
Master of Science in Engineering
MSc(Eng)

Kinematic Modeling and Dynamic
Aspects of an Accelerating Quadruped

Casey van der Leek

Supervisor: Prof. Fred Nicolls

A dissertation submitted to the Department of Electrical Engineering,

University of Cape Town, in fulfilment of the requirements for the degree of

Master of Science in Engineering

Cape Town, March 2022

Declaration

I declare that this dissertation is my own, original and unaided work. It is being

submitted for the degree of Master of Science in Engineering in Mechatronics at

the University of Cape Town.

It has not been submitted previously for any degree or examination at any other

university or institution.

I know the meaning of plagiarism and declare that all the work in the document,

save for that which is properly acknowledged, is my own. This dissertation has

been submitted to the Turnitin module (or equivalent similarity and originality

checking software) and I confirm that my supervisor has seen my report and any

concerns revealed by such have been resolved with my supervisor.

Signature of the Author

Cape Town, March 2022

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Fred Nicolls,

for the informative discussions, constructive suggestions and advice throughout this

extended research project. Also a special word of thanks to Stacey Shield and Dr.

Callen Fisher for sharing some of their knowledge and the interesting conversations

we had that related to my work.

Much appreciation goes to Alastair During and the technical staff for being so help-

ful in providing me with data and notes on the biomechanics experimental work that

was undertaken at the Sports Science Institute of the University of Cape Town.

Thanks also goes to the Ann Van Dyk Cheetah Centre, Hartbeespoort, Pretoria for

availing themselves to UCT and allowing the acquisition of the cheetah video data.

Appreciation also goes to Emmanuel Ali, Anicet Hounkanrin, Robyn Verrinder and

Dr. Amir Patel.

Finally, thanks to Dr. Jonathan Glenday of the Department of Biomedical Engi-

neering, UCT for sharing the doctoral work he did on the human shoulder joint.

Abstract

Bio-inspired robotics engineers look to the natural world for clues to aspects of mo-

tion dynamics and morphologies that may be incorporated in the design of these

robots. The mimicking and transfer of these aspects of a live subject to a modern

day robot is limited by the technologies available such as computational resources,

materials engineering, mathematical modeling constraints and efficient systems en-

gineering. With this in mind, a reasonable strategy is to reproduce the functionality

of a subject with current technology.

A monocular camera and deep learning algorithm allow non-invasive image pose

extraction of an accelerating cheetah subject, which is represented as a mechanism

of rigid links interconnected by joints, and this information forms the data basis of

subsequent operations. In addition, a non-linear least squares optimiser is formu-

lated and coded specifically for the quadruped robot that produces estimates of the

relative link angles, a base link length and trajectory of a reference point so that a

three dimensional configuration evolution of the system is rendered.

A secondary consideration is the deployment of inverse kinematics to determine the

end effector trajectory of the front leg, both in the real spatial frames and phase

space domains, as well as the angular rates required for these target manifolds.

The parameterised inverse kinematics models were also able to generate smooth

task space trajectories to within acceptable tolerances of the target position and

for a single, full gait the corresponding joint space trajectories were deemed to be

sufficiently closed.

Contents

List of Figures

List of Tables

Acronyms

1 Introduction 1

1.1 Preliminaries . 1

1.2 Research Objectives . 2

1.3 Outline of Work . 3

1.3.1 Problems and Scope . 3

1.3.2 Proposed Solution Plan . 4

1.3.3 Project Content . 6

2 Theoretical Fundamentals 7

2.1 Convolutional Neural Networks . 7

2.2 Vision Systems and Image Processing 8

2.2.1 Virtual Camera Model . 8

2.2.2 Vision System . 11

2.3 Polar Transforms . 11

2.4 Vector Fields . 13

2.5 Non-linear Least Squares (LSQ) Optimisation 15

2.5.1 Optimisation Mathematics 15

2.5.2 First-Order Optimality Measure 18

2.5.3 Function Evaluations . 19

2.5.4 Damped Least Squares Parameter λ 19

2.6 Inverse Kinematics (IK) Methods . 20

2.6.1 Least Norm Solution . 21

2.6.2 Gradient Projection . 21

2.6.3 Weighted Least Norm . 22

2.6.4 Extended Jacobian . 22

2.6.5 Damped Least Squares . 24

2.7 Inverse Kinematics for Trajectory Generation 25

2.8 Overview . 26

3 Systems and Metric Definitions 27

3.1 Configuration Definition . 27

3.2 Coordinate Systems . 30

3.3 Transforms . 31

3.4 Phase States . 32

3.5 Degree of Closure (DOC) for a Trajectory 32

4 Methodology 35

4.1 Data Acquisition . 36

4.2 Objective Vector Functions for the Optimiser 37

4.3 Model Parameters . 42

4.4 Motion Constraints . 43

4.5 Project Elements and Work Flow . 43

4.6 Related Work . 44

4.6.1 Deep Learning and Pose Estimation 44

4.6.2 Modeling of Legged Robots 45

4.7 Overview . 46

5 Experimental Setup, Data Acquisition and Implementation 47

5.1 Markerless Pose Extraction using a Deep Neural Network 48

5.1.1 Network Training . 49

5.1.2 Joint Tracking . 50

5.1.3 Coding . 50

5.2 Angle Variables . 54

5.2.1 Configurations . 54

5.2.2 Camera . 54

5.3 Link Lengths . 54

5.4 Angle Transform Equations . 55

5.5 Optimisation Strategies . 56

5.6 Coding the Optimisation . 57

5.7 Inverse Kinematics Modeling . 60

5.8 Overview . 61

6 Results, Findings and Model Evaluation 62

6.1 Image Pose Extraction . 62

6.2 Least Squares Optimisation . 65

6.2.1 Output Indicators . 66

6.2.2 Matrix Data in Graphic Form 69

6.2.3 Configurations . 72

6.2.4 Trajectories and Dynamics of Reference Joint 75

6.3 Vector Fields . 83

6.4 Inverse Kinematics . 85

6.4.1 Model Parameters . 86

6.4.2 Trajectory Generation for End Effector Tracking 87

6.4.3 Trajectory Closure . 95

7 Conclusions 101

7.1 Image Extraction by a Trained Network 101

7.2 Configuration Optimisation . 101

7.2.1 Basic Data and Code Indicators 101

7.2.2 Vector Fields . 102

7.2.3 Configuration Plots . 102

7.3 Inverse Kinematics . 103

7.3.1 Parameters . 103

7.3.2 Trajectories . 103

8 Recommendations on Future Work 105

8.1 Least Squares Optimisation . 105

8.2 Inverse Kinematics . 106

8.3 Future Research . 106

8.3.1 Humanoids . 107

8.3.2 Quadrupeds . 107

8.3.3 Surgical and Service Robots 108

8.3.4 Autonomous Quadrupeds in Space Exploration 109

Bibliography 110

A Joint Space Trajectories 116

B Optimisation Functions 118

C Non Convergent Trajectories 119

D Vector Fields 121

E Quadruped Configurations 123

List of Figures

1 The Pneupard is an experimental light weight, biomimetic pneumatic

powered quadruped similar to the proposed model presented in this

publication (Image credit: Osaka University). 2

2 Camera model showing the virtual image generated from a real world

3D object. The desired pixel image is processed from the film image

according to the physical properties of the actual camera being used.

The respective origins of the frames are indicated by O, Of and Ow. . 8

3 The simple linear geometry that is fundamental in obtaining the im-

age coordinates of a point in space. 9

4 The variables associated with the polar transformation equations.

The vector with magnitude r and direction θ describes a point P

that traces out the curve C. 12

5 An arbitrary curve trajectory C, showing the radial and tangential

components of the tangential velocity of a point P on C. 12

6 The vector field generation for the incremental movement of the robot

link in (i) from time ti to ti+1. Schematics (ii), (iii) and (iv) show

how the field is created for a generic linkj+1 as it undergoes five

incremental movements which are relative to its prior linkj. The field

is represented as a time line with the associated vectors at each interval. 13

7 Solution integral curve x(t) with the associated vector field F (x(t))

at the specific solution points. 14

8 The vector Vuv is the projection (using polar transforms) of r onto

the local UV axis of the parent link. In this way relative motions can

be displayed for all links and the sequence of vectors obtained thus

generating a field. 15

9 A hypothetical non-linear vector function with estimated solution vec-

tor and actual data points for a model with two parameters x1 and

x2. The green dot shows the actual solution point x and the red point

is the solvers’ estimate xest. Blue dots represent a few of the known

data points ai that are used by the optimisation to achieve the estimate. 17

10 Another illustrative two parameter model example and how the initial

guesses of the solution vector at the start of the algorithm search may

affect the outcome. The initial search position for the red path results

in a sub-optimal solution and this is confirmed by the magnitude of

the squares of the residuals at this solution. The other two searches

terminate at near optimal solutions (blue and brown paths). The

actual solution is shown by the green square. 18

11 Universal (U) and spherical (S) joints. All joints for the quadruped

serial link mechanism are based on universal joints. If spherical joints

were to be used an additional rotational axis would be introduced

allowing the links to twist relative to their parent links. 28

12 The quadruped 8-link configuration that represents the animal sub-

ject’s locomotion generating limbs and appendages. Translational

motion is directed from left to right with the reference joint J#0 at

the junction of link r5 (spine) and r6 (back leg) of the mechanism. All

angles are measured relative to their parent link with θ9 being mea-

sured relative to a horizontal reference line, the U axis of the local

robot system the origin of which is the reference joint. 29

13 All the descriptor planes that relate the local link motion of the

quadruped with respect to the reference joint (J#0). The three planes

are the sagittal (UV) side, transverse (UW) top elevation and frontal

(VW) planes. The permitted angle rotations θ and ϕ are shown in

their operational planes. Link twist angles γ are all assumed zero for

simplicity. 29

14 The canonical local robot (UVW) coordinate system showing the

angle definitions in their respective planes for link rLi. The origin

of the UVW frame is the reference joint. Link twist angles are not

modeled so γ is zero for all links. 30

15 The camera and local robot coordinate systems. The camera rota-

tions about each of the XY Z axes are ξ, ψ and ζ respectively. The

first spine link coincides with the U axis of the local robot system

frame and its origin equates to the reference joint. 31

16 Illustrative phase state diagrams for the double pendulum model with

the associated vector fields (shown as the cyan coloured arrows). The

generalised coordinates of the position of the top and lower point

masses are θ1 and θ2 respectively. Investigations were done using this

model to provide simulated data for a two link serial planar mecha-

nism, however this work did not fall within the scope of this project. . 33

17 The diagram describing the parameter Dsf metric for state trajectory

closure. Y 1 relates angular rates for the given angle domain X1 for

the state space of a particular variable. The distance between the

start (circle) and end (square) points indicates the degree of closure

of an orbital path. 33

18 Flowchart for determining the parameter values for an inverse kine-

matics method. 42

19 Flowchart with the design elements, processes, methods and key out-

puts of this project. The graphics (i) to (iv) show how the video

image of the subject is used to obtain the input image for the least

squares optimiser. 44

20 Animal subjects with markers that are physically fixed on strategic

joint positions to facilitate manual image labeling for DeepLabCut

CNN training data. 49

21 Animal subject with CNN-Resnet50 predicted joint positions by DeepLab-

Cut and a composite graphic with the 8-link configuration superim-

posed. 50

22 Learning rate data for a typical network training session showing the

reduction in errors (loss) and the learning rate variation as the number

of iterations progresses. 51

23 The subject at various orientations and magnification showing the

labels as predicted by the pose estimation algorithm, DeepLabCut,

that is based on deep neural network (specifically CNN) machine

learning. The 190×50 pixel blocks are substantially smaller than the

average used in for all three of the quadruped gaits investigated here.

Blocks of this size were avoided, as far as possible, by appropriate

video cropping. 52

24 A sample mechanism showing link lengths, joints and angle definitions

within the UVW local system. The variables here are used to define

the 3D joint positions according to the transform equations. 56

25 The image data points of the unseen video sequence showing the

Convolutional Neural Network (CNN) estimated pixel values of the

labels. All labels for the legs, spine and tail are shown. The subject

moves from left to right and a composite plot of these points on the

original images correlates well with the fixed markers. 63

26 The predicted joint trajectory points in the image plane using ma-

chine learning (DeepLabCut) together with the associated probabil-

ities of correct occurrence are shown here. The pixel values as a

function of the configuration number (or equivalently time) is shown

in (i) and the likelihood or confidence in the labels’ correctness as

given by DeepLabCut is shown in (ii). 64

27 Original sample images and the predicted image configurations by the

network. During the course of the network training the estimates on

unseen images were not perfect but this was improved upon by re-

training, refinements and parameter adjustments in the configuration

files. 64

28 Typical illustrative output data by Matlab for a single solution point.

The 21 variables comprising the solution vector includes the gener-

alised position coordinates for all the links, the position coordinates

of the reference joint, camera rotation angles and the base link length. 65

29 Typical Matlab output of selected performance indicators. The solu-

tion vector of 21 variables and the current function values are shown

for a specific iteration. With reference to Figure 28, note the small

values for the ϕ angle variables. 66

30 Typical Matlab output graphics for the total number of function eval-

uations and the final step size that the solver takes at solution. For

this solution point the solver required 1358 function computations in

total and only 30 iterations (coincidentally equal to the number of

configurations here). Notice the steep convergence towards the de-

sired zero line for the final step size taken by the optimiser for the

last iteration. The data shown here is for the solving of the second

configuration and the others were of a similar order of magnitude. . . 67

31 The number of iterations and first-order optimalities for all the con-

figurations. Low first-order optimality values close to zero are a good

indication that the solutions are near to being optimal. 67

32 The mean objective function residuals and final step sizes. The mean

residuals or errors are the average displacements in hyperspace be-

tween the estimated vector and solution points. The final step sizes

are sufficiently close to zero and contribute to the validation state-

ments of the solver. Notice the improvement after the first iteration.

From the second iteration angular rates can be computed and the

contributions of the other vector functions are now included in the

solution. 68

33 The high number of function evaluations due, in part, to the use of

centrally based gradient computations by finite differences. 69

34 The mean values of all the Jacobian arrays as evaluated by the solver. 70

35 The average of the Jacobian matrix element values for only the angle

variables of the quadruped mechanism. Note the smaller values for

all the ϕ variables (variable numbers 8 to 14). 70

36 The gradients matrix values are linked to the optimality of the optimi-

sation estimates. Low values indicate that the search has effectively

ended with all search directions static at the solution point. 71

37 The mean error values for the joint image estimates are shown for all

configurations. Notice the peak for joint #9 (mid-spine joint). The

data shown here is repeated in Figure 38 as a two dimensional image

error data matrix with the joint index numbers corresponding to the

joint numbers of the mechanism. 72

38 The mean error image array data above show the differences between

the actual and estimated pixel values for all the robot joints and aver-

aged over the entire sequence. The schematics define the interpreta-

tion of the matrix data according to the configuration’s joints. Note

the peak error for joint #9 (the mid-spine joint) at joint index #5.

The schematic at lower right is a reference for the graphic directly

above it. The errors are specified for a xy pixel pair corresponding to

a joint index number which in turn represents a specific joint number

of the mechanism. 73

39 Least squares solver and truth images of a single sample configuration.

All the other configurations also showed very close correlation. See

Appendix E. 74

40 The photos from the original accelerating cheetah video and the re-

projected least squares optimisation configuration images are shown

for the sequence at every sixth instance. 75

41 The optimised camera rotation angles and the base link lengths for

each of the 30 configurations. 76

42 The progression of the estimated reference joint trajectory (blue) in

the image plane. Note its approximately sinusoidal path of about

3Hz, confirming the assumed three gait motion of the subject. 76

43 A composite graphic of the estimated reprojected images in pixel

coordinates. The estimated 3D poses by the solver are input into the

camera model to give each of the pixelated configurations. 77

44 The composite side views of the quadruped for the first gait (left) and

the first two gaits (right) in its local UVW coordinate system. The

reference joints observer coordinates have been included so the origin

of the UVW shows the corresponding shift. 77

45 The magnitude of the velocity and acceleration of the reference joint.

All three linear motion components were calculated from its position

data and interpolated and using the higher sample rate the linear

velocity and accelerations were obtained. 78

46 Illustrative graphics showing the subject with the estimated image

configuration, together with the side view (UV) and top elevation

(UW) view plots. 79

47 The first gait sequence of nine configurations is represented here. The

photograph and reprojected image composites together with the cor-

responding configuration plane views are shown. 80

48 A composite of the full quadruped configurations in the UV plane

(side view) with the reference joint located at (0, 0, 0) in the local

system. 81

49 The top and front view spine patterns developed over the motion

sequence. 81

50 The front views (looking head-on to the quadruped) show the dis-

tributions of the legs. The back leg, particularly, shows a definite

pattern; at high speeds (shown in green) there is a greater deviation

from the sagittal plane, as is to be expected. 82

51 Estimated reference joint trajectories. At left are the three dimen-

sional components of the reference joint trajectory, with all camera

extrinsics fixed to zero, in the observers XY Z-coordinate frame. The

trajectories at right are the result of the solver having the camera

angles as variables. 82

52 The full configuration sequence of the quadruped mechanism in the

camera frame system with origin (0, 0, 0) represented by the yellow

dot. The start position is at left (red) and it traverses through space

until its final position at right (green) after an estimated distance of

12.8m after 0.9667 seconds. It achieves an estimated maximum speed

of 21m.s−1. 84

53 The target trajectory for the inverse kinematics models is generated

by the front leg of the quadruped. The early phases of the trajectory

are shown as red and terminate in green. 85

54 Inverse kinematics parameter λ as determined by a non-linear least

squares optimisation for the damped least squares method. 87

55 Inverse kinematics constants as determined by a non-linear least squares

optimisation for the Weighted Least Norm method. The variables

that comprise the diagonals of the weighting matrix W are w1, ..., w10. 88

56 Inverse kinematics parameters g1, g2, ..., g5 and k, for the gradient

projection method as determined by the non-linear least squares op-

timisation solver. 89

57 The estimated parameter α values for the extended Jacobian method

together with its average of 0.643. 89

58 The variation of the scaling factor α as computed online for the GP

and WLN methods. The mean estimated value as determined by the

EJ method is indicated by the dashed line. 90

59 The DLS method produced this trajectory (magenta) given a target

point (red). A similar result was obtained with the WLN method.

The cyan coloured trajectory is the actual path taken by the end

effector. Notice how the IK determined path of the end effector is

smoother and less oscillatory, particularly in the UV plane, than the

original actual trajectory. 90

60 The iteration times for all of the IK models. 91

61 The rapid convergence to the target is shown by the distance in task

space between the current model estimate and the target. The data

shown here was for the DLS with the WLN method showing a similar

trend. 91

62 All the configuration sequences and proposed solution trajectories are

similar for the DLS and WLN algorithms. 92

63 The optimal augmenting function that is a harmonic kinematics map-

ping for the EJ algorithm. The variables q1 and q2 are relative angles

corresponding to two links. 93

64 By using a suitable harmonic augmenting function with the extended

Jacobian method, quick convergence to the target is achieved with

no singularities. The computation of α online (ii) results in a faster

convergence to the target than using α = 0.643 constant (i). 93

65 The optimal trajectory produced by the extended Jacobian method.

The optimisation function took the form of a harmonic augmenting

function with the variables being selected relative motion angles. Ev-

ery hundredth configuration is shown. 94

66 The gradient projection algorithm produced this trajectory in only

264 iterations with each iteration taking on average 0.36 microsec-

onds. Every hundredth configuration is shown too. 94

67 The front leg end effector trajectory as estimated by least squares

optimisation. 96

68 The phase states of the joint angle of the end effector link of the front

leg as determined by the solver. Three gait cycles have been isolated

here and the full cycle (lower right) shows convergence to a limit cycle. 96

69 Demarcated boundaries for all three gaits. The second gait is defined

as occurring from the configuration index numbers 113 to 201 based

on the position and velocity data of the end effector. 97

70 The nearly closed trajectories of the end effector, in Cartesian coor-

dinates, for the second gait. 97

71 The phase states for the primary motion plane of the end effector as

determined by the least squares solver. 98

72 The primary phase states for all the joints as determined by the

damped least squares (left set) and the extended Jacobian (right set)

methods. 98

73 The effects of computing the scaling factor online and applying it to

the angular rates vector shows similar to a very slight degradation in

performance (ii) with slightly less smooth trajectories and nominal to

increased Degree of Closure (DOC)s when using the weighted least

norm (WLN) method. 99

74 The Kengoro humanoid robot with intricate musculo-skeletal links

(Image credit: JSK Laboratory, University of Tokyo). 107

75 The Versius Surgical System (Image credit: CMR Surgical). 108

76 Joint trajectory estimates in θ phase space by the gradient projection

method. 116

77 Joint trajectory estimates in ϕ phase space by the damped least

squares method. 117

78 Non convergent trajectory resulting from an unsuitable cost function:

g = (θ2 − θ1)
2(θ1 − θ3)

2 + (θ3 − θ4)
2(θ4 − θ1)

2. The graphic below it

shows the distance between the current and target points confirming

failure to converge. 119

79 Chaotic, non convergent trajectory resulting from an unsuitable cost

function: g = (θ2 − θ1)(θ2 − θ3) + (θ3 − θ4)(θ4 − θ1). The graphic

below it shows the distance between the current and target points

confirming failure to converge. 120

80 Discontinuous, non convergent trajectory resulting from an unsuitable

cost function: g = (θ3 − θ2)(θ2 − θ3) + (θ3 − θ4)(θ4 − θ1). The graphic

below it shows the distance between the current and target points

confirming failure to converge. 120

81 Vector Field I. 121

82 Vector Field II. 122

83 Polar velocity magnitudes for (i) front leg, (ii) spine and (iii) back leg

links for all of the configurations. 122

84 The first set of 9 configurations (out of 30). At left are the composite

image configurations showing the truth (black dashed line) and repro-

jected (black solid line) images and at right the computed quadruped

configurations (red) in the sagittal plane. 123

85 The second set of 9 configurations (out of 30). At left are the com-

posite image configurations showing the truth (black dashed line)

and reprojected (black solid line) images and at right the computed

quadruped configurations (red) in the sagittal plane. 124

86 The last set of 12 configurations (out of 30). At left are the composite

image configurations showing the truth (black dashed line) and repro-

jected (black solid line) images and at right the computed quadruped

configurations (red) in the sagittal plane. 124

List of Tables

1 Mean polar vector magnitudes for the back leg (BL), spine (S) and

front leg (FL) links. The highly mobile back leg shows high mean

values in comparison to the front leg. 84

2 Trajectory generation inverse kinematics data from current to target

point. 92

3 Trajectory closure percentages in θ joint space for all the inverse kine-

matic models in the UV plane. 99

4 Trajectory closure percentages in ϕ joint space for all the inverse

kinematic models in the UW plane. 99

5 Performance indicators of all the inverse kinematic models for trajec-

tory closure in the UV plane. 99

Acronyms

AI artificial intelligence.

CNN Convolutional Neural Network.

COM centre of mass.

CPU Central Processing Unit.

DH Denavit-Hartenberg.

DLC DeepLabCut.

DLS damped least squares.

DOC Degree of Closure.

DOF Degrees of Freedom.

EE end effector.

EJ extended Jacobian.

GP gradient projection.

GPS Global Positioning System.

GPU Graphical Processing Unit.

GUI Graphical User Interface.

IK Inverse Kinematics.

IMU Inertial Measurement Unit.

LIP linear inverted pendulum.

LN least norm.

LSQ Least Squares.

LVM Levenberg-Marquardt.

ODE ordinary differential equation.

PD proportional derivative.

QR Quadratic Root.

RC Robot Configuration.

SDLS selectively damped least squares.

SFL spine-front leg.

SLIP spring-loaded inverted pendulum.

WLN weighted least norm.

Chapter 1

Introduction

The natural world has provided humans with vision, insight and inspiration to the

development of flying machines through to today’s bio-inspired robots.

This project sets out to use the imaged postures of a cheetah to realise the corre-

sponding three dimensional poses and to generate motion trajectories for an equiv-

alent quadruped mechanism.

1.1 Preliminaries

The locomotion of modern day bio-inspired robots require a study of the subjects’

motion and the information derived from this can be used for a whole host of appli-

cations from the development of steady gait sequences, trajectory tracking, required

control outputs and so on. All the spatial motion data can also be used in hybrid

control systems that make use of machine learning. The design of robotic systems

requires that real time configuration tracking be accurate and that its motion is gen-

erated according to some specified trajectory. These trajectories can be computed

offline and serve as a database for later use for steady robot motion with repeating

gaits. There is no general formalised non-linear systems theory [35],[36] and each

design problem is unique, since there are no systematic procedures nor are there any

single methods valid for analysis.

1

2 Chapter 1. Introduction

Figure 1: The Pneupard is an experimental light weight, biomimetic pneumatic
powered quadruped similar to the proposed model presented in this publication
(Image credit: Osaka University).

The analytical solution or single solution trajectory of a system variable that varies

with time is seldom obtainable for highly non-linear systems and it is then best to do

a qualitative analysis using methods that are based on conserved energies, sudden

changes in behaviour with a change in physical parameter and the generation of sets

of simulated state trajectories to name a few.

1.2 Research Objectives

This research project makes use of an accelerating cheetah animal subject and op-

timisation theory to estimate the 3D motion sequence and associated poses using a

monocular video camera system and machine learning. The reduced and simplified

configurations of the modeled quadruped are reconstructed and the trajectory trace

in space is rendered as an animation. The main part of this work therefore relates

to the theoretical derivation, formulation and validation of the output of the solver

using various indicators.

Of secondary interest are the relative link motions and the path followed by the

extremity of the front leg in 3D space, and the required actuations for this are to

1.3. Outline of Work 3

be resolved using inverse kinematics theory [50],[51],[52],[63],[65]. Four inverse kine-

matics models are parameterised and a comparative evaluation is made to assess

their ability to (i) produce a smooth, economic end effector (EE) trajectory to a

target point and (ii) their effectiveness in generating closed joint space trajectories

for a given closed loop end effector trajectory in the spatial workspace. The final

objective of this project therefore achieves the angular rates required for the spine

and front leg links of a quadruped that could be used in a control application.

1.3 Outline of Work

The work flow is described from the model development, acquisition of the raw data

and its processing and then the implementation of the theoretical models to achieve

the three goals described above.

1.3.1 Problems and Scope

The solution process to the problems faced in this project entail a logical and se-

quenced approach to data acquisition, systems definitions, mathematical modeling

and parameterisation thereof. The estimated image configurations from the video

need to be obtained using the open source toolbox DeepLabCut [38] that allows

the user to train a deep neural network for the purpose of pose estimation. Once

a representative mechanism that approximates the quadruped is established, the

mathematical models that characterise a non-linear least squares [67] optimisation

need to be formulated. Careful thought must also be given to how the dimensions of

the configuration are modeled. The visco-elastic nature of the subject complicates

all of this. Once the estimated 3D poses in space has been determined these will be

used as inputs to the various parameterised kinematics models which in turn will

give the actuations required for the tracking problem.

In formulating a description of a system one seeks a definition that includes indepen-

dent variables that uniquely and simply define the system. The motion of a simple

pendulum, for instance, can be uniquely described by a generalised coordinate such

as the angle θ that it makes with respect to a reference line with the state of the

4 Chapter 1. Introduction

system being described by its position in the phase state space, in this case the

coordinates θ and θ̇. The trajectory trace is called the phase portrait [30].

1.3.2 Proposed Solution Plan

In order to solve the pose estimates, insight into the theory of virtual camera mod-

eling, spatial geometry, vector fields [13], coordinate transforms, non-linear least

squares optimisation [67] and the mechanics of the inverse kinematics models is re-

quired. An adequate static model of the quadruped is proposed, its geometrical and

assumed dynamic limitations are set within an operating manifold and the compo-

nent functions for the optimisation are developed within this framework. For the

inverse kinematics part, optimisation theory is again used to determine the model

parameters. With advances in machine learning and artificial intelligence (AI) the

need for a closed-form parameterised deterministic model of the full robot system

can be largely circumvented. With the development of more complex legged robots

involving higher order linkage systems this is especially true; in such instances it

is near impossible to find a deterministic mapping from the command space to the

configuration space [16].

The double pendulum and n-link models are all standard dynamic and control mod-

els, together with their derivatives the pendubot and acrobot. Other approaches for

generating locomotion trajectories and that focus on the dynamics covered by sin-

gle point masses are the linear inverted pendulum (LIP) and spring-loaded inverted

pendulum (SLIP) models. The motions of these reduced models can be generated

using estimation/optimisation techniques and these methods have been applied to

intrinsically compliant biped robots [1] with the LIP a common model for tracking

the centre of mass (COM) [40].

Vector fields are a form of geometric algebra in that they are closely associated with

ordinary differential equations that describe the dynamics of a system. The most

obvious is the visual description of the velocity flow (others include pressure and

thermal gradients, force fields and height gradients of contour maps) and they give

the instantaneous path direction of the solution trajectory at a point in state space,

for instance. The vector fields therefore give information to the solutions of an ordi-

1.3. Outline of Work 5

nary differential equation (ODE) without having to solve it. Non-linear systems are

inherently complex to solve so instead of resolving analytically, clues to behaviour

are obtained using linearisation and the information of their behaviour at stationary

(equilibrium) and other points of interest. Together with other geometrical realisa-

tions depicting variables and parameter changes, the qualitative behaviour can be

deduced.

For floating based platforms, such as the quadruped in this project, there are addi-

tional non-linearities hidden in the dynamics resulting from invariant contacts and

displayed in the end effector ground contact manifolds. The use of single imag-

ing sensors is a powerful tool for acquiring sensor data since it is remote, simple,

unobtrusive and a system configuration can be acquired. Together with machine

learning and an optimisation algorithm, where the parameters can be optimised

and/or learnt, this provides for efficient tracking without the need for real-time

state estimation, especially in situations with highly non-linear motion that may

show highly discontinuous end effector trajectories. Used in parallel with an optimi-

sation algorithm a monocular vision system is all that is needed for a 3D trajectory

realisation of a multi-link robotic system.

This project is primarily concerned with the 3D motion of an accelerating quadruped

on uneven terrain using vision systems and a non-linear Least Squares (LSQ) op-

timisation algorithm [67] that is custom developed for this specific application. It

makes use of the video image sequences of an animal subject as truth inputs for the

configuration optimisations. In order to solve the problems of trajectory generation,

the first step is to obtain the parameters for the inverse kinematics methods as well

as the development of the implicit optimisation functions where applicable. Termi-

nation criteria are coded and the current estimates are tracked until suitable closures

are attained. The qualitative joint trajectories and configurations are assessed vi-

sually and any correspondences with expected behaviours are noted. Comparisons

with the quadruped are not easily made under accelerating conditions since ground

contact forces are highly variable in addition to the obvious differences in physiol-

ogy. The basic theory that is utilised here is presented in Chapter 2 that includes

introductory notes on machine learning and the technical descriptions that relate

6 Chapter 1. Introduction

to modeling the vision systems, non-linear optimisation and the inverse kinematics

models.

1.3.3 Project Content

The definitions of the systems and tools for implementing the problem solving strate-

gies are made in Chapter 3 and an outline of the methods and approaches used in

order to solve the problems are provided in Chapter 4. The details of the practical

data acquisition, processing and implementation are described in Chapter 5 with the

full results, analysis and discussions shown in Chapter 6. The conclusions drawn

from the results are discussed in Chapter 7, with recommendations provided for any

future work on this subject given in Chapter 8. Finally, possible future research di-

rections, at large, for humanoids and quadrupeds is also given, together with some

of the latest and advanced robotic systems.

Chapter 2

Theoretical Fundamentals

The basic theoretical concepts and definitions that are used in this research are dis-

cussed and formalised in this chapter. Introductory notes to machine learning, the

basic derivation of the virtual camera model and the geometric realisation of vectors

are presented.

The theory of non-linear least squares optimisation is described in detail together

with key performance indicators that are used to evaluate the credibility and ac-

curacy of the data output. The theory of inverse kinematics models is outlined in

detail, one of which forms the basis for the optimisation algorithm used.

2.1 Convolutional Neural Networks

The deep learning theory of ConvNets or CNNs involves multi-layered and weighted

learning networks that have their internal parameters changed iteratively until they

are "trained" and are then able to predict correctly (within reasonable limits) when

new unseen input data is presented. CNNs are mainly involved in intelligent image

data processing from object classification, clustering based on similarity or object

detection such as the application here. They process hyper dimensional image arrays

or tensors (nested arrays) and filtering functions that convolve with input images

to detect the specified feature(s). Transfer learning based algorithms are employed

here, so the trained network can be applied to similar anatomically based life forms

7

8 Chapter 2. Theoretical Fundamentals

[38], such as the leopard. The essence of the software operation is to train the feature

detectors of the anatomical points as defined by the user via an interactive Graphical

User Interface (GUI) with all commands of the process being from a simple Python

terminal interface. DeepLabCut is the transfer learning algorithm [38] that is used

to generate a trained network for the purposes of creating a video sequence of poses

with the estimated positions of predefined markers on an unseen sequence of images

of a live subject.

2.2 Vision Systems and Image Processing

The derivation of a camera model is outlined together with notes on the vision

system used.

2.2.1 Virtual Camera Model

The model equation that gives the pixel coordinates for a given point in space is

based on the standard pinhole camera whose aperture is a point of infinitely small

dimensions that ensures all projected points are not subject to blurring. Projective

Figure 2: Camera model showing the virtual image generated from a real world 3D
object. The desired pixel image is processed from the film image according to the
physical properties of the actual camera being used. The respective origins of the
frames are indicated by O, Of and Ow.

geometry is used to construct the theoretical transforms together with transform

2.2. Vision Systems and Image Processing 9

matrices that will hold information on the camera’s intrinsic physical properties and

any applied camera rotations and translations are described by the extrinsic vari-

ables. The virtual image is the inversion of the image that the camera sees with

both being located at the same distance, f , along the optical axis away from the

optical centre O. By making use of the fact that a Cartesian point is a line in ho-

mogeneous coordinates and the invariance of these coordinates to scaling the spatial

world system coordinates can be projected to the image frame coordinates. In this

way there is a transform from world to camera to film to pixel coordinates and Pt

is the matrix that performs this transformation. The key here is the perspective

projection of the world system to the film plane as shown in Figure 3. The variables

Figure 3: The simple linear geometry that is fundamental in obtaining the image
coordinates of a point in space.

ox and oy are the pixel coordinates of the optical centre in the film plane, or alterna-

tively the offsets of the pixel and film plane origins, and where the image coordinate

axes are not perfectly orthogonal then the skew is given by s = fy tan δ where δ

is this axes (rotation) deviation from the norm. For perfectly square pixels δ = 0

so the skew will be zero too. The intrinsic variables fx and fy are focal lengths in

pixels depending on the pixel resolutions µx and µy (pixels/unit (mm) along their

10 Chapter 2. Theoretical Fundamentals

respective axes), so fx = µxf and fy = µyf , with f being the focal length in mm of

the camera used and as shown in Figure 3.

If one were to align and orientate the camera and system coordinate frames exactly,

a translation followed by a rotation would be required. The respective vector t and

R matrix with its component definitions for these are,

t =

tx

ty

tz

 , (2.1)

R = [Rx] [Ry] [Rz] (2.2)

where

Rx =

1 0 0

0 cos ξ − sin ξ

0 sin ξ cos ξ

 Ry =

cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ

 Rz =

cos ζ − sin ζ 0

sin ζ cos ζ 0

0 0 1

 .

The camera rotation angles ξ, ψ and ζ are defined as in Figure 15 (Section 3.2) and

by the PATB convention.

If K is the intrinsic camera matrix the total camera matrix is given by Pt = K [R|t]

with t the translational column vector that is amended to the rotation matrix R

and with

K =

fx s ox

0 fy oy

0 0 1

 . (2.3)

A standard camera model with projection and rotation-translation matrices relate

3D coordinates to the final 2D pixel image. If Pt is the total camera matrix, which

includes camera intrinsics and extrinsics (rotation and translation variables), and

X is a homogeneous vector with the 3D global world system points and σ a focal

(depth) length scaling factor, then the homogeneous image vector x is given by

σx = PtX. (2.4)

2.3. Polar Transforms 11

One has the choice of dealing with the formulation as it is and evaluating σ for each

new configuration, or operating with the implicitly scaled pixel equations directly.

Each system has its own global coordinate axis for convenience with the camera

extrinsic matrix defining the 3D translation and rotation of the camera’s local co-

ordinate system with respect to this. Each rotation matrix defines rotations in all

three of the respective directions, and similarly the translation matrix, with the to-

tal camera matrix amended to make allowance for the homogeneous nature of the

projection. The location of a system in the global coordinate system was defined as

the homogeneous vector X in terms of the following variables: the position of the

reference joint in 3D with all joint positions being defined by the link length and

the two angles in the sagittal and transverse planes.

2.2.2 Vision System

The single camera system used here makes no use of a multi-camera stereo system

where homographies could have been used. Image data from multiple cameras were,

however, available for training of the neural network but a single monocular vision

system using the camera model described here is all that is needed. A vision system

needs to be developed in conjunction with transition equations that solve for the

spatial coordinates using angle data and link lengths only.

2.3 Polar Transforms

The polar transforms for any point defined in polar coordinates can be used to obtain

the equivalent position in a Cartesian space. The magnitude of the radial velocity

and angular velocity components can be computed using only the variables defined

in the basic geometrical definition as follows:

x = r cos θ and y = r sin θ (2.5)

ṙ =
xẋ+ yẏ

r
and θ̇ =

xẏ − yẋ

r2
. (2.6)

Consider the arbitrary spiral trajectory shown in Figure 4. A point P has a tan-

12 Chapter 2. Theoretical Fundamentals

Figure 4: The variables associated with the polar transformation equations. The
vector with magnitude r and direction θ describes a point P that traces out the
curve C.

gential velocity of magnitude v with its corresponding components as shown. The

magnitude of the velocity vector v = vx + vy where

vx = ẋ = vr cos θ − vθ sin θ and vy = ẏ = vr sin θ + vθ cos θ. (2.7)

In any problem vr and vθ can be specified as functions of θ or time for instance and

for circular trajectories this simplifies to vr = 0 and vθ = rθ̇.

Figure 5: An arbitrary curve trajectory C, showing the radial and tangential com-
ponents of the tangential velocity of a point P on C.

2.4. Vector Fields 13

2.4 Vector Fields

Vector fields are a form of geometric algebra in that they are closely associated with

ordinary differential equations that describe the dynamics of a system. The most

obvious is the visual description of the velocity flow (others include pressure and

thermal gradients, force fields and height gradients of contour maps) and they give

the instantaneous path direction of the solution trajectory at a point in state space,

for instance. These paths are variously called integral paths, trajectories, orbits or

flows and, critically, the series of paths so formed is the phase portrait (discussed

in Section 3.4) of the system of differential equations for a specific generalised state

variable. The vector fields therefore give information on the solutions of an ordinary

Figure 6: The vector field generation for the incremental movement of the robot
link in (i) from time ti to ti+1. Schematics (ii), (iii) and (iv) show how the field is
created for a generic linkj+1 as it undergoes five incremental movements which are
relative to its prior linkj. The field is represented as a time line with the associated
vectors at each interval.

14 Chapter 2. Theoretical Fundamentals

differential equation without having to solve it. The topological organisation of the

phase portrait is determined by the critical (stationary or equilibrium) points.

The vector functions are formulated for the non-linear least squares algorithm that

reflect the basic geometry, physiology and expected dynamics of the quadruped.

Direction or vector fields are mathematically the same thing as a set of ordinary

differential equations, both of which give rise to a series of transformations of state

space called flows.

Consider a second order autonomous system described by ẋ = F (x), as shown in

Figure 7: Solution integral curve x(t) with the associated vector field F (x(t)) at the
specific solution points.

Figure 7. Let the system variables be x1 and x2 so that at each x = (x1, x2) ∈ ℜ2 the

function F is attached. Then F is a continuous time-independent vector field with

x1(t) and x2(t) the solution paths or trajectories, both of which can be considered to

be the parametric representations of a directed path in their respective phase spaces.

The solutions are thus the integral paths for the vector field. For non-autonomous

systems the time dependent vector fields are applicable and the mapping is from a

domain that now also specifies the time interval for which it is valid.

The polar vectors (see Section 2.3) also generate a field over time but these simply

describe the magnitude and direction of the tangential velocity at a point. As an

illustrative example, consider the angular velocity of the end effector given over

300 sequential configurations and the field of velocity vectors it generates. The

incremental direction change of a vector is determined by the magnitude of the

2.5. Non-linear Least Squares (LSQ) Optimisation 15

angle changes α that the end effector link undergoes and the magnitude of the

vectors is simply the angular velocity of the link. The geometrical representation of

Figure 8: The vector Vuv is the projection (using polar transforms) of r onto the
local UV axis of the parent link. In this way relative motions can be displayed for
all links and the sequence of vectors obtained thus generating a field.

this is shown in Figure 8. The vector r defines the incremental change in position

of an end effector link ri over a time interval T and relative angle change α. The

projected vectors using polar transforms are also shown on the respective axes. The

parent link of the end effector is ri+1 and it defines the reference line for the initial

angle position of ri at the start of the analysis period.

2.5 Non-linear Least Squares (LSQ) Optimisation

Least squares optimisation is a powerful tool for determining the parameters or

variables of a proposed model given a set of output data points or desired trajectory

points.

2.5.1 Optimisation Mathematics

Non-linear systems are inherently complex to solve so instead of resolving analyt-

ically, clues to behaviour are obtained using linearisation and the information of

their behaviour at stationary (equilibrium) and other points of interest. Together

16 Chapter 2. Theoretical Fundamentals

with other geometrical realisations depicting variables and parameter changes, the

qualitative behaviour can be deduced. For floating based-platforms, such as the

quadruped in this project, there are additional non-linearities hidden in the dynam-

ics resulting from invariant contacts and displayed in the end effector ground contact

manifolds. Estimated link angle data obtained from the actual video sequences of

the animal subject are crucial for accurate optimisation. The fundamental theory of

non-linear least squares optimisation is based on optimising a cost vector function,

the objective function, by changing and updating model parameters that compare

the current iterative solution with that of the actual data. It operates similarly to

minimising the error between the actual and desired outputs in the feedback loop

of a control system. Graphically it is described as minimising the square of the

distance between estimated and known points and encapsulated in

min
x

m∑
i=1

fi(x)
2 = min

x
∥f(x)∥22 = min

x
f(x), (2.8)

where

f(x) =

f1(x)

f2(x)
...

fm(x)

 , (2.9)

with fi(x) differentiable functions of a vector or matrix variable x, the function

f(x) : ℜn → ℜm and ∥f(x)∥22 being the squared norm (2-norm) of the residual (i.e.

error) at x. This is illustrated by way of a hypothetical non-linear curved surface

manifold comprising all the squares of fi(x) = ∥x − ai∥ and the resulting contour

lines (see Figure 9) with the actual data and estimated points. In most practical

cases the function f(x) will also depend on model parameters that require solving,

such as the coefficients in a cubic polynomial, where a further refinement in accu-

racy can be done by applying an orthogonal distance regression fit as opposed to

a standard least squares fit. As the number of variables n in a problem increases

without a commensurate increase in the number of vector functions fi (analogous

to the number of simultaneous equations in the linear context: f(x) = Ax− b, with

2.5. Non-linear Least Squares (LSQ) Optimisation 17

Figure 9: A hypothetical non-linear vector function with estimated solution vector
and actual data points for a model with two parameters x1 and x2. The green dot
shows the actual solution point x and the red point is the solvers’ estimate xest. Blue
dots represent a few of the known data points ai that are used by the optimisation
to achieve the estimate.

A a matrix operator on the vector x), the system tends to become indeterminate.

This format is based on the Gauss-Newton method which broadly speaking starts

at any point, and is followed by the affine approximation (i.e. linearisation) of f(x)

around this point, which involves computing the Jacobian of f(x) at this point and

then an update step.

However, when the system is underdetermined (n > m) the update step becomes

problematic and also when there is not a reduction in ∥f(x)∥2. By introducing an

implicit regularisation parameter that is coupled with a distance function forces the

estimates into close proximity of the solution.

A variation on this is the so-called Levenberg-Marquardt (LVM) algorithm, which

includes Quadratic Root (QR) factorisation with iterations starting from multiple

points that may converge to an optimal solution. Even if the solution is sub-optimal

it will be guaranteed to be in relative close proximity to the actual data point(s).

The LVM is robust in the sense of being able to handle underdetermined systems

18 Chapter 2. Theoretical Fundamentals

without constraints. The sparsity of the Jacobian matrix will affect whether the

solution is optimal or not. Another important measure of the optimisation process

Figure 10: Another illustrative two parameter model example and how the initial
guesses of the solution vector at the start of the algorithm search may affect the
outcome. The initial search position for the red path results in a sub-optimal solution
and this is confirmed by the magnitude of the squares of the residuals at this solution.
The other two searches terminate at near optimal solutions (blue and brown paths).
The actual solution is shown by the green square.

is whether the smooth hyperspace objective function f is at a minimum where the

gradient is zero. This measure is termed the first-order optimality measure or the

infinity norm (i.e. maximum absolute value) of the gradient of the objective function

and it need only be small (close to zero) to within a certain tolerance for f to be

minimal. In some instances relative measures will be used to account for the scale

of a problem.

The trust-region-reflective algorithm is another way of solving non-linear minimisa-

tion problems but is only valid if the system is overdetermined or at least if the row

dimension of f is equal to the number of variables.

2.5.2 First-Order Optimality Measure

An indicator used to describe how close a point x is to being optimal is the so

called first-order optimality measure for the algorithm used here. This indicator

makes use of the gradient value of the objective function f(x). If min
x
f(x) is a

smooth unconstrained problem, then the maximum absolute value (infinity norm)

of the gradient of f(x) is the first-order optimality, FO, which can be expressed

2.5. Non-linear Least Squares (LSQ) Optimisation 19

mathematically as

FO = min
x

|(∇f(x))i| = ∥∇f(x)∥∞. (2.10)

Note that a point which has FO = 0 does not mean that it is necessarily a minimum

but if the point is a minimum then the condition FO = 0 must hold.

2.5.3 Function Evaluations

During the optimisation the solver computes intermediate steps that are performed

near the current iteration in order to find the next point, such as evaluation of the

objective function or estimating a gradient by finite differences. At any step, inter-

mediate calculations may involve evaluating the objective function and constraints,

if any, at points near the current iterate xi. For example, the solver may estimate a

gradient by finite differences. At each of these nearby points, the function count is

increased by one. Occasionally, the optimisation will attempt and reject a step and

the algorithm used in this project does not tally these additional steps to the num-

ber of iterations but instead to the number of function evaluations. Furthermore, if

the gradient estimates are computed as centered using finite differences then it will

take twice as many evaluations and should be more accurate.

2.5.4 Damped Least Squares Parameter λ

The search direction of the Levenberg-Marquardt algorithm, which makes use of the

damped least squares model, is guided by the directions of the computed gradients

as evaluated by both the Gauss-Newton and steepest descent method, given by

d

dt
x(t) = −∇f(x(t)). (2.11)

If, at solution, the error of the objective function is small enough then the solver will

favour the Gauss-Newton method (λ ≈ 0), otherwise the steepest descent direction

is taken with increasing λ. If the error decreases the step will be rated as a success

(as opposed to a failure) and λ is reduced by a factor of 10; else it will be increased

20 Chapter 2. Theoretical Fundamentals

by a factor of 10 by the Matlab solver.

2.6 Inverse Kinematics (IK) Methods

Forward or direct kinematics relates the Cartesian coordinates of the EE as a func-

tion of the angles of its constituent links, while the inverse kinematics resolves the

required angles for a desired end effector position for a discrete time interval.

There are many ways to solve Inverse Kinematics (IK) problems, originating from ap-

plications in robotics, such as pseudoinverse methods, Jacobian transpose methods,

cyclic coordinate descent methods, quasi-Newton and conjugate gradient methods

and also, recently, the use of neural networks and AI methods [63]. The pseudoin-

verse method is widely used and discussed in research papers, however, it often

performs poorly due to instabilities near singularities. The (selectively) damped

least squares methods have much better performance [65].

Direct kinematics was used as the transform mechanism in the LSQ optimisa-

tion that related the position coordinates of all the joints for given angle vectors,

x = f(θ), while inverse kinematics finds the angle joint vector, θ = f−1(x) that

satisfies the unique joint space configuration x. Direct kinematics describes the re-

lationship between the end effector velocity and joint velocities by ẊEE = J θ̇.

The IK models that follow involve the computation of the joint angle vectors for a

given end effector velocity ẊEE. It may be desirable to reduce the kinetic energy

of the EE and it will be shown that a cost function can be designed to optimise a

specified criterion for a specific joint. Additionally, some of the models below can

be adapted to minimise torque or energy. The results obtained previously (but not

included here) show that the kinetic energies dominate the spine-front leg (SFL)

system and show the greatest variation (compared to the potential energy) and be-

cause of this it forms the focus for many energy considerations.

2.6. Inverse Kinematics (IK) Methods 21

2.6.1 Least Norm Solution

The least norm (LN) method forms the basis of inverse kinematic theory but it is not

practically feasible due to singularities almost certainly being present in computing

the inverse of the Jacobian, J (and the fact that it is usually non-square) of the

end effector position vector. The direct method or least norm solution relates the

EE velocity rates in Cartesian coordinates and the angular joint velocity rates as

follows:

θ̇ = J−1ẊEE. (2.12)

Critically, this is valid provided the numerical sampling intervals are small or the

EE velocities are low. Singular configurations or relatively local solutions that may

not be globally acceptable can occur. This is the basic format for the minimum

or least norm solution for the kinematics equations that follow. The Jacobian is a

m× n matrix, and for a redundant manipulator m < n. Thus there are an infinite

number of joint velocity solutions for a given end effector velocity, with n the joint

space dimension and m the size of the Cartesian space containing the EEs position

coordinates (number of normal constraints).

2.6.2 Gradient Projection

Evaluating the value of the inverse of the Jacobian and its usually singular condition

and low rank require alternative formulations. The gradient projection (GP) method

utilizes the formulation for the pseudoinverse of a matrix involving only the matrix

and its transpose, JT , with no inverse matrix computations. It is therefore composed

of a minimum norm solution and a homogeneous linear equation solution as follows:

θ̇ = J+ẊEE + k [I − J+J] g. (2.13)

If the cost function g is optimised according to selected joint speeds it may have the

form g = δ(θ)2, and [14] specifies it as a fixed constant vector representing any self-

motion speed (i.e. angular velocity) and this is also done in [51] where it is a vector

of link angle changes. The constant k is another constant scalar model parameter.

22 Chapter 2. Theoretical Fundamentals

2.6.3 Weighted Least Norm

A set of transform relations are defined that give weighted values for each of the

elements in the LN solution. By using these together with the definition of the

pseudoinverse formulation, the WLN solution is given as:

θ̇ = W−1JT
[
JW−1JT

]
ẊEE. (2.14)

The matrix W is symmetric and positive definite with weighting variables that need

to be determined, but for simplicity it is usually a diagonal matrix [14]. If the

dimension of the joint configuration space is n then W ∈ ℜn×n and the diagonal

elements will be w1, ..., wn.

2.6.4 Extended Jacobian

The extended Jacobian (EJ) method makes use of a sophisticated nullspace method

where a local minimum of an explicitly defined cost function is tracked as a secondary

task. The function g = g(θ) is any position variable based cost function that

needs to be optimized according to a specific design criterion, and it can be the

relative motion speeds (it was used to minimise the knee and angle joint velocities

for the quadruped in [14]) of specific joints, or an energy or torque function or even

constraints relating to obstacle avoidance. It needs to be minimised with respect to

θ in the nullspace of the Jacobian of the position vector. By extracting the basis

vectors for this projection, a matrix

G(θ) =
∂g

∂θ
NJ (2.15)

is generated with (n − m) number of rows. By appending ∂G
∂θ

under ∂F
∂θ

with J =

F (θ) the extended Jacobian matrix Je is formed. The angle velocity vector is then

given by

θ̇ = Je

[
ẊEE

O

]
. (2.16)

2.6. Inverse Kinematics (IK) Methods 23

It is imperative that Je maintains full rank (i.e. rank equal to m) during the itera-

tion since its nullity (number of basis vectors) is fixed according to the rank-nullity

theorem: n = rank(J)+nullity(J). The nullity of J is simply the dimension of the

kernel of J which is given by {x ∈ Kn|Lx = 0} with the vector x lying in the row

space of J , and L a linear mapping. The EJ algorithm is a pseudoinverse method

with an explicit optimisation criterion; optimisation is in the nullspace of the Jaco-

bian using a kinematic cost function g(θ) =
∑

(θi−θio)
2 for all links for example. If

the quadruped’s end effector is positioned at XEE then g is fully optimised and G(θ)

is mapped to O. Certain formulations [52] include a scalar α coefficient prefixing

the generic J−1ẊEE least norm term in all the models and this was included in some

of the optimisations. This method is just a pseudoinverse operation with an explicit

optimisation criterion g(θ) that is performed in the nullspace of J .

The optimisation function is an augmenting kinematics map that, in combination

with the kinematics, becomes a local diffeomorphism (isomorphism of smooth man-

ifolds) of the augmented task space and the specific choice of the augmentation

depends on the optimal approximation of the pseudoinverse. Work done by [7] pro-

poses a novel formulation of the approximation problem, where a singularity-free

region of jointspace is created and the augmenting mapping g = g(q) is harmonic,

where q is a vector of generalised coordinates. The aim now is to find g from a

family of harmonic functions that minimises an error (details in [7]). These have

the general solution form ga,b(q) = q2(aq1 + b)
√
1 + q21, for any adjacent links with

relative angles for some constants a and b.

Scale factor α: All the models need parameterisation and [50],[51] mention the

use of a scaling factor applied to all angular vector computations. This parameter α

may be determined online. In describing the Jacobian transpose method in [15], the

transpose of the Jacobian,JT , is used instead of its inverse together with a scalar

scaling factor α to determine the angular rates vector equal to

θ̇ = αJT ẊEE. (2.17)

24 Chapter 2. Theoretical Fundamentals

This is also applied to all of the inverse kinematics models in [63] and this was found

to be a requirement in the application of the models for better performance.

The transpose and inverse operators are not the same but the use of the transpose

is justified in terms of virtual forces if α is defined appropriately. A guide to the

choice of α is proposed by choosing it such that the change in the position of the EE

is exactly αJJT ẊEE. This involves computing the normalised Euclidean distances

between the computed velocity vector and the quantity αJJT ẊEE which gives

α =
∥ẊEE∥∥JJT ẊEE∥

∥JJT ẊEE∥2
. (2.18)

This was used to gauge the value of the α value required for a specific application

using a specific inverse kinematics method.

2.6.5 Damped Least Squares

The damped least squares (DLS) method (also known as the Levenberg-Marquardt

method) bypasses computation of the inverse or pseudoinverse in solving for the

minimum θ̇ that satisfies the steepest descent and instead it determines the solution

vector for θ̇ that minimises the quantity ∥J θ̇ − ẊEE∥2 + λ2∥θ̇∥2 . The correspond-

ing normal equation can be rewritten that includes the kinematics variables together

with the matrix
[
JTJ + λ2I

]
which is guaranteed to be non-singular and thus en-

suring the algorithm’s numerical stability. Since JTJ is a square n × n matrix, it

can be shown that

θ̇ = JT
[
JJT + 2I

]−1
ẊEE. (2.19)

It should be noted that the damping constant does affect the stability of the compu-

tation; the parameter λ must be large enough so that the solutions near singularities

are stable but as the factor increases the convergence rate may be too slow. It will

be shown later that optimal parameter values vary (within a relatively narrow band

here) and a more accurate and robust way may be to use a dynamically varying

parameter as proposed by [63].

A variation on the DLS method is the selectively damped least squares (SDLS)

method where numeric filtering is selectively applied to all singular vectors of the

2.7. Inverse Kinematics for Trajectory Generation 25

Jacobian and where the damping (accordingly applied to the inverse proportionate

amount to the range of motion that is appropriate) is defined in terms of a difficulty

rating in reaching the target [65]. The damping factor here is adjusted manually

and it is increased until unwanted oscillations were eliminated but at the expense of

accuracy in tracking the target positions.

2.7 Inverse Kinematics for Trajectory Generation

Problems with inverse kinematics methods are that they may have multiple or in-

finitely many solutions, no solutions or no closed form (i.e. analytical or algebraic)

solutions, the latter being applicable if the number of constraints is equal to the

number of degrees of freedom. The inverse kinematics methods discussed here de-

termine the joint positions of a mechanism for a given absolute position of the end

effector by solving θ = f−1(x), as opposed to an analytical solution (applicable when

the number of degrees of freedom is equal to the number of unknowns), where an

approximated change of the position of the end effector that corresponds to a joint

angle change is given by a column of the Jacobian matrix.

J(θ) =
∂f

∂θ
. (2.20)

Since the Jacobian is a linear approximation of a function in the vicinity of a point

(see equation 2.20), provided that the function is differentiable the approximate

changes in angle variables required for the end effector position XEE of a mechanism

for very small time intervals are

∆θ = J(θ)−1∆XEE. (2.21)

If Xt is the target position of the end effector and X is its current position then

∆XEE = Xt − X. If the Jacobian is about to lose full row rank or if the target

position is out of range then movements will be irregular and jerky.

26 Chapter 2. Theoretical Fundamentals

2.8 Overview

Introductory notes on deep learning and the use of DeepLabCut in returning the

estimated user defined markers are given firstly. Next, the derivation of the virtual

camera model is derived from basic geometry and includes the parameters that

model the physical characteristics and operation of the camera. The theory on

polar transforms allows an understanding of how the vector fields are projected onto

different axes. This concludes the background theory for the tools that are used to

obtain and interpret the relevant data.

The basic mathematical operation of the least squares optimiser is presented next.

A detailed account of how the solution vector is determined in hyperspace by way of

a simple two parameter model illustrates the mechanics of the optimisation process.

Lastly, the theory of inverse kinematics introduces the various methods (and their

parameters) that are used in determining the angular rates vectors for the quadruped

links and the way in which they are able to generate end effector trajectories.

Chapter 3

Systems and Metric Definitions

This chapter defines the link arrangement and joints of the quadruped mechanism

as well as the local and global quadruped coordinate systems. The local camera

coordinate system and its relation to the local system of the robot is also shown.

Pertinent aspects of phase states and their trajectories are also discussed. The de-

gree of closure metric (formulated by the author), useful as a quantitative measure

for expected closed loop trajectories, is also defined.

3.1 Configuration Definition

The number of degrees of freedom of the entire mechanism is given by the Chebychev-

Grübler-Kutzbach criterion (also known as Grübler’s formula) depending on the type

and number of joints, whether the links move in a planar or spatial field and the

number of links that constitute the mechanism. If N is the number of links and J

the number of joints then Grübler’s formula is given by

NDoF = m(N − 1− J) +
J∑

i=1

fi, (3.1)

where fi is the number of freedoms provided by joint i (or the number of axes as-

sociated with joint i). For spatial links m = 6 and m = 3 for planar links. If ci

27

28 Chapter 3. Systems and Metric Definitions

Figure 11: Universal (U) and spherical (S) joints. All joints for the quadruped serial
link mechanism are based on universal joints. If spherical joints were to be used an
additional rotational axis would be introduced allowing the links to twist relative to
their parent links.

is the number of constraints provided by joint i then m = fi + ci can be used as a

check, although for planar mechanisms ci can be difficult to ascertain. For a rotary

or revolute (R) joint ci = 5 and fi = 1, for Hooke’s universal (U) joint ci = 4 and

fi = 2 and for a spherical (or ball socket) (S) joint ci = 3 and fi = 3, assuming

all link bodies are spatial. It should also be pointed out that if the mechanism is

permanently fixed to a ground contact then this will affect the value of N . For each

serial system that has one or both ends in ground contact, N increases by one.

According to the Chebychev-Grübler-Kutzbach criterion, the fixed mechanism shown

in Figure 12 will have 20 Degrees of Freedom (DOF) since all links are spatial as

opposed to planar. The spine-front-leg system, that creates the EE path within the

local robot system, has DOF = 10 according to Grübler’s formula, with m = 6,

N = 6, J = 5, fi = 2 and with the fixed reference joint effectively being pinned to

ground, hence the additional value for N . Once again this manipulator operating

in a three-dimensional workspace is redundant by 4 DOF.

DiegoSan is a pneumatic humanoid robot with the number of DOF equal to 44 and

it makes use of air pressure to simulate muscle activations with a relatively long

time constant of about 80ms. By using a well parameterised model and reference

trajectories, its proportional derivative (PD) controller ensures that the EE paths,

speeds, stability and so on are acceptable thanks to the damped dynamics generated

in this way. The primary motion plane is the sagittal plane and the optimisation

is largely guided here with the transverse plane containing the depth coordinates.

Also of interest is the frontal plane where limb deviations out of the sagittal plane

3.1. Configuration Definition 29

Figure 12: The quadruped 8-link configuration that represents the animal subject’s
locomotion generating limbs and appendages. Translational motion is directed from
left to right with the reference joint J#0 at the junction of link r5 (spine) and r6
(back leg) of the mechanism. All angles are measured relative to their parent link
with θ9 being measured relative to a horizontal reference line, the U axis of the local
robot system the origin of which is the reference joint.

can be seen directly, and this is helpful in visualising the motion particularly during

the deceleration phase. The twist angle γ of each link is excluded in the modeling of

Figure 13: All the descriptor planes that relate the local link motion of the
quadruped with respect to the reference joint (J#0). The three planes are the
sagittal (UV) side, transverse (UW) top elevation and frontal (VW) planes. The
permitted angle rotations θ and ϕ are shown in their operational planes. Link twist
angles γ are all assumed zero for simplicity.

the quadruped. Each link angle is defined according to a relative joint angle system

30 Chapter 3. Systems and Metric Definitions

Figure 14: The canonical local robot (UVW) coordinate system showing the angle
definitions in their respective planes for link rLi. The origin of the UVW frame is
the reference joint. Link twist angles are not modeled so γ is zero for all links.

based on a reference provided by its parent link and in this way it complements the

theoretical aspects that operate. Firstly, this assists in iterative applications where

angular rates are consistently defined and comparable and secondly it complements

the inverse kinematics formulations since the solutions are obtained numerically such

as with [14]. An infinite number of angular rate joint vectors exist for a specified

end effector velocity in Cartesian coordinates for a redundant manipulator; in other

words, when the number of angle variables is less than the dimension of the task

space of the mechanism.

3.2 Coordinate Systems

The camera or observer’s coordinate axis system is related in its relative position

and orientation to that of the local robot system by the rotation and translation

camera extrinsic variables R and t. In order for the optimisation process to work,

it must perform operations using variables that uniquely define the reality of the

relative positions and orientations of the two systems. Each configuration thus has

the spine link fixed to the reference joint coinciding with the U axis; θ9 and ϕ9 are

3.3. Transforms 31

Figure 15: The camera and local robot coordinate systems. The camera rotations
about each of the XY Z axes are ξ, ψ and ζ respectively. The first spine link
coincides with the U axis of the local robot system frame and its origin equates to
the reference joint.

therefore fixed at zero. The 3D coordinates of the reference joint are variables that

need to be solved for, instead of tx, ty and tz, and over the full sequence will provide

a trace in space of its position. The camera rotation variables are to be solved for

and essentially provide the relative orientation. The R matrix components are to

be solved for and the t translation vector is fixed at zero. It is assumed that the

robot comprises Hooke universal (U) joints so it is modeled as an 8U -serial open

chain mechanism. Only the three dimensional position coordinates are of interest

here with the simplification that the links themselves are not able to twist (γ=0)

which would require a spherical (S) joint system. A high speed quadruped is being

considered here as opposed to a highly dextrous surgical manipulator and hence this

simplification is deemed reasonable.

3.3 Transforms

Once the coordinate systems have been translated the rotations are applied. For a

given angle rotation about an axis a rotation transform matrix can be generated that

effects this orientation in the context of the virtual camera model. The structure of

32 Chapter 3. Systems and Metric Definitions

this matrix can be derived using polar transform theory. Since the Jacobian matrix

describes the amount of local warping, it can also be employed to derive the rotation

transform provided the component functions are described appropriately. Another

way is by considering the eigenvalue representation for a system undergoing a purely

rotational transform. By taking note of which transform direction (polar to Carte-

sian or vice-versa) is applicable for each respective rotation the matrices are derived.

3.4 Phase States

The whole question of the state of a system, whether it be a navigation problem

or the values of the variables that define the position and dynamics of a robot

for instance, all contain random variables that are uncertain and non exact. In

formulating a description of a system one seeks a definition that includes independent

variables that uniquely and simply define the system. The motion of a simple

pendulum for instance can be uniquely described by a generalised coordinate such

as the angle θ that it makes with respect to a reference line with the state of the

system being described by its position in the phase state space, in this case the

coordinates θ and θ̇. The trajectory trace is called the phase portrait or phase state

diagram and they form a critical analysis tool in non-linear systems theory where

additional information such as stability and theoretical orbital paths may be studied

or simulated.

In the present context the configuration state of the quadruped is defined in terms

of its generalised coordinates θ and ϕ, so a full graphical representation of its state

will be the state space trajectories of all its joint angles in each of the two phase

spaces.

3.5 Degree of Closure (DOC) for a Trajectory

A useful metric to quantify the degree to which a phase space trajectory in a partic-

ular space is closed is the final separation distance between the start and final points

of the trajectory given by Dsf as shown below for an arbitrary path. This is a good

3.5. Degree of Closure (DOC) for a Trajectory 33

Figure 16: Illustrative phase state diagrams for the double pendulum model with
the associated vector fields (shown as the cyan coloured arrows). The generalised
coordinates of the position of the top and lower point masses are θ1 and θ2 respec-
tively. Investigations were done using this model to provide simulated data for a
two link serial planar mechanism, however this work did not fall within the scope of
this project.

indicator of performance if the relative trajectories being considered have varying

ranges and/or profiles. For comparisons between models, the percentage difference

Figure 17: The diagram describing the parameter Dsf metric for state trajectory
closure. Y 1 relates angular rates for the given angle domain X1 for the state space
of a particular variable. The distance between the start (circle) and end (square)
points indicates the degree of closure of an orbital path.

34 Chapter 3. Systems and Metric Definitions

of the error in respect to the variable’s maximum ranges, max{Dsf}, given by

DsfERR =
Dsf

max{Dsf}
, (3.2)

can also be considered. The comparative metric used to assess the performance of

the inverse kinematic models is the degree of closure as a percentage:

DOC = 100

(
1− Dsf

max{Dsf}

)
. (3.3)

If the start and end points of a trajectory are identical then DOC = 100% and there

is full closure while D0C = 0 will mean that these points are maximally separated.

Chapter 4

Methodology

In order to solve the problems at hand, a logical flow from the raw video data

to the estimated poses and outputs for tracking are implemented. A flow chart

that chronicles the steps involved shows the proposed integrated solution system in

addition to the theoretical concepts required. The generation of a robustly trained

convolutional neural network that is able to provide pose estimates in the form of

image data of the animal subject is the first step. The theoretical functionality of

the optimisation process is built around a structured set of assumptions regarding

the morphology and dynamic constraints of the quadruped. The parameterised

kinematics models then use the end effector trajectory coordinates to deliver an

angular rate vector for each configuration instance and for the entire time sequence.

Kinematics is concerned with the linear and rotational variables that quantify the

geometry of motion and its derivatives of a system. Specifically, inverse kinematics

computes the joint angles to produce desired end effector trajectories, and so giving

the motion plan of a robot.

Relative link angles were used and all motion was relative to a single reference joint,

since the aim here is to investigate the kinematics and generate joint trajectories

within a local coordinate system. Any global tracking would include a moving

reference point since the idea of a static viewpoint and a dynamic system target

would necessitate this. On the other hand, the kinetic variables, such as the mass of

35

36 Chapter 4. Methodology

the links, momenta, reaction forces and applied torques, produce those trajectories.

4.1 Data Acquisition

The use of single imaging sensors is a powerful tool for acquiring sensor data since it

is remote, unobtrusive and a system configuration can be acquired. A trained CNN

outputs its marker estimates of the quadruped in the pixelated 2D image plane

and this data is then offered as the primary input to the least squares optimisation

solver. Additional input data for the solver are the expected link proportions, 3D

path traces of the reference joint and the nominal selected camera angles as well

as the expected angular rate maxima and approximate angle ranges for specific

links. The end effector path as estimated by the optimiser then becomes the target

trajectory for the inverse kinematics models.

An optimisation algorithm was executed in order to resolve all of the angles in

3D and thus acquire an accurate kinematic solution for a sequence of quadruped

configurations. For motion analysis, the subject is modeled as a reduced 8-link

universal joint mechanism (see Figure 12) representing the key appendages of the

subject.

Machine learning: Machine learning in the form of a CNN and using DeepLabCut

(DLC) [38] ResNet50 and a Graphical Processing Unit (GPU) (Nvidia GTX-1080i)

processor on a Linux based machine was used for markerless tracking of strategic

points. The network was trained and unseen video image sequences were used for

data generation of the subject under various gait modes, including nominal trot,

high acceleration and deceleration modes. The result is a network that will be

used to estimate the image points of all the markers on the accelerating subject

which is then passed onto the optimising algorithm for the extraction of all spatial

configuration poses. The structure of the trained CNN is identical to that described

in Section 2.2 by Chen [48].

4.2. Objective Vector Functions for the Optimiser 37

4.2 Objective Vector Functions for the Optimiser

The non-linear LSQ approximation was used for the optimisation. All vector func-

tions are non-linear and they collectively reflect the statics and dynamics of the

system. In addition to static configuration resolution (image and angle ranges),

the vector functions also had to reflect the limits of dynamic motion. The primary

motion plane is in the UV plane, in which θ is defined (see Figure 13), and to-

gether with the transverse plane angle variable ϕ and all the link length variables,

completes the descriptor variables for the spatial locomotion system. As is to be

expected, θ will show the maximum values and ranges and constraints relating to

this parameter are critical to the LSQ computation. Of secondary importance is

motion that deviates from the sagittal plane of the subject and ϕ is assumed to

lie in a fairly narrow band for non-accelerating scenarios with marginal increases

expected for the accelerating case. The links were assumed rigid and were all scaled

according to a single variable base link with length r according to anatomical data

and relative lengths from the actual video images. Vector fields generated by all the

joints provide insight into the relative motion of the joints and links, so a vector

with origin at a specific joint and at the start of a time interval determines the joint

position after a time interval. Since the links are all of different lengths, angular and

tangential velocity components need to fall within limits, which are determined by

the maximum changes of the (relative) angles and their corresponding link lengths.

Polar transforms were used to project variables onto a reference frame determined

by the parent link where all trajectories were locally circular, since link lengths are

assumed rigid. Visco-elastic links would model the system better, but increase the

complexity. Approximate actual angles were extracted visually and roughly mea-

sured so that realistic expected values for the Levenberg-Marquardt algorithm could

be used, for which it is highly sensitive. The Levenberg-Marquardt algorithm was

used since the system is underdetermined with the number of unknowns greater

than the number of (vector) equations. By ensuring that the initial guesses of all

the variables at the start of the search have been carefully selected and within rea-

sonably close proximity to the optimal solution vector, the algorithm is more likely

38 Chapter 4. Methodology

to converge to the actual solution. The magnitude of the squares of the residuals

at solution is a key indicator of whether the solutions are near optimal. The other

indicators discussed earlier should also be analysed to provide a clearer picture of

the accuracy of the optimisation process.

The main vector function F (x) had the generic form

F (x) =

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

, (4.1)

with components representing each optimisation strategy. The multivariate variable

x is the solution vector that needs to be solved for and it comprises all the angles

and base link length of the quadruped and the coordinates of the reference joint

and camera rotation angles. The LSQ algorithm then searched for parameter values

θ, ϕ and r, to which all other links were referenced, that minimised the square of

difference functions as follows,

min
x

∥F (x)∥22 = min
x

5∑
n=1

fi(x)
2. (4.2)

The optimisation used as actual inputs the virtual image pixel values Λi for each

of the nine joints and for all thirty configurations. This was the main optimisation

strategy which involved the use of a mathematical virtual camera projection model

with intrinsics derived before. The 3D world system points as functions of θ, ϕ and

r were inputs to the camera model and the resulting LSQ image, Γi was optimised

for all the number of configurations given by C, according to:

f1(x) =
C∑
i=1

(Γi − Λi)
2. (4.3)

4.2. Objective Vector Functions for the Optimiser 39

As a further refinement, the optimisation was done over expected angle ranges and

all operating within the [-π,π] range. Each specific joint angle had an expected

range and an expected maximum deviation. The optimisation was done with a

vector function of the form

f2(x) =
C−1∑
i=1

(δi|Θave −Θi| − ϵi)
2. (4.4)

Of course, the depth dimension represented by ϕ also contributes to the accuracy of

the estimates; not taking this into account, would allow the LSQ algorithm to press

into this domain unconstrained and thus follow an incorrect search path:

f3(x) =
C−1∑
i=1

(βi|Φave − Φi| − ρi)
2. (4.5)

Tuning parameters δ and β penalised the search for infringements on the assigned

range for the angles and their allowable tolerances, specified by the vectors ϵ and ρ,

respectively, and subscript ave denotes the average (mean) value.

Derivation of the Polar Vector Velocity: Up to this point, only absolute

changes of a single variable have been resolved. By introducing dynamic model-

ing equations where relative changes are involved, further search constraints are

introduced that keep rates of changes of key parameters in check, and account for

relative increases and decreases in changes of angles. The search is thus steered

in the correct direction within the bounds of a sound theoretical basis. If this key

structural model is not included the search domain is extended beyond reasonable

operating ranges of θ̇. With reference to Figure 8, the magnitude r of the vector r

is derived by using the cosine rule and applied to the isosceles triangle with sides ri,

ri and r and subtended angle variable α = α(t) which gives,

r =
√

2r2i (1− cosα), (4.6)

with only α being a time varying variable. Furthermore, refinement was therefore

done using vector calculus and the generation of vector fields so that a vector r for

a specific angle and joint was generated using polar transformations, and it points

40 Chapter 4. Methodology

from the joint position at the start of a time interval of length T to its position at

the end of the interval. In other words, it subtends the relative angle change and

the linear sector length traversed by the joint so that, by taking the time derivative

of r = r(t), the polar vector velocity magnitude relation is

∥ṙ∥ = ṙ =
ri sinα√

2
√

(1− cosα)
, (4.7)

with α being the relative change between link angles relative to their parent link

during the sample time interval. At the start of a cycle and for a specific joint angle,

a vector field for all of the angles defining a single configuration is generated with θ

and ϕ implicitly defined. Thus the underlying statics and dynamics are accounted

for by incorporating the link lengths, angle and angle rate variables between each

configuration change:

f4(x) =
C−1∑
i=1

(ṙ(Θ)− riΘ̇
2
max)

2. (4.8)

The equivalent formulation in the UW plane using ϕ is then

f5(x) =
C−1∑
i=1

(ṙ(Φ)− riΦ̇
2
max)

2. (4.9)

Subscript max denotes maximum expected value here. The resulting vector had dy-

namic properties with its associated limit (incorporating maximum angular veloc-

ity). With each new configuration, new dynamics that have essentially been driven

by allowable tolerances are computed. The set values of maximum allowable angu-

lar rates are subjective, however, detailed data analysis allows for reasonable limits

for each link. Each joint trajectory had relative motion that was nearly circular

with respect to its parent joint and approximated thus. Obviously, the joint-to-joint

polar vectors would follow along discrete sector lengths that could, for all practical

purposes, be approximated as linear since the sample times were small. A rotation

matrix can be used to map these vectors, expressed in the body-fixed coordinate

frame to a representation in the inertial coordinate frame. Other attitude descrip-

tors include exponential coordinates, quaternions and Euler angles. The main vector

functions that form the objective optimisation function are derived from basic the-

4.2. Objective Vector Functions for the Optimiser 41

ory and whose collective minimisation are theorised to ensure solutions that abide

by the proposed statics and main dynamic constraint conditions of the quadruped.

Comparisons with the quadruped are not easily made under accelerating conditions

since ground contact forces are highly variable in addition to the obvious differences

in physiology. The vector functions are formulated for the LSQ algorithm that re-

flect the basic geometry, physiology and expected dynamics of the quadruped.

Additional parameters that model the deviation from the sagittal plane also serve

to accurately make allowances for this. Estimated link angle data obtained from the

actual video sequences of the animal subject are crucial for accurate optimisation.

Further refinements are required to limit searches within acceptable tolerances that

relate changes in configurations within incremental limits that mimic that of a real

life system in addition to physiological considerations. The control of robots requires

knowledge of all angular velocities and inverse kinematics provides a way of com-

puting these indirectly. The translational motion speed is governed by step lengths

which in turn requires sequential placement of the end effectors. The tracking of the

EE and the required discrete angle values (and thus instantaneous angular rates)

are thus vital for enabling their motion gaits. Usually, for a complex system such as

the quadruped, an Inertial Measurement Unit (IMU) is practically used to monitor

and track the position and velocity of the COM [14], with the inverse kinematics

and the computed applied torques forming an integral part of the control feedback

scheme. For a sample time interval the next position placement of the supporting

legs is required; the high degrees of freedom with their associated high, if not infi-

nite configuration possibilities, means that solving the inverse kinematics problem

is extremely challenging. The level of complexity is increased if other control inputs

such as differential ground contact forces and non-planar 3D leg configurations are

admitted to the solution vector. In addition, for any given cycle between EE ground

contacts, closed joint angle space trajectories corresponding to closed end effector

trajectories need to be generated, which ensure no discontinuities and minimal os-

cillations.

42 Chapter 4. Methodology

4.3 Model Parameters

Optimisation of the kinematics models’ estimated angular rate vectors and those

obtained in the least squares solutions of the configuration angles obtained previously

is hypothesised to return acceptable model parameters.

The data obtained during the optimisation is used as the truth data to parameterise

the inverse kinematics models. Firstly, the optimised angle data is interpolated at

high sampling rates (using a spline cubic function) and together with the estimated

link lengths are used to determine the trajectory of the end effector in the workspace.

The angular rates vector and the EE’s linear velocity components are then computed

and are entered as input data into the least squares optimisation procedure. In this

way the parameters are established for the models as detailed in the schematic in

Figure 18. The flowchart for determining a parameter of an inverse kinematics

model describes graphically how the data vectors are obtained, manipulated and

processed to give the parameter values for the entire sequence. The value of the

scaling parameter α may be determined as discussed in Section 2.6.4.

Figure 18: Flowchart for determining the parameter values for an inverse kinematics
method.

4.4. Motion Constraints 43

4.4 Motion Constraints

Robotic control systems ensure that motion is guided within a set of constraints as

determined by the application involved or environment. A robot is only able to move

within a feasible region defined by the link lengths and the joint limits. If the design

is not robust enough, unacceptable behaviour may also occur due to singularities

in the model such as when a manipulator is fully outstretched. For underpowered

systems the actuations required may not be reachable and smooth manifolds are

preferred since target position errors are more likely to be decreasing continuously

in contrast with an irregular path where the end effector may be moving away from

the target position at times and cause software issues. The latter can be corrected

by introducing equality constraints [51] but this was not a problem in this project

so they were not included in any of the strategies.

4.5 Project Elements and Work Flow

In order to obtain the final results the basic procedure was to train a network

that delivers suitably accurate image data that could be used as input to the least

squares optimiser that was developed. The first step is to use a video sequence to

manually label the requisite joints by way of a GUI, and using the physical markers

fixed to the subject as a guide as to their positions. These labeled images are

then used as the training data for the neural network. The labels are then refined

and re-labeled as required and the network is re-trained. The workflow therefore

progresses from raw video image data that is then processed and used to estimate

markers by way of transfer learning. The optimisation solver then gives predictions

of the 3D configurations and this data is in turn used to obtain parameterised inverse

kinematics models that output the sequential angular velocity vectors for the desired

target end effector trajectory. The end effector’s path is then the target trajectory for

the various inverse kinematics models that in turn produce the actuations required

and the results are then compared with similar outcomes expected. The basic flow

of the project work and the related components are clarified in Figure 19.

44 Chapter 4. Methodology

Figure 19: Flowchart with the design elements, processes, methods and key outputs
of this project. The graphics (i) to (iv) show how the video image of the subject is
used to obtain the input image for the least squares optimiser.

4.6 Related Work

Previous work done by researchers that overlap and parallel the scope of the contents

of this project are mentioned and discussed in this section. It is helpful to consider

similar methodologies and study their results and conclusions which will contribute

to the general insight and understanding of the problems encountered here.

4.6.1 Deep Learning and Pose Estimation

The definitive publication [38] followed for implementing the transfer learning algo-

rithm, DeepLabCut, in extracting the pose estimates of the cheetah proved invalu-

able. The process by which the feature detectors are re-trained so that a network

4.6. Related Work 45

that is iteratively improved upon by way of an active learning circle and that is

ultimately able to robustly and accurately estimate video sequences where there is

large variability in subject poses and lighting was followed. In addition, the video

sequence being analysed was captured by a single camera with minimal occlusions

as specified by the application, with the work done on the Cheetah Project [38] by

Chen and Patel being of particular interest.

The 3D pose estimator developed by Chen [48] also made use of DeeplabCut to

estimate the 2D image poses but differed in that it also made use of a multi-camera

system and the accompanying direct linear transformation coefficients to synthesise

the 3D motion configurations.

Cushway [49] also used a multi-camera system but now included Global Position-

ing System (GPS) receivers and IMU sensors afixed to the animal subject, relaying

all of the signal data to the researcher for capture and processing. An Extended

Kalman Filter was developed that included state vectors for each link and one for

estimating a reference marker, thereby fully describing the positions and motion

dynamics of the quadruped in it’s entirety. Similarly, in tracking the upper body

poses of a human, research done by [46] involved using a hybrid model; monocular

camera images are used as prior distributions that cover the probability of a pose

occurring and when combined with a random walk transition model, ensures that

the states behave as random walks converging towards a set of commonly observed

poses. Since this model demotes divergent poses to less importance it could have

been useful in this project.

4.6.2 Modeling of Legged Robots

The planning and efficient trajectory execution of the end effector position of a legged

robot within a viable target manifold is it’s primary locomotion task. Quadrupeds,

bipedal humanoids, hexapods, industrial manipulator arms and more recently robotic

arms with flexible links require precise optimal trajectory planning and positioning

of their end effectors.

Related publications [14] in this regard involve basic systems modeling (such as

the virtual leg method [14]) and the kinematics modeling of the Baxter robot us-

46 Chapter 4. Methodology

ing Denavit-Hartenberg (DH) notations [66]. High level locomotion sequencing,

lower level joint actuation and control, contact positioning and timing with the en-

vironment and the theory pertaining to inverse kinematics, Jacobians and related

matrix manipulations such as QR decomposition and inversions are also dealt with

in [1],[18],[19],[20],[25],[35],[40],[42],[43]. The inverse kinematics of the quadruped

control method outlined in [14] was particularly relevant in the work that was done

on trajectory planning of the end effector in this project.

4.7 Overview

The essential work flow and methods used are detailed here. The acquisition of the

input image data using DeepLabCut is described followed by a detailed description

and functions of the components of the objective function as well as the derivation of

supplemental equations by the author. The working methods for parameterising the

various kinematics models’ are then given, followed by notes on motion constraints

in general. The following section then attempts to clarify how all of the elements

involved in the project appear within the work flow. Finally, related publications

that were most useful and that supplemented and paralleled part of the work here

are cited.

Chapter 5

Experimental Setup, Data

Acquisition and Implementation

The practical aspects of acquiring the data of the animal subject, training of a

convolutional neural network for pose extraction and the implementation of the

optimisation and inverse kinematics are presented in this chapter.

The main points of the practical work done are as follows:

• Practical Setup: Trajectory paths were obtained using a four legged animal

subject, the cheetah (Acinonyx Jubatus), Africa’s most endangered big cat;

this is the world’s fastest land mammal and it is able to accelerate to over

110km.h−1 (70 miles per hour) in just over three seconds and with a stride

length of seven metres at top speed. Fixed cameras were used to obtain differ-

ent motion sequences of the subject from different angles and for various gaits,

including medium trots which included two repeating gaits in a period of about

a second and over a distance of about 9 metres, as well as an accelerating mo-

tion from standstill over about 13 metres that entailed three gait cycles in just

under a second. Markerless tracking was then done using machine learning by

way of a convolutional neural network from which a sequence of actual image

point configurations were obtained. These were eleven link configurations that

were a simplified geometric representation of the subject.

47

48 Chapter 5. Experimental Setup, Data Acquisition and Implementation

• Vision System: A vision system needs to be developed in conjunction with

transition equations that solve for 3D space coordinates using angle data and

link lengths only. An optimisation algorithm, which will assist in an under-

standing of the dynamics of the system, is required which resolves the robot

configuration generated by the vision system for all of the sequences with that

of the actual configuration data.

All coding is done in Matlab with some of the optimisations duplicated in

Python for verification and confirmation of the basic implementation.

• Image Data: The animal subject had numerous physical joint markers fixed

to its skin, so that reasonably accurate labeling for the CNN network could be

done. The subject would make numerous runs at various gaits and path lines,

including standard uniform trots to highly variable accelerations, decelerations

and orientations, although they were largely across the general local imaging

origin.

• End Effector Data: The inverse kinematics models require the instanta-

neous linear velocities, at high sampling rates, of the end effector. This data

is obtained by using the optimisation solver’s position data and sampling rate,

T = 0.0333s, to find the linear velocity components which are then interpo-

lated using a cubic spline and at ten times the original rate.

5.1 Markerless Pose Extraction using a Deep Neu-

ral Network

A neural network is trained using video data of the subject so that it can be used

to predict the user defined labels on any unseen video. The images are manually

labeled using GUIs, and the network is trained, evaluated, refined and re-trained

if required. The unseen video of the accelerating subject is then submitted to the

network for the image estimates of the labels.

5.1. Markerless Pose Extraction using a Deep Neural Network 49

5.1.1 Network Training

Multiple video sequences of the animal subject were used as training and test video

data for the DLC algorithm. The subject had markers affixed to it to assist in

the manual labeling of the strategic joints identified that would best describe the

motion model. Unlike the human subject, the apparent link lengths were variable in

appearance. The spine was configured as a 2-link system, however, the links behaved

semi-rigidly and more like that of a series of visco-elastic appendages than rigid metal

links. The deformation was more apparent in high acceleration conditions.

The learning network was trained under various gait cycles, lighting conditions and

levels of visibility due to spurious dust clouds, and occlusion due to extreme sagittal

plane deviations and limbs that blocked the line of sight on specific joints [48],[49].

The quadruped was modeled as an ideal 8-link rigid mechanism with variable link

lengths based on a single reference link. The links were therefore in proportion to

each other based on actual anatomical data for the species. A reference joint was

identified and angle measurements were relative to each other or to a reference level

passing through it depending on the angle concerned (see Figure 12). Tracking of

the reference joint would give the motion trajectory in a translational 3D sense and

all link motions would be with respect to this reference joint; thus angle data is all

relative here. If one was to model air resistance for example, account would have

to be taken of the fact that the subject is capable of speeds of almost 120km.h−1

so the actual links experience substantial opposing forces, since the local motion

trajectories still need to be taken into account.

User defined labels of the subject are defined according to existing physical markers

strategically placed on it.

Figure 20: Animal subjects with markers that are physically fixed on strategic joint
positions to facilitate manual image labeling for DeepLabCut CNN training data.

50 Chapter 5. Experimental Setup, Data Acquisition and Implementation

Figure 21: Animal subject with CNN-Resnet50 predicted joint positions by
DeepLabCut and a composite graphic with the 8-link configuration superimposed.

5.1.2 Joint Tracking

Markerless tracking of an animal subject was done based on a transfer learning

algorithm. This entailed using a convolutional neural network that is trained, using

deep learning methods, for a specific task and then applied to a different but related

task using a small supervised data set. A state-of-the-art human pose estimation

algorithm (DeeperCut) was amended for tracking of user defined features using a

relatively small user defined data set of labeled images resulting in DeepLabCut

[38]. This deep learning algorithm is robust for estimating misaligned poses, i.e.

no fixed position within an image frame, and the powerful feature detectors are

able to track points in a variety of lighting and dynamic conditions. It is geared

towards behaviours that are consistently captured by one or multiple cameras but

with minimal occlusion [38]. It is able to robustly extract body points from a

dynamic and cluttered background. In addition, if a feature is lost while tracking

due to occlusion or motion blur for instance, it will be detected when visible again

unlike in some other imaging methods which require consistent tracking across the

video sequence.

5.1.3 Coding

All software is coded in Python Version 3 while the feature detectors are in Ten-

sorFlow. The feature detectors are a powerful tool that enable user-defined body

points to be learned in specific scenarios.

It has several limitations though; it, ideally, requires a GPU since thousands of it-

5.1. Markerless Pose Extraction using a Deep Neural Network 51

erations are required for adequate training (using a Central Processing Unit (CPU)

would take days), the CNN scales with the image pixel size, and occluded points

are not tracked which is problematic in multi-legged tracking with the view point

orthogonal to the largely translational motion. Since the DLC toolbox code is writ-

ten in Python 3 commands are entered through a user defined virtual environment

and on a Python command window. All the relevant libraries need to be installed,

including specific Python packages for graphical user interfaces. Training data is

created, the network is trained and evaluated with optional refinement steps and

re-training should accuracies not be acceptable. The network can be re-trained in

future and used for cross-species applications. A typical training session would make

use of about 150 training images (training videos included a GoPro5 camera directed

into the sun) and terminate after 33000 iterations as the DLC error loss plateaued

at 0.002 with an initial learning rate (determined implicitly by the code) of 0.005

which increased to 0.02 (see Figure 22). Any inaccuracies in the labeled image joint

Figure 22: Learning rate data for a typical network training session showing the
reduction in errors (loss) and the learning rate variation as the number of iterations
progresses.

positions will filter down through the LSQ optimisation code and affect the validity

of the resulting estimated 3D coordinates. The fact that the external fixed labels

on the animals subject’s skin do not exactly represent the musculo-skeletal system

will have consequences as to the reliability of the data produced, particularly in

configuration sequences with irregular and high deformation rates; this was the case

in the deceleration analytics where the optimisation performed sub-optimally.

Output in the form of trajectory plots, the probabilities that the estimated points

52 Chapter 5. Experimental Setup, Data Acquisition and Implementation

are correct and the network predicted labeled image sequences of the unseen subject

is presented.

Video sequences that showed the subjects at close range were favoured over subjects

further away, despite acute viewing angles (either at the start or end sections of a

video). It was also presumed that, besides the difficulties in labeling, the increased

distance would also introduce higher errors in prediction by DLC due to the lower

margins.

The full image size is 1920×1080 pixels but for the purposes of network training

they were cropped to more workable sizes in accordance with [38]. The camera (or

Figure 23: The subject at various orientations and magnification showing the labels
as predicted by the pose estimation algorithm, DeepLabCut, that is based on deep
neural network (specifically CNN) machine learning. The 190×50 pixel blocks are
substantially smaller than the average used in for all three of the quadruped gaits
investigated here. Blocks of this size were avoided, as far as possible, by appropriate
video cropping.

observer’s) coordinate axis system is related in its relative position and orientation

to that of the local robot system by the rotation and translation camera extrinsic

variables. In order for the optimisation process to work it must perform operations

using variables that uniquely define the reality of the relative positions and orien-

5.1. Markerless Pose Extraction using a Deep Neural Network 53

tations of the two systems. Each configuration thus has the spine link affixed to

the reference joint coinciding with the U -axis; θ9 and ϕ9 are therefore fixed at zero.

The coordinates of the reference joint are variables that need to be solved for, in-

stead of tx,ty and tz, and over the full sequence will provide a trace in space of its

position. The camera rotation variables are to be solved for and essentially provide

the relative orientation. The R matrix components are to be solved for and the t

translation vector is fixed at zero.

It is assumed that the quadruped mechanism comprises Hooke universal joints so

it is modeled as an 8U -serial open chain mechanism. According to the Chebychev-

Grübler-Kutzbach criterion it will have 20 DOF since all links are spatial as opposed

to planar and the positions of all the links are all relative to the reference joint. Since

the workspace is 6 DOF this makes this quadruped model a highly redundant mech-

anism. Only the three dimensional position coordinates are of interest here with the

simplification that the links themselves are not able to twist (γ = 0) which would

require a spherical joint system. A high speed quadruped is being considered here

as opposed to a highly dextrous surgical manipulator and hence this simplification

is deemed reasonable.

Once the coordinate systems have been translated the rotations are applied. For

a given angle rotation about an axis a rotation transform matrix can be generated

that effects this orientation in the context of the virtual camera model. The struc-

ture of this matrix can be derived using polar transform theory. Since the Jacobian

describes the amount of local warping it can also be employed to derive the rotation

transform provided the component functions are described appropriately. Another

way is by considering the eigenvalue representation for a system undergoing a purely

rotative transform. By taking note of which transform direction (polar to Cartesian

or vice-versa) is applicable for each respective rotation the matrices are derived. The

full rotation matrix R for the entire three dimensional orientation transform is then

applied after the translation of the origins of the two coordinate systems has been

done.

54 Chapter 5. Experimental Setup, Data Acquisition and Implementation

5.2 Angle Variables

The angle variables describe the orientations of the links and rotations performed by

the camera in tracking the subject as it moves across its field of view. The position

of the quadruped in relation to the camera was discussed in Section 3.2 and the full

configuration was defined in Section 3.1.

5.2.1 Configurations

Each configuration will, firstly, be defined by its relative position and orientation as

discussed above. The actual configuration within its local system is fully described

by θ, ϕ and the link lengths. The first vector function evaluates these variables by

comparing the actual image of the subject and the estimated image. It is apparent

that the second gait (configurations 10 to 19) provides image data where the subject

is at less acute angles than the first and third gait sequences. See Appendix E for

the relations between configuration numbers and gait number.

5.2.2 Camera

The expected behaviour of virtual camera model angle rotation variables were con-

sidered in order to provide estimates for the optimisation solver. The camera ro-

tation angle ξ about the X-axis was expected to be sinusoidal in keeping with the

oscillating motion of the subject and with zero mean, while the remaining Y and Z

rotations, ψ and ζ were expected to have largely non-zero values.

5.3 Link Lengths

The end effector link of the front leg, r4, is the base length for all other links.

This value was originally obtained from the maximum physiological data available

on the subject and set at 0.28m. With numerous code runs, trial and error tests

and lower solver estimates produced the final proportionality and base link length

5.4. Angle Transform Equations 55

values. The links are then calculated using the proportionality relations as follows:

r1 = (1.545 ∗ rlinkL) = 0.313[m]

r2 = (1.273 ∗ rlinkL) = 0.258[m]

r3 = (1.364 ∗ rlinkL) = 0.277[m]

r4 = rlinkL = 0.203[m]

r5 = (2.045 ∗ rlinkL) = 0.415[m]

r6 = (1.364 ∗ rlinkL) = 0.277[m]

r7 = (1.545 ∗ rlinkL) = 0.313[m]

r8 = (1.133 ∗ rlinkL) = 0.230[m]

These relations ensure that there is a certain amount of flexibility for the dimension

estimates by the solver, but still ensuring an underlying implicit model between the

links. The values given here for each link length are, of course, estimates and the

solver should give values close to these.

5.4 Angle Transform Equations

The transform equations that are core to the operation of the optimisation are

derived from simple geometry applied in three dimensions. As an example, refer

to Figure 24 and consider the relative location (u1,v1,w1) of joint #1 to J#0 with

assumed location coordinates at (0, 0, 0) relative to the observer or camera position.

Here the UVW -axis system is shown with all θ angles defined according to the

reference line provided by its prior link and all ϕ (not shown) link angles defined

similarly in the UW plane (see Figure 14 for the definition of ϕ):

u1 = r1 sin θ1 cosϕ1 (5.1)

v1 = r1 sin θ1 (5.2)

w1 = r1 cos θ1 sinϕ1. (5.3)

Similarly for joint #2 located at (u2,v2,w2) in the UVW system:

u2 = u1 + r2 sin(θ1 + θ2) cos(ϕ1 + ϕ2). (5.4)

56 Chapter 5. Experimental Setup, Data Acquisition and Implementation

Figure 24: A sample mechanism showing link lengths, joints and angle definitions
within the UVW local system. The variables here are used to define the 3D joint
positions according to the transform equations.

v2 = v1 + r2 sin(θ1 + θ2) (5.5)

w2 = w1 + r2 cos(θ1 + θ1) sin(ϕ1 + ϕ2). (5.6)

This procedure is extended to all the links of the quadruped and the full transforma-

tion equations are thus derived. These are then used whenever the multi-dimensional

points of the robot are required such as inputs to the camera model or inverse kine-

matics model. If this is applied to the quadruped and considering that the camera

rotation variables are free, all configurations must be tied to the UVW system. Ap-

plied here this means that θ1, ϕ1 and γi (twist angle for link i) are all set to zero

and all other angle measurements are relative to r1.

5.5 Optimisation Strategies

In determining which model strategy to use the idea that each configuration solution

is a separate problem and not directly associated with a previous configuration

solution ensures a measure of robustness since it does not rely on heuristics with their

inherent errors. If one were to use say DH parameterisation where the computed

local axis frame system for a link will affect the outcome of frames further down

the kinematic chain, then any errors will be propagated down to subsequent links.

5.6. Coding the Optimisation 57

The only dependencies are used in peripheral vector functions where limitations on

angle and polar vector rates are imposed. Each configuration will, firstly, be defined

by its relative position and orientation as discussed above. The actual configuration

within its local system is fully described by all the relative link angles in both planes,

θ and ϕ, and the link lengths. The first vector function evaluates these variables by

comparing the actual image of the subject and the estimated image. It is apparent

that the second gait (configurations 10 to 19) provides image data where the subject

is at less acute angles than the first and third gait sequences.

5.6 Coding the Optimisation

The raw data requires processing and formatting into matrix format so that the

non-linear LSQ optimisation can be implemented. The code is written in Matlab

and Python with several supplemental programs and inclusive functions to facilitate

the main code.

Angle data that is processed ensures that all angles are in the range [−π, π] to avoid

discontinuities and the use of the four-quadrant-inverse tangent operator ensures

avoidance of discontinuities for θ ∈ [−π, π]. Once the image data has been obtained

it is checked for missing data, possibly due to occlusions, that was generated by

DLC. The image data matrices are then supplemented by a program written so that

these omitted points can be manually labeled. The link configurations are then

generated in the virtual image plane (thus inverted) so that the approximate config-

uration angle data can be extracted visually or measured on-screen. In the case of

the animal subject, the first and last sets of sequences are generally observed at acute

angles and the mid-set is largely orthogonal and therefore more accurate. Links that

deviate from the main motion plane, such as the arm of a biped/humanoid or a leg

of a quadruped at high acceleration, are problematic; their initial positions will not

be accurately estimated due to the high depth component that is not extractable

through any reverse projection from a monocular camera image. However, since the

quadruped has many links only some, if any, will show noticeable deviations while

the rest will be in-plane and the optimisation will at least have a higher proportion

58 Chapter 5. Experimental Setup, Data Acquisition and Implementation

of correct initial estimates to guide it towards the correct solution vector based on

position constraints only.

The accuracy of the optimisation is also only as good as the accuracy of the input

joint positions in each actual labeled ’truth’ image; any errors here will affect the

LSQ optimisation process and filter through to each coupled variable and function.

The question of setting link lengths fixed or variables is also an important factor. If

the links are fixed then the optimisation is severely constrained and this approach

is, paradoxically, not realistic even if they are in proportion anatomically. Since the

surface reference labels are attached to the skin they do not always reflect the true

positions of the primary locomotion junctions (joints). A compromise arrangement

was done whereby the shortest link and least likely prone to measurement error was

used as a reference link to which all others were assigned in proportion. The lower

link of the front leg was chosen as the base reference link since it is short, rigid and

therefore mostly linear and does not show visco-elastic properties like some of the

longer links like the spinal links.

There is quite a range of link length variations that is simply discernible on a visual

basis for different gaits and indeed within the same video sequence, specifically un-

steady (accelerating) motion. The anatomically correct link lengths are only used

for the initial estimates at the start of the algorithm.

The vector of variables that is to be solved for includes all eight θ (planar) and ϕ

(depth) angles, the 3D coordinates of the reference joint, the base link length and

the six variables relating the camera extrinsic parameters (rotation and translation)

which are all fixed for a single configuration, i.e. for each image. The camera intrin-

sic constants (focal lengths, offsets, skew factor) are determined separately using a

different Matlab calibration program.

The twenty-one variable vector x = [θ6 ,θ7,θ8,θ1,θ2,θ3,θ4,ϕ6,ϕ7,ϕ8,ϕ1,ϕ2,ϕ3,ϕ4, x0, y0,

z0, ξ, ψ, ζ, rLinkL] is to be solved for each configuration. The angles in both the

UV (for θ) and UW (for ϕ) planes, the 3D reference joint, the rotation and transla-

tion camera extrinsics and the base link length need to be resolved on each sample

interval.

Notice that θ9, ϕ9, tx, ty and tz are omitted from the optimisation and are set to

5.6. Coding the Optimisation 59

zero. Although the camera model is designed to focus on a single specific point it is

practically feasible to use the same camera extrinsics for each image even if not all

points are in the same plane. The optimisation effectively resolves depth by way of a

combination of the orthogonal camera translation and the transverse planar angles.

The accuracy of the initial estimates is critical to the performance of the optimisa-

tion. The theoretical basis rests on the first guess solution vector to be in the vicinity

of the actual solution and this is even more so when dealing with highly non-linear

and hyper-dimensional vector spaces. Angle estimates were selected from the [-π,π]

range and were crudely based on those observed from the image data, which gave

some indication of the nominal angle ranges in the sagittal plane. First trial guesses

obtained in this way, together with the expected nominal estimates of the other

14 variables, were presented to the solver. The implicit penalising parameters built

into the objective function ensured that motions were indirectly constrained on each

interval by penalising the solution search if it extended beyond the assigned angle

ranges. An iterative process of refinement then took place using the Matlab output

data and indicators, reprojected images (quantified by the mean error values for the

joint image estimates), the gradients matrix values and mean values of the Jacobian

arrays as performance indicators. (The process is a bit like tweaking the diagonals

in the covariance matrices in state estimation for near optimality).

If the first values optimised are close to the actual solution then subsequent configu-

rations, being related to the previous one will, statistically, be better approximated.

Reasonable limits are also set for deviations from the main motion plane thus setting

practical limits to the depth component of a link.

Since angular velocity data is only available on the second iteration, the code makes

allowances for all subsequent optimisations with the estimated angles based on those

of the second configuration’s apparent layout. This pseudo-actual angle data serves

as a guide to the qualitative motion and serves as a kind of ’simulation’ data which

can be compared with the approximated LSQ data. Also, the additional vector func-

tion relating the limits of angular rates to those that are estimated is only applicable

from the second configuration. The dynamics are now also included as a constraint

in the algorithm. The number of times that the limits are violated are recorded

60 Chapter 5. Experimental Setup, Data Acquisition and Implementation

together with the actual LSQ performance variables such as the values of the lin-

earised matrices (Jacobians), residual (error) norms, the quality of the solution and

so on. Transform equations convert the estimated reference joint coordinates and

the angle data into the relative spatial link configurations in 3D.

The graphical outputs include all of the estimated angle data together with the

corresponding angular velocities and accelerations, the actual and estimated pixel

images of the configurations and the corresponding configurations in the UV plane.

5.7 Inverse Kinematics Modeling

Due to inherent redundancies of a complex link system such as the SFL system the

number of solutions may be infinite which means that an infinite number of joint

velocity vectors exist for an end effector velocity. An analytical (algebraic) solu-

tion is not an option since the number of constraints is not equal to the number

of DOF, although an iterative approach and/or the creation of additional artificial

constraints is an option. The latter procedure was followed in the previous LSQ

optimisations where geometric limits and angular rates were confined to practical

limits of the quadruped. Batch iterative solutions (as opposed to instantaneous so-

lutions) for the inverse kinematics using the resolved motion rate control method,

θ̇ = J−1ẊEE, were applied using the widely used GP, WLN and EJ algorithms and

ensuring that the sample rates were very high (0.0033s, 300Hz), since the Cartesian

velocities were high (of the order of 20m.s−1), and thus ensuring the validity of this

approach.

The basic approach used to determine the parameters of the IK models is to use the

previously obtained angular velocities for the end effector as the truth or target data

vector in a non-linear least squares process where the model data vector is generated

by the respective inverse kinematics model and the parameters are solved for each

of the configurations. Assuming that these returned values all lie within a relatively

narrow band, the averages are taken and a single parameter value is then used for

that specific IK model.

5.8. Overview 61

5.8 Overview

The practical aspects such as marker annotations on the cheetah, training, eval-

uation and refinement steps of the deep learning network are outlined. The pro-

portional link lengths that were used and the angle transform equations used in the

coding are given. Practical coding issues that relate to the least squares optimisation

and inverse kinematics conclude this section.

Chapter 6

Results, Findings and Model

Evaluation

All of the data outputs are presented and an analysis thereof is made. The validity

of the data is investigated using the performance indicators and the quadruped’s

configurations are shown in various planes. The final section presents and discusses

all the results for the inverse kinematics models, including the parameters and the

synthesis of trajectories in the joint and task spaces.

6.1 Image Pose Extraction

The network was retrained and evaluated, with labels being refined. Since the task

here was the analysis of the subject undergoing smooth cyclical movements there

was no question of any erratic and thus sparse behaviour, which would have entailed

the k-means clustering option during the frame extraction process by DeepLabCut.

A uniform extraction algorithm was thus used. The trained network outputs the

estimated pixel values of each estimated marker on the subject for the entire video

sequence being considered. The pixel values as estimated by the network (see Fig-

ures 25 and 26(i)) is used as the input data matrix to the non-linear least squares

optimiser as the truth inputs. Associated with the image estimates is the confidence

in the labels’ correctness as assessed by DeepLabCut (see Figure 26(ii). Each image

62

6.1. Image Pose Extraction 63

Figure 25: The image data points of the unseen video sequence showing the CNN
estimated pixel values of the labels. All labels for the legs, spine and tail are shown.
The subject moves from left to right and a composite plot of these points on the
original images correlates well with the fixed markers.

configuration (particularly the second gait sequence) was studied carefully so that

rough estimates of the primary link angles (θ) could be deduced. This process en-

sured that angle estimates for the optimiser were sufficiently close to the expected

solutions. It should be pointed out that the LVM is particularly sensitive to these

initial estimates being too far off from the actual solution values. The estimated

labels were not perfect initially, but after refinements and re-training this was im-

proved. Parameter settings such as those specifying maximum pixel changes for a

label between images, the initial weights during training and others in the config-

uration and pose program files were tweaked. The subject was video imaged on a

moving platform with the resulting video sequences being used for markerless track-

ing by a CNN and the resulting data being used for a LSQ approximation.

The animal subject had numerous joint markers affixed to it, so that reasonably

accurate labeling for the CNN network could be done. The subject would make

numerous runs at various gaits and path lines, including standard uniform trots

to highly variable accelerations, decelerations and orientations, although they were

64 Chapter 6. Results, Findings and Model Evaluation

Figure 26: The predicted joint trajectory points in the image plane using machine
learning (DeepLabCut) together with the associated probabilities of correct occur-
rence are shown here. The pixel values as a function of the configuration number
(or equivalently time) is shown in (i) and the likelihood or confidence in the labels’
correctness as given by DeepLabCut is shown in (ii).

Figure 27: Original sample images and the predicted image configurations by the
network. During the course of the network training the estimates on unseen im-
ages were not perfect but this was improved upon by re-training, refinements and
parameter adjustments in the configuration files.

largely roughly within the general local imaging plane symmetrical about the origin.

The images were used to train a DLC network and an unseen video sequence was

then labeled, and the resulting video image sequences were used as the actual truth

inputs to the LSQ optimisation from which its global 3D coordinates were estimated

from the predicted angle data. Sample schematics of the estimated markers and the

resulting quadruped mechanism are reprojected onto the respective unseen original

6.2. Least Squares Optimisation 65

video images as shown in Figure 27. See Appendix E for the complete reprojected

image sequences.

6.2 Least Squares Optimisation

For each configuration optimisation a Matlab output of the final solution variables

is shown for the current vector point, with the values being in units of the respec-

tive variables. All angle variables are in radians and the UVW coordinates of the

reference joint and the base link length are in metres (see Figures 13, 14 and 15).

The low values (less than 0.5 radians or approximately 28◦) of all the ϕ variables,

the coordinates of the reference joint (particularly the U -axis components), the low

and qualitative nature of the camera angle values and the base link lengths (rang-

ing from 0.15m to 0.21m) indicate that the solver is at least delivering realistic

outcomes; the accuracies of these require a study of the solver’s outputs and flags

while angular rate and instantaneous tangential velocity calculations of the data

will show its validity. Typical illustrative output data by Matlab shows the main

Figure 28: Typical illustrative output data by Matlab for a single solution point.
The 21 variables comprising the solution vector includes the generalised position
coordinates for all the links, the position coordinates of the reference joint, camera
rotation angles and the base link length.

66 Chapter 6. Results, Findings and Model Evaluation

(θ) angle variables within a [−π, π] band and the secondary (ϕ) angles are mostly

small ([−0.5, 0.5]). The first variable, which defines θ6, has a value of just over 2

radians (114◦) for this example, while the x component (variable number 15) of the

reference joint trajectory is −12m. The base link length (last variable) is at about

0.2m.

Figure 29: Typical Matlab output of selected performance indicators. The solution
vector of 21 variables and the current function values are shown for a specific itera-
tion. With reference to Figure 28, note the small values for the ϕ angle variables.

6.2.1 Output Indicators

The code output graphics and indicators provide information of the optimisation

process which assist in assessing both the accuracy and validity of the output data

of the solver. Typical output graphics of the solver are displayed in Figures 29 and

30.

Number of Iterations: Considering the scale of this problem (in terms of the

number of variables) the number of iterations required to complete the optimisations

for each of the thirty configurations was relatively low. Fitting a simple two variable

exponential function, for instance, only requires 19 iterations and a function count

of 72 using the Levenberg-Marquardt algorithm, while this optimisation needed

between 17 and 160 iterations to solve for all of its 21 variables. See Figure31.

First-Order Optimality: An optimal solution vector will mean that the first-order

6.2. Least Squares Optimisation 67

Figure 30: Typical Matlab output graphics for the total number of function evalua-
tions and the final step size that the solver takes at solution. For this solution point
the solver required 1358 function computations in total and only 30 iterations (coin-
cidentally equal to the number of configurations here). Notice the steep convergence
towards the desired zero line for the final step size taken by the optimiser for the
last iteration. The data shown here is for the solving of the second configuration
and the others were of a similar order of magnitude.

optimality measure will be zero but this is seldom the case for high dimensional

problems. In most cases the optimisation is terminated once the solution is within

Figure 31: The number of iterations and first-order optimalities for all the config-
urations. Low first-order optimality values close to zero are a good indication that
the solutions are near to being optimal.

a certain tolerance value. The solver achieved suitably low values for most of the

configurations. They were mostly around 0.001 with occasional spikes to a maximum

68 Chapter 6. Results, Findings and Model Evaluation

of 0.25. Low optimality values are also indicative of low gradient values of the

objective function. See Figure31.

Damped Least Squares Parameter λ: The initial value of λ may result in slow

progress of the algorithm initially, so it may need to be changed as was found to be

the case here. An initial value of λ = 1000 (up from its default value of 0.01) was

found to improve convergence.

Residuals: The value of a single vector function is simply the residual or error

between its estimate and the input data, or for the general case the residual is the

value of the objective function returned as a vector. For the multi-variate objective

function here, a mean is obtained as a measure of the errors for each iteration and

they ranged from roughly 0.6 to 2.2. See Figure32.

Squared Norm of Residual: The squared norm or 2-norm of the residual at x is

just the sum of the residuals squared i.e.
∑
f(x)2.

Norm of Step: The dimensional distance taken by the solver to its final solution

is the norm of the step (or step size) equivalent to the magnitude of the last search

Figure 32: The mean objective function residuals and final step sizes. The mean
residuals or errors are the average displacements in hyperspace between the esti-
mated vector and solution points. The final step sizes are sufficiently close to zero
and contribute to the validation statements of the solver. Notice the improvement
after the first iteration. From the second iteration angular rates can be computed
and the contributions of the other vector functions are now included in the solution.

direction. These are consistently of the order of 10−3. See Figure32.

Function Evaluations: The total number of function evaluations (function count)

6.2. Least Squares Optimisation 69

Figure 33: The high number of function evaluations due, in part, to the use of
centrally based gradient computations by finite differences.

is high here since the gradient estimates, using finite differences, are centered and it

will therefore take twice as many function evaluations. It is qualitatively identical

to the number of iterations data plot and it is approximately 46 times higher than

the corresponding iteration value. See Figure33.

Exitflags: For all of the instances the magnitude of the search direction was smaller

than the specified tolerance or the change in the residual was less than the tolerances

and a local minimum was possible. If the default value for the maximum number of

iterations is used then 93% (28 out of 30) of the solutions achieve instances where

local minima are possible. By increasing the default value for the maximum number

of function evaluations a 100% success rate was achieved.

6.2.2 Matrix Data in Graphic Form

Jacobian Matrix: The mean values of the Jacobian of the objective function were

taken over the entire sequence with a sparsity of 25% and being non-singular implied

that it was continually differentiable at all the vector points. Since the Jacobian

is the differential of f at x or the linear approximation (point-wise speaking), it

ideally should have all zero elements (sparsity = 100%). The higher the sparsity,

the less computationally expensive the optimisation. Critically, the elements of

the Jacobian coinciding with the angle variables θ and ϕ, are around 50 with only

the camera rotation variables reaching a maximum of about 500. With m = 21 =

number of variables and n = 10 = number of vector functions the Matlab command:

J = sparse(ones(n,m)), checks for an "Out of memory" error and whether there

is sufficient virtual memory. The scale of the optimisation problem is within the

70 Chapter 6. Results, Findings and Model Evaluation

Figure 34: The mean values of all the Jacobian arrays as evaluated by the solver.

Figure 35: The average of the Jacobian matrix element values for only the angle
variables of the quadruped mechanism. Note the smaller values for all the ϕ variables
(variable numbers 8 to 14).

capabilities of the machine being used. All the results are shown in Figures 34 and

35.

Gradients Matrix: The low mean gradient values were mostly small reflecting the

low first-order optimality values as expected. The graphic in Figure 36 reflects this

6.2. Least Squares Optimisation 71

and also highlights the errors the solver returned in estimating the three components

of the reference joint.

Figure 36: The gradients matrix values are linked to the optimality of the optimi-
sation estimates. Low values indicate that the search has effectively ended with all
search directions static at the solution point.

Hessian Matrix: The gradient function is essentially the first derivative of a scalar

function f(x) of several variables and the Jacobian of the gradient function will

effectively give the second derivatives, known as the Hessian matrix, of the original

scalar function. If one was interested in using this data in an application, such as

determining the occurrence of inflexion points, then the Hessian H(x) is computed

by

H(x) = J [∇f(x)]T . (6.1)

The Hessian matrix is not applicable in the current context though.

Image Error Array: A plot of the image error between the actual and estimated

values for the entire video time shows that joint #9 displays a definite exception to

the norm (see Figure 37). The difference between the actual and estimated pixel

images for all of the configurations displays definite error patterns. The x and y pixel

sets for each joint and configuration are grouped to deliver the corresponding errors

visually. The differences between the truth and reprojected image data expressed as

72 Chapter 6. Results, Findings and Model Evaluation

Figure 37: The mean error values for the joint image estimates are shown for all
configurations. Notice the peak for joint #9 (mid-spine joint). The data shown here
is repeated in Figure 38 as a two dimensional image error data matrix with the joint
index numbers corresponding to the joint numbers of the mechanism.

percentages are shown as image errors in Figure 37. If one considers index number

5 (for joint #9), the consistent error is apparent for all configurations (see Figure

38). The correspondences of these matrix graphics and the configuration is made

by way of the lower schematics. The maximum mean error was still only about 15

pixels while the majority hovered around the 5 pixel mark.

6.2.3 Configurations

All of the reprojected image estimates were very close to the actual images with er-

rors that ranged as discussed in Section 6.2.2. For illustrative purposes consider the

composite images of the solver and truth image for a single configuration as shown

in Figure 39. This fact contributes to the notion that the mechanics of the solver

have been correctly theorised and that the results are valid and within reasonable

accuracies. It is apparent that the second gait (configurations 10 to 19) provides

image data where the subject is at less acute angles than the first and third gait

sequences. See Appendix E for the relations between configuration numbers and

gait number.

The estimates for the base link length (in metres) varied between about 0.125 and

0.23 with a mean of 0.175. However, from the video it is presumed that the second

gait sequence would provide the most accurate values, due to the less oblique ob-

6.2. Least Squares Optimisation 73

Figure 38: The mean error image array data above show the differences between the
actual and estimated pixel values for all the robot joints and averaged over the entire
sequence. The schematics define the interpretation of the matrix data according to
the configuration’s joints. Note the peak error for joint #9 (the mid-spine joint) at
joint index #5. The schematic at lower right is a reference for the graphic directly
above it. The errors are specified for a xy pixel pair corresponding to a joint index
number which in turn represents a specific joint number of the mechanism.

servational angles and largely orthogonal plane arrangement between the primary

motion plane of the subject and the line of observation. The mean link length es-

timated for the second gait was 0.203m and this value was used to compute all of

the actual full physical configurations in Cartesian coordinates.

74 Chapter 6. Results, Findings and Model Evaluation

Figure 39: Least squares solver and truth images of a single sample configuration.
All the other configurations also showed very close correlation. See Appendix E.

The camera angle variables about each of theXY Z-axes viz., ξ, ψ and ζ, also showed

the basic behaviour that was expected. The rotation angle variable ξ showed sinu-

soidal trends as it tracked the up and down motion of the reference joint about an

approximately zero mean. The other two variables tracked the subject as it moved

across the field of view and displayed largely non-zero values with an underlying

V-shape. The reprojected images from the estimated 3D poses are an early indica-

tor that confirms that the optimiser is giving sensible results and this is illustrated

in Figure 40 where every sixth estimate is superimposed on the respective video

images. A composite of all these reprojected images onto a pixel plane verifies the

correspondences with the actual image data and this is highlighted in Figures 43 and

44. The estimated image configurations are superimposed on the photographs and

by comparing their corresponding local configuration realisations in the UV (side

view) and UW (top view) planes using the optimised angle and base link length data,

the results certainly confirm the correspondences with the original video, qualita-

tively anyway. The first nine sequences illustrate this in Figure 47. The remaining

variables that were optimised viz., the camera rotation angles and the base link

length, are shown in Figure 41.

6.2. Least Squares Optimisation 75

Figure 40: The photos from the original accelerating cheetah video and the repro-
jected least squares optimisation configuration images are shown for the sequence
at every sixth instance.

6.2.4 Trajectories and Dynamics of Reference Joint

If the rotation variables are set to a constant value of zero the reference joint tra-

jectory is smooth. Once included as variables in the optimisation the trajectory is

more irregular; the solver must now estimate the camera orientations in addition to

the angles and link lengths and the trace of the reference joint.

The shape of the rotation variable about the X-axis shows sinusoidal characteristics

as expected [51]. This variable illustrates the tracking angle of the camera as it

follows the reference joint projected onto the XY plane.

The angle x component variable of R, ξ, shows a definitive (up and down) tracking

curve of the reference joint as while the other two camera variables essentially track

76 Chapter 6. Results, Findings and Model Evaluation

Figure 41: The optimised camera rotation angles and the base link lengths for each
of the 30 configurations.

Figure 42: The progression of the estimated reference joint trajectory (blue) in the
image plane. Note its approximately sinusoidal path of about 3Hz, confirming the
assumed three gait motion of the subject.

the translational motion in the transverse and frontal planes and they show lower

amplitude variations.

If x, y and z are the position coordinates of the reference joint within the global

camera system (refer to Figure 15) and using the reference joint position data,

then the magnitude of the resultant instantaneous velocity and acceleration of the

6.2. Least Squares Optimisation 77

Figure 43: A composite graphic of the estimated reprojected images in pixel coor-
dinates. The estimated 3D poses by the solver are input into the camera model to
give each of the pixelated configurations.

Figure 44: The composite side views of the quadruped for the first gait (left) and
the first two gaits (right) in its local UVW coordinate system. The reference joints
observer coordinates have been included so the origin of the UVW shows the corre-
sponding shift.

reference joint can be determined as follows:

v =
√
ẋ2 + ẏ2 + ż2. (6.2)

a =
√
ẍ2 + ÿ2 + z̈2. (6.3)

The velocity data confirms that the subject is accelerating for at least the main

78 Chapter 6. Results, Findings and Model Evaluation

part of the sequence. The mean velocity of 12.8m/s equates to a distance covered of

about 13 metres for the 0.9667 seconds of video time. The acceleration curve shows a

mean acceleration/deceleration of 6.3m.s−2. At the point where the velocity reaches

a maximum the acceleration begins to show a decreasing trend as it (presumably)

decelerates. The computed velocity and acceleration curves of the reference joint

appear in Figure 45. The subject attains a peak speed of 21m.s−1 from zero in about

Figure 45: The magnitude of the velocity and acceleration of the reference joint. All
three linear motion components were calculated from its position data and inter-
polated and using the higher sample rate the linear velocity and accelerations were
obtained.

0.62 seconds. It is apparent that the subject undergoes a net acceleration which

peaks at about two thirds of the way into the sequence. The acceleration value is

always non-zero implying that its motion speed is largely increasing (accelerating)

or decreasing (decelerating). It is clear from all the image data and the subsequent

configuration plots that there is a definite correspondence between the images and

resulting 3D poses. This is most noticeable when the photos and the absolute UV

plots are compared individually. If the camera rotations were applied back to the

fixed reference spine link (r5) then the actual orientation as seen by the observer

can be resolved.

For clarity, the side and top views of a sample configuration is illustrated in Figure

46 so that subsequent graphics are better understood. A composite time lapsed side

6.2. Least Squares Optimisation 79

Figure 46: Illustrative graphics showing the subject with the estimated image con-
figuration, together with the side view (UV) and top elevation (UW) view plots.

view of all the estimated configuration positions which are colour coded with those

at the start (red) and transitioning to the end (green) as shown in Figure 48. There

appears to be a trend of less restricted motions at high speed as the links extend at

ever increasing angular velocities to maximise the step size. One can also see how

the ground contact points of the front leg migrate back (to the left) and the spine

flexes more to generate the increased power requirements for the acceleration. The

stance phases show clustering of the extremities of both legs that reflect a locomo-

tion regime similar to a curvet gait where the front and back legs of a quadruped

are coupled. In the work done by [64] where optimal trajectories were created that

minimised the energy costs, a curvet gait is created and comparisons may be drawn

with the results obtained here.

Views of the spine confirm this increased flexibility that typifies the arched appear-

ance of the cheetah’s spine during ground contact (stance phase) and the far reaching

extension during the swing phase. The configurations of the back leg (front view)

also confirm that the power generated is increasing, particularly by looking front on.

At slow speeds the back leg is mostly aligned with the sagittal plane and as the speed

is increased the deviation from this plane becomes more pronounced as the linear

and rotational impulses experienced by the leg increase due to the higher momenta

resulting from the increased speeds. The front leg composites as seen from the front

(Figure 50) show a similar pattern with the spine-front leg juncture showing definite

80 Chapter 6. Results, Findings and Model Evaluation

Figure 47: The first gait sequence of nine configurations is represented here. The
photograph and reprojected image composites together with the corresponding con-
figuration plane views are shown.

6.2. Least Squares Optimisation 81

Figure 48: A composite of the full quadruped configurations in the UV plane (side
view) with the reference joint located at (0, 0, 0) in the local system.

vertical displacements (about 10cm) in relation to the reference joint, due to the

sinusoidal trajectory of it within the XY camera plane. There also appears to be

some crossover in-swing of the front leg associated with each fore position of the

spine (Figure 49). A general observation is that both have deviations away from

the sagittal plane, which is a logical consequence of the physiology of the subject,

and which confirms that the least squares optimisation process predicted the correct

Figure 49: The top and front view spine patterns developed over the motion se-
quence.

82 Chapter 6. Results, Findings and Model Evaluation

Figure 50: The front views (looking head-on to the quadruped) show the distribu-
tions of the legs. The back leg, particularly, shows a definite pattern; at high speeds
(shown in green) there is a greater deviation from the sagittal plane, as is to be
expected.

generic directions for these dimensional variables. In the same way that the legs of a

human undergoing acceleration show an increase in their deviation from the sagittal

plane, the upper leg links of the mechanism are directed out and away from the

spine links that lie largely in the UV plane.

The solver produced smooth trajectories when the camera angle variables were all

Figure 51: Estimated reference joint trajectories. At left are the three dimensional
components of the reference joint trajectory, with all camera extrinsics fixed to zero,
in the observers XY Z-coordinate frame. The trajectories at right are the result of
the solver having the camera angles as variables.

fixed and not allowed to rotate while more erratic paths were produced using the

current model where the camera extrinsics were free variables and were allowed to

change. By altering the structure of the solution vector it is possible to bias the

6.3. Vector Fields 83

solution’s accuracy towards the configurations themselves or only the translation

of the quadruped. The graphic shown in Figure 52 illustrates the passage of the

subject through space as determined by the non-linear least squares optimiser using

monocular image data and the estimated trajectory of the reference joint in 3D is

displayed in Figure 51. The full sequence of configurations as given by the solver,

shows the estimated poses of the quadruped mechanism as it traverses through the

observer space. There is a smooth transition every 0.033 seconds between each

configuration and the underlying sinusoidal motion of the mechanism as a whole is

clearly discernible. In addition, the fact that the Y component of the reference joint

gradually decreases is in agreement with the knowledge that the terrain is gently

sloping down from left to right. The observer position is the origin of the camera

XY Z-axis system. Figure 52 also shows that the estimated X component of the

subject is kept reasonably constant at about 4m and this corresponds with the ap-

proximate field estimate. Finally, the first and last configurations are in agreement

with the observations. The front leg is in contact with the ground and it is about

to be accelerated forward to make ground contact again and therefore synthesise

another gait cycle.

6.3 Vector Fields

As noted earlier the vector field of a link may provide important information of its

dynamics simply and immediately. The projected components of the ṙ vector onto

the auxiliary axis system of its preceding link, offer insightful graphic comparatives.

Motions of the links can be quickly assessed in terms of their magnitude, direction

and sequential behaviour. The diagrams in Appendix D show the front leg Vuv

vectors (see Figure 8 for its definition) for the accelerating quadruped. The leg links

showed greater variation in their directional fields, with only the mid-spine link

showing relative uniformity. The vector fields for each of the legs and spine show

approximately three groupings on a qualitative basis. The spine field, for instance,

shows the oscillatory nature of this link with three cycles present. The power gener-

ating (active) back leg appears to have a more uniform field when compared to the

84 Chapter 6. Results, Findings and Model Evaluation

Figure 52: The full configuration sequence of the quadruped mechanism in the
camera frame system with origin (0, 0, 0) represented by the yellow dot. The start
position is at left (red) and it traverses through space until its final position at right
(green) after an estimated distance of 12.8m after 0.9667 seconds. It achieves an
estimated maximum speed of 21m.s−1.

(reactive) front leg.

The average magnitudes of the polar vectors ṙ indicate higher mean values for the

legs than for the spine and the back leg shows considerably higher means than the

other links by some margin. These values are shown in Table 1 and the full results

appear in Appendix D.

Table 1: Mean polar vector magnitudes for the back leg (BL), spine (S) and front
leg (FL) links. The highly mobile back leg shows high mean values in comparison
to the front leg.

Mean magnitudes of the polar vector velocities for all links
sub-system BL BL BL S S FL FL FL
link number #8 #7 #6 #9 #1 #2 #3 #4
|ṙ|[m.s−1] 1.39 1.76 1.82 0 1.12 0.60 1.11 1.26

6.4. Inverse Kinematics 85

6.4 Inverse Kinematics

There are four inverse kinematics models that are considered here and they require

appropriate model parameters or explicit kinematic optimisation criteria (cost func-

tions) for their operation to be acceptable. The 3D Cartesian coordinates of the

end effector of the front leg obtained in the least squares optimisation is, in part,

the target trajectory for the inverse kinematics models that follow. For a given end

Figure 53: The target trajectory for the inverse kinematics models is generated by
the front leg of the quadruped. The early phases of the trajectory are shown as red
and terminate in green.

effector location these models provide the joint angles for this. Furthermore, for a

given closed EE trajectory in task space, corresponding closed joint space trajec-

tories should be generated by the algorithms, the so called repeatability property.

The solutions therefore converge to a limit cycle for cyclical orbits. The IK mod-

els can also be employed to generate a smooth EE trajectory from a given start

position to a final target position. A simple example would be where a serial link

robot arm is required to move from its current position to a target position and

perform a task such as an industrial robot in a car assembly plant or surgical robot.

A controller would require the angular rates or equivalently the changes in joint

angles for each processing interval. Depending on the application, a model may be

86 Chapter 6. Results, Findings and Model Evaluation

selected that offers operation within computationally allowable speeds. A specific

joint is required to operate within a work envelope relative to another joint or at

an optimum torque, for instance. In the EJ method the optimisation function can

be tailored to minimise energy expenditure, joint torque or joint speed [14]. An

optimal cyclic reference trajectory is often required for robots that move at steady

motions. This repeatability can be useful and a target trajectory can be used such

as in [64]. For accelerating robots the target trajectory is usually not cyclical and

each gait will require a different computed online path in real time.

Practical note on coding: The models were coded to work in both 2D and 3D,

however due to technical difficulties involved and long computation times for the

extended Jacobian and gradient projection methods, they were applied to planar

situations only. The fact that spatial trajectories involved θ and ϕ meant that the

variable count was doubled so the formulation of a suitable cost function was par-

ticularly difficult. Computation times were of the order of hours for the EJ method

and a Matlab exception handling error message resulted due to the infeasability of

determing the pseudoinverse matrix in the GP method. The DLS and WLN meth-

ods easily processed 3D data since they were relatively basic algorithms that also

did not involve computation of an inverse or pseudo-inverse Jacobian solution.

6.4.1 Model Parameters

The IK model parameters were obtained as discussed in Section 5.7. These mean

values were simply inserted as constants into the models and the input end effector

velocity (Cartesian system) data was processed to deliver an output depending on

the application. The evaluation of the single parameter λ constant for the damped

least squares method showed irregular values but in a narrow band as shown in Fig-

ure 54. The extended Jacobian method was not so straight forward. The derivation

of a suitable optimisation function was problematic and only by a trial and error

approach were two functions isolated. The EJ method also had a scaling factor α

that could also be computed online (using the formulation discussed earlier) but its

constant (mean) value as discussed in Section 2.6.4 was used for trajectory genera-

tions and tracking problems. Apart from a single spike in the α parameter values,

6.4. Inverse Kinematics 87

Figure 54: Inverse kinematics parameter λ as determined by a non-linear least
squares optimisation for the damped least squares method.

they stay within a narrow range with the data having a mean of 0.643 and standard

deviation of 0.9294. The online computation of the scaling factor α and its effects

were also investigated.

The EJ and GP methods, which entailed determining the pseudoinverse Jacobian,

showed values very near to the parameterised value determined earlier. The param-

eter values for the GP method as determined by the optimiser are shown in Figure

56. In the case of the DLS and WLN methods α lay within a narrow band, with

a higher variation than obtained with the aforementioned methods and with an ac-

companying degradation in joint space performance (see Figure 57). The results of

the parameterisation of these two methods are respectively shown in Figures 54 and

55. The online computation of α (see Figure 58) only showed a marginal improve-

ment when included in the algorithm whereas its inclusion in the other algorithms

generally produced no or slightly better performance in terms of processing times

and convergence rates. The extended Jacobian method stood out as having both

quicker processing times and the fewest number of iterations to reach the target.

The gradient projection method also had very high times to process the variables

and solution vector on each iteration compared to the others, with the DLS taking

many more iterations to reach the target using an online α determined value.

6.4.2 Trajectory Generation for End Effector Tracking

In order to track the end effector a vector of angular rates is determined by the

IK model that will affect this for the entire sequence of configurations. A target

trajectory was set as the outgoing (or first half) sequence of the second gait of the

88 Chapter 6. Results, Findings and Model Evaluation

Figure 55: Inverse kinematics constants as determined by a non-linear least squares
optimisation for the Weighted Least Norm method. The variables that comprise the
diagonals of the weighting matrix W are w1, ..., w10.

quadruped; there is therefore only an outgoing and non-returning trajectory involved

here. The motion may be likened to that of a serial link manipulator arm that is

required to move optimally from a start position to a final target position within its

workspace. The actual LSQ trajectory and that determined by the DLS method in

3D space is shown below where it achieved the 3mm approach distance within a few

hundred iterations. The exponential decrease between the current and target points

was also encountered in [52] where this rapid convergence is ideal. The iteration

times for all of the models were based on the time taken for the angular rates vector

to be computed which were treated as function handles in the Matlab execution

code using a 1.6GHz Intel Celeron CPU. Average iteration times varied between

0.0112ms and 1.191ms with associated standard deviations ranging between 0.0052

and 0.1149. The results for all four methods are shown in Figure 60. In work done

by [65] using a Y -link mechanism comprising 7-links and two end effectors, the it-

eration times varied between 1.1µs to 2.2µs where the DLS and Jacobian transpose

methods were used on a Pentium 2.8GHz machine in C++ code. Only the current

6.4. Inverse Kinematics 89

Figure 56: Inverse kinematics parameters g1, g2, ..., g5 and k, for the gradient pro-
jection method as determined by the non-linear least squares optimisation solver.

Figure 57: The estimated parameter α values for the extended Jacobian method
together with its average of 0.643.

start and end target points are specified together with the orientation of the con-

figuration at the start and the algorithm is expected to output an optimal solution

trajectory. The evolution of the configuration sequences thus progress iteratively

from the start configuration according to the inverse kinematics model. Practically,

the start point is at or close to ground level and the final target point is specified as

the maximum point of extension for a specific gait.

The models were evaluated on their ability to achieve the target point within a

practical finite number of iterations (i.e. feasible time period), final closure dis-

tance, smoothness and length of the trajectory. The minimisation of a cost function

90 Chapter 6. Results, Findings and Model Evaluation

Figure 58: The variation of the scaling factor α as computed online for the GP
and WLN methods. The mean estimated value as determined by the EJ method is
indicated by the dashed line.

Figure 59: The DLS method produced this trajectory (magenta) given a target
point (red). A similar result was obtained with the WLN method. The cyan coloured
trajectory is the actual path taken by the end effector. Notice how the IK determined
path of the end effector is smoother and less oscillatory, particularly in the UV plane,
than the original actual trajectory.

that relates the spatial distance between the current end effector position and its fi-

nal target position was employed throughout the iteration process. The result is that

on each iteration a set of joint angle changes are computed that finally produce a se-

quence of configurations realising a trajectory for the EE within a set of constraints.

Once again the DLS and WLN methods gave similar configuration sequences and

thus end effector trajectories. Termination of the code was programmed to occur

once the generated trajectory was within a 3mm band of the final target point or a

6.4. Inverse Kinematics 91

Figure 60: The iteration times for all of the IK models.

code break would take place at a threshold time or distance value determined on a

case by case basis where there was slow convergence. The rapid convergence by the

end effector to the target point, as computed by the DLS and WLN methods, can be

seen in Figure 61 and the associated configuration sequences for this are illustrated

in Figure 62.

The formulation of a suitable optimisation function for the extended Jacobian method

proved problematic. Various permutations of relative angle rates or kinetic energies

were considered. Only a few enabled solutions that honed in on the target, with the

others resulting in either Jacobian matrices going singular or estimated trajectories

being chaotic, discontinuous and with no convergence to the target point. See Ap-

Figure 61: The rapid convergence to the target is shown by the distance in task
space between the current model estimate and the target. The data shown here was
for the DLS with the WLN method showing a similar trend.

92 Chapter 6. Results, Findings and Model Evaluation

Figure 62: All the configuration sequences and proposed solution trajectories are
similar for the DLS and WLN algorithms.

Table 2: Trajectory generation inverse kinematics data from current to target point.
IK method mean iteration time

[ms]
total CPU time
[s]

no. of iterations ERR
[mm]

DLS 0.063 213.98 765 3.0
WLN 0.063 1733.50 6100 3.0
EJ 1.191 253.56 587 32.7
EJ∗ 2.90 203.13 461 32.7
GP 0.0112 1527.20 264 11.0

∗ α computed online.

pendix B for these.

The optimisation function that was most suitable had the form of the augmenting

harmonic function discussed in Section 2.6.4. An attempt was made to select the

values of the constants a and b around the arbitrary nominal values used in [7]. In

addition to achieving speedy convergence to the target, the other criteria was that

smooth, closed paths were achieved in the configuration space similar or better to

those obtained in the other methods. By choosing appropriate relative angle vari-

ables and constants a and b, convergence to the target was finally achieved within

the specified 3mm band. The values used were a = 1, b = 0 and q = (q1, q2) with

q1 = (θ2 − θ3) and q2 = (θ4 − θ3). The resulting optimal augmenting function is a

harmonic mapping with structure as shown in Figure 63. Far fewer iterations are

required to reach the target than was done with the WLN method, and in addition

the EJ now guarantees that the pseudoinverse Jacobian will maintain full row rank

and therefore no singular configurations will occur in the solution. The usefulness

6.4. Inverse Kinematics 93

Figure 63: The optimal augmenting function that is a harmonic kinematics mapping
for the EJ algorithm. The variables q1 and q2 are relative angles corresponding to
two links.

of the augmenting function in achieving quicker convergence is highlighted in Fig-

ure 64. Total CPU times for the DLS and EJ were quicker by a factor of about 8

compared to the other two methods. See Appendix B for these permutations. The

configurations required for the smooth end effector motion to the target by the EJ

method can be seen in Figure 65. Finally, the gradient projection method gave a

Figure 64: By using a suitable harmonic augmenting function with the extended
Jacobian method, quick convergence to the target is achieved with no singularities.
The computation of α online (ii) results in a faster convergence to the target than
using α = 0.643 constant (i).

trajectory solution with very few iterations (only 264) and a final distance of 11mm

from the target point. The actuation rates were below the average rates for all the

94 Chapter 6. Results, Findings and Model Evaluation

Figure 65: The optimal trajectory produced by the extended Jacobian method. The
optimisation function took the form of a harmonic augmenting function with the
variables being selected relative motion angles. Every hundredth configuration is
shown.

models. The evolution of the links to execute the smooth trace in reaching the target

is shown in Figure 66.

The algorithm that enables the target to be reached smoothly and without disconti-

nuities and with the least energy expenditure in a specified time is the one of choice.

It is clear that for this application the extended Jacobian method appears to give

the better solution, since it reached the target within the fewest number of iterations

and comparably low iteration times.

It is also clear from Figure 59 that the DLS and WLN methods were able to generate

Figure 66: The gradient projection algorithm produced this trajectory in only 264
iterations with each iteration taking on average 0.36 microseconds. Every hundredth
configuration is shown too.

smooth, efficient trajectories in the UW transverse plane, with integral path lengths

6.4. Inverse Kinematics 95

less than the actual path taken. All of the data statistics for the inverse kinemat-

ics methods are summarised in Table 2. Performance indicators include the mean

iteration and total CPU times taken for the computation, the number of iterations

taken to reach the target and the mean error.

6.4.3 Trajectory Closure

Inverse kinematics methods are only practically useful if they are able to lift closed

end effector paths to closed joint angle paths [14] and with minimal oscillations or

induced self-motion (without a change in EE position) in the joint space. A use-

ful metric to quantify the degree to which a phase space trajectory in a particular

space is closed is the final separation distance between the start and final points of

the trajectory given by Dsf (see Figure 17) as shown below for an arbitrary path.

This is a good indicator of performance if the relative trajectories being considered

have varying ranges and/or profiles. For comparisons between models, the percent-

age difference of the error in respect to the variable’s maximum ranges can also

be considered. The degree of closure of an orbit is therefore an informative metric

irrespective of the spatial dimension, so a value of 100 represents a fully closed or-

bit where the start and termination points coincide exactly. This is all detailed in

Section 3.5.

The ability of a model to generate closed joint space trajectories for a closed EE

trajectory is key to its correctness and therefore usefulness, so to test the efficacy of

each IK model the individual joint space trajectories in phase space were computed

for a single gait cycle. The full three gait cycles of the EE, as estimated by least

squares optimisation, shows cyclical tendencies in the orbits with the start and end

positions close together. The least squares results show that the phase states of the

end effector are orbital and converge to a limit cycle with clear evidence of nearly

repeating gaits (see Figure 68). The start of each gait is in the lower right quadrant

with termination points in close proximity. In order to isolate a single repeating gait

it is convenient to select the start/end points which coincide with a ground contact

instance. A study of the previous sequences reveals that this occurs at (i) local x po-

sition minima, (ii) local absolute y position maxima and (iii) primarily the x velocity

96 Chapter 6. Results, Findings and Model Evaluation

Figure 67: The front leg end effector trajectory as estimated by least squares opti-
misation.

Figure 68: The phase states of the joint angle of the end effector link of the front
leg as determined by the solver. Three gait cycles have been isolated here and the
full cycle (lower right) shows convergence to a limit cycle.

component being zero. For each ground contact point all the velocity components

will be zero in theory but for a given interval point this is rarely true due to implicit

model and heuristic data errors. By applying the above criteria several local range

values for the onset and termination of all the gaits were isolated and a set of mean

configuration index numbers were obtained. Three gaits were thus identified as pro-

gressing on the following configuration number intervals [24, 113],[113, 201],[201, 293]

with the second gait (configuration #113 to #201) judged as being the most suit-

able as shown in Figure 69. The complete trajectory of the end effector in 3D space

(see Figure 67) with the initial (red), intermediate (amber) and final (red) motion

6.4. Inverse Kinematics 97

Figure 69: Demarcated boundaries for all three gaits. The second gait is defined as
occurring from the configuration index numbers 113 to 201 based on the position
and velocity data of the end effector.

sequences displayed for convenience. It is clear from Figure 70 and the fact that

the degrees of closure in both dimensions are virtually coincidental that a closed

end effector trajectory has been isolated here. All the joint space trajectories gener-

Figure 70: The nearly closed trajectories of the end effector, in Cartesian coordi-
nates, for the second gait.

ated by all of the IK models show a remarkable similarity on a qualitative level, in

both phase spaces, with the exception of the EJ method, since it is minimising the

shoulder and spine joint velocities. Each algorithm determines the specific values in

phase space uniquely though. There is not full closure in phase space (see Figure

71) of the EE as determined by the LSQ solver but this is partly also due to the

isolated gait orbit not having 100% closure. From all the phase portraits it is clear

98 Chapter 6. Results, Findings and Model Evaluation

Figure 71: The phase states for the primary motion plane of the end effector as
determined by the least squares solver.

that the shoulder joint θ2 achieves a smooth uniform very nearly closed trajectory

except for the EJ method once again where it can be seen to be minimising this

motion; the minimisation of the spine joint is also apparent with almost half of the

trajectory having small angular velocities.

The angle joints θ1 and θ2 show very similar shapes, but with a very different orbit

for θ1 this results in the EJ method delivering a very different end effector trace

compared to the other three methods. It can be broadly stated then that all other

Figure 72: The primary phase states for all the joints as determined by the damped
least squares (left set) and the extended Jacobian (right set) methods.

joint spaces achieve near closure and this also applies to the ϕ joint phase spaces.

See Figures 72 and 73 as well as Appendix A for all of the phase state plots. Tables

3 and 4 summarises the trajectory closure results. The Matlab coded performance

indicators, such as the average iteration computation time and total CPU time, are

6.4. Inverse Kinematics 99

Figure 73: The effects of computing the scaling factor online and applying it to the
angular rates vector shows similar to a very slight degradation in performance (ii)
with slightly less smooth trajectories and nominal to increased DOCs when using
the WLN method.

Table 3: Trajectory closure percentages in θ joint space for all the inverse kinematic
models in the UV plane.

Trajectory closure percentages: θ phase space
IK method joint: θ1 joint: θ2 joint: θ3 joint: θ4
DLS 90.04 81.97 77.53 71.11
WLN 91.87 85.37 81.90 75.79
EJ 70.67 85.51 86.13 94.12
GP 89.69 81.96 78.91 72.22

Table 4: Trajectory closure percentages in ϕ joint space for all the inverse kinematic
models in the UW plane.

Trajectory closure percentages: ϕ phase space
IK method joint: ϕ1 joint: ϕ2 joint: ϕ3 joint: ϕ4

DLS 65.64 56.35 57.97 51.34
WLN 65.25 51.99 52.69 57.11

shown in Table 5. Average closure percentages ranged from about 77% to 83% for

Table 5: Performance indicators of all the inverse kinematic models for trajectory
closure in the UV plane.

Trajectory Closure Performance Indicators
IK method mean iteration time

[µs]
total CPU time
[s]

no. of iterations

DLS 0.71 32.4 88
WLN 0.71 44.6 88
EJ 2.1 122.6 88
GP 2.1 809.6 88

100 Chapter 6. Results, Findings and Model Evaluation

all joints and models, with the EJ method showing relatively low closures of 61%

and 62% for the cost function variables θ1 and θ2 but recording the highest degree of

closure value of 94% (for θ4) out of all the models. Single iteration times varied from

0.71 to 2.1 microseconds with total program run times for all 88 iterations from 0.5 to

14 minutes. In cases where the inverse Jacobian is evaluated, such as the GP and EJ,

computation times are substantially slower with the evaluation of the pseudoinverse

for 3D points drawing a Matlab exception error. Issues with computer memory were

encountered where lengthy equations involving symbolic variables were encountered,

however clearing these variables at specific lines within the code solved this problem.

Chapter 7

Conclusions

7.1 Image Extraction by a Trained Network

A sufficiently well trained network was developed to produce the predicted image

data for the defined markers on the animal subject. The reprojected image data on

the original images confirmed that the optimiser was delivering sensible data and

was one key output for validation purposes.

7.2 Configuration Optimisation

The accuracy of the optimisation results can be validated by studying the software

code indicators, Jacobian arrays, gradients matrix, the mean error values for the joint

image estimates and the output data (reprojected images, computed configuration

poses, etc).

7.2.1 Basic Data and Code Indicators

The actual and predicted image data illustrate that the reprojected data is cred-

ible and that the basic mechanics of the functions and sub-systems of the model

are working correctly. The generally very low ϕ angles, reference joint predictions

and realistic link length estimate values were in broad agreement with the expected

101

102 Chapter 7. Conclusions

values. The collective output of the Matlab indicators viz., number of iterations,

first-order optimality values, residuals, norm of the step, function count and exit-

flags, that was returned by the optimisation process, showed that the solution vector

was close to being optimal. The low gradient matrix values and low mean residuals

provide further evidence that the results are acceptably accurate and valid. The final

step sizes, at solution, show that the search for a solution has reached termination

and it also clearly shows that the operational improvements of the solver increase

after the second iteration when the full functionality of the objective function is

utilised with the effects of angular rates included. The high function values are a

result of the many dimensions of the objective function and the fact that gradients

were computed centrally by finite differences during the solution process. Due to

the complexity of the quadruped system and the associated objective function, it is

difficult to conclude with absolute certainty that the results are totally accurate.

7.2.2 Vector Fields

The vector field profiles illustrated the qualitative behaviour of the links that were

deemed to be reasonably representative and in line with expectations.

7.2.3 Configuration Plots

The three dimensional pose configurations that were produced showed that all mo-

tions appeared to correspond to the expected local and global motion regimes. Cor-

respondences with the video images themselves and the analysis of the legs and spine

in the different motion planes further validated the output of the solver. The ve-

locity and acceleration data that was extracted for the motion of the reference joint

reflected trends with direct observations of the subject undergoing acceleration.

7.3. Inverse Kinematics 103

7.3 Inverse Kinematics

7.3.1 Parameters

In deriving the parameter constants for the inverse kinematics models, it was found

that the values were fairly constant for the sequence considered. This was not the

case for the λ parameter in the damped least squares equation and most notably the

g constants assigned to the gradient projection model. An adaptive model could be

used, but the short time periods involved here ensured that the mean values were

taken. Only one of the five constants had large variations (1 to 5.5) and the others

varied below 2. Of course, this is a relative assertion but the final parameters proved

adequate. As predicted the least norm solutions were erroneous and meaningless.

The gradient projection method showed to be useful but the very long computation

times meant that it was not considered for further applications. The weighted least

norm and damped least squares methods showed good performance. Methods that

do not require a structured representation of the dynamics and that instead rely

mainly on the robot kinematics are preferred, since it is more robust to parameter

errors [20].

7.3.2 Trajectories

The damped least squares and weighted least norm methods were able to generate

optimal trajectories of the end effector in three dimensions. The gradient projection

method was also able to realise optimal trajectories but at high computational ex-

pense. The extended Jacobian method delivered trajectories that were sub-optimal,

but with the added criterion that the angular rate of the shoulder joint speed is

to be minimised. Difficulties in determining an appropriate cost function for the

EJ method were experienced. For the closed loop trajectory problem the models

were able to achieve near repeatability which entailed generating closed joint space

trajectories for the (almost) desired closed end effector trajectory. The extended

Jacobian method delivered results that showed that the shoulder angular rate was

minimised in comparison with the phase state trajectories of the other three models.

104 Chapter 7. Conclusions

Although of secondary importance, the trajectory closures in the second generalised

variable (ϕ) had fair to reasonably high closures for the DLS and WLN methods,

that provided three dimensional trajectories.

Chapter 8

Recommendations on Future Work

Based on the results obtained and the conclusions drawn, the following recommen-

dations are provided.

8.1 Least Squares Optimisation

Investigations into obtaining the initial estimates for the LSQ solver more efficiently

and accurately during the entire iteration process should improve the accuracy of

the estimates. The development of additional vector functions that will add to the

overall model description and aid in solving the unknown variables, particularly the

camera rotation angles, is suggested.

The effect of a twist γi in any link i may be modeled by determining by how much

it affects the θi+1 and ϕi+1 values of linki+1; the change in the two angle vari-

ables change the coordinates and these will result in small changes projected onto

the UVW -system which are then incorporated in the model. If this twist is not

transferable then this means that the quadruped now has spherical joints and the

resulting 8S-serial open chain mechanism now has 27 degrees of freedom (up from

20 DOFs for the 8U -serial mechanism) and this complicates the computations.

A more accurate mechanism could be introduced that includes the visco-elastic

properties of a lightweight quadruped in future work, which would entail a far more

complex model for the link proportion equations and the effective angles between

105

106 Chapter 8. Recommendations on Future Work

the links themselves.

An implicit evaluation function for determining the degree of optimality could be

included in the optimiser in future.

8.2 Inverse Kinematics

In applications where computation times are not critical and higher accuracies are

desired, it may be best to determine the inverse kinematics parameters online and

either iteratively or using batch iterations. A constraint function should also be

included that eliminates spiking values that are beyond a threshold standard devi-

ation of the iteration current mean or running batch average.

The comparative effects of applying the online α scaling function to the IK model

being used and the improvements in target convergence, computation time and joint

trajectory closures, should also be investigated. In addition, the work on numeri-

cal filtering, similar to that done in the selectively damped least squares, may be

applicable to the IK algorithms where applicable.

8.3 Future Research

The development of legged robots of the future will, broadly speaking, involve more

use of machine learning and AI to tackle problems such as uneven terrain and ex-

ternal environmental effects that cannot be programmed into any control strategy,

where there may be highly discontinuous and/or nonlinear setpoints that are not

easily modeled or that occur beyond real-time processing times.

Hybrid algorithms may be developed using non-linear optimisations in conjunction

with machine learning provided they are computationally feasible in real time ap-

plied to high acceleration modes.

If the latest advances are anything to go by, there may be complex multiple sub-

systems that operate on mimicking bio-muscular skeletal systems.

8.3. Future Research 107

Figure 74: The Kengoro humanoid robot with intricate musculo-skeletal links (Image
credit: JSK Laboratory, University of Tokyo).

8.3.1 Humanoids

Highly dextrous humanoid robots that are able to move and interact seemlessly

with humans are a realisable future scenario. The motion kinematics will depend on

the joint systems employed (rotary, prismatic or hybrid versions) and the actuator

and physical limits of the technology. Some advanced humanoids like Kengoro have

174 maneuverable joints and 116 actuators that ensure high motion ranges and are

cooled by a network of heat exchangers.

8.3.2 Quadrupeds

In the context and scope of this project, future research could include developing

further optimisation functions that minimise energy or torque along trajectory paths

for the end effectors. If a 4-link system should be proposed for each of the legs,

this will complicate any kinematic optimisation for all the joint angles and further

vector functions that parameterise constraints and physical limitations would have

to be introduced. Robots operating at high speed and/or in rough terrain will be

subject to chaotic dynamics [16] and quick online adaptation to these changes is

vital. Current quadrupeds have applications in the military where payloads can

be carried over uneven and steep terrain. They are heavy duty machines and are

robust to invariant contact forces and they have self stabilising control algorithms

that counteract externally applied random events.

108 Chapter 8. Recommendations on Future Work

Other applications are in security monitoring and the delivery of lightweight items

to humans in urban areas.

8.3.3 Surgical and Service Robots

The DaVinci Surgical Robot is currently one of the most advanced surgical robots

together with that of Versius. Assistive surgical robots are now applied that require

guidance and there are many systems that perform non-invasive surgery. Future

work that is proposed here is an assistive surgical arm that uses deep learning and

AI to accept verbal commands and possibly physical cues from a human surgeon.

The application will be task specific and will require comprehensive medical image

training data, repeatable trajectory priors and the ability to mimic the upper torso

motions and match or exceed the dexterity of a human hand. Work done in this

regard include [25], [44] and particularly [46]. Furthermore, future research into

advanced haptic sensory technology will ultimately allow the robot to quickly dis-

tinguish between muscle, tissue, cartilage, bone etc. and thus have the ability to

navigate its way to target specific locations within the human body that are not

easily accessible or identifiable.

Figure 75: The Versius Surgical System (Image credit: CMR Surgical).

8.3. Future Research 109

8.3.4 Autonomous Quadrupeds in Space Exploration

High speed quadrupeds that are able to negotiate obstacles with full autonomy on

remote locations in space seem like an option for extraplanetary surveying and ex-

ploration. Environments with lower gravity will make it easier to move quickly and

carry high payloads.

Sealed pneumatic powered systems may be preferred over electrically motorised ones

where the risk of contamination, due to ultra-fine particulates on other worlds, could

pose as serious performance inhibitors. The Pneupard is an experimental quadruped,

developed by Osaka University, that uses pneumatics to effectively power synthetic

’muscle’ structures that allow deformation on contact and thus energy absorption

with less ’stiff’ oscillation characteristics than those using rigid metal links powered

by electric motors or hydraulics. The inclusion of damping models could serve as

a refinement to describe the inherent limitations on accelerated motion, while the

advantages of free-swinging (and thus possibly chaotic) motions could be investi-

gated further. However, this is a challenging task since unpowered joints highly

complicate the stability investigation of such mechanisms as noted by [16]. The

self-stabilisation of robotic systems under optimum energy and torque conditions is

crucial to furthering efficient operation, especially in highly variable terrain that is

able to increase the dynamic complexities and which may require highly adaptive

control.

Finally, the importance of non-linear systems analysis tools is crucial to locating

(unwanted) chaotic regimes and for underactuated joints the stability investigation

is highly complex. In addition, solutions to the self stabilisation and that achieve

this with minimal energy is a core research area for the future.

Bibliography

[1] A. Werner, W. Turlej, C. Ott, "Generation of Locomotion Tra-
jectories for Series Elastic and Viscoelastic Bipedal Robots",
IEEE International Conference on Intelligent Robots and Systems, 2017.

[2] T-W. Lu, C-F. Chang, "Biomechanics of Human Movement and its Clinical
Applications", Kaohsiung Journal 0f Medical Sciences, 2011.

[3] M.Edgington, Y.Kassahun, F.Kirchner, "Dynamic Motion Modelling for Legged
Robots", IEEE International Conference on Intelligent Robots and Systems,
October 11-15,2009.

[4] X. Zang, S.Iqbal, Y. Zhu, X. Liu, J. Zhao, "Applications of Chaotics in
Robotics", International Journal of Advanced Robotic Systems, March 2016.

[5] J. Ching, J.L. Beck, K.A. Porter, "Bayesian State and Parameter Estimation of
Uncertain Dynamical Systems", Probabilistic Engineering Mechanics, August
2005.

[6] B. Leela Kumari, K. Padma Raju, V.Y.V. Chandan, V.M.J. Rao, "Appli-
cation of Extended Kalman Filter for a free Falling Body towards Earth",
IJACSA International Journal of Advanced Computer Science and Applications,
Vol.2,No.4, 2011.

[7] K. Tchoń, "Optimal Extended Jacobian Inverse Kinematics Algorithms for
Robotic Manipulators", IEEE Transactions on Robotics, January 2009.

[8] D. Rowell, "Analysis and Design of Feedback Control Systems: State
Space Representation of LTI Systems", MIT Course/Lecture Notes:
http://web.mit.edu/2.14/www/Handouts/StateSpace.pdf ,pp.1-18, October
2002.

[9] "Filtering and State Estimation", MIT Course Work, Source URL:
http://fab.cba.mit.edu/classes/864.17/text/filt, pp.237-254.

[10] M. Ondera, "Matlab Based Tools for Nonlinear Systems", Department of Au-
tomation and Control, University of Technology, Bratislava.

[11] J. Shen, A.K. Sanyal, N.A. Chaturvedi, D. Bernstein, H. McClamroch, "Dy-
namics and Control of a 3D Pendulum",Department of Aerospace Engineering,
University of Michigan, Ann Arbor.

110

BIBLIOGRAPHY 111

[12] R. Kandepu, B. Foss, L. Imsland, "Applying the Unscented Kalman Filter for
Nonlinear State Estimation", Journal of Process Control, July 2007.

[13] A. Belyaev, "Vector Fields, Winding Number and Index.Poincare Theorem",
http://www.mpi-sb.mpg.de/ belyaev.

[14] C. RunBin, C. YangZheng, L. Lin, W. Jian, M. Hong Xu, "In-
verse Kinematics of a new Quadruped Robot Control Method",
International Journal of Advanced Robotic Systems, November 2012.

[15] J. McBride, S. Zhang, M. Wortley, M. Paquette, G. Klippe, E.
Byrd, L. Baumgartner, X. Zhao, "Neural Network Analysis of
Gait Biomechanical Data for Classification of Knee Osteoarthritis",
Biomedical Sciences and Engineering Conference (BSEC), IEEE, April 2011.

[16] S. Iqbal, Z. Xi Zhe, Z. Yan He, Z. Jie, "Bifurcations and Chaos in Passive
Dynamic Walking: A Review", Robotics and Autonomous Systems, 2014.

[17] R.N. Kirkwood, H. de Alencar Gomes, R. Ferreira Sampaio, E. Culham, P.
Costigan, "Biomechanical Analysis of Hip and Knee Joints during Gait in El-
derly Subjects", Acta ortop.bras, Vol.15, no.5, 2007.

[18] J. Barreto, A. Trigo, P. Menezes, J. Dias, A.T. de Almeida, "Kinematic and
Dynamic Modeling of a Six Legged Robot", Institute of Systems and Robotics,
Leiria & Department of Electrical Engineering, University of Coimbra, July
1998.

[19] M. Tarokh, M. Lee, "Systematic Method for Kinemat-
ics Modeling of Legged Robots on Uneven Terrain",
International Journal of Control and Automation,Vol.2,No.2, June 2009.

[20] L. Righetti, J. Buchli, M. Mistry, S. Schaal, "Control
of Legged Robots with Optimal Distribution of Contact
Forces",11th IEEE-RAS International Conference on Humanoid Robots, IEE,
October 26-28, 2011.

[21] O. Ruf, "Dynamic Modeling of Robots with Kinematic Loops", School of Elec-
trical Engineering, Aalto University and Lulea University of Technology, pp.1-
14, August 2014.

[22] O. Ruf, "Dynamic Modeling of Robots with Kinematic Loops", School of Elec-
trical Engineering, Aalto University and Lulea University of Technology, pp.15-
26, August 2014.

[23] J.S. Lam, "Control of an Inverted Pendulum",Journal of Computer Science,
2004.

[24] C. Yang, H. Ma, M. Fu, "Advanced Technologies in Modern Robotic Appli-
cations", Source URL: http://www.springer.com/978-981-10-0829-0 pp.27-43,
2016 .

112 BIBLIOGRAPHY

[25] V. Lertpiriyasuwat, M.C.Berg, K.W. Buffinton, "Extended Kalman
Filtering Applied to a Two-Axis Robotic Arm with Flexible Links",
The International Journal of Robotics Research,Vol.19,No.3,pp.254-270,
March 2000.

[26] C. Li, H. Li, Y. Tong, "Analysis of a Novel Three-Dimensional Chaotic System",
Optik Journal, April 2012.

[27] S. Vaidyanathan, C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, K. Rajagopal,
P. Alexander, "A Seven-Term Novel 3-D Chaotic System with Three Quadratic
Nonlinearities and its LABVIEW Implementation", Latest Trends on Systems,
Vol.1, pp.117-122.

[28] H. Joshi, N. Paulose, "Discrete Time Model Predictive Con-
trol Approach for Inverted Pendulum with Input Constraints",
IJEE International Journal of Electrical and Electronics Engineering,Vol.3,Issue
1, pp.105-110, 2013.

[29] "Nonlinear Control System, Lecture-11, Pendulum on a Cart", Course Notes,
Division of Electrical Engineering, NPTEL, pp.31-33.

[30] S. Lynch, "MATLAB Programming for Engineers", School of Computing,
Mathematics and Digital Technology, Manchester Metropolitan University.

[31] J. Hannah, R.C. Stephens, "Mechanics of Machines - Advanced Theory and
Examples", 2nd edition, 1997.

[32] J.L. Meriam, L.G. Kraige, "Engineering Mechanics Dynamics",
John Wiley & Sons, Inc., 4th edition, 1998.

[33] "System Identification, Estimation and Learning", MIT, Course Work:
Lecture Notes No.8, Chapter 4, Extended Kalman Filter,pp.1-7 March 2006.

[34] J.H. Park, K.T. Chang, N. Kazantzis, A.G. Parlos, "Time-Discretization
of Non-Affine Nonlinear System with Delayed Input using Taylor-Series",
KSME International Journal, Vol.18, no.8, pp.1297-1305, 2004.

[35] G.H. Patel, A.K. Samantary, "Fault-tolerant Control of a Com-
pliant Legged Quadruped Robot for Free Swinging Failure",
Journal of Systems and Control Engineering, November 2017.

[36] J-J.E. Slotine, W. Li, "Applied Nonlinear Control", Prentice Hall, Inc., 1991.

[37] A. Kaw, "Runge-Kutta 2nd Order Method for Ordinary Differential Equations",
Holistic Numerical Methods Institute, University of South Florida.

[38] T. Nath, A. Mathis, A-C. Chen, A. Patel, M. Bethge, M.W. Mathis, "Us-
ing DeepLabCut for 3D Markerless Pose Estimation across Species and Be-
haviours", http://dx.doi.org/10.1101/476531, November 2018.

BIBLIOGRAPHY 113

[39] "Lyapunov Exponent", Source URL: http://systems-sciences.uni-graz.at
/etextbook/sw2/lyapunov.html, November 2018.

[40] E. Vlasbom, "Nonlinear State Estimation for a Bipedal Robot", MSc Thesis
Project, Delft Center for Systems and Control, Delft University of Technology,
June 2014.

[41] L. Cucu, "Applying Kalman Filtering on a Quadruped Robot", EPFL,
Biorobotics Laboratory, Federal Polytech Institute, Lausanne, Switzerland.

[42] X. Xinjilefu, C.G. Atkeson, "State Estimation of a Walking Humanoid Robot",
The Robotics Institute, Carnegie Mellon University, Pittsburgh.

[43] X. Xinjilefu, "State Estimation for Humanoid Robots", PhD Thesis Document,
The Robotics Institute, Carnegie Mellon University, Pittsburgh.

[44] CW. Sul, SK. Jung, K. Wohn, "Synthesis of Human Motion using Kalman
Filter", Department of Computer Science, KAIST & Department of Computer
Engineering, Kyungpook National University.

[45] L. Aguiar, M.R.O.A. Maximo, T. Yoneyama, S. Pinto, "Kalman Filtering for
Differential Drive Robots Tracking", SBAI, Porto Alegre, 4 October 2017.

[46] M. Burke, J. Lasenby, "Single Camera Pose Estimation using Bayesian Fil-
tering and Kinect Motion Priors", Department of Engineering, University of
Cambridge, UK, 18 June 2014.

[47] K. Jankowski, "Dynamics of Double Pendulum with Parametric Vertical Excita-
tion", MSc(Eng) Project, Department of Mechanical Engineering and Applied
Computer Science, Technical University of Lodz, 11 July 2017.

[48] AC. Chen, "3D Markerless Body Motion Capture for the Cheetah", BSc(Eng)
Thesis Project, Department of Electrical Engineering, University of Cape Town,
22 October 2018.

[49] J. Cushway, "Whole-body Motion Tracking of the Cheetah using Vision Data",
BSc(Eng) Thesis Project, Department of Electrical Engineering, University of
Cape Town, 13 November 2017.

[50] R. Nilsson, "Inverse Kinematics", Master’s Thesis in Engineering, Department
of Computer Science and Electrical Engineering, Luleă University of Technol-
ogy, 2009.

[51] S. Schaal, "Jacobian Methods for Inverse Kinematics and Planning" (slides),
Max Planck Institute, University of Southern California & E.Todorov, "What
makes control hard" (lecture notes), Department of Applied Mathematics,
Computer Science and Engineering, University of Washington.

[52] J.Ratajczak, "Design of Inverse Kinematics Algorithms:extended
Jacobian approximation of the dynamically consistent Jacobian
inverse",Archives of Control Sciences , Vol 25(LXI),No.1, pp.35-50, 2015

114 BIBLIOGRAPHY

[53] C. Sprunk, B. Lau, W. Burgard, "Improved Non-linear
Spline Fitting for Teaching Trajectories to Mobile Robots",
IEEE International Conference on Robotics and Automation, May 2012.

[54] H.H Asada, "Introduction to Robotics", Department of Mechanical Engineer-
ing, MIT, Cambridge, USA.

[55] K. Tchoń, "Optimal Extended Jacobian Inverse Kinematics Algorithms for
Robotic Manipulators", IEEE Transactions on Robotics, January 2009.

[56] H. Simas, D. Martins, A. Dias, "Extended Jacobian for Redundant Robots
obtained from the Kinematics Constraints", University of Santa Catarina ,
Published by Researchgate: publication no.260354295, January 2012.

[57] N.P.G. Salau, J.O. Trierweiler, A.R. Secchi, "State Estimation
of Chemical Engineering Systems tending to Multiple Solutions",
Brazilian Journal of Chemical Engineering, Vol.31, No.3, pp.771-785, July-
September 2014.

[58] R. Hauser, "Kalman Filtering with Equality and Inequality Constraints",
Report No.07/18, Oxford University Computing Laboratory, Numerical Anal-
ysis Group, September 2017.

[59] X. Jian, L. Zushu, "Dynamic Model and Motion Control
Analysis of Three-link Gymnastics Robot on Horizontal Bar",
IEEE International Conference on Robotics, Intelligent Systems and Signal
Processing, October, 2003.

[60] M. Kelemen, I. Virgala, T. Lipták, L. Miková, F. Filakovský, V. Bulej, "A Novel
Approach for a Inverse Kinematics Solution of a Redundant Manipulator",
MDPI, Applied Sciences, 12 November 2018.

[61] P. Boscariol, D. Richiedei, "Trajectory Design for Energy Savings in Redundant
Robotic Cells", MDPI, Robotics, 20 February 2019.

[62] M. Neunert, F. Farshidian, J. Buchli, "Efficient Whole-Body Trajectory Opti-
mization Using Contact Constraint Relaxation", Agile & Dexterous Robotics
Laboratory, ETH, Zurich.

[63] S.R. Buss, "Introduction to Inverse Kinematics with Jacobian Transpose, Pseu-
doinverse and Damped Least Squares Method", Department of Mathematics,
University of California, San Diego, 7 October 2009.

[64] Alain Muraro, Christine Chevallereau, Yannick Aoustin. Optimal trajectories
for a Quadruped Robot with Trot, Amble, Curvet Gaits for Two Energetic
Criteria. Multibody System Dynamic, 2003, 9 (1), pp.39-62. hal-00794871

[65] S.R. Buss, J-S. Kim, "Selectively Damped Least Squares for Inverse Kinemat-
ics", University of California, San Diego, 25 October 2004.

BIBLIOGRAPHY 115

[66] C. Yang, H. Ma, M.Fu, "Advanced Technologies in Modern Robotic Applica-
tions", Science Press and Springer Science+Business Singapore, 2016, pp.27-48.

[67] Matlab Version R2018a, Documentation, Keywords: Nonlinear Least Squares,
lsqnonlin, Levenberg-Marquardt Method, Output Arguments.

Appendix A

Joint Space Trajectories

The joint space trajectories as estimated by the inverse kinematics models in θ and

ϕ phase states where applicable.

Figure 76: Joint trajectory estimates in θ phase space by the gradient projection
method.

116

117

Figure 77: Joint trajectory estimates in ϕ phase space by the damped least squares
method.

Appendix B

Optimisation Functions

Extended Jacobian optimisation functions g(θ) = g(θ9, θ1, θ2, θ3, θ4) and results:

(i) Optimisation of g(θ) with respect to θ in the nullspace of the Jacobian matrix

using: relative angle velocities.

g = (θ2 − θ1)
2 : convergence to target achieved.

g = (θ4 − θ3)
2 : matrix singular !

g = (θ3 − θ2)
2 : matrix singular !

g = (θ3 − θ1)
2 : chaotic trajectory !

g = (θ3 − θ9)
2 + (θ2 − θ9)

2 : chaotic trajectory !

g = (θ3 − θ1)
2 + (θ2 − θ1)

2 : chaotic trajectory !

g = (θ4 − θ1)
2 + (θ3 − θ1)

2 + (θ2 − θ1)
2 : chaotic trajectory !

(ii) Optimisation of g(θ) with respect to θ in the null space of the Jacobian matrix

using : rotational energies.

g = (r5θ9)
2 + (r5θ1)

2 + (r5θ2)
2 + (r5θ3)

2 + (r5θ4)
2 : convergence to target achieved.

(iii) Optimisation of g(θ) with respect to θ in the null space of the Jacobian matrix

using : augmenting harmnonic function, g = x2(ax1+b)
√

1 + x21. x1 = (θ2−θ3), x2 =

(θ4 − θ3), a = 1, b = 0: optimal convergence to target achieved.

118

Appendix C

Non Convergent Trajectories

Unsuitable optimisation functions in the extended Jacobian method resulted in tra-

jectories not converging to the target point. Some of these results are shown here

together with the applied g(θ) function.

Figure 78: Non convergent trajectory resulting from an unsuitable cost function:
g = (θ2 − θ1)

2(θ1 − θ3)
2 + (θ3 − θ4)

2(θ4 − θ1)
2. The graphic below it shows the

distance between the current and target points confirming failure to converge.

119

120 Appendix C. Non Convergent Trajectories

Figure 79: Chaotic, non convergent trajectory resulting from an unsuitable cost
function: g = (θ2 − θ1)(θ2 − θ3) + (θ3 − θ4)(θ4 − θ1). The graphic below it shows the
distance between the current and target points confirming failure to converge.

Figure 80: Discontinuous, non convergent trajectory resulting from an unsuitable
cost function: g = (θ3− θ2)(θ2− θ3)+ (θ3− θ4)(θ4− θ1). The graphic below it shows
the distance between the current and target points confirming failure to converge.

Appendix D

Vector Fields

The vector fields for all the links as determined by the optimisation. The vector

reference level is a scaling of the magnitudes so that comparatives may be established

over the entire time interval.

Figure 81: Vector Field I.

121

122 Appendix D. Vector Fields

Figure 82: Vector Field II.

Figure 83: Polar velocity magnitudes for (i) front leg, (ii) spine and (iii) back leg
links for all of the configurations.

Appendix E

Quadruped Configurations

The full results of all of the image and sagittal (UV) plane configurations of the

quadruped as determined by the non-linear least squares optimisation function. The

Robot Configuration (RC) number is shown together with each of their respective

image and UV plane configurations.

Figure 84: The first set of 9 configurations (out of 30). At left are the composite
image configurations showing the truth (black dashed line) and reprojected (black
solid line) images and at right the computed quadruped configurations (red) in the
sagittal plane.

123

124 Appendix E. Quadruped Configurations

Figure 85: The second set of 9 configurations (out of 30). At left are the composite
image configurations showing the truth (black dashed line) and reprojected (black
solid line) images and at right the computed quadruped configurations (red) in the
sagittal plane.

Figure 86: The last set of 12 configurations (out of 30). At left are the composite
image configurations showing the truth (black dashed line) and reprojected (black
solid line) images and at right the computed quadruped configurations (red) in the
sagittal plane.

125

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Preliminaries
	Research Objectives
	Outline of Work
	Problems and Scope
	Proposed Solution Plan
	Project Content

	Theoretical Fundamentals
	Convolutional Neural Networks
	Vision Systems and Image Processing
	Virtual Camera Model
	Vision System

	Polar Transforms
	Vector Fields
	Non-linear lsq Optimisation
	Optimisation Mathematics
	First-Order Optimality Measure
	Function Evaluations
	Damped Least Squares Parameter

	ik Methods
	Least Norm Solution
	Gradient Projection
	Weighted Least Norm
	Extended Jacobian
	Damped Least Squares

	Inverse Kinematics for Trajectory Generation
	Overview

	Systems and Metric Definitions
	Configuration Definition
	Coordinate Systems
	Transforms
	Phase States
	doc for a Trajectory

	Methodology
	Data Acquisition
	Objective Vector Functions for the Optimiser
	Model Parameters
	Motion Constraints
	Project Elements and Work Flow
	Related Work
	Deep Learning and Pose Estimation
	Modeling of Legged Robots

	Overview

	Experimental Setup, Data Acquisition and Implementation
	Markerless Pose Extraction using a Deep Neural Network
	Network Training
	Joint Tracking
	Coding

	Angle Variables
	Configurations
	Camera

	Link Lengths
	Angle Transform Equations
	Optimisation Strategies
	Coding the Optimisation
	Inverse Kinematics Modeling
	Overview

	Results, Findings and Model Evaluation
	Image Pose Extraction
	Least Squares Optimisation
	Output Indicators
	Matrix Data in Graphic Form
	Configurations
	Trajectories and Dynamics of Reference Joint

	Vector Fields
	Inverse Kinematics
	Model Parameters
	Trajectory Generation for End Effector Tracking
	Trajectory Closure

	Conclusions
	Image Extraction by a Trained Network
	Configuration Optimisation
	Basic Data and Code Indicators
	Vector Fields
	Configuration Plots

	Inverse Kinematics
	Parameters
	Trajectories

	Recommendations on Future Work
	Least Squares Optimisation
	Inverse Kinematics
	Future Research
	Humanoids
	Quadrupeds
	Surgical and Service Robots
	Autonomous Quadrupeds in Space Exploration

	Bibliography
	Joint Space Trajectories
	Optimisation Functions
	Non Convergent Trajectories
	Vector Fields
	Quadruped Configurations

