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Abstract

Fusion of images captured from different viewpoints is a well-known challenge

in computer vision with many established approaches and applications;

however, if the observations are captured by sensors also separated by

wavelength, this challenge is compounded significantly. This dissertation

presents an investigation into the fusion of visible and thermal image

information from two front-facing sensors mounted side-by-side. The primary

focus of this work is the development of methods that enable us to map and

overlay multi-spectral information; the goal is to establish a combined image

in which each pixel contains both colour and thermal information.

Pixel-level fusion of these distinct modalities is approached using

computational stereo methods; the focus is on the viewpoint alignment and

correspondence search/matching stages of processing. Frequency domain

analysis is performed using a method called phase congruency. An extensive

investigation of this method is carried out with two major objectives: to

identify predictable relationships between the elements extracted from each

modality, and to establish a stable representation of the common information

captured by both sensors. Phase congruency is shown to be a stable

edge detector and repeatable spatial similarity measure for multi-spectral

information; this result forms the basis for the methods developed in the

subsequent chapters of this work.

The feasibility of automatic alignment with sparse feature-correspondence

methods is investigated. It is found that conventional methods fail to

match inter-spectrum correspondences, motivating the development of an

edge orientation histogram (EOH) descriptor which incorporates elements of

the phase congruency process.

A cost function, which incorporates the outputs of the phase congruency

process and the mutual information similarity measure, is developed for

computational stereo correspondence matching. An evaluation of the

proposed cost function shows it to be an effective similarity measure for

multi-spectral information.
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Chapter 1

Introduction

1.1 Subject and aims

Within the past decade, imaging technology capable of capturing information beyond

the visible spectrum has become widely available. These devices operate at different

spectral ranges to capture distinct information about a scene. The strengths of each

spectral modality can be simultaneously utilised through a process called information

fusion. The primary objective of this dissertation is to establish a set of methods that

facilitate multi-spectral image fusion.

Approaches to this task are numerous and varied, but largely operate on the same

assumptions about the characteristic behaviour of illumination in the scene; however,

if the observations occur in different spectral ranges, these assumptions quickly fall

apart. This dissertation presents a series of investigations to identify, adapt, develop

and evaluate the methods required to fuse the disparate information captured by

thermal and visible spectrum sensors.

1.2 Motivation for study

Visible spectrum cameras have become embedded in our everyday life and provide

high quality images at a low price. Broad application domains such as surveillance,
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CHAPTER 1. INTRODUCTION

process control and automated visual inspection rely on the information provided by

imaging systems to perform complex tasks. However, deployment of these systems is

limited by their reliance on scene illumination or the presence of occluding atmospheric

conditions (e.g. fog or smoke).

Thermal scenes are independent of scene illumination and capture a very different

representation of the world from the one we are familiar with. Infrared radiation is

emitted by any object at a temperature above absolute zero; the amount of radiation

emitted is based on the material and temperature. Thermal imaging is still young as

a consumer product, and prices remain very high and scale disproportionately with

sensor resolution. This high cost for spatial resolution is a major limiting factor in the

adoption of thermal imaging.

The distinct spectral information captured by thermal and visible sensors lends each to

excel at different applications. What is interesting is the degree to which the strengths

and functionality provided by these two modalities complement each other.

Thermal images appear smooth and textureless due to a lack of colour information and

shadowing — two important visual cues we rely on to perceive texture. Consumer-

grade thermal cameras typically have a very low spatial resolution (e.g. 320×240 pixels

is common) which further reduces the clarity of contours and edges. Visible spectrum

images provide increased edge fidelity at a higher resolution, and are therefore a cost

effective way of enhancing the performance of thermal imaging devices through fusion.

Furthermore, the perception of colour and texture provided by the visible spectrum is

essential in correspondence and recognition applications.

Thermal imaging is particularly useful in applications which require stable 24-hour

operation in highly variable illumination (e.g. day/night cycles, moving shadows) or

occluding atmospheric (e.g. fog or smoke) conditions. Additionally, the use of thermal

information lends valuable functionality and robustness to detecting, isolating and

tracking objects against cluttered backgrounds. The relationship between material

emissivity and observed thermal intensity means that image segmentation can be aided

by the inclusion of thermal information in providing material boundaries.

Fusion of thermal and visible information provides complementary functionality which

is often required in many generic vision-based systems. For example, military and

surveillance systems require target detection (thermal) followed by identification

(visible); additionally, autonomous machines can benefit from this enhanced scene

2



1.2. MOTIVATION FOR STUDY

understanding for more complex or robust decision making. Inexpensive thermal

cameras do exist, but have a very low spatial resolution (e.g. 80× 60 pixels); however,

a higher spatial resolution for the thermal camera can be emulated through fusion

with a regular camera. The FLIR ONE, presented in the next section, achieves this to

provide functional thermal imaging in the form of a small, inexpensive mobile phone

add-on.

FLIR ONE: A case study

The FLIR ONE is a $249 micro-Universal serial bus (USB) add-on for Android and

iOS smartphones. The attachment is an example of multi-spectral fusion to utilise the

resolution and clarity of a visible spectrum camera to enable the practical use of an

inexpensive thermal camera with a very low resolution.

Shown in Fig. 1.11, the micro-USB add-on, which weighs only 110g, houses a Video

graphics adapter (VGA) resolution visible spectrum camera and a FLIR Lepton

thermal micro-core separated by 20mm. The 80×60 pixel thermal image produced by

(a) FLIR ONE iPhone add-on. (b) The low resolution thermal information is interpolated
onto an edge map.

Figure 1.1: The FLIR ONE device with an accompanying example image.

the uncooled Forward-looking infrared (FLIR) core is interpolated onto an “embossed”

1Images from product website at http://www.flir.com/flirone, 23 August 2015.
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CHAPTER 1. INTRODUCTION

640×480 pixel edge map generated by the visible spectrum camera. While the camera

configuration and function provided by the device are similar to the goals of this work,

the investigations covered here are aimed at the fusion of more advanced thermal

cameras. The incorporation of high resolution cameras and larger lenses significantly

increases the complexity of the system as the distance between the apertures is no

longer negligible.

1.3 Objectives and context

The aim of this dissertation is to develop methods that enable us to fuse information

captured by imaging sensors operating in distinct spectral bands. Although

information fusion is not a specific objective of this work, the methods that are

developed form the basis for fusion algorithms. The goal is to create a single enriched

image in which each pixel contains both colour and thermal information by mapping

the spectral information of each point from one viewpoint to the other.

There are two tasks which are focus of this work: the alignment of the two distinct

viewpoints, and the matching of corresponding regions observed by each spectral

sensor. These tasks allow us to map and overlay the spectral information captured

by each camera; however, both of these tasks require a means of comparing multi-

spectral information to gauge similarity between regions. Central to this work is the

investigation and development of a method for extracting the shared inter-spectrum

information that can be used to compare regions of multi-spectral images. The

extracted information must be common across the infrared and visible spectra and

also remain stable under the variations present within each modality.

The first task is the alignment of the distinct viewpoints captured by the thermal

and visible sensors. Alignment is a frequent task in stereo-vision systems with

many established approaches; therefore, the performance of traditional methods for

automatic alignment using feature-based methods is investigated. The aims of the

investigation are to determine the suitability of existing methods, and to evaluate

adaptations for multi-spectral feature point matching.

The second task is to develop an approach to mapping and overlaying corresponding

regions of multi-spectral information. For this objective, it will be assumed that

the images have been correctly aligned to make the problem more tractable. The

4



1.4. OUTLINE

requirements of the method are dependent on the challenges associated with thermal

information and the camera configuration, and the implementation will incorporate

the multi-spectral similarity measure developed in this work.

1.4 Outline

Chapters 2 and 3 provide a background to multi-spectral imaging and clarify the

objectives and approach to fusion. Subsequent chapters are structured as a series

of investigations addressing specific development and analysis tasks laid out in these

preliminary chapters.

Chapter 2 presents a brief literature review to establish the context of this work

in both multi-spectral imaging and information fusion research. As the majority of

research on visible and infrared imaging is focused on specific applications, relevant

research is grouped and presented according to the approach to fusion. A small set

of publications which particularly influenced the approach to development in later

chapters is discussed, and the datasets available and in use at the time of writing are

provided.

Chapter 3 reviews aspects of thermal imaging and provides clarity on the goals and

approach taken in this work towards fusion. The camera configuration is specified; the

dual-camera set-up and its relation to the scene dictate the steps that need to be taken

to fuse the distinct viewpoints. First, calibration of multi-spectral vision systems and

the requirements for alignment are discussed. Computational stereo is then introduced

as the means of overlaying (or mapping) the information from the two viewpoints.

Chapters 4, 5 and 6 present three structured investigations. The theory and approach

taken to accomplishing each objective is detailed in the relevant chapter, and the results

obtained in each investigation are used to guide development in subsequent chapters.

The approach to fusion is divided into two steps: alignment and correspondence

mapping, which are addressed in Chapters 5 and 6 respectively.

Chapter 4 introduces a frequency-domain analysis tool called phase congruency, which

is the proposed method for identifying and exposing the stable features common to

both visible and thermal images. There are two goals to this chapter: to expose

repeatable structural features (i.e. edges and corners), and to identify predictable

5



CHAPTER 1. INTRODUCTION

components extracted by the phase congruency process.

Repeatable structural features provide an invariant representation of the scene. This

representation transforms the multi-spectral images to appear visually similar by

removing the varying elements (e.g. brightness or contrast). The second goal is

aimed at identifying a predictable relationship between points observed from the

two spectral modalities, which would provide a valuable means of comparing and

matching corresponding points; identifying and evaluating such features is the focus

of the analysis carried out in Chapter 4.

Chapter 5 presents an investigation into methods for the automatic alignment of multi-

spectral images. Conventional feature-based methods detect and match significant

points in each image to bring them into alignment. An adapted method, which

incorporates the invariant representation provided by phase congruency, is proposed

and benchmarked against traditional methods. The aim of this chapter is to determine

the feasibility of automatic alignment of multi-spectral images using current (and

adapted) feature-based methods.

Chapter 6 presents the development of a cost function for computational stereo to

measure the similarity of regions in the search for corresponding points in multi-

spectral image pairs. Once again, the repeatable features extracted with the

phase congruency process are integral to the similarity measure and approach to

computational stereo.

Chapter 7 provides an overview on the findings of this project and proposes extensions

for future work.

6



Chapter 2

Literature Review

This chapter provides a background to multi-spectral imaging and fusion systems. A

broad overview of multi-spectral image systems is presented in Section 2.1, followed

by an introduction to the classes of image fusion in Section 2.2, to establish the

terminology used to describe the undertaken approach to fusion in the context

of literature. Section 2.3 introduces infrared radiation and, using the established

classification of fusion systems, provides a brief taxonomy of visible-infrared fusion

systems. Finally, contemporary research that closely influenced the content of this

work is presented, with examples of the available visible-infrared datasets and where

they are used.

2.1 Imaging beyond the visible spectrum

Multi-sensor image fusion is a broad field of study that dates back to the 1950s [1, 2].

Initial deployment of spectral imaging systems began in the 1960s on satellite and

airborne hyper-spectral platforms capable of capturing hundreds of spectral bands.

This high spectral resolution was of particular benefit in applications including the

detailed analysis of crop conditions, mineral exploration and for monitoring the effects

of urban development [3]. On the other hand, multi -spectral imaging typically involves

the simultaneous capture of 2 to 6 spectral bands; the focus is placed on smaller systems

in real-time applications and non-contact analysis [2].

7



CHAPTER 2. LITERATURE REVIEW

Multi-spectral imaging is often integrated into manufacturing and quality control

processes. Printed circuit board (PCB) quality control, termed Automated visual

inspection (AOI) systems, incorporate x-ray, ultrasonic as well as thermal imaging [4].

AOI systems are often able to pick up common defects in PCBs that are missed by

contact testing rigs. For example, x-ray AOI is able to detect defects in multi-layered

PCBs such as hairline cracks, Surface-mounted device (SMD) misalignment, track

bridging or incorrectly soldered components [4, 5]. Thermal imaging, although harder

to automate, is able to detect hot-spots due to short-circuits and faulty or stressed

components. An example of a short-circuited track on a PCB is shown in Fig. 2.1.

(a) Two surface solder joints are bridged at B. (b) A current of 2A is applied to the track.

(c) The tracks remain cool to the touch.

Figure 2.1: A short circuit (bridge) is created at point B. Two parallel copper tracks
that run from A to B are visible under thermal imaging as 2A is applied using a
current-controlled power supply unit (PSU). The heat emitted by the tracks is due to
the resistance of the narrow copper tracks.

Medical imaging technologies such as x-ray, Computed tomography (CT), Magnetic

resonance imaging (MRI) and Positron emission tomography (PET) scans are useful

non-invasive diagnostic tools that have greatly benefited from combined use through

8



2.2. INFORMATION FUSION

multi-spectral fusion [6]. Different structures in the human body are optimally

captured in different spectral ranges — prompting the combined use of this specialised

spectral information to form a diagnosis and plan treatment. An example of this is

found in radiotherapy where MRI information is used to outline tumours and a CT

scan is used to provide the tissue information required to calculate the dose [7]. The

fusion of these modalities has become well researched over the past decade; Pluim et

al. provide an extensive taxonomy on the field [8].

2.2 Information fusion

The aim of information fusion is to combine multiple heterogeneous sources of

complementary information into a more useful representation; however, what

is considered useful information is determined by requirements of the specific

application [1, 9]. For example, if the representation is intended for human operators,

the information presented must be relevant to the task at hand and minimise

ambiguity. Alternatively, in the context of automated systems, information fusion

is used to enhance scene understanding or increase reliability in feature extraction on

huge datasets [1, 10–12].

Typical fusion systems are categorised into four classes; this categorisation is based on

the amount of processing that has been performed on the input before it is fused [2].

The four classes of fusion are:

• Observation level : The raw input of sensors measuring the same quantity is fused

through a simple operation, based on a known relationship between sensors [10]

(e.g. multiple microphones measuring acoustic information [13]). Fusion of the

redundant information captured by this type of system produces a signal of the

same form with increased fidelity, reduced uncertainty and robustness against

sensor failure [14].

• Pixel level : The amount of information at each pixel is increased by the fusion

of multiple images. Typically, the cooperative use of multiple viewpoints (in the

same spectral range) is used to recover depth information through the known

relationship between the two apertures. The fusion of multiple observations of

a scene has also been shown to improve the performance of traditional image

processing tasks like segmentation and feature extraction [10,14].

9
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• Feature level : Features containing salient information are extracted from the

sensor data. This level of fusion is geared towards large-scale analysis: feature

vectors are combined or concatenated into distinctive vectors so that machine

learning or pattern recognition methods can be more effective [13].

• Decision level : This high-level fusion step is done after processing the sensor

information [1]. The aim is to enhance the understanding of objects in the

scene [10]. Inferences made about objects and object behaviour in a setting (e.g.

pedestrians, obstacles) can be significantly improved with the added information.

Visual representation can also be more nuanced, based on rule-based semantics

to aid interpretation of a scene.

Application-driven literature will often accomplish feature and decision-level fusion

based on prior knowledge of scene elements (e.g. the detection and tracking of

pedestrians) or specific objectives (e.g. spectral feature analysis on globally aligned

aerial photography). This work is focused on pixel-level fusion of thermal and visible

spectral information. As this class of fusion occurs at a very low level, just after the

images have been captured, the solution does not rely on specific assumptions about

the scene; therefore, the methods developed in this work can be applied to a wide

array of applications.

2.3 Applications of infrared radiation

This section focuses on infrared radiation and its applications in fusion. A brief

background to the electromagnetic spectrum is provided in Section 2.3.1, followed

by a taxonomy of infrared-visible fusion systems grouped into observation/pixel-level

and feature/decision-level classes of fusion in Sections 2.3.2 and 2.3.3 respectively.

2.3.1 Infrared radiation

In 1800, Frederick William Hershel (1738–1822), known for his numerous astronomical

discoveries and musical accomplishments, conducted experiments to measure the

energy in each colour of the spectrum. Hershel used a glass prism to separate the

wavelengths of light onto a series of thermometers placed at each spectral band. He
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noticed a significant amount of heat detected beyond the red spectral band which

behaved like visible light — he had discovered infrared radiation. [15,16].

The electromagnetic spectrum is a classification of radiation based on wavelength. The

familiar visual spectrum lies from 0.39µm to 0.77µm; this range contains the light

visible to the human eye, from violet at 0.390-0.453µm to red at 0.622-0.770µm [17].

There are four classes of infrared imaging technology which operate in the 0.75µm

to 15µm range [18]. The respective wavelengths of the Visible spectrum (VS), Near

infrared (NIR), Shortwave infrared (SWIR), Midwave infrared (SWIR) and Longwave

infrared (LWIR) or thermal bands are shown in Fig. 2.2.

Figure 2.2: This segment of the electromagnetic spectrum shows the wavelengths of
the visible and infrared spectral bands.

Sensors operating in each infrared spectral range provide different information and

have been used in a wealth of applications. However, the distinct information of

each spectral range and application-specific assumptions of each implementation makes

it difficult to consolidate the methods into a generalised approach to working with

infrared images. To address this, a brief overview of relevant research into visible-

infrared fusion is presented in the next two sections; there are also helpful taxonomies

and overviews available [1, 10,13].

2.3.2 Observation/pixel-level fusion

Near infrared and short wave infrared are used in image dehazing. Haze is the loss

of contrast and detail due to atmospheric conditions such as fog or pollution, and is

particularly prevalent in aerial or landscape photography [19].

Near infrared is of particular interest due to the possibility of single-sensor integration.

Silicon-based photosites used in consumer digital cameras are sensitive to wavelengths

from 400 to 1100nm; however, a hot mirror filter is used in colour photography to

block the near infrared wavelengths beyond 700nm [19, 20]. Proposed by Fattal et al.

is the integration of visible and NIR receptors on a single sensor plane to allow for

automatic dehazing of images taken with existing sensor technology [21]. The degree
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of scattering caused by mist or haze is estimated using the NIR sensor and is used to

sharpen and increase the colour fidelity of the effected regions in the visible image.

Modern Complementary metal-oxide semiconductor (CMOS) sensors are increasing in

photosite density due to the demand for embedded cameras [22], so hybrid sensors

with different types of photosites would be able to match the image quality of regular

sensors.

2.3.3 Feature/decision-level fusion

Long wave infrared (thermal) images are independent of scene illumination, and are

therefore the natural choice for surveillance applications where systems must contend

with scene clutter, ambient illumination (i.e. time of day) and challenging atmospheric

conditions [23]. Of particular interest in visible-thermal surveillance literature

is pedestrian detection and tracking in natural scenes where the use of thermal

information can be used to discern human silhouettes from cooler surroundings [24–26].

In isolation, thermal imaging is unable to distinguish between similar silhouettes or

objects at similar temperatures as it lacks the distinctive colour information and

edge fidelity of the visible spectrum [27]. Silhouettes of pedestrians are altered by

clothing, particularly in the cases of dresses and burkas [24]; however, as is common

practice with existing systems, it is relatively easy to train a classifier to recognise (and

subsequently track) pedestrian silhouettes [28, 29]. Related to pedestrian tracking is

the cooperative use of thermal and visible imaging information in facial recognition

and disguise detection, which has also garnered academic interest [30–33].

2.4 Previous work

While the approaches discussed in the previous section address the fusion of visible and

thermal information, the solutions are based on assumptions about scene content (e.g.

pedestrians distinct from a static background). It is difficult to discern a generalised

approach to the fusion from these works, although the methods developed do provide

significant hints and guidance towards such a goal. A significant amount of research

has been published by members of the Advanced Driver Assistance Systems (ADAS)

Computer Vision Center (CVC) at the Universitat Autonoma de Barcelona in the last

12
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five years [2,18,34–38] which is more in line with the general fusion goals of this work.

Chapters 4, 5 and 6 of this work are structured as separate investigations, and the

relevant literature pertaining to specific aspects in the development of the theory is

presented in a brief background section to each investigation. Significant attention is

paid to a frequency domain analysis method called phase congruency in Chapter 4,

based on the extensive work and implementation of Kovesi [39–42]. The feature

descriptor, developed in Chapter 5, is based on the work of Aguilera et al. [35] and

Mouats et al. [43]. The approach of Barrera [2] was particularly influential in the cost

function for computational stereo developed in Chapter 6.

There is a very narrow range of visible-thermal multimodal datasets available with

ground truth disparity for automated testing [2]. There are two main datasets in use

(the works that use them are cited): the CVC Multimodal Stereo Dataset1 (1) [2]

and (2) [34, 35] shown in Fig. 2.3, and the Oklahoma State University (OSU) Object

Tracking and Classification in and Beyond the Visible Spectrum (OCTBVS) Color-

Thermal Database2 [44] shown in Fig. 2.4.

Figure 2.3: CVC Multimodal Stereo Dataset (2). The hand-rectified images are taken
from two rigidly mounted cameras. The Sony Charge-coupled device (CCD) camera
and the PathFindIR FLIR camera produce 640 × 480 and 534 × 426 pixel images
respectively. Once the images have been rectified they are both 506× 408 [34,35].

Note that the OSU database (Fig. 2.3) is the only dataset with ground truth disparity

information that can be used for automated analysis. Images from the CVC dataset

were used, but the tests could not be automated to the same degree. Attempts have

been made by authors to synthetically alter established colour datasets to overcome

1Available at http://www.cvc.uab.es/adas/projects/simeve/, August 2015.
2Available at http://vcipl-okstate.org/pbvs/bench/, August 2015.
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Figure 2.4: The OSU (OCTBVS) Color-Thermal Database are a set of hand-rectified
320× 240 pixel images with a ground truth disparity of ±2 pixels [44].

this limitation. For example, the extensive Middlebury stereo dataset3, which is the

standard for computational stereo methods [45], is altered by introducing non-linear

intensity variations to regions in the image pairs [46]. However, methods developed in

this way have been shown to not generalise to natural scenes captured by the sensors

themselves [47].

In summary, this chapter aims to establish the context of this work in multi-spectral

imaging and fusion literature; the overarching goal describing this work is identified

as pixel-level fusion of thermal and visible spectrum images. The next chapter

introduces the characteristics (and significant challenges) of the thermal spectrum,

and the approach and specific objectives addressed in this work are clarified.

3Available at http://vision.middlebury.edu/mview/, August 2015.

14

http://vision.middlebury.edu/mview/


Chapter 3

Background to vision systems

The purpose of this chapter is to identify the methods required for multi-spectral

image fusion. Theory and concepts of stereo-vision systems are presented to establish

the specific objectives for the investigations carried out in later chapters of this

work. Section 3.1 describes thermal imaging technology and the characteristics of

thermal scenes to introduce the core challenges of visible-infrared fusion. The camera

configuration and approaches to computational stereo are introduced in Section 3.2,

with a focus placed on calibration and alignment of multi-sensor systems and methods

for region-based matching.

3.1 Imaging technology

Thermal information is very different from the familiar visible spectrum; the

characteristics and challenges of thermal imaging are described in this section. These

challenges form the basis for the development work carried out in Chapter 4. There are

two parts to this section. As thermal imaging is still a niche topic, a brief background

to thermal radiation and image capture is first provided, followed by an overview of the

challenges associated with the behaviour of objects and materials in thermal scenes.
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3.1.1 Thermal image formation

Digital cameras have become embedded in much of the technology we use on a

daily basis; from cellphone cameras to city-wide surveillance networks, this versatile

technology is commonplace and widespread. The ever increasing demand for digital

cameras has led to the rapid development of the technology to meet consumer

expectations of image quality and to conform to size, weight and power constraints of

mobile devices [48,49].

Thermal imaging technology is only just beginning to be introduced into mainstream

markets and is yet to gain traction. The image capture process of a thermal camera is

very similar to that of a common digital camera. Modern digital camera sensors contain

millions of monochromatic photosites1 which react to the intensity of the incident

visible light. Colour is obtained by superimposing a colour filter of juxtaposed red,

green and blue filters onto the sensor plane [49]; the colour arrangement on these band-

pass filters commonly follows the Bayer Pattern [50]. Thermal lenses are composed of

multiple germanium layers that act as band-pass filters and focus infrared radiation

onto the IR-sensitive photosites (e.g. bolometers) of the Focal plane array (FPA) [2].

Consumer-grade thermal cameras are uncooled and of a similar size and weight to

modern digital cameras; an example can be seen in Fig. 3.1, which shows the thermal

camera used to demonstrate typical thermal phenomena in later sections of this work.

Thermal cameras of this class typically have a low spatial resolution which causes

high-frequency information (e.g. fine-grained detail and edges) to be lost [43]. The

uncooled cores are prone to high levels of noise caused by fluctuations in ambient

temperature and the temperature of the device itself, which manifests as graininess in

the image. The re-calibration process is done by applying periodic Flat-field correction

(FFC) updates in which a shutter of uniform temperature is applied to every thermal

photosite to establish a uniform thermal baseline on the FPA.

The range (distance) of a thermal camera is dependent on the focal length of the

lens and the atmospheric conditions. The performance of a thermal lens is commonly

specified in terms of the maximum distances of detection, recognition and identification

of a human. A modern FLIR high definition camera (HDC)2 camera is able to detect

1A term used by Mancuso and Battiato [49] to describe the photo-sensitive diodes on the sensor.
2Information available at http://www.flir.co.uk/cs/display/?id=60097, August 2015.
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(a) The Tau module. A shows the analogue
video output micro coaxia cable; the mini-USB
port powers the device.

(b) The Tau320-P is mounted on a small
tripod. The 19mm lens has a detection
range of 450 meters.

Figure 3.1: The Tau320-P camera provides 320 × 240 pixel infrared (7.5 − 13.5 µm)
images at 9 frames per second (slowed for US export).

humans up to 18km away and vehicles up to 22km away. The thermal resolution of

images is quantised based on the range of temperatures present in the scene. Figure 3.2

shows an experiment carried out with the Tau320-P camera to demonstrate the thermal

sensitivity of the sensor based on the power dissipated by a 150Ω resistor.

(a) Ground truth (ambient
temperature).

(b) 5mW is disappated by
the resistor.

(c) 17mW is disappated by
the resistor.

Figure 3.2: Thermal images of a 150Ω resistor demonstrate the thermal sensitivity of
the Tau320-P by capturing the heat dissipated when a current is passed through the
resistor using a current-controlled Power supply unit (PSU).
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3.1.2 Thermal phenomena

The information captured by thermal sensors is distinct from the familiar visible

spectrum where colour and texture is used to describe objects. The infrared intensity

radiated by an object is a product of its temperature and the characteristic emissivity

and reflectance of its constituent materials and surface finish [23,51]. Figure 3.3 shows

a series of images of a Raspberry Pi3 mini-computer booting up; the surface mounted

components radiate and diffuse thermal radiation and illuminate the circuit board.

The on-board signal processing of thermal cores incorporates a multi-stage

customisable pipeline to condition the information for use. In order to represent

thermal scenes, it is recommended that the parameters for one of the many Automatic

gain control (AGC) algorithms is tuned for the specific application4.

The distribution of intensity levels is based on the highest and lowest temperatures

in the scene, causing thermal images to often have large areas of low contrast. The

resulting image is often mapped onto an 8-bit intensity image (as seen in Fig. 3.3);

alternatively, the thermal images are represented in false colour (as seen in Figs. 2.1 and

3.2) to emphasise subtle changes in thermal intensity using 24-bit colour information.

Thermal phenomena are characteristics of thermal images that are not found in

the visible spectrum. While the removal of objects in visible scenes is immediately

apparent, warm objects leave their thermal impressions on the environment.

Phenomena like these, termed ‘history effects’, can interfere with multi-spectral

systems geared towards tracking or change detection. Another characteristic of thermal

scenes is what is termed a ‘halo effect’, which manifests at borders between materials

or objects where there is a large temperature difference. This effect, which softens and

blurs edges, is due to heat dissipating quickly from a hot to a cold object and emitting

thermal radiation as a result.

Working with thermal sensors provides novel challenges in computer vision; however,

their operation is largely similar to conventional digital cameras. The next section

introduces the multi-spectral camera set-up and the set of methods required for multi-

spectral fusion.

3Details available at www.raspberrypi.org, August 2015.
4FLIR Camera Adjustments and Applications Note, included in camera documentation.
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(a) Original visible spectrum image. Component markings, branding
and component colours are clearly seen in this image.

(b) Thermal image at t = 0s. (c) Thermal image at t ≈ 7s.

(d) Thermal image at t ≈ 14s. (e) Thermal image at t ≈ 20s.

Figure 3.3: A Raspberry Pi mini-computer booting up. The series of images shows
the absence of insignia and printed details in the thermal spectrum as well as how
the appearance of the thermal image changes based on the temperature range present
scene.
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3.2 Consolidating multiple views

Aerial and satellite applications dominate multi-spectral fusion literature [1, 52]. For

these platforms, the distance of the observed scene from the apertures enables the

multi-spectral observations to be globally aligned through registration — a pixel-to-

pixel mapping that allows the images to be directly overlayed [12]. In a multi-viewpoint

(stereo-vision) system, each camera captures a slightly different projection of the scene.

If the scene is close enough to the apertures, the observations can no longer be globally

aligned.

There are four parts to this section which aim to describe the relationship between the

apertures of stereo-vision systems and present the methods that enable us to relate

and combine the information captured by these distinct viewpoints. Section 3.2.1

specifies the mounting of the two cameras in this work and how it differs from

other approaches. The traditional pinhole camera model is briefly summarised in

Section 3.2.2 to illustrate the special considerations required to calibrate thermal

cameras. Section 3.2.3 describes the essential purpose of alignment and rectification

in fusion. Finally, the decision to use computational stereo methods is presented in

Section 3.2.4; the two methods selected for development in this work are specified and

the objectives of the investigations are clarified.

3.2.1 Camera configuration

Figure 3.4 presents two camera set-ups commonly used to capture visible and thermal

sensor information. The configuration used in this project is shown in Fig. 3.4a. The

two front-facing cameras are separated by a horizontal baseline which connects the

optical centers of the cameras [53]. The displacement between the apertures introduces

parallax. Parallax is the non-linear relationship between the perceived displacement of

a point when observed by each aperture and the depth (i.e. distance from the baseline)

of the point in the scene [54]. Objects seen from the different viewpoints are therefore

related by non-linear displacement (or disparity) related to each object’s depth; the

result is that the two viewpoints cannot be globally registered and overlayed.

Figure 3.4b shows the use of a beam splitter to create a common aperture in order to

remove the baseline between views; it only remains to calibrate the cameras to register

the two images with a single planar transform. Beam splitters are expensive (thermal
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(a) Two front-facing cameras separated by
a horizontal baseline.

(b) A beam splitter is used to create a
common aperture to eliminate parallax.

Figure 3.4: Two common dual-camera configurations [53]. The front-facing setup in
(a) is used in this dissertation.

7–14 µm zinc selenide beamsplitter prices range from $695.00 at 25.4mm2 to $1,195.00

at 50.8mm2)5and require precision machining of a rigid casing in which to align and

mount the two cameras and beam splitter.

The inclusion of parallax in the camera model introduces significant challenges and

dictates the approach to fusion; however, to make the problem more tractable, the

two viewpoints can be calibrated and brought into alignment. The remainder of the

chapter discusses these two processes.

3.2.2 The camera model

The pinhole camera model is widely used to describe a generic camera aperture [48].

Hartley and Zisserman [55] provide a comprehensive mathematical guide to general

projective camera models, although a functional description of the pinhole camera

model is provided by many sources [48, 56,57].

When a camera is manufactured, certain intrinsic errors can creep into the various

components which cause warping of the image plane. Radial and tangential distortion

are caused by non-uniform focal length from the optical centre and misalignment of

the lens and sensor respectively. These errors, internal to the camera, are corrected

through a process called intrinsic calibration [58]. Tools like the MATLAB Calibration

Toolbox [56] and the OpenCV library [57] can be used to estimate the parameters

required to perform this calibration.

5Plate IR beam splitters priced at http://www.edmundoptics.com, August 2015.
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Figure 3.5 provides an example of calibration of visible-spectrum cameras using a

checkerboard pattern on a planar surface. The inner junctions of neighbouring squares,

called saddle points, are used as control points for calculating the parameters required

for calibration. An example of an image used in the camera calibration process using

MATLAB is shown in Fig. 3.5a. Figure 3.5b shows the calibration transform applied

to a regular grid pattern: the modified grid is superimposed onto the original pattern

to show how the image is modified by the calibration transform.

(a) Camera calibration sample using a chess board.
(b) Calibration transform.

Figure 3.5: Camera calibration is performed on a single camera. Image (b) shows the
how the corrective calibration transform warps the image plane.

Recall that the thermal intensity of an object is a function of its temperature

and material emissivity and is independent of colour. Checker-board patterns with

modified materials are used for multi-spectral stereo calibration to ensure the sufficient

contrast between adjacent squares required to establish these control points. Vidas et

al. [51] propose the use of an absorptive mask over a highly emissive surface to produce

high contrast control points. The CVC Multimodal Stereo Dataset was rectified using

a laser printed checker-board pattern on thin aluminium sheet [35,36].

3.2.3 Alignment of multiple viewpoints

Alignment of the images captured by each camera to a common viewing plane is an

essential calibration step. Stereo calibration is often performed simultaneously with

the intrinsic calibration of each camera; the goal is to estimate the extrinsic parameters

(i.e. the orientation of the apertures relative to each other) to formulate projective

transforms for each image that brings the image planes into partial alignment along

rows in the image pair [12]. This process is called rectification.
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The relationship between the two viewpoints is not a pixel-to-pixel mapping; instead

it is a pixel-to-line mapping, defined by the fundamental matrix. Information provided

by the fundamental matrix can be used to rectify the images. Figure 3.6 illustrates the

relationship between a point in one image and the line segment, called an epipolar line,

along which it can be observed in the other. The rectification process transforms both

viewpoints such that these epipolar lines are horizontal and aligned (i.e. features occur

on the same row in both images). This relationship is called the epipolar constraint

and restricts the search for a corresponding observation of a point in either viewpoint

to a 1D search along the corresponding row in the other.

Figure 3.6: An illustration of the fundamental matrix and rectified image planes. The
point x on the image plane of CA could occur at any point along the bold line from CA
through example points P0 and P1. The rectified image planes mean that the search
for the point corresponding to x observed by CA is a one dimensional scan along the
line l′ in CB.

The output of the stereo calibration process is a rectified image pair. The accuracy of

this alignment is crucial to the next step, which is to overlay corresponding regions.

Automatic detection and matching of control points is commonly performed to

calculate the rectifying homography of visible spectrum images; automatic rectification

by matching elements from the environment is very useful, especially if the camera rig

is not accessible or needs to be re-calibrated on a regular basis. However, based

on the literature examined at the time of writing, alignment of visible and thermal

images is always done manually (or through extensive calibration [23]). To address

this, an investigation into the feasibility of automatic rectification using conventional

correspondence matching methods is carried out and the results presented in Chapter 5.
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3.2.4 Computational stereo

Computational stereo refers to the process of recovering three-dimensional structure

of a scene from two or more viewpoints [59]. The process is divided into three stages:

calibration and alignment, correspondence search and matching, and reconstruction

and disparity refinement. The first stage (calibration and alignment) is discussed in

the previous section.

Correspondence search and matching is the next major step and involves finding where

a point in the scene is projected in the two image planes. The search for corresponding

observations in rectified images is restricted to one dimension along a pixel row; the

horizontal displacement between observations is called disparity.

Local methods of computational stereo include block/region matching, gradient

methods and feature matching [59, 60]. Gradient methods (e.g. optical flow) rely

heavily on brightness constancy across views and therefore cannot be used with visible

and thermal images [59]. Local region matching (also called windowing or block

matching) was chosen as the method for generating correspondences as disparity

selection is a simple process of selecting the point along the search domain that

maximises a similarity metric. This method is easily adapted and enhanced, and

the components can be generalised and incorporated into existing methods.

The reconstruction stage of the computational stereo process uses the estimated

disparity of scene elements (e.g. pixels, features or regions) to generate a disparity

map: a dense pixel-to-pixel map representing the estimated disparity for every pixel.

At this stage of processing, constraints are used to enforce global (e.g. left-to-

right ordering, monoticity) and local (e.g inter-row) consistency. Detecting and

compensating for visual occlusion (i.e. scene elements only observable from one

viewpoint) is a challenging problem which is compounded by the presence of non-

simultaneous phenomena — scene elements such as edges and textured regions that are

observable in one spectral modality only. Traditional windowing methods are sensitive

to occlusion and tend to not work well in large textureless regions, although significant

improvements on the simplistic fixed-size square windowing approach, including

multi-scale and spatially adaptive windowing methods, have been made to increase

robustness and decrease sensitivity to depth discontinuities and occlusion [60–62].

It has been shown that traditional computational stereo methods fail to identify
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correspondences between thermal and visible images in natural scenes [47]. Prior

to Barrera et al. [34] there had been no published results of dense disparity estimation

with thermal and visible spectrum images. The first two stages of computational stereo

(i.e. alignment and correspondence matching) both require a means of comparing

regions of the disparate modalities; this common requirement is the focus of Chapter 4

of this work. It should be noted that plane sweep algorithms provide an interesting

alternative approach to the problem of computational stereo and fusion, but are not

investigated in detail in this report [63]. Chapter 6 presents the development and

evaluation of a similarity metric aimed at local region matching for computational

stereo.

3.3 Summary

The goal of this chapter is to provide context to the objectives of this work and to clarify

the approach to fusion dictated by the camera configuration. Thermal phenomena are

discussed in order to introduce the challenges associated with multi-spectral image

fusion. The calibration and correspondence matching stages of computational stereo

are selected for further study due to the common requirements of the two methods.

Both calibration and correspondence matching require a method to compare the

information from the disparate thermal and visible spectra. Presented in the next

chapter is the development of a method for extracting stable information shared by

the distinct modalities; the goal is to establish a similarity metric that can be used

to compare regions of multi-spectral data. An investigation into the performance of

conventional and adapted methods for automatic alignment and calibration of multi-

spectral viewpoints is presented in Chapter 5, followed by Chapter 6, where a cost

function is developed to estimate a mapping function that can be used to overlay the

multi-spectral information.
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Chapter 4

Phase congruency

The appearance of a scene (regardless of the spectral range) can vary considerably

between different observations. This challenge is compounded when the observations

capture distinct spectral information, which varies independently in each modality. In

order to compare regions from different spectral sensors, a means of extracting scene

elements which are repeatable and stable across these variations is required.

This chapter presents a frequency-domain analysis tool called phase congruency. An

overview of what is required from phase congruency, its purpose in fusion and the

goals of this chapter are presented in Section 4.1. Section 4.2 provides a detailed

formulation of phase congruency; each step is discussed in the context of multi-spectral

information and the goal of extracting a stable measure to compare the disparate

modalities. An investigation which aims to identify predictable quantities extracted in

the phase congruency analysis process is specified and carried out. Section 4.3 clarifies

the objectives of this investigation and the approach to achieving them. The results

are then presented and discussed in Sections 4.4 and 4.5 respectively.

4.1 Introduction

Although thermal images appear very different from the familiar visible spectrum,

material boundaries and object edges still make elements in the scene recognisable to

the human eye. This observation motivates the use of structural features (e.g. edges,
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contours and corners) as stable and matchable elements of multi-spectral scenes. Edges

are commonly extracted using the Canny edge detector [64] in which linear filtering

with a heuristic threshold is used to detect edges at points of high contrast, i.e. a large

gradient magnitude between adjacent pixels is used to indicate the presence of an

edge. The undesired effect of this method is that areas of low contrast are left devoid

of features and, due to the fixed-size filter, blurred edges are poorly localised [40].

Thermal images in particular often contain large areas of low contrast, and edges

are often blurred due to the low spatial resolution and thermal phenomena discussed

in Section 3.1.2. Therefore, structural features cannot be repeatably detected or

compared using conventional gradient-based methods.

Phase congruency is an extension of the local energy model, which utilises the

relationship between structural (or spatial) features in images and their underlying

Fourier components [65,66]. This earlier formulation of phase congruency found limited

success due to its sensitivity to noise and poor localisation of features [41]; however, a

number of works have extended this theoretical base to provide a measure of absolute

structural significance particularly well suited to detecting spatial features in natural

scenes with large areas of low contrast [40–42, 67]. Its use in multi-spectral imaging

is motivated by its independence from image contrast, ability to accurately localise

features in images with low spatial resolution and robustness against image noise.

This chapter presents an investigation into the phase congruency process with two

objectives. The first is to develop an invariant representation which depicts the

stable information shared by both spectral modalities. Creating a visually similar

representation allows methods that compare visual similarity between regions to be

adapted to function in any spectral range by incorporating phase congruency as a

preliminary stage of processing. The second objective is the focus of the investigation

and is aimed at identifying predictable relationships between elements exposed in the

phase congruency analysis process. Extracting information that can be used to reliably

compare the disparate modalities is an important step towards matching corresponding

points captured by the distinct sensors.

4.2 Development of theory

Phase congruency is calculated on images using directional (oriented) log-Gabor multi-

scale filter banks in which each point is analysed individually within the context of
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its neighbours. An overview of the aims of the phase congruency process is provided

in Section 4.2.1. Frequency-domain analysis is performed using a series of multi-scale

filter banks; Section 4.2.2 introduces the adapted Gabor filters used to perform this

analysis on each pixel. Phase congruency is initially formulated in one dimension in

Section 4.2.3, and is then extended to two dimensions for use in image processing in

Section 4.2.4. A final stage of computation, presented in Section 4.2.5, condenses the

directional congruency values into a reduced feature set which describes the invariant

information in the visible and thermal spectra.

4.2.1 Overview

Phase congruency provides invariance to the distinct intensity information of thermal

and visible spectrum scenes by performing detection in the frequency domain. The

analysis process used to detect spatial features has close parallels to the primary visual

cortex of mammals – visual systems that are particularly adept at compensating for

changes in contrast, brightness and scale (blur) [68–70].

Edges are perceived at points where the Fourier components are maximally in-

phase [40]; Figure 4.1 shows the in-phase Fourier components of two spatial features,

an edge and a roof, to demonstrate this. Analysis in the frequency domain provides

a means of characterising and detecting features that is adaptive to the scene content

and independent of the variations between the spectral modalities [40].

(a) Fourier approximation of a step. (b) Fourier approximation of a roof.

Figure 4.1: The two structures (solid line) are approximated by maximally in-phase
(at x = 0) the Fourier components (various dotted lines) [41,42].
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4.2.2 Gabor filter banks

A feature (in this context) is a point of phase congruency where the Fourier components

are maximally in phase over a large range of frequencies. The first stage of processing

is therefore to extract a large number of frequencies so that the signals can be analysed

for congruency. Uniform coverage of a broad range of frequencies is extracted using a

multi-scale bank of band-pass filters [41].

Gabor filters are band-pass filters that allow us to isolate frequency components of a

signal. They are commonly found in contour extraction, texture analysis and object

recognition applications (a taxonomy presented in [71]). In this work, they are used

for calculating localised frequency content in a signal [39].

The impulse response of a Gabor filter is a Gaussian distribution (kernel) with standard

deviation σ, modulated by a complex sinusoid (carrier) at frequency ω0 [72]; the

frequency domain representation is plotted in Fig. 4.2.

Figure 4.2: Transfer function of the Gabor band-pass filter operating at frequency ω0.

Gabor filters are represented as a quadrature pair of orthogonal (sinusoids offset by

π/2), real-valued even and odd symmetric filters:

g(x) = ge(x) + jgo(x). (4.1)

The spatial profile of each component is expressed as

ge(x) =
1√
2πσ

e−
x2

2σ2 cos (2πω0x) and (4.2a)

go(x) =
1√
2πσ

e−
x2

2σ2 sin (2πω0x). (4.2b)
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(a) Even-symmetric Gabor profile. (b) Odd-symmetric Gabor profile.

Figure 4.3: 1D spatial profiles of a Gabor filter quadrature pair.

The spatial profiles of these Gabor filters are shown in Fig. 4.3.

The Gaussian envelope is approximately zero at three standard deviations from the

mean of the envelope (at the carrier frequency ω0). A DC component, illustrated

in Fig. 4.4, is induced if the carrier frequency is too low or if the envelope σ is too

admitting. Consequently, a bandwidth limitation on the Gabor filter constrains its

coverage of the spectrum.

Figure 4.4: A significant DC component is introduced if the center frequency is smaller
than 3σ of the Gaussian envelope.

The effect of this limitation, as presented in [39], is that many more band-pass filters are

required to obtain adequate coverage of the spectrum. A modified form of the Gabor

filter is therefore used for the phase congruency process to overcome this limitation.

Log-Gabor filters

Log-Gabor filters allow us to specify an arbitrarily large bandwidth without inducing

a DC component in the even-symmetric filter [39, 41, 73]. The result is that the

bandwidth limitation is lifted and the computational cost of analysing a broad range
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of frequencies is decreased (as fewer filter scales are required). A filter with a smaller

foot-print provides better spatial localisation at the cost of coverage of the spectrum;

however, a log-Gabor filter is able to cover three octaves, as opposed to a regular

Gabor filter of the same width which only covers one [39]. Therefore, log-Gabor filter

banks provide better spatial localisation in addition to the broad frequency coverage.

Field’s study of the statistics of images found that natural scenes have a spectral profile

that falls off as roughly 1/ω [73]. Gabor filters, due to their Gaussian envelope, tend

to over-represent lower frequencies [39]; however, the similar spectral profile of natural

scenes and the log-Gabor filter response, Field argues, makes log-Gabor better suited

to encoding the spectral information of natural scenes.

Coverage of the spectrum is achieved by geometrically scaling the wavelength of the

log-Gabor carrier signal. The next section describes how the multi-scale log-Gabor

filter bank is constructed.

Scaling bandpass filters

The multi-scale filter bank used in the phase congruency process consists of nscale log-

Gabor filters geometrically scaled from a minimum wavelength λmin with a constant

wavelength multiplier λmult [41]. The center frequency ω of each successive filter at

scale n is

ωn =
1

λminλ
n−1
mult

. (4.3)

The minimum frequency (maximum wavelength) is indirectly determined by the

specification of the minimum wavelength, number of scales and scaling factor

parameters. As there is no analytical expression for the log-Gabor envelope, due

to the singularity at the origin, it is specified in the frequency domain as [39]

G(ω) = e
−(log(ω/ω0))

2

2(log(κ/ω0))
2 . (4.4)

The κ/ωn factor is kept constant for varying ωn to ensure a constant shape ratio for

uniform coverage of the spectrum [41].

Phase congruency is a process that infers structural features from the frequency

information extracted by the multi-scale log-Gabor filter bank presented here. The
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next sections introduce the phase congruency method in one dimension using the tools

developed so far; these methods are then extended to 2D for use with images.

4.2.3 Multi-scale congruency on a one dimensional signal

Phase congruency assigns an absolute significance to points where the Fourier

components are maximally in phase [41]; this implies that frequency components exist

over a broad range of the spectrum and that there is consensus of local phase between

the components. The following sections formulate the phase congruency measure.

Filter response

At each point in the signal, the log-Gabor filter bank generates a set of even and odd

response vectors at each scale. Components of the response vector, en(x) and on(x),

are formed by convolving the quadrature pairs of even and odd filters at each scale n

with the underlying signal information. The filter responses are described in terms of

the amplitude, An, and phase, φn, at each scale defined by

An(x) =
√
en(x)2 + on(x)2 and (4.5a)

φn(x) = tan−1
on(x)

en(x)
. (4.5b)

The magnitude of the response is used in calculating frequency spread, and the phase

of response is used to quantify consensus on the underlying structure over multiple

scales.

Weighting for frequency spread

Frequency spread is based on the relative filter response magnitudes at each scale.

The output, W (x), is a scalar weighting function indicating the presence of Fourier

components over a broad range of frequencies.

Frequency spread, s(x), is a normalised accumulation of the response magnitudes at
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each scale relative to the strongest response Amax at that point:

s(x) =
1

N

(
ΣnAn(x)

Amax(x) + ε

)
. (4.6)

A small constant, ε, is included in the denominator to avoid division by 0. Frequency

spread is incorporated into a weighting function which is used to penalise points where

there is a narrow range of frequencies:

W (x) = (1 + eγ(c−s(x)))−1. (4.7)

Parameters c and γ control the cut-off (below which the phase congruency value is

penalised) and the steepness of the curve respectively. The weighting function is

plotted in Fig. 4.5.

Figure 4.5: Multi-scale weighting function used to calculate frequency spread from
filter response magnitudes [41]. Values below the cutoff parameter, c, are penalised.
(In this case c = .5 and γ = 10.)

Note that this measure is based on the relative weighting of filter responses and is

independent of the intensity information (i.e. gradient magnitude or brightness) of

the image.

Quantifying consensus on underlying structure

Local phase is based on the ratio of quadrature filter responses at each scale, and is

often depicted, described and compared as an angular quantity (shown in Eq. (4.5b)).

Phase is an indication of the underlying structure at a point in the signal. As

congruency occurs at points where the Fourier components are maximally in phase, a

means of quantifying the consensus of these components is required.
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The mean phase angle Φ̄ is a normalised direction vector representing the combined

phase consensus over multiple scales and is defined as:

Φ̄ =
1√

(Σnen)2 + (Σnon)2
(Σnen,Σnon). (4.8)

Phase consensus is quantified by calculating the average (mean) phase angle and then

weighting each filter response magnitude An with the vector’s deviation from this mean

phase angle.

Figure 4.6: The mean phase angle Φ̄ is calculated using the filter responses at each
scale. An arbitrary filter response gn with its equivalent representations is shown, and
its phase deviation ∆Φ̄ is labelled.

Figure 4.6 illustrates the phase deviation ∆Φn of an arbitrary response vector gn. The

phase deviation weighting function is based the angular distance between the phase

angles and is formulated as

∆Φn =
1

2
(cos(φn − Φ̄)− | sin(φn − Φ̄)|+ 1) (4.9)

and plotted in Fig. 4.7.

As the magnitude and phase deviation is to be calculated at each point and at each

scale in the image, the calculation is simplified to remove trigonometric equations and
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Figure 4.7: A comparison of the cosine distance function (dashed line) and the phase
deviation measure (solid line). The phase deviation weighting ∆Φn is calculated using
the difference of the phase response φn and the mean phase angle Φ̄ over all scales.

costly divisions. The expansion and modified function are stated as [40]

An∆Φn =
√
e2n + o2n

(
cos(φn − Φ̄)− | sin(φn − Φ̄)|

)
(4.10a)

An∆Φn = enē+ onō− |onē− enō|. (4.10b)

Each filter response contributes An∆Φn — magnitude, weighted by its consensus with

the mean phase angle — to the phase congruency measure. However, as natural

image contain noise, the response of each filter needs to be significant enough to be

distinguishable from noise.

Compensating for noise in the signal

Normalisation is required in any adaptive measure, although this induces a sensitivity

to noise [41]. Image noise is assumed to be additive and features (edges and corners) are

assumed to be sparse and isolated so that they may be distinguished from background

noise. In order to quantify the expected noise level within the image, the response

magnitude of the filter with the smallest spatial extent (making it the most sensitive

to noise) is used to establish a noise floor.

The magnitude of the noise follows a Rayleigh distribution [41]. The noise threshold
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T can be tuned in terms of standard deviations from the mean of this distribution.

Calculating phase congruency

The phase congruency measure PC is calculated at each point x in the signal as

PC(x) =
W (x)ΣnbAn(x)∆Φn(x)− T c

ΣnAn(x) + ε
. (4.11)

At each scale n, the filter response magnitude An is weighted for phase deviation ∆Φn

and reduced by the estimated noise floor T . A thresholding operation bAn(x)∆Φn(x)−
T c is applied at each scale of filter response. The b· · · c notation indicates that if the

enclosed result is negative (the filter response lying below the noise floor) then the

result is equal to 0 else it is left unchanged. The summation in the numerator then

is normalised using the filter response magnitudes in the denominator (ε is a very

small constant to avoid division by zero). The entire calculation is then weighted for

frequency spread W (x).

The result of the phase congruency measure, presented in Eq. (4.11), is a value

between 0 and 1 that indicates the significance of the underlying structure (degree

of congruency) of a one dimensional signal.

4.2.4 Congruency over multiple orientations

Extending the phase congruency theory into two dimensions requires a modification

of the log-Gabor filter bank to include orientation selectivity. The aim is to apply the

one dimensional theory in discrete orientations and then combine the oriented results

into a descriptive quantity for each pixel.

Directional filter bank design

Two dimensional (spatial) Gabor filters are used to extract local frequency content

(band-pass) in discrete directions [70]. Gabor filters are extended to two dimensions
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as follows:

ge(x) =
1

2πσxσy
e
− 1

2

(
x2

σx
+ y2

σy

)
cos(2πωx0x+ 2πωy0y) (4.12a)

go(x) =
1

2πσxσy
e
− 1

2

(
x2

σx
+ y2

σy

)
sin(2πωx0x+ 2πωy0y). (4.12b)

Figure 4.8 shows a contour plot of the spatial log-Gabor filter over multiple scales; it

can be seen that log-Gabor filters have a logarithmic Gaussian profile in the radial

direction (outwards from center) and a standard Gaussian profile in the angular

direction.

Figure 4.8: A false-colour contour plot showing the superimposed spatial filter
responses at four scales (key: dark red is large and positive, dark blue is large and
negative, unit is pixels).

By default, six discrete orientations are used which evenly divides the 0 to π range as

shown in Fig. 4.9. The number of oriented filters determines the orientation selectivity;

however, increasing the number of orientations significantly increases computation

time with little added value [67]. Figure 4.10 shows the log-Gabor frequency response

contours for 6 orientations at 4 scales.

Filter bank design is a trade-off between uniform and efficient coverage of the

spectrum. In order to obtain uniform coverage, every point of the range of frequencies

we want to capture must be uniformly weighted when the filter responses are summed;

this requires frequency-adjacent filters to overlap (as illustrated in Fig. 4.10). However,

this overlap reduces the efficiency of our encoding as the filters become less independent
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(a) Even oriented filter set.

(b) Odd oriented filter set.

Figure 4.9: Even and odd spatial filter responses at six orientations at a single scale
(key: dark red is large and positive, dark blue is large and negative, unit is pixels).

Figure 4.10: A contour plot showing one-sided superimposed oriented spatial frequency
responses of the log-Gabor filter bank in the Fourier domain. Note the angular and
radial overlap that forms a part of the design trade-offs towards uniform spectrum
coverage.
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and more correlated [39]. The extension to two dimensions necessitates the inclusion

of sigma parameters to control radial and angular spread. The parameters suggested

by Kovesi are provided in Section 4.3.4.

As an alternative to the discrete directional filters used in Kovesi’s phase congruency,

Mellor et al. [74] use steerable band-pass filtering (a difference of Gaussians operation

followed by the Hilbert transform) to recover the symmetric phase information. The

non-linear log-Gabor filters used in Kovesi’s phase congruency are not steerable, which

is why calculation in discrete orientations is required.

Oriented phase congruency

Phase congruency is calculated at each orientation using

PC(x)i =
ΣnW (x)bAn(x)∆Φn(x)− T c

ΣnAn(x) + ε
. (4.13)

This equation is essentially unmodified from the one dimensional analysis, although

oriented components have been appended with a subscript i to indicate that the

calculation is specific to each orientation. Note that the noise floor T and the mean

phase angle Φ̄ quantities are calculated for each orientation. For the remainder of

this report, oriented components are subscripted with i; most notably, the phase

congruency PCi and the mean phase angle Φ̄i quantities are collectively referred to as

the oriented components of phase congruency.

Figure 4.11 demonstrates the relationship between the phase (i.e. the ratio of the

quadrature filter responses) and the underlying structure. The four images show

different phase responses of a θ = π/2 oriented filter which have been created using

P (x, y) = αen,i(x, y) + βon,i(x, y) (4.14)

where each pixel in the image P is a sum of the spatial filters weighted with α+β = 1.

In the phase congruency equation, the mean phase angle represents the consensus of

the structure recovered by a particular oriented filter over all scales.

Another reason for the inclusion of Fig. 4.11 is to emphasise the important distinction

between the angle representing the mean phase response Φ̄i, and the filter orientation

θi. The magnitude of congruency PCi is associated with the direction of the filter,
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(a) φ = 0. (b) φ = π/2. (c) φ = π. (d) φ = 3π/2.

Figure 4.11: A sequence of contour plots of the spatial log-Gabor filter response,
illustrating the relationship between phase φ and structure; each representation of the
oriented (θ = π/2) filter is constructed using a different ratio of the quadrature pair.
(Key: dark red is large and positive, dark blue is large and negative, unit is pixels.)

and is represented as a vector at angle θi. Visualising the oriented components in this

way is useful in the next section, which presents a method for combining the values to

describe structural features in images.

4.2.5 Representation using a reduced feature set

The oriented congruency PCi components, calculated in Eq. (4.13), are synthesised to

three values per pixel in a moment analysis method presented in [40]. The three values

of this reduced feature set are the perpendicular maximum and minimum moment

values represented as the scalars M and m respectively, and the angle of the maximum

moment called the principal axis θ′.

The scalar moment values are calculated using the magnitude of congruency associated

with each filter orientation:

M =
1

2
(c+ a+

√
b2 + (a− c)2) (4.15a)

m =
1

2
(c+ a−

√
b2 + (a− c)2). (4.15b)

The components a, b and c represent summations of the phase congruency magnitudes

PCi calculated with Eq.(4.11) at each orientation θi, and are calculated as

a = Σi(PCi cos(θi))
2 (4.16a)

b = 2Σi(PCi cos(θi))(PCi sin(θi)) (4.16b)

c = Σi(PCi sin(θi))
2. (4.16c)
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The maximum moment indicates feature (i.e. edge) significance and is used to create

an edge map of the image [40]. If both moment values are large, the point is classified

as a corner; consequently, the corner features present in the image are a subset of the

edge map. The angle of the principal axis indicates the orientation of the edge and is

calculated as follows:

θ′ =
1

2
atan

(
b

a− c

)
. (4.17)

Together, the three components of the reduced feature set at each pixel describe the

structural make-up of a scene. These components are an integral part of the methods

developed in the remaining chapters of this work.

Figure 4.12 has been included to show how the oriented congruency components, PCi,

are described by the reduced feature set. On the right of Fig. 4.12, the maximum

moment with scalar magnitude M and direction θ′ values can be seen to describe the

significance and orientation of the curved edge; the minimum moment, m, describes

the ‘cornerness’ due to the curve in the edge. Of the six orientations used in analysis,

only three were non-zero. The non-zero PCi magnitudes are shown as vectors on the

curved edge (i.e. PC1, PC2 and PC3), and the phase response of each is represented

as contour plots on the left (i.e. θ1, θ2 and θ3).

The remaining sections of this report present an analysis of phase congruency as a tool

for exposing invariant structure and predictable features in multi-spectral images.

4.3 Identifying predictable image elements

The primary objective of the investigation carried out in this chapter is to extract

repeatable and predictable structural elements using the phase congruency process.

Supervised learning is used to identify predictable relationships between components

extracted from corresponding observations in the two spectra.

Section 4.3.1 provides a brief overview of the support vector machine model for

supervised learning. Methods to characterise the performance of the learning model

are then introduced in Section 4.3.2 to quantify predictability of image elements.

Section 4.3.3 describes the approach undertaken to investigate predictability in multi-
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Figure 4.12: A visualisation of the descriptive of the minimum moment m role in
quantifying ‘cornerness’. The diagram shows the principal axis, described by the angle
θ′, and the two scalar values of the maximum moment M , colinear to the principal
axis, and the magnitude of the minimum moment m, perpendicular to the principal
axis. The filters with the maximal responses to the synthetically created curve are
shown in the left.
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spectral information, and the tools and parameters used in the investigation are

recorded in Section 4.3.4.

4.3.1 Support vector machines

Support Vector Machine (SVM) are a class of supervised learning models used in

a broad array of applications. They are regarded as one of the best off-the-shelf

algorithms for supervised learning and are widely used in multi-spectral and remote-

sensing literature [52, 75]. A strong motivation for the use of SVM algorithms in

this context is the high accuracy that is achieved with a limited amount of training

data [76].

Supervised learning is an iterative process. Sample data with known classes (or

labels) is used to train the SVM model which fits a hyperplane that separates the

classes. This hyperplane is called the decision boundary, and is used to classify future

(unlabelled) samples. Due to the strict requirement of linear separability of classes,

a kernel mapping is commonly applied to accommodate data that requires a more

complex decision boundary [52]. Figure 4.13 shows a visualisation of three different

SVM kernels applied to the same training data on a two dimensional plane. Each

training sample is shown as a circle on the plane with a colour indicating its class

(black or white). These samples are used to generate a decision boundary, shown as

a solid black line, separating the two classes; the shaded levels of grey indicate the

confidence with which the SVM classifies each coordinate in the plane (from black to

white).

(a) Linear kernel. (b) Polynomial kernel. (c) Radial Basis Function
(RBF) kernel.

Figure 4.13: Three SVM kernel variations used to extend the functionality of linear
SVM classification to non-linearly-separable data distributions.
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The three SVM kernels shown in Fig. 4.13 generate different decision boundaries, which

represent different hypotheses that an arbitrary point on the plane will belong to a

certain class. In this way, SVMs can be used to discover predictable behaviour and

relationships in high dimensional data by formulating and testing different hypotheses.

4.3.2 Characterising performance

The approach to achieving the objectives of this chapter is to use supervised learning

with SVMs to identify predictable structure in visible and thermal images; this

section describes how the hypotheses are evaluated and what the results can tell

us. Three different SVM kernels are used to discover simple (linearly separable) to

complex (polynomial and RBF kernels) relationships between components of the phase

congruency process.

The trained SVM is required to classify whether two points taken from the different

spectral modalities correspond to the same observation in the scene. This is a

classification problem to determine if a single pattern vector (a string of numbers

composed of values taken from the two points) is indicative of a match or not. To

accomplish this, the model requires a set of positive and negative training examples to

establish the decision boundary. A training example is a pattern vector with a known

class based on the known relationship between the points (i.e. whether the two points

used to construct the pattern vector are corresponding observations of the same point

or not).

The process of evaluating the hypothesis proposed by the SVM kernel is called testing.

A portion of positive and negative samples are kept aside during the training process

for use in hypothesis testing. SVM performance is characterised by comparing the

classification assigned by the hypothesis to the known class of each sample. Samples

with correctly-assigned labels are referred to as true positives and true negatives, while

errors in classification are referred to as false positives (incorrectly matched) and false

negatives (incorrectly rejected).

Associated with each classification is a numerical value indicating the probability

of class membership. By continuously varying a threshold on this probability, a

Receiver Operating Characteristic (ROC) plot can be constructed to characterise the

effectiveness of the SVM hypothesis. The number of True positive (TP), True negative
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(TN), False positive (FP) and False negative (FN) element counts are combined to form

the True positive rate (TPR)

TPR =
TP

TP + FN
, (4.18)

and the False positive rate (FPR)

FPR =
FP

TN + FN
. (4.19)

These two metrics for performance are the axes for the ROC plot. Figure 4.14 shows an

example ROC plot in the style presented in this report. The title at the top of the plot

shows the components in the pattern vector as well as the length of the pattern vector.

The number of training (Tr) and testing (Te) samples used is also shown in the title.

Plots of two different kernels are shown: the diagonal line of kernel1 demonstrates the

ROC curve of a useless predictor no better than random guessing, whereas the curve of

kernel2 towards the top left indicates a useful predictor. Comparisons of ROC curves

is often based on the Area under curve (AUC) metric, shown in the legend next to

each kernel.

Figure 4.14: An example ROC plot
showing two curves. The diagonal
kernel1 shows a classifier that is no
better than random binary guessing and
kernel2, which curves towards the upper
left corner, shows a well-performing
classifier.

In order to use the ROC plot to characterise and evaluate SVM performance, reliable

training and testing data is necessary. The next section describes how the positive and

negative sample sets are created from multi-spectral image pairs.

4.3.3 Training and testing data

Samples are extracted from two image pairs using the magnitude of the maximum

moment to detect congruent edge features in the images. The training and testing
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data was manually separated to ensure that there was no bias introduced into the

test by clustering of features. Figure 4.15 shows the partitioned training and testing

image regions from the OSU (OCTBVS) Color-Thermal Dataset. In order to avoid

the edge effects of filters at the image boundaries, a margin of 15 pixels from the edges

of the image is enforced; the training and testing sample data is taken from points in

the image that fall inside this border. The size of the margin is chosen to be larger

than the envelope of the largest log-Gabor filter used in the phase congruency process,

the parameters of which are documented in Table 4.1. The 15 pixel margin used in

this investigation was determined in this way, based on analysis of the log-Gabor filter

profiles using Octave (software).

Although a number of different pattern vectors (i.e. consisting of different components)

were investigated, the method of extracting the positive and negative sample sets was

the same. Positive samples were constructed if the corresponding points in both the

thermal and visible modalities were edge features. An equal number of positive and

negative examples were used in training and in testing; therefore for every positive

example, a negative example was constructed by concatenating two randomly selected

congruent points from different modalities and image pairs. Thirty percent of the

positive examples in the training image pair was randomly sampled to be used to

train the SVM with each pattern vector configuration.

The phase congruency process uses both angular (e.g. angle of the principal axis) and

scalar (e.g. maximum and minimum moments) quantities. We can take advantage

of this extra knowledge to better formulate the pattern vectors by combining and

comparing the components accordingly. Angular components can be compared with

an adapted cosine distance measure:

D(θ1, θ2) =
1

2
(| cos(θ1 − θ2)| − | sin(θ1 − θ2)|+ 1) . (4.20)

This distance measure compensates for contrast reversals and provides a linear fall-off

as the difference between the input angles increases. Scalar components of the phase

congruency process are often indicators of significant structure and are paired with an

angular quantity. For example, the angle of the principal axis is only meaningful if it

is associated with an edge, signified by the maximum moment. Significance measures

can be combined by multiplication to indicate that the information being compared

is meaningful and not a result of noise. This will become clearer when the results are

presented.
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(a) Training (pair A). (b) Testing (pair B).

(c) Training (pair A). (d) Testing (pair B).

(e) Testing (pair C). (f) Testing (pair C).

Figure 4.15: Manual segmentation of images into training and testing sections.
Training points are randomly selected from edges in training pair A. Testing samples
are randomly sampled from edges in image pairs B, C. (Images from the OSU
database [44].)
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4.3.4 Tools

The phase congruency code used in this project is the MATLAB/Octave

implementation provided by Kovesi [77]. The code-base is predominantly Python1

using the numpy [78], scipy2 (sklearnkit), matplotlib [79] and OpenCV3 libraries. The

Octave implementation of phase congruency is called from Python using the oct2py4

module. The default parameters used in the phase congruency process are shown in

Table 4.1 [41,77].

Table 4.1: The default values used in the phase congruency process.

Parameter Value Description
nscale 4 Number of filter scales.

norient 6 Number of orientations.
λmin 3 Minimum filter wavelength (in pixels).
λmult {1.3, 1.6, 2.1, 3.0} Multiplicative factor of successive filter

wavelengths.
σf {.85, .75, .65, .55} Radial sigma value controlling frequency

overlap/even coverage (mapped from λmin).
k 5 Number of standard deviations from the

mean of the noise distribution.
c 0.5 Frequency spread cutoff value (see

Fig. 4.5).
γ 10 The sharpness of the sigmoid function.

Note the relationship between the wavelength multiplier and the radial sigma value in

controlling radial coverage of frequencies; the default used in this project is λmult = 1.6

and σf = 0.75, resulting in a filter bandwidth of one octave with even coverage.

4.4 Results

The objectives stated at the beginning of this chapter were two-fold: to establish an

invariant representation of repeatable features of visible and thermal information, and

to identify predictable relationships between values extracted in the phase congruency

analysis process. The results of these two investigations are presented in this section;

1Available at http://www.python.org, August 2015.
2Available at http://www.scipy.org, August 2015.
3Available at http://www.opencv.org, August 2015.
4Available at http://pypi.python.org/pypi/oct2py, August 2015.
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CHAPTER 4. PHASE CONGRUENCY

however, the focus is placed on the supervised learning content introduced in this

chapter.

4.4.1 An invariant representation

A representation of the maximum and minimum moment values, which provide an

edge and a corner map respectively, are shown in Fig. 4.16. The purpose of achieving

an invariant representation is to enable methods that describe and match visible

similarity to be used with multi-spectral information; therefore, the effectiveness of

this representation can only be analysed in terms the performance it grants to these

methods. The results presented here are the basis for the development work carried

out in Chapters 5 and 6, and the evaluation of the invariant representation provided

by phase congruency is deferred to its application in these chapters.

4.4.2 Predictable components of congruency

Structure of the investigation

The aim of this investigation is to identify a pattern vector that has a predictable

relationship across the spectral modalities. Figure 4.17 provides a flow diagram of

how the results are organised. The notation for each component is appended with an

image identifier (i.e. 1 or 2) and directional filter orientation indexed by i (e.g. Φ̄10

represents the mean phase calculated with the directional filter-bank at orientation

i = 0 from image 1). The components are initially partitioned into the oriented and

reduced feature sets and analysed separately in blocks I and II; predictable components

in each of these sets are identified and then combined in block III. Dashed lines indicate

that the elements of the pattern vector were modified in some way (e.g. multiplied),

and solid lines indicate that the pattern vectors were concatenated. Each transition

is motivated by the performance, which is demonstrated with the ROC curve, offered

by the new pattern vector.
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(a) Original thermal image. (b) Original visible image.

(c) Edge map (thermal). (d) Edge map (visible).

(e) Corner map (thermal). (f) Corner map (visible).

Figure 4.16: The edge and corner maps of the reduced congruency feature set form the
invariant representation of this project. (Modified images from the OSU database [44].)
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Figure 4.17: A flow diagram showing the structure of the investigation.

Oriented components

The oriented components of phase congruency, presented in Section 4.2.4, refer to the

separate outputs of the six directional filter banks. The phase congruency and mean

phase angles, introduced in Eq. (4.13) and Eq. (4.8) respectively, are used to form

pattern vectors in the following experiments.

Figure 4.18 shows the ROC plots for the pattern vectors of the separate congruency

and mean phase angles. The performance of both pattern vectors indicate no predictive

value beyond random guessing (the ROC plots are along the diagonal).

(a) Oriented congruency magnitudes PCi. (b) Oriented mean phase angles Φ̄i.

Figure 4.18: ROC plots of the twelve separate oriented components of the phase
congruency magnitudes and mean phase angles (i.e. concatenation of outputs of six
orientations from two images).

The result shown in Fig. 4.18 is used to demonstrate the performance offered by

combining elements, shown as dashed lines in Fig. 4.17, reported in Fig. 4.21. The

magnitude of oriented congruency PCi provides an indication of structural significance

(i.e. above the noise circle and consensus over multiple scales); for this reason, the
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congruency at corresponding orientations is combined by multiplication to ensure that

the resulting product is non-zero if the oriented congruency from both modalities is

non-zero. The results are reported in Fig. 4.19a and show an appreciable improvement

on the separate components of Fig. 4.18a. The angular mean phase components are

combined using the cosine distance measure; however, only a small improvement over

Fig. 4.18b can be seen in their combination in Fig. 4.19b.

(a) Corresponding congruency magnitudes
PCi are multiplied.

(b) The cosine distance is applied to
corresponding mean phase angle values.

Figure 4.19: ROC plots demonstrating the performance of corresponding oriented
components, extracted from each spectral modality, combined using multiplication (in
the case of congruency) or cosine distance (in the case of phase).

The two results presented in Fig. 4.19 are combined by multiplying each respective

oriented component; therefore, each component of the resulting vector is only large if

the structures are similar (angular phase distance) and significant in both modalities.

An improvement in prediction with the linear kernel using this combined pattern vector

is shown in Fig. 4.20.

Reduced feature set

The second group of components investigated is the reduced feature set which was

introduced in Section 4.2.5. The ROC curves of the moment magnitudes and feature

orientation pattern vectors are shown in Fig. 4.21. Figure 4.21b shows that the

feature orientation components are not linearly separable, but are separable with the

RBF kernel. In order to make the components linearly separable, the cosine distance

function is applied; the resulting ROC curve is shown in Fig 4.22.
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Figure 4.20: The oriented congruency and phase components are multiplied to form
a single pattern vector. Each of the six (oriented) elements of the pattern vector
represents the similarity of structure (phase angle) and weighted by the significance of
the structure in both images (congruency magnitude).

(a) Maximum and minimum moment
magnitudes.

(b) The angle of the maximum moment θ′.

Figure 4.21: Two ROC plots analysing the the separate elements of the reduced
feature set. Plot (a) shows the performance of the maximum and minimum moment
magnitudes, which indicate the presence of a feature. The pattern vector analysed in
(b) consists of the edge orientations (angle of the principal axis) from each image.
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Figure 4.22: The angles of the maximum moment θ′ are combined with the cosine
distance measure to make the samples linearly separable. The linear kernel shows
significant improvement (higher area under curve value) when the values are combined
in this way.

The inclusion of the magnitude of the maximum and minimum moments showed no

further improvement in performance over the of feature orientation distance only, and

is not illustrated here.

Combination

The final step of this investigation, illustrated as block III in Fig. 4.17, was to combine

the repeatable components identified in the results so far. The pattern vectors shown in

Fig. 4.20 and Fig. 4.22 are concatenated and evaluated in Fig. 4.23. The components

of the combined pattern vector describe a comparison of the features (i.e. feature

orientation difference) and a structural comparison (i.e. distance and significance of

oriented phase components).

The combined pattern vector in Fig. 4.23 demonstrates the best linear separability

using seven components. The next section of this chapter provides a discussion on

the practical implications of these results and how phase congruency can be used to

identify and match corresponding observations from each spectral modality.
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Figure 4.23: The edge orientation distance is concatenated with the six oriented phase
distance and congruency measures to form a seven element vector. The linear kernel
ROC curve shows the best performance over all the pattern vectors analysed in the
investigation.

4.5 Discussion

The goal of this chapter was divided into two objectives. The first was to present

phase congruency as a means of extracting an invariant representation of the common

structural features from thermal and visible images. The second objective was to

identify predictable features exposed by the phase congruency process between the

two modalities.

Section 4.4.1 provided a cursory example of the invariant representation in the form of

an edge and corner map in Fig. 4.16. An invariant representation is a visually similar

depiction of the common information between the two modalities. The effectiveness

of this invariant representation can only be quantitatively analysed when integrated

into methods that use visual similarity to match regions. Chapters 5 and 6 both use

the phase congruency edge map to adapt and enhance existing similarity metrics.

The second phase of this investigation, set out in Fig. 4.17, presented a series of

experiments conducted to identify predictable pattern vectors exposed in the phase

congruency process. Success was found by combining the scalar (significance) and

angular components using multiplication and the cosine distance measure (seen in

Eq. (4.20)) respectively. The final combined pattern vector, shown in Fig. 4.23,

provided the best performance with a seven element vector; however, Fig. 4.22
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demonstrated comparable performance with a single element pattern vector describing

the angular distance between feature orientation values.

Description with a single element is very appealing as it can be easily integrated into

a cost function. In order to further validate the effectiveness of feature orientation as

means of describing structural features, a brief look at the distribution of values in the

sample set is undertaken. The distribution of feature orientation of congruent edges

in the sample set is shown in Fig. 4.24; the peak at π/2 is attributed to the prominent

urban architectural features (i.e. vertical edges) in the images.

Figure 4.24: Normalised distribution of feature orientations of congruent edges in the
sample set. The blue and red stepped distributions represent the feature orientation
at edges extracted from the visible and thermal images respectively.

The cosine distance measure is then applied to corresponding samples to produce

Fig. 4.25. The significant density of matches to the right of the histogram indicates

that the measure is able to effectively identify similar edges. Feature orientation as an

effective distance measure for rectified edge features is demonstrated in Chapter 6 of

this work.

It is concluded that, while frequency domain analysis using directional log-Gabor filters

does extract information with predictive value, the reduced feature set produced by

Kovesi’s phase congruency method provides invariant and predictable components that

are better suited to integration with existing methods. The methods developed in later

chapters of this work use the reduced feature set extensively to describe and compare

regions of multi-spectral images.
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Figure 4.25: Histogram showing the distribution of values of the application of the
cosine distance measure Eq.(4.20) to congruent edges in the sample set.

4.6 Summary

The investigation presented in this chapter motivates phase congruency as a means of

exposing repeatable structure from thermal and visible images. Despite the non-linear

relationship between pixel intensity values, presence of thermal phenomena and the

low spatial resolution of thermal images, the method is able to extract repeatable and

matchable structures in the two disparate modalities.

The next chapter presents an investigation into the feasibility of sparse correspondence

methods for feature-based alignment of multi-spectral imaging modalities. The results

of this chapter are integrated into a structural feature descriptor which uses the

invariant structure exposed by phase congruency.
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Sparse correspondence methods

The majority of computational stereo methods require that the input images are

rectified to make the challenges of stereo-vision more tractable. The rectification

process, introduced in Section 3.2, brings the rows of each image into alignment

by warping the image captured by each viewpoint. Although rectification is often

accomplished through manual calibration, automatic alignment using sparse feature-

based methods is commonly performed if the stereo-head is not reachable or if frequent

re-alignment is required.

This chapter presents an investigation into the feasibility of conventional feature-based

methods for automatic alignment of distinct multi-spectral viewpoints. Section 5.1

provides an overview of the terminology and role of conventional feature-based methods

in viewpoint alignment, which is concluded with a brief discussion of the core

assumptions of these methods. Conventional feature methods are reported to perform

poorly (or fail entirely [91]) with multi-spectral images; a literature survey is performed

in Section 5.2 to identify where and how these methods fail. The survey serves as a

problem statement for the development of an adapted measure which incorporates the

invariant elements of phase congruency presented in Chapter 4. Section 5.3 describes

the approach to evaluating conventional and the adapted method. The results of this

investigation are provided in Section 5.4, and are then discussed in Section 5.5.
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5.1 Feature-based alignment

An image feature is a broad term referring to a point in an image that is deemed

significant by some measure. For example, an edge is a structural feature usually

indicated by a high gradient magnitude. This section introduces the traditional

approaches to feature-based alignment through the detection and matching of

corresponding observations from different viewpoints.

5.1.1 Terminology

The appearance of a scene can change drastically when viewed from a different position

or under different lighting conditions; elements in a scene can undergo rotation, scaling

and perspective distortion due to the change in viewpoint as well as illumination

variations. These variations are collectively referred to as distortions in viewpoint or

observation characteristics.

Interest points are sparsely-distributed points in an image that are stable (i.e.

repeatably located) and matchable (i.e. containing descriptive information) under

variable conditions. Methods called detectors localise these points in the image and

often go further to capture the characteristic scale of the interest point [80]. A major

criterion for detector performance is repeatability which refers to a detector’s ability to

consistently and accurately localise the same points in a scene regardless of variations

in viewpoint characteristics.

The local region around an interest point is described, or encoded, by a numerical

feature vector which can be used to gauge the similarity between interest points.

Descriptor methods construct this feature vector such that it can be matched between

corresponding viewpoints even if the local region has become distorted between

observations. Feature vectors are compared using a distance measure that provides a

numeric value representing the confidence that the two vectors correspond to the same

observed point.

These stages are referred to as detection, description and matching and are applied

sequentially to identify correspondences. Although these stages consist of distinct

methods, the majority of detectors are optimised to identify structures tailored to the

descriptor and are therefore not practically interchangeable.
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5.1.2 Conventional approaches

Detection and matching of sparse image features is vital in many applications and

is the conventional approach to automatic alignment of images taken from different

viewpoints. Numerous methods of feature detection and description have been

presented in literature; this section presents a representative sample of common

approaches to this task.

Many of the earliest detection methods identified corners as stable interest points.

The robust Harris corner detector [81] was first presented in 1988 as a refinement of

existing approaches to corner detection [82]; it identified corners as points in an image

where an autocorrelation function was maximised. The Shi-Tomasi corner detector (or

the Good Features (GF) corner detector from the title of the paper “Good Features

to Track”) provided further refinement to this method by reducing the frequency of

edge responses, and is an important part of the investigation later in this chapter.

Also included is the modern Features from Accelerated Segment Test (FAST) [83]

corner detector which is commonly used with the Oriented Fast and Rotated BRIEF

(ORB) [84] and Binary Features from Robust Orientation Segment Tests (BFROST)

[85] binary descriptors.

Binary descriptors have recently received a large amount of interest due to the

computational and memory limitations of mobile devices [84, 86]. Binary descriptors

are compact binary strings formed by pair-wise intensity comparisons of pixels radially

distributed about an interest point; each bit in the descriptor represents the logical

outcome of an inequality between the intensity values of each pair. The Binary Robust

Invariant Scalable Keypoint (BRISK) [87] descriptor operates on corners detected with

the Adaptive and Generic Accelerated Segment Test (AGAST) [88] detector to provide

rotation and scale invariance. Binary strings are compared with the Hamming distance:

each element is compared with a logical XOR operation, and the sum of the resulting

bits represents the binary difference [86].

Possibly the most common approach found in literature and in practice is Lowe’s

Scale invariant feature transform (SIFT) [89] method of detection, description and

matching [90]. SIFT is prominent in literature as it has become a robust benchmark

against which the performance of novel methods can be measured [86]. The detection

stage of SIFT localises blob-like interest points as maxima in scale-space in a Difference

of Gaussian (DoG) image pyramid. The descriptor itself is a 16× 16 pixel window in
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which each pixel contributes a vote, weighted by gradient magnitude, to a histogram

of discrete orientations used to describe the region. The notable Speeded Up Robust

Features (SURF) [90] method is based on the SIFT descriptor and provides an efficient

alternative at the cost of matching performance. Both SURF and SIFT feature vectors

are compared with the L2-Norm measure, a floating-point arithmetic operation.

The use of gradient magnitude as a significance measure is seen in the majority of

detector and descriptor algorithms. While its use in SIFT to weight votes is explicit,

the pair-wise intensity comparisons of the binary descriptors are essentially encoding

the sign (i.e. increasing or decreasing intensity) of the gradient. The assumption that

gradient direction remains constant is fundamental to describing elements in visible

spectrum images; however, the non-linear relationship between visible and infrared

modalities breaks this assumption. This chapter presents an investigation into the

performance of conventional feature-based methods in a multi-spectral context and

proposes an alternative means of describing image elements that is invariant to the

variations between the spectra.

5.2 Multi-spectral image features

Traditional approaches to sparse feature correspondence operate under assumptions

that hold within the visible spectrum. This section presents a brief background, the

purpose of which is to determine where traditional methods fail, identify the practical

limits of their application and establish a context to the investigation carried out in this

chapter. A survey of the performance of conventional feature-based methods reported

in literature is presented in Section 5.2.1. Observations from this survey are used in

Section 5.2.2 to formulate the objectives of the investigation, and in the development

of a multi-spectral descriptor in Section 5.2.3.

5.2.1 Problem statement

There is a clear consenus that traditional feature correspondence methods perform

poorly or fail entirely to detect and match thermal and visible features [38, 43, 91],

although there has been limited investigation focused on analysing this behaviour

beyond the visible spectrum [18,23].
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In order to identify where traditional methods fail, start with the first assumption that

these methods are only suitable for use with visible spectrum images. To dispute this,

Ricaurte et al. in [18] provides an extensive investigation of the intra-band behaviour of

SIFT, SURF, BRISK, Binary Robust Independent Elementary Feature (BRIEF) [92],

ORB [84] and Fast Retina Keypoint (FREAK) [93] algorithms on thermal image pairs

compared to their visible spectrum performance of the same scene. While noticeably

weaker than operation in the visible spectrum, the traditional methods (SIFT, in

particular) performed well enough in the thermal spectrum to warrant practical use.

This intra-spectrum performance is used in applications presented in the literature [24].

The second logical assumption is that traditional methods will only perform well within

the same spectral range. This is partially true; minor adaptations on the traditional

SIFT descriptor have been required to enable VS-NIR feature matching [22]. However,

as the difference of wavelength between the spectral modalities increases, the images

become increasingly dissimilar and traditional feature-based correspondence methods

fail entirely [23]. This failure is attributed to the low spatial resolution, noise and the

lack of common descriptive elements (i.e. colour or texture) in thermal images, as well

as the increasingly disparate information captured by the distinct sensors.

The result of this dissimilarity is that feature detectors do not locate the same

observations and feature descriptors that rely on gradient direction fail due to the

non-linear relationship between the intensity values of each spectral modality [91].

Contrast reversals are common in the distinct observations captured by these sensors;

for example, the edges of a dark, warm object on a light, cool background would

appear highly dissimilar to SIFT due to the gradient directions being 180 degrees out

of phase (i.e. contrast is reversed). Numerous adaptations of the SIFT algorithm have

been made to compensate for and correct contrast reversal (e.g. Gradient Direction

Invariant SIFT (GDI-SIFT) [22], Oriented SIFT (OR-SIFT) [94], Uniform Robust

SIFT (UR-SIFT) [95]); however, these methods are designed for matching visible with

near infrared images and not suited to matching across the large spectral gap between

visible and thermal information [23,43].

5.2.2 Hypothesis and objectives

The goal of the remaining sections of this chapter is to present an approach to

multi-spectral feature detection and description that is better suited than traditional
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methods. This goal is based on two hypotheses: first, that traditional approaches

are fundamentally unsuited to matching multi-spectral features, and second, that the

detection and description of structural features (such as edges and corners) provide a

more repeatable and matchable similarity measure than gradient-based methods.

The specific objectives are therefore to develop and present a set of methods that detect

and describe structural features such that they can be matched and to demonstrate

the effectiveness of the approach by comparing matching performance to traditional

methods.

5.2.3 Development of theory

Object and material boundaries manifest as edges and ridges and are often described

in terms of their orientation in the image. These structural features are commonly

detected at pixels with a high gradient magnitude and described in terms of the

direction of the gradient, perpendicular to the edge. The method proposed in this

section has close parallels to the work of Park et al. [96], and was closely influenced

by the work of Aguilera et al. [35, 38] and, in particular, Mouats and Aouf [43].

Conventional methods rely on gradient magnitude to indicate significance in detection

and gradient orientation as a means of description; however, the disparate information

captured by thermal and visible sensors means that these assumptions, based on

intensity information, do not hold in most cases. Methods that utilise frequency-

domain analysis for detection and description are proposed in this work as a means

for repeatable detection and inter-spectrum feature description. Phase congruency,

introduced in Chapter 4, is a recurring focus of this work. It is used here as

robust corner and edge detector, invariant to image contrast, to replace the gradient

magnitude approach of traditional methods.

A variation of the Edge Orientation Histogram (EOH) descriptor is developed in this

dissertation. The EOH descriptor, as presented in [96], is predominantly used in the

MPEG-7 standard [97]. It is noted for its efficiency and efficacy in image content

search and retrieval, and it is often applied as a global or semi-global descriptor in

order to retrieve similar images from a database [96–98]. This class of edge orientation

methods influenced the Histogram of Oriented Gradients (HOG) [99] descriptor which

has been particularly effective in hand gesture recognition, a task requiring invariance
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to photometric qualities such as illumination, skin colour and background colour when

comparing an observed gesture to a database.

The EOH feature vector is constructed with an edge orientation voting process in

which the orientation of each edge pixel is used to construct a histogram of orientation

votes that describe the local region. The square N × N pixel descriptor footprint

is divided into 16 sub-regions; each sub-region holds a voting process to construct a

histogram of the four directional 0, 45, 90, 135 degree bins and the no orientation bin.

The histograms from each sub-region are separately normalised and concatenated to

form the 80 element EOH feature vector (i.e. 16 sub-regions each contributing a 5 bin

orientation histogram). An illustration of this process is shown in Fig. 5.2.

Figure 5.1: The edge orientation histogram (EOH) is an N × N pixel square patch
divided into 4× 4 blocks, each characterised by five bins containing the votes for the
gradient direction of its pixels [35].

Edge orientation voting is a task common to many descriptor algorithms; the SIFT

descriptor, for example, uses 36 orientation bins. The vote of each edge pixel of the

EOH descriptor is based on which of the five 3× 3 spatial filters is maximised. Figure

5.2 illustrates two commonly used spatial filter configurations. The numerical values

in each cell represent coefficients assigned to pixel values in the convolution operation

with the underlying edge map.
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Figure 5.2: The directional filters shown above are applied to each pixel in the EOH.
Edges are classified into four discretised directions, with an additional “no orientation”
filter. The first row shows the 2 × 2 filters used by Park et al. [96], the second row
shows those used by Aguilera et al. [35].

5.3 Approach to evaluation

This brief section presents the evaluation of conventional feature-based methods and

the EOH descriptor method developed in the previous section. The approach to

evaluating the different stages of feature-based methods is described in Section 5.3.1,

and the tools (i.e. algorithms, software libraries and inputs) used are recorded in

Section 5.3.2.

5.3.1 Quantifying performance

In order to achieve the objectives set out for this investigation, feature correspondence

methods are split into detection and matching stages and analysed separately where

possible.

Interest point detectors are analysed based on detection repeatability : the ability of a

detector to identify and localise the same observations in the two viewpoints. Detecting

the same points in both viewpoints is a crucial first step as it generates the pool of

matchable points. Detector repeatability is evaluated to determine how many of the

interest points detected in one modality are also found in the other; it is represented

as a fraction of the simultaneously observed interest points over the total number of

feature points detected. In order to avoid the use of a heuristic threshold on each

detector’s interest measure, a constant number of the strongest interest points across
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all detectors is taken. While this constant is also heuristically chosen, it standardises

the way in which the detectors are evaluated.

Interest point matching demonstrates a descriptor’s effectiveness in encoding the

information at interest points such that it can be correctly matched. Evaluation of

descriptors is a little more complicated in that a number of steps must be taken

to standardise the matching process. Once two sets of feature vectors have been

extracted from the images, a simple brute force matching algorithm is used: each

feature vector of one set is compared to every feature vector of the other set and

associated (matched) with the vector that optimises the similarity metric. In this

work, the declared matches of the descriptors are limited to the matches that have a

distance less than twice the best (smallest distance) match. Descriptor performance is

evaluated based on the number of true positives (correctly identified as a match) and

false positives (incorrectly identified as a match) within the declared set of matches

for each descriptor.

5.3.2 Tools and parameters

In order to achieve the objectives set out for this investigation, a representative sample

of detectors and descriptors was chosen. The stand-alone detectors evaluated are the

Shi-Tomasi and phase congruency corner detectors, as well as the detectors of the SIFT,

SURF and FAST methods. The conventional SIFT, SURF and FAST algorithms were

then analysed (with their respective detection methods) alongside the EOH descriptor

(with the Shi-Tomasi corner detector) using a brute force matching algorithm.

The algorithms (with the exception of the EOH descriptor) were implemented using the

OpenCV library and the Python programming language. The parameters suggested by

the respective authors of each method were used. The EOH descriptor uses the phase

congruency tools, described in Section 4.3.4, and the numpy library for implementing

efficient linear filtering and edge orientation voting. Automated analysis was done

using two image pairs from the OSU (OCTBVS) Color-Thermal Dataset with a

±2 pixel ground truth. Although the corresponding points were removed from the

two sets once matched, clustering of interest points resulted in the detection results

not always being symmetric across the spectral modalities. A maximum of 200 interest

points was taken from each image in the analysis of detector repeatability, although this

was increased to 300 when descriptor performance was analysed in an effort to increase
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the number of potential matchable points. This maximum is heuristically chosen, but

it helps to standardise comparison of the detection and matching algorithms.

The proposed EOH descriptor was then investigated under a maximum feature

displacement constraint of ±40 pixels coupled with outlier rejection with Random

Sample And Consensus (RANSAC) [80] (OpenCV implementation). These constraints

are commonly used in practice [43, 100] and are used here to better characterise

the practical performance of the proposed method. In order to demonstrate its

performance on a different dataset, a sample from the CVC Multimodal Stereo Dataset

(2) was manually evaluated and included.

5.4 Results

Of the detectors analysed, the Shi-Tomasi GF corner detector performed the best

on both sample pairs, providing 35% repeatability from visible to infrared. Despite

showing similar performance in one case, the phase congruency detector suffered due

to a large percentage of detected interest points clustering along different edges in

the two spectral modalities. Due to the 3 pixel non-maximal suppression of these

methods, the results were symmetric. The FAST detector demonstrated repeatability

of thermal interest points in the visible image (i.e. a high percentage of interest points

detected in the thermal image were found in the visible image), but showed very poor

repeatability of visual interest points in the thermal image. The SIFT and SURF

interest point detection methods performed very poorly; less than 10% of interest

points were common to both viewpoints.

The conventional SIFT, SURF and BRISK detection and description algorithms were

matched using the methods described in the previous section. SIFT matched 4.3%

(4 correct, 94 declared) as did SURF (3 correct, 69 declared). BRISK performed the

worst at around 1.2% (3 correct, 249 declared). Under the same conditions, the EOH-

GF algorithm matched 18.1% (39 correct, 215 declared). Figure 5.3 illustrates one

such case to emphasise the performance of the EOH-GF algorithm.

The EOH-GF method was analysed with a maximum displacement constraint

(±40 pixels) and RANSAC outlier rejection. The combined results showed that

25% of the interest points (115 of 460 detected) were common to both modalities.

Brute force matching resulted in 34% (84 of 247 declared) of features being correctly
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(a) SIFT (1 correct of 46 declared).

(b) SURF (1 correct of 60 declared).

(c) BRISK (1 correct of 113 declared).

(d) EOH-GF (24 correct of 116 declared).

Figure 5.3: The inter-spectrum (visible to thermal) matching performance of the SIFT,
SURF, BRISK and EOH-GF methods are illustrated in four image pairs. Correct
matches are joined by red lines, while false positives and detected (but unmatched)
interest points are shown as orange and blue crosses respectively. (Images from the
OSU database [44].)
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matched, which increased to 58% (51 of 88 declared) after RANSAC was used to

reject outliers. Figure 5.4 demonstrates the performance of the EOH-GF algorithm

(under the constraints discussed) on a higher resolution thermal/visible image pair.

The image pair is rectified although no ground truth exists; therefore, correspondences

were manually analysed and circled in green (correct) or red (incorrect).

Figure 5.4: Of the RANSAC-declared EOH-GF 78 matches, 53 are correct (within
3 pixels) and 10 are incorrect. There are 4 matches of adjacent features and the
remaining 7 are difficult to discern. The white circle on the bottom left hand side of
the image indicates the extent of the disparity constraint for each match. (Image from
the CVC dataset [34,35].)

5.5 Discussion

The results show that conventional methods for feature detection and description are

fundamentally unsuited to matching between multi-spectral images. The derivative-

based SIFT and SURF detectors rely on stable regions of constant intensity (often

called blobs) to localise features in scale-space; however, these structures seldom

simultaneously occur in both visible and thermal observations of a scene. The

descriptors are rendered useless as they fail to accommodate for the non-linear

relationship between the modalities. This poor performance in detection and

description is exacerbated by the low spatial resolution and noise of the thermal sensor.

The results of the conventional SIFT, SURF and FAST methods are consistent with

the findings of [23,35,91]; however, the performance of the Shi-Tomasi corner detector

seems at odds with the findings of Han et al. [91]. A brief experiment showed that
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the Shi-Tomasi corner detector produced different feature points with the OpenCV

implementation used in this work when compared to the MATLAB implementation

used in [91], which may explain the difference in results.

The repeatability demonstrated by the Shi-Tomasi GF corner detector in this work

is attributed to three factors. Firstly, non-maximal suppression ensures that a single

point is selected for each corner and reduces ambiguous matches by increasing the

spatial distribution of points. Secondly, selecting a constant number of features and

not exclusively corners with high responses reduces the reliance of the detector on

gradient magnitude and heuristic thresholding. Finally, the Shi-Tomasi GF corner

detector is designed to reject edge responses, resulting in more corners being found

despite the presence of strong edges in the images. The frequency-based detection of

the phase congruency corner detector was particularly hampered by clustering along

edge features.

Despite its simple implementation, the EOH descriptor significantly outperformed

the conventional methods of feature point description. The results demonstrate that

detection and description based on structural features (i.e. corners and edges) provides

repeatable performance and encodes stable elements of multi-spectral images. As the

EOH descriptor essentially compares visual similarity, this result also shows the efficacy

of phase congruency in extracting a stable invariant representation of multi-spectral

image data.

The 58% correct matching rate is very close to the 56% achieved by the similar

implementation by Mouats and Aouf [43] which uses the same dataset, but performs

analysis over a greater number of frames to track pedestrians moving across the

static scenes. Only two images were used in this study (one pair from each

sequence) because analysis of the predominantly static features was deemed to not

add significant value to achieving the aims of this chapter. There are two significant

differences in implementation: the different corner detector (Shi-Tomasi instead of

phase congruency) and the smaller descriptor size (40 × 40 instead of 100 × 100).

The smaller detector footprint is more sensitive to local changes and is therefore more

distinctive. Furthermore, using a 100 × 100 pixel on thermal images with 320 × 240

pixels defeats the purpose of using local features, which are intended to provide a

means of efficiently matching sparse correspondences of significant features.

Although the proposed EOH-GF descriptor demonstrates significant improvement on

conventional methods, the conclusions drawn from these results lack weight due to the
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limited dataset available. To alleviate this, the descriptor was applied and manually

evaluated on samples of a different dataset (an example is seen in Fig. 5.4); however,

further automated evaluation should be undertaken when datasets become available.

Despite the improvement over conventional methods in handling inter-spectrum

variations, this descriptor is still limited in its applicability to real-world image

alignment. The performance of the descriptor drops off significantly — to the point of

being unusable — when faced with rotation, scaling and perspective distortion present

in unaligned images. While its sensitivity to these factors can be decreased by a

larger spatial foot-print, its lack of scale invariance makes it unable to deal with the

significant difference between the spatial resolution of visible and thermal cameras.

Further development of both the detection and description stages of the EOH method

is required to achieve level of scale and rotation invariance needed for matching between

unaligned images.

5.6 Summary

This chapter addresses the task of aligning two images from thermal and visible

spectral modalities. The most common approach to multi-view image alignment is to

automatically identify correspondences in a process consisting of detection, description

and matching stages. The significant improvement over traditional correspondence

methods was demonstrated in the development and evaluation of the EOH-GF

descriptor; however, it was concluded that further of development and evaluation would

be needed to establish the method as a practical structural descriptor for unconstrained

multi-spectral image alignment.

The next chapter presents the development of a cost function for multi-spectral stereo

correspondence matching. The goal of the chapter to construct a disparity map in

order to address the second objective of this work, i.e., to overlay multi-spectral image

information. It will be assumed that the two viewpoints have been rectified using one

of the processes described in Section 3.2.
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An invariant similarity measure

Comparing points or regions of thermal and visible spectrum images is challenging due

to the non-linear and uncorrelated relationship between the brightness and contrast of

the modalities. Stereo correspondence methods, which were introduced in Section 3.2,

estimate the depth of objects in the scene by calculating the horizontal displacement

of points in the scene projected onto each image plane. However, this process is

complicated by the large textureless regions and low spatial resolution, typical of

thermal images, coupled with non-simultaneous phenomena (observations apparent

in one spectral modality only).

This chapter introduces a block-matching method for generating sparse correspondence

across aligned thermal and visible images; the goal is to develop a cost function for

computational stereo methods that enable us to overlay regions for multi-spectral

information fusion. Section 6.1 provides a background to mutual information and

its applications in image registration, although the focus is placed on the use of

mutual information as a local region descriptor. A survey of adapted local measures

of mutual information is provided in Section 6.2. The investigation carried out in

this chapter aims to assess suitability of mutual information for computational stereo

and multi-spectral region matching, and to determine the effectiveness of incorporating

components of phase congruency in the measure. Specific objectives and hypotheses of

the investigation are clarified in Section 6.3. The approach to achieving these objectives

is described in Section 6.4. The results of the investigation are then presented in

Section 6.5, followed by a discussion of the findings and a brief look at the practical

implications of the work to conclude the chapter.
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6.1 Mutual information

Mutual information is a non-linear similarity measure that has been shown to be

highly effective as a multi-spectral distance measure, outperforming traditional stereo

correspondence measures [101]. This proven track record has been a motivation for its

inclusion in many works [47, 102, 103]. It is of particular interest in this dissertation

as it has been shown to successfully match regions of different spectral modalities; the

measure relies on few assumptions about the underlying data and is able to adapt to

the highly variable content of multi-spectral images [104].

The following section presents a brief background to mutual information and motivates

its use as a method for matching regions of thermal and visible images.

6.1.1 Background

Woods [105, 106] is credited with the initial development of mutual information

for medical image registration [8]. Multi-spectral medical imaging technologies

capture complementary information about a patient that can be fused to aid human

interpretation towards a diagnosis [7]. Mutual information stems from studies of

entropy and information in communication theory [8, 104], although the bulk of

literature on mutual information in computer vision is in the context of medical

imaging [7, 8].

Mutual information is a tool used to describe the statistical dependence between two

signals, allowing us to quantify how much information one signal communicates about

the other [107,108]. Consider two signals, A and B, each quantised to contain a finite

and equal number of symbols. Both signals are simultaneously sampled, i.e., for each

sample ai ∈ A there exists a corresponding value bi ∈ B. Mutual information, I(A,B),

uses this extra information to reduce uncertainty in future samples by inferring a

statistical relationship between the paired samples of the two signals; Figure 6.1

illustrates this concept using a Venn diagram.

Entropy for signals A and B is calculated independently and most commonly using
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Figure 6.1: Venn diagram showing mutual information, I(A,B), as the intersection of
the information of A and B [109].

the Shannon entropy measure [7, 8]:

H(A) = −
∑
i

P (ai) log2 P (ai) (6.1)

where P (ai) is the probability of the symbol ai in the signal A. Pluim et al. [110]

describe entropy as a measure of the dispersion of a probability distribution; entropy

is maximised when all symbols have an equal probability of occurring (a maximally

dispersed uniform probability distribution). Figure 6.1 illustrates the reduced

uncertainty in the conditional entropies H(B|A) and H(A|B) due to the presence

of the other signal being simultaneously sampled. Interpreting the Venn diagram,

one can say that, given another sample bi, we can predict the corresponding ai with

expected uncertainty reduced by I(A,B). In the context of mutual information, the

entropy of the two sources H(A) and H(B) are called the marginal entropies of the

calculation.

The following equivalent formulations of mutual information can be drawn from the

Venn diagram in Fig. 6.1 [8]:

I(A,B) = H(B)−H(B|A) (6.2a)

I(A,B) = H(A) +H(B)−H(A,B). (6.2b)

The first definition reiterates the description of mutual information provided so far:

mutual information is the amount the uncertainty about image B decreases when the

relationship ai → bi is known. The second definition incorporates the joint entropy
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function H(A,B) which is a two-dimensional joint probability function representing

the mapping of intensity values between the two signals [108]. Maximisation of mutual

information is traditionally done by finding the image transform that minimises this

joint entropy function.

Figure 6.2 provides an example of the joint histogram of a correctly registered ‘T’

shape. The example demonstrates how the pixel intensity mappings create peaks in

the joint entropy histogram (on the right) when the images are correctly aligned. Joint

histograms with many intensity levels (e.g. 28 for grey-scale images or 214 for thermal

images) are visualised as intensity images in which each pixel represents the probability

of that particular ai → bi mapping; the joint probability histogram of correctly aligned

multi-spectral images contains clusters of common mappings.

Figure 6.2: Illustration showing two ‘T’ shapes A and B with different intensity
levels. The right most image shows joint entropy histogram, illustrating the frequency
of intensity value mappings between A and B. The overlayed shapes create peaks
in the joint entropy histogram, minimising the joint entropy H(A,B) (and thereby
maximising the mutual information) between the two sources. This image illustrates
how mutual information can be used to register regions which are not linearly related.

Alignment of calibrated medical images involves estimating a rigid transform that

globally aligns the two input images; this is often done by a human operator

who, by manipulating the images to minimise the perceived (visual) dispersion of

the two-dimensional joint probability histogram, minimises the joint entropy value.

The presence of known prominent structures in the images (e.g. bone, cartilage

or tissue) creates common mappings which appear as bright clusters in the joint

entropy histogram; these clusters are distinctive enough to allow a human operator to

accurately align the images.
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6.1.2 Local region similarity with mutual information

In this work, mutual information is used as cost function in a block-matching method

for computational stereo, which was introduced in Section 3.2. The horizontal

displacement of a point is estimated by comparing the local region of the point to

regions along the corresponding row in the other image and selecting the point that

maximises the cost function.

The observed disparity of a point is the horizontal pixel displacement between the

projections in the image planes of the distinct viewpoints. Disparity is estimated by

selecting a point/region, A, in one image and iteratively comparing it to regions, B,

along a search domain of the possible disparity values. Therefore, each comparison will

involve a different marginal entropy H(B) as the comparison window moves along the

corresponding row. With reference to Eq. (6.2b), it can be seen that if the marginal

entropy of B increases faster than the joint entropy function is minimised, the mutual

information metric will be maximised despite a decreasing overlap between the two

frames. To compensate for the change in marginal entropy, a normalised mutual

information measure [8, 110]

Y (A,B) =
H(A) +H(B)

H(B,A)
(6.3)

is used; this adapted measure is investigated in this report.

Local regions of natural scenes do not contain the significant structures that are

typically available in medical imaging. The next section describes how the performance

of mutual information can be improved by incorporating spatial information and

explains how the two measures are combined.

6.2 Spatial information

Mutual information is a statistical measure that does not take spatial information

into account (i.e. the value of each pixel in the context of its neighbours.)

Mutual information often produces many local maxima when the region is small

or untextured [8]. To reduce the number of ambiguous matches within the search

domain, mutual information is often combined with other distance measures such as
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gradient [2, 37, 110] and local phase [46,74].

Pluim et al. [110] presents the combination of mutual and gradient information in the

context of medical imaging. Gradient information is defined as

G(A,B) =
∑

(x,x′)∈(AB)

w(αx,x′(σ)) min(|∆x(σ)|, |∆x′(σ)|). (6.4)

The term w(αx,x′(σ)) is the familiar cosine distance function, described in Eq. (4.20),

applied to the three normalised gradient vectors obtained through convolution with

Gaussian partial derivatives at scale σ. It is noted that large gradients appear at

tissue boundaries, but not all boundaries are present in both modalities. Therefore,

a weighting function, min(|∆x(σ)|, |∆x′(σ)|), is applied to the cosine distance to

ensure the presence of edges in both modalities. Barrera et al. [2, 37] use the same

gradient calculation, but increase robustness by propagating both gradient and mutual

information through a coarse-to-fine Gaussian pyramid.

This work incorporates the reduced feature set of the phase congruency process

discussed in Chapter 4. Local regions extracted from the edge (the maximum moment

M) maps of each modality are supplied as the inputs to the mutual information

equation. Spatial information is incorporated with the edge orientation θ′ value, and

corresponding pixels are compared with the cosine distance measure; however, the

angular distance between the corresponding points in each region is only considered

significant if the value of the maximum moment of both points is non-zero. Although

this approach is similar to the gradient method reported in the previous paragraph, the

angular distance is not weighted by the edge magnitudes. This decision is based on the

results of the investigations of Chapter 4 where there was found to be no relationship

between corresponding edge magnitudes extracted from each modality.

The mutual information and feature orientation values are combined, equally weighted,

by multiplication [2,37,110]; consequently, maxima only occur if both measures agree.

Figure 6.3 shows a plot of the mutual information and feature orientation distance

measures applied along a horizontal search domain using a 9× 9 sliding window. The

maximum of the combined product is marked by the vertical red dashed line, and local

maxima of the mutual information measure that are larger than the value of mutual

information (used by itself) at this true maximum are marked by blue circles along

the x-axis. The plot shows how the spatial similarity measure suppresses the many

local maxima generated by the mutual information function.
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Figure 6.3: A line plot illustrating the search for correspondence using the MGI-PC
similarity measure; the individual components are plotted to demonstrate how gradient
information (EO) is used to suppress incorrect local maxima of mutual information
(indicated with blue circles on the x-axis).

Figure 6.3 provides a qualitative example to demonstrate the purpose of spatial

information in the combined measure. The investigation to demonstrate the

performance of this combined measure and its application to computational stereo

is described in the next section.

6.3 Hypothesis and objectives

Mutual information is a non-linear statistical method used extensively to register multi-

spectral medical images. The first hypothesis put forward in this chapter is that mutual

information can be used as a local similarity metric to match regions of thermal and

visible spectrum images. A qualifier placed on this hypothesis is that the regions must

be small enough to allow for accurate disparity estimation of points in the scene.

Mutual information can be applied to intensity maps or edge maps. The second

hypothesis put forward is that alignment using mutual information with edge features,

extracted by the phase congruency process, will improve the performance of the

measure at larger scales. It is expected that the multitude of materials and structures

of natural scenes will not provide consistent intensity value mappings and the joint

entropy will remain dispersed. On the other hand, phase congruency was shown to

increase visual similarity between the modalities in the structural EOH descriptor in

Chapter 5, and mutual information using congruent edges is expected to provide clear

maxima over a number of window scales.

To further increase performance, ambiguous maxima produced by the mutual

information measure are enhanced by the incorporation of feature orientation from the

reduced feature set of the phase congruency process. Feature orientation, indicated

by the principal axis θ′, was shown to be a repeatable means of comparing edges in
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Section 6.6.

There are three objectives to the investigation presented in this chapter. Firstly,

to demonstrate the performance of mutual information as a similarity metric for

local regions of visible and thermal images. Secondly, to develop and present an

enhanced measure using repeatable components of the phase congruency process.

Finally, to show an improvement on the initial implementation of mutual information

by demonstrating the performance of the enhanced similarity measure. An additional

task, aimed at addressing the practical implementation and possible extensions of this

method, is to show which scene elements are matched and at which scales (i.e. window

sizes).

6.4 Methods

Local region matching in computational stereo involves taking a point from one image,

called the reference image, and searching for it along the corresponding row in the

other, called the query image, to find the point that maximises a cost function. This

section presents the methods used to detect matchable points from the reference image

and the approach to evaluation used to achieve the objectives set out for this chapter.

6.4.1 Entropy-based detection

Mutual information is built upon the Shannon entropy measure. Maximising mutual

information of local regions involves a balance between maximising marginal entropies

and minimising the joint entropy of the two regions [110]. Maxima of the marginal

entropy map correspond to distinctive, information-rich regions which are stable and

matchable; therefore, points are extracted from the marginal entropy map of the

reference image to matched.

Interest points are extracted from the reference image by iteratively selecting the peak

in the entropy map. A Non-maximal suppression (NMS) radial footprint is used to

ensure adequate spatial distribution of the selected points. The surrounding region,

within a radius of N/3 pixels of the peak, is set to zero so that subsequent points will

not be detected within the suppression radius which scales with the size of the window
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to control the overlap of adjacent regions. The motivation behind this is that if a large

window is being used to estimate a coarse disparity map it does not make sense to

attempt a fine-grained result by matching a large number of tightly clustered points.

6.4.2 Matching criteria and constraints

The input images are assumed to be rectified, so the search domain to match a point

from the reference image is restricted to a horizontal disparity along the corresponding

row in the query image. A maximum horizontal disparity is placed on the search

domain; this constraint is standard practice in many applications and only requires

that the minimum distance from the baseline to the scene is known. Additionally,

without this limitation, the number of comparisons would make computation time

unreasonably long with little added value.

A match is declared at the point that maximises the cost function if the marginal

entropy of the query point is non-zero. Therefore, a match is only declared if the

region in the query image contains matchable information. This qualifier on matching

also decreases spurious responses caused by non-simultaneous phenomena.

6.4.3 Approach to evaluation

Evaluation is carried out by recording the ratio of true positives (i.e. correctly matched

points) to the total number of declared correspondences. Two image pairs are available

to be used in these automated tests and have a ground-truth disparity of ±2 pixels; a

correctly matched point is one that lies within this disparity (i.e. −2 ≤ d ≤ 2 pixels).

The maximum disparity of the search domain is set to ±40 pixels.

Evaluation is carried out at four scales; the square N × N block sizes are N ∈
{9, 15, 23, 27} pixels with odd dimensions to ensure that the window is symmetric

around the interest point. The number of points extracted from each image is

dependent on the size of the non-maximal suppression window, which is defined as

N/3 pixels. Note that no threshold was placed on the value of similarity (distance) of

the declared matches.

The default parameters for the phase congruency process are shown in Table 4.1.
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Mutual information requires that the edge map is quantised into discrete levels. The

phase congruency edge map was heuristically quantised into Q = 20 levels to ensure

that small congruency values were not filtered out (by quantising too coarsely) and to

avoid increasing the sensitivity to noise (by quantising too finely). Although no explicit

thresholding operations have been applied, this heuristic Q value does threshold the

value of the edge magnitudes which is used as a significance measure for feature

orientation.

The software libraries introduced in Section 4.3.4 were used in this investigation

with the addition of pyentropy [111] to perform entropy and mutual information

calculations.

6.5 Results

The evaluation of the proposed cost function is presented in this section. The results

of the analysis are tabulated in Tables 6.1 and 6.2.

Comparison is carried out using the TPR expressed as

TPR =
TP

TP + FP
. (6.5)

In order to compare different measures the number of correspondences is required to

be roughly equal. The invariant representation provided by the phase congruency

edge map has been shown to extract the stable information common to both spectra;

however, the common edge information is sparsely distributed, resulting in large

regions of zero-entropy. Figure 6.4 provides an example of the marginal entropy of

one of the reference images used in this section.

The TPR, described in Eq. (6.5), is used to compare the performance of the distance

measures presented in this section. The information measures Mutual information

(MI) and Normalised mutual information (Y) are analysed separately and when

combined, with multiplication, with the spatial Gradient information (GI). The

product of mutual information (MI) and gradient information (GI) measures. (MGI).

The product of normalised mutual information (Y) and gradient information (GI)

(YGI). The information measures are used to compare regions of Intensity information

(I) and Phase Congruency edge information (PC); this is expressed by appending the
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Figure 6.4: The marginal entropy H(X) at N = 9 of a phase congruency edge map. The
dark blue regions show the regions of zero entropy that cannot be matched. (Image
from the OSU database [44].)

measure with -I or -PC (e.g. MGI-PC is the product of the MI distance measure

comparing regions of PC information and GI).

The results are presented in Tables 6.1 and 6.2. The analysis is carried out over four

scales N (indicated in the first column if each table). A higher TPR indicates a better

distance measure. However, as the scale N increases, an increasing difference in the

number of regions detected when intensity information I or edge information PC was

observed; therefore, the number of regions detected when either information source is

used is indicated as two numbers separated by a forward slash in the second column

(PC/I).

The results of the spatial information (GI) and the two mutual information measures

are provided in Table 6.1. The results address the evaluation of mutual information

as a local region descriptor over multiple scales with both intensity and congruency

edge information.

Table 6.1: The TPR of mutual information measures MI and Y are analysed using
phase congruency edges (PC) and intensity (I) information (the number of samples
detected using each information source indicated in the PC/I column) over four scales
N .

N PC/I MI-PC MI-I Y-PC Y-I GI
9 290/290 0.14 0.21 0.11 0.22 0.26

15 263/290 0.27 0.29 0.22 0.29 0.35
23 180/290 0.40 0.46 0.36 0.37 0.48
27 111/200 0.51 0.46 0.39 0.36 0.56
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The proposed cost function combines mutual and spatial information; the two

variations of mutual information are evaluated with different input information types.

Spatial information is shown to improve the performance of the mutual information

measures, particularly the phase congruency-based measures.

Table 6.2: The TPR of two combined measures, MGI and YGI, are analysed over
four scales N with both phase congruency edges (PC) and intensity (I) information
(the number of samples detected using each information source indicated in the PC/I
column).

N PC/I MGI-PC MGI-I YGI-PC YGI-I
9 290/290 0.24 0.29 0.23 0.25

15 263/290 0.42 0.40 0.39 0.39
23 180/290 0.58 0.57 0.54 0.53
27 111/200 0.68 0.62 0.64 0.59

Figures 6.5 and 6.6 show the distribution of true and false positives in the two

images used in this investigation. In each case, the left image shows the correctly

matched thermal regions superimposed on the visible spectrum image. On the right

is the thermal image, with green and red crosses representing true and false positives

respectively, with tails showing the displacement between the reference and query

images.

(a) MGI-PC at N = 15 with TPR = 0.40.

(b) MGI-PC at N = 23 with TPR = 0.55.

Figure 6.5: Region mapping using the MGI-PC similarity measure. (Images from the
OSU database [44].)
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Figure 6.6c shows the regions that are detected and matched when the MGI metric is

used with intensity information to provide a comparison of the distribution of matches

when edge information, shown in Fig. 6.6a at the same scale, is used.

6.6 Discussion

The results presented in the previous section are primarily aimed at answering the

initial hypotheses set out in the introduction of this chapter; however, the underlying

goal of this discussion is to motivate further investigation into phase congruency

and the proposed cost functions for multi-spectral image fusion. Keep in mind that

performance over multiple scales is important, as coarse-to-fine searches and match

propagation through scales is vital for accurate disparity estimation. The true positive

rate (TPR, Eq. (4.18)) provides a general indication of the matching performance of

the cost function over a number of scales.

6.6.1 Findings

The two forms of mutual information presented in Section 6.1 are compared in Table 6.1

under data (i.e. edge map or intensity values) and scale (region size) variations. Both

measures perform better when intensity information is used, with MI providing better

performance than the normalised Y measure over all scales. It was hypothesised that,

as the aperture N of the region increases, the inconsistent intensity mappings of the

heterogeneous materials in natural scenes would cause the joint probability distribution

to fail to develop the sharp peaks required to minimise the joint entropy value in the

mutual information measure. The results in Table 6.1 show that mutual information

is well suited to comparing and matching regions of visible and infrared intensity

information over all the scales analysed, although the performance of the MI-I and Y-I

measures does begin to drop off at the largest scale. As the intensity-based information

measures are able to detect and match many more corresponding regions, despite the

lower TPR, it is concluded that the use of the MI-I measure provides the best overall

performance.

Combination of the mutual and spatial information measures is evaluated in Table 6.2.

Although the MGI-PC measure has a slightly higher TPR, the MGI-I measure
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(a) MGI-PC at N = 15 with TPR = 0.50.

(b) MGI-PC at N = 23 with TPR = 0.70.

(c) MGI-I at N = 15 with TPR = 0.45.

Figure 6.6: Region mapping using the MGI-PC and MGI-I similarity measures to
demonstrate which regions are extracted and matched when congruent edges or
intensity information is used. (Images from the OSU database [44].)
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once again matches more points. The results presented in Table 6.2 show that the

congruency-based spatial information GI improves the TPR performance of the MGI-

PC and YGI-PC measures more than the intensity-based measures. Detection based

on high entropy regions of the edge map selects regions with a large amount of edge

information. As gradient information is only considered at points of congruency,

regions that have more edges features will benefit more from spatial information.

However, there is no guarantee that high entropy regions of intensity information

will contain many edges (i.e. points of congruency), so these regions do not benefit

from the incorporation of gradient information to the same degree.

Although the spatial information, provided by GI, is best suited to the MI-PC measure,

mutual information is also shown to perform well as a region descriptor for multi-

spectral image intensity content. It is concluded that the combination of the MI-I and

GI measures provided the best overall performance in terms of multi-scale matching

and localisation accuracy at smaller scales. From a design point of view, it can be seen

that the phase congruency and mutual information methods are well suited to work

together, as both methods are designed to be adaptive to the underlying data and to

operate with minimal heuristic input (e.g. thresholds, parameter tuning). Therefore

it is expected that, despite the limited data available to this investigation, the results

will generalise to different scenes and imaging devices.

6.6.2 Implications to fusion

The practical application and potential for further development of the MGI-PC is

briefly discussed in this section. The goal of the qualitative analysis is to illustrate

which structures are detected and matched, and to demonstrate the behaviour of the

cost function over multiple scales.

Figures 6.7 and 6.8 show the correctly matched regions (using the same process shown

in Fig. 6.5 and Fig. 6.6) superimposed with the largest scale on the bottom; each scale

(the square window size) is outlined in a different colour.

Entropy-based detection identifies points containing distinctive information and

attempts to find corresponding observations in the query image. The regions extracted

therefore depend on the underlying image information.
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(a) MGI-PC. (b) MGI-I.

Figure 6.7: MGI-PC and MGI-I region mapping to show propagation of entropy,
overlayed at multiple scales (square windows of N × N pixels where squares of size:
N = 9 are light blue, N = 15 are light green, N = 23 are dark blue and N = 27 are
red). (Images from the OSU database [44].)

Figures 6.7 and 6.8 show the structures that are matched when intensity information is

used compared to when edge information is used. A noticeable difference between the

two approaches is that the matches in the MGI-I images (Figs. 6.7b and 6.8b) appear

more contour-like when overlapped over multiple scales. Based on this observation, it

could be concluded that features detected using the intensity-based entropy function

and matched with the MGI-I measure are able to localise structures over multiple scales

more effectively than the PC-based detection and matching measures. In addition to

this multi-scale matching stability, more matchable regions are detected when intensity

information is used than when the PC edge maps are used; this can be seen in the

PC/I column in Table 6.2 which shows that significantly more matchable features are

found when detecting regions of high entropy in the intensity images, particularly at

higher scales N = {23, 27}.

It is concluded that, despite the lower TPR to the MGI-PC function, the MGI-I

function may provide more useful behaviour for fusion methods which utilise multi-

scale structural matching information. However, more development in methods of

multi-scale fusion with a larger image dataset is required to conclusively determine

how well the MGI-I and MGI-PC methods are suited to multi-spectral image fusion.
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(a) MGI-PC.

(b) MGI-I.

Figure 6.8: MGI-PC and MGI-I region-mapping to show propagation of entropy,
overlayed at multiple scales (square windows of N × N pixels where squares of size:
N = 9 are light blue, N = 15 are light green, N = 23 are dark blue and N = 27 are
red) (Images from the OSU database [44].)
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6.7 Summary

This chapter has presented the development and evaluation of multi-spectral cost

functions for computational stereo. Variations of the region data and mutual

information measure led to the conclusion that the regular mutual information

metric performed well with the rich multi-spectral intensity information. It was

also concluded that the incorporation of feature orientation information significantly

improved performance at smaller scales. This is the second chapter that utilises the

spectrum-invariant representation provided by phase congruency and further motivates

its use with multi-spectral images, despite the computation time required by the

current implementation. The next chapter provides a summary and brief discussion

of the over all findings of this work.
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Chapter 7

Conclusions and recommendations

The investigations carried out in this work aimed to identify effective methods that

could be used to map multi-spectral observations from distinct viewpoints. The

mapping performed by these methods synthesise a single enriched image in which

each pixel has both colour and thermal information. Due to the application-specific

requirements of fusion systems, information fusion was not addressed directly; instead,

the methods required for fusion were the focus of this work.

The challenges and requirements to achieving this goal were initially clarified in

Chapter 3. Parallax between the observations, captured from two viewpoints separated

by a horizontal displacement, motivated the use of computational stereo methods and a

region-based disparity mapping approach to overlaying the multi-spectral information.

The focus was placed on the image alignment and correspondence matching stages of

computational stereo. The motivation for this focus was based on the tasks’ common

requirement of a reliable and robust similarity measure to enable comparison of the

disparate multi-spectral information.

Phase congruency, a frequency-domain analysis tool, was introduced and used

in extracting repeatable and stable structural features. Chapter 4 presented an

investigation with two objectives: to develop a stable representation of the two spectral

modalities, and to isolate predictable features extracted in the phase congruency

analysis process. Evaluation of the first of these objectives was deferred to its practical

implementation in Chapters 5 and 6.

The second objective was accomplished using supervised learning with the SVM
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model. The trained SVM was evaluated using the ROC to identify predictable

relationships between phase congruency components extracted from the spectral

modalities. Components were combined through multiplication and the cosine distance

measure (which measures angular distance) based on knowledge drawn from an

extended development of theory in Section 4.2. The investigation identified features

with predictive value. The final pattern vector (seven components), which concluded

the investigation process, provided the best AUC measure; however, the feature

orientation distance of congruent edges showed comparable performance. Further

analysis of the feature over the whole sample set showed its effectiveness as a repeatable

similarity metric. As the feature orientation distance is a single number, it was easily

integrated into the combined MI and GI (MGI) cost function, presented in Chapter 6,

where its incorporation was shown to boost performance significantly.

Methods for automatic alignment of multi-spectral viewpoints were investigated in

Chapter 5. The EOH descriptor was adapted to use the invariant representation (edge

map) of the phase congruency process to replace the traditional gradient-based Canny

edge detector. It was shown that conventional feature-based methods are unsuited

for the variations in inter-spectrum image data. The Shi-Tomasi GF corner detector

was found to be the most repeatable in the automated tests carried out, although

it was observed that the phase congruency corner detector, while performing well in

some cases, was prone to edge responses which introduced ambiguous matches (the

aperture problem).

The EOH descriptor with the Shi-Tomasi GF corner detector (EOH-GF) performed

significantly better than traditional feature detection and matching methods; however,

its application is limited by its simple implementation which is sensitive to rotation,

scaling and perspective distortion. Invariance to these factors is a fundamental

requirement for alignment of uncalibrated cameras.

It is recommended that further development of the EOH descriptor is carried out to

enable its application as a feature-point descriptor for unaligned images. However,

until an effective inter-spectrum method for feature detection and description is

developed, it is concluded that custom tools (such as those discussed in Section 3.2)

are essential to accurately align the visible and thermal viewpoints.

Region-based correspondence search and matching of two aligned images was the

second stage of computational stereo investigated in this work. Chapter 6 presented the

development of a cost function incorporating mutual information and spatial features
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extracted in the phase congruency process. It was found that mutual information

performed similarly well with either multi-modal intensity or edge information;

however, the use of edge information in detection and MI-PC matching saw greater

benefits with the incorporation of spatial information. It is recommended that

extensions to the cost function should focus on utilising this multi-scale performance;

such methods include, for example, coarse-to-fine correspondence search, multi-scale

match propagation and disparity map refinement.

This work has motivated the use of phase congruency as an essential step in adapting

existing methods and developing new ones. The methods that were presented were

largely unconstrained and can readily be improved for application-specific tasks. The

significant difference in wavelength makes visible and thermal images the most difficult

of the visible-infrared correspondence problems. The two components of the MGI-PC

cost function (mutual information and phase congruency) are both applied without

any heuristic thresholds; this important design objective means that the measure can,

in theory, be applied to any multi-spectral pair. While the same could be said about

the EOH feature descriptor, its application is limited in its current form.

Both the MGI-PC cost function and the EOH-GF feature descriptor demonstrate

how phase congruency is well-suited to multi-spectral image analysis. While the

computational cost of using the method makes it impractical for real-time applications

in its current implementation, this computation time can be massively reduced as

the algorithm is inherently parallel and suited to modern multi-threaded Central

processing unit (CPU) or Graphics processing unit (GPU) architecture.

Frequency-domain analysis tools are essential when working with disparate multi-

spectral images. Extracting information so that these modalities can be compared is

a vital first step towards any framework for fusion. This work has demonstrated that

phase congruency can perform this vital function and is a valuable tool for working

with distinct visible and infrared spectra.
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