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Abstract

This thesis addresses the issue of segmentation and tracking of human figures in video se-
quences. Various issues affecting segmentation are investigated, including selection of a colour
space representation. Different methods for segmentation are implemented and their respec-
tive merits and disadvantages discovered. These are largely various forms of colour and motion
segmentation. The different forms are then combined in order to produce a segmentation that

is more effective than any of the component techniques on its own.

The tracking problem is addressed separately through the use of a Smart Room, where the
segmentation can be easily performed. The tracking involves estimating a trajectory for a given
person over time in the image frame co-ordinate system. This also includes distinguishing one
person from another using low-level image features which have been extracted from each person

over time.

Suggestions are made for simple modifications which will allow the segmentation and tracking
to be performed simultaneously, and these modifications are shown to be an improvement on
the original tracking algorithm.

Results indicate that the segmentation algorithm produces segmented human figures which are
reliable enough for low-level image features to be extracted from them. The centroid position
over time is used as an estimate of segmentation reliability. The tracking results show that
the tracking algorithm is effective as long as people’s clothing colours are sufficiently varied
and that every expected person in the scene can be matched to a unique segmented blob.
Complicating factors in tracking which are evident from the results are: attempting to match
many people to one segmented blob and segmentation inaccuracies which lead to ambiguities

in the occlusion reasoning process.
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Chapter 1

Introduction

1.1 Introduction

Automatic segmentation and tracking of people in video sequences is an important task in
computer vision which has been receiving a lot of attention especially in recent years. The

applications of both of these include:

e Video conferencing.

e Automated and semi-automated surveillance for security purposes.

e (ait analysis for medical purposes.

e Analysis of sporting activities: for individuals’ motions, for example, analysis of a crick-
eter’s bowling technique, and for team game strategies such as soccer or handball [57]

[56].

e Other automated video analysis, for instance, to compile statistics about people’s activ-

ities and movements.
e Gesture recognition systems, for automatic sign language recognition, for example.
e Video compression.

e Intelligent environments which use vision to sense what the user is doing and react to
these actions [81] [41].
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1.2 Problem formulation

Segmentation in this instance is merely the task of classifying picture elements (pixels) in
an image as person or background, with the ultimate aim of extracting silhouette images of
human shape which are as accurate and smooth as possible. This is something a human
can do easily, although to formulate a set of rules by which this classification can be made
automatically by computer proves a lot more difficult. Tracking involves keeping a record over
time of the location and path of motion of the connected objects which have been identified

as people through the segmentation process.

Segmentation is thus a different problem from tracking, although the two are closely linked.
Tracking can be performed without explicitly performing segmentation, if curves or templates
in the image are tracked and an approximate location for an object is found. Likewise,
segmentation can be performed without tracking. For segmentation it is sufficient to identify
all pixels that correspond to humans without being able to provide any information about

their identities or trajectories in time and space.

In this thesis, the approach is taken of segmenting the person or people present in the scene as
accurately as possible using a combination of image information. Spatial, colour and motion
models are kept of the background and of the foreground objects or people for this purpose.
Once people have been identified as such, features are extracted from the segmented people
which allow them to be tracked in subsequent frames and information to be made available
about the paths they follow and changes they undergo. This approach makes the tracking
completely reliant on the efficiency of the segmentation. Other approaches, such as tracking

using eigenspace decomposition of high dimensional features [49] are not considered.

The problem of segmentation is not yet reliably solved for the general case, and different
algorithms are used for different purposes and in different environments. Problems facing
segmentation are shadowing of both foreground and background objects, camera motion,
moving objects in the background, occlusion and lighting variations: both spatially within an

image, and temporally within a sequence.

In order to make the problem solvable, certain constraints may be applied to restrict the
problem domain, as certain complicating elements may be removed almost entirely. The most
extreme example of this is to control the background completely so as to make it as simple as

possible to remove. A method of doing this is discussed in chapter 7.

For this thesis a single stationary camera is assumed. In this way camera motion does not
need to be taken into consideration and no use need be made of stereo images. It is also

assumed that only slowly moving background objects are present, and that we have some
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prior knowledge of the initial appearance of the background'. Problems that remain are: to

compensate for lighting changes over time, and to deal with shadowing and occlusion.

1.3 Outline of thesis

In chapter 2 a broad survey of the literature of the last decade is presented. Various methods
of attacking the segmentation problem are outlined, ranging from colour-based segmentation,
through stereo and gradient-based methods to motion-based methods. Some segmentation
techniques which have specifically been applied in the context of tracking are also mentioned
and described.

Chapter 3 presents the issue of colour vision with particular regard to the human visual
system. In this chapter various colour spaces used in computer vision are also introduced, and
a colour space in which to perform the segmentation and tracking for this project is selected.
An experimental evaluation of certain colour spaces is also performed, by applying a simple
segmentation algorithm for skin colour detection in the selected colour spaces and ranking the

results.

Colour segmentation is addressed in chapter 4 and Gaussian mixture modelling is intro-
duced as a method of estimating colour probability distributions to model the foreground and
background. An algorithm for selecting the number of components for a Gaussian mixture
is described and a method for adapting the model to compensate for changes in background
and foreground appearance over time is discussed. The colour segmentation module of the

developed algorithm is described.

Chapter 5 discusses briefly motion estimation and more specifically change detection in order
to locate and segment objects in a scene. A Kalman filtering method for updating a reference
background is developed, and used to locate a candidate region in an image to be tested for

the presence of a person.

In chapter 6 two different methods of combining the outputs from a change detection module

and a colour segmentation module are proposed and evaluated.

Chapter 7 raises the question of tracking, once segmentation has been performed. The
Smart Room concept is introduced and a prototype system is described which performs the
tracking once segmentation has been isolated through the use of a controlled environment.
Some results from this system are presented, which show situations under which the tracking
is largely successful as well as conditions which contribute to a low success rate, and drawbacks

of the system are discussed.

!For this it is sufficient to assume that there will not always be people in the room, but that we are able to
obtain frames consisting of only the background image. This seems a reasonable assumption in most situations.
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In chapter 8 further work is described which involves modifications to the existing tracking

algorithm which will allow the segmentation and tracking algorithms to be combined.

In chapter 9 results from the segmentation and tracking are presented separately. The
segmentation accuracy is estimated indirectly by measuring the departure from smoothness
of the trajectory of the centroid of the segmented person over time. This method would lead
one to believe that the segmentation algorithm is mostly effective, although the segmentation
results are difficult to quantify. Tracking results are divided into two sub-categories and
show a high degree of accuracy for the simpler category of possible tracking error and poor
accuracy for the more complicated situation. In chapter 10 conclusions are drawn and some

recommendations for improving the system are made.

The hardware used is described in Appendix B.



Chapter 2

Literature review: tracking and

segmenting humans

This chapter is a broad review of some of the current literature concerning the problem of
segmentation of humans in video sequences. Some of the publications discussed in the chapter
also concern the tracking of people, although some form of segmentation is usually required
before the tracking can take place. If the segmentation is performed in order to perform
tracking this is made explicit in the description of the system. This is not intended to be a
complete review of all the work done in the field, as this would be lengthy and cover a large
amount of material which is irrelevant to this thesis, so instead mention is made of the various
different approaches that have been taken, together with the most important examples of each

approach.

The relevant literature is split into categories, according to the primary information used to
perform the segmentation. These can each be split into several sub-categories. Section 2.1
describes some colour-based techniques for both segmentation and tracking. Section 2.2 de-
scribes methods which use stereo vision to perform an initial segmentation and various feature
extraction methods for tracking. Gradient-based methods for segmentation are discussed in
section 2.3. In section 2.4 segmentation from motion is discussed and finally in section 2.5
methods of segmentation combining motion with other information, such as shape and colour,

are described.

2.1 Colour-based techniques for segmentation and tracking

Most segmentation algorithms which rely heavily on colour information use a model of the

colour distributions of either the body, the background or both. These are usually updated

5
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with time in order to try to compensate for changes in lighting. The discussion of colour-based
techniques that follows is split into two: simpler colour based techniques which assume single
Gaussian distributions for colour, and techniques using Gaussian mixtures in various ways.
The latter, of which there seems to be a plethora in the current literature, is particularly
relevant to this thesis, given the method used for colour tracking which shall be described in

chapter 3.

2.1.1 General methods using colour

Pentland [81] and his colleagues at MIT have developed a system called Pfinder for tracking
the human body in real-time.! The system segments and tracks a single person at a time using
a single stationary camera. The initialisation process consists of building a model of the scene
by examining frames known to contain no people and representing the colour distribution at
every pixel as a Gaussian with mean p and full covariance matrix. Pixels in the background
which are not occluded by the foreground are updated at every frame ¢ to compensate for
small lighting changes, as shown in equation 2.1 below, where y is the vector containing the

position and colour information of the point and « a weighting factor .

pe =y + (1 — a)u (2.1)

A person entering the scene is detected when the Mahalanobis distance (formally defined in
equation 8.1 on page 96) in a three-dimensional YUV colour space exceeds some threshold for
a large region of pixels. A blob model of the person is built up by identifying the head, hands
and feet of a person when he or she enters the scene. Feature vectors are formed using the
spatial and colour co-ordinates clustered to form a collection of blobs. The person is modelled

as a Gaussian distribution:

exp[—3(0 — )" S71(0 — p)]
(2m) 3 02

P(0) = (2.2)

where p is the mean value (z,y,Y,U, V) of each blob and ¥ the covariance matrix.

To analyse each image, the spatial model for each blob is updated to predict the spatial
distribution for the current image, using a state vector of position and velocity and assuming
Newtonian laws of motion. Secondly the log-likelihood of membership to the blob model or
the background is calculated for each pixel and the pixels are assigned to the most likely class.
A binary support map is kept to show which pixels belong to each blob in the blob model and
which to the background map. Finally the statistical models for both the blob and background

!Pfinder operates at 10 frames a second.
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models are updated.

Fieguth and Terzopoulos [17] use only colour for the tracking problem, without explicitly
performing a segmentation. Regions are matched to target regions using colour ratios in each
colour band. If the ratios in the three colour bands are roughly equal, the fit is a good one.
Occlusion with objects is explicitly addressed instead of relying purely on the level of detail

provided by the object models.

2.1.2 Methods using Gaussian mixture models and colour

Raja and McKenna [62] use Gaussian mixture models, as is also done in [52], to estimate
probability distributions of the person and the background. These models are then used for
the segmentation and tracking. The models are dynamically updated to account for lighting
changes, and the adaptation process is made selective by calculating the log-likelihood of the

data, so that the tracked person is not lost by the tracking system.

The person is modelled using a Gaussian mixture model, the order of which is selected auto-
matically to appropriately represent the training data. The mean, variance and prior probabil-
ities for each Gaussian component are selected using the expectation maximisation algorithm
(hereafter referred to as the EM algorithm).

Korhonen et al. [40] model the background using a non-adaptive mixture of Gaussians. Can-
didate foreground regions are identified and then tracked using colour, position and velocity
features and a Kalman filter to estimate the next state of the object. The tracking is done
by assigning each object to the hypothesis which is closest in a Mahalanobis sense. The mea-
surement error for the filter is determined using the variance of the measured values. Again,

no use is made of spatial information.

In work by Grimson and Stauffer [75], an adaptive Gaussian mixture model is also used, this
time to model the background only. Each pixel belonging to the background is modelled
as a mixture of Gaussians. They argue that it is easier to model a background pixel than
foreground, as being static it produces less variance in colour. K (a number between 3 and
5) Gaussians are used to model the most recently observed pixel values at a point. Each time
a new pixel value is observed, it is matched to one of the Gaussian components if it is within
2.5 standard deviations of the distribution. The matched distribution then has its parameters
updated in favour of the newly observed data point. If no match is made, the Gaussian
with the lowest prior is replaced by a Gaussian centred at the new data point, with a high
variance and a low prior. The Gaussian distributions in the model are ordered according to
highest prior and lowest variances: these are the distributions most likely to be responsible for
background colours. Anything below a certain threshold is considered foreground. In this way

the background model is continuously updated and foreground classification occurs in each

7
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frame.

Khan and Shah [37] use a background model consisting of the mean and covariance of colour
values observed at each pixel, and construct a Gaussian mixture to model the colour classes
of a person entering the scene. The mixture models corresponding to the peoples’ colour
distributions are updated when people are not involved in an occlusion and are used to segment
each person from the background as well as to decide which person is which during an occlusion.
This is done by assigning each pixel to the class which produces the maximum a posterior:

probability for the models.

Friedman and Russell [18] use a probabilistic approach to model a single pixel’s appearance
when it forms part of different classes, as an attempt to solve the shadowing problem encoun-
tered when modelling the background simply with its mean and covariance at each pixel. The
segmentation is applied to sequences of moving vehicles for traffic surveillance purposes. Each
pixel in this model is background for some of the time, in shadow for some of the time, and
for the remaining time forms part of a moving foreground object. The pixel’s appearance over
time is therefore a weighted sum of three distributions and can be modelled as a mixture of
Gaussians with three components, the components being the foreground, shadow and back-
ground classes. The mixture model is initialised with weak priors and an incremental version
of the EM algorithm is used to update it once new data becomes available. The components
of the model are labelled with the classes to which the Gaussians are assumed to correspond:
the darkest being the shadow component, the one with the largest variance the vehicle class
and the remaining one the background. The pixels are then classified according to the cur-
rent model. This is an example of learning a Gaussian mixture model from incomplete data.

Gaussian mixture modelling is discussed in greater detail in chapter 4.

2.2 Segmentation techniques which make use of stereo

Another real-time system? developed at the University of Maryland, WS [23] makes no use
of colour either for segmentation or for tracking. Instead, it makes use of intensity images
and disparity images obtained through a stereo vision system. The system is intended for use
with a stationary camera, but is able to track multiple people through occlusions and other
interactions through the use of stereo analysis. The background is modelled in the same way
in the intensity image and in the disparity image obtained through the stereo analysis module.
Each pixel is modelled by the maximum and minimum values appearing over a period of time,
as well as the maximum change observed between successive frames. These values are updated

for pixels which are identified as background.

2W*S operates at between 5 and 20 frames a second depending upon how many people are present in the
scene.
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Foreground regions are obtained by thresholding both the intensity and disparity images where
they differ from the background model. This is followed by noise cleaning and morphological
filtering before the objects detected in the two images are resolved. Detected objects are
matched to existing objects using shape analysis, template matching and spatial occupancy
by testing the overlap between the predicted positions and the locations of the objects. Motion
models are used to predict the location of objects in successive frames.

The use of stereo as well as intensity helps to eliminate problems which occur in only the one
or the other image type. The segmentation of the disparity image is insensitive to short term
illumination changes and shadowing and keeps foreground regions intact, whereas the intensity
segmentation is more efficient if there is not enough texture in the background to produce a
reliable disparity image and provides a more accurate silhouette outline of the foreground

object.

Darrell et al. [11] (Interval Research Corporation) combine stereo, colour and face detection.
They also make the distinction between short term, medium term and long term tracking, using
more persistent features such as face pattern for long term tracking and position and velocity
for short term tracking. Depth estimation is used for segmentation, colour segmentation to
detect skin in the segmented regions and to model clothing colours and intensity pattern

classification to detect faces.

Researchers at Microsoft [41] likewise use stereo to locate people and colour to identify them.
The system works at 3.5Hz. A person’s colour identity is maintained through use of a his-
togram and histogram intersection [5] is used to calculate the similarity between histograms
obtained from the segmented image and stored histograms. A person creation/deletion zone

is constructed, representing valid routes of entering and leaving the room.

2.3 Gradient-based methods

The methods discussed in this section are generally based only on spatial gradient information.
Although methods based on motion estimation make use of spatial gradient information they

are discussed under motion segmentation in section 2.4.

Segmentation

Bichsel [4] [3] uses simply-connectedness of an object and the approximation that local image
derivatives within textured regions and along object contours show a Laplacian distribution,
to segment moving objects. The spatial derivative of the brightness of the image is calculated

for each point in the image. The difference image between two successive gradient images
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is formed and the distribution should remain Laplacian, especially along the contours of the
moving object. The logarithmic local probability that a pixel belongs to the background, given
that at least one neighbouring pixel belongs to the background, is calculated for every pixel.
The local background probability is then optimised using global information, incorporating

the simply-connectedness of the background.

Westberg [80] also uses edge-based segmentation. A single simply connected moving object
without holes is also assumed to be present in the scene in this case. He performs a hierarchical
segmentation based on the refinement of object boundaries. The difference image is used in
this method, and divided into blocks which are classified as inside the object, outside the
object or object boundaries. Each block is then split into smaller child blocks. The children
of a block that has been classified as inside or outside are automatically classified the same as

the parent, but the child blocks of boundary blocks are reclassified.

This process applied iteratively breaks the image down to blocks which are pixel-sized and
every pixel is classified as inside, outside or border, where between an innermost outside pixel
and an outermost inside pixel there is one pixel that has been classed as a border pixel. This
is obviously used for a segmentation whereby the object consists of the border pixels and all

the pixels classed as inside pixels.

Jabri, Duric and Wechsler in [34] present good segmentation results using a combination of
background differencing and edge information. A background model is built for each colour
channel and for the horizontal and vertical edges of the background image. Subtraction is
performed for each of these models and a confidence normalisation procedure is used to create
a confidence map between two thresholds for each changed region. The maximum for each
pixel between the edge difference confidence map and the colour difference confidence map is
then chosen and thresholded to segment the foreground object. The use of the edge difference
image makes this a robust algorithm in clutter, although its efficacy seems to rather depend
upon edges being present in either the foreground, background or both. However since it
is combined with a colour difference image, presumably in the absence of clutter the colour

difference image would perform reliably enough to compensate for this.

Tracking

Huttenlocher et al. [29] use a two dimensional model to track. The models are shape and
motion, so an important constraint is that the object’s shape not change radically between
frames. The location of the object is not constrained. The object model and image in which
it is searched for are binary images (which are edges detected using the Canny edge detec-
tor). First stationary background edges are removed from the image, then the best matching

position is found for the model from the previous frame using a partial directed Hausdorff
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distance measure. Ambiguities are resolved by using the direction of motion. The new model
is selected by using the pixels of the frame that are within a threshold distance, § of the

translated model of the previous frame.

The method used in [5] for tracking heads in a video sequence combines the outputs of two
different and complementary modules. The gradient of the intensity along the border of a
region and the colour histogram of the interior of the object are used to this end. The head
shape is modelled by an ellipse with a fixed aspect ratio and tracking is done by finding
the region where the values of the image best match the model values. The search for the
head is done within range of the predicted location calculated using a velocity estimate. The
normalised sum of the perpendicular gradient magnitudes around the perimeter of the ellipse
is calculated for each predicted possible ellipse position and axis length. The colour histogram
tracking is initialised by the user presenting his/her face to be modelled before the tracking
begins, and the intersection between the histogram at the hypothesised head position and
the model histogram is calculated for tracking. The goodness of match of the combination of
the two criteria: interior colour and border gradient, is calculated by converting the two into

percentages and seeing at which predicted head location the sum of these is a maximum.

2.4 Motion segmentation

The simplest form of motion segmentation is change detection, which is performed using two
images. This can be either an image and an empty background image, which should reveal the
entire object, or the difference between two consecutive images, which reveals the small area of
change, space that the object did not occupy in the previous frame and background which was
covered by the object in the previous frame and has become uncovered. Several algorithms
that use image differencing construct an adaptive reference image [36] [63] or median [66]
or mode [71] filtering in the time domain, so that lighting changes are modelled and the
background image is updated as the foreground image changes. Others use statistical models
and Markov Random fields [1] [77] to refine the image differencing operation. Differencing
operations which are performed on a pixel-wise basis are subject to noise and ideally some of

the global or local spatial data in the image should be taken into account [74] [45] [33].

Motion estimation can be performed either using spatial and temporal gradient-based methods
or feature-based methods, such as points, lines and edges. Gradient methods need additional
constraints and work better for smooth objects as the constraints impose uniform conditions
which increase the error at the boundaries of moving objects. Features are difficult to extract
robustly for feature correspondence establishing techniques, so both methods have disadvan-
tages. Most forms of motion segmentation depend upon the computation of optical flow and

motion estimation between frames of a sequence. These techniques are explained in chapter

11
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2.4.1 Image differencing

The simplest form of change detection is a threshold on the difference image between a frame

and the previous frame, or between the frame and an empty background reference image.

Leung and Yang [44] use the difference of two consecutive images and an adaptive thresholding
technique based on the histogram. Yalamanchili et al. [82] describe a difference picture system
which uses the grey level difference between two consecutive images to extract descriptions of
moving polygonal objects. In [82] the difference image obtained is used as a basis for a region-

growing operation, constrained by geometrical observations, within the region of difference.

Skifstadt and Jain [74] propose two techniques to better previously existing techniques for im-
age differencing. The three existing techniques they describe are first, the “Geo-pixel method”
where regions, rather than pixels, are compared according to the likelihood ratio shown in
equation 2.3. If L exceeds some threshold the two corresponding regions in the successive

images are not considered regions of change.

[(0F +03)/2 + (1 + p2)/2)*P
g102

L=

(2.3)

Secondly, the “Quadratic Picture Function Model” models the grey level distribution in each
region as a function in order to obtain a difference measure [35]. Thirdly, they describe a grey
scale normalisation technique which normalises the grey values G of a corresponding region
1 in images A and B so that the normalised values can be subtracted to allow for lighting

change.

~—

oAt
GNorm = (
B(i

(GB(x,y) — uB(i)] + pa(i) (2.4)

)

~—

Their improvement on the “Quadratic Picture Function method” is to use the partial deriva-
tives with respect to z and y of the quadratic function model for the same region in consecutive

images and subtract these from each other.

The other approach they describe is, like the grey level normalisation, an attempt to account
for illumination changes to extract only moving objects. Each image is split into many sub-
regions and the variance of the ratio of the two intensities is calculated. If this is near zero
the region has not changed, and if it is much greater than zero the region is assumed to have
undergone change. This method is effective as it relies upon illumination ratio information

and not absolute luminance difference values.
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Lim et al. [45] use the simple image differencing method and follow this by fitting ellipses
to the contours in order to classify objects. Kuno [42] uses an extraction function of image
and background shown in equation 2.5, which shows remarkable improvement on the simple

background subtraction in background/foreground separation.

2v/(A+1)(B+1) 2/(256 — A)(256 — B)

f(A,B)=1- (A+1)+(B+1) % (256 — A) + (256 — B)

(2.5)

Here A is the image with the object present, and B the background image. The grey-scale

values of the images range from 0-255.

Ivanov, Bobick and Liu [33] use a multiple camera method of eliminating the effect of shadows
when the background is subtracted. The current image is geometrically warped on to the
corresponding pixel of a reference image, which is taken by a different camera at a different
view. If the colour and luminance of the two pixels are similar the pixel is classified as
background; if not, it is either an object pixel or an occlusion shadow pixel. The shadowed
pixels are eliminated by noting that object pixels will appear different from the background
in views from all cameras, whereas shadowed pixels are only likely to appear different in one
view. This rather relies on there not being many objects casting different shadows in the

scene, which would make it difficult to resolve shadow ambiguities.

Intille, Davis and Bobick [31] use background subtraction in the chrominance bands only of a
colour image to extract blobs which are matched from frame to frame using various statistics
drawn from the blob. This is done for the purpose of tracking the blobs in future frames.
In [71] a background is recovered from a scene by mode filtering in the time domain: each

background pixel is set to the most frequently occurring value over a period of time.

In [8] an image differencing method is used to locate the background reference image. A
forward and a backward difference image is taken and the regions which are common to both
is where the moving objects lie. The background is estimated over a few frames by including
pixels which do not lie within the estimated regions. The background is used for locating
moving objects. This is done both for moving and stationary viewing systems; in the moving
case the motion of the viewing system is estimated and compensated for to find the background
image. Tracking is done much like [31], by matching tracked objects with similar size, velocity

and colour attributes.

Cai, Mitiche and Aggarwal [8|; Intille, Davis and Bobick [31] and Rosin and Ellis [66] find
blobs using image differencing and use these to estimate locations of people and to match to

models.

Paragios and Tziritas [54| detect change from two consecutive images in a sequence. They
state that the inter-frame difference alone is not sufficient to locate precisely the boundaries

13
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of a moving object, and propose to model this as a mixture of Laplacian distributions and use

a maximum a posteriori probability criterion to adaptively determine the threshold.

2.4.2 Simultaneous motion estimation and segmentation

An important criterion in motion estimation and segmentation techniques is the estimation of
motion boundaries. This leads to a fundamental problem in motion estimation and segmenta-
tion: a good estimation provides a good segmentation and a good segmentation produces an
accurate motion estimation. This fact is used in different ways for motion estimation. Some
researchers take into account knowledge of the structure of an image and use prior information
such as regions [71] or lines [77]|. Others create an initial estimation to produce a segmentation

and then use this segmentation to better the initial estimation [10].

Shio and Sklansky [71] concentrate on trying to analyse and model the average motion of a
human body. Regions should be grouped according to how they move. A region that includes
different velocities should be split. An object model is needed to distinguish between objects
that are different but move in the same way. They present an algorithm for first motion
estimation and then person segmentation. The motion is estimated from pairs of images in
the sequence. First regions with similar grey levels are extracted using a difference image (this
is a feature-based motion estimation). The motion field is obtained around the edges using
a correlation method. The flow field thus obtained is spatially smoothed within the object
boundaries, and temporally smoothed so that all moving parts converge to a global value. The

segmentation stage consists of region splitting and grouping based on the direction of motion.

Tian and Shah [77] use mean field technique to determine boundaries and optical flow. A flow
field is calculated in their approach and horizontal and vertical line fields are computed to help
the location of discontinuities in the flow field. They use a Markov random field representation

to deal directly with discontinuities in the line fields.

Cloutier, Mitiche and Bouthemy [10] use an affine motion model shown in equation 2.7, to-
gether with the gradient optical flow equation shown in equation 2.6, to produce a linear
system of equations which constrain the optical flow to local rigid motion. A least median of

squares method is used to find outliers that lie on different sides of motion boundaries.

fzu+ fyv+ fr =0 (2.6)

u=a+ar+yy
v=">b+ Bz +dy
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Shi and Malik [70] use “normalised cuts” on a graph constructed by treating the pixels in an
image as nodes, and connecting ones which show some spatio-temporal similarity. The edges
are weighted according to their motion profiles. The graph is then recursively partitioned using
their normalised cut measure which minimises the sum of edges that need to be disconnected

to partition the graph. This technique is very useful in the case of a non-stationary camera.

2.5 Segmentation combining motion and other information

Mitiche and Aggarwal [48] emphasise the need to integrate different types of image information
to produce better and more meaningful segmentation methods. The importance of making
assumptions which fit the data, and of keeping in mind the goal of the final segmentation is
stressed. Motion information can either be used to localise an area of interest or to make a
segmentation more robust. Motion can be combined with intensity or colour information, or

with shape and edge information.

2.5.1 Motion and intensity or colour

Thompson |76] uses a method which combines the use of difference measures and grey scale,
rather than colour, information. Only translational motion is accounted for in this model,
which helps to distinguish the boundaries of moving objects. For each point, rather than each
feature, in the image the velocity is estimated and this information is then combined with grey
scale boundary information, so that the image is separated into regions with different motion

characteristics. Only two frames are used to find object boundaries in this manner.

The velocity information is the relation of the time variation of intensity at a point (because of
motion) and the spatial variation over a surface. The spatial variation is given by a gradient,

G, so a change in intensity due to motion is given as

di
where % is change in intensity with time and v, and v, are the z and y components of the

velocity respectively. Two consecutive frames are used to calculate the velocity map values and
from one of these frames the static boundaries are located. Regions of pixels with the same
grey scale and velocity map values are combined and then these regions are merged according
to proximity and similarity. This method only deals with translational motion and although
it could be extended to deal with rotational motion, it is inappropriate for segmenting people

in motion.

Dubuisson and Jain [14] combine image subtraction and a colour segmentation obtained from
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a split-and-merge algorithm and the Canny edge-detector, to segment the contours of moving
objects. An object mask is obtained using an image differencing technique, and a colour
segmentation is obtained by splitting and merging square regions according to their means and
variances and using edge information from the Canny edge detection algorithm. The collection
of regions produced by the colour segmentation is merged according to the proportion of pixels

from each region which also form part of the object’s motion mask.

Moscheni et al. [50] propose a region-merging segmentation technique for video sequences.
The input to the algorithm is an over-segmentation of the scene, which can be obtained
using any conventional segmentation technique. The segmentation uses both the motion and
brightness information to split the scene into regions which represent moving objects. The
spatial similarity between two regions is calculated using the medians of the luminances of

two regions along their common border, for every combination of regions in the image.

The motion similarity, for simplicity, is calculated only for adjacent regions, using two frames of
a sequence. Region merging is performed according to a graph-based strategy where each node
in the graph represents a region to be merged and every edge represents the spatiotemporal
similarity between the two regions. The graph is thresholded so that similarities below a
certain threshold are judged insignificant and ignored. By looking for cycles in the graph,
regions which are more similar to each other, but less similar to other regions are merged
together. A second merging strategy is subsequently performed to merge small or badly-

defined regions with larger, already merged regions.

Healey [24] uses a hierarchical segmentation of two images and matches regions from one to
the other using a segment tree, so that regions at different scales can be matched by matching
different levels in the tree. The segments are characterised by size, mean, variance and centre.
The motion of matched regions is estimated and target regions that show different motion

from the background are identified. This is in effect a sort of region merging.

Lin et al. [46] combine an initial motion segmentation with statistical spatial segmentation. A
hierarchical principal component split algorithm is implemented for the motion segmentation
and a voting region is established by region-growing from the centre of a clustered region until
an edge is located. Likewise [44] uses a voting scheme based on co-incidence regions from a

static and a differencing segmentation scheme and a history of recorded parts.

Pers and Kovacic [57] use motion detection in the form of background subtraction and template
matching and colour for tracking. For the background subtraction each field in the RGB image

is subtracted from a reference frame. The differences are added together then thresholded.
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2.5.2 Motion and shape

Huttenlocher et al. [29] use motion and shape in order to track. Their algorithm has been

discussed under gradient-based methods in section 2.3.

As a closing to this chapter, mention must be made of the CONDENSATION (Conditional
Density Propagation) algorithm proposed by Isard and Blake [32], which uses shape and
motion to track curves in substantially cluttered backgrounds. This method has proved more
effective for tracking than Kalman filters, which apply only to Gaussian densities and thus do
not work well in clutter. This algorithm combines a statistical factored sampling technique,
in which a random set represents the distribution of possibilities, with a stochastic differential
equation for object motion. The probability distribution for shape and position is propagated
over time in this way. The tracking resulting from the use of this algorithm is extremely robust

even in very cluttered backgrounds.

In the following chapter the use of colour in image segmentation is discussed; including de-
scriptions of human colour vision, colour representation in computer vision and the importance

of colour space selection in image segmentation.
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Chapter 3

Colour

3.1 A physiological approach to colour vision

The science of colour vision forms part of the study of physics, physiology, psychology, and
philosophy [27]. Colour vision is studied with two main aims: to understand how human
vision works and to enable machines to see in colour. This is important in segmentation and

recognition of objects such as people in a room.

In order to understand the criteria that affect the choice of a colour representation in which
to perform the task of segmentation it is necessary to discuss briefly some physical and phys-
iological aspects of colour vision. This, together with a discussion of various computer vision
colour spaces available for use later on in the chapter, will motivate the selection of the colour

space used in this project.

3.1.1 The trichromatic nature of colour

Colour is both a psychological and physical experience caused by reflected light from an
object hitting the retina. The perceived colour of the light is primarily a consequence of its
wavelength, which if it falls between 400 and 700 nm [59], is within the spectrum of visible
light, as illustrated in figure 3.1. The retina of the eye has three! types of colour receptor
cells, called cones, which each have a typical response curve to a range of light wavelengths,

each peaking at a different wavelength.

Thus, each cone is more responsive to either red (long wavelength receptive cone), green

(medium wavelength) or blue (short wavelength) light, although the responses of each cone

LA fourth receptor, the rod is activated only at low light levels and does not play an important role in
colour vision [59][27].
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type do overlap to a large degree. The CIE? has defined peak wavelengths for the three

primary colours which are shown in table 3.1.

Because of the existence of these three receptor types, a colour can be described as a three-
component quantity: a triplet in a colour space. This trichromatic theory, was first developed
by Helmholtz and Young. Also because of this trichromatic nature of colour vision, many
different spectral distributions can produce the same viewed colour. For instance, the cones
cannot distinguish between a pure yellow light at a certain wavelength and a mixture of red and
green lights at different wavelengths. Light colours that have different spectral compositions
but appear identical are called metamers. Ideally then a colour space would have a unique set
of three co-ordinates to describe every colour and every possible visible colour would be able

to be described in this way.

‘ Pure Colour ‘ Wavelength ‘

Red 700nm
Green 546nm
Blue 435.8nm

Table 3.1: Wavelengths corresponding to primary colours as defined by the CIE

Higher Frequency Lower Frequency

500 600
Wavelength (nm)

Figure 3.1: The spectrum of visible light [83]

3.1.2 The opponent colour theory

The opponent theory of colour vision was first proposed by Ewald Hering in 1878 and was later
revised by Hurwitz and Jameson [28] as an alternative to the classical trichromatic theory.
While the trichromatic theory supports the fact that any colour that can be seen is composed
of the three primaries, red green and blue, there are at least four other aspects of colour vision
which are not accounted for by this model [22].

First the fact that although a colour or mixture of colours can be described as greenish blue
or reddish yellow there is no such thing as a reddish green, a bluish yellow or a blackish white.

Second, mixing two complementary colours, for example, red and green, produces a result

2Commission Internationale de ’Eclairage - International Lighting Commission, based in Vienna.
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which is neutral, which suggests that these colours can “cancel out” each other’s chromatic-
ity. Third, after-images of a complementary colour are not explained by the trichromatic
theory, but according to opponent process theory sustained viewing of colour, for example,
red, fatigues the red process and when a neutral colour is viewed immediately afterward both
processes should be equally stimulated, but instead a green after-image is seen because of
the red’s previous over-use. Finally, aspects of colour-blindness are explained, because if all

processes are at their balance point a neural grey is observed.

The opponent colour model proposes that opponency and trichromacy correspond to different
levels of neural activity. Instead of merely three primaries, the three primary colours received
on the cones of the eye are further processed in the lateral geniculate nuclei, which are receptive
to three opponent colour pairs: black-white, blue-yellow and red-green, as shown in figure 3.2.
These second stages of colour vision processing are stimulated or inhibited by inputs from
the cones. For instance, the blue-yellow system is stimulated by input from blue cones and

inhibited by input from red and green. If the stimulation is greater than inhibition we see

DATALAA AL
1

blue, otherwise we see yellow.

Black-White Red-Green Yellow-Blue
Achromatic Chromatic
System System

Figure 3.2: The recombination of primary stimuli into opponent colour pairs [22]

3.1.3 Factors affecting colour perception

Perceived colour can be qualitatively described by humans in terms of a hue, saturation and
lightness components [22]. Hue is the nature of the colour itself: more accurately the dominant
wavelength of a spectral power distribution [58|, whether red, green or blue, or a mixture of
two of these. The lightness/brightness perception is the quantity of light which seems to be
coming from the colour, to which the human visual response is approximately logarithmic.
Saturation/chroma is the purity of a colour or the amount of white it appears to have in it.
The more the light distribution is concentrated at one wavelength, the more saturated the

colour.

Both chromatic (hue and saturation) and achromatic (lightness) contrasts make objects visu-

21



CHAPTER 3. COLOUR

ally separable from their backgrounds. The achromatic system has far better visual sharpness,
as spatially people respond more accurately to lightness changes than to colour differences.
The higher the brightness contrast the better the spatial resolution, and for fine detail to be
resolved a high brightness contrast is essential as a colour contrast is often not sufficient [22].
People also respond more sensitively to temporal brightness change than to colour change, as

is evidenced in the human sensitivity to flicker on a television screen or computer monitor.

There are, however, many factors apart from dominant wavelength which affect the perceived
hue of a colour. Hue discrimination for humans becomes worse as colours become less saturated
and less bright. Surface colour appearance is also affected by background colour (simultaneous
colour contrast), chromatic adaptation (temporal colour contrast), colour constancy (global

variations within an image), and size apart from brightness and saturation.

To humans, objects retain their apparent colour when viewed in a different light. Since the
light reaching the retina is a product of the object’s surface reflectance properties and the
illumination of the scene, this suggests that the visual system is somehow able to compensate
for these lighting changes. The colour of an object appears to rely more on its inherent
surface reflectance properties than the light under which it is viewed. This is wavelength
selective adaptation and is the same as what happens when we walk from bright sunlight into
a dark house. On film, however, these changes are very evident. This creates the problem of
computing colour constancy when processing images, which is something that humans appear
to do automatically. Constancy is a problem which affects the scene viewed on a global scale,
whereas contrast is a local phenomenon: the colour of an object might appear to change when
the background colour changes. When the illumination of a region changes, however, the light

that it reflects changes in the same way as the light that its surrounds reflect [27].

Colour cannot be the only cue used by the human visual system to segment objects of interest
from background regions. Evidence suggests that colour, intensity, change and motion all
contribute somehow to the human visual system’s ability to separate foreground objects from

their backgrounds.

3.2 Colour space considerations

3.2.1 Colour models

Colour models are ways of representing colour. There are four primary categories : physiolog-

ically inspired, colourimetric, opponent and psychological models [43].
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Physiological

These are based on the Young-Helmholtz theory of colour vision. They use three primaries
(thus taking into account the existence of three types of cone in the human retina), for example,
the RGB model used in computer graphics.

Opponent

Opponent models are based on Hering’s theory using opponent colour pairs. There can be
considered four perceptual primary colours, which do not appear to be made up of any other

colours; these are red, green, blue and yellow [22] which are also the opponent colour pairs.

Psychological

Psychologically inspired models are based on the appearance of colour to observers, derived
either impressionistically (Munsell and Ostwald) or experimentally (HSV). Munsell and Ost-
wald are comparative references for artists. The Munsell system is still used industrially. Both
are based on subtractive colour so are not generally used in computer vision, which is additive.

Both use cylindrical co-ordinates with hue, saturation and brightness components.

Colourimetric

These models are based on measurement of spectral reflectance, for instance the CIE chro-
maticity diagram which is shown in figure 3.3. Light of any spectral composition can be

exactly matched using wavelengths of just three primaries.

3.2.2 The CIE chromaticity diagram and the XYZ colour space

According to the trichromatic theory, light of any wavelength can be matched by an additive
mixture of three primaries. Thus, any colour can be specified by the relative amounts of the
three primaries needed to create that colour. The CIE has defined colour matching functions
for the three primaries red, green and blue, with respect to a standard observer. These colour
matching functions are transforms of the spectral sensitivity functions of the human cones,

determined experimentally [12].

As can be seen from the CIE’s spectral response curves for the cones responsive to red, green
and blue, shown in figure 3.4, the entire spectrum of visible colour cannot be represented by

positive RGB values. Some colours require a negative red stimulus. The CIE addressed this
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X

Figure 3.3: CIE chromaticity diagram

problem by linearly transforming the RGB primary stimuli to create a colour space in an XYZ
co-ordinate system, such that every visible colour can be represented as a triplet of positive
co-ordinates in the space. The primaries thus obtained are called virtual primaries [12]. The
tristimulus values XYZ, which are the amounts of the virtual primaries which combined will
reproduce a colour spectral distribution, can be calculated given a colour spectral composition,
the standard observer colour matching functions in figure 3.5 and a set of three primaries which

can be seen in figure 3.4.

The design of the XYZ system is also such that all luminance information is contained in the
Y channel. The CIE’s XYZ tristimulus response curves are shown in figure 3.5. From the
XYZ co-ordinates the chromaticity co-ordinates are calculated, by normalising to disregard

intensity as in equations 3.1 and 3.2.

X

XYV +Z (3:-1)
Y

_ 2

V" Xiv+z (3-2)

z can be obtained using 1 —z — y.

The CIE chromaticity diagram in figure 3.3 represents every colour as a point within a bound-

ary defined by the spectral colours on this  y co-ordinate frame. The white point is at the
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centre. Primaries are chosen to maximise the area of the chromaticity diagram covered, as

each primary is a vertex of the colour gamut.

Apart from being able to represent all visible colours, the XYZ space is device independent
and can be used to compare different colour devices. Another useful aspect of the space is
that it is linear: all colours made by combinations of two colours lie on a line joining those
two colours, and all colours composed of three colours lie within a triangle whose vertices are
the three colours. The equation giving the transformation from standard RGB to XYZ values

is shown in equation 3.3.
0.412453 0.357580 0.180423

X R
Y | = 0.212671 0.715160 0.072169 | x | G (3.3)
VA 0.019334 0.119193 0.950227 B
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Figure 3.4: Spectral response curves for the three cone types [30]

The CIE have defined two uniform? colour spaces based on the chromaticity diagram, which
are the L*a*b* (for reflective light) space and the L*u*v* space (for additive light).

3.2.3 Some colour spaces

An important criterion in colour segmentation is the choice of colour space in which to do the
segmentation. The RGB colour space, which is the default used to represent digital images,
is inadequate for this purpose. This is because it seems logical that to teach a machine to
automatically detect an object according to colour, something humans can do with no trouble

at all, a colour space should be closely resemblant to the way in which humans perceive colour.

3The meaning of a “perceptually uniform” colour space will be made clear later in this chapter.
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Figure 3.5: CIE spectral response curves [30]

Colour Components Device Purpose
Space Dependent
RGB Red, Green, Blue Yes CRT
CMY Cyan, Magenta, Yellow Yes Printing
CMYK C,M, Y, Black Yes Printing
HSB Hue, Saturation, Brightness Yes Perceptual
HSV Hue, Saturation, Value Yes Perceptual
XYZ Tristimulus values No CIE tristimulus
xyY Normalised tristimulus No CIE tristimulus
L*a*b* Luminance No Uniform, Orthogonal
L*u*v* Luminance No Uniform
Munsell Hue, Value, Chroma No Artist’s guide
YIQ Luminance, In-phase, Quadrature Yes Television
YCbCr Luma, chrominances Yes Video
sRGB RGB No Proposed for Internet

Table 3.2: Some commonly used colour spaces
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In addition, a known problem with segmentation is lighting change. It is therefore reasonable
to conclude that a colour space model is required in which the illumination of the scene can
be separated as distinctly as possible from the hue information. To this end several colour
spaces have been suggested: the YUV [81], HSI [62], and L*a*b* [55] [13] [40] colour spaces

have all been used with some success.

It thus seems possible that a system that mimicked this opponent colour model would assist in
the automatic classification of different hues. In [7] this technique, which imitates the neuro-
biological structure of the human visual system, was seen to aid in segmentation of coloured

areas and to reduce the unwanted effects of illumination changes.

An experimental comparison of RGB, YIQ, LAB, HSV and opponent colour models [69] with
the aim of determining in which colour space a user was able to reproduce a given colour
most quickly and easily, found that the Opponent model and the RGB provided the quickest
matches with L*a*b* third. For the closest match, the L*a*b* colour space proved most
accurate, followed by the HSV and Opponent colour model. The conclusion reached in this
study which may be of importance was that subjects matched lightness better if the colour

model had a lightness axis, whereas the advantage of having a hue axis was not obvious.

The colour space which most closely resembles the opponent colour model is the CIE L*a*b*
colour space in which the L* component is the luminance value and the a* and b* components
are the red-greenness and the blue-yellowness respectively. This space was created for its
perceptual uniformity [69], which is also an advantage in segmentation. In a uniform colour
space a colour difference perceived by an observer is approximately the same as the Euclidean

distance between two points in the colour space.

3.2.4 The L*a*b* colour space

The CIE recommends the use of the L*a*b* colour space for measuring colour differences
[12] under illumination conditions which resemble daylight. The transformation from XYZ
tristimulus values to the L*a*b* co-ordinates are as shown in equations 3.4, 3.5 and 3.6.
Adaptation to different light sources is built into this equation by normalising the tristimulus
values by the reference white point, X,,,Y,, Z,. Often the D65 white point defined by the

CIE as reference daylight is used in this normalisation.

116(X)5 —16 if L > 0.008856
Lx = { (Y")),g Z.f };}’ g (3.4)
903.3(%) —16 if L < 0.008856
X Y
ax = 500[f(X—n) - f(ﬁ)] (3.5)
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Y A
bx = 200[f(?n) - f(Z—n)] (3.6)
where .
t3 if ¢t > 0.008856
ft) = 6 (3.7)
7187 xt+ 175 1f 1 <0.008856

The L*a*b* space, being designed to be perceptually uniform, is intended to be an accurate
space in which to measure colour differences. Colour differences in this space correspond
approximately to a Euclidean distance measure between two points. A colour difference metric,
AF is defined in the L*a*b* space as:

(AE)? = (AL%)? 4 (Aax)? + (Abx)? (3.8)

This means that this colour space is a likely choice for tasks such as colour segmentation
and content-based image retrieval, where differences between colours should be measured as
accurately as possible [12]. It has been claimed to be less than uniform in the blue and magenta

regions [78].

Most of the literature regarding the segmenting of people in motion uses colour information,
not necessarily as a criterion on its own, but often combined with motion and situation in-
formation. In these, the use of certain colour spaces prevails, particularly those which, unlike
the RGB colour space, closely resemble the way humans perceive colour, and importantly,
separate the hue information from the lightness information. Some colour spaces used are the
RGB [37], HSV [62] [52] and YUV [81], as well as L*a*b* [40] more recently. In [40] a com-
parison is made between logarithmic L*a*b*, HSI, RGB and normalised RGB. Logarithmic

L*a*b* is found to be marginally better for tracking.

3.3 Experimental comparison of some colour spaces

A preliminary investigation into the suitability of various colour spaces for segmentation was
made. The same segmentation technique was used on a set of images in four different colour
spaces. Since, as we have seen, it is often desirable to omit the luminance information for
colour-based segmentation, the experiment was carried out using only the chrominance bands
of the colour spaces. The colour spaces used for the purpose of this experiment were: the
normalised rg space, h-s space taking only the hue and saturation components of HSV, a*b* -
the chromaticity components of L*a*b, and the Cb and Cr components of the YCbCr colour
space.

The colour spaces chosen are examples of differing colour models: RGB, the conventional

computer graphics space; HSV, a perceptual and non-uniform colour space; YCbCr, belonging
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3.3. EXPERIMENTAL COMPARISON OF SOME COLOUR SPACES

to the YUV family of colour spaces for television and L*a*b*, designed by the CIE to be

perceptually uniform.

3.3.1 Colour space conversions

The conversions from RGB to the colour spaces used in the experiment are given below [58].

Normalised rg space

R
"“R1G+B (39)
G
= = 1
" R+G+B (3.10)
HSYV space
(G-B) : _
maz(R,G,B)—min(R,G,B) if maz(R,G,B) =R
B-R ,
H=|2+ W(R,G,g)_mzn(&am if maz(R,G,B) =G (3.11)
R—G ,
4+ ma:c(R,G’,SB)fm)in(R,G,B) if maz(R,G,B) =B
maz(R, G, B) — min(R, G, B)
= 12
5 maz(R, G, B) (312)
V = maz(R, G, B) (3.13)
YCbCr space

Y 16 65.481 128.553  24.966 R/255
Cy | = 128 | + | —=37.797 —74.203 112 * | G/255 (3.14)

C, 128 112 —93.986 —18.214 B/255

L*a*b* space

The conversion from RGB to XY7Z tristimulus values has already been described in equation
3.3 and the conversion from XYZ to L*a*b* in equations 3.4, 3.5 and 3.6. For ease of reference

the conversions to L*a*b* are repeated here.
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Cf ne(E)s 16 if ¥ >0.008856 (315)
903.3(3=) —16 if - < 0.008856 '
X Y
_ ST 1
ax = 500[f (%) = F(§)] (3.16)
Y Z
br = 200[f(3~) = f(Z-)] (3.17)
where .
ts if t>0.008856
ft) = 6 (3.18)
TT87 x t+ 1% if t<0.008856

3.3.2 Skin colour detection experiment

The object of the experiment was to detect skin colour in the set of test images, given an
example data set under different colour space transformations, and to determine which colour
space produced the best* segmentation. The example or training set of skin coloured pixels
were taken from nine different images, taken under varying lighting conditions (assuming
roughly daylight conditions) and incorporating different individual skin colours. These were
transformed into the four two-dimensional colour spaces. The two test images, which are
shown in figure 3.6 are also taken under unknown lighting conditions and contain people with

different skin colours. The transformation to L*a*b* was done assuming a reference daylight

I
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-

(a) Test image 1 (b) Test image 2
Figure 3.6: Test images for skin colour detection

white point as it was considered unfair to take advantage of the inherent normalisation factor
built into this transformation. However, using the white point of a reference image for the

L*a*b* transformation would be expected to increase the accuracy of the segmentation.

In order to classify the skin coloured regions in the test images the Mahalanobis distance® of

““Best” means lowest false skin detection rate AND skin omission error as determined from a hand-segmented
version of the same image.
5The Mahalanobis distance measure is discussed in chapter 8.
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every pixel in the colour-transformed test images from the example pixel set is taken. The

Mahalanobis distance from the test set  to an example set y is given by equation 3.19:
A? = (z - p)'S7 Nz — p) (3.19)

The resulting image is then thresholded to produce a segmentation of the skin-coloured regions.
The pixels with the smallest Mahalanobis distance from the training set are the ones which
can be most confidently classified as skin colour. Therefore it is easy to see that as the
threshold placed upon this distance from the training set is increased, more pixels will be
classified as skin, until the point where an unacceptably large number of pixels which are
not skin will mistakenly be classified as such. The optimum segmentation is then produced
by the threshold value which classifies the most skin-coloured pixels correctly as skin (fewest
false negative classifications) and the fewest non-skin pixels as skin (fewest false positive
classifications). The choice of threshold is a crucial factor influencing the segmentation, but
there exists a threshold for the distance measure in each colour space which yields an optimum
segmentation, minimising both the false positives and the false negatives. To find this optimum
the Mahalanobis distances in each colour space are thresholded at increasing values and the

segmentation at every threshold is evaluated.

A hand-segmented image is used to evaluate the quality of the segmentation at each threshold.
Four error metrics extracted from the comparison with the hand-segmented image are plotted
in figures 3.7 and 3.8. The non-skin pixels error is the proportion of non-skin pixels mistakenly
classified as skin, the skin error is the proportion of skin-coloured pixels which are misclassified,
the percentage correct is the proportion of pixels in the entire image which have been correctly
classified, and the percentage of skin correct is the proportion of skin-coloured pixels which

have been correctly classified.

3.3.3 Segmentation results

As can be seen from the error plots in figures 3.7 and 3.8, at a low threshold the number
of misclassified skin pixels is high, and this number falls as the threshold increases. The
misclassified non-skin pixels, however, increase as the threshold increases. It can be seen that
there is some point at which these two lines intersect and at which both misclassifications are at
a minimum. This also corresponds roughly with the peak in the plot of the overall correctly
classified pixels. The threshold at this point is the optimum threshold, as any increase in
threshold will lead to an increase in non-skin pixels classified as skin and any decrease will
lead to more skin pixels being classified as non-skin, both of which will degrade the quality of

the segmentation.

The results for the segmentation of the first test image at the optimum threshold are shown
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Normalised rg
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Figure 3.7: Error values for increasing threshold for normalised RGB and HSV colour seg-

mentation
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Figure 3.8: Error values for increasing threshold for YCbCr and L*a*b colour segmentation
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in figure 3.9. It seems clear that the segmentation with the most correctly classified skin
colour (and least non-skin classified as skin) is the a*b* space segmentation, followed by the
normalised rg, then Cb-Cr and lastly, HS. For the second test image, which contains two people
with very obviously differing skin colours, the segmentation results appear to be equally as

good in all colour spaces except HSV.

(¢) YCbCr (d) L*a*b*

Figure 3.9: Skin colour segmentation results on test image 1

3.4 Colour constancy

There exist several algorithms for estimating illuminant chromaticity: that is to say the colour
of the light that is falling on a given object or scene. The same object may look very different
in terms of colour appearance if it is illuminated by two differently coloured lights. Techniques
which estimate the colour of this illuminant are useful in order to be able to colour-correct
an image for object colour properties which appear different from image to image. This
phenomenon occurs mainly locally within image regions, for example, as a shadow falls on a

previously brightly lit part of the background.

Most of these algorithms for estimating illuminant colour use assumptions either about the
range of possible illuminant colours or the range of surface reflectances in the image. A neural
network method does not rely on any assumptions about the conditions causing a certain

colour effect and was used with seeming success by Funt, Barnard et al. [20].
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(b) HSV

(¢) YCbCr (d) L*a*b*

Figure 3.10: Skin colour segmentation results on test image 2

Some of the algorithms which do rely on prior assumptions are the grey-world algorithm, the

white point algorithm and the 2D convex hull gamut mapping algorithm. Brief descriptions

of each of these algorithms follow.

e The grey-world algorithm makes the assumption (usually incorrect) that the average
of all the colour in an image, or set of images, is grey. Any departure from grey is

assumed to be the colour of the light illuminating the scene [20].

The white point algorithm assumes that somewhere in the image are points that
maximally reflect each of the colour bands. This maximum is taken to be the chro-
maticity of the illuminant. This of course does not work as well for real images, as there
is the possibility of the response from one or more channels (R,G or B) being saturated,
thus making the maximum of a channel the maximum possible digital grey-scale value
[19] [20].

The 2D convex hull gamut mapping algorithm considers the set of possible il-
luminants that could map the observed gamut of image colours to a known gamut of

expected colours under the standard known illuminant.

Funt et al. [20] [21] use a multi-layer perceptron to estimate illuminant chromaticity. They use

a neural network trained on images under known illuminants and then one trained on images
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of which the illuminant is estimated using the grey-world algorithm. The neural network

eventually outperformed the grey-world algorithm on which it was trained.

An algorithm of the same sort as these is necessary in order to be able to segment reliably
under different conditions. The problem in the context of tracking a person over time is not
extreme in the sense that the background or foreground as a whole can only change slowly
with time, and resampling and adapting a model should be able to cope with this slow change.
It is especially locally within each frame that the problem occurs, as a shadow cast by the
person may alter the background colour distribution for a small region in such a way as to

make it be misclassified.

3.5 Colour space selection

There are several reasons why the L*a*b* colour space seems superior to all the other colour
spaces considered thus far, and only one reason why it should possibly not be used. The
only disadvantage of using this space is the relative computational expense of the nonlinear
transformation. Given that there is some computational overhead involved in any colour
transformation and that the purpose of this thesis is not to construct a real-time application,

this reason bears little weight in the selection process.

The benefits of the L*a*b* space are outlined as follows:

1. The luminance information is separable from the chrominance, which is desirable in an

application in which lighting changes could occur.

2. The transformation itself takes into account the illuminant of the imaged scene, by using
its white point in the transformation. This is effectively incorporating colour constancy

in the form of the white point algorithm described in the previous section.
3. The space is perceptually uniform and orthogonal; thus perceived colour differences are

similar to measured colour differences which is ideal for segmentation.

In addition, the results of the experiment performed using four colour spaces revealed the
L*a*b* space to be as good if not better than any other space. For these reasons it was

decided to attempt the segmentation and tracking task in the L*a*b colour space.
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Chapter 4
Colour segmentation

Colour segmentation is the process of selecting regions of interest in an image based on features
in colour space. The aim is to extract meaningful objects which correspond to human per-
ception. There exist supervised and unsupervised methods of assigning data to classes in the
colour space. Supervised methods involve fitting a function to training data which is known
to belong to one of a certain number of classes and then applying this function to unclassified
data to find the class it is most likely to belong to. However it is not always possible to tell a
system what classes the data forms,! and in the absence of training data a classifier that can
learn distinguishable categories can be very useful. This is done in an unsupervised manner,

by finding clusters in the data, and assigning each data point to the most appropriate cluster.

4.1 Unsupervised learning and clustering

Unsupervised learning approaches attempt to assign unlabelled data to classes based on clus-
ters found within the data. Clustering is a process in which points belonging to each class
must be connected with respect to each other and distinct from points belonging to all other
clusters [55]. Most clustering methods require some degree of supervision, as the number
of clusters needs to be specified in advance. The K-means algorithm, a common clustering

method used for colour segmentation, is one of these.

One method for estimating the optimum number of clusters to represent an unlabelled set of
data is given in [55]. Every data point is convolved with a kernel. The width of the kernel
(and thus the number of clusters chosen) affects the estimate of the density. In [55] a very

small value for the kernel width is chosen and the clusters are located by finding the local

1This can happen if it is possible to obtain data but not to label them, or if the features specific to each
class change over time.
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maxima, of the convolved dataset. This gives an overestimation of the number of clusters.
Then a hierarchical system for merging is constructed which merges clumps in an order which
is determined by comparing the values at neighbouring maxima with the density value at the

minimum between the two clusters.

In the particular context dealt with by this thesis, unsupervised learning based upon colour
features is not applicable. It is known that the number of classes ultimately required is two:
one for the background and one for the foreground, but the number of distinct colour clusters
formed within these two desired classes is almost guaranteed to be more than one each. It
seems plausible that some kind of supervised learning method will be required although no

training data is available as yet.

If it is assumed that an image of the empty background scene is available before any people
have entered, some training data for the distribution of background colours, and indeed spatial
location of these colours is obtained. All that remains is to find an independent method of
locating training data for the people as they enter the room. A method for doing this is
discussed in chapter 5, but for now we will just assume that as each person enters the scene
there are some pixels which are known to belong to the person. Given these two sets of training
data we are able to build statistical estimates of the colour distributions of the people in the
room and the background. In order to do this we need to determine a suitable method of
estimating densities of colour distributions using a training set of which it is known whether

it forms part of the background or foreground class.

4.2 Density estimation using a labelled training set

Three possible forms of density estimation are described in the sections that follow. The first
is parametric density estimation, in which the form of the distribution is assumed known and
parameters are fitted to some data set. The second form is non-parametric estimation in which
the data is allowed to determine the form of the density function, which can lead to a large
number of parameters having to be set. Lastly semi-parametric density estimation constitutes

a compromise between the parametric and non-parametric forms.

4.2.1 Parametric

For the subset of learning approaches using parametric estimation of density a Gaussian
distribution is assumed. The form assumed for the distribution of the data might, however, be
very different from its true distribution. On the other hand, the evaluation of new data points
is very quick as it merely involves the evaluation of a function at that point. The two principal

methods of estimating the parameters are maximum likelihood and Bayesian inference.
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Maximum likelihood

The problem is to fit appropriate parameters to the model so that it best fits the available data
[2]. The “maximum likelihood model” is the one most likely to have generated the observed

data. This likelihood can be calculated and in many cases a unique maximum exists.

Maximum likelihood maximises a likelihood function obtained from the training data, to obtain
the optimum parameters. Using these parameters the maximum probability of generating the

training set is obtained.

Bayesian inference

In Bayesian inferencing the parameters are described by a probability distribution, initially
set to a prior distribution and then a posterior distribution is found once the data have
been observed. This technique uses the training set to update the density function of the

parameters, conditioned on the training set.

4.2.2 Non-parametric

Non-parametric density estimation techniques are slow to evaluate a new data point, since the
number of variables to be evaluated grows as the data set becomes larger. The form of the

probability distribution is not specified, but depends on the data.

One form of non-parametric density estimation is to estimate the density function directly
from the data. A histogram is possibly the simplest density estimation technique. The input
space is divided into a number of bins and the density is estimated for each bin by finding the
proportion of the data that falls into that bin. The number of bins, or equivalently the width
of the bins, greatly affects the resulting distribution: a small number of bins over-smooths
the density function, concealing the shape of the distribution, and a large number produces a
distribution which is sensitive to individual bins and appears spiky. The distribution is also
not continuous and does not generalise well to high dimensions, where an increasing amount
of data is needed to obtain a good density measure. The histogram technique has, however,

been used successfully for tracking [5].

The second possibility is to use the data directly and assign each new data point to the class
to which its nearest neighbour belongs. This is a distance-based classification method and a
special case of the K-nearest neighbour rule. In K-nearest neighbours, instead of being assigned
to the class of the nearest neighbour, each data point is assigned to the class ¢ for which % is

a maximum, ie. the class to which the highest proportion of the k nearest neighbours belong.
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4.2.3 Semi-parametric

Mixture modelling is a form of semi-parametric density estimation. Training methods for
these models are based on maximum likelihood. The number of basis functions is much
fewer than the data points, so there are fewer parameters to be determined and yet no strict
form is assumed for the data distribution. Instead the distribution is represented as a linear

combination of component densities .

4.3 Bayesian decisions

In order to explain the notation used in the following section a brief description of Bayesian

decision theory is given here.

Bayesian methods of inference use information about the prior knowledge of the likelihood of a
particular probability density function. This of course assumes that one can know something
about the prior distribution, this being the source of some controversy. The prior distribution
reflects an initial estimate of the range of values of z, before any data have been observed. This
is typically very broad as usually one has little idea of the prior distribution of the variable.
Once the data have been observed Bayes’ theorem can be used to calculate the posterior

distribution.

If there are N classes, C; for ¢ = 1,..., N, and data x are observed, the conditional probability
of C; occurring, given that data x have occurred; or stated otherwise, the posterior probability

that x belongs to C; is:

p(z|Ci)P(Ci)

PGk =)

(4.1)

where
P(C;) is the a priori probability of any data element belonging to class C;
p(x|C;) is the conditional probability of observing data z, given that the class is C;

and p(z) = Zi\il p(z|C;)P(C;) is a normalisation factor, being the probability of observing x

over all classes.
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4.4 Gaussian mixture models

Mixture models are a semi-parametric form of density estimation. A mixture model can
be constructed from a limited number of Gaussians, each with different parameters which
best describe the data. In this case the number of Gaussians fitted to the data may be far
smaller than the number of data points (which is not the case with non-parametric density
estimation), so the number of components M is treated as a parameter of the model. In
addition, no form is assumed for the distribution (as in parametric density estimation methods)
but rather the model is allowed to find a form, which is a sum of different Gaussian components,
which best fits the data. The density p(z) can thus be represented as the sum of component
densities p(z|j), where P(j) is the prior probability of the data having been drawn from the

jth component.
M

p(z) =Y plali) P()) (4.2)

=1

Each component p(z|j) in equation 4.2 is a Gaussian of the following form.

plalj) = ——eap {—M} (43)

2mo%) 2 2‘732'

The priors P(j) are normalised so that

Y PG) =1. (4.4)

=1

This form of density estimation can be accurate if the correct parameters and correct number
of components are chosen for the data [6]. The training of a mixture model is done with
incomplete data as it is not known beforehand to which component of the distribution each

data point belongs.

The posterior probabilities conditioned on this model can be represented in Bayesian terms

as:

P(jla) = f%)j(” (45)

P(j|z) is the probability that component j generated the data point x.

Some methods for determining the parameters for a Gaussian mixture model from a set of data

are maximum likelihood, expectation maximisation and stochastic estimation of parameters.
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For descriptions of these methods see [6]. Expectation maximisation (EM) is used for the

purpose of this thesis and is described in Appendix A.

4.5 Gaussian mixture modelling for foreground segmentation

In this segmentation method a number of Gaussian functions represents the colour distribution
of an object in the two dimensional colour space, as a semi-parametric alternative to a his-
togram. The probability of every colour pixel in the test image belonging to this distribution

is calculated.

It is assumed that the first image of a sequence is an empty frame, which can be used as a
background image. The empty scene is then modelled as a mixture of Gaussians [60][61][62]

representing the two-dimensional distribution of the colours in the *a*b* colour space.

The probability of a pixel z belonging to an object O ( which in this case is the person in

the scene), can be represented as the sum of M Gaussian components :

M

p(z|0) = plz]j)P(j) (4.6)

=1

where P(j) is the prior probability of the pixel colour having been generated by the jth
Gaussian component of the mixture. Each component j is a Gaussian with mean u; and

covariance matrix, 3, as shown in equation 4.7.

e P —— (4.7)
2m |52
A model is initialised arbitrarily with a small number M of Gaussian components, and the
EM algorithm described in Appendix A is used to find the most appropriate centres (mean
w), widths (covariances ¥) and sizes (priors P(j)) for each Gaussian, in order to fit the
Gaussian mixture to the training data. Initially two Gaussians are used to provide an

estimated model for the two-dimensional distribution of the colours.

The training data for constructing the mixture model of the person is obtained using a change
detection algorithm (detailed in chapter 5) using the empty background which is assumed in
the first frame. Any significant departure from the known background is considered part of
an object whose colours will be modelled. What remains to be done is to find the optimum
number of components for the Gaussian mixture models representing the foreground and the
background. In other words, the number of distinct colour clusters which make up each of the

foreground and background classes must somehow be found so that each of these classes can
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be modelled optimally.

4.5.1 Minimum description length models

The choice of a good model to describe the data involves a trade-off between closely fitting
the model to the observed data and limiting the number of parameters used to describe the
model. As the number of components of a Gaussian mixture increases, the model fits the
data better and better until the case where there is one Gaussian centred on each data point.

Clearly this is neither an efficient nor general way of modelling the data.

Factors which need to be taken into consideration when selecting the number of components
for a model are: one wants to choose the model which assigns the higher probability to the data
set, and to minimise the model complexity. A model consisting of raw data is thus perfectly
accurate in that a high probability is assigned to each data point, but a large number of
parameters (the entire data set) needs to be stored to describe this data. A single Gaussian
distribution, however, might be chosen that describes the data adequately and yet can be

described simply with a mean and covariance matrix.

The log-likelihood of the model on some data, which can be regarded as an error function (see
Appendix A) will increase with respect to the data whenever the number of Gaussians is in-
creased. It is desirable to maximise the log-likelihood and minimise the number of parameters

in the model simultaneously.

A model is best in a Rissanen sense if it compresses the data maximally [2]. The idea is
to transmit a set of data D using the shortest possible length message. This can be done
by specifying a model M, which captures trends in the data and then an error indicating
how much the model differs from the data. The length of the message required to send this
information is the length of the model L(M) added to the length of the error L(D|M).

descriptionlength = L(M) + L(D|M) (4.8)

Thus, a simple model will generalise badly and have a large error and a longer error description
length and a complex model will have lots of information to transmit, so an optimum for both
these criteria must be found. The Minimum Description Length (MDL) principle proposed
by Rissanen [64] in 1978 to minimise this description length is given by equation 4.9.

N
MDL(k) = -2 log p(x;|0) + klog N (4.9)
=1

where k is the number of components in the model, the data sample is given by zj....zx
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CHAPTER 4. COLOUR SEGMENTATION

and é\k is the maximum-likelihood estimate of the parameter 6 based on the data [51]. This

technique is used in [40] to construct Gaussian mixture models for tracking.

Another way to determine the rate of exchange between parameter number and log-likelihood
if more data is going to become available is by testing the model on the data when it becomes
available later to see how well it performs. In instances where more data is available, such as
the modelling of a background image, it is more convenient to test the log-likelihood of the

model on the new data.

4.5.2 Model order selection based on additional data

The algorithm used in this thesis to select the number M of Gaussians that best describes the
training data, is the one used by Raja, McKenna and Gong in [60], [61] and [62]. The number
of Gaussians is selected automatically by testing the responsibility of each component for a
validation set. The validation set comprises half the pixels which have been selected through
the change detection mechanism. The training data obtained through change detection is split
into two sets by randomly sampling half the pixels. One of these sets is used for training and

the other for validation.

A mixture model is initialised with two components. K-means clustering is used to find the
initial centres of the Gaussians from the training data. Expectation maximisation is then
applied to find appropriate parameters so that the model best fits the training data. The log-
likelihood, which can be regarded as an error function for the mixture model parameters (see
Appendix A) is then calculated on the validation set, which has not thus far taken part in the
training process. An additional Gaussian is added to the model by selecting the component j
with the least responsibility r; (defined in [61]) for having generated the data in the validation
set. This responsibility is defined in equation 4.10.

N p@l)PG) »
§= 2P0 = D S PG (410)

The selected component is then split into two Gaussians with the same covariance matrix and
new means which are pipe, = p %u where u is the eigenvector corresponding to the largest
eigenvalue A of the covariance matrix. The priors for the two new components are both half
the prior probability of the component to be split. The EM algorithm is then run again on
this new model and the process iterates. The log-likelihood (equation A.1 in Appendix A) for
the new model on the validation set is then calculated at each iteration and compared to that
of the previous mixture model. The algorithm terminates when a peak is located in the plot
of the log-likelihood for a number, K of components. Plots of the log-likelihood for increasing

numbers of mixture components are shown in figure 4.1.
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4.6. AN ADAPTIVE COLOUR MODEL

The same procedure is run to create a foreground model and a background model.

4.5.3 Obtaining the foreground probability image

Once a density estimate has been obtained for both the foreground P(z|O) and background
P(z|B) , the posterior probability of a pixel in the image belonging to the foreground can be

obtained by: PO)(I0)
p(z

P(Olz) = P(B)p(z|0) + P(B)p(z|B)

(4.11)

This minimises the possibility of misclassification in Bayesian sense, and also gives a confidence
value for the classification: if the probability of both background and foreground is low or high
then confidence is low. The prior probabilities P(O) and P(B) of a pixel belonging to the
foreground or background respectively, are set to the fraction of pixels in the bounding box
expected to be classified as foreground and background. Thus P(B) = 1—P(0O). This fraction
is obtained through the use of another form of segmentation which does not rely on the colour

mixture model, which will be detailed in chapter 5.

4.6 An adaptive colour model

4.6.1 The need for an adaptive model

The exclusion of the luminance band of a colour space [40], such as the HSV or L*a*b* as
opposed to using all three bands of RGB, aids to some degree in the insensitivity of a model
to lightness changes. However, since the colour of an object in an image is the product of the
object’s spectral reflectance properties and the chrominance of the light illuminating it [20], a
change in the chrominance or intensity of the lighting in a scene can greatly affect the actual

hues represented in an image.

This of course is a huge problem for model-based segmentation, such as content-based image
retrieval based on colour histogram representation of the object and for tracking in a sequence
where colours may change due to lighting changes in the scene or even shadows cast by the

object being tracked.

Many attempts have been made to alleviate this problem. One possible solution is to attempt
to model the lighting affecting an image and to normalise the image in such a way as to
compensate for the lighting, so that the colours are the same as if viewed under some known
canonical lighting condition. This is done to an extent by conversion to the L*a*b* colour
space using a reference white point which is visible in both the background and foreground

images. A partial solution to the problem of tracking is to adapt the colour model of the
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Plot of data and mixture centres

T T T T T T
40 - Background M
=}=  Centres for background GMM
x  Foreground
== Centres for foreground GMM
301 X |
20 R
101 R
B
0 - -
_10 - -
_20 - .
_30 - .
| | | |
-60 -50 -40 30

Figure 4.2: Background and foreground data points with mixture model centres superimposed
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4.6. AN ADAPTIVE COLOUR MODEL

person slowly over time, so that any gradual change in the colours of a person due to a slow
lighting change or an effective lighting change caused by varying the distance from the camera

or light source to the tracked object can be accommodated into the model.

4.6.2 Adapting the foreground model
Resampling the image

The segmented image from each frame is resampled in order to provide the parameters with
which to update the model for the segmentation of the following frame. An approximate
centroid for the segmented person is found: taking the median of the segmented pixel positions

in the z and y directions.

An “internal bounding box” is then constructed by growing a region outwards from the centroid
until a pixel is reached which belongs to the background. This internal bounding box is
forced to have the same aspect ratio as the segmented image, so that as many representative
colours from the image can be obtained in the sample. Evidently this is not always possible,
particularly in the case of the feet which are difficult to include in the sample. It is partly for
this reason that the model must be forced to adapt slowly, since with a quickly adapting model
different coloured regions of the person can be eliminated very rapidly because of inadequate
sampling. A segmented image with its internal bounding box for sampling superimposed is

shown in figure 4.4.

Updating the model

The new sampled data from the segmented frame are used to update the existing Gaussian
mixture model. The parameters describing each Gaussian component are estimated from this
data. The responsibility 7(*) at time frame # is defined as in [60] as the sum over all sampled
pixels S of the posterior probabilities of that data having been drawn from each Gaussian

distribution.

) — Z p(j|z) (4.12)

zeS(®)

The mean for each of the Gaussian components j, then becomes

) — Zmes(t) p(]|$).’17
,LI, =
’I'(t)

(4.13)
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Figure 4.4: Sample box for adjusting the mixture model

the priors for each component become:

0

and the covariances:

n®) — Za:ES(t)p(jl"L‘) (z — /'Ltfl)T(iL' — 1)
B r(®)

(4.14)

(4.15)

These new parameters are then used to update the current model. The new parameters for

the model are a linear combination of the parameters from the previous frame (which in turn

are based on those of the frame before that), the parameters of the sample drawn from that

frame, and the old model (which could be the original model or the last known good model,

a predefined number of stages, L back). The equations for updating the mixture are:

(t) (t—L-1)
- T LA I (2 2 VI
Mt = p—1 + D, [M Mt—l] D, [M Mt—1]

lr(t) fr(thfl)
— T n® - -
Y=Y+ D, [E Et—1] D,

50

[E(t—L—l) _ Zt—l]

(4.16)

(4.17)



4.6. AN ADAPTIVE COLOUR MODEL

N®
Y N

N(t—L-1)

P,=PF,_ -
e Y N0

Pﬂ%—RA]— [Pwiﬂf—RA] (4.18)

where N is the number of pixels in the sample. The scaling factors affect how much the
model changes in favour of the new or the old model. D; is the sum of r(® over the last L

frames which is approximated as:

1
~ 1 —— ()
Dt [1 A 1:| thl +r (4.19)
and D
(t-L-1) o, Zt=1
" L+1 (4.20)

Evidently L is an adaptivity controlling measure: the greater L, the slower the model will
adapt and the faster it will “forget” its original state. For efficiency it is easier to use a smaller
value for L and if the sample drawn from the previous segmented frame is accurate, the faster
adaptation can be an advantage in the case of sudden lighting changes. The value of 3 was
settled upon for L, although this is easily altered on the fly if, for instance, it is known that

there are similarly coloured objects in the room which could be false targets for adaptation.

4.6.3 Bootstrapping the model

The problem with an adaptive tracking model is that it may adapt in an undesirable way. For
example, if a sample is drawn from an incorrectly segmented image, the segmentation is likely
to become worse in subsequent frames and not better. A method is needed of bootstrapping
the model to some reliable frame of reference if there is a doubt as to its current efficiency.
On the premise that a previous model should perform better than a model which has adapted
to the wrong data, the model L frames ago is used as a frame of reference. Even if the object
has undergone change in colour because of sudden changes in lighting conditions, the previous

model is likely to be at least a better estimate of the colour distribution of the correct object.

It can be established when the mixture has adapted to the wrong data. If the model changes
too much and the segmentation is likely to be affected, the model is erased and reverts to a
previous model, which is presumed to have performed better because no failure was detected
at that point. In order to determine the model’s current accuracy, the negative log-likelihood
A of the sampled data can be observed over time. A sudden increase in the negative log-
likelihood (or decrease in the log-likelihood) may indicate that adaptation to another object
has occurred. The log-likelihood calculation based on the data sample S () is shown in equation
4.21.
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1
A= NO Z log p(z|O) (4.21)
zeS®

The threshold T for the allowed limit of variance of all the above criteria which could indicate
an inaccurate sampling, is decided by observing the values of the log-likelihood over the last
L frames and calculating the median m and standard deviation ¢ of these. The threshold 7',
for the log-likelihood is then defined to be T' = m — 20, and for any negative log-likelihood

greater than 7', the model reverts to the one used L frames ago.

4.6.4 Adapting the background model

The background is equally susceptible to lighting changes and is thus an equally likely candi-
date for an adaptive colour model. The difficulty with this is the large number of pixels which
constitute the background. To create a new model using all of the known background pixels
would be very time consuming. To draw a small subsample might be hopelessly inadequate if

only a small range of the colours in the background were sampled.

A possible solution to this, if the camera is assumed to be static, is to draw a small sample
from across the image, and to change the area from which the sample is drawn in every frame.
In this way over a period of time every pixel from the background should have participated in
updating the background model. This of course assumes a slowly varying background, with a

limited amount of clutter.

Another possibility is to take an average colour value over every 10 by 10 pixel block in order
to update the model. The method selected by virtue of being computationally feasible and yet
not seeming to bias the adaptation unduly in any direction, is to sample 200 pixels at random
over the entire background and to do a fast update in a similar manner to the foreground

update.

In chapter 5 the measurement of motion is described, and motion information is used for
segmentation to supplement the colour information already obtained. The combination of
these two pieces of information will eventually lead to a segmentation which is better than

that obtained using only one of these forms of image information.
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Chapter 5

Motion

Some form of motion estimation is needed in order to:

1. Initially provide a preliminary segmentation of foreground objects so that their colours

can be “learnt” by the adaptive Gaussian mixture model.

2. Limit the search space of the scene when testing for correspondence with the colour
model. In other words to find the approximate location of a rectangular bounding boz,
which will define the upper, lower, leftmost and rightmost limits of the area of occupation

of each person.

3. Combine a motion segmentation estimate with a colour segmentation to produce a more

effective segmentation

4. Provide an estimate of the actual motion of the segmented person in order to be able to

track him or her.

In section 5.1 the measurement of motion in image sequences using gradient-based methods
is discussed. In section 5.2 image differencing techniques are described which will be used to
refine the colour segmentation. In section 5.3 a method of updating the background refer-
ence image using a Kalman filtering approach is described, and a threshold is automatically
generated so that a segmentation can be obtained which is useful both for initialising the
colour model and for locating an approximate bounding box. Lastly in section 5.4 the motion

estimation for tracking is discussed.
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5.1 Measuring visual motion

Motion is important because one uses motion information when colour and edge information is
either unavailable or unreliable. Animals make use of this principle in camouflage: predators
are less likely to see their prey when it is not moving if it is of a similar colour, texture or

shape to its background.

5.1.1 Motion estimation versus optical flow

A motion field assigns a velocity vector to each point in an image. Optical flow is the apparent
motion within an image. The two do not always correspond. Two specific examples of this
difference are those of a sphere rotating under uniform lighting: there is motion present, but
the flow field is zero [25]; and a rotating barber’s pole, illustrated in figure 5.1. The optical

flow can be defined as “the instantaneous velocity of a brightness pattern at a point”.

b z axis

e

M
HHHAMA
M
HH

HH M
HHHHA

i

Barber’s pole Motion ficld Optical flow

Figure 5.1: Illustration of the difference between optical flow and motion field [53]

Information about the brightness gradient over the image and the brightness gradient in time
provides a constraint on the components of optic flow. The flow vector can only be determined
in the direction of the brightness gradient. The component perpendicular to this cannot be

determined (tangential to the brightness gradient). This is known as the aperture problem.
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5.1.2 Optical low measurement

Optical flow can be measured using differential methods, region-based matching, energy-based
(filter in Fourier domain) and phase-based (phase behaviour of band-pass outputs) [9]. Optical
flow is subject to the aperture problem (only flow parallel to the gradient can be calculated),

boundary over-smoothing and multiple moving objects transparency.

Three principal methods for measuring optical flow are:

1. Gradient-based methods
2. Block-based methods

3. Correlation-based methods

The technique used here is the gradient-based method of Horn [25]. The illumination I of
a point (z,y) in a brightness image at a time ¢ is a function of the spatial and temporal
co-ordinates z, y and £. Then at a a time Ot later, the illumination will be the same at a point
(x+ 0x,y+ Ay), where 0z = udt and 0y = vdt and u and v are the components of the optical

flow in the = and y directions.

I(z + ult,y + 0t,t + 0t) = I(z,y,1t) (5.1)

From this the optical flow constraint equation can be obtained after Taylor expansion:

IL+1,+1,=0

This is still under-determined as it only defines a plane in velocity-space upon which the
solutions must lie. There are three principal methods of constraining this equation. These are:
using local optimisation, assuming neighbourhoods have similar velocities; using smoothness

constraints[26]; or clustering using Hough techniques [16].

In the present case the smoothness constraints are imposed. To maximise smoothness the
integral of the square of the magnitude of the gradient of the optical flow is minimised according

to equation 5.2.

ey = / / ((u2 + ) + (v2 +v2))dady (5.2)

The optical flow constraint equation error must also be minimised.

e = //(Ewu + Eyv + Ey)*dzdy (5.3)
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Thus, a weighted combination of equations 5.2 and 5.3 must be minimised and a weighting
parameter A must be chosen to weight the error in the optic flow constraints relative to the

departure from smoothness.

The optical flow measurement is most accurate at regions where the brightness differs from
the surrounds. In areas where the brightness is constant along a direction it cannot be found
in that particular direction, and where the brightness does not vary the flow is unable to be
found. The values for regions such as these must be deduced from the flow values for the

surrounding areas.

For the discrete case an iterative solution can be reached for v and v [25]. The new value of
(u,v) at a point is the average of the surrounding values minus an adjustment in the direction

of the brightness gradient.

L™ + Lyv™ + I
1+ A2+ Ig)

] (5.4)

u" T =u" — I

_on [Iwu" + L™ + It]
BN TYIPEN 7)

5.1.3 Obtaining spatial and temporal derivatives of a brightness image

In order to perform the iterative calculation for the optical flow field, the spatial and temporal
derivatives of the brightness image must be known. For this purpose the derivatives are
calculated using masks proposed by Simoncelli in [72]. A matched set of a low-pass pre-
filter and a derivative filter is used to obtain a good gradient estimate. Simoncelli [72] shows
that the gradient accuracy improves with the size of the filter used. The 3 tap filters he
describes in [72] are used: for the pre-filter, [0.2242 0.5515 0.2242] and for the derivative
filter, [0.4552 0 —0.4552].

A sequence of three consecutive images in time is therefore necessary for the gradient calcu-
lation. This number seems the best compromise between gradient accuracy and number of
images which need to be stored for the calculation. The brightness image is the first band of
the colour image which has been transformed to the L*a*b colour space (which seems econom-
ical, since only the other two bands are taken into account when building the colour model).
First this sequence of three images is pre-filtered in time, and then this signal is convolved with
the pre-filter in the vertical direction and then the derivative filter in the horizontal direction
to obtain I, and then with the pre-filter in the horizontal direction and the derivative filter in
the vertical direction for I,,. Finally to obtain I; the sequence is filtered in the time direction

using the derivative filter.
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Figure 5.2: Motion vector plot

5.2 Difference image generation

Image subtraction is a crude form of motion segmentation. Subtraction can be done between
two consecutive frames or between a frame and a reference image containing only static objects.
Since a reference image cannot be depended upon to be unchanging, it is usually desirable to

update it in some way in order to account for changing lighting or other moving objects.

The difficulty with using two consecutive images for subtraction is that some pixels that
belong to the moving object in both frames will not be classified as changed, and some pixels
belonging to the previously occluded background will be classified as changed. A solution
which has been suggested is to take two difference images consecutively and combine them
using a logical OR operation. This can be done by multiplying the absolute value of the two
difference images to obtain one difference image in three colour bands [14] as indicated by
equation 5.6. The succeeding step is shown in equation 5.7, where the maximum value in all

the colour bands is chosen for each pixel.

d(R, G, B) = |iml(R, G, B) — im2(R, G, B)| x |im2(R, G, B) — im3(R,G,B)|  (5.6)

D = maz{d(R), d(G),d(B)} (5.7)
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5.2.1 AF measure

A better approach if an empty background image can be obtained is to look for differences
between each image and the known background. As mentioned previously, one cannot rely on
the background being completely static so a method of updating it over time is necessary. The
simplest manner in which this can be done is by observing a large number of reference frames
over time and computing the mean and standard deviation. Pixels which are more than a
constant number of standard deviations from the mean can then be classified as foreground.
This technique can be made more robust by using all three bands of the colour space of
the empty background image. If this operation is performed in the L*a*b* colour space the
AFE metric given by equation 3.8 in chapter 3 can be used for estimating this change, using
information contained in all three colour bands. The change-detected image thus obtained
should correspond more closely with the amount of perceived colour change. This difference

image is used in conjunction with the colour probability image to obtain a segmentation.

5.2.2 Variance of ratio measurement

A second change-detection approach used is the one used in [74]. Instead of image differencing
the ratio between the current image and the background is taken. This image is subdivided
into 20 by 20 blocks, and the variance within each of these blocks is calculated. If this is near
zero the region has not changed, and if it is much greater than zero the region is assumed to

have undergone change.

5.2.3 Gradient of luminance difference

Shadow boundaries in difference images are frequently less sharp than boundaries between
objects. An edge-detected version of the luminance band of the difference image can also be

obtained, which can be used to differentiate between shadows and valid foreground difference.

5.3 Kalman filtering

Any image differencing method also requires some compensation for lighting changes, in much
the same way as a colour probability density estimation problem does. A common way of
doing this is to estimate the changes the scene undergoes over time and update the static
background image accordingly. The method used to update the background image, which is

subtracted from the foreground in order to obtain the mask of the moving regions, is based
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(a) Delta E (b) Variance of ratio (c) Sobel

Figure 5.3: Various change-detection methods

on the method used by [63]. The approach makes use of Kalman filtering in order to model
any changes to the background.

5.3.1 The Kalman filter
A simple Kalman filter

If one has two observations about the measurement of a variable (one-dimensional in this case),
z1 and 29, with associated variances, o1 and o9, indicating the reliability of the observations,
one can combine the information about these two observations to produce a “better” estimate
of the measurement and its variance as shown in figure 5.4. The combined estimate is a
Gaussian probability density, centred about the new estimate z, with an error variance of s

[47]. The values for z and s based on the previous observations are:

2 2
O3 g7
= z 5.8
S P S e (58)
1 1 1
- 4 5.9
o  o? + o3 (5.9)

Hence an estimation Z(¢;) based on the two previous observations can be given by:

2 2
ox g
R g g
= ZE\(tz’_1) + K(ti).[ZQ — :’E(tz’_l)] (510)
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where
af

K(t) = ——1
R

(5.11)

is the Kalman gain and Z(¢;—1) is z;. This means that the best estimate of the system state at
t; is the previous best estimate Z(¢;_1), before the measurement z, was taken, plus a weighting
factor K (t;) multiplied by the error between the observation 2z and the best prediction of its
value Z(t;—1). This leads to the predictor-corrector structure of the Kalman filter, whereby
a recursive estimate is made, using all previous information, of the value a measurement will
take the next time the measurement is actually made and of the error associated with that
measurement. When the measurement is made, the error between it and the estimate is used

to predict the next measurement [47].

The Kalman filter thus uses feedback to estimate the state at some time. An estimate is made
for the state, and a measurement with associated measurement noise, which is also modelled

is subsequently obtained and used to obtain a better estimate of the next state [79].

Conditional density based on observations z1 and z2

0.25 T T : .
—— Combined estimate based on z1 and z2
—— First observation
—— Second observation
0.2 i
s
0.15 — 7
sl
0.1F : |
s2
0.051 : |
O | 1 1 |
-15 -10 -5 0 5 10 15
z1 z 72

Figure 5.4: Conditional density with variance s of a one-dimensional measurement based on
observations z; and 2z with variances sjand ss.

The Kalman filter approximates the state of a system by assuming some noise to be present
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on the measurement of the system values. At time ¢; the estimation of the system state is
given by:
z(t;) = z(t;) + K(t;).[2(t;) — H(t;)-2(t;)] (5.12)

where z(t;) is estimated from the previous measurement Z(t;—1) by

z(t;) = A(t:)-2(ti-1) (5.13)

where A(t;) is the system matrix which models the relation of the state Z(¢;) to the previous

state Z(t;—1).

In equation 5.12 z(t;) is the measurement of the system state at ¢; and H(¢;) is the measure-
ment matrix which relates the state Z(¢;—1) to the measurement z(¢;), where each measurement
can be modelled as H (t;).Z(t;—1) plus some measurement error with covariance o9. K(t;) is the
Kalman gain matrix, which can be seen from equation 5.11 to be a function of the estimated

error covariance and the measurement error covariance.

5.3.2 Adaptive background estimation

Kalman filter equations for background estimation

If the intensity values for pixels in an image can be regarded as a function s of z and y at
time frame t; , the system state, which is the estimated intensity at that point is §(z,y, ;)

and the estimated variance of this pixel value in time is $v(x,y, ;). According to the Kalman

filter equation obtained above, the estimation for the pixel intensity and variance becomes

[ 8z, y, i) ]:[ 3(z,y,t:)

gb(%y,tz) é"b(a"’yatz)

+ K(z,y, ). {s(:z:,y,ti) — H(z,y,1;) [ s(z,y,t:) ] }

S~’U(.’I}, Y, ti)
(5.14)

with the predictive term

l s(z,y,t;) ] 4 l s(z,y,ti-1) ] (5.15)

ﬁ)(l'ayatZ) §(m,y,ti_1)

where the system matrix A is given by

1 0.7
A= [ 0 0.7] (519)
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and the measurement matrix H in equation 5.14 is constant, because the measurement is a
digital grey-level value.
H=[1 0] (5.17)

The Kalman gain K (z,vy,t;), which is dependent on the segmentation, seg(z,y) of the previous

frame at time t;_1 is given by

kl (‘Ta Y, tZ)
K(z,y,t;) = (5.18)
k2 (.77, Y, ti)
where
k1 (‘Ta Y, ti) = kQ(xa Y, ti) = a.seg(a:, Y, ti—l) + /6[1 - seg($, Y, ti—l)] (519)
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Figure 5.5: Background estimates and actual values of a pixel with its foreground /background
classification

Choosing a gain

The gains used in this update method are not truly Kalman gains as they do not depend

upon the estimated and measured error covariance. The variables a and § in equation 5.19
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Figure 5.6: Background estimates and actual values of a pixel with its foreground /background
classification
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control how quickly the filter adapts to changes in the foreground and background. Evidently
it is desirable that the system respond as quickly as possible to changes in the background,
which could be due to illumination changes, and as slowly as possible to areas which have
been classified as foreground. If the foreground is adapted too quickly, stationary parts of
the foreground will become incorporated into the background estimation and the resulting
segmentation will be full of holes. The manner in which to choose the gain is proposed in
[63], which involves some modification of equation 5.19. A pre-estimation is defined using

as follows:

g,(xa yati) = g(xayati) + /3'[8(‘T7 Y, tz) - g(:Ea Y, tz)] (520)

Then equation 5.19 becomes (remembering, although this is not explicit in the notation, that

s1, 3, s and th are all functions of z,y and t;)

kl('Ta yatz) = k?('Ta yatz)

_{a if |s—3|>th OR {|s—3|<th AND |s—3I|>th} (5.21)

B if |s—3 <th AND |s—sl| <th

This means that even if the difference between the image and the estimation is less than
the threshold, if the difference between the image and the pre-estimation is greater than the
threshold the pixel is still considered foreground and the estimation is performed using the
foreground gain a. Otherwise the pixel is considered background and the background gain 8

is used.

Obtaining a segmentation

The segmentation seg(z,y,t;) is a binary mask obtained by subtracting the background es-
timate at time ¢; from the actual measurement of the image intensities at ¢;, which may of
course also contain foreground pixels. Any pixels whose measurement estimation difference is
greater than a certain threshold th(z,y,t;) is classified as foreground and the remainder are
classified as background and included in the re-estimation for the following frame. Thus, the

segmentation at frame ¢; is given by

(5.22)

B 0 otherwise

A more robust segmentation can be obtained if the information from all three colour bands
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is used. Each band is filtered separately and has an independent threshold, which adapts as
described in the following subsection. The advantage of using all three bands is that one is
then able to set the initial threshold for the segmentation fairly high, so that as little noise
as possible is obtained in the segmentation. As can be seen in figures 5.7 and 5.8, even sharp
peaks in the plot of the difference between the background estimation and the image are below
the threshold line in most cases. However, noting that some of the peaks in the difference plot
do not actually correspond to the detection of foreground at that pixel, it is as well to have
a high threshold for the colour bands in which this happens, which prevents false detection
of foreground. If each band is thresholded separately (at a high threshold) and the outputs
are combined using a logical OR operation, the resulting combined segmentation contains
far fewer false positive pixels than if any one of the bands is used on its own with a lower
threshold. Thus in the three plots shown in figures 5.7 and 5.8 the eventual classification of
the pixel is obtained only from thresholding the a* band as can be seen in the second plot in
figure 5.7. In the other plots the pixels values at the same points fall below the threshold line,
but as a result of the logical OR operation, a pixel value higher than the threshold in only
one of the three bands is sufficient for a positive classification. In the L*a*b* space image
differencing operations on the components bands bring out different regions of interest. This
segmentation is used primarily to initialise the colour mixture model and to locate a bounding

box for each foreground object in every frame.

Threshold adaption

The threshold used to determine whether a pixel belongs to the foreground or background is
also dependent on z, y and ¢;. In order to increase the tolerance of the threshold to shadowing,
the threshold is made dependent on the variance of the estimated values at that pixel over
time. The threshold is thus composed of a fixed part, which is an empirically determined
function of the mean difference, added to the variance o over the last n frames of that pixel,

which is calculated according to equation 5.24.

th(m,y,tz) = thfixed + O-(:L-ayati—l) (523)
1 i
02(35,1/,7%') = m Z 3($’y7t)2 —”-g(ﬂ%yati)z (524)
t=ti—n+t1
where .
1 i

t=ti—n+1
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For the pixels where the background is covered for a frame ie. seg(z,y,t;) = 1, the variance
o(x,y,tp) at the last time that pixel was classified as background is used, multiplied by an
exponential function which is a constant multiple k of the time since that pixel was last
background, t; — ¢, as shown in equation 5.26. This means that the variance for a pixel is not

biased by frames where the background at that pixel is occluded.

o(z,y,t;) = o(z,y,tp).exp k(t; — tip) (5.26)

5.4 Using motion information to locate a bounding box

5.4.1 Bounding box prediction for segmentation

Since the position of the person in the current frame is known, it seems redundant to test the
entire image for colour correspondence with the model when the area to which the person could
have moved is in fact extremely limited. If a bounding box for the estimated position in the
next frame could be calculated and this area only was tested for colour correspondence, this
would lessen the probability of losing the object being tracked, which was the problem with
the non-adaptive colour model presented in [62] and [60]. For this reason, a bounding box in
each frame is extracted through use of the Kalman-filtering segmentation technique described
above. Simply connected objects larger than a certain size have bounding boxes associated
with them and the testing for colour correspondence with the foreground model is done only
within this bounding box. The accuracy of this segmentation is not critical, as long as the
bounding box is bigger, rather than smaller than the actual size of the object it is meant to
enclose. For this reason, a morphological closing is performed before the connected components
are extracted. It is better to have a bounding box that is too large than an estimate which
is too small since the costs are in the first case, a slightly longer computation time, and in
the second, an imperfect segmentation because of inaccurate bounding box estimation. The
bounding box obtained in this way is the assumed to be the largest estimate of the size of the

person in the frame.

The estimated size of the person in the bounding box is used to obtain the priors P(O) and
P(B) in equation 4.11 for determining the membership likelihoods of a pixel to the foreground
or background classes. P(O) is the ratio of the size of the segmented object obtained in the
manner described by section 5.4 to the total size of the bounding box, which corresponds

roughly to the proportion of pixels which are not expected to be classified as background.
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68



5.4. USING MOTION INFORMATION TO LOCATE A BOUNDING BOX

5.4.2 Bounding box prediction for tracking

The predicted bounding box for the succeeding image can also be calculated, without having
any knowledge of the segmentation of that frame, using the co-ordinates of the bounding box
for the current frame. The bounding box position for the current frame is recalculated for
every image after the segmentation has taken place, and can thus be considered an accurate

estimation of the position of the person in the frame.

The gradient-based optical flow estimation algorithm described in section 5.1 can be used to
estimate the optic flow parameters (u,v) of the image. Since this is computationally expensive
because it involves an examination of the surrounding pixels, and it is unnecessary to have a
very precise measure of the motion just for the bounding box localisation, the optic flow is only
calculated at every 20th pixel. The values of the motion parameters (u,v), which correspond
to flow in the z and y directions are rounded to the closest integer value [73]. This means that

flow values which are below 0.5 become 0 and are considered effectively stationary regions.

The maximum and minimum of each of the u and v components of the flow field, which
correspond to the four maximum possible directions of motion of the bounding box, ie. the
z, —z, y, and —y directions, are extracted in each frame. These values are added to the
co-ordinates of the bounding box in the current frame to obtain an estimate of the position
of the bounding box in the next frame. The flow field, however, is only an approximation
of the actual motion and is based on the motion that has already occurred: the gradient
estimation includes the current image and the two preceeding it. Therefore there is scope for
error, particularly at image frames where a change of direction takes place, which cannot be

foreseen.

The segmentation then only takes place within the bounding box which has been predicted
for any particular frame. If a large discrepancy exists between the largest bounding box
estimation and the predicted bounding box using motion estimation, an area outside the

predicted bounding box is also tested for correspondence with the colour model.

For tracking a simpler form of motion estimation can be used by estimating the velocity from
the difference between the bounding box positions between frames. This similarly gives a net
motion estimate in each of the four directions: z, —z, y, and —y, which can be used to predict
a bounding box in the following frame and is a lot less computationally intensive. To make
the velocity estimates less sensitive to outliers, the velocity is computed recursively, so that

previous velocity estimates become part of the current estimate.
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Chapter 6

Combining Outputs

6.1 Reasons for requiring additional classification constraints

The ultimate goal is the best possible classification method for the current application, which
requires different methods depending on the task. Experimentally the best performing classi-
fier should be chosen to solve the problem. The trouble is that it is not always obvious which
classifier this is. The data misclassified by each of the different classifiers might not, however,
overlap and thus combining the classifiers in some way could lead to an even better correct
classification rate [38]. This is certainly the case with the various segmentation techniques

discussed thus far.

Even if the Gaussian mixture classifier based on colour distributions were assumed to produce
a perfect classification of foreground and background every time, there is at least one set of
circumstances under which it can only perform less than perfectly. If some of the colours
of the foreground which have been modelled by the mixture of Gaussians appear elsewhere
in the image it seems obvious that these colours will be mistakenly classified as foreground.
By only requiring this classification to be successful locally in the image, through use of the
bounding box, some of these extraneous misclassifications will be eliminated. However when
the person moves in front of a similarly coloured object it is likely that the classification within

the bounding box will fail.

Likewise, segmentation using only a difference image is likely to fail. Ambiguity can occur
in several cases: namely misclassification of background as foreground due to shadowing of
the background, and misclassification of foreground as background. The latter manifests itself
as holes within the foreground and depends on the colour of the background object behind
the foreground. In a background difference image the foreground appears “transparent” and

objects behind it which are subtracted from it appear in the segmentation.
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For this reason, neither the colour classification nor image differencing should be used on its
own for segmentation, but both should rather be combined, possibly with additional fore-
ground /background classification methods which provide different information. Each tech-
nique by itself has many weaknesses, but in combination with another method of classification

the segmentation results improve dramatically.

6.2 Possible methods of combination

It seems clear that the combination of two different type of foreground/background classifi-
cation must perform better than one alone. Using two methods usually helps to eliminate

ambiguities which present themselves by the use of one classification process.

Much information can be lost by thresholding each output before combining it, and by requir-
ing strict constraints on the combination. Some possible methods of combining these various
segmentation methods making use of the degree of class membership they provide, are given
by [38]:

e Maximum rule - The data point is assigned to the class that has the maximum a poste-

riori probability.

e Median rule - The median (rather than the mean) of the class membership probabilities

is used to classify the data. This is less sensitive to outliers than the mean.

e Majority vote rule - Hard class membership values are assigned and the data point is
assigned to the class which receives the largest number of votes from the independent

classifiers.

e Sum rule - The output according to this rule is the sum of the a posteriori probabilities

produced by all of the classifiers.

e Product rule - The output according to this rule is the product of the a posteriori
probabilities produced by all of the classifiers. This has the unfortunate effect that any
one classifier that has a low confidence will affect the overall output.

Kittler [38] found the sum rule to perform the best, followed by the median rule, followed by

the majority vote rule.

A further method of combining classification methods is to use the classification outputs as
inputs to a neural network. An important issue is that the input classifiers be different. In the
case of neural networks as inputs, they could be trained on different data. Otherwise classifiers

which operate on the same space and can be considered two estimates of the a priori class
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probability can be combined, or classifiers which correspond to different measurements, so the
classifiers operate in different measurement spaces. The colour classification and difference

image combination falls into the latter category.

Methods of classification depend also on the kind of output data supplied. Sometime a vot-
ing scheme is sufficient if the classes are labels. If continuous outputs such as a posteriori
probabilities are supplied, the output could be an average or linear combination of the inputs.
Otherwise fuzzy rules can be constructed and applied and sometimes it is helpful to use the

outputs of the classifiers to be combined as inputs to train yet another classifier.

6.3 Combining colour probabilities and difference images

Assuming that the changes between the background and foreground and the similarities be-
tween the colour distributions of the background and foreground fall in different regions in the
image, the two images can be simply combined to produce a better one by thresholding each

and performing a logical AND operation.

First, if the assumption that any lighting change in the image and colour similarity between
object and background are independent of each other is violated this algorithm will fail. That
is to say if the person moves so that his shadow falls on a static object which has the same
chromaticity as an item of his clothing, that object will be mistakenly classified as part of the

person.

Secondly, a drawback rather than a reason for failure, is that this method requires absolutely
that both methods classify the pixel as foreground. The possibility that a very high value of
colour probability and low change may also constitute a pixel that belongs to the foreground
is not considered. Likewise the reverse case, a high difference image value and a low colour
probability, although this is more likely to be caused by a shadow, which of course should not

be considered in the classification process.

The weakness of this way of combining the two methods seems to work against the very reason
for using a colour model at all, since it means that even if the foreground’s colours are correctly
classified, if the background subtraction does not agree, the correct classification of certain

pixels is rejected.

The different forms of background/foreground classification which we have available thus far
are: the AFE difference image measure in L*a*b* space, the hard segmentation obtained
through the Kalman filtering method with adaptive threshold discussed in the previous chap-
ter, the variance of the background image ratio and the gradient of the luminance differ-

ence also described in the previous chapter, and lastly the colour probability image obtained
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through the Gaussian mixture model classification process. These five different forms of infor-
mation about the location of a foreground object: each with their strengths and weaknesses,
can be combined in order to produce a segmentation of the object which is better than any

of the individual thresholded components on its own.

Two different methods of combination were attempted: first the sum rule: adding the class
membership values and thresholding at a certain limit and second, a neural network, where
each output is presented as an input to a neural network together with a target segmentation

for those pixels.

All inputs to the combination algorithms are scaled to confidence values between 0 and 1. Each
of these can be seen as continuous probabilities of membership to the foreground class. Only
the Kalman segmentation has a hard decision limit (1 and 0) enforced. The colour probability
image, difference image and Kalman segmentation are all low-pass filtered to slightly reduce

the influence of any misclassifications in the initial outputs.

6.3.1 Method 1: the sum rule

An obvious strategy is to combine the unthresholded images which result from the colour and
difference images and use a weighted combination of these to obtain an image S which can
then be thresholded. Equation 6.1 shows how this can be done.

>w

D is the unthresholded absolute difference image, C the unthresholded colour probability

(6.1)

image, R the variance of the ratio between the foreground and background images, K, the
the segmentation obtained through the Kalman filter process, S the edge-detected difference

image and w is a weight value.

Weighting all inputs equally works as well as other possible weightings, so w3 = wy = w3 =

w4 = ws = 1. The sum obtained in this way is thresholded to produce the segmentation.

6.3.2 Method 2: the neural network approach

The second approach was to train a multi-layer perceptron with 15 hidden layers, using a
hand-segmented target image. The confusion matrix for the data obtained after training for
100 iterations is shown in figure 6.1. It can be seen from this that the network created, if
it were to be used to classify the same data, would classify 7703 pixels in the training set

correctly as not belonging to the foreground class and 1620 pixels correctly as belonging to
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the foreground class. On the misclassification side, 47 pixels would be incorrectly classified
as coming from the foreground class when in fact they did not and 35 would be incorrectly

classified as not belonging to the foreground class.

Classification rate: 99.1281%

Actual 7703 47

negative!

:ﬁ;‘fﬁe 35 1620
Predicted negative Predicted positive

Figure 6.1: Confusion matrix

6.4 Evaluation of the two different approaches

Segmentation results for a sequence are shown in figure 6.2. Qualitatively the weighted addi-
tion seems to perform better then the multilayer perceptron, as the silhouette boundaries are
slightly smoother. The results of each segmentation method for this sequence of 50 images
were compared to a hand-segmented version of the sequence. Percentage errors were calcu-
lated for the false positive classifications, false negative classifications, correct classifications
overall and percentage of foreground correctly classified. Since the segmentation technique in
each case involves estimating a bounding box and performing the segmentation only within
the bounding box, it is not clear whether the percentages should be calculated over the entire
image, or just within the bounding box. There is actually some justification for computing
the error over the entire image, as it is possible to obtain an inaccurate bounding box, which
might lead to some segmentation error which falls outside the bounding box. For the purpose
of comparison it is not really crucial which results are shown, but for completeness percent-
ages over the entire image are shown in tables 6.1 and 6.2 and percentage errors within the

bounding box only are shown in tables 6.3 and 6.4.

From the tables it can be noted that the multi-layer perceptron method has fewer false pos-
itive classifications and the sum rule method fewer false negatives. Each method produces

roughly the same number of pixels correctly classified overall, although the multi-layer per-
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(b) Combination by weighted addition

Figure 6.2: Segmentation results for a sequence using two different combination techniques

‘ | % False Positive | % False Negative | % Pixels correct | % Foreground Pixels correct

Mean 0.81 0.42 98.74 92.98
Median 0.77 0.46 98.80 93.33
Max 1.6 1.02 99.23 97.09
Min 0.44 0.18 98.03 86.42

Table 6.1: Error rates over the entire image for 50 frames for a neural network
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‘ % False Positive ‘ % False Negative ‘ % Pixels correct ‘ % Foreground Pixels correct ‘

Mean 0.92 0.4 98.69 93.86
Median 0.84 0.37 98.76 94.22
Max 2.47 0.89 99.13 97.63
Min 0.58 0.17 97.32 85.63

Table 6.2: Error rates over the entire image for 50 frames for sum rule

ceptron seems to have a slightly higher correct classification rate. Likewise, the percentage of
foreground correctly classified is almost the same for each method, though the sum rule seems
to have a slightly higher success rate. There does not appear to be much to choose between
the two from these data. It must be noted, however, that in the case of bad performance of
one classifier, namely the colour mixture model when it has adapted to the wrong data, the

multi-layer perceptron method is far less affected than the weighted sum method.

Thus, if different weights are placed on priorities, different combination methods should be
chosen. If it is a matter of extreme importance to have as few as possible misclassifications
of foreground, the sum rule should be chosen; however, if it is more important to have no
background mistakenly classified as foreground the neural network method should be cho-
sen. Moreover, if the system is to be robust against the temporary failure of one component

classifier, the multi-layer perceptron method is the better approach.

This said, the difference in classification rates can for the most part be overcome by median
filtering the unthresholded outputs of both the sum rule and the multi-layer perceptron and

performing morphological operations on the thresholded results.

‘ % False Positive ‘ % False Negative ‘ % Pixels correct ‘

Mean 5.63 3.45 90.92
Median 5.43 3.27 91.05
Max 8.81 6.72 93.53
Min 2.49 1.61 85.65

Table 6.3: Error rates within the bounding box for 50 frames for neural network

‘ % False Positive ‘ % False Negative ‘ % Pixels correct ‘

Mean 6.53 3.02 90.44
Median 6.27 2.76 90.57
Max 10.58 6.65 93.40
Min 2.86 1.08 84.80

Table 6.4: Error rates within the bounding box for 50 frames for sum rule

Chapter 7 now introduces the problem of tracking the various people which have been identified

through the segmentation algorithm that has been developed up to this point. This involves
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re-identifying the segmented blobs in subsequent frames using image features extracted from
the blobs.
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Chapter 7
Tracking

The first section in this chapter describes the problem of tracking and introduces the low-
level image features which are commonly extracted from objects in order to be able to track
them. Section 7.2 describes the development of a simplified tracking system in which the

segmentation is made robust and fast through use of a blue screen.

7.1 Tracking humans in motion

Tracking and identifying multiple persons in a sequence of images is an essential task for
applications which involve computer surveillance of any kind. Much work of this sort has
been done in the last few years particularly [31] [37] [81]. Tracking does not invariably rely
on segmentation, but sometimes templates are matched across an image instead, in order to
find the location of an object whose physical description is known. Tracking involves mainly
identifying objects in a sequence and being able to gather information about its past, present
and short-term future position. If tracking is done using segmented objects or “blobs” [81],
as it is most frequently, and as is the case here, certain features need to be extracted from
these “blobs” in order to establish a correspondence between the objects located by each

segmentation, and the objects that are known to exist.

Bobick et al. [31] define contextual information as “knowledge about the objects being tracked
and their current relationships to one another”. They use the contextual information to
adaptively weight the image features used for matching objects to identities. They also make
use of the “closed-world” assumption - the assumption of regions of space and time where the
context is assumed to be known. This closed world assumption also lets the tracker know
which image features should be selected for tracking and which are unreliable at any point in

time or space. These assumptions serve to define the knowledge that is available about the
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scene and its contents and to exploit this in order to make certain predictions and assumptions.

Features commonly used to match segmented objects with an identity are estimated size,
colour, velocity and current and past position [31]. These are used to match each object in
the previous frame to an image region in the following frame, thus following its progress over
time. Shape is another possible feature to use, but in general it is subject to change to such an
extent that it is not even reliable between two consecutive frames . Velocity information is more
frequently used in conjunction with a predictive filter to estimate an object’s future position,
instead of explicitly being used in the matching stages [67] [40]. Other useful information is
available such as the length of time an object has been in the same place and whether it is
adjacent to (and likely to be confused with) another object. This information can be used to
adapt the weighting of the features, as they become less reliable [65] [31].

Several sources of error exist for tracking. These are primarily due to segmentation unrelia-

bility and complicated occlusion situations. Some of these problems are as follows.

1. Segmentation errors propagate to all features.

2. No reliable features can be extracted from multi-object regions, unless people can be

tracked during occlusion [37].
3. Properties of multi-object regions may change, while the identities are not being updated.

4. Matching evaluation is difficult, taking into account global and local optima, particularly

after an occlusion.

5. If a definitive match is made every frame, a match cannot be made or altered over a few

frames.

The basic principle behind the tracking algorithm used in this thesis can be summarised as
follows. In every frame all unoccupied regions are matched to a known object using a feature
vector consisting of colour, distance, size and velocity, with appropriate weighting. In similar
work by Bobick [31] 0.4 is used for colour, 0.5 for distance and 0.1 for velocity. Then all
unmatched objects are compared to already occupied blobs, if their size is great enough, to
check for occluded people. Colour is not reliable in this instance, so in [31] distance, weighted
0.75 and velocity weighted 0.25 are used. Different weightings are used in this thesis from
those used in [31].

The other important differences between the tracking algorithm described in this chapter and
that of [31] are the use of “chroma-keying” for segmentation described in section 7.2.1; the
incorporation of a velocity estimate into predicted position instead of the use of an explicit

velocity feature, and the use of this predicted position to anticipate occlusions, both of which
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are detailed in section 7.2.2; the matching procedure proposed for occluded objects in section
7.2.3; and the confidence values associated with the possible matches, which are also described

in section 7.2.3.

7.2 A prototype system - tracking in a Smart Room environ-

ment

7.2.1 Decoupling segmentation and tracking

It is impossible for a tracking algorithm based on segmentation to perform well unless the
segmentation is efficient, and yet segmentation is notoriously unreliable. As a preliminary
investigation intended to establish the accuracy with which it is possible to track people in
a controlled environment, tracking was initially performed in a Smart Room environment.
This isolates the segmentation from the tracking module and removes possible sources of error
due to segmentation. In addition it makes possible further work involving segmentation and

tracking in various more complex environments.

The Smart Room setup consists of a uniform blue backdrop, which is evenly lit from the front
and from above. This is similar to what is commonly done in the film industry for special
effects, when an actor is “chroma-keyed” from the background so as to be superimposed on
another background. For this purpose green or blue backgrounds are commonly used, as these

hues appear the least in human skin tone; but any uniform colour may be used.

This chroma-keying process makes the segmentation of regions of interest far less time consum-
ing. The segmentation is easily performed by eliminating pixels which are close to pure blue:
by taking a threshold of the ratio of blue to another colour (red or green). This makes segmen-
tation more reliable than a simple background difference method which provide approximate

locations of moving blobs as is used in [31].

The binary mask thus obtained consists of several connected regions of various sizes. Only
connected regions with a pixel count of greater than a certain proportion of the image size
are considered to be regions of interest for the purpose of tracking. The remaining areas are

eliminated and the regions of interest are each given a label.

7.2.2 Describing and tracking moving regions

The algorithm used is a logic-based occlusion reasoning framework, which identifies people af-
ter occlusion has occurred and not while occlusion is taking place. Similar occlusion reasoning

processes are used in [31] and [39].
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The algorithm relies on colour and position information, extracted from objects over time, in
order to locate and label the same objects in the frames that follow. It is able to anticipate
occlusions using position and estimated velocity and re-identify objects once they have re-

appeared, or become separated from all other objects.

Extracting features from objects

Each object that has been identified as a separate connected region in the frame, has several
quantities associated with it. The position (z and y co-ordinates), size (length and breadth of
the bounding box), velocity (net motion in the z and y directions) and mean colour (R, G and
B values ) are all calculated and stored in every frame t. The velocity and mean colour, pu.(t)
are low-pass filtered over time in order to obtain a reliable estimate of these values without
sudden large changes due to quick movements, dropped frames or transient colour changes.

Equation 7.1 illustrates how this is done using « as a weighting factor.

pe(t) = ap(t) + (1 — @)uc(t - 1) (7.1)

A feature vector, v, consisting of the position, colour and size estimates is created in order
to perform the matching. In every frame each object in the new frame is matched to one of
the unique object descriptions which have been obtained from the previous frame(s), using
a minimum Euclidean distance measure between the 7-element feature vectors. Objects for
which no match can be found are explained using the contextual information about the objects

and the scene.

Tracking objects from frame to frame

As is the case in [31], a list of closed-world regions is also kept in which information about the
objects composing that image region. Assumptions are made about the composition of the
scene and the physical rules affecting the people within it. First, it is assumed that a person
leaving the image, will do so to the left or the right of the frame. In other words the camera
is set up facing a wall (without a door), such that it is not possible for someone to leave the
area without moving towards the right or left edges of the frame. This is the “closed-world “

assumption used in [31].

Secondly it is assumed that if two people enter the scene in such a way that they cannot be
visually separated from one another from the camera’s point of view, they will be tracked as
one person until such time as they move apart from the camera’s point of view. In addition,

once a person has left the scene, his/her recorded description is cleared as he/she will be
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classified as a new person upon re-entering. No distinction is made between whether the scene
objects are in fact people or inanimate objects, as the segmentation by exclusion of blue does

not reveal any information about the objects detected apart from position, size and colour.

A range of logical decisions are made in the respective cases where one of the objects present
in the previous frame does not find a match in the current frame, or an object in the current
frame does not match an object description from the previous frames. This is similar to the
closed world assumption used in [31] and the a priori knowledge of the scene assumed in [39].
The simplified flow diagram for the reasoned decision process is shown in figure 7.1. If the
number of objects changes in the next frame, the recorded object descriptions are added or

deleted once it has been established which object has recently appeared in or left the scene.

For matching between frames when there is no occlusion or no change in the number of objects
detected, size and position in combination with velocity (that is to say predicted position) are
used to perform the matching. In the absence of occlusion a definitive decision can generally
be made based only upon an object’s position and expected position in the following frame. A
threshold is set on the maximum allowable distance between an object’s expected position and
a possible match, in case one of the objects has left and a new one arrived. If this threshold
is exceeded, a procedure is followed which tries to locate and explain the new arrival and the
disappearance of one of the previous objects, to avoid mistakenly matching a person who has

disappeared to the wrong image object.

If a new image object is detected, all the recorded objects are matched to the closest segmented
object in predicted position and size and the remained segmented object(s) are assigned new
identities. This means that a new person may appear anywhere in the image area, which allows
the system to recover from a failure such as an occlusion that has been missed. Likewise, if
fewer segmented objects than recorded objects appear, each segmented object is matched to
the closest recorded object. The decision is made whether the object which has no match in
the current frame, has left the scene or passed into an occlusion with another object, based

on its distance from an exit point and its likelihood of occlusion.

Predicting occlusions

To cater for the eventuality that two people will pass each other and their bounding boxes
appear to coincide, the likelihood of occlusion in the next frame is calculated. Once positions,
velocities and colours for each person have been obtained, the velocity vector is added to the
position vector to create new predicted bounding box co-ordinates and a small margin of pixels
is added around these predicted positions. This is a very simple motion model, making no use
of predictive filters, such as the Kalman filter. The intersections of all the predicted bounding

boxes for a frame are calculated in order to find out which objects’ bounding boxes are likely
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Figure 7.1: Flow diagram for tracking algorithm
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to coincide. These intersections correspond to objects which pass behind or in front of another
object, or merely touch each other from the camera’s viewpoint. The possible intersections
are ranked in order of area from largest to smallest, the two bounding boxes with the largest

intersecting area being the two people most likely to occlude each other in the next frame.

Once detected, such possible occlusions are confirmed when there appear to be fewer objects in
the segmented image. When this occurs, each object description is matched to the segmented
object with the smallest Euclidean distance from its feature vector, as in every other frame.
The object description which remains once all the other objects have been matched is assumed
to have either left the camera’s field of vision or passed into the bounding box of another object.
At this point, the list of possible occlusions is consulted to determine whether an occlusion
had been anticipated for that object, or if the object had been moving towards an “exit”.
The latter being the case, the object is deleted from the current record. In the case of the
former, the two occluding objects share a bounding box and their colour estimates are no

longer updated until they separate.

Multiple occlusions are predicted as easily using this method, since, if an object is sharing a
bounding box with any other two objects, all three are likely to occlude each other and can
be detected when they do. Multiple separate occlusions, when more than one set of people
pass each other, also fit neatly into this algorithm. Changes within the occlusion setup are
slightly more difficult to detect. For instance, one person involved in an occlusion can leave
that group and enter the bounding box of another person or group in the next frame without
becoming a separate object in between. This occurrence is detected by looking for a sudden

large change in the sizes of the bounding boxes.

7.2.3 Resolving ambiguities: an object matching algorithm
Matching objects after occlusion

The greatest chance of error naturally occurs when two or more objects pass each other. Am-
biguities in such a case are resolved by matching the colour and the bounding box position and
size, appropriately weighted, of each object in the new frame to each object whose description

has previously been recorded.

When a bounding box is known to contain two or more objects, or equivalently when two
or more objects have the same bounding box, the colour is not re-sampled but the previous
estimated mean colour of the object is kept unchanged. Likewise, a foot position (the lowest
edge of the bounding box) is recorded for each person only when objects are not seen to
be occluded. Once two objects have re-appeared each of their colours is compared to the

previous colour estimates for every object and a match is made such that the sum of the
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distances between each new object and its matching object description is minimised, and
every new object is matched to one unique object description. The foot position is used to
check that this is indeed a likely match, since it is assumed that although people may have
swapped places, so that the bounding box co-ordinates are not a reliable estimate of who is

who, the foot position should not change much between frames.

The distance is calculated for every feature between each object and every recorded description.
A separate matrix of distances is calculated for every feature and these are then added together
using an importance weighting, which is empirically determined to provide the most reliable
match under the widest variety of conditions, in order to obtain total distances between the

feature vectors of every segmented object and every recorded person.

For matching after occlusions, where all objects have been occluded, the features are weighted
so as to favour the colour information, which is now the most reliable descriptor. The colour
is weighted 0.4, the position 0.1, and size and previous foot position 0.25 each. If not all
people present have been occluded, position is more important a feature, since the people
whose positions are unambiguously known can be easily matched. In this case the colour is

weighted 0.4, position 0.3 and size and foot position 0.15 each.

A global best match is then sought, incorporating knowledge of all the possible matches, since
simply matching each object to its closest record might lead to conflict and a local best match
might not be optimal. In figure 7.2 each person, which is in fact a point in a 7-dimensional
feature space, is represented by a star on a two-dimensional plane and is matched to a unique
object, represented by a triangle in this space of reduced dimensionality. As can be seen
from the diagram the best local match might not lead to the best overall decision based on
proximity in this space. The closest match to the red star is clearly the green triangle, but if
the other points are taken into consideration it is clear that once the red star and the green
triangle have been matched there is no close match for the green star. A better match would
be to match the red star to the red triangle and the green star to the green triangle as has been
done in the figure. Likewise the blue triangle and the yellow star are the best local match,
but in order to minimise the total sum of distances between matches the blue star should be

matched to the blue triangle and the yellow to the yellow.

A distance matrix is constructed which contains the weighted Euclidean distance in the feature
space from every new object to every stored object description. The distance between object
i ’s feature vector v; and the feature vector belonging to object description j (equation 7.2) is

inserted in position (4,7) in the distance matrix D, shown in equation 7.3.

N
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~
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Matching one set of data (stars) to another (triangles) based on distance in two dimensional space
T T T T T T T

Figure 7.2: Matching segmented objects to recorded objects using a global minimum distance
measure in feature space
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The sum of every possible unique combination of ¢ and j in the distance matrix is taken, such
that no person ¢ is mapped to the same box j as any other person. This is the equivalent of
summing the matrix along all diagonals and combinations of diagonal elements. The minimum
such sum is deemed the most likely match for each person and description, as it is the best

global match given all the information in the scene.

Evaluating the confidence of a match

Two possible metrics are proposed to evaluate the confidence of the match. The first involves
calculating a percentage confidence in the match, based on all other possible matches. From
the distance matrix of possible matches, two “normalised” matrices are created which indicate
the relative confidence of each match when compared only to the other possible matches.
Each row represents the distance matrix the distance of every bounding box from a particular
person. In the same way in every column is the distance of every person from a particular
bounding box. Therefore one normalised distance matrix, Dy, can be created by dividing

every element along a row by the sum of all elements in that row as shown in equation 7.4,
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and another, D,., by dividing every element in each column by the sum of elements along

that column as in equation 7.5.

Do) = Ef(DJ()]) (7.4
Dielis ) = <2ed)__ (75)

DY ERAE)

When multiplied by 100 these two matrices now give percentage scores for each possible match
with regard to every other possible match, where a good match is the lowest percentage in a
row or column respectively. Once a match has been chosen, according to the constraints of
one and only one bounding box per person and at least one person for every bounding box,
the confidence value for that match is given by 100 — D(p,b) where p and b are the indices
of the match of person to bounding box. Using the two normalised matrices, two confidence
values are obtained, which can be used to verify that the best bounding box match for each
person is also the best person match to that bounding box. If they disagree, the match with

the highest combined confidence value is chosen as the correct one.

This method is, however, sensitive to outliers in that a single large distance in a row or column
which is more than two elements in length will affect each percentage, although it is clearly
not to be considered in the matching process. For this reason, another confidence metric is
proposed in which each match is compared only to the next best match in that row or column.
This confidence value is the signed difference between the person-to-bounding box distance of
the selected match, and the distance of the next best possible match. If the best local match
is also the best global match, in other words, if, given the global constraints of one bounding
box per person and at least one person per bounding box, the match with the smallest overall
sum of distances is selected, the confidence value: difference between this match and the next
best, will be negative. If the chosen match is not the smallest distance in the matrix, because
of the global constraints, the difference between the selected match value and the next best
(which is actually the global “best”) will be positive. Clearly it is desirable to have as large a
negative gap as possible, to ensure that the best global match is as far separated as possible
from other possible matches, and as small a positive gap as possible so that a match selected
to satisfy constraints is as close as possible to the best global match. Thus, the smaller and
more negative the sum of the confidence values for this match, the higher our confidence that

this is the correct match.
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Introducing the ambiguous case

Ambiguities in the matching procedure occur when the match is one to many or many to one.
Matching when every detected foreground object in the scene can be accounted for by a unique
recorded person is relatively easy, as it merely involves looking for a global optimum given
the distances between feature vectors and the constraints of the composition of the scene.
The procedure for matching many people to one object has been discussed previously and is

effective if people’s movements can be anticipated with reasonable accuracy.

Similarly, matching many people to fewer objects and many objects to fewer people can
easily be done using a reasoning process given the history of movement and positions of the
people, and the composition of the scene. The greatest matching difficulty occurs when a
match needs to be performed after an occlusion when not all of the occluded objects have yet

become separate. This is explained in more detail in the following subsection.

Matching in ambiguous cases

The drawback of this simple method of resolving occlusions is that it might be necessary
at some stage, given more than three people, to perform a match without having enough
information about the objects present in the scene. This occurs when n people need to be
matched to n—x objects in the scene in the case of  occlusions where n—x > 1. For example,
if four people are occluding one another and share a bounding box location, if one person leaves
the group there is not enough reliable information to determine whether the two connected
objects now present are two sets of two people or one set of three and one individual. The
information available is unreliable, because for the people that are still in a group, the mean
colour is affected, the position is ambiguous and the size is subject to change. The greater the
number of people known to be present in the scene, the more possible solutions there are to

this problem.

One solution which is only computationally feasible with fewer than 5 people present is to
test each possible hypothesis, since the number of occlusions x is known. For instance, in
the example mentioned previously, if we name the people persons 1 to 4 and the connected
objects objects A and B, once it has been established that there are 4 people (n = 4) but only
2 connected objects to match them to, thus 2 occlusions (z = 2), the combinations which are
possible are shown in 7.1. With 5 people (n = 5) and 2 objects, thus 3 occlusions (z = 3), the
possible combinations are shown in table 7.2. If there are 5 people and 3 objects, thus two
occlusions (z = 2), there are even more possible combinations to consider, and this number

continues to increase as the number of people increases.

Thus, although there are a limited number of solutions possible for every case, it is clear
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‘ ‘ Object A ‘ Object B ‘
Possibility 1 | 3 people | 1 person

Possibility 2 | 1 persons | 3 people
Possibility 3 | 2 people | 2 people

Table 7.1: Possible combinations of people given n=4 and =2

‘ ‘ Object A ‘ Object B ‘

Possibility 1 1 4
Possibility 2 4 1
Possibility 3 2 3
Possibility 4 3 2

Table 7.2: Possible combinations given n=>5 and z=3

that the more people there are, the more hypotheses there are to consider for each number
of occlusions. In fact, for n people and z occlusions there are p(n,z) possible combinations
where p(n, ) is given by equation 7.6 below.

(n—1)!

p(n,z) = P C— (7.6)

The number of possibilities to consider for each case can more easily be seen by examining

Pascal’s triangle in figure 7.3, where p(n,z) is the number in the (n — z)th place in the nth

row.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 ) 10 10 5 1
1 6 15 20 15 6 1

Figure 7.3: Pascal’s triangle

An interim solution to the problem in order to find matches for every person on record, while
maintaining use of this simplistic colour measure, is to k-means cluster the colours of each
object into z clusters and use the mean of the objects that remain (as is usually done); then
k-means cluster each object into x — 1 and 2 clusters then x — 2 and 3 and so on and find the
best match between the cluster centres and the recorded colours of the people. In this way,
several possible matches are obtained. Each of the matches between the possible hypotheses
has a confidence value associated with it and the match with the highest confidence value is

chosen according to a voting scheme, which is discussed in the following subsection.
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This solution, proposed in this thesis, is very crude as it assumes a unimodal colour distribution
for each person and also that one person is never completely occluded to the extent that none
of his/her colours are visible. It is, however, possible to use it with some success with scenes
containing few people, where the number of possible combinations of people per object is still
low. Some results using this method, which reveal some conditions under which it succeeds

and fails, are shown in chapter 9.

Voting scheme

Once the possible matches for all combinations of people have been made, and the confidence
values for all of these matches have been obtained, the voting system is invoked to determine
which of the possible matches is the correct one. It should be pointed out that none of the
matches which have been obtained need be the correct one as the correct hypothesis might

still have found a unique solution which is incorrect.

First, the matches are ranked from worst to best according to the average percentage similarity
criterion and then according to the total distance from nearest-neighbour criterion. Each
match obtains votes based on its positions in the two rankings. The votes are weighted 0.6

for the percentage similarity ranking and 0.4 for the distance from nearest neighbour ranking.

Next an ordering is created based on the size of the segmented blobs in the image such that
the largest blob must contain the most people, the second largest the second most and so
on down to the smallest. Any match whose numbers agree with this size ordering is given
an extra vote. Likewise any matches which occur more than once are given an extra vote
weighted 1 and a vote weighted 0.3 is given to any best person-to-bounding box match which
agrees with its best bounding-box-to person match. The match which has the highest number

of votes then “wins” and is chosen as the most likely match.

7.2.4 Preliminary results and conclusions

Although the algorithm is extremely simple, it is effective in tracking multiple people under
these controlled conditions. With a maximum of two people present in the frame the mismatch

rate after occlusion is close to zero.

Initially, out of 30 occlusions tested where all the people are visible directly after the occlusion,
all 30 were re-identified correctly. Out of 4 occlusions where the clustering algorithm was

necessary, 3 were identified correctly and one incorrectly.

The algorithm with simple segmentation runs at 3 frames a second on a Pentium 3 500MHz

machine and is effective in tracking up to four people under the conditions described. There
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is no reason why it could not be extended for more complex environments with a more re-
fined segmentation algorithm. An example sequence with coloured bounding boxes showing

occlusion and a correct match is shown in figure 7.4.

Furthermore, the algorithm does not track people while occlusion is actually taking place [37],
but rather matches them after the occlusion has occurred. For the time that the objects are
hiding one another they are not distinguished from each other. However, the low mismatch
rate is very encouraging given the simplicity of the algorithm and relative lack of detailed

information.
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Figure 7.4: Tracking sequence showing different coloured bounding boxes for different people
(read from top to bottom)
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Chapter 8

Tracking: extensions and

improvements

8.1 Combining segmentation and tracking

An obvious extension to the algorithm presented is to allow it to include both the segmentation
and tracking of multiple people in a sequence. As a product of the segmentation itself, a large

amount of information is made available about each person, namely:

1. Position - known from the centroid calculation.

2. Size - the bounding box dimensions give the size of the person, which is related to his

distance from the camera.

3. Colour - the colour distribution in a*b* space is recorded in the Gaussian mixture, both
the updated version and the original version which was initialised as the person entered

the scene.

4. Motion - a motion vector description of the largest movements present in the frame is

available.

5. History - some of these variables can be recorded as they change over time.

One problem with this extension is that it must be known beforehand how many people we
expect in a given image, which can be determined through a thresholded change detection
mechanism. Large regions of change which persist through a couple of images in a sequence

are assumed to be explained by a new person entering the scene. This unfortunately introduces
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the need for an initial threshold which is determined empirically. Initialisation is thus critical

to the success of the algorithm.

Inaccuracy in the statistics of the segmented objects are compounded by segmentation error,
which also complicates the tracking procedure. Several necessary modifications to the existing
tracking algorithm are described in the following section. These improve the tracking accuracy,

although they are not expected to do so if the segmentation were to fail.

8.2 Modifications to the existing tracking algorithm

8.2.1 Modifications to colour representation and distance measurement
Colour representation

Since the segmentation method presented in chapter 8 involves keeping a record of the colour
distribution of a person’s clothing in the form of a Gaussian mixture model in order to perform
the segmentation, this knowledge of the colour distribution can be used to aid the tracking
algorithm. In contrast to the crude colour descriptor used previously of the colour distribu-
tion: the mean, the Gaussian mixture model gives a representation of the number of clusters
which best represents the colour distribution and the approximate location and spread of this
distribution. This enables a more accurate distance measurement to be performed between a
segmented object and a recorded person. Instead of taking the Euclidean distance between
the means of the two samples, a Mahalanobis distance between the two samples can be taken,

the advantages of which are described in the following section.

Distance measurement: Mahalanobis distance

The Mahalanobis distance metric measures the similarity of a set of values from an unknown
sample to a set from a known sample. It gives a statistical measure of how well the unknown
sample matches a known sample, measured in terms of the standard deviation from the mean
of the training samples. The Euclidean metric, on the other hand, measures the distance from

the mean of the group, but does not take into account the distribution of the group.

The Mahalanobis distance A from a vector x to a mean vector p is given by:

A2 = (o p)T8 (2 - p) (8.1)
where 3 is the covariance matrix of the known sample to which the unknown is being compared.
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In this case, a known sample is obtained for each person by sampling the Gaussian mixture
which represents that person’s colour distribution. A sample of 50 points is obtained from the
Gaussian mixture model and the Mahalanobis distance is taken from each pixel in the seg-
mented object to this sample. The median Mahalanobis distance is chosen and the minimum

of the medians of each sample to each Gaussian mixture model is considered the best match.

Since the Mahalanobis distance from z to p is a vector distance, normalised by the covari-
ance matrix ¥ of the sample [68], some disadvantages of the Euclidean distance measure are
overcome by using this metric. The normalisation accounts for poor scaling of the co-ordinate
axes of the space from which the feature vectors are drawn, and corrects for correlation be-
tween these features. Curved as well as linear decision boundaries can also be produced using
this metric [15]. In the special case where the covariance matrix for the known sample is the

identity matrix I, the Mahalanobis distance is equivalent to the Euclidean distance.

8.2.2 Possible modifications to matching procedure

In addition to modifying the distance measure from a Euclidean distance between the means of
two distributions to the median Mahalanobis distance between two distributions, the method
for matching multiple identities to one object can also be modified. The first manner in which
this could be done involves attempting to identify pixels that belong to every occluded object
even during an occlusion, in a similar manner to [71]. This enables spatial information about
each person to be maintained and simplifies the matching procedure. The second possible
modification to the matching procedure requires making a “soft”, provisional decision about
identities until all people have become unoccluded, whereupon the global matching procedure

can be used with modified weights, favouring colour as the most reliable feature.

Matching multiple identities to one object

Once occlusion has occurred, identities can still be conferred on the occluded objects by
computing the Mahalanobis distance between each pixel and each Gaussian component of
every person. Kach pixel is then assigned to the class for whom its Mahalanobis distance
is a minimum. A connected component analysis on the object should then reveal which
collections of component pixels belong to each person. This would enable a continuous record

of the approximate position of each person within the occlusion blob to be maintained.
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Conserving possibilities

A further modification which can be applied either to the tracking algorithm presented in
chapter 7 or on top of the modifications proposed in this chapter, is to reserve judgement on
the identities of all object blobs until all people have reappeared from occlusions. This might
entail making a provisional decision using the methods already discussed and using these to
weight a second, confirming decision once all the objects had re-appeared. This might not of
course always be possible, for instance when one occlusion is immediately replaced by another,

or when individuals leave the room before all occlusions have been resolved.

8.2.3 Coping with segmentation errors
Initialisation

The number of people in the frame and the rectangular bounding boxes which approximate
their space of occupation are estimated through the initial background subtraction method
using an adaptive threshold. Naturally, errors in the initial segmentation will lead to an
incorrect estimate for the number of people and bounding boxes which may be too small
to fully contain each person. For this reason, if the number of connected objects obtained
by the initial segmentation technique is more than the expected number, a binary closing is
performed upon the entire segmented image in order to try to merge bounding boxes which
are adjacent to one another. If two people are mistakenly merged, the consequences are not
serious: they will be treated as if they are occluding one another; but if one person is split into
two, more people will be expected than are actually present and the bounding box estimation

for segmentation will be incorrect.

Because the combined segmentation is only performed within the bounding box located by the
initial segmentation, it is desirable that the initial segmentation err on the side of classifying
background as person rather than omitting portions of the person. A possibly more effective
way of merging the regions produced by the initial segmentations would rely not only on
proximity, but also on similarity in terms of expected position, colour and size of the known
objects. A probably more reliable method of estimating the number of people one expects in

a scene initially would involve the use of a face detection module.

The circular problem of segmentation and tracking

The Gaussian mixture model cannot be used within an estimated bounding box until it is
known to which person that bounding box corresponds. This does not pose a problem if each

person can be uniquely identified by position and size, but if an occlusion has occurred, the
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Gaussian mixture is used to identify which object corresponds to which person, which leads to
a circular problem: a good segmentation requires the use of the correct colour information and
to obtain the correct colour information requires a good segmentation. The existing algorithm
employs an estimate segmentation using no colour which it is hoped will provide a sufficiently
good estimate of the true colour distribution of the object. A decision is then made as to
which person this object corresponds and the appropriate Gaussian mixture model is then

used to improve the existing segmentation.

The Gaussian mixture model could still be used with the modified approach for matching
described in the previous section, assigning each pixel to the class for which the posterior
probability was a maximum and using that maximum value for the pixel in that location to

perform the segmentation.

99



CHAPTER 8. TRACKING: EXTENSIONS AND IMPROVEMENTS

100



Chapter 9

Results

9.1 Segmentation evaluation

Evaluation of the segmentation algorithm is intrinsically difficult without a benchmark seg-
mentation for comparison. Hand-segmentation is the obvious choice for comparison, but it is
not feasible since it requires a large amount of time to process such large amounts of data by
hand. A comparison of the segmentation technique with a hand-segmented sequence, which
was already available, has already been made and the results shown in chapter 6. To evaluate
the segmentation quality on image sequences which had not been previously hand-segmented

a more indirect method of evaluation was used.

Since a centroid calculation is a by-product of the segmentation (it needs to be calculated
to sample pixels from the centre of the object to update the Gaussian mixture model), it is
informative to plot the position of the centroid as it varies over time. This illustration can
be seen in figure 9.1. The centroid position in the z (horizontal) and y (vertical) dimensions
of the image plane should vary smoothly from frame to frame as a person moves according
to laws of physics. Thus a deviation from smoothness in the path traced out by the centroid

over time should indicate an error in the segmentation.

9.1.1 Identification of inaccurate segmentation

If the position of the centroid of the human figure is assumed to move smoothly, the path it
traces out over a short period of time can be assumed to be roughly linear. Piecewise linearity
of the curve is assumed instead of attempting a polynomial curve fitting as it is not possible
to know the form of the curve traced out by the centroid before the activity of the segmented

person is known.
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120

Time

Figure 9.1: Plot of centroid position over time

A linear least-squares regression technique is used to fit a straight line through n = 3 consec-
utive centroid positions in each of the x and y dimensions. This gives a line equation of the
form

y=az+b (9.1)

where the slope of the best-fit line is

and the intercept is
b=7y—aT (9.3)

The distance § each side of the best-fit line at each z* within which 95% of the data can be
expected to fall is given by'

@ -2

R .

1
6:12.71><a\/1+—+
n

!The number 12.71 in equation 9.4 is Student’s t-distribution for a 95% confidence interval and 1 degree of
freedom. As the number of degrees of freedom increases, this number tends to 2.
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9.1. SEGMENTATION EVALUATION

where 0 = %‘%e’ is the mean square error of the line. The errors e; are the differences
between the observed and predicted values for the data and n — 2 is the number of degrees of

freedom.

For every four consecutive points on the centroid curve, the first three are used to generate
a line equation, which is used to predict the fourth point y;14. The uncertainty d;y4 for the
prediction of the fourth point is also calculated and if the measured value for that point does

not fall within y;44 &+ §;14 an error in the segmentation at that frame is assumed.

Curves traced out by the z position of the centroid for various sequences are shown in figure
9.2. Centroid positions that do not correspond to the linear predictions are marked in red.
Table 9.1 shows the percentage of centroid points over 10 different image sequences that do
not obey a linear local variation in the x or y directions and can therefore be classified as

unreliable segmentations.

140 I

correct
incorrect

120

=
o
o

o]
o

o
Or—\

X co—ordinate of centroid position

N
[=)

40 60 80 100 120 140 160 180 200 220
Frame

Figure 9.2: = co-ordinates of a single segmented object’s centroid position over time for four
different sequences. Points that do not correspond to a predicted position are marked in red.
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9.1.2 Shortcomings of the method

The method of segmentation evaluation, although it yields good results, is a very indirect
method of measuring segmentation accuracy and as such is not necessarily the most reliable
measure. Although errors in segmentation which leave out portions of an object, or which
include portions of another object, or segment another object entirely, are picked up as an
irregular movement of the centroid position; in reality, errors in this adaptive segmentation
algorithm often occur gradually and likewise recover gradually, and thus might not be picked

up as an outlier point on a smooth curve.

In addition, the assumption that a local linear approximation to the movement of the centroid
will accurately reflect the motion of a person is not always valid. Curves traced out by the
centroid in the x and y directions for a person performing various activities are shown in
figure 9.3. (These are curves for the same sequences as shown in figure 9.2 and the line
types marking the corresponding traces in that image are shown in the legend for ease of
comparison.) The centroid’s movement along the z-axis varies smoothly and outliers in the
curves are easier to spot (cf. figure 9.2: which traces correspond to each sequence in figure 9.2
is shown in the legend). The trace of centroid movement along the y-axis for these sequences
appears less smoothly-varying, primarily because of more rapid motions along the y-axis, such
as the person putting one foot in front of the other, or waving his arms above his head. This,
combined with the elongation of the segmented object in the y-direction, makes the number
of centroid points that do not correspond to their predictions slightly higher than those along

the z-axis.

Turning-points are also mistaken for errors in this linear assumption.

‘ | predictions correct | predictions incorrect | % correct | % incorrect |

x co-ord 1358 153 89.87% 10.13%
y co-ord 1304 207 86.30% 13.70%
[ total | 2662 | 360 [ 88.09% | 11.91% |

Table 9.1: Percentage of correct and incorrect predictions for the z and y positions of the
centroid

9.2 Evaluation of tracking algorithm

9.2.1 Sources of error

Errors in this particular tracking algorithm can be introduced in a variety of ways. Some are
implied by the assumptions defined within the structure of the algorithm. When the assump-

tion that every person will at some point appear as a single segmented object is violated, errors
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x co-ordinate of centroid position

y co-ordinate of centroid position

140

120

100

40

20

105

100

60

55

50

80/

T T
—— Seq 1 (dots)
—— Seq 2 (squares)
—— Seq 3 (circles)
Seq 4 (crosses)

100 120 140 160 180 200
Frame

220

—— Seq 1 (dots)

—— Seq 2 (squares)

—— Seq 3 (circles)
Seq 4 (crosses)

40 60

80

100 120 140 160 180 200
Frame

220

Figure 9.3: Traces of z and y centroid positions of a segmented person for four different

sequences
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can occur in the occlusion reasoning. Also it will go unnoticed if one person is substituted for
another in the entrance/exit zone without first appearing as a single object. Other errors are
not introduced by the violation of an assumption. Instances of both kinds of error, and their

significance are discussed below.

Segmentation error

Errors in segmentation lead to two possible situations: regions can be mistakenly identified
as people, and people who are present in the image can be mistakenly omitted from the
segmentation. Since these segmentation errors are transient and occur usually in one or two
consecutive frames only, the occlusion reasoning and person creation/deletion framework does
not readily extend to extraneous “objects” or “disappearances” which are difficult to explain.
In an uncontrolled background, parts of background which are mistakenly segmented as part

of a person will affect the apparent colour distribution and size of that person.

For these reasons, in testing the tracking algorithm, segmentation is completely eliminated as
a source of error through use of the blue background and, where necessary, manually when

segmentation errors persist despite the controlled environment.

Matching after occlusion

Errors naturally occur in the matching procedure, therefore the matching procedure is the
principal source of error for the system and testing is focused on this aspect. For simple
matches where every person known to be present can be explained by a segmented object in
the scene, errors occur if the features are similar to one another, for example, if two people

are wearing the same coloured clothing.

For matches where several identities must be matched to one segmented object, features are
naturally ambiguous so a greater chance of error is present. Also, the possibility of assigning
many identities to an object which corresponds to one person is introduced, which leads to

further complications.

Errors in exit zone

Errors occur in the exit zone where people are allowed to enter or leave. If one person leaves
and another enters simultaneously from the same entry/exit point they will be classified as
the same person. This is implicit in the reasoning framework and will not be counted as an

€error.

A person leaving the scene may also be classified as an occlusion occurrence if the person in
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question is close to another person at the time of departure. This is an error from which it is

difficult for the system to recover.

Occlusion undetected

If two people enter together they are tracked as one object until they part. This is also a
feature of the algorithm and is not considered an error because once they do part, one of the

people will be identified as new to the scene.

If an occlusion is not predicted for a person, that person’s disappearance might be explained
as a departure from the scene. This is unlikely given a high enough frame rate, although the

system has once been tricked by somebody running very fast towards another person.

9.2.2 Results and discussion

The tracking algorithm was tested on sequences containing up to four people at a time. The
colour of the clothing worn by the different people was not controlled at all: it is assumed
that in a random world, and with a small number of people present in a room at a time, the
colour of clothing of people is likely to be sufficiently varied for the majority of people to be
distinguished from every other on that basis. Equally, if chance decrees that two people have
similarly coloured clothing, it should be possible to distinguish between theses people based

on some other visible feature.

Apart from two occasions when the disappearance of a person who has left the scene is
mistakenly explained as an occlusion with another person, the only unexpected errors occur
after occlusions. These errors are measured by manually counting the number of people who
are correctly identified after an occlusion. The number of correct matches is measured out of
the sum of total number of correct and incorrect matches which are made after every occlusion

in a sequence.

The matches are divided into two types: simple matches, where there are as many segmented
objects in the scene as people present, and multi-object matches, when there are fewer seg-

mented objects in the scene than people and at least one many-to-one match must be made.

In table 9.2 the percentage of correct matches (out of all possible match situations) is shown
for 6 sequences containing 2 to 4 people. The maximum number of people present for a
sequence does not appear to affect the number of correct matches, although in general the
number of correct matches to multi-object blobs appears to be far lower than the number of
simple matches correct. Sequence 5 is the exception to this, with a very low correct match

rate for only simple matches.
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\ | Seq1 | Seq 2| Seq3| Seq4 | Seq 5 | Seq 6 |

Sequence length (no. frames) 785 457 1079 1027 778 771
Maximum number of people 4 4 3 3 2 2
Total no. simple matches 13 - 39 31 20 14
No. simple matches correct 13 - 37 31 12 12
\ % simple correct | 100 | - [94.87[100.00| 60 | 85.71 |
No. multi-object blob matches 15 32 9 6 - -
No. multi-object matches correct 14 17 4 6 - -
\ % multi-object correct | 93.33 | 53.12 [ 44.44 | 100.00 | - | - |
\ Total % correct matches | 96.43 | 53.12 | 85.42 [ 100.00 | 60.00 | 85.71 |

Table 9.2: Tracking accuracy according to proportion of multi-object blob matches

In order to see the reason for this, table 9.3 shows the same sequences and the two dominant
colours of the people in the sequences?. The colours for all sequences are reasonably distinct
with the exception of sequence 5, which perhaps helps to explain the low correct match rate
out of the simple matches. However, distinctly coloured clothing is not sufficient to ensure
that multi-object matches will be more accurate. The colours in sequence 2 are the same
as in sequence 1, but the number of multi-object matches is higher (table 9.2); thus the
correct match rate is a very low 53.12%. These tables suggest that both colour similarity
between people and matching people to multi-object blobs are significant sources of error for

the matching process.

‘ ‘ no. people ‘ Dominant colours of people’s clothing ‘ % correct ‘
Seq 1 4 navy/beige | green/navy | mauve/beige | grey/navy 96.43
Seq 2 4 navy/beige | green/navy | mauve/beige | grey/navy 53.12
Seq 3 3 brown/beige | navy/light blue | light blue/navy 85.42
Seq 4 3 pink/black | beige/dark grey | navy/light blue 100
Seq 5 2 white/medium blue | white/medium blue 60
Seq 6 2 light blue/medium blue | navy only 85.71

Table 9.3: Breakdown of tracking accuracy according to dominant colours

Table 9.5 confirms this inaccuracy in multi-object matches, with relatively low correct match
rates compared to the corresponding simple matches. Table 9.4 shows the total number of

matches of each kind used to calculate the percentages in table 9.5.

The algorithm was also tested with a person removing a coloured jersey while unoccluded
and then passing another person. Because of the slow update method used, both people were
correctly re-identified after the occlusion in spite of the fact that one of them had undergone

an extreme colour change.

2Clearly the naming of the colours is subjective and subject to linguistic restrictions, but it suffices to show
the similarity between clothing colours of the individuals in the sequences.
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no. people in seq ‘ multi-object matches ‘ simple matches ‘ total matches ‘

4 47 13 60
3 139 267 406

Table 9.4: Number of each type of match in the set of data used for testing

‘ no. people in seq ‘ % multi-object correct ‘ % simple correct ‘ total % correct ‘

4 65.96 100 73.33
3 69.78 88.39 82.01

Table 9.5: Percentage correct of each type of match
9.3 Modified tracking algorithm

With the addition of the Mahalanobis distance measure instead of a Euclidean measure, some
improvement in classification has been noted. For example, when the modified algorithm
proposed in chapter 8 is run on sequence 5, 16/20 correct matches are obtained instead of

12/20, which is a distinct improvement upon the previous algorithm.
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Chapter 10

Conclusions

Algorithms for tracking and segmenting have been presented in this thesis. Both have shown

some success in implementation which thus far has been done mostly separately.

Various segmentation algorithms using different techniques have been explored, and their
limitations made clear. A segmentation algorithm using a combination of image information
has been presented which uses simplifying assumptions, such as a static camera and the
availability of an empty background reference frame. Factors contributing to the segmentation
problem have been examined: namely colour space selection, colour constancy and motion

estimation.

An adaptive Gaussian mixture model, which can be automatically initialised, is used to model
the colour distributions of the background and foreground in order to obtain an a posteriori
estimate of the likelihood of a pixel’s belonging to the foreground or background colour class.
The model is able to adapt to changing image characteristics and to stabilise itself when an
incorrect adaption has occurred or in the event of a bad initialisation. In addition, the slow
update procedure makes it possible for people to remove items of clothing (which change their

apparent colour entirely) and still be correctly classified after an occlusion.

Motion segmentation is incorporated in the form of background differencing for which a
Kalman filtering technique is used to perform an adaptive background estimate to compensate
for lighting changes and shadowing. The combination of the differencing technique with the
colour model acquisition enables the model to learn the colours of an object automatically

without user intervention.

Gradient information is used by detecting sharp changes in the difference image in order to
eliminate shadows, which are assumed to have more smoothly varying boundary characteris-

tics.
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The use of a combination of image information: namely colour, motion and edge information
helps to overcome some of the difficulties often encountered with each type of segmentation
when taken on its own, thus contributing to a more robust algorithm at the expense of com-
putation time. The algorithm is implemented in Matlab and primarily for this reason, is slow
and does not run in real-time. Successful segmentation throughout a sequence is extremely
sensitive to initialisation as it is dependent on a good segmentation for the first frame which
is not entirely reliable. The various modules which form part of the segmentation process,
however, do help to stabilise each other, and the automatically self-correcting mixture model

enables the program to recover slowly from a bad segmentation.

The use of a predictive mechanism in order to estimate the position of objects to be segmented
also improves accuracy and reduces computation time. The motion model implemented is very
simple and could be extended to use Kalman filtering of the trajectories in order to cater for

the presence of noise on the measurement of the position or velocity at every stage.

Tracking has been presented as a separate problem, assuming the segmentation to be correct.
An inaccurate segmentation naturally compounds the problem of tracking, as inaccurate colour
and position information is obtained. Two cases for tracking in the presence of occlusion have
been discussed: an n person to n object match and an n person to n—x object match, the latter
presenting a great deal of difficulty for an algorithm that can only resolve objects’ identities
after an occlusion. Several possible solutions to this particular problem have been proposed,
although the temporary solution of looking for possible colour clusters in each segmented object
has proved less than effective in the sequences used for testing. Factors which aggravate the
tracking problem are a large number of people to be tracked simultaneously, and similarity in
clothing colours between people which does not enable them to be easily distinguishable from

one another.

A modified algorithm combining the segmentation and tracking and using a Mahalanobis dis-
tance instead of a Euclidean distance in colour space has proved significantly more accurate in
preliminary testing. The segmentation algorithm, although not always successful in producing
visually pleasing silhouette images, appears to be sufficiently accurate for the tracking method
presented, as it allows sufficiently reliable estimates of size, position, velocity and colour to be
extracted from the segmented blobs. The primary difficulty is estimating how many people
are present in the scene in the event that an initial segmentation produces more connected

blobs than people.

Limitations are slow execution, particularly in Matlab, and extreme sensitivity to initialisation,
although the use of combined image information is recommended to simplify the problem of

segmentation.

This thesis has explored some of the techniques which have appeared in recent literature on
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segmentation and attempted to improve the results by combining them. We have been success-
ful in some instances, but much further work would be needed to assess the generality of the
approach. The general solution to what appears to be a rather complex problem might more
closely approached using more recent and promising methods such as the CONDENSATION
[32] algorithm.
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Appendix A

The EM algorithm for Gaussian

mixtures

The parameters for a Gaussian mixture model, which must be adapted to fit the data are:

P(j), pj and o;. The negative log-likelihood (error function) is

N N M
E=—InL=-) Inp(z") =) Inq> p(z"[5)P() (A.1)
n=1 n=1 Jj=1

In order to maximise the likelihood L one must minimise the error F. Expectation maximisa-
tion is an iterative technique for finding the parameters of the mixture model which minimise
this error function. The maximum likelihood solution for this minimisation can be obtained
by differentiating A.1 with respect to p;, o; and P(j) (|6] discusses this in more detail). Set-
ting these derivatives to zero to minimise F, the parameters can be given by the following

equations:

—~ _ 2 P([z")"

i = S P 2
—~ 1 PGilz™) ||z™ — ;]2
UJQ_:EZn (Eﬂn P)(|j|"$n) 2l (A3)
N 1 Y
P(j) = 5 > Plle") (A4)
n=1

Expectation maximisation consists of initialising the parameters of the model at some arbitrary

115



value and iteratively calculating new parameters according to equations A.2, A4 and A.3,
replacing the initial parameters with the new estimate at every iteration, in such a way that

the error is decreased each time.

The change in error each time the old parameters are replaced by new ones is

AE:—Zln{M} (A.5)

pold (mn)

new old

where p"¢" and p®“ are evaluations of the probability densities using the new and old param-

eters respectively.

Expanding using the definitions of p(z) in equation 4.2 on page 41, and using Jensen’s in-
equality [6] and the fact that 22/[:1 P(j) = 1, an upper limit can be placed on the value of
E™% | the error value obtained using the new parameters, as shown in [6]. This upper limit
is:

B 4303 P(jla) In (P ()5 (a7 )} (4.6)

Thus to minimise the error value the second term in equation A.6 must be minimised. Using
the definition of p(z|j) on page 41 and minimising this second term in equation A.6 with
respect to the new parameters, update equations can be found for P(j), u; and o, which are

similar to those obtained using the maximum likelihood approach.

B = S Pold(j|zn) (A7)

1 Zn POld(j|(En) " — ,u'/_zew
) = G PG ‘ (48)
PO = = 37 Pl (4.9)
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Appendix B

Hardware

Image sequences are obtained using a Watec WAT-202B camera. These images are digitised
using a Matroxz Meteor 2 framegrabber and written as a stream of TIFF images. The image
resolution is 144x192 pixels and the frame rate for all sequences varies between 10 and 25

frames per second.
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