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Abstract

We present a multi-camera person tracker solution that makes use of Kalman filtering prin-
ciples. The tracking system could be used in conjunction with behaviour analysis systems
to perform automated monitoring of human activity in a range of different environments.
Targets are tracked in a 3-D world-view coordinate system which is common to all cameras
monitoring the scene. Targets are modelled as ellipsoids and their colour information is
parameterised by RGB-height histograms. Observations used to update the target models

are generated by matching the targets in the different views.

3-D tracking requires that cameras are calibrated to the world coordinate system. We
investigate some practical methods of obtaining this calibration information without lay-
ing out and measuring calibration markers. Both tracking and calibration methods were
tested extensively using 6 different single and multiple camera test sequences. The system
is able to initiate, maintain and terminate the tracks of several people in cluttered scenes.

However, further optimisation of the algorithm is required to achieve tracking in real time.
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Chapter 1

Introduction

Automated visual monitoring systems may be used for a very wide range of applications.
Cameras are cheap and versatile and the information content in a video sequence is very
high. The main application of visual monitoring is surveillance but more general measure-
ment of human activity such as customer behaviour analysis in shopping malls, perceptual
interfaces in intelligent homes and team strategy in sports are other possibilities. An illus-
tration of an automated visual monitoring system is given in figure 1.1. As shown in the
figure, the tasks to be performed by such a system can be divided into ‘low-level’ tasks,
which include detection, tracking and camera calibration and ‘high-level’ tasks, which in-
clude behaviour recognition, face recognition and archiving of this high-level analysis. In
this thesis we will address only the ‘low-level’ tasks. The system we present could then
be used in conjunction with a ‘high-level” system such as one developed by Forbes [10] for
the purpose of automated visual person monitoring. In this chapter we define our problem
statement in the context of previous work found in the literature and we introduce our

chosen approach thus giving a high-level overview of the rest of the thesis.

1.1 Problem definition

The basic requirement for a person tracker for a particular scene monitored by one or sev-
eral cameras is to be able to detect every person entering the scene and keep track of each

of them until they all leave. This task, although trivial for the human eye, is very hard to



1.1 Problem definition 2

Archive,
search &
retrieval
Behaviour Face Person movement
recognition recognition and belhg\rmur
Statistics

T ? f High-level tasks
------------- e B

Entry detection/ Lav-level tasks

Trackin i ion 4
Initialisation <—‘ 9 4—‘ Ext Detection —
T rFy ;

Calibration Seene Modelling
Localf (EntrywExit points,
Cameras Multi-camera Static objects)
&
Aspects that are
Capture addressed in
this thesis

Figure 1.1: The figure shown here shows a full person tracking solution in the context of surveil-

lance or person activity measurement.

automate due to the presence of complexities such as shadows, reflections, changing light-
ing conditions and occlusions resulting from the interaction of people, static and moving
objects. Additional complexities arise in the case of multiple camera configurations where
track information has to be shared between different cameras. Tracking of this nature is
a highly unconstrained problem. The more a priori information that is incorporated, the
more tractable the problem becomes. Two main components can be distinguished in a
typical visual tracker. Filtering, mostly a top-down process, deals with the dynamics of
targets, makes use of scene priors, and evaluates different hypotheses. The other compo-
nent, Target Representation and Localisation, is mostly a bottom-up process that has to
deal with the changes in the appearance of the target. The way the two components are

combined and weighted plays an important role in the robustness of the tracker [7].
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1.1.1 Filtering

Filtering almost completely replaces previous rule-based approaches such as ones imple-
mented in [35] simply because they are far more efficient and generally less complex in
their implementation. The filtering process is normally formulated through the state space
approach for modelling discrete-time dynamic systems [38, 21, 11, 45]. The information
characterising the target is defined by the state sequence {xj}r—o1.., whose evolution in
time is specified by the dynamic equation x; = f(X)_1,Vvx). The available measurements
v, are related to the corresponding states by the measurement equation y; = hy(xx, ),
where f;, and hy are vector-valued, time-varying functions. Each of the noise sequences,

{Vi}r=o1,. and {eg}r—o1, . is assumed to be independent and identically distributed (i.i.d.).

The objective of tracking is to estimate the state x; given all the measurements y;.; up to
that moment, or similarly to construct the probability density function (pdf) p(xg|y1.x)-
The theoretical optimal solution is given by the recursive Bayesian filter which solves the
problem in two steps: the prediction step, which uses the dynamic equation and the previ-
ously computed pdf of the state at time ¢t = & — 1 (or initial pdf at t = 0) p(xx_1|y1.6-1) tO
derive the prior pdf of the current state p(xx|y1.x—1). Then the update step, which employs

the likelihood function p(yx|xx) of the current measurement to compute the posterior pdf

P(Xk|Y1;k)-

When the noise sequences are normal and f; and hj; are linear functions, the optimal
solution is given by the Kalman filter ([38], p.142), which results in the posterior also
being normal. When the functions f;, and hj are nonlinear, the Extended Kalman Filter
(EKF) is obtained by local linearisation ([38], p.247). The posterior density in this case
is still modelled as Gaussian. An alternative to the EKF is the Unscented Kalman Filter
(UKF) [26] which uses a set of discretely sampled points to parameterise the first two
moments of the posterior density. Kalman filtering was first used for visual tracking by
Ayache and Faugeras in 1989 [1] for tracking lines using a camera. Since then various
extensions of the filter have shown much success. Zhao and Nevatia [49], Kang and Cohen
[20], Comaniciu and Ramesh [7] as well as Piater and Crowley [30], to mention a few, use

Kalman filtering for person tracking.

When the state space is discrete and is made up of a finite number of states, Hidden Markov
Models (HMM) filters [33] can be applied for tracking. This method is implemented by
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Chen and Rui [6] for visual tracking.

The most general class of filters are the particle filters, also called bootstrap filters, which
are based on Monte Carlo integration methods. This more general type of filter allows
for the state space representation of any distribution and for nonlinear, non Gaussian
dynamical and observation models, and process and observations noises. Particle filtering
was first introduced in vision as the Condensation algorithm by Isard and Blake [14].
In [28] Nummiaro and Gool present an adaptive colour-based particle filter and compare
its performance with a mean-shift tracker and a combination of mean-shift and Kalman
filter tracker. Although particle filtering allows for more flexibility it is more difficult to
implement. Given a particular tracking problem one has to gauge whether the gained

generality is worth the added complexity.

1.1.2 Target Representation and Localisation

The target representation and localisation component deals with the measurement process
where observations characterised by the pdf p(y), used in the update step of the filter-
ing process, are obtained. While filtering has its roots in control theory, algorithms for
target representation and localisation are specific to image processing. For the visual per-
son tracking application targets can be characterised by two main features: their colour

composition and their shape and size.

Targets’ Colour Composition

To characterise targets’ colour composition, a feature space needs to be chosen. The
most common approaches are colour histograms [7, 28|, gaussian mizture models [39] and
appearance models [49, 34, 27, 15]. Colour histograms are scale and orientation invariant,
but lose all spatial information. Gaussian mixture models, like histograms, capture different
target characteristics, depending on what features are used, but usually require many
parameters to be set (via a training phase) and are complex to implement. In appearance
models, target appearance information is stored on a pixel level template, which is then
used for matching. Thus appearance models make use of spatial information, but adjusting

for scale and orientation changes over time is difficult.
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Targets’ Shape and Size

Modelling the shape of a non-rigid targets such as humans is not always easy. In many
implementations e.g. [35, 20|, tracked targets are simply modelled as rectangular bounding
boxes in the image view. Another common image view shape model is the ellipse which
more accurately accounts for feet and head being narrower parts of the body [28, 7].
Although in many of these implementations, the size of the bounding boxes/ellipses are
allowed to vary, it is difficult to accurately explain how they should change. A better
alternative is to model targets as 3-D objects. Unless one is trying to recover the exact
pose [29, 46] of a tracked person it is not necessary to use a complicated articulated model.
Simple shapes such as cylinders [14] or ellipsoids [27] are suitable. To make use of this 3-D
information one has to formulate the tracking problem in a 3-D world coordinate system
or world-view. Other than explaining how the size and shape of targets in the image varies
as they move, a world-view tracker has several additional advantages. It makes it easier
to introduce known physical constraints to the dynamic tracking models. Initialisation
and termination of tracks can be made more robust if entry/exit points are specified.
These points are more easily specified in world coordinates than in image coordinates.
3-D information also greatly simplifies the task of combining measurements obtained from
several cameras with overlapping views. However, this approach limits the tracking system
to fixed cameras that all have to be calibrated with respect to a common coordinate system.
Thus we also address the problem of camera calibration for person tracking applications

in this thesis.

Target Localisation

The localisation is performed by comparing target models with image samples to maximise
some likelihood (similarity) type function. Comaniciu [7] exploits the smoothness of the
similarity function to make use of gradient optimisation to localise targets. Others, like
Nummiaro [28], sample images according to the prior distributions of target locations

p(Xk|y1..—1) and weighs the contribution of each sample according to its likelihood.

The comparison between target models and image samples depends on the chosen target

representation. Two methods that were considered are the Bhattacharyya Coefficient [18]
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and the Histogram Intersection method [41]. If p(y) is the density function of a target
candidate at position y in the image and q is density of the target model then the measure
of distance between the two densities p(y) based on the Bhattacharyya Coefficient in the

chosen feature space z is as follows:

o(y) = / Vo). (L1)

In the histogram formulation the discrete densities p(y) = {pu(¥) }u=1..n and q = {Gu }u=1..n
are estimated from the n-bin histograms of the image samples and the target model. The

sample estimate of the Bhattacharyya Coefficient is then given by:

p(y) =D VDul¥)du- (1.2)

In the case of the Histogram Intersection method, the similarity measure between his-

tograms is given by:
p(y) =Y min(pu(y), qu). (1.3)
u=1

The strength of the Histogram Intersection results from the min(...) function, which makes
sure that only colours present in the model histogram are matched. The Bhattacharyya
Coefficient on the other hand has a stronger theoretical foundation, being linked to the

Bayes error. It also imposes a metric structure on the distance measure between histograms.

Foreground /Background Segmentation

Foreground /background is typically done by comparing new images as they arrive, to some
background or reference model. Images are segmented into foreground and background re-
gions and higher weighting is given to foreground pixels in the image sampling process. The
segmentation can be simply performed by taking the difference between sequence images
and some reference image or background model [30]. More elaborate methods for obtain-
ing foreground regions are found in [47], where each pixel is modelled as an independent
Gaussian mixture model, and in [2], where segmentation is achieved using spatial gradient
information. Difficulties arise in the presence of shadows and reflections, moving objects
in the background, and varying lighting conditions. Thus the implementation of a robust

tracker that relies purely on segmentation information is very difficult.
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1.1.3 Calibration methods suited to person tracking applications

Camera calibration in the context of machine vision is the process of determining the
internal camera geometric and optical characteristics defined by the intrinsic parameters,
and the camera pose (position and orientation) within a world coordinate system, defined
by extrinsic parameters. Standard calibration methods based on methods by Tsai [43, 42]
are accurate but require the use of calibration points or calibration objects. Calibration
points/markers have to be laid out and measured, a process which requires a lot of care.
Although methods that make use of calibration objects are suitable for obtaining internal
camera parameters, they are usually not for obtaining the camera pose in large fields
of view. In the case of a surveillance system covering an entire building where dozens
(hundreds) of cameras are installed the use of such calibration methods is a sizeable task
which renders a world-view tracker impractical. Auto calibration methods aim to obtain
camera parameters without the need for manual procedures or calibration objects, and

hence are more suited to person tracking applications.

Jones et al [16] propose a two-stage method to recover calibration parameters for multi-
camera configurations automatically. In the first stage, each camera is calibrated to a
local ground plane coordinate system. The algorithm makes use of how the size of the
segmented images of people in the camera view vary as they walk towards or away from
the camera to recover the pitch angle and the focal length to pixel width ratio of the
camera, provided the camera height above the ground is known. However, this method
assumes shallow camera pitch angle, small roll and pan angles, ignores distortion effects,
relies on good segmentation and requires some control over what goes on in the scene
during the calibration process. Hence, it is not suited to all camera configurations and
video sequences, and alternative semi-automatic methods have to be considered. The
second stage of Jones et al.’s method recovers the transformation between the local ground
plane coordinate systems by matching tracks obtained in each camera view. This part of
the algorithm relies on good local calibration (obtained in the first stage), on a reasonably
good monocular world view tracker and also on the different views overlapping. In cases
where these conditions cannot be met, semi-automated or manual alternatives have to be

considered.
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1.2 Overview of Proposed Method

Having presented the various different approaches to the person tracking problem we in-
troduce the approach we have adopted and present in this thesis. Note that this is only

an overview; the notions are formally and completely presented in the chapters ahead.

1.2.1 Filtering aspects

We forego the flexibility of particle filtering by assuming simple Gaussian noise sequences,
thus adopting the Kalman filter formulation. We model each target as a separate linear
model formulated in a world view. The state vector x(t) follows a transition relationship

of the form
x(t) = F(At)x(t — At) + |At|v(t). (1.4)

This formulation allows for asynchronous updates of the model. We elaborate further on

this choice of formulation in chapter 3.

The observations or measurements are made in the image view. Under perspective pro-
jection this measurement process is non-linear. This breaches one of the assumptions of
conventional Kalman filtering. We thus adjust for this by performing local linearisation of

the measurement process, which results in the Extended Kalman Filter formulation.

1.2.2 Target representation and localisation

For shape representation we model each target as a 3-D ellipsoid with a vertical major
axis and feet on the ground plane. To explain the shape and the size of the targets in the
image, a projection of the ellipsoid to the image plane can be computed. Under perspective

projection, the image of an ellipsoid is actually an ellipse in the image plane.

For colour representation we implement a novel compromise between the colour histogram
and the appearance model: a RGB-height histogram. This formulation has the advantage

of being size invariant whilst still retaining some spatial information. The RGB colour

!The temporal indexing notation using ¢ replaces the one using k from the previous section throughout
the rest of the thesis. The two notations are related by t = kAt.
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space was chosen simply because raw image data is in RGB, and although slightly better
representation (with regards to varying lighting conditions for example) is achieved using
HSV and L*a*b colour spaces, the incurred computational costs in the conversion (from
RGB to HSV /L*a*b) is not justified. At initialisation or during the matching process the
histogram is populated only by pixels in the foreground regions masked by the expected
target position, shape and size in the image (defined by the projected ellipsoid). Foreground

regions are obtained using background subtraction in RGB space.

The matching process is performed by sampling the image according to the prior distribu-
tion p(x(t|t — At)) and comparing these samples to a reference target colour model. We
found that slightly better performance was achieved when using Bhattacharyya Coefficient
approach rather than the Histogram Intersection approach for histograms comparisons.

The best matched sample is then used to define the measurement pdf p(y).

1.2.3 Tracking with multiple cameras

As stated earlier, a world-view formulation of the tracking problem facilitates the task
of combining measurements from multiple cameras. Figure 1.2 gives an overview of the
system for multiple camera configurations. Each camera view is associated with a different
tracking client. The world view model in which the tracking takes places exists in a world
coordinate system which is independent of different camera views. Cameras are calibrated
to this world view so the transformation from world view to image view is always known.
Each time a new image is captured and made available to a client foreground regions
are identified /segmented using a reference background model. The client then fetches a
description of the current targets from the world-view Server and the predicted or prior
distribution p(x(t|t—At)) is calculated. The client then tries to match the segmented image
data to the targets in the scene. The target representation and localisation introduced in
the previous paragraph determines how this matching process is performed. At the current
stage of implementation each client maintains its own colour model of each target. Finally
the client returns to the server the observation obtained from the image and the updated

or posterior distribution p(x(|t)) is calculated.
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1.3 Datasets

The current implementation of the proposed tracker is too slow to track in real time, so
it is tested and evaluated using prerecorded video sequences. The datasets chosen cover a
wide range of different camera configurations in an attempt to show the generic nature of
the proposed method. Each has its own particular difficulty with regards to both tracking

and calibration aspects. The sequences are:

1. The 2-Cam Debtech sequence
2. The 4-Cam DIP sequence

3. The 1-Cam Jammie sequence
4. The Colourful People sequence
5. The PETS2002 sequence

6. The PETS2004 sequence.

1.3.1 2-Cam Debtech Sequence

This dataset is an indoor sequence taken using a set of 2 near-horizontal cameras with
overlapping views. Images from both cameras were recorded synchronously at a fixed

frame rate. Although the sequence only contains one person, tracking difficulties arise



11 Chapter 1. Introduction

2-Cam Debtech sequence

Cameras | 2
Taotal tracks | 1
Total frames | 352
Fecorded fps | 8 (synchronous)
Frame zsize | 384 x 2BE

- &

oo

Figure 1.3: The 2-Cam Debtech sequence.

from partial and complete occlusions occurring in at least one of the views at a time. The
calibration of this particular camera configuration can be done using all the methods dealt

with in the thesis. Figure 1.3 shows views from each of the cameras used.

1.3.2 The 4-Cam DIP sequence

This dataset is an indoor sequence taken using four ceiling cameras pointing straight down
with partially overlapping views. The images from each of the cameras were received asyn-
chronously, each with a time-stamp. The sequence contains three targets and difficulties
arise from the numerous occlusions that occur. Another difficulty arises from the fact that
the images received are quite severely radially distorted. Since calibration points were
available, T'sai’s method was used in this case to calibrate the cameras. Figure 1.4 shows

shots from each of the cameras used.

1.3.3 The 1-Cam Jammie sequence

This dataset is an outdoor sequence taken using one near-horizontal camera. The difficulty
of this sequence arises from the fact that the three tracked people are of very similar colour
composition as illustrated in figure 1.5. Calibration for this sequence was performed using

Tsai’s method for coplanar calibration points and an automatic method proposed in this
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Cameras
Total tracks
Total frames | 1200
] Recorded fps | 12-25 {(asynchronous)
Frame size | 384 x 288

Figure 1.4: The 4-Cam DIP sequence.

thesis.

1.3.4 The Colourful people sequence

This dataset is an indoor sequence taken using one near horizontal camera. The difficulty
of this sequence results from the numerous occlusions that occur from the interaction of
the seven people present in the scene at the same time, despite the fact that they are highly
colourised. Figure 1.5 shows a particular frame taken from the sequence when all seven

people are present in the scene.

1.3.5 The PETS2002 sequence

This dataset was recorded and made available as a standard dataset for the Workshop on
Visual Surveillance and Performance Evaluation of Tracking and Surveillance (PETS) in

2002. It is a sequence taken with a low quality camera in a shopping mall environment.
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1-Cam Jammie Sequence

 ——

L ¥
Colourful people Sequence

Cameras | 1 Cameras | 1
Total tracks | 3 Total tracks | 7
Total frames | 218 Total frames | 200
Eecorded fps | 10 Eecorded ths | 25
Frame size | 360 x 288 Frame size | 384 = 288

PETS 2004 Sequence

Cameras

Total tracks | 4
Total frames | 205
Eecorded fps | 15

1

Frame size | 352 = 240

PETS 2002 Sequence

Cameras | 1
Total tracks | 2
Total frames | 10350
Eecorded fps | 15
Frame size | 352 = 240

Figure 1.6: The 2002 and 2004 PETS sequences.

This is probably the most difficult dataset used in this thesis. The main difficulties arise
from the poorly defined entry and exit points, the poor image quality and the similitude of
the colour composition of people in the scene. Calibration had to be performed manually

for this sequence. Figure 1.6 shows a particular frame taken from this sequence.

1.3.6 The PETS2004 sequence

This last dataset was recorded and made available for the PETS 2004 workshop. It was
taken from a ceiling camera placed quite high above the ground. The difficulties here arise

from the small size of target images and the presence of a patch of sunlight in the middle of
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the scene that drastically affects the colour composition of the targets as they pass through

it, as shown in figure 1.6.

1.4 Thesis organisation and outline

Chapter 2 describes the measurement process. It deals with our chosen method of target
representation for both colour and shape aspects. We explain how 3-D target shape model
is projected to its corresponding 2-D image. We describe how the image samples are

obtained and compared with the reference colour models.

In chapter 3 we give details of our person tracking algorithm. We describe how tracks are

initiated and terminated and we list the assumptions made by the tracking system.

Since the tracking system presented in this thesis relies significantly on the calibration of
the different cameras to a common coordinate system we address the problem of camera
calibration in chapter 4. We describe the two-stage automatic method based on one by
Jones et al. We also suggest but do not discuss in detail some other calibration methods

for camera configuration that cannot be calibrated using the automatic method.

In chapter 5, we give an evaluation of the performance of the tracking method on each of
the chosen datasets. We detail how the complexity of each of the datasets is computed.
The evaluation is performed by comparing tracks estimated using the proposed system to

tracks that were generated by hand.

We conclude the main body of the thesis with chapter 6 where we discuss findings and

propose some possible extensions the methods presented in this thesis.

In appendix A, we specify the various parameters that we used in the evaluation of the

tracking system.

Appendix B describes Tsai’s camera calibration method.



Chapter 2

The Measurement Process

This chapter describes the observation or measurement process of obtaining p(y(¢)) where
y(t) is related to the state x(t) by

y(t) = he(x(t)) + e(t), (2.1)

and where h, is the mapping from the state vector (target’s position in the world) to the
measurement vector (target’s position in the image) for camera ¢ and e(t) is a Gaussian
noise. This process has two aspects that need to be addressed. The first deals with the
choice of a feature space to characterise targets. For each target a reference target model is
represented in the chosen feature space. Consider several target candidates also represented
in the same feature space and obtained from different parts of an image. By computing
the similarity between the target model and the selected target candidates (samples from
the image) we can deduce the most likely position of the target in the image. The next
problem is to decide how to select those candidates from the image (position, size and
shape). From a computational cost point of view, an exhaustive search of the whole image
is too expensive to be considered. By using the prior distribution p(X(¢|t — At)) (constraint
on position) and by assuming that targets are ellipsoidal in 3-D space (constraint on shape
and size) we show how only a few well picked samples are necessary to accurately locate

targets.

We start by introducing our chosen feature space for target representation. The next topic

we discuss is how correspondences between the wold-view and the image view is done with

15
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a brief introduction to perspective projection. We explain how the world-view model of
a target (the ellipsoid) is generated and how we can use perspective projection and the
calibration information to compute the corresponding shape of targets in a given camera
view. Finally we describe the process of obtaining a measurement from the image using

our chosen target representation.

2.1 Target Representation: Colour

As mentioned in chapter 1, the feature space chosen to represent targets is a compromise
between histograms and appearance models. We bin colour information to a ng X ng x
np X nz histogram where ng, ng and ng are the number of bins for Red Green and Blue

values.

The height dimension of the image of targets is discretised into n, bins. Using this 4-
dimensional histogram is effectively the same as modelling targets using n, ordered ng x
ng X npg colour histograms, enabling us to make use of some spatial information while
retaining the advantages of using histograms. We thus define the discrete pdf’s of the

target model and a target candidate at position y as

target model: d={q}u=1.n Z qu =1,

target candidate: p(y) = {pu(¥)}u=1..n Zpu— L,

where n = ng X ng X ng x n,. Figure 2.1(a) shows a frame from the Colourful people
sequence. The histograms (rotated on their side) representation of two of the targets
(orange and green person) are shown for ng = ng = ng = 10 and n, = 6 in figures 2.1(b)
and 2.1(d). The colour of each band in the colour charts shown in figures 2.1(c) and 2.1(e),
is the mean of the RGB pdf for each of the height partitions.
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(a) Colourful People sequence - frame 125
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Figure 2.1: Colour model summary for 4 tracked subjects. Each of the 6 ‘bands’ are coloured

with the mean of the colour histogram associated with the corresponding height partition.
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2.2 Target Representation: Shape and Size

Before we can discuss how our chosen 3-D world view representation of the targets is
projected into an image view we need to introduce a few notions dealing with perspective
projection and camera calibration. Good references on this topic include books and notes
by Pollefeys [31], Hartley and Zisserman [12] and Birchfield [3].

2.2.1 From the World View to Image View

The world to image transformation function is a non-linear function parameterised by 12
scalars (calibration parameters), 6 extrinsic and 6 intrinsic. These can be usefully combined
to form 3 parameters [R t] (perspective projection matrix), S (intrinsic matrix) and s

(radial distortion parameters).

The Perspective Projection Matrix

[R t]is a 3 x 4 matrix known as the perspective projection matrix*. The matrix [R t] is
also referred to as the extrinsic matrix because it holds the camera’s extrinsic parameters.
These describe the camera pose within the predefined world coordinate system. In other
words, they relate the camera reference frame to the world reference frame. [R t] is
made up of a 3 x 3 rotation matrix R and a translation vector t. The matrix R is itself
constructed using the pitch, yaw and roll angles of the camera. The vector —R”t gives

the position of the camera in the world reference frame.

The S Matrix

The 3 x 3 matrix S describes an affine transformation that scales camera-centred points (in
world units) to image points (in image units). It is known as the intrinsic matrix because

it holds some of the camera internal parameters, namely

! Perspective projection maps a point in 3 to a point in P2. A point in projective space of n-dimensions,

P™ is represented by an augmented (n + 1) vector of coordinates.
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The lens focal length f.

The horizontal and vertical pixel dimensions or inter-pixel widths «;, a; of the capture
element or CCD?.

The row and column image centre coordinates (ig, jo).

The skewness of the two image axes, denoted by c.

S is given in terms of these parameters as

f]q ¢ Jo
S: 0 fz’a iO )
0 0 1

where [ = %, e = ai and c is assumed to be 0.
J 1
The parameter P = S[R  t| describes the transformation from the world coordinate system

to the undistorted image plane. This is a homogenous transformation so
Y, = PX, (2.2)

where X is the augmented 3-D world point (X, Yy, Zw, 1) and Y, is the augmented 2-D
projected image point (X, Y., Z.). The undistorted image coordinates y, = (ju,,) are

obtained by
X

Lens Radial Distortion

There are two types of radial distortion: pincushion and barrel. In the first case, the further
a point is from the centre of the image, the more it is distorted away from the centre of the
image. In the second case, the opposite happens: the further the point is from the centre
of the image, the more it is distorted towards the centre of the image. Barrel distortion is

more common than pincushion distortion.

2Throughout this thesis we denote row and column pixel coordinates by 4 and j.
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Barrel radial distortion can be modelled as follows:

1= 1y (1 + K12 + /4,27”3 + ) (2.4)
5= Ju (14 Kar2 + rort + . (2.5)

where
T = Ja iy (2.6)

(7,1) are distorted image coordinates, (j,, 7,) are undistorted image coordinates and k1, Ka,...
are the distortion coefficients of the lens. For barrel distortion x; is negative. For most
applications it is sufficient to model distortion only with the 15 order distortion coefficient
k1. There are instances, particularly when important information is contained in the ex-
treme corners of an image with high distortion, when it is necessary to include the 2m¢
order distortion terms as well. Figure 2.2 illustrates barrel distortion when it is modelled

using only k1, and then using x; (negative value) and ko (positive value).

(a) Undistorted (b) 1%t order distortion (c) 1% and 2"? order distortion

Figure 2.2: Ilustration of lens distortion

Note that Tsai [43], amongst others ([31, 48], models distortion as the inverse of the func-
tions laid out in (2.4) and (2.5). If Tsai’s approach is used k; is positive. For our applica-
tion, Tsai’s approach is more computationally expensive hence we adopt the formulation

given in 2.4 and 2.5.

2.2.2 The Ellipsoid

An ellipsoid is a second order surface that belongs to a family surfaces referred to as

quadrics. In P", a quadric can be represented by a (n + 1) x (n + 1) matrix Q such that
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all the points that are elements of the quadric will satisfy:
X'QX =0 (2.7)
where X is a (n + 1) vector.

In the case where n = 2, quadrics are called conics. Ellipses, parabolas and hyperbolas
are referred as conics in projective geometry. A useful property of a quadric such as the
ellipsoid is that it forms a 2-D conic under perspective projection transformations. Using
ellipsoids to model the shape and size of targets is thus convenient since it results in
elliptical person models in the image plane. In the 3-D world view we define an ellipsoid
in terms of a centroid, size and orientation. Since we are always going to assume that the
tracked subject is a person standing or walking, the orientation is assumed to be vertical
at all times. The quadric Q used to represent such an ellipse size r, X r, X r, with centroid

at (Xg, Yy, Zg) shown in figure 2.3, is constructed as follows :

1 —Xo
z 00
1 Yo
oo Y i 2.8
72 3
it 2 V2 72
—Xo Yo =—Zg Xo Yo, %
r2 r2 r2 r2 7‘5 r2 |

Figure 2.3: Ellipsoid used to model shape of person
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2.2.3 From an Ellipsoid to an Ellipse

An ellipsoid is a particular configuration of a quadric represented in homogeneous coordi-
nates by a symmetric 4 x 4 matrix Q. The points in space that are inside the ellipsoid
satisfy

XTQX > 0, (2.9)

where X = (X, Y, Z,1)7 is the 3-D homogeneous coordinates of points in the world view.

Figure 2.4: A quadric Q with its projection C on the image plane

It is shown in [40] that for a normalised projective camera P, = (I 0), the profile of a

quadric

is a conic C described by
C =cA —bb’. (2.10)

Hence the points Y in the image that lie inside the projected ellipse satisfy
Y'CY > 0. (2.11)

where Y is the homogeneous undistorted pixel coordinates of points in the image space.

To obtain the image Q,, of a quadric Q,, in an arbitrary projective camera P = SR t],
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one has to first compute H such that PH = (I 0). ‘H can be calculated using the

following reasoning.

Let X, be a point in the world coordinate system and X,, be the corresponding point in the

normalised coordinate system determined by P. The image point of X, in homogeneous

Y=P (Xl“’> : (2.12)

Similarly, the image of the same point projected from the normalised coordinate system is

Y = <I 0) (f”) . (2.13)

X\ . (X,
<1>—H<1>. (2.14)

Since the last row of H will be (0 00 1),

HH h
H = <0T 1) . (2.15)

Letting P = (Pn p), it can be shown that

coordinates is

We want H so that

and

PllHll + P = I (217)

Once H is found, the normalised quadric Q,, is calculated as follows:

The projected conic C can then be calculated using 2.10. Figure 2.4 illustrates the mapping

of a world view quadric Q (ellipsoid) to a conic C (ellipse) in the image plane.
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2.3 Target Localisation

Having explained our chosen target formulation we now describe how we use it to obtain
a measurement from the image. Since the computation involved in the histogram repre-
sentation and matching is quite substantial, we want to keep the number of image samples
required to find y as low as possible. The adopted target localisation process is given in
figure 2.5.

Starting with the
prict distribution G_fﬂﬂﬂ_fa’fe S?dmﬁle
5 o points in seeorld wvies
AREAD) fram the prior
digtribution o[t At
¥ ¥
Generate ellipsoid Project world wiew
ir weorld viewy located zample poirts to
at the mean of imace coordinate
P t-At) ay=tem
¥ ¥
Caloculate image Sample the segmented
coordinates of points image by offzetting
falling inzide | elipze image coordinates
projected ellipse with ellipse centres at
projected sample poirts
¥
Bin each
sample to
histogram
b
Target Campare each
reference i sample with
mociel reference model
F Y
|
I 3
Update target . Calculate @iy
reference model uzing bhest
uzing best match matched sample

Figure 2.5: Target localisation process overview.
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Sample generation

We generate m sample points x, according to the world view prior distribution of the
target p(X(t|t — At)). Figure 2.6(a) shows a top-view of the world coordinate system where
4 targets are present. The ellipse shows a line of equal probability for the world view prior
distribution and the +’s show the world view sample points that were drawn from that

distribution.

Projection of sample points

We proceed by projecting these sample points to the image view by using the transforma-
tion described in the previous section (equations 2.3, 2.4, 2.5 and 2.10) to obtain the set
of points {ys}1.m. An illustration of this process is shown in figure 2.6(b). The +’s show
the {ys}1.m values for each targets and the ellipses show the lines of equal probability for

the prior distribution projected onto the image.

Generation of 3-D ellipsoid

In this step we generate the 3-D ellipsoid quadric matrix Q at centred at world coordinate

z(t|t — At), y(t|t — At),rz) and dimension r, X r, X r, using equation 2.8.
(&( Y g

Computing image points that fall inside projected ellipse

We calculate C from Q using equation 2.10. By applying equation 2.11 we obtain undis-
torted image points that fall inside the projected ellipse described by C. After re-scaling
using equation 2.3 these points can be applied to equations 2.4 and 2.5 to obtain the

distorted image points that fall inside the ellipse. We call this set of points y..

Sampling of image

By centering the cluster of points y. at locations {ys}1., we obtain m different elliptical

image samples. An illustration of this is given in figure 2.6(c) where elliptical shaped
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samples are taken from the segmented image.

Binning of each sample

For each sample taken, we bin the colour-height information to obtain m candidate distri-

butions {pu.(ys)}1.m- Note that only foreground pixels are considered in this process.

Similarity Measure

The similarity or likelihood measure between the model distribution q and a candidate
distribution p(y;) is obtained using the discrete version of the Bhattacharyya Coefficient
defined by:

p(ys) =D VPuly)u: (2.19)

Figure 2.6(e) shows the colour model matching output p(j,7) surface for the white target
model reference in the neighbourhood of the white and pale blue targets. In figure 2.6(f)

the response p is shown for samples that were taken (shown by the inverted red triangles).

Calculation of measurement distribution p(y)

Since the measurement distribution p(y is Gaussian it can be expressed simply by a mean
vector y and a covariance matrix IN,. The mean vector y is approximated to {¥s}max
where {p(¥s) }mar = max({p(ys)}1:m). Figure 2.6(d) shows the sample which gave the best
match. The covariance matrix N, is a function of {p(ys) }maz- The higher {p(ys) }maz, the
better the match and so the lower the uncertainty should be. N, is thus given by

1 (o7 O
N,= (o a§> , (2.20)

where o7 and o7 are the row and column uncertainties, which are fixed throughout the

tracking process.
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(a) Sample points in world view for 4 targets. (b) Projected sample points to segmented image view.

(C) Ellipse shaped samples taken of the white target. El- (d) Best candidate for white target.
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Figure 2.6: Sampling the segmented image in the target localisation process.
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Colour model update

The colour reference model is initialised using only one frame (see next chapter section 3.5),
so there is always some probability that important colour features might have been missed
on initialisation. Also, light variations can alter the colour features of tracked subjects
quite drastically, especially in outdoor scenes. To overcome these effects we slowly adapt
the colour model of each of the tracked subjects over time as done in [28]. The update
of the target reference model is implemented by mixing the reference model with a small

part of the best candidate model using the equation

qr = (1 - Ac)qkfl + )\c{p(ys)}mam (221)

Ac 1s a learning rate parameter.



Chapter 3

The Person Tracking Algorithm

The previous chapter described the observation process that is executed each time a new
frame is available to the system. In this chapter we describe how we use this to track targets
in the chosen world-view coordinate system. We start with an overview of the algorithm
before describing in detail some of the more important components namely state transition,

state update, foreground update and track initialisation, and track termination.

3.1 Algorithm Overview

Figure 3.1 gives an overview of the tracking algorithm. The algorithm makes a number of
assumptions about the cameras, the scene and the targets. It assumes that cameras are
fixed, that they are calibrated to a unique world coordinate system and that there is some
overlap between the views. Entry and exit points of monitored scenes are assumed to have
been specified beforehand. Targets to be tracked are people of average size walking or
standing on a horizontal ground plane. No slopes or steps are taken into account, although
if one were to construct a detailed description of such instances, then the system could

quite easily be adapted to cope with them.

29
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3.2 Image Preprocessing

The fact that we are using fixed cameras allows us to perform foreground/background
segmentation at relatively low computational costs. This step considerably reduces the
amount of image pixels to be processed as well as provides further constraints on the
measurement, process. We demonstrate in chapter 5 that the tracking process is not seri-
ously affected by poor segmentation but does suffer if no segmentation is performed. This

justifies our choice for a simple segmentation algorithm summarised as follows:

The background model is simply the image of the monitored scene when it contains no

targets. A difference D is calculated according to
D =|I - B| (3.1)

over each pixel, where [ is the current image and B is the background image in RGB

coordinates. D values are then simply thresholded to mark foreground regions.

3.3 State Representation and Transition

For each person being tracked, the system uses a separate single world-view model. This
model describes the x and y position and velocity (a 4-D state vector x = (z,y, &, 9)7),
together with a measure of the uncertainty in this vector (a 4 x 4 diagonal covariance
matrix N,) in the chosen 3-D world coordinate space. This contrasts with the Bramble [14]
implementation, where all the target states are parameterised by a single state space model.
This one state space model formulation allows for occlusions to be handled implicitly. In
our implementation we have to handle occlusions explicitly. This is achieved by processing
each of the separate target models in order according to their distances to the cameras
(or depth) starting with the closest one, and then modifying the image (as described later
in this chapter) so that the influence of targets that might be occluding other targets is

reduced.

The individual target model x follows a transition relationship of the form
x(t + At) = F(At) - x(t) + |At|v(t) (3.2)

where
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and where At is the time that has elapsed since the model was last updated, and v(t) is a
Gaussian noise sequence. Note that the uncertainty grows with time between observations.
Also, since we are scaling the uncertainty by the modulus of At, we allow negative values
of At. This allows observations to be made out of sequence, which could easily occur when

tracking with multiple cameras.

Given an initial or a previous estimate of the state vector at time t—At, namely x(t — At|t — At)
with associated uncertainty M(t — At|t — At), the predicted state and associated uncer-

tainty at time ¢ are given by
x(t|t — At) = F(At) - x(t — At|t — At) (3.3)

M(¢[t — At) = F(A)M(t — At|t — ADFT(At) + | AN, (L), (3.4)

3.4 State Update

The update step can be summarised as follows:

Given an observation y(t), the predicted state vector X(t|t — At), and the
respective uncertainties N, (¢) and M(t|t — At), make an optimal estimate of

the location x(¢|t) and its associated uncertainty M(t|t).

This is done using the Kalman filter formulation:
x(t|t) = x(t|t — At) + K(t)[y(t) — h(t,x(t|t — At))] (3.5)
M(t|t) = M(t|t — At) — K(t)H(t)M(t]t — At). (3.6)

Since h(t,x) is non-linear, H(t) is calculated by locally linearising h at x = X(t|t — At):

_ oh(t,x)

H(?) I

(3.7)

x=%(t[t—At)
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Thus
99 o
_ oxr O
H(t) = < 5 o g 0) (3:8)

The Kalman gain is calculated as follows:
K(t) = M(t|t — AHHT (¢) - [HE)M(t|t — A)HT (1) + N, ()] (3.9)

Figure 3.2 gives an overall picture of the update step. Frames taken from the ‘2-Cam
Debtech’ sequence where one person is tracked by two cameras with overlapping views are
shown. Figures 3.2(b) and 3.2(c) show simultaneous views from camera 1 and camera 2.
Figure 3.2(a) shows a top-view of the world coordinate system at that same instant. The 4
ellipses show lines of equal probability of distributions. The large grey (more circular) el-
lipse is the predicted distribution (or prior) p(X(t|t — At)), the elongated red ellipse shows
the measurement p(y;) obtained from camera 1 the elongated purple ellipse shows the
measurement p(y,) obtained from camera 2 and finally the smaller blue ellipse shows the
estimated position (or posterior) of the position of the target p(%(¢|t)). The small grey cir-
cles, red +’s, purple crosses and blue triangles represent previous predictions, observations

and estimates. The black line shows the ground truth that was defined manually.

3.5 Foreground Update and Initialisation

The updated world position of a target is used by the system to mask out foreground regions
associated with the target. This improves the subsequent localisation of other targets that
are further away from the camera especially in the event of an occlusion. Figure 3.3(b)
shows a scene from the ‘Colourful People’ sequence with 4 targets being tracked and a
new person having just entered the scene. Figure 3.3(c) shows the foreground image after
the target closest to the camera has been masked out. The measurement processes for
subsequent targets, which are partially occluded, are thus not influenced as much by that

first target.

When foreground regions near entry points are not accounted for by any of the currently
tracked targets, a new track is initialised. In other words, initialisation of a new track
is triggered if at a predefined entry point the foreground pixel count of an ellipse-shaped

sample is above a certain threshold Tj,;. Figure 3.3(a) shows entry/exit points for the
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Figure 3.2: Simultaneous views from camera 1 and 2 at that particular instant with estimated

position of ellipsoid projected back onto the image

‘Colourful People’ sequence. The unaccounted for pixels near the entry point as shown in

Figure 3.3(d) are used to initiate a new track.

Once detected the new target is tagged, a new state vector containing its position and
velocity is generated on the server and a colour reference model for the target is defined
and distributed to all clients. This simplistic approach to initialisation was implemented at
the very last stages of the project and works well on the datasets presented in this thesis.
However, it needs to be improved further. For instance, should a person entering the scene

be occluded by another person already in the scene or entering at the same time, his/her
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entry may not be detected by this approach.

(a) The ellipses show where image samples are (b) 4 Tracked Targets and one new target to be

taken to detect new entries. ‘acquired’.

(c) Foreground model after closest target is (d) Foreground model after all 4 tracked subjects

masked out. are masked out.

Figure 3.3: Foreground model update and initialisation.

The updated foreground is also a useful mask for the background model update. This is

implemented by a similar equation to the one used for the colour model update:
B(t) = (1 — MAt)B(t — At) + M ALFI(t), (3.10)

where B is the background image (RGB), F' is the mask (binary) made up of the projected
ellipsoids at the estimated locations of the tracked subjects, I is the current image (RGB),
and )\, is the learning rate parameter. A background update at every frame slows the
tracking process down. Thus depending on how much lighting variation one expects, the

background may be updated at regular time intervals. The background update step was not
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implemented when testing the algorithm with the selected sequences because they were too

short to contain any drastic lighting conditions that would have affected the segmentation.

3.6 Termination of Track

When a target leaves the scene we expect observations with low quality of match pp,q..
The main difficulty is to decide whether the poor quality of the observations are due
to the target having indeed left the scene or whether the target is simply being occluded
temporarily. Figure 3.4 shows a typical response of the colour match variable p,,q, through
a particular person in a tracking sequence. As one can see, p,,q. is as low during occlusion
as it is when the target exists, so it is not a sufficient indication that the target has indeed
exited. Fortunately we know the world view locations of exit points and using this extra
information we can more robustly terminate tracks. Shown on the same axes in the figure,
is the variable d,,;,, which is the world view distance of the estimated position of the
tracked person to the nearest exit point. Occlusions tend to be short, whereas as a target
exit results in a more sustained low p,,... Hence a track is terminated if the following
conditions are simultaneously met:

1. dpin < Ty and

2. mean(pPpmaz(t — 11), - Prmaz(t)) < T,
where mean(pyaq(t — 13), .- pPmaz(t)) is the average value of the best match obtained over

the last T} seconds,and 7y, and 7}, are threshold values for distance to closest exit point

and value of best match.
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Figure 3.4: Plot of matching response pmaz and dp, for orange person in ‘Colourful people

Sequence’ for 300 frames. The distance d,,;, has been scaled to fit the axes, so a value of 0.1

actually represents 1.0 metres.
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Chapter 4

Camera Calibration Suited to Person

Tracking Applications

In this chapter we present a camera calibration solution for person tracking applications.
Our approach is based on a 2-stage method proposed by Jones et al. [16]. In the first
stage the method uses observed image size variations of objects obtained from a sequence
of images to automatically recover the local ground-plane transformation, by making some
assumptions about the camera and the monitored scene. In the second stage, the transfor-
mation between these local ground planes is recovered. For cases where assumptions made
by the automatic method are breached we propose some adaptations that require some
level of user/operator intervention. We end this chapter by briefly describing an approach
that makes use of visual cues present in the scene, based on a method by Tsai [43] that

also proves to be of some practical use.

4.1 Local Ground Plane Calibration

To recover the local ground plane transformation automatically using the proposed ap-
proach we need 2 things. First, we need a model that explains how the size (or height)
of the projected 2-D image of an object varies with its vertical position in the image in

terms of camera parameters. Then we need a process for observing and recording this size

39
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variation given a video sequence or set of images taken using the cameras that are to be

calibrated.

4.1.1 The Projected Object Height Model

It is shown in [16] that the height h of the image of an object of height H located at image

row coordinate ¢ can be related to camera parameters ¢, t., f* and ¢y by

_cosgsin@((ff)? — (io — 1)%) + f*(io — i)(cos® ¢ — sin® ¢)
B fe(t,/H — cos? ¢) + (ig — i) cos ¢ sin ¢ ’

h (4.1)

where ¢ is the pitch angle of the camera, t, is the height of the camera above the ground,
1 is the focal length to pixel width ratio and 7 is the row coordinate of the optical centre.
The camera parameters ¢, t,, f* and iy are sufficient to describe the local image to ground
plane transformation if a simplified camera model is used. Figure 4.1 shows an illustration

of this simplified model where the following assumptions are made:

The pan and roll angles of the camera 6 and 1 are both very small or equal to zero.

The origin of the ground plane coordinate system is directly below the optical centre

of the camera.

The column pixel width is equal to the row pixel width a; = .

The optical centre (jo, o) is assumed to be the image centre.

Lens radial distortion effects are ignored.

Jones et al. [16] further assume that the projected 2-D image of an object varies linearly
with its vertical position in the image, from zero at the horizon (at row coordinate ij) to a
maximum at the at the bottom row of the image. In other words, they assume that the (i, k)
relationship given in equation 4.1 is linear. They however recommend that precautions be
taken when making this assumption for steep camera angles. Figure 4.2 gives a plot of
the projected height h versus the vertical image position ¢. From the plot we can see that

indeed the relationship deviates more and more from linearity as ¢ is decreased.



41 Chapter 4. Camera Calibration Suited to Person Tracking Applications

25 '
;
2 Image plane

1 Optical
centre

hotizon

Chject height H

= _ Dptical Axis
- -

0 Og Ground plane
origin

Figure 4.1: Simplified Camera model

The linear relationship is expressed as follows:

where v is the height expansion rate and iy, is the pixel row coordinate of the horizon. By
recording how the height h of the image of an object varies with its vertical position 7 in

the image over a number of frames, the values of v and 7;, can be recovered.

If an object of height H is placed (upright) on the ground plane at the point where the
projection of the optical axis intersects the ground plane, ¢ will be equal to ig. We denote
the image height of this object by h(ig). We can find h(ig) by substituting i by iy in
equation 4.1 and simplifying:

, f¥H cos ¢ sin ¢
h == . 4.3
(io) t, — Hcos? ¢ (43)
We can also find h(ig) using the linearised height model given in equation 4.2:
h(io) = (o — in)- (4.4)

The pitch angle ¢ is directly related to the horizon parameter 5, 7o and f{* by

(i — i) = J2 cot 6. (4.5)
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Figure 4.2: Height of image of object h variation with row coordinate of image of object i for

different camera pitch angles ¢.

Substituting (ip — i5) from equation 4.5 in equation 4.4, equating to 4.3 and simplifying

yields:

’Y(tz - H )

H(1—7)

We thus have a function that relates the height expansion rate v to the pitch angle ¢,
the camera height ¢, and the height of the object H. If we know H and t, and v we

sin® ¢ =

(4.6)

can calculate ¢ using equation 4.6. The expansion rate 7 can be obtained by making a
suitable number of (i,h) observations. The process of recording (i,h) observations is a
critical aspect of this method since it relies on information contained in video sequence

images and is described in the next section.

If we use n objects of different height H we get a different expansion rate v for each object.
Substituting each of the v and H values for the different objects in equation 4.6 we get n

equations relating ¢ to t,. Let

I'= 5 (4.7)
and
_ 1 4.8)
n=g (4.
We can rearrange equation (4.6) and express it in terms of I' and 7 as follows
r—_' ! (4.9)

sin? ¢ e sin? ¢
By applying linear regression to the set of points (n, I') we can solve for ¢ and ¢,. Once

¢ is known, f is calculated using equation 4.5. We thus have a method to recover the 3
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required camera parameters ¢, t., f* if we know the height H of each object in the scene

and the corresponding expansion rate ~.

Figure 4.3(a) shows a frame taken from the 1-Cam Jammie dataset containing 3 people
of different heights. It also illustrates an example of an (i, h) observation. Figure 4.3(b)
shows a plot of how the height h of the image of the 3 people in the scene vary with their
vertical position in the image ¢ over several frames, as they move towards and away from
the camera. For each person, a different expansion rate 7 is obtained by linear regression.
Note the position of i), just above the top of the image, where all three regressed lines
intersect. Figure 4.3(c) shows a plot of I' vs n for the 3 values of v, from which we can

infer the camera parameters ¢ and ..

4.1.2 Learning the Height Model Automatically

The linear height model expressed in equation 4.2 can be learnt from the scene automati-
cally by accumulating (7, h) object observations. This is achieved using a motion detection
process (or segmentation) to extract components of connected components of moving pix-
els (or blobs). The bounding box (imin, tmaz, Jmin, jmaz) Of each segmented blob generates

a height h = 4,00 — imin and a row position 7 = 4,4,

Figure 4.4 shows the screen view of the operator interface for the rudimentary blob tracker
that was implemented to automatically record (i,h) observations. Since no calibration
information is available, only 2-D image information can be used. Track initialisation,
target representation and localisation used in this blob tracker is based on principles similar
to those used in the person tracker described in chapter 2 and 3. We make use of no filtering
and the tracker relies quite heavily on good segmentation. Any complexities arising from
occlusions or shadows and reflections are not handled well. We thus assume that during
the calibration process, the operator will have some control over what goes on in the scene.

For instance, only one person need to be in the scene at a time.

In an attempt to improve the quality of segmentation the blob tracker includes a back-
ground model update feature as well as a shadow identification feature. The background
update is achieved in a similar fashion to the colour model update presented in chapter

2, where the reference background model is mixed with a small part of each new frame
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Figure 4.3: Calibration using automatic method on ‘1-Cam Jammie’ dataset.
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processed. The shadow identification process is based on work by Cucchiara [9], where

shadow pixels are identified by the following criteria:

o 7y < % < Tva,
[} |SF — SB‘ S TS and
[} m1n(|HF — ]’IB|7 |HF — HBD S TH,
where H, S and V are the hue saturation and intensity values associated with each pixel

being tested. The subscript F' indicates that the pixel belongs to the identified foreground
image and B indicates that it belongs to the background model.

4.1.3 Obtaining the Height Model manually

In cases where the operator has little control over what goes on in the scene or where
good segmentation is not achievable, (i, h) observations have to be made manually. Fig-
ure 4.5 shows the operator interface that was implemented for manually recording (7, h)

observations.

4.1.4 Manually Adjusting the Local Calibration

There are camera configurations that are not suited to using the calibration method that

was just presented. Such configurations include:

e Cameras with considerable pan and roll angles (as in the PETS 2002 sequence).
e Cameras with steep pitch angles (as in the PETS2004 sequence).

e Cameras with very wide angles or high distortion coefficients (as in the 4-Cam DIP

sequence).

Figure 4.6 shows the operator interface that was implemented for manually finding local

ground plane calibration parameters. The frame shown is taken from the PETS 2002



4.1 Local Ground Plane Calibration

46

Sequence Background  Calibration

File: fusriusersbrunossequencessseqidalliall??? png |

Sequence 50:90

Input mage:

| Collect Data

o] -]

‘ Calibration objects | hvsi
115
OTred  DZ0(H not spec)
Dzgreen 020(H nat spec) 110
0 20(
115
110
35
n o5
o
35
8
T
Object fracker: 75
Tracker Parameter: éy
70
100 150 200

| Background Segmentation
Update rate: = = 0.05 Segmentation method: 1
Threshold IS [
File: alloo0 pg = =

F_Show | * Show | ‘
Foreground ‘ SR
Update Rate l—‘-U = 05 Hue Parameter: I—‘J 1 " 2
Saluration Parameter. [
Threshold =0 P 01 1 ~ 003
Intensity Parameter = e g

= Showr

* Show |

Figure 4.4: Operator interface for the blob tracker. The top left window shows the latest received

image and 3 tracked targets and their bounding boxes. The window below shows the (h,i) data

that was collected. The other 4 windows show (clockwise from top-left): the current background

image, the foreground regions with shadow, the foreground regions with shadows masked out and

foreground regions (including shadow regions) that will be masked out in the background update

process.



47 Chapter 4. Camera Calibration Suited to Person Tracking Applications

Figure 4.5: User interface for obtaining (i, ) data manually. The operator is simply requested
to point and click on the feet and head of an object/person of known height H. A collection of

(h, i) points are obtained for as many frames as the operator judges necessary.

sequence. The camera used to capture this sequence has a non-zero pan angle and quite
considerable distortion hence cannot be calibrated using the approach based on Jones et
al.’s method. The calibration procedure is quite simple. The operator makes an initial
guess of what the camera parameters are. Then by trial and error, he adjusts each of the
parameters is adjusted until satisfactory results are obtained. Trials are evaluated visually
by projecting ellipses (calculated using the trial parameters) onto the image of people in
the scene. The accuracy of this approach depends on the operator skill level. It is however

still less labour intensive than using hand-measured calibration points.

) guicaliz =100 ]

File  Calibration

Fitehi |7 2665
« 5

ﬁ

Fiame nur e [ 1471

Figure 4.6: User interface for performing local ground plane calibration manually.
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4.1.5 Local Ground Plane Camera Pose Recovery

In some instances, the operator may be able to calibrate a camera for internal parameters
before it is deployed to a monitored scene. This would typically be done using a calibration
method such as the one proposed by Zhang [48] that makes use of a calibration object.
Since f is known only the camera pose (parameterised by t., ¢ and maybe 6, 1) need to
be estimated when the camera is deployed. Whether one resorts to using the automatic or

the manual methods described above, more accurate results are generally obtained.

4.2 Registering Multiple Cameras

The second stage of the calibration method recovers the transformation between the local

ground planes of different cameras by matching tracks obtained from each of the cameras.

4.2.1 Automatic Approach

We assume a starting point of 2 cameras for which the local image to ground plane cal-
ibration parameters are known. The generalisation of the method to systems with more
than two cameras is then relatively simple. The ground plane coordinate systems of tem-
porally synchronised observations of the same 3-D object are related by a rotation R, (/)

and translation t,:

X] = Rg(ﬁ>X2+tg, (410)
}.(1 = Rg(ﬁ)*%

where [ is the angle between the two cameras, and x;, X; and x5, Xs are positional and
velocity estimations of an objects measured in the local ground plane coordinate systems
of two cameras ¢; and ¢y respectively. Given a pair of observations x;(t), X1 () and x(t),

X (t) at time ¢, the transformation estimates may be defined as:

%1 (t) - Xo(t)
S (0)] - Jea(0)]
6(t) = (t) — Ry(B()xa(t). (4.12)

and (4.11)
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We make the assumption that only one target is tracked by the two cameras at a time
during the observation process and the observations are temporally synchronised. In other
words correspondences of the data from cameras ¢; and ¢y are known. After collecting a
sufficient number of observations (say from ¢t = 0 to ¢t = T'), we find the angle 3 by taking

the mean all the observed values. In other words

B = mean{B(t) }1=o1...7- (4.13)
The translation t, is then calculated as follows:

t, = mean{t,(t)} =01, 1 (4.14)

Let [R; t;] and [Ry t,] be the local-ground-plane transformations for cameras ¢; and cs.
Once [ and T are calculated, [R; t;] can be transformed so that tracking takes place in

a common ground coordinate system:

(4.15)

R t . Rg(ﬁ) tg
0 1 0 1

[R?ew t?ew] — [

Figure 4.7 illustrates the process described in this section. Figure (a) shows frame 125
from the 2-Cam Debtech sequence where one target is being tracked. Figure (b) shows
tracker position and velocity estimates for sequence frames where the target is present in
both camera views. The estimates have been grouped into 2 separate tracks, coloured
differently to help with visualisation. Figures (c¢) and (d) show the same as (a) and (b)
but for camera 2. Figure (e) shows a histogram of ((t) values that were obtained using
equation 4.11. Figure (f) shows the tracks obtained from each view plotted on the same

ground plane coordinate system.

4.2.2 Manual Approach

An alternative approach to using monocular tracking is to manually select points and
vectors present in both views. This yields more accurate results in instances where poor
monocular tracking results are available. Figure 4.8 shows how a collection of 8 manually
selected points and vectors were used to obtain the transformation between 2 local ground

planes for the 2-Cam Debtech sequence.
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Figure 4.9: Calibration using Tsai’s calibration method that makes use of coplanar calibration

points.

4.3 Calibration Using Co-planar Calibration Points

Often one finds that the scene to be monitored contains strong visual cues such as tiled
floors or other regular patterns. Camera calibration using these visual cues is sometimes
possible and easier than using the methods presented in the previous sections, and so should
also be considered. The approach we present is based on a method by Tsai [43] that makes
use of co-planar calibration points. The procedure is quite simple. The operator selects
a ground plane coordinate system origin. Then calibration points in the field of view of
the cameras to be calibrated are selected in a way that their positions relative to the
chosen origin can be determined (knowing the dimensions of the tiles for example). Tsai’s
method (described in appendix B) makes use of the ground coordinates of the calibration
points and their corresponding image coordinates to recover camera parameters (including

distortion).

Figure 4.9 shows a frame taken from the 1-Cam Jammie sequence and one taken from the
PETS 2004 sequence. Both scenes contain floor tiles. In the first case, the dimensions of
the tiles were known, in the second, they had to be guessed. The red dots show the points
that were chosen as calibration points. The blue diamonds and black crosses show initial

and final re-projection estimates made using calculated calibration parameters.



Chapter 5

Results

Performance evaluation of image tracking systems has become a topic of interest as com-
mercial systems are slowly being introduced into society. The performance of a tracker
is difficult to measure as ground truth is not easy to generate or obtain. Also, the level
of perceptual complexity of tracking problems can vary enormously. Black and Ellis [4]
recently presented some work on tracking performance evaluation. They developed quite
a sophisticated method that makes use of pseudo-synthetic sequences of controllable levels
of perceptual complexity. No attempt was made to replicate this here, it being beyond the
scope of our work. However, we try to adhere to some of the propositions made in [4] in
our definition of a perceptual complexity metric for the datasets as well as performance
metric for evaluating the performance of the person tracker. After discussing the tracking
performance of the tracker we perform a simple evaluation of the calibration methods dis-
cussed in the previous chapter and how calibration quality affects tracking results. We end
this chapter with some preliminary investigations conducted on the tracker with regards

to image size and processing speeds.

5.1 Perceptual complexity metric

Each of the datasets used to evaluate the person tracker presented in this thesis presents

different difficulties. The complexity metric that is used to quantify the difficulty level of

23
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each of the datasets used to evaluate the tracker is defined as follows!:

PC = ’LUlOC + MQCS + ng[ + w4NE, (51)

where w; = 0.3, wy = 0.3, w3 = 0.3, wy = 0.1 and

e ('S quantifies the colour similarity of tracked subjects.

e OC quantifies the occlusion complexity defined as follows:

K
1

k=1
where NF' is the total number of frames in sequence, K is the number of occlusions,

OFE), and ODy, is the extent and duration of occlusion k.

e NE is the number of entry/exit points. This measure gives an indication of how
many entry points a scene has. A sequence with access through only one narrow

door will have a lower value for NE than a scene with a wide corridor leading into it.

e QI quantifies the quality of images of the sequences. Some sequence images have
more noise than others and some sequences are captured using high distortion lenses

which also adds to the complexity of the sequence.

Table 5.1 summarises the complexity metric of the 6 datasets used in this thesis. The data
sets are sorted in order of complexity starting with the most complex sequence, namely
the PETS 2002 sequence.

5.2 Performance of Tracking System

Four main aspects of the tracking system are evaluated. The first one relates to how
well the system initiates new tracks. The second aspect relates to how well the system
tracks through occlusions. The third aspect evaluates the tracking accuracy and finally, we

evaluate how well the tracker detects the exit of a target from a scene. The experiments

!Some of the datasets used to evaluate the tracker were also used by Price [32], so the metric presented

here is the result of our joint effort.
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Dataset | OC' | C'S | QI | NE | PC

PETS 2002 | 0.27 | .85 | 0.80 | 0.60 | 0.64
4-Cam Dip | 0.46 | 0.78 | 0.80 | 0.10 || 0.62
Colourful People | 0.85 | 0.68 | 0.20 | 0.30 || 0.55
1-Cam Jammie | 0.18 | 0.96 | 0.20 | 0.70 || 0.47
PETS 2004 | 0.02 | 0.75 | 0.50 | 0.60 || 0.44
2-Cam Debtech | 0.15 | 0.00 | 0.20 | 0.10 || 0.14

Table 5.1: Perceptual complexity summary for the 6 datasets.

used to evaluate the tracking performance were carried out using a similar procedure for all
6 datasets used. Raw image data (either video sequence file or time-stamped image files)
and parameters that are specific to the dataset such as calibration information, entry and
exit points, image file(s) information are used as input to the tracking system. The other
non-dataset specific tracking system parameters are given in appendix A. The output of the
system is a data file that contains the estimated x and y position and velocity (state vector
%) of each target for each of the frames processed. The world-view estimated positions
are projected to image view and displayed as shown in figures 5.1 and 5.2 throughout the
processing phase. This facilitates the evaluation of occlusion resolution as well as track

initialisation and termination capabilities of the system.

Figures 5.1 and 5.2 show the tracking system at work on each of the test datasets. The
red ellipses around the targets are constructed using the projected estimated target world-
view positions at particular instants during the tracking process. The small coloured crosses
show where the most recent target observations were made in the image. Figure 5.1(a)
illustrates some of the features of the tracking system. The top left diagram shows the
world-view target position as estimated using two simultaneous views from two different
angles also shown in the figure. The colour charts (similar to the ones we used in chap-
ter 2) show the reference and best candidate colour models at frame 50 for each of the
cameras/clients. The charts on the bottom left show historical match quality p for each
camera up to frame 50. The target at that instant is occluded from the view of camera
1. Note how this is reflected by the low match quality p at that instant. Figures 5.1(b)
and 5.1(c) illustrate an example of tracking through an occlusion in the 1-Cam Jammie

sequence. Figure 5.2(a) shows the 3 targets being tracked in the 4-Cam DIP sequence.
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Note the high distortion present at the image corners. Figures 5.2(b) and 5.2(c) show two
frames from the Colourful people sequence. Figure 5.2(d) shows a frame from the PETS
2002 sequence. Note the distortion and the reflections present in