron
[55]. This paper introduced the concepts of feature extraction, pooling layers, and using convo-
lutions in a neural network. Later, in 1998, Yann LeCun introduced LeNet-5 [56], a pioneering
CNN architecture designed for handwritten digit recognition featuring convolutional layers and
subsampling layers (pooling), which demonstrated the effectiveness of CNNs for image classification.

Convolutional neural networks are deep learning algorithms designed to specifically process and
analyse data with a grid-like structure, such as images, videos, and audio spectrograms [50]. They
have trainable architectures with multiple stages [57]. Each stage generates a set of arrays called
feature maps, which serve as input and output. Typically, each stage consists of three layers: a
convolutional layer, a non-linearity layer, and a feature pooling layer [57]. In addition to these
three layers, fully connected (FC) layers, also known as dense layers, are commonly employed at
the end of CNNs to use extracted features to make predictions or perform classification tasks.
Additional layers, such as batch normalization (BN) and dropout layers, have also been introduced
to improve CNN performance. The details of each layer are provided below.

2.3.1 Convolutional layer

A convolutional layer is a fundamental building block in a CNN. It applies a set of K learnable
filters to the input volume and extracts low-level features through convolution. In deep learning,
the convolution operation refers to an element-wise multiplication between two matrices followed
by a sum [57]. In line with this definition, for CNNs convolution S is an element-wise multiplication
between an input volume I and a two-dimensional (2D) filter K [50], [57],

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

K(i+m, j + n)I(m,n), (2.2)

where m and n represent the dimensions of the filter K, and i, j represents the coordinates of a
pixel in the input volume.

Each filter (kij) applied in a convolutional layer has a size Mk × Nk, where Mk is the height
and Nk is the width and are nearly always square. The size of the filters, in terms of their spatial
dimensions, is typically small but extends throughout the full depth of the input volume. The input
volume has a width (n3), height (n2), and depth (n1). Each filter slides across the input region,
computes an element-wise multiplication, performs a summation, and then stores the output value
in a 2-dimensional feature map with width and height given by m3 and m2, respectively. The depth
of the input volume is equivalent to the number of channels in the image if the input is for the input
layer of the CNN. For input volumes deeper in the CNN, the depth is equivalent to the number

15 Chapter 2. Background

of filters applied in the previous layer. Figure 2.3 illustrates the convolution operation in a typical
convolutional layer.

Figure 2.3: Step 1: At each convolutional layer in a CNN, K filters are applied to the input.
Step 2: Each filter is convolved with the input volume. Step 3: The output of each convolution
operation is a 2D feature map.

The convolution operation gives rise to three significant benefits of the convolutional layer [50]:
sparse connections, parameter sharing, and equivariant representations. Due to sparse connections,
neurons in the first convolutional layer do not connect to every pixel in the input image (like in the
multilayer perceptron discussed in Section 2.2) but connect to pixels in their receptive fields. In
turn, neurons in subsequent convolutional layers only connect to pixels in a small rectangle within
the previous convolutional layer. Figure 2.4 illustrates the concept of sparse connections.

16 Chapter 2. Background

Figure 2.4: The concept of sparse connections and receptive field in a CNNs [58].

The concept of parameter sharing makes CNNs computationally and statistically efficient due to the
smaller number of parameters that the network must learn. The sharing of parameters also makes
convolutional layers equivariant to translation [58]. The property of equivariance makes CNNs
shift-invariant, which implies that they can recognise patterns or features in an image regardless of
their spatial location. In other words, a shift-invariant CNN should be capable of identifying the
same features or objects in different parts of the input without having to relearn the features for
each possible location. The convolutional layer also has other essential parameters, such as stride
and padding. Stride refers to the number of pixels skipped at a time (the same number of pixels
skipped along the x-axis are also skipped along the y-axis). Padding refers to adding new entries to
an array or matrix along its borders to enlarge the dimensions and obtain the desired dimensions.

2.3.2 Non-linearity layer

A non-linear activation function is applied after the convolutional layer in a CNN. The non-linear
activation function adds non-linearity to the CNN to better account for the non-linear nature of
patterns and features in images [57]. Section 2.2 (Figure 2.2) introduced some commonly used
non-linear activation functions, with the ReLU activation function being the most popular. As a
result, the non-linearity layer is often called the ReLU layer.

2.3.3 Feature pooling layer

Feature pooling layers serve two primary purposes. Firstly, it gradually decreases the input volume’s
spatial dimensions (width and height), which can effectively reduce the number of parameters and
computations in the network [57]. Secondly, it helps manage overfitting, a common challenge in deep
learning models. Feature pooling layers operate on each depth slice of the input independently, using
either the max or average function. For example, when the average function is used, the pooling layer

17 Chapter 2. Background

computes the average values over a neighbourhood in each feature map. The neighbourhoods are
traversed with a stride greater than one (yet smaller than or equal to the pooling neighbourhood).

2.3.4 Fully connected layer

After stacking multiple convolution blocks (convolution layer, non-linear activation layer, and
feature pooling layer), fully connected (FC) layers (also known as dense layers) are typically used
at the end of a CNN architecture to take the extracted features from the preceding convolutional
block and use them to make predictions or perform classification tasks [57].

Convolutional Neural Networks (CNNs) can learn to detect edges and small structures in their
lower-level layers by stacking multiple convolution blocks and using backpropagation [58]. These
structures can then be used in higher-level layers to detect and classify more complex objects such
as cars, dogs, and cats. Using convolutions, CNNs can extract meaningful features, which are then
used to classify objects of interest. Much like humans use features such as colour and structure to
distinguish objects, CNNs use features extracted through convolutions.

2.3.5 Batch normalisation layer

Ioffe and Szgedy first introduced batch Normalisation (BN) [59] in their 2015 paper titled “Batch
Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” As the
name suggests, the BN layer accelerates training by normalising the activations of a given input
volume before sending it to the next layer in the network. Given a mini-batch d-dimensional input
X = [x1 · · ·xd] for a layer, the BN layer normalises each mini-batch activation in four steps:

• Step 1: The mean of the input layer is calculated using

µX =
1

d

d∑
i=1

xi. (2.3)

• Step 2: The variance of the mini-batch is calculated using

σ2
X =

1

d

d∑
i=1

(xi − µX)2. (2.4)

• Step 3: The mini-batch layer inputs are normalised using

X̂i =
(xi − µX)√

σ2
X + ϵ

. (2.5)

To prevent the square root of zero, ϵ is added to the computation.

• Step 4: The normalised mini batch values are calculated using

yi = γxi + β. (2.6)

The values of γ and β are learned during training.

18 Chapter 2. Background

2.3.6 Dropout layer

The dropout (DO) layer is a regularisation technique aimed at improving testing accuracy while
sacrificing training accuracy to prevent overfitting [57]. During training, for a given mini-batch,
the DO layer alters the network architecture by randomly disconnecting inputs from the previous
layer with a probability of p. Figure 2.5 illustrates the functioning of dropout layers with a dropout
probability of 50%. The illustration depicts a halving of connections between layer 1 and layer 2
following the application of the dropout layer with p = 0.5. Once the forward and backward passes
are computed, the dropped connections are restored, and another set of connections is randomly
selected for dropout.

Figure 2.5: The concept of dropout layers. Left: Two layers of neurons that are fully connected.
Right: Two layers of neurons with a dropout probability of 50%. Image adapted from [57].

2.4 Training deep learning algorithms

Section 2.3 discussed the process of building CNN architectures. This knowledge allows one to create
a complete CNN architecture with trainable weights. Four essential components are required to
train the weights: a dataset, a loss function, the CNN architecture itself, and an optimisation
method. The four components can be summarised as follows:

• Dataset: The dataset is the first component in training a neural network – the data itself,
along with the problem we are trying to solve, defines our end goals. A neural network learns
to map a set of inputs to a set of outputs from the training dataset.

• Loss function: A loss function quantifies the performance of a model in classifying input data
points in a dataset. Lower loss values indicate better classification accuracy. In other words,
the loss function measures the effectiveness of the scoring function. The task often influences
the selection of a loss function. For example, mean square error (MSE) is commonly used
for regression tasks, binary cross-entropy loss (BCE) for binary classification problems, and
categorical cross-entropy loss (CCE) for multi-class classification problems. Object detection
tasks require a combination of multiple loss functions such as cross-entropy loss, smooth L1
loss, IoU loss, focal loss, and YOLO loss. For a more comprehensive review of deep learning
loss functions, refer to [60] and [61].

19 Chapter 2. Background

• Model: The network architecture can be considered the first choice to make as one of the
components to train a deep learning algorithm. The choice of the network architecture is
often influenced by factors such as the number of data points in the dataset, the number of
classes, how similar or dissimilar the classes are, and intra-class variance.

• Optimisation method: When training a deep learning network, the optimisation method
is a crucial component. Optimisation algorithms are essential in training deep learning
algorithms, allowing neural networks to learn patterns from data. These methods optimise
a neural network by finding optimal weights to minimise the loss function. The most used
method for optimising neural networks is gradient descent. The idea behind gradient descent
is to evaluate parameters iteratively, compute the loss, and then move in a direction that will
minimise the loss. Gradient descent can be implemented as shown in Algorithm 1 [62]. The
gradient descent algorithm requires the weight matrix (θ), learning rate (α), the maximum
number of iterations (max iter), and the training data. For supervised learning, the training
data represents a training set {x(1), · · · , x(m)} with corresponding targets y(i).

Gradient descent starts by computing the gradient (∇) of an objective function (J(θ)) that
represents the loss (L) in Eq. (2.7). In Eq. (2.7), Lf represents an arbitrary loss function and
f represents a scoring function that maps the inputs {x(1), · · · , x(m)} to outputs y(i). The loss
represents the error of a neural network over the training examples and the weight matrix.
The final step updates the weight matrix using the computed gradient (∇J(θ))) and the
learning rate. The learning rate is an important parameter that controls the step size during
iterations. The maximum number of iterations is also known as the number of training epochs.

L =
1

m

m∑
i=1

Lf(f(x
(i); θ), y(i)) (2.7)

Variants of the gradient descent method, such as stochastic gradient descent (SGD) and
various gradient descent optimisation methods, such as Nesterov accelerated gradient and
Adam, exist. The reader can refer to [63] for a comprehensive review.

Algorithm 1: Gradient descent

Data: Initial parameters θ, learning rate α, maximum number of iterations max iter, m
training examples

Result: Optimal parameters θ
1 Initialize iteration counter iter ← 0 ;
2 while iter < max iter do
3 Compute the gradient: ∇J(θ)← 1

m

∑m
i=1∇θL(f(x

(i); θ), y(i)) ;
4 Update parameters: θ ← θ − α∇J(θ) ;
5 Increment iteration counter: iter ← iter + 1 ;

20 Chapter 2. Background

2.5 Generalisation and regularisation

In machine learning, the main goal is to develop a model that can effectively handle new and
unseen input data, a concept known as generalisation. To achieve model generalisation, data for a
specific problem is usually divided into two sets: a training set and a test set. The training set is
utilised to train a machine learning model, while the test set measures the model’s performance.
Since the model’s effectiveness in real-world applications is determined by its performance on the
test set, it is often used as an indicator of its ability to generalise to new inputs.

Training a machine learning model involves minimising the errors made by the model on the
training set. The combined errors of the model over the training set are known as the training
error. However, it is also necessary to reduce the errors of the model on the test set, which is
called the generalisation error. The generalisation error is estimated by measuring the model’s
performance on the test set. The generalisation error estimation assumes that the data examples
in the training and test set are independent and that the training and test set are identically
distributed, i.e., drawn from the same probability distribution.

The performance of a machine learning model depends on its ability to minimize both the training
error and the gap between training and test error [64]. These two factors present the main
challenges in machine learning: underfitting and overfitting. Underfitting occurs when a model
cannot achieve low error values on the training set, while overfitting happens when the gap between
the training error and test error is too large.

The model’s capacity is what controls its tendency to overfit or underfit. Model capacity refers
to the model’s ability to fit a wide range of functions. In deep learning, increasing the number
of layers in the network can increase the model’s capacity, whereas removing layers and applying
regularization techniques such as the dropout layer (Section 2.3.6) can reduce it. Figure 2.6 visually
represents the typical relationship between overfitting and underfitting and model capacity.

21 Chapter 2. Background

Figure 2.6: Typical relationship between model capacity and error. The red line separates optimal
model capacity from underfitting (left end of the graph) and overfitting (right end of the graph).
Optimal model capacity is reached when the generalisation and training error curves are level.
As model capacity increases, the training error decreases but the generalisation gap increases.
Ultimately, the model overfits to the data when the size of the generation gap outweighs the
training error. Note: illustration adapted from Goodfellow et al., page 113 [64].

Regularisation is a technique used to prevent overfitting in machine learning. It is crucial in deep
learning as it helps models perform well on new data even when the training data is limited.
According to Goodfellow et al. [64] regularisation is “any modification we make to a learning
algorithm that is intended to reduce its generalization error but not its training error.” However, in
this work, the broader definition provided by Jan et al. [65] will be used. Regularisation in this
context refers to a group of supplementary techniques that aim to improve a model’s ability to
generalise on a specific test set.

Consistent with the adopted definition, we can group the methods of regularisation into five cate-
gories [65]:

• Regularisation via data: This involves transforming the training data to create a new
training set. It includes techniques such as feature extraction or preprocessing that alter the
feature space or distribution of the data to a representation that simplifies the learning task

• Regularisation via the network architecture: This refers to selecting specific network
architecture choices to fit the data well. This includes decisions on layer operation, noise, and
model selection.

• Regularisation via the error function: This group is concerned with choosing an appro-
priate loss function based on the task and characteristics of the data.

22 Chapter 2. Background

• Regularisation via the regularisation term: The methods in this group modify the loss
function by adding a regularisation term λR(W), where λ is a weighing term that controls
the amount or strength of the regularisation, R(W), being applied.

• Regularisation via optimisation: The last group includes the choice of techniques used to
initialise and update neural network weights, along with stopping criteria for the optimisation
procedure.

2.6 Object detection

Object detection is a task in computer vision that involves identifying and locating multiple objects
within an image [58]. Two main types of deep learning-based object detection algorithms exist:
two-stage and single-stage detectors. A two-stage detector starts by generating candidate regions
that might contain an object before using a CNN architecture to extract features or classify those
regions. A single-stage detector starts from an image input. Using a CNN architecture, it produces
bounding boxes with corresponding class labels in a single forward pass without requiring region
proposals. The R-CNN family [66]–[68] is the most well-known group of two-stage object detectors,
whereas the YOLO family [36], [69]–[73] is the most popular group of single-stage object detectors.

This thesis focuses on object detection to improve the robustness of distracted driver detection.
Specifically, the study uses the YOLOv7 [36] model to detect key human body parts involved when
a driver operates a vehicle and classify their state into activities. YOLOv7 is a state-of-the-art object
detector, and it has proven to be superior to other object detectors, such as Faster R-CNN [74] and
EfficientDet [75], in terms of accuracy and inference speed. An overview of the YOLOv7 model’s
working principle will be introduced in Section 2.6.1. The details of the YOLOv7 architecture will
be provided in Section 2.7.

2.6.1 YOLO working principle

YOLOv7 belongs to the You Only Look Once (YOLO) family of one-stage detectors, and it is
the seventh version of the YOLO series. The first version of the YOLO family was presented in
2016 by Redmon et al. [69] in their ground-breaking paper titled “You Only Look Once: Unified,
Real-Time Object Detection” (YOLOv1). The main idea behind YOLO algorithms is that the
problem of object detection is framed as a regression problem, allowing them to generate object
bounding boxes and corresponding class probabilities from image pixels in one forward pass through
the network, as illustrated in Figure 2.7. This unified approach to object detection has led to the
widespread use of YOLO algorithms due to faster inference speeds and high accuracy [76].

23 Chapter 2. Background

Figure 2.7: Processing pipeline of YOLO object detectors. The input image passes through a
feature extractor that generates the feature map. Thereafter, the detection head is applied directly
to the feature map to generate bounding box predictions and corresponding class probabilities.
Note: illustration inspired by PyimageSearch.

As shown in Figure 2.8, the basic working principle of a YOLO algorithm involves dividing an
input image into an S × S grid. A grid cell is responsible for detecting an object if the centre of
the object falls on that grid cell. Each grid cell predicts B bounding boxes and the corresponding
confidence scores. The confidence score indicates how confident the model is that there is an
object in the box and how accurate it thinks the prediction is. The final detections are obtained
by refining the bounding boxes using the non-maximum suppression (NMS) technique based on
the confidence scores. If the confidence score of a bounding box is above some threshold, then the
class with the highest probability is reported. If the confidence score is below the threshold, that
box is ignored and assumed to belong to the background class.

24 Chapter 2. Background

Figure 2.8: Working principle of the YOLO algorithm: (a) the input image is first divided into an
S x S grid; (b) A grid cell is responsible for detecting an object if the centre of the object falls into
it. Each grid cell is responsible for predicting B bounding boxes and the confidence score for each
box; (c) Final detections are determined by refining the bounding boxes based on the confidence
scores. Note: image from [69].

2.7 YOLOv7 architecture

Since the first YOLO model was introduced, researchers have published subsequent versions. Most
iterations aim to improve speed and accuracy by using new loss functions, different backbone CNN
architectures, introducing new concepts (anchor boxes, dense anchor boxes, and feature pyramid
networks) and using different training routines. Table 2.1 shows the evolution of the YOLO family
and the key architectural changes. The reader is referred to [77] for a review of the timeline and
developments of the YOLO family of object detectors. The details of the YOLOv7 model are
discussed below.

25 Chapter 2. Background

Table 2.1: YOLO architectural differences [78].
YOLO version Backbone Neck Key changes and advancements

YOLOv1 [69] CNN None The first one-stage object detec-
tor

YOLOv2 [70] Darknet-19 Custom to detect
small objects

Anchor boxes, batch normali-
sation, combined detection and
classification

YOLOv3 [71] Darknet-53 Feature Pyramid
Network (FPN)

Darknet-53 backbone, FPN in-
spired design, multi-scale predic-
tions

YOLOv4 [72] CSPDarknet-53 Spatial pyramid
pooling (SPP)
+Path Aggregation
Network (PANet)

SPP integration, PANet integra-
tion, Cross Stage Partial Net-
work (CSPNet), Mish activation,
data augmentation strategies

YOLOv51 CSPDarknet-53 Spatial pyra-
mid pooling fast
(SPPF), New CSP-
PAN

SPPF, augmentation methods,
Model variants PyTorch integra-
tion.

YOLOv6 [73] 1. CSPStack-
Rep Block (for
large models) 2.
RepBlock (for
small models)

RepPAN Bi-directional Concatenation
(BiC) module, Anchor-Aided
Training strategy, Enhanced
backbone (EfficientRep) and
neck design (RepPAN), and
Self-distillation strategy

YOLOv7 [36] Extended Ef-
ficient Layer
Aggregation
Network (E-
ELAN)

CSPSPP+(ELAN,
E-ELAN PAN

Introduced a new backbone (E-
ELAN), model scaling tech-
niques, and training bag of free-
bies

The focus of YOLOv7 is on improving object detection accuracy by using efficient modules and
optimization methods while maintaining inference speed [36]. The YOLOv7 authors called these
modules and optimisation methods ”trainable bag-of-freebies”. The bag of freebies concept was first
introduced in YOLOv4 and refers to techniques that aim to improve detection accuracy without
reducing the inference speed. The key changes and advancements in YOLOv7 are: (1) archi-
tecture optimisation; and (2) training process optimisation. These key changes are discussed below.

1No official research paper. Documentation can be found at https://docs.ultralytics.com/yolov5

https://docs.ultralytics.com/yolov5

26 Chapter 2. Background

2.7.1 Architecture optimisation

The key architectural changes in YOLOv7 include the introduction of the extended efficient layer
aggregation network (E-ELAN) and model scaling for concatenation-based models. E-ELAN is the
core innovation in the backbone of the YOLOv7 model and builds on previous research that focused
on the path of maximal layer efficiency with Cross Stage Partial Networks (CSP) while considering
the memory usage of layers along with the distance it takes a gradient to back-propagate through
the layers. Specifically, the authors of YOLOv7 extended ELAN by using group convolution,
feature map shuffling and merging cardinal features. This allows E-ELAN to effectively aggregate
feature maps from different layers and scales, continuously augmenting the learning ability of the
model which in turn improves the object detection accuracy of YOLOv7. Figure 2.9 shows the
architectures of ELAN and E-ELAN. The key features of the E-ELAN backbone are:

• Group convolution: Group convolution is a variation of the standard convolution where
instead of applying each filter on all channels of the input feature map, the channels of the
input feature map are split into predefined groups and each filter within a group is applied to
a specific set of channels of the input feature map [79]. Group convolutions allow models to
learn features independently across the groups, allowing the model to learn diverse features
in the data.

• Shuffling: Shuffling involves intermixing the information within the expanded feature maps
that were created in the previous step (expand cardinality). Shuffling allows the YOLOv7
network to learn more complex feature interactions and dependencies that might not be
apparent in individual groups.

• Merging: After shuffling the feature maps from all the groups, merge cardinality integrates
information from diverse channels and groups, thereby allowing a deeper understanding of
the image content for object detection.

Model scaling is a technique used to adjust the properties of a model’s architecture to meet the
needs (speed, accuracy, and resource consumption) of different applications [36]. Model scaling can
optimise the model’s width (number of channels), depth (number of layers), and input resolution.
These factors can be adjusted to scale the model, thereby fitting the specific needs of an application
at hand.

In YOLOv7, a compound scaling method for concatenation-based models is proposed. Unlike
traditional methods with concatenation-based models which do not allow an independent analysis
of the impact of different scaling factors [36], YOLOv7 employs a compound model scaling approach
that maintains the initial design properties of a model and its optimal structure. This is achieved
by coherently scaling the width and depth within computational blocks. For example, after scaling
the depth of a computational block, the change of the block’s output channel is also calculated.
Then, the width on the transition layers is scaled by the same level of change. Essentially, YOLOv7
maintains efficiency by separating depth scaling (in the computational blocks) from width scaling
(in transition layers). The compound scaling allows the generation of YOLOv7 models with varying
accuracy and speed trade-offs.

27 Chapter 2. Background

Figure 2.9: Extended efficient layer aggregation networks. Left: Structure of ELAN; Right:
Structure of the extended ELAN (E-ELAN) used in YOLOv7. For each layer, E-ELAN expands
the feature maps (expand cardinality), shuffles the feature maps (shuffle cardinality), and combines
the feature maps (merge cardinality). All this is done without destroying the original gradient
path. These three key features allow the YOLOv7 to improve the learned features and the training
process. Image obtained from [36].

2.7.2 Training process optimisation

YOLOv7 introduced the following key trainable bag of freebies:

• Planned re-parameterised convolution: Re-parameterisation involves averaging the
weights of a convolutional layer across different training runs [80] to create a model that is more
robust to features it trying to learn. Essentially, this allows a model to leverage knowledge
learned from different training scenario settings. In YOLOv7, a planned re-parameterized
convolution method that uses RepConv [81] without identity connection is employed.

• Coarse for auxiliary and for lead loss: As mentioned in Section 2.6.1, a YOLO model
has a backbone, neck, and head. The head in the YOLO framework is the final component
responsible for generating final predictions using the features extracted by the backbone
and processed by the neck. Inspired by Deep supervision [82], a technique commonly used
for training deep learning networks, YOLOv7 uses multiple heads for prediction. The head

28 Chapter 2. Background

overseeing the final output is termed the lead head, while the auxiliary head, positioned
within the middle layers, assists during training. The use of the auxiliary head allows
YOLOv7 to have direct supervision of the detection head in the middle layers, rather than
the standard approach where supervision is only at the output layer.

In addition, to improve the training process, YOLOv7 introduced a label assigner mechanism
that assigns soft labels after considering the network prediction results with ground truth.
Contrary to conventional label assignment, dependable soft labels employ calculation and
optimization techniques that consider the quality and distribution of prediction output, as
well as the ground truth, in contrast to conventional label assignment, which uses only ground
truth to generate hard labels following predefined rules.

2.8 YOLOv7 model training

The implementation process to customise a YOLOv7 model begins with problem scoping. Problem
scoping involves defining the identified problem and a performance metric that must be optimised,
along with a satisficing metric. A satisficing metric is a metric that should be monitored to ensure
that it does not exceed a predefined threshold value, but it does not necessarily need to be optimised.

The YOLOv7 model can be customised in three steps: set up, train, and verify. YOLOv7 model
setup entails installing the YOLOv7 model code and its dependencies, preprocessing the data,
selecting a version of the YOLOv7 model series, and selecting hyperparameters. In the second
step, the model is trained to obtain weights that minimise training and test errors. The final
step involves evaluating the model’s performance and comparing it to the predefined value of
the optimising metric. If the model’s performance is satisfactory, it will be used for the final
implementation. If not, steps one and two will be repeated until satisfactory model performance
is achieved. Figure 2.10 illustrates the three-step development process to customise the YOLOv7
model.

The specific details about the implementation and activities involved in each step of the development
process in Figure 2.10 are provided in Chapter 5.

29 Chapter 2. Background

Figure 2.10: Overall implementation process to train and fine-tune the YOLOv7 model to custom
data.

2.8.1 Object detection performance metrics

The common metric used to measure the accuracy of detections in object detection is average
precision (AP) [83]. Precision measures the ability of an object detector to identify relevant objects.
In object detection, precision is measured is measured using the intersection over union (Iou). IoU
is a measurement based on the Jaccard Index and measures the similarity between two sets of
data [84]. In object detection, IoU measures the overlapping area between a predicted bounding
box Bp and the corresponding ground-truth bounding box Bgt and it is calculated as

J(Bp, Bgt) = IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
. (2.8)

Figure 2.11 illustrates how IoU is calculated using an example of detecting a stop sign. The value
of IoU is a ratio and is normally between 0 and 1. An IoU score > 0.5 is normally considered a
“good” prediction [85].

Using the IoU, the precision of an object detector for a specific class (AP) and the precision for
all classes (mean average precision) in a dataset can be calculated. As a result, AP for a specific
class is calculated by summing the IoU of all classes belonging to that class and dividing by the
total number of data points in the class. Mean average precision (mAP) is calculated by averaging
AP per class for all classes in the dataset. Typically, object detection results are reported using
mAP@0.5, indicating that for an object in the test set to be marked as a “positive detection” it
must at least have an IoU ≥ 0.5.

30 Chapter 2. Background

Figure 2.11: An example of calculating the IoU between a predicted and a ground-truth bounding
box for detecting a stop sign [85].

2.9 Summary

This chapter laid the groundwork for the upcoming chapters. It introduced crucial fundamental
concepts related to detecting distracted drivers, artificial neural networks, convolutional neural
networks, training deep learning algorithms, the significance of model generalization and reg-
ularization in machine learning, and object detection. In the following chapters, the concepts
introduced in this chapter will be further developed to address the research objectives outlined in
Chapter 1.

Chapter 3 will provide the relevant literature that places the work done in this thesis within the
existing body of knowledge.

Chapter 3

Literature review

The problem of detecting distracted drivers has been extensively studied in the literature, resulting
in the proposal of various measurement methods. Section 1.2 presented an overview of these
existing methods. This chapter aims to provide a detailed literature review of the existing meth-
ods. This review will support the first research objective (ROJ1) outlined in Section 1.4 of the thesis.

Following METHOD1 introduced in Section 1.5, the literature review focuses on three areas: deep
learning-based distracted driver detection, robust distracted driver detection, and cross-dataset
performance evaluation. The literature reviewed is obtained from academic databases such as
IEEE Xplore, ScienceDirect, and Google Scholar. The focus of the thesis on deep learning-based
methods is motivated by the superiority of deep learning algorithms over traditional algorithms
for the task of distracted driver detection [40].

This chapter introduces common datasets used to train and evaluate deep learning-based distracted
driver detection (Section 3.1). Section 3.2 provides a literature review on deep learning-based
distracted driver detection methods. The chapter concludes by providing a literature review on the
cross-dataset performance evaluation of distracted driver detection in Section 3.3.

3.1 Datasets

Datasets are crucial for effectively applying deep learning to real-world problems because deep
learning algorithms learn patterns from training dataset features. This applies to detecting
distracted drivers as well.

3.1.1 Public datasets

The first dataset in the area of driving behaviour analysis and distracted driving was introduced by
Zhao et al. [86], [87]. The dataset is known as the Southeast University Driving-posture Dataset
(SEU dataset). This dataset has side-view images of the driver performing four activities: (i)
grasping the steering wheel, (ii) operating the shift lever, (iii) eating a cake, and (iv) talking on a
cellular phone, see Figure 3.1. However, the dataset is not publicly available. All the papers ([13],

31

32 Chapter 3. Literature review

[88], [89]) that benchmarked using the dataset are affiliated with either Southeast University, Xi’an
Jiaotong-Liverpool University, or Liverpool University, and they have at least one shared author
[15].

Figure 3.1: Example images from the SEU dataset: (a) grasping the steering wheel; (b) operating
the shift lever; (c) eating a cake; and (d) talking on a cellular phone (source: [88]).

Later, the State Farm Insurance Company released a dataset to find out if computer vision can
spot distracted drivers. The insurance company held a competition named State Farm Distracted
Driver Detection [90] on Kaggle, referred to as STF in this thesis. The State Farm dataset consists
of 2D dashboard camera images showing ten different driving postures, as shown in Figure 3.2.
However, despite the State Farm dataset being public, it was only limited to the purpose of the
State Farm Distracted Driver Detection competition.

Due to the lack of a quality dataset, Billah et al. [91] created a four-class distracted driver dataset
called the EEE BUET Distracted Driving dataset. The dataset was created using a Sony Cyber
Shot 14.1-megapixel camera affixed on the front windscreen facing the driver inside the vehicles.
The four distracted driving activities in the dataset include talking on the cell phone, texting on
a cell phone, eating, and operating cabinet equipment. A total of 13 participants took part in the
development of the dataset.

33 Chapter 3. Literature review

Figure 3.2: Representative samples images from the State Farm dataset.

Inspired by the State Farm dataset, Eraqi et al. [15] created a similar dataset called the AUC
Distracted Driver Dataset, referred to as AUC2 in this thesis. The dataset was made public subject
to signing an agreement form. A two-phase data collection method was followed — in the first
phase, the ASUS ZenFone smartphone (Model ZD551KL) rear camera was used, and the DS325
Sony DepthSense camera was used in the second phase. In the project, 44 drivers from 7 countries
were involved, of which 29 were males and 15 were females. However, it has been reported that
the AUC dataset is not balanced. For example, the “reach behind” class only represents 7% of the
complete data points [27].

In contrast, the “safe driving” class represents 21% of the complete dataset. In addition, not all
drivers participated in all distraction activities. To remedy the shortcomings of the AUC dataset,
Ezzouhri et al. [27] introduced a distracted driver detection dataset with 9 participants, referred
to as EZZ2021 in this thesis.

Table 3.1 presents an overview of the three commonly used distracted driver detection image
datasets, each featuring ten distinct classes. The table provides information regarding the environ-
ment in which these datasets were created (real or synthetic), the types of distractions captured,
the number of drivers involved, and the overall dataset sizes.

34 Chapter 3. Literature review

Table 3.1: Ten-class commonly used distracted driver detection image datasets. The highlighted
dataset names have links to the datasets.
Image
dataset

Year Environment Type of distractions Participants Image
samples

EZZ2021 [27] 2021 Real 1 safe driving, 9 dis-
tracted activities

9 29.2k

STF [90] 2016 Real 1 safe driving, 9 dis-
tracted activities

44 32.7k

AUC2 [15] 2019 Real 1 safe driving, 9 dis-
tracted activities

26 22.4k

Figure 3.4 (a) shows the distribution of images per class in the EZZ2021, STF, and AUC2 training
datasets. It is evident from the image distribution that the EZZ2021 and STF training datasets
are relatively balanced, with an almost equal number of images per class. On the other hand, the
AUC2 training dataset is imbalanced. For instance, the ”text left” class (C3) has only 641 images,
while the ”safe driving” class has 2346 images. The AUC2 training dataset’s imbalance will likely
impact the performance of algorithms trained on it. The reader can find the raw data showing the
images’ distribution per class in Appendix A of this work.

3.1.2 CSIR test dataset

The CSIR created a test dataset comprising a total of 510 images. The dataset’s creation involved
engaging five drivers, each operating different vehicles, and requesting them to perform each of
the ten driver activities in the EZZ2021, STF, and AUC2 datasets. Video footage of the drivers
performing these activities was captured using a GoPro camera, either affixed to an armband
on the car’s roof or handheld in certain instances. The images were captured in daylight to be
consistent with other datasets.

Figure 3.3 displays sample images from the CSIR test dataset, while Figure 3.4 (b) presents the dis-
tribution of images per class within this dataset. Notably, the CSIR test dataset contains a smaller
number of images in comparison to the EZZ2021, STF, and AUC2 test datasets. Additionally, it
is noteworthy that the CSIR test dataset lacks images corresponding to the ”drinking” (C6) and
”make-up” (C8) classes.

35 Chapter 3. Literature review

Figure 3.3: Sample images from the CSIR distracted driver detection dataset.

Figure 3.4: Distribution of images per class in the public and CSIR datasets. (a): Training datasets.
(b): Testing datasets.

3.2 Deep learning in distracted driver detection

Given a particular deep learning recognition task, there are two basic ways to improve the
performance of a model: improve the model or improve the input training data [33]. The first

36 Chapter 3. Literature review

solution involves changing or modifying the model to enhance its learning ability. The second
solution involves improving features, representation of the object of interest, or simply increasing
the amount of training data. Increasing the amount of training data poses two problems: (1) a
considerable amount of data is required to achieve notable performance improvement [33]; (2)
acquiring large and diverse in-car driver poses for distracted driver detection is a challenge due to
the reluctance of drivers to compromise their privacy and the cost associated with using multiple
devices for data collection, not to mention the labour-intensive annotation process [34]. The
challenges of increasing the training dataset also make the apparent solution of fine-tuning a model
to a task-specific dataset less attractive [35].

This work takes the approach of improving the features and the representation of the object of
interest. In particular, the focus is on improving the representations of the driver. The work
related to the proposed approach will be presented below.

Figure 3.5 shows an overview of major themes that emerge from deep learning distracted driver
detection. These themes encapsulate the core approaches and methodologies used in deep learning
distracted driver detection. The themes can be broadly categorized into two groups. The first group,
“CNN feature classification”, encompasses methods that use CNNs for feature extraction and driver
behaviour classification. The second group represents ongoing efforts for robust distracted driver
detection called ”Robust Detection”.

Figure 3.5: Themes in deep learning distracted driver detection.

3.2.1 CNN feature classification-based methods

In the beginning, deep learning-based distracted driver detection methods involved using CNNs
for feature extraction and subsequently used a fully connected multilayer perceptron (MLP) [12],
[13], as illustrated in Figure 3.6. These methods were trained using the classical machine learning
framework for supervised learning algorithms.

37 Chapter 3. Literature review

In the classical training framework, a model is trained for a specific task and domain, assuming that
there is enough labelled data for the same task and domain. The model is expected to perform well
on unseen data from the same task and domain. However, when presented with data from a different
task or domain, new labeled data is needed to train a new model that is expected to perform well
on unseen data from that task or domain. The process of training a supervised machine learning
model in a traditional learning setup is illustrated in Figure 3.7.

Figure 3.6: Typical framework used by CNN feature extraction methods.

Even though distracted driver detection algorithms implemented using the supervised learning
setup shown in Figure 3.7 have demonstrated commendable success, a major limitation is that
a large amount of labelled data is required [14]. To remedy this, researchers have used transfer
learning. Transfer learning reduces the need for a large amount of labelled data by leveraging
stored knowledge learned from a previous related task or domain, known as the source task and
source domain. The stored knowledge gained from training a model on the source domain is
applied to the target task and target domain as illustrated in Figure 3.8.

In the case of distracted driver detection, transfer learning approaches typically use CNN ar-
chitectures pre-trained on large computer vision image datasets like ImageNet [14], [92]. These
approaches replace the MLP fully connected (FC) layers of the pre-trained network with new FC
layers and fine-tune them to recognize specific classes in distracted driver detection. Some of the
commonly used pre-trained models for this task include AlexNet, VGG16, VGG19, ResNet50,
InceptionV3, Xception, and DenseNet. The reader is referred to [14] for a more detailed evaluation
and comparison of transfer learning approaches for distracted driver detection.

While transfer learning can often achieve high accuracy on a single dataset, the performance is
limited to intra-dataset only. This is mainly due to overfitting caused by the limited diversity within
current distracted driver detection datasets [38]. Current datasets mainly come from experiments
in simulators or real car environments [17], which produce images with similar backgrounds and
within a narrow range of distracted driving scenarios. As a result, the generalisation gap of the
model (Section 2.5) becomes too large and results in poor model generalisation.

38 Chapter 3. Literature review

Figure 3.7: Traditional setup for training a supervised machine learning model. Model A trained
on a specific task or domain A is expected to perform well on unseen data from the same domain.
When given data from another domain or task B, new labelled data from the same task or domain
will be required again. The new data can be used to train a new model B that is expected to
perform well on new unseen data from task or domain B. Note: figure adapted from [93].

Figure 3.8: Transfer learning setup for supervised machine learning. In transfer learning, stored
knowledge that is learned from a previous related task or domain A, known as the source task and
source domain is used to train a model B on the source domain and is applied to the target task
and target domain B. Note: figure adapted from [93].

39 Chapter 3. Literature review

3.2.2 Robust distracted driver detection methods

Due to the overfitting issue of distracted driver detection algorithms trained using transfer learning,
researchers have proposed various methods to improve the robustness of deep learning-based meth-
ods. Table 3.2 summarises methods that aim to improve the generalisation of deep learning-based
distracted driver detection. These methods are reviewed in detail below.

Table 3.2: Methods that focus on improving the robustness of deep learning-based distracted driver
detection.
Theme Approach References

Ensemble methods These methods leverage the characteristics of different CNN
architectures by combining multiple CNN models to en-
hance accuracy and robustness.

[15], [16]

Data augmentation
methods

The methods in this group use advanced data augmentation
techniques to enhance the training dataset’s diversity and
balance.

[17], [18]

CNN features +
HOG features

Distracted driver detection using HOG feature extraction
captures shape and edge information from images. It im-
proves the algorithm’s ability to classify behaviours based
on unique image patterns.

[5], [19], [20]

CNNs + RNNs These methods combine CNN and RNN architectures to
leverage the strengths of both architectures. CNNs are
effective at feature extraction from images, while RNNs
handle sequential data and context modelling. This fu-
sion enhances the algorithm’s ability to capture temporal
dependencies in the data, allowing for more accurate and
context-aware detection of distracted driving behaviours.

[21], [22]

3D CNNs These methods use 3D CNN architectures instead of 2D
CNNs to consider both spatial and temporal information.
The use of 3D CNNs enhances the algorithm’s capacity
to detect and classify distracted driver actions in a video
context, providing a more comprehensive and accurate ap-
proach to the task.

[23], [24]

Pose estimation Use features derived from human key points detected using
pose estimation algorithms. The pose estimation features
are often combined with CNN features for driver behaviour
classification.

[25], [26]

Driver segmenta-
tion

Remove background noise by using instance segmentation
algorithms to separate pixels belonging to the driver from
the background pixels. The segmented images are then
used to train a CNN architecture.

[27], [28]

Driver ROI detec-
tion

Remove background noise by using instance segmentation
algorithms to separate pixels belonging to the driver from
the background pixels. The segmented images are then
used to train a CNN architecture.

[9], [29]–[31]

40 Chapter 3. Literature review

Ensemble methods are based on the concept of bootstrap aggregating [94], which is a technique
that reduces generalisation error by combining several methods. Bootstrap aggregation involves
training several models separately and subsequently having all the models vote on the output of
examples in the test set. As a result, methods that use the ensemble approach take advantage of
different CNN architectures that capture diverse and complementary features from the input data.
By combining multiple architectures, an ensemble method can potentially represent a broader
range of features and patterns, enhancing the model’s ability to recognize different aspects of the
data.

For example, Abouelnaga et al. [15] introduced a genetically weighted ensemble of CNNs
trained on five different image sources: raw images, skin-segmented images, face images, hands
images, and ”face+hands” images. The study used four pre-trained deep learning models (AlexNet,
Inception-V, ResNet50, and VGG-network) and fine-tuned them for driver distraction identification.

While ensemble methods have been reported to be successful in mitigating overfitting, other
researchers have raised concerns regarding the computational complexity and cost of training
multiple CNN models like VGG16, AlexNet, ResNet50, and Inception-V3 [22], particularly in
real-time inference that is crucial for autonomous driving applications.

As an alternative, data augmentation-based techniques have been used to mitigate the issue of
overfitting. Data augmentation-based approaches are based on the premise that increasing the
diversity of the training dataset will improve the generalisability of the model (Section 2.5). Ou et
al. [17] proposed an advanced data augmentation-based approach that employs GANs to generate
synthetic data, thereby increasing the diversity of the training dataset. The authors claim they
collected a diverse dataset of drivers in different driving conditions and activity patterns from the
Internet and trained generative models for multiple driving scenarios. By sampling from these
generative models, they augmented the collected dataset with new training samples and trained
a CNN model for distracted driver detection. However, some researchers have reported difficul-
ties in training GANs [35]. In addition, synthesised images often suffer from poor image quality [34].

To reduce overfitting, Jaco et al. [18] presented a class-based data augmentation approach that
first detects four important key points, i.e., driver head, left hand, right hand, and the steering
wheel. Regions of the detected key points are extracted and combined to form a single image.
Thereafter, a class-based data augmentation that randomly interchanges regions between different
images of the same class is applied. During training, the authors noticed that the training error
decreased slower compared to the validation error when compared to other approaches that use
the full image for training and validation. This trend suggests that the network could generalise
well compared to the network that used the full image.

Researchers have also proposed methods that use the histogram of oriented gradients (HOG)
feature descriptor. The HOG feature descriptor was first proposed for human detection and
captures the human shape in an unambiguous way [95], allowing it to detect humans under
different conditions. HOG has two major advantages. First, it captures the characteristics of an
object by capturing the edges or gradient structure of the local shape. Second, it captures the local
representation of an object with an easily controllable degree of invariance to local geometric and
photometric transformations. As a result, if translations or rotations are smaller than the local

41 Chapter 3. Literature review

spatial or orientation bin size, only a small difference is observed.

Distracted driver detection algorithms use the HOG feature descriptor to remove background noise
and only capture the outline of the driver’s posture [19] (see Figure 3.9). Some researchers train a
CNN model on the HOG feature images [19] or combine the HOG features with CNN features [5],
[20] to improve model generalisation.

Figure 3.9: Original Raw images (a) are pre-processed to produce the HOG feature image (b)
which does not have background noise [19].

Similar to the methods that use the HOG feature descriptor to remove background noise, some
researchers have proposed methods that use human key points detected using a pose estimation
algorithm [25], [26]. A pose estimation algorithm estimates the coordinates of human key points
such as nose, mouth, hands, and shoulders. Common pose estimation algorithms used in distracted
driver detection include High Resolution Net (HRNet) [96], and OpenPose [97]. Pose estimation-
based algorithms extract the driver’s human key points and use the posture information to reduce
background noise and variation due to viewpoint. The driver posture information is often used
in conjunction with CNN features [26], [97] or used directly to train shallow learning algorithms
such as random forest [25]. Figure 3.10 shows sample outputs of a pose estimation-based method
that involved training a random forest algorithm on human key point information extracted by the
OpenPose algorithm.

42 Chapter 3. Literature review

Figure 3.10: Sample outputs from a pose estimation-based method: (a) safe driving class predicted;
(b) reach behind class predicted; (c) drinking class predicted; and (d) talk right class predicted.

The methods presented so far in this thesis use static images to train and test deep learning dis-
tracted driver methods. The major limitation of using static images is that it disregards temporal
information [23]. Researchers have reported that CNN-based distracted driver detection models
struggle to classify some distractions due to their spatial similarities with other postures. They
claim that the only way to accurately classify such postures is by considering their spectral features,
which provide more information about the images. To remedy this issue, researchers have proposed
hybrid approaches that use CNNs to extract spatial features and recurrent neural networks (RNN)
such as bidirectional Long Short-Term Memory networks to extract spectral features (temporal
information) [22]. RNNs are neural networks that are specialised for processing sequential data
[98]. Other hybrid CNN-RNN distracted driver detection methods use CNN features to extract
spatial features and also use LSTMs to analyse vehicle data [21], [47]. Subsequently, the features
from the two networks are typically forwarded to a Bayesian network for classification. However,
the focus of this thesis is on improving the cross-dataset performance of CNN-based distracted
driver detection.

In addition to the above approaches based on removing background noise, several methods that
focus on using specific regions of the image rather than the full image have been proposed. One
prominent technique involves employing instance segmentation algorithms to eliminate background
noise and restrict CNN models to learning features solely from the driver [27], [28], [99]. For
instance, Ezzouhri et al. [27] presented a CNN-based approach that employs a human segmentation

43 Chapter 3. Literature review

algorithm called Cross-Domain Complementary Learning (CDCL) to preprocess RGB images. The
resulting pre-processed dataset is then utilized for training a CNN architecture. By leveraging
instance segmentation, these methods aim to enhance the model’s focus on driver-related features
while reducing the influence of irrelevant background information.

Furthermore, to enhance the robustness of distracted driver detection, researchers have explored
the use of object detection techniques to identify specific regions and objects [9], [12], [29]–[31],
[100], which aligns with our proposed approach. Yan et at. [12] proposed a vision-based approach
that used a modified R*CNN framework with two input regions: the primary region encompassing
the entire driver image and the secondary region consisting of skin-like regions extracted using a
Gaussian Mixture Model (GMM). The two regions were then forwarded to a deep convolutional
neural network called R*CNN to generate driver action labels. However, the approach is not an
end-to-end deep learning model as it requires region proposals generated by the GMM model and
subsequent classification. Such complex pipelines are slow and challenging to optimize since each
model needs separate training [69]. Additionally, the cross-dataset performance of the algorithm
was not evaluated.

Another study by Le et al. [100] proposed a Multiple Scale Faster-RCNN approach that employed
a standard Region Proposal Network (RPN) for generating region proposals. The approach
incorporated feature maps from shallower convolutional layers for ROI pooling and aimed to detect
individual objects such as hands, cell phones, and steering wheels. However, this study solely
focused on cell phone distraction and neglected the driver’s attention to the road. In addition, the
Multiple Scale Faster-RCNN model was only trained and tested on a custom dataset created by the
authors. The ability of the model to generalise on new data remains unknown. Similarly, another
related study [31] introduced a distracted driver detection method primarily centred around cell
phone detection, overlooking other aspects.

A distracted driver detection method very similar to the approach proposed in this thesis was
presented by Sajid et al. [29]. The proposed method uses the EfficientDet model [75] to detect
distraction objects and the ROI of the driver body parts and use an EfficientNet model [101] for
classification. In summary, the approach involves the following steps: extract CNN features on an
input image, classify the image, detect distraction objects and the ROI of the driver body parts, and
finally combine the classification label with the detection label to obtain the final prediction. The
approach combines both image classification and object detection. There is one major difference
between this method and the approach proposed in this study. Instead of combining the full image
and the driver ROI for driver behaviour recognition, the approach proposed in this thesis uses the
Yolov7 model to detect driver body parts and classify their state into different activities in one
forward pass. The final prediction is made by evaluating two conditions: ”eyes on the road” and
”both hands on the steering wheel.” In addition, the cross-dataset performance of the proposed
approach is evaluated on three distinct distracted driver detection image datasets. Further, the
performance of the proposed approach is evaluated on a custom dataset to assess its potential for
deployment in the real world.

44 Chapter 3. Literature review

3.3 Cross-dataset performance evaluation

Deep learning models typically perform well when the distribution of new data is similar to
the training data, [64]. However, when the input data’s distribution differs from the training
data, deep learning models may perform poorly, a concept known as data shift or domain shift
[102], [103]. The issue of domain shift has created the need to evaluate the performance of deep
learning algorithms across different datasets, i.e., cross-dataset performance evaluation. In machine
learning, cross-data dataset performance validations were mostly initiated by the community
discussion regarding dataset bias [33], where techniques have been proposed on how to reduce bias
during training.

Most of the distracted driver detection algorithms reviewed in Section 3.2 are published with
comparative evaluations. For example, Yan et al. [13] proposed a CNN-based approach that
recognises driving posture based on the position of the hand and evaluated the proposed approach
on three datasets. Other authors ([5], [22], [30], [104]) compare the performance of the proposed
method with other approaches. However, the focus of these papers is on the proposed algorithms.
Recently, Ezzouhri et al. [27] evaluated their proposed driver body segmentation-based distracted
driver detection algorithm on their custom dataset (EZZ2021) and the AUC2 dataset. The main
contribution of the authors was to propose a new algorithm and create a distracted driver detection
dataset. However, it is not clear if the authors trained their proposed algorithm on each dataset
(EZZ2021 and AUC2 training sets) and tested it on the EZZ2021 and AUC2 test sets.

Recently, Kashevnik et al. [105] presented an extensive literature survey on distracted driver de-
tection and outlined the entire chain of distracted driver detection from sensor data acquisition
to data preprocessing, behaviour inference, and distraction type inference. Similarly, Huang et al.
[106] provided an extensive literature survey on vision-based distracted driver detection algorithms.
Although these studies are comprehensive and provide current state-of-the-art knowledge on dis-
tracted driver detection, none of them evaluates and analyse the performance of distracted driver
detection algorithms. Li et al. [106] presented a review of distracted driver detection algorithms
and then proceeded to evaluate the performance of ten deep learning-based algorithms using the
AUC2 dataset. However, cross-dataset evaluations were not conducted.

3.4 Summary

A literature review on deep learning-based distracted driver detection was presented in this
chapter in support of the first research objective (ROJ1) of this thesis. The literature review also
introduced common datasets used to train and benchmark distracted driver detection algorithms.
Convolutional neural networks dominate deep learning-based distracted driver detection due to
their ability to extract and learn image features. Two major themes emerge from the literature:
CNN feature classification methods and robust distracted driver detection methods. CNN methods
extract spatial features from images and use a multilayer perception or a fully connected layer to
classify these features.

While CNN feature classification methods have shown impressive results, they often struggle to
adapt to new data. Researchers have proposed various approaches, including ensemble methods,
driver segmentation methods, and driver ROI detection methods, to address this issue. However,

45 Chapter 3. Literature review

the generalisation ability of these methods remains a topic of exploration. Few to none of the
existing studies have evaluated the cross-dataset performance of deep learning-based distracted
driver detection methods. Furthermore, none of the current studies have attempted to use the
activities of key body parts involved in driving to improve distracted driver detection.

Overall, the observations made from the literature review suggest that none of the existing methods
address the problems identified in Section 1.1.2. As a result, the remaining chapters of this thesis
attempt to address the identified research problems by providing more details on the overall research
methodology outlined in Section 1.5 (Chapter 4 and Chapter 5) and conducting experiments to
evaluate the proposed method (Chapter 6).

Chapter 4

Cross-dataset performance
evaluation

This chapter sets out to achieve the second objective (ROJ2) of this thesis. It evaluates how well
deep learning-based distracted driver detection algorithms perform on unfamiliar image datasets
not part of their training. Specifically, it addresses one critical question: to what extent can deep
learning distracted driver detection algorithms generalise on unknown image datasets that were
not used for training? This question is addressed by evaluating the performance of state-of-the-art
deep learning-based algorithms on widely used benchmark datasets.

Section 4.1 will provide information about the experimental setup used to produce the results
presented in Section 4.2. Specifically, the experimental setup will include an overview of the
algorithms that were selected for evaluation (Section 4.1.1), the image datasets used (Section
4.1.2), the evaluation metrics that were chosen (Section 4.1.3), as well as the evaluation method
used (Section 4.1.4). Additionally, the training procedures and parameters used to train the
selected algorithms are also described in Section 4.1.5. Finally, Section 4.3 will summarise the
outcomes of the experiment.

The work described in this chapter forms part of the paper published in the Proceedings of the
2022 RAPDASA-RobMech-PRASA-CoSAAMI conference [38].

4.1 Experimental setup

The aim of this experiment is to evaluate the cross-dataset performance of deep learning-based dis-
tracted driver detection algorithms. To achieve this aim, METHOD2 introduced in Section 1.5 will
be used. The following sections will provide more details about the implementation of METHOD2.

4.1.1 Algorithms

In this experiment, six state-of-the-art algorithms with publicly available code or where authors
provided the code upon request are evaluated. In instances where code is not available, similar

46

47 Chapter 4. Cross-dataset performance evaluation

algorithms are implemented based on their original publications. The selection of the algorithms
was informed by their reported performance in previous research [107], [108]. Further, representa-
tive algorithms that are commonly used and recent have been selected.

For evaluation, four primary groups of distracted driver detection algorithms are selected: CNN
feature classification with transfer learning, driver segmentation methods, hybrid CNN-RNN meth-
ods, and pose estimation-based methods. Table 4.1 presents a comprehensive list of the evaluated
algorithms alongside their respective approaches.

Table 4.1: List of algorithms evaluated.
Algorithm Approach

ResNet50 [109] CNN feature classification: Pre-trained
ResNet50 model trained using transfer learning.

EffecientNetB0 [101] CNN feature classification: Pre-trained Effi-
cientNetB0 model trained using transfer learning.

Leekha GrabCut [28] Driver segmentation: CNN feature extraction
algorithm trained on images that were prepro-
cessed using an instant segmentation algorithm
to remove background noise.

ConvLSTM [110] CNN-RNN: Integrates CNNs and Long Short-
Term Memory (LSTM) networks to analyze video
sequences or image frames, capturing both spatial
and temporal features.

CNN-LSTM [22] CNN-RNN: Combination of Convolutional and
LSTM layers.

CNN-Pose [25] Pose estimation: Combines a CNN predictions
and predictions of a random forest algorithm
trained on detected human key points.

4.1.2 Datasets

The three public image datasets introduced in Section 3.1 are used to evaluate the selected algo-
rithms. The image datasets include the EZZ2021 dataset, the STF dataset, and the AUC2 dataset.
The choice of the AUC2 and STF datasets stems from their widespread use as benchmarks for
evaluating distracted driver detection algorithms. The EZZ2021 dataset, a more recent addition,
shares similarities with the AUC2 and STF datasets. These image datasets are characterised by
their relatively large size and the inclusion of nine distinct distracted driving activities, and an
additional class for safe driving.

4.1.3 Evaluation metrics

The cross-dataset performance of the selected algorithms is evaluated using two quantitative met-
rics: accuracy and F1-score [111]. Accuracy, a widely employed and straightforward measure,
quantifies the proportion of correct predictions made by a model out of the total number of obser-
vations in the test set. The F1-score, also recognized as the F-measure emerges as a pivotal metric.

48 Chapter 4. Cross-dataset performance evaluation

It represents the weighted harmonic mean of precision and recall performance metrics, expressed as

F1− score =
2× (Precision×Recall)

Precision+Recall
, (4.1)

where recall measures the ability of a model to identify all relevant instances and aims to reduce
the error of classifying a positive instance as negative. On the other hand, precision focuses on the
accuracy of positive predictions and aims to reduce the error of classifying a negative instance as
positive. Precision and recall metrics can be calculated using

Precision =
TP

TP + FP
, and (4.2)

Recall =
TP

TP + FN
. (4.3)

The variables TP, FP, and FN can be defined as follows [83]:

• True positive (TP): Occurs when a model correctly predicts a positive outcome when the
actual outcome is indeed positive.

• False positive (FP): Occurs when a model incorrectly predicts a positive outcome when
the actual outcome is negative.

• False negative (FN): Occurs when a model incorrectly predicts a negative outcome when
the actual outcome is positive.

The introduction of the F1-score as a metric is motivated by its ability to provide a single,
comprehensive measure for evaluating the overall performance of a classification model. The
F1-score essentially strikes a balance between recall and precision, synthesising both aspects into a
single value. The F1-score ranges from zero to one, with a score of one indicating perfect precision
and recall and a score of zero indicating poor performance. Consequently, it provides a more
detailed evaluation of model performance.

For more in-depth analysis, the study uses Class Activation Maps (CAMs), which are instrumental
in gaining insights into what a Convolutional Neural Network (CNN) ”sees” and the reasoning
behind its ultimate prediction. Specifically, the study employs an approach known as Grad-CAM
[112]. Grad-CAM works by finding the final convolutional layer in the network and then examining
the gradient information flowing into that layer. The outcome of Grad-CAM is as a heatmap
visualization corresponding to a chosen class label, which can be either the top predicted label
or an arbitrary label selected for debugging purposes. This heatmap provides a visual means of
confirming the areas in an image that capture the CNN’s attention.

4.1.4 Evaluation method

The selected algorithms will be evaluated using the three-step quantitative approach introduced in
Section 1.5 (METHOD2). The approach entails:

• Step 1: Preparing image datasets.

• Step 2: Fine-tuning and training the selected algorithms.

49 Chapter 4. Cross-dataset performance evaluation

• Step 3: Evaluating each method across the test sets prepared in Step 1.

Figure 4.1 illustrates the cross-dataset performance evaluation procedure that is used. In step
1, each distracted driver detection image dataset is divided into three sets: training, valida-
tion, and testing. The predefined splits officially released with the image dataset are utilized
whenever available. In cases where such predefined splits are not provided, the image dataset
is partitioned according to the following ratios: 80% for training data, 10% for validation
data, and another 10% designated for the testing set. In the second step, the training sets are
exclusively used for model training, while the validation sets serve the purpose of hyperparam-
eter tuning. The test sets are used for cross-dataset performance evaluation in the third and
final step. It is important to note that each algorithm is trained independently on each dataset
and tested against all three. The training details of each algorithm will be provided in Section 4.1.5.

The methodology employed here focuses on calculating the average cross-dataset performance accu-
racy, excluding the intra-dataset accuracy in each case. This approach is taken because the model
is expected to perform well on a test set from the same dataset as the training set (as explained
in Section 3.2.1). Including intra-dataset accuracy would inflate the overall average and not accu-
rately reflect the model’s ability to generalise to unseen data from entirely different datasets. This
exclusion allows for a more rigorous evaluation of the model’s ability to perform well on entirely
new data, which is a crucial aspect of real-world application.

Figure 4.1: Cross-dataset evaluation method employed. Example showing how model A, trained
on the STF dataset, is evaluated across the three test sets to produce three independent results
(STF model A results, AUC2 model A results, and EZZ2021 model A results).

50 Chapter 4. Cross-dataset performance evaluation

4.1.5 Training procedure

Table 4.2 summarizes the training procedures that are used for each algorithm in the study. The
CNN feature classification methods (ResNet50 and EfficientNetB0) were trained using the transfer
learning framework introduced in Section 3.2.1. The Leekha GrabCut approach incorporated the
GrabCut background removal algorithm as a preprocessing step with an EfficientNetB0 base. The
ConvLSTM model featured 4 ConvLSTM2D recurrent layers, while the CNN LSTM model utilized
an AlexNet architecture and an LSTM layer. In the case of CNN-Pose, a combination of fine-tuned
EfficientNetB0 and Random Forest models was employed, with coefficients determined using grid
search. The algorithms were implemented using Python 3.6 and scikit-learn, NumPy and PyTorch
libraries (v1.7.1). All algorithms were trained on a Linux computer with an Nvidia GeForce GTX
1080 graphical processing unit (GPU). The training and validation performance metrics of the
algorithms are presented in Section 4.2.1.

Table 4.2: Procedure followed to train the selected algorithms.
Algorithm Training procedure

ResNet50 and Effe-
cientNetB0

ResNet50 and EfficientNetB0 architectures pre-trained on Ima-
geNet were fine-tuned to each of the three datasets using the
transfer learning framework. The top layers (head) were replaced
by a GlobalAveragePooling2D layer, followed by a Dropout layer
and a fully connected layer with ten neurons.

Leekha GrabCut For the Leekha GrabCut algorithm, an EfficientNetB0 model pre-
trained on ImageNet was fine-tuned to the three image datasets.
The GrabCut background removal algorithm was incorporated as
a pre-processing stage to the data pipeline used for training the
Leekha GrabCut algorithm.

ConvLSTM A convLSTM model with 4 ConvLSTM2D recurrent layers was
used. A Maxpooling3D layer and a dropout layer followed each
ConvLSTM2D recurrent layer. The Maxpooling3D layer reduces
the dimensions of the frames and avoids unnecessary computa-
tions. Dropout layers help prevent overfitting the model on the
data.

CNN-LSTM The CNN LSTM model was built using the AlexNet architecture
and an LSTM layer with 50 units. A fully connected layer with
ten neurons and a softmax activation function was used for class
prediction. For both convLSTM and CNN LSTM models, the
datasets were prepared as sequence data with five images.

CNN-Pose The CNN-Pose algorithm consists of a fine-tuned EfficientNetB0
architecture using transfer learning and a Random Forest machine
learning model trained on detected human key points obtained
through pose estimation. The final prediction was a combination
of predictions from the CNN and Random Forest models multi-
plied by two different coefficients that add up to one. For this
study, the coefficients were obtained using a grid search for each
dataset.

51 Chapter 4. Cross-dataset performance evaluation

4.2 Results and analysis

This section presents the training performance metrics of the selected algorithms and the cross-
dataset performance evaluation results.

4.2.1 Training results

The algorithms were trained using the hyperparameters shown in Table 4.3. The hyperparameters
were obtained through experiments and using the GridSearch technique. Table 4.4 shows the
coefficients that were obtained for the CNN-Pose algorithm across the three datasets. To prevent
overfitting, early stopping was used to stop the learning process if the validation loss stopped
decreasing for ten consecutive training epochs. In addition, the dropout layer technique introduced
in Section 2.3.6 was also used.

It is noteworthy that all algorithms were trained using the Adam optimization algorithm [113],
which was chosen based on hyperparameter-tuning experiments. The hyperparameters of each
algorithm were also kept the same across the three training sets to allow for a fair comparison.

Table 4.3: Hyperparameters used for training the algorithms.
Algorithm Learning

rate
Epochs Optimizer Dropout

ResNet50 Head: 0.001
Fine-tuning:
1e-5

Head: 15
Fine-tuning:
70

Adam 0.2

EfficientNetB0 Head: 0.001
Fine-tuning:
1e-5

Head: 15
Fine-tuning:
70

Adam 0.2

Leekha GrabCut Head: 0.001
Fine-tuning:
1e-5

Head: 15
Fine-tuning:
70

Adam 0.2

ConvLSTM 0.001 70 Adam 0.2
CNN LSTM 0.001 70 Adam 0.25
CNN-Pose CNN: 0.001 70 Adam 0.2

Table 4.4: Coefficients obtained for the CNN-Pose estimation algorithm.
Dataset Coefficients

(CNN, Pose)

EZZ2021 (0.3, 0.7)
STF (0.3, 0.7)
AUC2 (0.4, 0.6)

Table 4.5 shows the training and validation accuracy performance results of the algorithms. From
the results, the difference between the training and validation accuracy of all algorithms is not sig-
nificant except for one. The Leekha GrabCut algorithm trained on the AUC2 dataset had 97.78%

52 Chapter 4. Cross-dataset performance evaluation

training accuracy and 44.92% validation accuracy, which is a significant difference. This suggests
that the algorithm may be overfitting the data, or the distribution of the AUC2 training set may dif-
fer from that of the AUC2 validation set, which may affect the performance of the Leekha GrabCut
algorithm trained on the AUC2 dataset. However, this is not the case with the other algorithms
since the differences between their training and validation accuracy are insignificant. It is impor-
tant to note that the focus of this thesis is not to optimize the performance of each algorithm on
individual datasets.

Table 4.5: Training (Train) and validation (vali) accuracy performance of the algorithms.

Algorithm
EZZ2021 STF AUC2

Train Vali Train Vali Train Vali

ResNet50 100 90 99.75 99.70 99.42 97.30
EfficientNetB0 99.99 99.80 99.91 99.80 99.64 97.8
convLSTM 100 100 99.08 99 97.52 92
CNN LSTM 91.90 92.50 92.65 93 80.06 70
Leekha GrabCut 99.90 99.27 96.47 90.10 97.78 44.92
CNN-Pose esti-
mation

- 95.83 - 93.64 - 94

4.2.2 Cross-dataset performance results

Tables 4.6 through 4.8 present the cross-dataset performance results, measured in terms of accuracy,
of the evaluated algorithms. Each table presents the results of the algorithms when trained on one
dataset and tested on the three test sets. Based on the results, the following observations can be
made:

• The algorithms trained on the EZZ2021 dataset demonstrated impressive performance when
evaluated on their corresponding test set, achieving an average accuracy rate of 81.85%. How-
ever, it is important to highlight that both the convLSTM and CNN LSTM algorithms yielded
accuracies below 70%. In contrast, these algorithms, when trained on the same dataset,
demonstrated suboptimal performance when tested on the AUC2 and STF test sets. In sum-
mary, the CNN-Pose algorithm emerged as the most robust performer, achieving an average
accuracy of 65.6%.

• The algorithms trained on the AUC2 dataset underperformed on the AUC2 test set, as well
as the EZZ2021 and STF test sets, achieving average accuracies of less than 40%.

• In a manner consistent with the observations above, the algorithms trained on the STF
training dataset performed well on the corresponding STF test set but did not perform well
on the AUC2 and EZZ2021 test sets. However, the CNN-Pose algorithm did better on the
EZZ2021 test set than on the STF test set.

• Out of the six algorithms evaluated, the CNN-Pose algorithm performed the best on all test
sets, regardless of the training dataset used. Following closely, the Leekha GrabCut algorithm
ranks as the second-best performer across all three datasets.

53 Chapter 4. Cross-dataset performance evaluation

• Even though the CNN-Pose algorithm had a better overall cross-dataset accuracy perfor-
mance, there is still a significant difference between its intra-dataset accuracy and the aver-
age cross-dataset accuracy. For example, when trained on the EZZ2021 dataset, CNN-Pose
achieved an intra-dataset of 85.97% and an average cross-dataset accuracy of 65.6%.

Table 4.6: Accuracy performance results of the algorithms when trained on the EZZ2021 training
set.*The Average was calculated using only the STF and AUC2 test sets.
Algorithm EZZ2021 test AUC2 test STF test Average*

ResNet50 – EZZ2021 96.18 27.93 31.15 29.54
EfficientNetB0 – EZZ2021 87.98 13.87 17.98 15.93
convLSTM – EZZ2021 65.03 55.52 8.76 32.14
CNN LSTM – EZZ2021 58.19 50.43 8.09 29.26
Leekha GrabCut – EZZ2021 97.74 33.79 30.45 32.12
CNN-Pose – EZZ2021 85.97 52.45 78.75 65.6
Average 81.85 39 29.20

Table 4.7: Accuracy performance results of the algorithms when trained on the STF training
set.*The Average was calculated using only the EZZ2021 and AUC2 test sets.
Algorithm EZZ2021 test AUC2 test STF test Average*

ResNet50 – STF 16.81 36.28 99.64 26.55
EfficientNetB0 – STF 25.19 27.37 99.47 26.28
convLSTM – STF 7.85 18.48 99.10 13.17
CNN LSTM – STF 10.42 29.86 93.71 20.14
Leekha GrabCut – STF 44.05 33.40 88.30 38.73
CNN-Pose – STF 79.92 43.80 73.91 61.86
Average 30.71 31.53 92.36

Table 4.8: Accuracy performance results of the algorithms when trained on the AUC2 training
set.*The Average was calculated using only the EZZ2021 and STF test sets.
Algorithm EZZ2021 test AUC2 test STF test Average*

ResNet50 – AUC2 16.27 40.97 34.64 25.46
EfficientNetB0 – AUC2 26.62 34.64 43.12 34.87
convLSTM – AUC2 20.35 19.94 20.22 20.29
CNN LSTM – AUC2 18.75 22.02 22.92 20.84
Leekha GrabCut – AUC2 40.03 44.92 43.84 41.94
CNN-Pose – AUC2 48.28 53.79 56.21 52.25
Average 28.38 36.05 36.83

For further analysis, the F1-score was used to compare the performance of the algorithms in
the safe driving class. Tables 4.9 through 4.14 show the results of the algorithms when trained
and tested on each of the three datasets. The detailed per-class and overall performance of the

54 Chapter 4. Cross-dataset performance evaluation

algorithms can be found in Appendix B.

From the F1-score analysis, it becomes evident that all algorithms exhibit commendable perfor-
mance in detecting the ”safe driving” class when tested on a test set originating from the same
dataset used for training. However, a notable exception arises when algorithms are trained and
tested on the AUC2 dataset, where the average F1-scores range from 0.09 to 0.63, indicating a
challenge in detecting this class.
Conversely, when these algorithms are confronted with entirely new, previously unseen test
datasets, they collectively display suboptimal results. It is noteworthy, however, that both the
Leekha GrabCut and CNN-Pose algorithms consistently demonstrate robust performance across
all datasets, with the average cross-dataset F1-score of the CNN-Pose algorithm ranging from 0.61
to 0.79. In stark contrast, the convLSTM and CNN LSTM models exhibit the weakest performance
when models are trained on one dataset and tested on completely new test sets. For both algo-
rithms, the average F1-score across all datasets ranges from 0.00 to 0.28, corroborating the earlier
findings based on cross-dataset accuracy results.

Table 4.9: F1-score performance results of the ResNet50 model on the safe driving class. *In each
case, the Average F1-score excludes the intra-dataset F1-score.

Safe driving class

ResNet50 Test set
EZZ2021 STF AUC2 Average

F1-score

Train set
EZZ2021 0.85 0.31 0.52 0.42
STF 0.0 0.95 0.50 0.25
AUC2 0.19 0.39 0.61 0.29
Average
F1score

0.34 0.48 0.54

Table 4.10: F1-score performance results of the EfficientNetB0 model on the safe driving class. *In
each case, the Average F1-score excludes the intra-dataset F1-score.

Safe driving class

EfficientNetB0 Test set
EZZ2021 STF AUC2 Average

F1-score

Train set
EZZ2021 0.85 0.19 0.27 0.23
STF 0.44 0.88 0.24 0.34
AUC2 0.54 0.39 0.35 0.47
Average
F1score

0.61 0.49 0.29

55 Chapter 4. Cross-dataset performance evaluation

Table 4.11: F1-score performance results of the convLSTM model on the safe driving class. *In
each case, the Average F1-score excludes the intra-dataset F1-score.

Safe driving class

convLSTM Test set
EZZ2021 STF AUC2 Average

F1-score

Train set
EZZ2021 0.97 0.0 0.0 0.00
STF 0.0 0.97 0.23 0.12
AUC2 0.45 0.11 0.35 0.28
Average
F1score

0.47 0.36 0.09

Table 4.12: F1-score performance results of the CNN LSTM model on the safe driving class. *In
each case, the Average F1-score excludes the intra-dataset F1-score.

Safe driving class

CNN LSTM Test set
EZZ2021 STF AUC2 Average

F1-score

Train set
EZZ2021 0.62 0.0 0.04 0.02
STF 0.15 0.87 0.09 0.12
AUC2 0.13 0.22 0.39 0.18
Average
F1score

0.30 0.36 0.17

Table 4.13: F1-score performance results of the Leekha GrabCut model on the safe driving class.
*In each case, the Average F1-score excludes the intra-dataset F1-score.

Safe driving class

Leekha GrabCut Test set
EZZ2021 STF AUC2 Average

F1-score

Train set
EZZ2021 0.94 0.27 0.46 0.37
STF 0.29 0.88 0.27 0.28
AUC2 0.39 0.43 0.58 0.41
Average
F1score

0.54 0.53 0.44

56 Chapter 4. Cross-dataset performance evaluation

Table 4.14: F1-score performance results of the CNN-Pose model on the safe driving class. *In each
case, the Average F1-score excludes the intra-dataset F1-score.

Safe driving class

CNN-Pose Test set
EZZ2021 STF AUC2 Average

F1-score

Train set
EZZ2021 0.99 0.53 0.69 0.61
STF 0.98 0.96 0.60 0.79
AUC2 0.78 0.56 0.60 0.67
Average
F1score

0.92 0.68 0.63

To gain insights into the specific features utilized by the CNN models during the prediction process,
the Grad-CAM algorithm was employed on the ResNet50 model. Illustrated in Figure 4.2 and
Figure 4.3 are two representative outputs generated by the Grad-CAM algorithm when applied to
a ResNet50 model that was trained and tested on the STF dataset, specifically focusing on the
”safe driving” and ”Make-up” classes. Additional Grad-CAM outputs for the remaining classes
are in Appendix C for reference.

57 Chapter 4. Cross-dataset performance evaluation

Based on the Grad-CAM analysis, the following observations are made:

• It is apparent that the model effectively identifies the relevant features or image regions when
making predictions on test images sourced from the same dataset as the training set. In
contrast, when confronted with test images from a different dataset, the model appears to
experience confusion and directs its focus toward incorrect features.

• It appears that the model is searching for the position of the driver’s hands, specifically
their forearms in relation to the steering wheel when predicting a ”safe driving” posture, as
shown in Figure 4.2. However, the model struggles when it only detects one forearm, which is
particularly problematic when images are taken up close to the driver. It is hard to distinguish
both arms. Therefore, the model encounters difficulties when dealing with scenarios where
the driver is positioned close to the camera.

• While the models successfully learn significant features, they also acquire non-essential fea-
tures, a phenomenon particularly pronounced when the entire image is employed for training.
For instance, in the case of the ”make-up” class, the models tend to focus on hands near the
head, facial features, or the presence of an open front mirror, as shown in Figure 4.3. Notably,
an open front mirror can lead to model confusion when analysing other images where the front
mirror is open, potentially causing the model to take suboptimal shortcuts.

• The presence of a cell phone around the driver confuses the model in predicting classes that
involve the driver using a cell phone.

Figure 4.2: Grad-CAM example for the safe driving class.

58 Chapter 4. Cross-dataset performance evaluation

Figure 4.3: Grad-CAM example for the Make-up class.

The results and analysis above suggest the following:

• The CNN-Pose model exhibits superior generalization capabilities compared to the other algo-
rithms, primarily owing to its consistent cross-dataset performance. The robust performance
can be attributed to the model’s capacity to leverage the rich features learned by the CNN
and human key points, which are less variable.

• The Leekha GrabCut model emerged as the second-best performer among the algorithms
evaluated. This notable performance can be attributed to the incorporation of the GrabCut
algorithm, which effectively eliminates background noise and directs the model’s attention
towards the driver’s body posture during training. This focus on posture features helps
account for the Leekha GrabCut algorithm’s ability to achieve commendable cross-dataset
performance as it mitigates dataset-to-dataset variability by eliminating non-essential objects
and distractions, thereby enhancing the model’s distracted driver detection capabilities.

• The performance of algorithms trained on the AUC2 dataset is adversely affected by certain
dataset characteristics. Notably, the primary difference among the three datasets, as indicated
by the initial dataset splits, is that in the AUC2 dataset, drivers present in the training set do
not appear in the testing set. In contrast, the EZZ2021 and STF datasets feature drivers in the
training and testing datasets. Another distinguishing factor is that within the AUC2 dataset,
drivers do not partake in all posture activities. These discrepancies offer insights into the
challenges faced by models trained on the AUC2 training dataset, which exhibit suboptimal
performance on the AUC2 test dataset. Furthermore, this could explain why models trained
on the EZZ2021 and STF training datasets perform commendably on their respective testing
datasets.

59 Chapter 4. Cross-dataset performance evaluation

• The poor performance of the algorithms trained on the AUC2 dataset can also be attributed
to the fact that the dataset is relatively large but not diverse. Each driver in the dataset
performs the same driver activity more than 20 times with very little difference between the
image frames. This creates an opportunity for shortcut learning that can easily arise due to
a systematic relationship between the driver and the background or context [114].

• CNN models that use the whole image without background noise removal or without consid-
ering other features that are less variable do not generalise well to new data. This can be
attributed to the fact that the three datasets are relatively large but not diverse.

It has been observed that the performance of deep learning distracted driver detection algorithms
is not satisfactory when tested on image datasets that were not used in their original training.
This problem is particularly prevalent in CNN models that use the entire image without removing
background noise or utilizing less variable features. The reason for this suboptimal performance is
that the training datasets used are large but not diverse enough. As a result, the deep learning
algorithms resort to shortcut learning, which significantly reduces their ability to generalize to new
data.

4.3 Summary

This chapter sought to find the extent to which deep learning distracted driver detection algorithms
can generalise to new data that was not used for training. A cross-dataset performance evaluation
study was carried out. Based on the results it was found that, in general, deep learning distracted
driver detection algorithms do not perform very well on testing datasets that do not come from the
same dataset as the training dataset. This observation holds particularly true for CNN models that
employ the entire image without the removal of background noise or the utilization of less variable
features. In addition, it was found that although current distracted driver detection image datasets
are large, they lack diversity – a characteristic that negatively affects their ability to generalise on
data. In fact, models often resort to shortcut learning when trained on the current datasets.

Chapter 5

Enhancing cross-dataset
performance

The study in Chapter 4 has shown that current deep learning-based methods for detecting
distracted drivers struggle to generalise to new, unseen data. This challenge is particularly
pronounced in the case of CNN-based methods that utilize the entire image for both training and
prediction. The associated issue of limited generalisation ability hinders the seamless application
of these methods in real-world scenarios.

This chapter focuses on achieving the third research objective (ROJ3) of this thesis. Specifically, the
chapter focuses on developing a robust distracted driver detection approach based on recognising
distinctive activities of human body parts involved when a driver is operating a vehicle. To achieve
ROJ3, METHOD3 introduced in Section 1.5 will be used. The remaining sections of this chapter
will provide more details on the proposed approach (Section 5.1) and its implementation (Section
5.2).

5.1 Proposed approach

The literature review presented in Chapter 3 has revealed that the current ROI detection methods
[9], [29]–[31] use object detection to detect a driver region of interest and common distraction
objects such as cell phones and drinking bottles. The detected ROI is then used to classify the
driver behaviour. Figures 5.1 and 5.2 illustrate how current driver ROI detection methods use
object detection.

60

61 Chapter 5. Enhancing cross-dataset performance

Figure 5.1: Driver ROI detection approach proposed by Wang et al. [30].

Figure 5.2: Driver ROI detection approach proposed by Sajid et al. [29].

Contrary to current driver ROI detection methods, the proposed approach uses object detec-

62 Chapter 5. Enhancing cross-dataset performance

tion to identify important human body parts when a driver operates a vehicle and classify their
states into activities in one forward pass. These activities are used to predict if a driver is distracted.

The proposed approach consists of two key steps. In the first step, the driver’s body parts are
detected, and the state of each body part is classified into an activity. The second step utilizes the
detected activities to make a final prediction using a simple decision tree-based approach. Inspired
by the findings of Yang et al. [99], the distracted driver classification problem in the second step is
treated as a binary classification problem, focusing on determining whether the driver is distracted
or not. The specific tasks involved in each step are detailed below. Figure 5.3 provides an overview
of the proposed approach.

In step 1, the driver’s head and hands are detected. The state of the driver’s head is classified
as either ”eyes on the road” or ”eyes off the road.” The positions of the left and right hands in
relation to the steering wheel are used to classify whether both hands are on the wheel or if one
hand is on the wheel. Furthermore, common distracting activities that a driver may engage in while
driving are recognized. These activities include cell phone usage, drinking, hands on the face, and
talking on the phone. The activities are identified by detecting the presence of a cell phone or any
object that can be used for drinking and classifying the activity based on the detected object. In
the second step of the approach, the final prediction is made by evaluating two conditions: ”eyes
on the road” and ”both hands on the steering wheel.” If both conditions are satisfied, the driver
is considered to be in a safe driving position. Conversely, if one of the conditions is not met, the
driver is deemed distracted.

63 Chapter 5. Enhancing cross-dataset performance

Figure 5.3: Proposed framework for distracted driver detection. Step 1: The driver’s body parts
are detected, and the activity of each body part is classified. Step 2: The detected activities are
used to make a final prediction using a decision tree-based approach.

5.2 Implementation

The proposed approach was implemented following the process introduced in Section 2.8. For
reference purposes, the overall development process is shown again in Figure 5.4. The overall
implementation process starts with project scoping. Project scoping involves problem definition,
data definition, and selecting an optimising metric and the satisficing metric. For this thesis,
the problem was defined in Section 1.1. The nature of the problem dictates that it should be
solved using computer vision methods, specifically object detection. In this thesis, the YOLOv7
model was chosen due to its superiority in terms of accuracy and inference speed compared to
other object detectors, as explained in Section 2.6. The average mean precision (mAP) will be the
optimising parameter. Specifically, the mAP of the model should be at least ≥ 0.5 for the model’s
performance to be considered “satisfactory” [85]. The inference time of the model could serve as
the satisficing metric. However, a threshold value will not be specified since the focus of this thesis
is only limited to improving the robustness of distracted driver detection.

The remaining sections provide more details on each step involved in the implementation process.

64 Chapter 5. Enhancing cross-dataset performance

Figure 5.4: Overall development process to train and fine-tune the YOLOv7 model to custom data.

5.2.1 YOLOv7 model setup

The first step of the implementation process (YOLOv7 model setup) involves four key items: in-
stalling the YOLOv7 model, preprocessing the data, selecting a model, and selecting hyperparam-
eters. Details pertaining to each item are as follows:

• Install YOLOv7: The process of setting up the YOLOv7 model starts with installing the
YOLOv7 official code repository. The source code was cloned from the official GitHub repos-
itory released with the YOLOv7 paper [36]. After that, the dependencies of the YOLOv7
source code were installed in a conda virtual environment. Figure 5.5 shows the activities
associated with the first item of step one of the implementation process.

65 Chapter 5. Enhancing cross-dataset performance

Figure 5.5: Step 1.1: Installation.

• Data preprocessing: Figure 5.6 shows the activities associated with data preprocessing.
The STF dataset was selected to train the proposed approach. This choice was based on the
fact that the STF dataset has many participants (44) compared to the EZZ2021 (9) and AUC2
(26) datasets. As a result, the dataset is more diverse than the EZZ2021 and AUC2 datasets.
The diversity of the STF dataset will allow the YOLOv7 model to learn from more different
samples during training, thereby improving the generalisation of the model. To align with
the proposed approach, which centres on specific regions for prediction, a random selection
of 3346 images was allocated for training, while an additional 1,000 images were reserved for
validation purposes. The original test split, comprising 2,257 images, was retained for testing.
The selected training and validation images were manually annotated with nine labels, which
include “eyes on the road”, “eyes off the road”, “hands on the wheel”, “hands on the face”, “no
hands on the wheel”, “one hand on the wheel”, “using cell phone”, “talking on the phone”,
and “drinking”. The images were annotated using the labelimg1 tool. The decision to use
only a portion (3346/19173) of the STF training set is based on the fact that annotating the

1Labelimg: https://github.com/HumanSignal/labelImg

https://github.com/HumanSignal/labelImg

66 Chapter 5. Enhancing cross-dataset performance

images takes a lot of time. It took a full month and three weeks to annotate the selected 4346
images (training and validation).

Figure 5.6: Step 1.2: Data preprocessing.

• Select model: Figure 5.7 shows the activities associated with model selection. The YOLOv7
model was released with six versions with varying parameters and processing speed measured
in frames per second (FPS), as shown in Table ??. In this work, the standard YOLOv7
model with 36.9 million parameters (YOLOv7) was selected based on a better mAP during
experiments.

67 Chapter 5. Enhancing cross-dataset performance

Figure 5.7: Step 1.3: Model selection.

Table 5.1: Official YOLOv7 model versions. ∗ FPS comparisons were done on the Tesla V100 GPU.
Model Parameters AP test[%] FPS∗

YOLOv7 36.9M 51.4 161
YOLOv7-X 71.3M 53.1 114
YOLOv7-W6 70.04M 54.9 84
YOLOv7-E6 97.2M 56.0 56
YOLOv7-D6 154.7M 56.6 44
YOLOv7-E6E 151.7M 56.8 36

• Hyperparameters: The final item in setting up the YOLOv7 model involves selecting hy-
perparameters such as the number of epochs, batch size and image size. There are other
hyperparameters, such as initial learning rate and box loss gain, as shown in Figure 5.8.
This thesis focused on four hyperparameters, which include epochs, image size, IoU t, and
anchor t. The other hyperparameters were set to their default values. Epochs refer to the
number of complete passes through the entire training set. During an epoch, the model sees

68 Chapter 5. Enhancing cross-dataset performance

and learns from every example in the training dataset once. Image size refers to the input
image size during training. IoU t represents the IoU threshold applied during training. The
anchor box threshold value used during training is represented by anchor t. These four hyper-
parameters were selected based on their influence on the model’s performance (mAP) during
hyperparameter-tuning experiments.

Figure 5.8: Step 1.4: Selecting hyperparameters.

5.2.2 Training

To detect distracted drivers, a standard YOLOv7 model pre-trained on the Microsoft COCO dataset
was fine-tuned to the annotated dataset. The training process involved using different hyperparam-
eters for each experiment, which is explained in detail in Chapter 6.

5.2.3 Model evaluation

The focus of this chapter is on developing a robust distracted driver detection method. As a
result, the performance of the proposed approach is evaluated using the cross-dataset performance
evaluation method presented in Section 4.1.4. Therefore, in addition to the STF test set, the
proposed method will be evaluated on the EZZ2021 test set, the AUC2 test set, and the CSIR test

69 Chapter 5. Enhancing cross-dataset performance

set.

The performance of the proposed approach will be evaluated using the accuracy and F1-score
metrics presented in Section 4.1.3.

5.3 Summary

This chapter presented an object detection-based method to improve the generalisation ability
of distracted driver detection. In contrast to current driver ROI detection methods, which
use object detection to detect a region that consists of the driver, the proposed method uses
object detection to detect important human body parts involved when a driver operates a
vehicle. The states of detected driver body parts are classified into activities. These activities
are used to obtain the final prediction. Treating the problem as a binary classification problem,
the final prediction is obtained by evaluating two conditions (activities): ”eyes on the road”
and ”hands on the wheel”. If both conditions are satisfied, the driver is considered to be in a
safe driving position. Conversely, if one of the conditions is not met, the driver is deemed distracted.

The chapter also provides details on how the proposed method was implemented. Chapter 6 presents
experimental results that aim to demonstrate the generalisation ability of the proposed method.

Chapter 6

Experimental results and discusion

Chapter 5 provided details on the proposed approach and its implementation. However, its effec-
tiveness remains unknown. This chapter seeks to bridge this gap by evaluating the performance of
the proposed method on the three test sets introduced in Section 3.1.1. In addition, the proposed
approach will be evaluated on the CSIR test set introduced in Section 3.1.2. These activities
support the fourth research objective of this study (ROJ4).

This chapter consists of two experiments that attempt to answer the following questions:

• Q1: Can the cross-dataset performance of convolutional neural network-based distracted
driver detection be improved through the detection of driver body parts and classification of
their state into activities?

• Q2: Can the performance of the proposed approach be improved through the adoption of
multiple class-specific object detectors as opposed to a single multi-class object detector?

Section 6.1 provides details about the main experiment that seeks to address Q1. Section 6.2
describes the second experiment to address Q2. The chapter concludes by providing a summary of
the outcomes of the two experiments in Section 6.3.

6.1 Main experiment: proposed approach

This experiment aims to evaluate the cross-dataset performance of the proposed approach. The
Yolov7 model pre-trained on the Microsoft COCO dataset was fine-tuned on the annotated STF
dataset, comprising nine distinct classes representing various driver activities. The nine activities
include ”eyes on the road,” ”eyes off the road,” ”hands on the wheel,” ”one hand on the wheel,”
”no hands on the wheel,” ”hands on the face,” ”using a cell phone,” ”talking on the phone,” and
”drinking”. The Yolov7 model was trained for 150 epochs using a 680 × 680 input image size,
an IoU threshold value of 0.50, and an anchor box threshold of 9. These hyperparameters were
obtained through a series of hyperparameter-tuning experiments. As mentioned in Section 5.2.1,
the other hyperparameters were set to their defaults.

70

71 Chapter 6. Experimental results and discusion

Table 6.1 shows the hyperparameters used to train the Yolov7 model along with the correspond-
ing training performance metrics (mAP@0.5 and mAP@0.95). The trained model obtained an
mAP@0.5 and mAP@0.95 of 0.964 and 0.704, respectively. These performance metrics are above
the minimum mAP target of 0.5, suggesting that the model was able to learn features from the
annotated STF dataset.

Table 6.1: Hyperparameters used to train the Yolov7 model and the corresponding training perfor-
mance metrics.

Experiment epochs img size iou t anchor t mAP@0.5 mAP@0.95

Proposed method 150 680 0.50 9.0 0.964 0.704

6.1.1 Baselines

The performance of the proposed approach was compared to that of the CNN feature classification
methods (ResNet50 and EfficientNetB0) and the Leekha GrabCut algorithm. These algorithms
were introduced in Section 4.1.1. The ResNet50 and EfficientNetB0 models, initially pre-trained on
the ImageNet dataset, were fine-tuned using the modified STF training dataset through the transfer
learning framework. The top layers of these architectures were replaced with a GlobalAveragePool-
ing2D layer, followed by a dropout layer and a fully connected layer with two neurons. A softmax
activation function was used on the output layer. Two neurons were used in the output layer since
distracted driver detection was treated as a binary classification problem. Table 6.2 presents the
hyperparameters used for training. Table 6.2 also shows the accuracy of algorithms on the STF
validation set. The ResNet50, EfficientNetB0 and Leekha GrabCut algorithms acheived validation
accuracies of 99.70%, 99.90%, and 99.10%, respectively.

Table 6.2: Hyperparameters used to train the three baseline algorithms.

Algorithm Learning rate Epochs Optimizer Dropout Accuracyval

ResNet50 Head: 0.001 15 Adam 0.2
Fine-tuning: 1e-5 70 Adam - 99.70%

EfficientNetB0 Head: 0.001 15 Adam 0.2
Fine-tuning: 1e-5 70 Adam - 99.80%

Leekha GrabCut Head: 0.001 15 Adam 0.2
Fine-tuning: 1e-5 70 Adam - 90.10%

6.1.2 Results and analysis

Table 6.3 shows the performance of the proposed method and the other three CNN-based ap-
proaches. From the results, the following observations can be made:

• All approaches perform well on the STF test dataset, with an average accuracy of 95.68%.

• All approaches do not perform well on the CSIR test dataset, with an average accuracy of
56.88%.

72 Chapter 6. Experimental results and discusion

• The proposed approach demonstrates a better overall cross-dataset performance than the
other three CNN-based methods. Compared to the second-best algorithm (Leekha GrabCut),
the proposed approach improves cross-dataset accuracy performance by 7.8%.

• Out of all the approaches evaluated, the ResNet50 model achieved the lowest overall cross-
dataset accuracy, with an average of 71.94%.

Table 6.3: Accuracy performance of the algorithms across the four test sets. *The Average accu-
racy was calculated using only the EZZ2021, AUC2 and CSIR test sets.

Algorithm EZZ2021 STF AUC2 CSIR Average*

Proposed method 90.91 96.62 91.62 62.63 81.72
ResNet50 82.33 95.91 79.70 53.80 71.94
EfficientNetB0 90.94 94.35 82.68 53.18 75.60
Leekha GrabCut 90.73 94.84 82.50 54.21 75.81
Average 94.16 96.66 79.70 56.88 76.27

For further analysis, the F1-score was used to evaluate and compare the balanced performance of
the algorithms. Table 6.4 shows the F1-score results of the approaches. Based on the results, the
following observations can be made:

• The approaches demonstrate commendable performance on the STF test dataset, achieving
an average F1-score of 0.78.

• Conversely, all approaches exhibit poor performance on the CSIR test dataset, with an average
F1-score of 0.19.

• The proposed approach achieved the best overall balanced distracted driver detection per-
formance. It is worth noting that the proposed approach achieves the highest accuracy in
three out of the four test datasets (STF, AUC2, and CSIR) in Table 6.3, highlighting its
effectiveness across various metrics.

• On the AUC2 test set, the ResNet50 model and the EfficientNetB0 model both achieved an
F1-score of 0. These zero F1-scores mean that neither model correctly predicted the safe
driving class. The ResNet50 model also had low F1-scores on the CSIR and EZZ2021 test
sets, measuring 0.02 and 0.05, respectively. As a result, the ResNet50 model performed the
worst in detecting distracted drivers, followed by the EfficientNetB0 model.

Table 6.4: F1-scores of the algorithms across the four test sets. *The Average F1-score was
calculated using only the EZZ2021, AUC2 and CSIR test sets.

Algorithm EZZ2021 STF AUC2 CSIR Average

Proposed method 0.36 0.86 0.75 0.42 0.51
ResNet50 0.05 0.79 0.00 0.02 0.02
EfficientNetB0 0.29 0.68 0.26 0.00 0.18
Leekha GrabCut 0.21 0.73 0.27 0.10 0.19
Average 0.32 0.78 0.38 0.19 0.23

73 Chapter 6. Experimental results and discusion

The results and analysis presented above reveal the following insights:

• The proposed approach demonstrates a significant improvement in the cross-dataset perfor-
mance of CNN-based distracted driver detection. Compared to the best-performing approach
among the three CNN-based methods (Leeka GrabCut), the proposed approach achieved an
overall improvement of 7.8% in classification accuracy performance. The overall balanced per-
formance, as measured by the F1-score, was substantially improved by a factor of 2.68. These
improvements are attributed to the fact that the proposed approach focuses on crucial driver
body parts and their associated activities, reducing input variance from dataset to dataset.

• All approaches exhibit satisfactory performance on the STF test dataset, which was expected
since all algorithms were trained on the STF training dataset. The similarity in characteristics
between the STF training and STF test datasets, such as camera viewpoint, drivers used, and
cars used, contributes to this favourable performance.

• The algorithms face challenges with the custom CSIR test set due to poor image quality,
especially in difficult lighting conditions (see Figure 6.1).

• The poor performance of the algorithms on the CSIR test set indicates that there is still
much work to be done to make distracted driver detection algorithms suitable for real-world
deployment and integration.

Figure 6.1: Sample qualitative results from the CSIR dataset.

Overall, the findings of this experiment highlight the effectiveness of the proposed approach in
enhancing the cross-dataset performance of distracted driver detection while also emphasizing the
impact of dataset characteristics on a learning algorithm.

6.2 Multi-class object detection vs multiple class-specific ob-
ject detectors

The primary objective of this experiment is to evaluate whether the performance of the proposed
approach can be improved through the adoption of multiple class-specific object detectors as
opposed to a single multi-class object detector. In addition to the proposed approach used in the
main experiment in Section 6.1, a second approach that uses class-specific object detectors was

74 Chapter 6. Experimental results and discusion

implemented. By contrasting the outcomes derived from these two approaches, it becomes possible
to determine the effectiveness of employing class-specific object detectors for enhanced performance.

The class-specific approach entailed the training of three distinct Yolov7 models, each with a
specialized focus. The first model concentrated exclusively on detecting the driver’s head and
discerning whether their eyes were on the road. The second model targeted the driver’s hands and
the steering wheel to identify two specific driver activities: ”both hands on the wheel” and ”one
hand on the wheel.” Finally, the third model was dedicated to detecting four distracting activities
that drivers might engage in while driving, namely, ”hands on the face,” ”using a cell phone,”
”talking on the phone,” and ”drinking.”

All the models were trained using hyperparameters obtained through a series of hyperparameter-
tuning experiments. The performance of all the models, measured in terms of mean average preci-
sion (mAP) on the validation dataset, is presented in Table 6.5.

Table 6.5: Training details: multi-class object detection vs. multiple class-specific object detectors
experiment.

Experiment epochs img size iou t anchor t mAP@0.5 mAP@0.95

Yolov7 multi-class 150 680 0.50 9.0 0.964 0.704
Yolov7 class-specific (head) 100 1280 0.50 4.0 0.902 0.7438
Yolov7 class-specific (hands) 100 1280 0.20 4.0 0.988 0.7929
Yolov7 class-specific (distractions) 150 1280 0.20 4.0 0.925 0.7038

6.2.1 Results and analysis

Table 6.6 displays the accuracy performance of two distinct approaches: the Yolov7-Multi-class
approach and the Yolov7-Class-specific approach. The results indicate that the Yolov7-Multi-class
approach excels on the AUC2 and CSIR test datasets but demonstrates suboptimal performance on
the EZZ2021 and STF test datasets compared to the Yolov7-Class-specific approach. In summary,
the Yolov7-Multi-class approach maintains a slightly higher average accuracy rate of 81.72% than
the Yolov7-Class-specific approach, which achieves an average accuracy of 81.06%.

The balanced performance of the two algorithms was also compared using the F1-score metric, as
shown in Table 6.7. Based on the F1-score performance, it can be observed that the Yolov7-Class-
specific approach outperforms the Yolov7-Multi-class approach only on the EZZ2021 test dataset,
exhibiting a 0.9167 improvement. However, the Yolov7-Class-specific approach demonstrates a
superior overall F1-score across all four test datasets.

75 Chapter 6. Experimental results and discusion

Table 6.6: Accuracy performance comparison: multi-class object detector vs. class-specific object
detectors. *The Average accuracy was calculated using only the EZZ2021, AUC2 and CSIR test
sets.

Algorithm EZZ2021 STF AUC2 CSIR Average*

Yolov7-Multi-class 90.91 96.62 91.62 62.63 81.72
Yolov7-Class-specific 94.16 96.66 88.45 60.57 81.06
Improvement 3.57% 0.04% -3.46% -3.29% -0.81%

Table 6.7: F1-score performance comparison: multi-class object detector vs. class-specific object
detectors. *The Average F1-score was calculated using only the EZZ2021, AUC2 and CSIR test
sets.

Algorithm EZZ2021 STF AUC2 CSIR Average

Yolov7-Multi-class 0.36 0.86 0.75 0.42 0.51
Yolov7-Class-specific 0.69 0.85 0.61 0.40 0.56
Improvement 0.9167 -0.0118 -0.1867 -0.0476 0.098

Based on the analysis of the results in Tables 6.6 and 6.7, the Yolov7-Class-specific approach
does not enhance distracted driver detection accuracy, as it exhibits a marginal decrease of 0.81%
in overall accuracy. However, the F1-score results paint a different picture, indicating that the
Yolov7-Class-specific approach improves the overall balanced performance by 0.098.

In summary, the findings of this experiment suggest that although using multiple class-specific
object detectors leads to a minor reduction in the overall accuracy of distracted driver detection,
there is a notable improvement of 0.098 in the overall balanced performance, as indicated by the F1-
score. For a more comprehensive understanding of algorithm performance, readers are encouraged
to reference the confusion matrices presented in Appendix D of this work. These matrices offer a
detailed breakdown of the models’ performance, delineating correct and incorrect predictions for
each class.

6.3 Summary

This chapter provided experimental results that sought to answer two questions:

• Main experiment: Can the cross-dataset performance of convolutional neural network-
based distracted driver detection be improved through the detection of driver body parts and
classification of their state into activities?

• Multi-class object detector vs. class-specific object detectors: Can the performance
of the proposed approach be improved through the adoption of multiple class-specific object
detectors as opposed to a single multi-class object detector?

The main experiment implemented the proposed approach using the implementation process
introduced in Section 5.2. The performance of the proposed approach was compared to three other

76 Chapter 6. Experimental results and discusion

CNN-based methods, which served as baselines. Based on the experimental results, the proposed
approach improves cross-dataset performance. A cross-dataset accuracy improvement of 7.8% was
observed. Most importantly, the overall balanced (F1-score) performance was improved by a factor
of 2.68. The experimental results also revealed that although the proposed approach demonstrates
commendable performance on the CSIR test set, all algorithms encountered challenges when
dealing with the custom CSIR test set, mainly due to lower image quality and difficult lighting
conditions.

The second experiment implemented the proposed approach and a variant of the proposed approach
that uses multiple class-specific objectors instead of one multi-class object detector. The findings
of the second experiment revealed that although using multiple class-specific object detectors leads
to a minor reduction in the overall accuracy of distracted driver detection, there is a notable
improvement of 0.098 in the overall balanced performance, as indicated by the F1-score.

Chapter 7

Conclusions and future work

7.1 Conclusion

Distracted driving remains a pressing issue globally. Measurement methods for distracted driver
detection will remain very prevalent to the early detection of distracted drivers and consequently
reducing the number of accidents caused by distracted driving. Methods based on convolutional
neural networks have reported remarkable results.

This study has demonstrated that despite the remarkable results reported in the literature, the
performance of current deep learning-based distracted driver detection methods is limited in
cross-dataset testing scenarios. Representative state-of-the-art deep learning algorithms were
trained and tested across different image datasets. The analysis of the results has indicated that
one of the major reasons for the lack of consistent performances across different datasets is the
lack of large and diverse image datasets. In addition, algorithms that do not use the whole image
for training and prediction have a better cross-dataset performance than algorithms that use the
whole image.

The proposed approach, which targets important human body parts involved when a driver oper-
ates a vehicle, has demonstrated the potential to improve cross-dataset performance significantly.
However, further work is required to develop a computer vision-based system that can be deployed
in a real-world environment.

7.2 Limitations

In this work, several limitations need to be addressed. First, the major limitation is that the
proposed approach was not tested in a real-world environment (in a car). Second, the approach
was trained and tested with static images offline. The performance of the approach on video data
is not known. Finally, the image datasets used for training and testing were captured in daylight
conditions in a well-lit environment.

77

78 Chapter 7. Conclusions and future work

7.3 Future work

Based on the findings of the study, future work could focus on several aspects:

• The current work has identified the deficiencies of existing distracted driver detection image
datasets. Creating large and diverse distracted driver detection image datasets encompassing
different driving scenarios and environmental factors could help improve the generalizability
and robustness of the proposed approach and deep learning-based algorithms. To reduce the
effort required, synthetic image data generation using AI (for example, generative adversarial
networks (GANs)) and CGI can be explored.

• The CNN-pose model demonstrated robust dataset-to-dataset performance. In addition, the
pose estimation model was given more weight than the CNN in the CNN-Pose algorithm.
Future work can focus on designing more robust features using detected human key points.

• Testing the developed models in the real-world would provide valuable insights into their
practical effectiveness and potential for integration into real-time driver monitoring systems.

• In the proposed approach, the performance of the Yolov7 model was not compared to the
performance of other object detectors such as Yolov8 and Faster R-CNN. Future work can
test and compare the performance of the proposed approach with different object detector
models.

• Finally, specialised domain generalisation approaches can be explored for deep learning dis-
tracted driver detection.

Bibliography

[1] WHO. “Road traffic injuries.” Accessed on March 07, 2022. (2022), [Online]. Available:
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.

[2] RTMC. “State of road safety report 2019.” Accessed on March 07, 2022. (2019), [Online].
Available: chrome- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.
rtmc.co.za/images/rtmc/docs/traffic_reports/calendar/caldec2019.pdf.

[3] Q. Wu, “An overview of driving distraction measure methods,” in 2009 IEEE 10th Interna-
tional Conference on Computer-Aided Industrial Design & Conceptual Design, IEEE, 2009,
pp. 2391–2394.

[4] Y. S. T. Shafeeq Kanaan Shakir AL-Doori and M. Koklu, “Distracted driving detection
with machine learning methods by cnn based feature extraction,” International Journal of
Applied Mathematics Electronics and Computers, vol. 9, no. 4, pp. 116–121, 2021.

[5] M. R. Arefin, F. Makhmudkhujaev, O. Chae, and J. Kim, “Aggregating cnn and hog fea-
tures for real-time distracted driver detection,” in 2019 IEEE International Conference on
Consumer Electronics (ICCE), IEEE, 2019, pp. 1–3.

[6] NHTSA. “Nhtsa releases 2020 traffic crash data.” Accessed on March 07, 2022. (2022),
[Online]. Available: https://www.nhtsa.gov/press-releases/2020-traffic-crash-
data-fatalities.

[7] M. Ngxande, “Correcting inter-sectional accuracy differences in drowsiness detection systems
using generative adversarial networks (gans),” Advisors: Prof. Jules-Raymond Tapamo and
Dr Michael Burke, Ph.D. thesis, University of Kwa-Zulu Natal, 2020.

[8] P. Papantoniou, E. Papadimitriou, and G. Yannis, “Review of driving performance pa-
rameters critical for distracted driving research,” Transportation research procedia, vol. 25,
pp. 1796–1805, 2017.

[9] B.-T. Dong and H.-Y. Lin, “An on-board monitoring system for driving fatigue and dis-
traction detection,” in 2021 22nd IEEE International Conference on Industrial Technology
(ICIT), IEEE, vol. 1, 2021, pp. 850–855.

[10] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applications in
vision,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems,
IEEE, 2010, pp. 253–256.

[11] B. News. “Tesla in fatal california crash was on autopilot.” Accessed on October 20, 2022.
(2018), [Online]. Available: https://www.bbc.com/news/world-us-canada-43604440.

79

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.rtmc.co.za/images/rtmc/docs/traffic_reports/calendar/caldec2019.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.rtmc.co.za/images/rtmc/docs/traffic_reports/calendar/caldec2019.pdf
https://www.nhtsa.gov/press-releases/2020-traffic-crash-data-fatalities
https://www.nhtsa.gov/press-releases/2020-traffic-crash-data-fatalities
https://www.bbc.com/news/world-us-canada-43604440

80 Bibliography

[12] S. Yan, Y. Teng, J. S. Smith, and B. Zhang, “Driver behavior recognition based on deep con-
volutional neural networks,” in 2016 12th International Conference on Natural Computation,
Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), IEEE, 2016, pp. 636–641.

[13] C. Yan, F. Coenen, and B. Zhang, “Driving posture recognition by convolutional neural
networks,” IET Computer Vision, vol. 10, no. 2, pp. 103–114, 2016.

[14] F. R. da Silva Oliveira and F. C. Farias, “Comparing transfer learning approaches applied
to distracted driver detection,” in 2018 IEEE Latin American Conference on Computational
Intelligence (LA-CCI), IEEE, 2018, pp. 1–6.

[15] H. M. Eraqi, Y. Abouelnaga, M. H. Saad, M. N. Moustafa, et al., “Driver distraction iden-
tification with an ensemble of convolutional neural networks,” Journal of Advanced Trans-
portation, vol. 2019, 2019.

[16] C. Huang, X. Wang, J. Cao, S. Wang, and Y. Zhang, “Hcf: A hybrid cnn framework for
behavior detection of distracted drivers,” IEEE access, vol. 8, pp. 109 335–109 349, 2020.

[17] C. Ou and F. Karray, “Enhancing driver distraction recognition using generative adversarial
networks,” IEEE Transactions on Intelligent Vehicles, vol. 5, no. 3, pp. 385–396, 2019.

[18] J. Cronje and A. P. Engelbrecht, “Training convolutional neural networks with class based
data augmentation for detecting distracted drivers,” in Proceedings of the 9th International
Conference on Computer and Automation Engineering, 2017, pp. 126–130.

[19] B. Qin, J. Qian, Y. Xin, B. Liu, and Y. Dong, “Distracted driver detection based on a cnn
with decreasing filter size,” IEEE transactions on intelligent transportation systems, vol. 23,
no. 7, pp. 6922–6933, 2021.

[20] M. H. Alkinani, W. Z. Khan, Q. Arshad, and M. Raza, “Hsddd: A hybrid scheme for the
detection of distracted driving through fusion of deep learning and handcrafted features,”
Sensors, vol. 22, no. 5, p. 1864, 2022.

[21] C. Streiffer, R. Raghavendra, T. Benson, and M. Srivatsa, “Darnet: A deep learning solution
for distracted driving detection,” in Proceedings of the 18th acm/ifip/usenix middleware
conference: Industrial track, 2017, pp. 22–28.

[22] J. M. Mase, P. Chapman, G. P. Figueredo, and M. T. Torres, “A hybrid deep learning
approach for driver distraction detection,” in 2020 International Conference on Information
and Communication Technology Convergence (ICTC), IEEE, 2020, pp. 1–6.

[23] F. Nel and M. Ngxande, “Driver activity recognition through deep learning,” in 2021 South-
ern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern
Recognition Association of South Africa (SAUPEC/RobMech/PRASA), IEEE, 2021, pp. 1–
6.

[24] N. Moslemi, R. Azmi, and M. Soryani, “Driver distraction recognition using 3d convolutional
neural networks,” in 2019 4th International Conference on Pattern Recognition and Image
Analysis (IPRIA), IEEE, 2019, pp. 145–151.

[25] M. Çetinkaya and T. Acarman, “Driver activity recognition using deep learning and human
pose estimation,” in 2021 International Conference on INnovations in Intelligent SysTems
and Applications (INISTA), IEEE, 2021, pp. 1–5.

[26] M. Wu, X. Zhang, L. Shen, and H. Yu, “Pose-aware multi-feature fusion network for driver
distraction recognition,” in 2020 25th International Conference on Pattern Recognition
(ICPR), IEEE, 2021, pp. 1228–1235.

81 Bibliography

[27] A. Ezzouhri, Z. Charouh, M. Ghogho, and Z. Guennoun, “Robust deep learning-based driver
distraction detection and classification,” IEEE Access, vol. 9, pp. 168 080–168 092, 2021.

[28] M. Leekha, M. Goswami, R. R. Shah, Y. Yin, and R. Zimmermann, “Are you paying atten-
tion? detecting distracted driving in real-time,” in 2019 IEEE Fifth International Conference
on Multimedia Big Data (BigMM), IEEE, 2019, pp. 171–180.

[29] F. Sajid, A. R. Javed, A. Basharat, N. Kryvinska, A. Afzal, and M. Rizwan, “An efficient
deep learning framework for distracted driver detection,” IEEE Access, vol. 9, pp. 169 270–
169 280, 2021.

[30] J. Wang, Z. Wu, F. Li, and J. Zhang, “A data augmentation approach to distracted driving
detection,” Future internet, vol. 13, no. 1, p. 1, 2020.

[31] Q. Xiong, J. Lin, W. Yue, S. Liu, Y. Liu, and C. Ding, “A deep learning approach to driver
distraction detection of using mobile phone,” in 2019 IEEE Vehicle Power and Propulsion
Conference (VPPC), IEEE, 2019, pp. 1–5.

[32] U. Muhammad, D. R. Beddiar, and M. Oussalah, “Domain generalization via ensemble
stacking for face presentation attack detection,” arXiv preprint arXiv:2301.02145, 2023.

[33] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR 2011, IEEE, 2011,
pp. 1521–1528.

[34] C. Duan, Z. Liu, J. Xia, M. Zhang, J. Liao, and L. Cao, “Enhancing cross-dataset per-
formance of distracted driving detection with score-softmax classifier,” arXiv preprint
arXiv:2310.05202, 2023.

[35] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adap-
tation,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 7167–7176.

[36] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-freebies sets new
state-of-the-art for real-time object detectors,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023, pp. 7464–7475.

[37] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft coco: Common objects in context,” in
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13, Springer, 2014, pp. 740–755.

[38] F. Zandamela, T. Ratshidaho, F. Nicolls, and G. G. Stoltz, “Cross-dataset performance
evaluation of deep learning distracted driver detection algorithms,” 2022.

[39] F. Zandamela, F. Nicolls, D. Kunene, and G. Stoltz, “Enhancing distracted driver detec-
tion with human body activity recognition using deep learning,” South African Journal of
Industrial Engineering, vol. 34, no. 4, pp. 1–17, 2024.

[40] M. D. Hssayeni, S. Saxena, R. Ptucha, and A. Savakis, “Distracted driver detection: Deep
learning vs handcrafted features,” Electronic Imaging, vol. 29, pp. 20–26, 2017.

[41] S. Kar, M. Bhagat, and A. Routray, “Eeg signal analysis for the assessment and quantifi-
cation of driver’s fatigue,” Transportation research part F: traffic psychology and behaviour,
vol. 13, no. 5, pp. 297–306, 2010.

[42] T. Öberg, “Muscle fatigue and calibration of emg measurements,” Journal of Electromyog-
raphy and Kinesiology, vol. 5, no. 4, pp. 239–243, 1995.

82 Bibliography

[43] C. Yan, H. Jiang, B. Zhang, and F. Coenen, “Recognizing driver inattention by convolu-
tional neural networks,” in 2015 8th International Congress on Image and Signal Processing
(CISP), IEEE, 2015, pp. 680–685.

[44] C. Zhang, H. Wang, and R. Fu, “Automated detection of driver fatigue based on entropy and
complexity measures,” IEEE Transactions on Intelligent Transportation Systems, vol. 15,
no. 1, pp. 168–177, 2013.

[45] R. A. Berri, A. G. Silva, R. S. Parpinelli, E. Girardi, and R. Arthur, “A pattern recognition
system for detecting use of mobile phones while driving,” in 2014 International conference
on computer vision theory and applications (VISAPP), IEEE, vol. 2, 2014, pp. 411–418.

[46] R. Laroca, E. Severo, L. A. Zanlorensi, et al., “A robust real-time automatic license plate
recognition based on the yolo detector,” in 2018 international joint conference on neural
networks (ijcnn), IEEE, 2018, pp. 1–10.

[47] F. Omerustaoglu, C. O. Sakar, and G. Kar, “Distracted driver detection by combining in-
vehicle and image data using deep learning,” Applied Soft Computing, vol. 96, p. 106 657,
2020.

[48] A. Esteva, B. Kuprel, R. A. Novoa, et al., “Dermatologist-level classification of skin cancer
with deep neural networks,” nature, vol. 542, no. 7639, pp. 115–118, 2017.

[49] S. Frizzi, R. Kaabi, M. Bouchouicha, J.-M. Ginoux, E. Moreau, and F. Fnaiech, “Convo-
lutional neural network for video fire and smoke detection,” in IECON 2016-42nd Annual
Conference of the IEEE Industrial Electronics Society, IEEE, 2016, pp. 877–882.

[50] I. Goodfellow, Y. Bengio, and A. Courville, “Convolutional networks,” in Deep Learning,
MIT press, 2016, ch. 9, pp. 330–371.

[51] R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, and M. Steinbrecher, “Multi-layer percep-
trons,” in Computational intelligence: a methodological introduction, Springer, 2022, pp. 53–
124.

[52] J. Lederer, “Activation functions in artificial neural networks: A systematic overview,” arXiv
preprint arXiv:2101.09957, 2021.

[53] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR
Workshop and Conference Proceedings, 2011, pp. 315–323.

[54] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,”
The Journal of physiology, vol. 148, no. 3, p. 574, 1959.

[55] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position,” Biological cybernetics, vol. 36, no. 4,
pp. 193–202, 1980.

[56] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-
ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[57] R. Adrian, “Convolutional neural networks,” in Deep Learning for Computer Vision with
Python, Starter Bundle, PyImageSearch, 2017, ch. 11, pp. 169–195.

[58] A. Géron, “Deep computer vision using convolutional neural networks,” in Hands-on Ma-
chine Learning with Scikit-Learn, Keras, and TensorFlow, N. Tache, Ed., O’Reilly Media,
2019, ch. 14, pp. 431–439.

83 Bibliography

[59] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reduc-
ing internal covariate shift,” in International conference on machine learning, pmlr, 2015,
pp. 448–456.

[60] Q. Wang, Y. Ma, K. Zhao, and Y. Tian, “A comprehensive survey of loss functions in machine
learning,” Annals of Data Science, pp. 1–26, 2020.

[61] J. Terven, D. M. Cordova-Esparza, A. Ramirez-Pedraza, and E. A. Chavez-Urbiola, “Loss
functions and metrics in deep learning. a review,” arXiv preprint arXiv:2307.02694, 2023.

[62] I. Goodfellow, Y. Bengio, and A. Courville, “Optimization for training deep learning models,”
in Deep Learning, MIT press, 2016, ch. 8, pp. 274–294.

[63] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[64] I. Goodfellow, Y. Bengio, and A. Courville, “Machine learning basics,” in Deep Learning,
MIT press, 2016, ch. 5, pp. 98–154.

[65] J. Kukačka, V. Golkov, and D. Cremers, “Regularization for deep learning: A taxonomy,”
arXiv preprint arXiv:1710.10686, 2017.

[66] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” Advances in neural information processing systems, vol. 28,
2015.

[67] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 580–587.

[68] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1440–1448.

[69] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 779–788.

[70] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 7263–7271.

[71] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[72] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of
object detection,” arXiv preprint arXiv:2004.10934, 2020.

[73] C. Li, L. Li, H. Jiang, et al., “Yolov6: A single-stage object detection framework for industrial
applications,” arXiv preprint arXiv:2209.02976, 2022.

[74] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” Advances in neural information processing systems, vol. 28,
2015.

[75] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 10 781–10 790.

84 Bibliography

[76] M. L. Mekhalfi, C. Nicolò, Y. Bazi, M. M. Al Rahhal, N. A. Alsharif, and E. Al Maghayreh,
“Contrasting yolov5, transformer, and efficientdet detectors for crop circle detection in
desert,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.

[77] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of yolo algorithm developments,”
Procedia Computer Science, vol. 199, pp. 1066–1073, 2022.

[78] M. Hussain, “Yolov1 to v8: Unveiling each variant–a comprehensive review of yolo,” IEEE
Access, vol. 12, pp. 42 816–42 833, 2024.

[79] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for
deep neural networks,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 1492–1500.

[80] M. Hu, J. Feng, J. Hua, et al., “Online convolutional re-parameterization,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 568–577.

[81] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “Repvgg: Making vgg-style convnets
great again,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 13 733–13 742.

[82] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised nets,” in Artificial
intelligence and statistics, Pmlr, 2015, pp. 562–570.

[83] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A survey on performance metrics for object-
detection algorithms,” in 2020 International Conference on Systems, Signals and Image
Processing (IWSSIP), 2020, pp. 237–242. doi: 10.1109/IWSSIP48289.2020.9145130.

[84] P. Jaccard, “Étude comparative de la distribution florale dans une portion des alpes et des
jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp. 547–579, 1901.

[85] R. Adrian, “Faster r-cnns,” in Deep Learning for Computer Vision with Python, Practitioner
Bundle, PyImageSearch, 2017, ch. 15, pp. 248–250.

[86] C. Zhao, B. Zhang, J. He, and J. Lian, “Recognition of driving postures by contourlet
transform and random forests,” IET Intelligent Transport Systems, vol. 6, no. 2, pp. 161–
168, 2012.

[87] C. Zhao, B. Zhang, J. Lian, J. He, T. Lin, and X. Zhang, “Classification of driving postures
by support vector machines,” in 2011 sixth international conference on image and graphics,
IEEE, 2011, pp. 926–930.

[88] C. H. Zhao, B. L. Zhang, X. Z. Zhang, S. Q. Zhao, and H. X. Li, “Recognition of driv-
ing postures by combined features and random subspace ensemble of multilayer perceptron
classifiers,” Neural Computing and Applications, vol. 22, pp. 175–184, 2013.

[89] C. Zhao, Y. Gao, J. He, and J. Lian, “Recognition of driving postures by multiwavelet trans-
form and multilayer perceptron classifier,” Engineering Applications of Artificial Intelligence,
vol. 25, no. 8, pp. 1677–1686, 2012.

[90] A. Montoya, S. Dan Holman, T. Smith, and W. Kan. “State farm distracted driver detec-
tion.” Accessed on March 28, 2022. (2016), [Online]. Available: https://kaggle.com/
competitions/state-farm-distracted-driver-detection.

[91] T. Billah, S. M. Rahman, M. O. Ahmad, and M. Swamy, “Recognizing distractions for
assistive driving by tracking body parts,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 29, no. 4, pp. 1048–1062, 2018.

https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://kaggle.com/competitions/state-farm-distracted-driver-detection
https://kaggle.com/competitions/state-farm-distracted-driver-detection

85 Bibliography

[92] O. Russakovsky, J. Deng, H. Su, et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, pp. 211–252, 2015.

[93] R. Sebastian, “Neural transfer learning for natural language processing,” Ph.D. thesis, Uni-
versity of Galway, 2019.

[94] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, pp. 123–140, 1996.

[95] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005
IEEE computer society conference on computer vision and pattern recognition (CVPR’05),
Ieee, vol. 1, 2005, pp. 886–893.

[96] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learning for
human pose estimation,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 5693–5703.

[97] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation
using part affinity fields,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 7291–7299.

[98] I. Goodfellow, Y. Bengio, and A. Courville, “Sequence modeling: Recurrent and recursive
nets,” in Deep Learning, MIT press, 2016, ch. 10, pp. 330–371.

[99] Y. Xing, C. Lv, H. Wang, D. Cao, E. Velenis, and F.-Y. Wang, “Driver activity recognition for
intelligent vehicles: A deep learning approach,” IEEE transactions on Vehicular Technology,
vol. 68, no. 6, pp. 5379–5390, 2019.

[100] T. Hoang Ngan Le, Y. Zheng, C. Zhu, K. Luu, and M. Savvides, “Multiple scale faster-rcnn
approach to driver’s cell-phone usage and hands on steering wheel detection,” in Proceedings
of the IEEE conference on computer vision and pattern recognition workshops, 2016, pp. 46–
53.

[101] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural net-
works,” in International conference on machine learning, PMLR, 2019, pp. 6105–6114.

[102] S. Li and W. Deng, “A deeper look at facial expression dataset bias,” IEEE Transactions
on Affective Computing, vol. 13, no. 2, pp. 881–893, 2020.

[103] A. V. Nadimpalli and A. Rattani, “On improving cross-dataset generalization of deepfake
detectors,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2022, pp. 91–99.

[104] B. Baheti, S. Gajre, and S. Talbar, “Detection of distracted driver using convolutional neural
network,” in Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, 2018, pp. 1032–1038.

[105] A. Kashevnik, R. Shchedrin, C. Kaiser, and A. Stocker, “Driver distraction detection meth-
ods: A literature review and framework,” IEEE Access, vol. 9, pp. 60 063–60 076, 2021.

[106] W. Li, J. Huang, G. Xie, F. Karray, and R. Li, “A survey on vision-based driver distraction
analysis,” Journal of Systems Architecture, vol. 121, p. 102 319, 2021.

[107] M. H. Saad, M. I. Khalil, and H. M. Abbas, “End-to-end driver distraction recognition using
novel low lighting support dataset,” in 2020 15th International Conference on Computer
Engineering and Systems (ICCES), IEEE, 2020, pp. 1–6.

86 Bibliography

[108] J. Mafeni Mase, P. Chapman, G. P. Figueredo, and M. Torres Torres, “Benchmarking deep
learning models for driver distraction detection,” in Machine Learning, Optimization, and
Data Science: 6th International Conference, LOD 2020, Siena, Italy, July 19–23, 2020,
Revised Selected Papers, Part II 6, Springer, 2020, pp. 103–117.

[109] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–
778.

[110] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convolutional lstm
network: A machine learning approach for precipitation nowcasting,” Advances in neural
information processing systems, vol. 28, 2015.

[111] Y. Sasaki et al., “The truth of the f-measure,” Teach tutor mater, vol. 1, no. 5, pp. 1–5,
2007.

[112] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam:
Visual explanations from deep networks via gradient-based localization,” in Proceedings of
the IEEE international conference on computer vision, 2017, pp. 618–626.

[113] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[114] R. Geirhos, J.-H. Jacobsen, C. Michaelis, et al., “Shortcut learning in deep neural networks,”
Nature Machine Intelligence, vol. 2, no. 11, pp. 665–673, 2020.

Appendix A

Distribution of images per class in
the distracted driver detection
datasets

Table A.1: Distribution of images in the EZZ2021, STF, and AUC2 training sets.

Class EZZ2021 STF AUC2

C0 1681 2140 2346
C1 2255 1940 1198
C2 2363 1985 762
C3 2522 2011 641
C4 2838 1993 850
C5 2585 1980 651
C6 2430 1992 633
C7 2589 1697 591
C8 2641 1619 598
C9 2602 1816 1279
Total 24506 19173 9549

87

88 Appendix A. Distribution of images per class in the distracted driver detection datasets

Table A.2: Distribution of images in the EZZ2021, STF, and AUC2 validation sets.

Class EZZ2021 STF AUC2

C0 100 100 100
C1 100 100 100
C2 100 100 100
C3 100 100 100
C4 100 100 100
C5 100 100 100
C6 100 100 100
C7 100 100 100
C8 100 100 100
C9 100 100 100
Total 1000 1000 1000

Table A.3: Distribution of images in the EZZ2021, STF, AUC2, CSIR test sets.

Class EZZ2021 STF AUC2 CSIR

C0 344 249 219 227
C1 367 227 133 84
C2 379 232 114 82
C3 374 235 99 51
C4 395 233 90 22
C5 376 232 90 13
C6 356 233 60 0
C7 381 201 63 26
C8 373 192 66 0
C9 371 213 138 5
Total 3716 2247 1072 510

Appendix B

Per-class F1-score performance
results of the algorithms

Table B.1: Per-class F1-score results and overall accuracy of the ResNet50 model on the three
datasets.
Class ResNet50-EZZ2021 ResNet50-AUC2 ResNet50-STF

EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test

Safe driving 0.85 0.52 0.31 0.19 0.61 0.39 0.00 0.50 0.95
Text right 0.99 0.07 0.43 0.00 0.39 0.35 0.04 0.34 0.96
Talk right 0.98 0.51 0.48 0.01 0.23 0.42 0.00 0.00 0.92
Text left 1.00 0.00 0.26 0.00 0.32 0.54 0.28 0.00 0.99
Talk left 0.92 0.00 0.29 0.05 0.53 0.56 0.01 0.58 0.97
Adjust radio 0.93 0.00 0.19 0.05 0.68 0.64 0.00 0.86 0.94
Drinking 0.99 0.00 0.00 0.01 0.23 0.06 0.22 0.00 0.93
Reach behind 1.00 0.19 0.32 0.33 0.31 0.57 0.25 0.42 0.98
Make-up 0.99 0.10 0.11 0.16 0.40 0.33 0.15 0.22 0.88
Talking to passenger 0.97 0.44 0.39 0.00 0.07 0.45 0.01 0.32 0.79
Overall accuracy 96.18 27.93 31.15 16.27 40.97 44.06 16.81 36.28 99.64

Table B.2: Per-class F1-score results and overall accuracy of the EfficientNetB0 model on the three
datasets.
Class EfficientNetB0-EZZ2021 EfficientNetB0-AUC2 EfficientNetB0-STF

EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test

Safe driving 0.85 0.27 0.19 0.54 0.35 0.39 0.44 0.24 0.88
Text right 0.87 0.00 0.16 0.15 0.06 0.35 0.03 0.09 0.94
Talk right 0.86 0.00 0.31 0.04 0.55 0.42 0.00 0.00 0.87
Text left 0.93 0.00 0.08 0.26 0.15 0.54 0.30 0.29 0.95
Talk left 0.84 0.00 0.15 0.02 0.67 0.56 0.20 0.54 0.91
Adjust radio 0.76 0.04 0.17 0.04 0.52 0.64 0.00 0.06 0.96
Drinking 0.95 0.24 0.06 0.43 0.38 0.06 0.22 0.10 0.91
Reach behind 0.96 0.21 0.16 0.35 0.62 0.57 0.12 0.40 0.91
Make-up 0.81 0.09 0.03 0.24 0.17 0.33 0.11 0.09 0.83
Talking to passenger 0.95 0.10 0.33 0.38 0.00 0.45 0.32 0.08 0.87
Overall accuracy 87.98 13.87 17.98 26.62 34.64 43.12 18.12 15.27 90.39

89

90 Appendix B. Per-class F1-score performance results of the algorithms

Table B.3: Per-class F1-score results and overall accuracy of the convLSTM model on the three
datasets.
Class convLSTM-EZZ2021 convLSTM-AUC2 convLSTM-STF

EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test

Safe driving 0.97 0.00 0.00 0.45 0.04 0.11 0.00 0.23 0.97
Text right 0.99 0.00 0.09 0.18 0.10 0.04 0.16 0.21 1.00
Talk right 0.97 0.05 0.13 0.00 0.08 0.00 0.00 0.25 1.00
Text left 0.98 0.00 0.17 0.00 0.09 0.00 0.00 0.00 0.99
Talk left 0.99 0.00 0.03 0.00 0.44 0.20 0.00 0.00 1.00
Adjust radio 1.00 0.00 0.03 0.42 0.11 0.17 0.02 0.11 1.00
Drinking 0.99 0.00 0.09 0.18 0.14 0.10 0.05 0.00 0.99
Reach behind 1.00 0.02 0.08 0.19 0.39 0.32 0.08 0.28 1.00
Make-up 0.99 0.00 0.09 0.11 0.14 0.17 0.00 0.00 0.99
Talking to passenger 1.00 0.03 0.05 0.21 0.10 0.35 0.00 0.20 0.98
Overall accuracy 98.91 1.90 8.76 20.43 17.61 20.22 7.85 18.57 99.10

Table B.4: Per-class F1-score results and overall accuracy of the CNN-LSTM model on the three
datasets.
Class CNN-LSTM-EZZ2021 CNN-LSTM-AUC2 CNN-LSTM-STF

EZZ2021 test1 AUC2 test STF test EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test

Safe driving 0.62 0.04 0.00 0.13 0.39 0.22 0.15 0.09 0.87
Text right 0.89 0.00 0.00 0.02 0.00 0.00 0.03 0.10 0.99
Talk right 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.95
Text left 0.88 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.85
Talk left 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96
Adjust radio 0.97 0.00 0.00 0.00 0.00 0.00 0.24 0.82 0.99
Drinking 0.94 0.00 0.00 0.00 0.00 0.32 0.00 0.07 0.98
Reach behind 0.94 0.13 0.15 0.00 0.00 0.28 0.11 0.00 0.94
Make-up 0.90 0.13 0.04 0.03 0.00 0.00 0.03 0.25 0.93
Talking to passenger 0.95 0.00 0.00 0.16 0.24 0.18 0.04 0.25 0.93
Overall accuracy 88.23 7.14 8.76 8.34 23.81 13.26 10.42 30.00 94.00

Table B.5: Per-class F1-score results and overall accuracy of the Leekha GrabCut model on the
three datasets.
Class Leekha GrabCut-EZZ2021 Leekha GrabCut-AUC2 Leekha GrabCut-STF

EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test

Safe driving 0.94 0.46 0.27 0.39 0.58 0.43 0.29 0.27 0.88
Text right 1.00 0.38 0.34 0.26 0.08 0.37 0.55 0.11 0.94
Talk right 0.95 0.38 0.35 0.35 0.12 0.39 0.30 0.07 0.87
Text left 0.98 0.50 0.31 0.54 0.70 0.62 0.52 0.48 0.95
Talk left 0.96 0.30 0.40 0.42 0.64 0.57 0.48 0.76 0.91
Adjust radio 0.99 0.28 0.24 0.56 0.50 0.39 0.38 0.35 0.96
Drinking 1.00 0.42 0.21 0.21 0.58 0.46 0.46 0.30 0.91
Reach behind 0.99 0.20 0.35 0.49 0.40 0.53 0.30 0.34 0.91
Make-up 0.98 0.09 0.15 0.19 0.25 0.30 0.18 0.20 0.83
Talking to passenger 0.98 0.25 0.32 0.61 0.28 0.42 0.61 0.38 0.87
Overall accuracy 97.71 32.31 30.53 40.06 44.23 43.88 42.03 33.43 88.30

91 Appendix B. Per-class F1-score performance results of the algorithms

Table B.6: Per-class F1-score results and overall accuracy of the CNN-Pose model on the three
datasets.
Class CNN-Pose-EZZ2021 CNN-Pose-AUC2 CNN-Pose-STF

EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test EZZ2021 test AUC2 test STF test

Safe driving 0.99 0.69 0.53 0.78 0.60 0.56 0.98 0.60 0.96
Text right 1.00 0.48 0.62 0.68 0.34 0.56 1.00 0.59 0.98
Talk right 0.99 0.15 0.58 0.55 0.69 0.58 0.98 0.05 0.98
Text left 0.99 0.62 0.48 0.64 0.61 0.45 0.97 0.82 1.00
Talk left 1.00 0.99 0.89 0.68 0.69 0.79 0.99 0.89 0.99
Adjust radio 1.00 0.43 0.39 0.56 0.66 0.63 0.99 0.52 0.99
Drinking 1.00 0.63 0.19 0.52 0.50 0.27 0.97 0.18 0.98
Reach behind 0.99 0.39 0.50 0.61 0.56 0.77 0.97 0.63 1.00
Make-up 0.99 0.30 0.38 0.36 0.23 0.36 0.96 0.22 0.95
Talking to passenger 0.99 0.53 0.56 0.77 0.48 0.68 0.96 0.64 0.94
Overall accuracy 99.35 52.45 53.52 58.59 51.49 56.48 97.53 50.82 97.76

Appendix C

Class Activation Maps

Figure C.1: Grad-CAM example for the ”Text right” class.

92

93 Appendix C. Class Activation Maps

Figure C.2: Grad-CAM example for the ”Talk right” class.

94 Appendix C. Class Activation Maps

Figure C.3: Grad-CAM example for the ”Text left” class.

95 Appendix C. Class Activation Maps

Figure C.4: Grad-CAM example for the ”Talk left” class.

96 Appendix C. Class Activation Maps

Figure C.5: Grad-CAM example for the ”Adjust radio” class.

97 Appendix C. Class Activation Maps

Figure C.6: Grad-CAM example for the ”Drinking” class.

98 Appendix C. Class Activation Maps

Figure C.7: Grad-CAM example for the ”Reach behind” class.

99 Appendix C. Class Activation Maps

Figure C.8: Grad-CAM example for the ”Talking to passenger” class.

100

101 Appendix D. Confusion matrices of the algorithms

Appendix D

Confusion matrices of the
algorithms

Figure D.1: Confusion matrices of the algorithms on the EZZ2021 test set.

102 Appendix D. Confusion matrices of the algorithms

Figure D.2: Confusion matrices of the algorithms on the STF test set.

103 Appendix D. Confusion matrices of the algorithms

Figure D.3: Confusion matrices of the algorithms on the AUC2 test set.

104 Appendix D. Confusion matrices of the algorithms

Figure D.4: Confusion matrices of the algorithms on the CSIR test set.

	1 Introduction
	1.1 Problem statement
	1.1.1 Background to research problems
	1.1.2 Identified gaps

	1.2 Overview of existing methods
	1.3 Research questions
	1.4 Research goal and objectives
	1.5 Overview of the methodology
	1.6 Overview of the outcomes
	1.7 Contributions
	1.8 Research outputs
	1.9 Delimitations
	1.10 Document structure

	2 Background
	2.1 Distracted driver detection
	2.1.1 What is distracted driver detection
	2.1.2 Measurement methods for distracted driving

	2.2 Artificial neural networks
	2.3 Convolutional neural networks
	2.3.1 Convolutional layer
	2.3.2 Non-linearity layer
	2.3.3 Feature pooling layer
	2.3.4 Fully connected layer
	2.3.5 Batch normalisation layer
	2.3.6 Dropout layer

	2.4 Training deep learning algorithms
	2.5 Generalisation and regularisation
	2.6 Object detection
	2.6.1 YOLO working principle

	2.7 YOLOv7 architecture
	2.7.1 Architecture optimisation
	2.7.2 Training process optimisation

	2.8 YOLOv7 model training
	2.8.1 Object detection performance metrics

	2.9 Summary

	3 Literature review
	3.1 Datasets
	3.1.1 Public datasets
	3.1.2 CSIR test dataset

	3.2 Deep learning in distracted driver detection
	3.2.1 CNN feature classification-based methods
	3.2.2 Robust distracted driver detection methods

	3.3 Cross-dataset performance evaluation
	3.4 Summary

	4 Cross-dataset performance evaluation
	4.1 Experimental setup
	4.1.1 Algorithms
	4.1.2 Datasets
	4.1.3 Evaluation metrics
	4.1.4 Evaluation method
	4.1.5 Training procedure

	4.2 Results and analysis
	4.2.1 Training results
	4.2.2 Cross-dataset performance results

	4.3 Summary

	5 Enhancing cross-dataset performance
	5.1 Proposed approach
	5.2 Implementation
	5.2.1 YOLOv7 model setup
	5.2.2 Training
	5.2.3 Model evaluation

	5.3 Summary

	6 Experimental results and discusion
	6.1 Main experiment: proposed approach
	6.1.1 Baselines
	6.1.2 Results and analysis

	6.2 Multi-class object detection vs multiple class-specific object detectors
	6.2.1 Results and analysis

	6.3 Summary

	7 Conclusions and future work
	7.1 Conclusion
	7.2 Limitations
	7.3 Future work

	A Distribution of images per class in the distracted driver detection datasets
	B Per-class F1-score performance results of the algorithms
	C Class Activation Maps
	D Confusion matrices of the algorithms

