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ABSTRACT

This thesis is a study of the Filters, Random fields and Maximum Entropy
(FRAME) algorithm. The algorithm develops statistical models of visual tex-
tures. Visual textures are difficult to model in general, as they may be images of
any patterned surface. The models produced by FRAME are for homogeneous,
flat textures. They comprise a number of filters and constraints on those filters’
responses. The filters are selected for maximum entropy and can be analysed
to give insight into the structure of the model.

Within the field of computer vision, two main tasks relating to visual texture
are considered: classification and synthesis. A number of existing solutions to
each of these are presented. The FRAME algorithm is shown to be useful for
both applications. Examples of the synthesis produced by the algorithm are
shown and a comparative classification experiment is done which proves that a
FRAME classifier can out-perform competing algorithms.

A number of modifications to the original algorithm are implemented and pre-
sented. The algorithm relies on a Gibbs sampler. This is modified to run in
parallel on a GPU, greatly improving the performance of the algorithm as the
complexity is increased. Other modifications attempt to improve the quality of
the models or decrease the number of iterations required for convergence. A
significant improvement is made by smoothing the histograms in the algorithm
with a Gaussian kernel.
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1. INTRODUCTION

Computer vision is a broad term applied to many areas of research, spanning

fields from computer science and statistics to psychology. Vision is the most im-

portant human sensory input, providing us with the majority of the information

used to navigate our world. The human vision system is extremely advanced,

providing such faculties as instant, sub-conscience facial recognition. Computer

vision research is in general focused on trying to emulate the tasks performed

by the vision systems of the brain using a computer.

There are various approaches to this challenge taken by different researchers.

Some seek to understand the inner workings of the human vision system with a

view to emulating those systems. Such work has led to a number of interesting

discoveries about the pre-attentive circuits in the visual cortex. These neural

pathways perform many transformations on the incoming visual data before it

is processed by higher level parts of the brain. For example, there appear to

be neural circuits that perform transformations similar to those of Gaussian

filters [1]. Consequently many researchers attempt to create computer systems

analogous to the visual cortex to study how much information they can extract

using similar signal processing. This type of work leads to great advancements

in both the power of computer vision systems and our understanding of the

human brain.

From an engineering point of view, we are more interested in the practical

applications of the algorithms developed for computer vision. There is a vast

amount of work on the application of machine learning and pattern recognition

techniques to visual data. Algorithms that are developed for general machine

learning tasks are applied to image data. Unlike other fields, the benchmark

or ground truth in computer vision is based on human perception. Certainly
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most of the computer vision tasks we imagine are based on the tasks we perform

routinely with our own vision system.

The work in this thesis is a practical analysis of the Filters, Random fields and

Maximum Entropy (FRAME) algorithm [2]. The algorithm is designed to build

statistical models of visual textures. “Visual texture” is a somewhat vague term

with numerous interpretations. For the purpose of this work, a visual texture

is an image of a homogeneous pattern; a realisation of a spatially stationary

stochastic process. The human mind is predisposed to detecting patterns to the

point where it will imagine a pattern even where there is none1.

Consider Figure 1.1: if one looks at the image for a few seconds some shapes

will begin to appear yet these are illusory in an entirely random image.

Fig. 1.1: Random image with the colour of each pixel being drawn from a uniform
distribution.

As a result, we may consider an image to be a visual texture, and to have

some definite pattern even when none exists. This presents a challenge to any

mathematical model of texture. The FRAME model assumes some stochastic

process underlying the texture image. In natural images this may be the actual

1 This tendency is used by some scientists to account for the prevalence of belief in the
supernatural.
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process that produced the subject. The algorithm models the texture in the

image by applying a sequence of filters and calculating a probability density

function based on the response. The goal is to come up with a probability

density function whose realisation is visually similar to the observed texture.

This thesis in an investigation into the FRAME algorithm; how it can be opti-

mised and applied. Section 2.1 places the algorithm in context by describing a

number of popular techniques for modelling visual textures for the purpose of

either synthesis or classification. The algorithm itself is explained in Section 2.2,

including some background theory. Chapter 3 gives details specific to this im-

plementation. These include descriptions of the parameters in the algorithm

whose values are studied in Chapter 4. The Experiments chapter, Chapter 4,

gives insight into how the algorithm can be tuned, and how the various pa-

rameters affect its performance. The findings and conclusions of this thesis are

presented in Chapter 5.



2. BACKGROUND

In the field of computer vision, visual texture problems can be broadly divided

into two general classes: classification and synthesis [3]. Classification refers

to the problem of identifying a texture; synthesis algorithms attempt to artifi-

cially generate texture images. The work in this dissertation builds a statistical

model which is capable of solving both problems. The algorithm used is called

FRAME (Filters, Random fields, and Maximum Entropy) [2]. A number of

other existing techniques are presented in this chapter.

2.1 Visual texture

Any image or image region containing a visual pattern may be referred to as

a visual texture. Visual textures are common in real world imagery and can

be seen in scenes such as grass, brick walls and smoke. The patterns may be

highly regular or exhibit large stochastic variations [4]. This makes it difficult

to provide a mathematical definition for visual textures.

Much of the computer vision research into visual textures stems from the work

of Julesz [5]. This work studies the basis for texture discrimination in the human

visual system. A number of stochastically generated images with two distinct

texture regions are presented to human subjects. If the two regions can be

identified immediately, then the textures are considered to be discriminated.

Julesz showed that for many classes of visual textures, a difference in second

order statistics is sufficient to allow for discrimination [6]. This is the first

example of a statistical model for visual texture [2].
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2.1.1 Classification

Most machine learning problems can be phrased in terms of a pattern classifi-

cation problem. In general, a system is trained on a number of sample patterns

each belonging to a specific class such that other instances of those classes can

then be identified. For a visual texture, the classification problem is to identify

what texture an image is of, given a set of training textures. This is particularly

useful for scene recognition, where portions of the image are made up of visual

textures, which may give context to the rest of the image [7, 8, 9].

Bag of features

A bag of features classifier works by dividing the texture into regions and cal-

culating values for a number of descriptors (the bag of features or codebook)

in each region. The distribution of the results from each region are aggregated

to give a representation of the texture in the form of a vector in feature space.

Some aggregation method, for example K-means clustering, is used to return the

feature vector considered to be the best representative of the training images.

The choice of how to divide texture images into regions, which descriptors to

use, and how to aggregate the results into a single vector may all be varied in

different implementations [10].

Textures are classified by calculating the feature vector for the unknown image

and comparing it to those of the training images. A class is assigned to the

image based on which training class it matches most closely. In the work of

Nowak et al. [10] a support vector machine (SVM) is used to make this decision

but any similar technique may be applied.

The features used may be any function that outputs a value for a given image

region. Two type of features that are commonly used for texture classification

are linear convolution filters [11] and SIFT descriptors [12, 13]. The robustness

of the classifier in terms of scale, rotation and intensity variation depends on the

features in the codebook. The feature vector may contain many thousands of

elements, all of which form part of the class model. In general, the feature vector

is much too large to offer any meaningful interpretation regarding the texture’s
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structure. While the bag of features approach is very effective at classifying

visual textures, this work pursues a more intuitive texture model.

Local binary patterns

Images captured in the real world may vary greatly in their appearance despite

being of the same visual texture. We desire that a classifier is insensitive to

variations that are caused by having a different viewpoint or illumination of the

scene. The variations that can appear within images of the same texture can

be classified as: a linear transformation, shearing, rotation, a change in scale

and/or a change in illumination. Local binary patterns is a type of feature that

are used to create an illumination invariant texture classifier and in special cases

one that is also rotation invariant [14].

Local binary patterns (LBP) assigns a value at each pixel based on the intensity

of its neighbours. Each pixel in the neighbourhood is assigned a zero or one

based on whether its intensity is greater or less than the centre pixel as shown

in Figure 2.1. Those values are read as a binary string that is interpreted as a

decimal value. That value is then used as a feature for classification. Histograms

are calculated of the values either for the whole image or for regions leading to

a feature vector describing the texture [7].

1
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Fig. 2.1: Local binary pattern.

The computed feature vector is the same regardless of the illumination of the

image as it is calculated from the relative intensities of neighbouring pixels.
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Rotation invariance is achieved by assigning all rotations of a specific pattern

the same value [14] for example 00111100 is the same as 00001111. Local binary

patterns have proven to be very effective for texture classification and have

been used in other applications such as facial recognition [15]. The classifier is

rotation invariant when the patterns used are unique under rotation. Any pixels

that exhibit a rotated feature are given the same label [14].

2.1.2 Synthesis

Texture synthesis is widely used in computer graphics. Any three dimensional

object with a surface that is not simply one plain colour is painted with a

texture. In some cases the texture is simply tiled over the object, however

for more complex textures this is not satisfactory and a more complex method

capturing the stochastic nature of the texture is required [16]. Most texture

synthesis methods work either by patch based sampling [17, 18] or by pyramid

based analysis [6, 16, 19]. The work of Han et al. [20] following Lefebvre and

Hoppe [21] achieves superior results by combining those approaches.

Patch based

The patch based approach to texture synthesis allows for the creation of new

and possibly larger textures based on an input example [17]. The texture is

synthesised to look different from and yet similar to the input. The synthesised

texture is built out of patches from the input. Small regions are selected at

random from the input and pasted in the synthesis. The border regions in the

synthesis are altered to be different to those in the input. This is done by

searching the input for other patches with similar statistics at the edges. The

boundary of the patch is then replaced with the boundary from another similar

patch in the input. In this way a texture of any size may be synthesised. This

method has been shown to produce very convincing and realistic syntheses for

natural and artificial textures. It runs faster but unlike FRAME, no model of

the texture is extracted.
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Pyramid based

Pyramid based methods of texture synthesis attempt to capture features of the

texture at different scales. The texture is first analysed by building an analysis

pyramid. The input texture is downsampled into a sequence of lower resolutions.

In this way, a pyramid is built of different sized versions of the input. In addition

to these low-pass downsampled images, the bandpass information is also stored.

Bandpass images are calculated by upsampling the low-pass image back to the

resolution of the level above and subtracting that image from the original image

at that resolution.

Fig. 2.2: Pyramid of downsampled textures (not to scale).

For each resolution, a number of filters are applied and histograms are calculated

from the responses. These histograms provide local texture features in each sub-

band. Different implementations use different filters but the general approach is

that the filters must each capture some information about the structure in a local

neighbourhood. Heeger and Bergen [16] use filters that can detect structures

in different directions; De Bonet [19] uses Laplacian of Gaussian filters; and

Portilla and Simoncelli [6] use pairs of wavelets.

The texture synthesis relies on the assumption that at some resolution high fre-

quency changes to the pixel values do not affect the texture statistics at lower

resolutions in the pyramid. The tolerance to this variation is how the random-

ness of the texture is expressed. Synthesis starts from the top of the pyramid,

the lowest resolution, which is taken directly from the analysis pyramid [19].

Each lower level of the pyramid is then sampled from the analysis pyramid. Lo-

cations in the synthesis are given values based on the statistics of the features in

all the parent locations — those locations in higher levels of the pyramid whose

values are impacted by the pixels in the current region.
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Fig. 2.3: Parent locations in synthesis pyramid [19].

The parent locations of a region are shown in Figure 2.3. A feature vector is

formed from each feature at each parent location. A region is sampled from

the corresponding scale of the analysis pyramid where the parent vector in the

analysis pyramid has the same values (to some threshold) as that region in the

synthesis pyramid. Pixel values are copied from the analysis pyramid into the

synthesis pyramid. In cases where more than one region in the analysis pyramid

is acceptable, a choice is made at random, thereby introducing variation in the

synthesis. If the assumption stated above holds, this variation does not change

the appearance of the texture. The process continues until a complete synthe-

sis pyramid has been sampled which is then collapsed to give the synthesised

texture.

Combined

Han et al. achieve some particularly interesting synthesis results by combining

the two approaches mentioned above [20]. Their approach builds on the work

of Lefebvre and Hoppe [21]. Both methods create a synthesis using a sequence

of images built from different scales of the observation. The synthesis at each

scale is performed using patch matching rather than histogram matching.

Lefebvre and Hoppe use a “Gaussian stack” rather than a pyramid for synthesis.

The elements of the stack are all images of the same size, and are the filter

responses of successively larger Gaussian kernels. This stack can perform the

same function as the pyramid as each level contains sub-band information from
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the level above. The synthesis algorithm is then very similar to the traditional

pyramid-based approach. The motivation for using a stack as opposed to a

pyramid is that it avoids upscaling; each level has the same dimensions, allowing

the synthesis to be calculated in parallel. As a result, their method produces

accurate texture synthesis in a short amount of time [21].

The work of Han et al. extends the concept of texture synthesis. Their ap-

proach can be used to synthesise a texture at multiple resolutions, so that the

synthesised image can be zoomed without any loss of resolution. The algorithm

requires observations at each scale. Those observations are arranged in a graph

indicating the relationships between the exemplars at different scales. These

images at each scale are used to augment the Gaussian stack. The resulting

synthesis is accurate at each level in the stack. This leads to a very compact

representation of a texture at many scales. The algorithm is able to synthesise

images with features at many different scales which is impossible with the other

synthesis methods described here [20]. The example given in the paper shows a

synthesised image of an island with realistic looking shape, terrain and coasts.

2.2 FRAME

The work in this thesis is based on the algorithm of Zhu, Wu and Mumford –

Filters, Random fields and Maximum Entropy [2]. A statistical model of the

visual texture is produced. This model can be used to synthesise new instances

of the texture and to classify other images by considering how well they fit the

model. This approach produces concise and expressive texture models and can

be used on many different types of visual textures. This section contains some

background theory followed by an explanation of the algorithm itself.

2.2.1 Filters

Convolution is a mathematical function that computes the amount of overlap

between two functions [22]. In image processing it is used to apply a filter to an

image. The filter response of an image I convolved with a kernel K is F = I ∗K:

F (x, y) =
∑
k1

∑
k2

K(k1, k2)I(x− k1, y − k2), (2.1)
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for each x and y, components of the pixels in the image and k1, k2 elements of

the sites in the kernel. The calculation can be envisioned as moving the kernel

over the image and calculating the product of the kernel and the image region

beneath it, at each point. Regions in the image which are similar to the filter

will have large values in the response. This is what is meant by using filters to

detect features in an image.

Convolution is a linear function, meaning that the convolution of a sum is equal

to the sum of convolutions:

K ∗ (I1 + I2) = K ∗ I1 +K ∗ I2. (2.2)

The work in this dissertation takes advantage of this important property of

convolution filters.

Convolution is defined as an infinite integral; in the discrete case the integral

becomes a summation. Equation 2.1 applies specifically to the convolution over

a finite 2-dimensional vector. For any kernel which is larger than one pixel,

the kernel will extend beyond the edge of the image for x and y values near the

border. This can be accounted for in one of three ways: zero padding the border

of the image with half as many pixels as the width of the filters, calculating the

convolution of the central region of the image or treating the image as a toroid

so that coordinates beyond the border are wrapped to the opposite side. In this

work all the convolution is done on a toroid. This is based on the assumption

that the images are of a homogeneous texture. As a result, all the synthesised

textures can be tiled seamlessly, without any artefacts at the borders.

2.2.2 Markov random fields

Visual textures may be modelled as a Markov random field (MRF) [23]. This is

an appropriate model for textures that are stochastic and stationary. The model

defines a set of pixels N(x, y) as the neighbours of (x, y). The stationarity of

the model means that set of neighbours is the same throughout the image so

(a, b) ∈ N(r, c)⇔ (a+i, b+j) ∈ N(r+i, c+j). The model assumes a conditional

independence, that the probability of a pixel given all the remaining pixels is
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equal to the probability of a pixel given its neighbours:

P (I(x, y)|I(i, j) : (i, j) 6= (x, y)) = P (I(x, y)|N(x, y)). (2.3)

MRF models are used extensively in statistical mechanics and a number of useful

theoretical results are developed.

2.2.3 Bayesian inference and Markov chain Monte Carlo

Bayesian statistics differs from the more traditional frequentist approach in the

way that the model is treated. In a frequentist paradigm the model is considered

to be fixed yet unknown; to Bayesians, the model is a random variable. Results

from frequentist statistics are obtained by sampling the population and making

confidence statements about how likely the sample statistics are to match the

population statistics. These results are based on all possible outcomes of the

procedure [24].

A Bayesian model is made up of a parametric model P (x|θ), with an obser-

vation x and parameters θ of the process and a prior distribution π(θ) which

encapsulates our assumptions about the process. Both x and θ are considered

to be outcomes of a random process. Given a data observation x the probability

of the parameters can be updated with the posterior distribution [25]:

π(θ|x) =
P (x|θ)π(θ)∫
P (x|θ)π(θ)dθ

. (2.4)

In this statistical model, both the parameters and the outcomes are random

variables. Consequently probability statements can be made about the param-

eters of the model and the values of those parameters can be estimated from

a finite set of observations as opposed to the frequentist case which requires

all possible outcomes to be considered [24]. This is crucial in image processing

where outcomes are images so the random variable has as many dimensions as

there are pixels. In such a high-dimensional space it is infeasible to attempt to

enumerate every possible outcome.

Historically, Bayesian inference was less popular than a frequentist approach be-

cause it was infeasible to calculate the integral
∫
P (x|θ)π(θ)dθ. Developments

in Monte Carlo sampling have made Bayesian inference a far more practical
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tool by allowing the integral to be estimated [26]. Markov chain Monte Carlo

(MCMC) in particular is a computationally efficient method for estimating com-

plex integrals [27].

MCMC encompasses a large class of algorithms, the most popular of which is

the Metropolis algorithm [27]. The concept behind Monte Carlo algorithms is to

approximate an integral over a density p(x) by drawing a number of independent

and identically distributed samples from the distribution. The integral may

be any function of the distribution, such as the expectation or the variance.

Although the integral itself is difficult to calculate, it can be approximated by

averaging a large number of samples from the distribution. Those samples x(i)

are summed to give an approximation of the integral:

1

N

N∑
i=1

f(x(i))
a.s.−−−−→
N→∞

∫
X
f(x)p(x)dx (2.5)

where X is the multidimensional space in which p(x) is defined. Each sample

value depends only on the previously drawn values so the samples form a Markov

chain. At each iteration of the algorithm, a new sample is drawn and added to

the chain with a certain probability – the acceptance rate. After a large number

of iterations, N →∞, the calculated value is an acceptable approximation of the

true distribution. The number of samples required for this convergence depends

on the distribution and the details of the implementation of the algorithm [26].

2.2.4 Gibbs sampler

The Gibbs sampler is a special case of the popular Metropolis-Hastings [28]

algorithm. In a Gibbs sampler elements of the distribution are sampled one at

a time. All samples are included in the chain – the acceptance rate is equal to

1.

Consider a two dimensional Gaussian distribution:

(X1, X2) ∼ N

((
0

0

)
,

(
1 σ

σ 1

))
. (2.6)
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The Gibbs sampler in two dimensions draws samples from alternating condi-

tional distributions. Given a starting point
(
x

(0)
1 , x

(0)
2

)
the first iteration is,

x
(1)
1 = x

(0)
1 (2.7)

x
(1)
2 ∼

(
X2|x(0)

1

)
(2.8)

followed by,

x
(2)
1 ∼

(
X1|x(1)

2

)
(2.9)

x
(2)
2 = x

(1)
2 . (2.10)

The algorithm proceeds in this manner producing the Markov chain,(
x

(0)
1 , x

(0)
2

)
,
(
x

(1)
1 , x

(1)
2

)
, . . . ,

(
x

(N)
1 , x

(N)
2

)
, (2.11)

until the samples in the chain are a good representation of the distribution.

At that point, for example, the mean of the values in the chain is a good

approximation of the expectation of the true distribution.

For images each pixel is a dimension of the distribution. In each iteration the

colour of a single pixel is changed. The colour is changed based on the full

conditional distribution, but the effect of changing only one pixel value at a

time is localised — the Markov property of the chain of samples is preserved.

This can be done far more efficiently than attempting to draw a sample from

the full image space. After a large number of iterations, the samples become

representative of the target distribution [26].

The algorithm creates a sequence of possible samples that form a Markov chain.

It is initialised with a white noise image. At each step, the colour of a single

pixel is updated according to the probability under the current proposal dis-

tribution p(I). The probability of that pixel having each possible intensity is

calculated from the distribution and a new intenisty value is selected with like-

lihood in proportion to those probabilities. After enough steps in the chain the

samples are being drawn from the target distribution. However, knowing the

exact number of steps required before the Markov chain has converged is not

straightforward [29].
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2.2.5 Maximum entropy

The principle of maximum entropy (ME) is a method for constructing a prob-

ability distribution p for a set of random variables X, given some available

information about the random variables [30]. For example, the expectation of

some known function φn(x) is Ep[φn(x)] =
∫
φn(x)p(x)dx = µn, let Ω be the

set of all probability distributions which produce that statistic. Then Ω is:

Ω = {p(x) : Ep[φn(x)] = µn} . (2.12)

The maximum entropy principle is to choose the probability distribution, p(x),

that maximises the entropy. That is:

p∗(x) = arg max

{
−
∫
p(x) log p(x)dx

}
, (2.13)

subject to

Ep[φn(x)] =

∫
φn(x)p(x)dx = µn (2.14)

and ∫
p(x)dx = 1. (2.15)

By Lagrange multipliers, the solution is:

p(x,Λ) =
1

Z(Λ)
e

−

N∑
n=1

λnφn(x)

, (2.16)

where Λ is the Lagrange parameter comprising the Lagrange multipliers (λ1, ..., λN )

and Z(Λ) is the partition function. In general it is impossible to find an exact,

closed form, solution for Λ so a numerical approach is taken. The parameters

are calculated by:
dλn
dt

= Ep(I;Λ)[φn(x)]− µn. (2.17)

It can be shown that a unique solution exists for (λ1, ..., λN ). This iterative

calculation is the focus of the FRAME algorithm [2].
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2.2.6 FRAME algorithm

The FRAME algorithm develops a statistical model of a texture [2]. Images of a

certain visual texture are considered to be instances drawn from a distribution

f(I), where f(I) describes the process that produced the texture whether organic

or man made. All samples from the distribution have a similar appearance. The

goal of the algorithm is to make inferences about f(I) based on the observed

samples leading to a model of the texture p(I). The model is considered an

accurate representation if samples of p(I) are indistinguishable from samples of

f(I). The metric for comparison may be either visual inspection of the samples

or some mathematical measure. The texture is modelled by a set of filters and

the statistics related to the observation’s response to those filters. A flowchart

of the main processes in the algorithm is shown in Figure 2.4.

The algorithm is initialised with a data observation and a filter bank of all the

filters that may be used. The selection of filters to comprise the bank is very

important as a texture with features that cannot be detected by any of the

filters in the bank will be impossible to model accurately. A variety of common

linear filters are used at different scales and rotations. The algorithm does not

require that the filters be linear but this limitation is assumed as it allows for

much faster computation [1].

To initialise the algorithm the observation is filtered by each filter in the bank

and histograms of the responses are calculated. The filter resulting in a his-

togram with the maximum entropy is selected. The entropy of a probability

distribution is calculated by

S = −
∫
p(I) log p(I)dI. (2.18)

Selecting the histogram with maximum entropy is equivalent to selecting the

histogram containing the most information. The filter is removed from the

filter bank and added to the model.

With one filter, we have the statistic H(1)(I) being the marginal distribution

(the histogram) of the observation’s response to that filter. This marginal dis-

tribution is the φ function of the ME calculation described above. The model

is defined by a set of filters and an array of Lagrangian multipliers associated
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Add filter to model

Evaluate model

Data 

observation

End

Update λ

Gibbs sampler

Evaluate Sample

Fig. 2.4: Basic flowchart of the FRAME algorithm.
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with each filter:

p(I) =
1

Z(ΛK)
e

−

K∑
α=1

〈λ(α), H(α)〉
(2.19)

for K filters. This is a discretised version of Equation 2.16 and the same solution

applies. The Lagrangian multipliers λ, which act like weights to the histogram

bins, are calculated numerically by iterative gradient descent.

At each iteration a sample is drawn from p(I) and histograms, H, are calculated

for each filter in the model. The term Z(ΛK) is a normalising constant which is

not generally necessary to calculate because the probabilities that are calculated

from the model are compared to each other. This model treats the texture as

a realisation of a Markov random field (MRF) — the probability of each pixel

being a certain colour is influenced only by the neighbouring region of pixels. In

this algorithm, the neighbourhood is the set of pixels covered by a filter centered

on the pixel in question.

Samples are drawn from p(I) using the Gibbs sampler. The sampler is run for a

fixed number of iterations, some multiple of the number of pixels in the image

— a sweep. The number of steps used in the sampler is kept quite low to speed

up the execution of the whole algorithm. This means that the Gibbs sampler

does not have time to converge on a true sample of the distribution at each

iteration.

The model is updated after each sweep by making small changes to the λ values

so it is not so important that a true sample is drawn each time. Nevertheless

these changes are small enough such that each time the Gibbs sampler is run,

the target distribution is approximately the same. As long as the Gibbs sampler

is run for long enough to allow the samples to approach samples from the true

distribution, the FRAME algorithm is able to converge on the correct λ values

through Equation 2.20.

The algorithm alternates between steps of updating λ and drawing samples from

p(I) until the λ values converge or some other stopping criterion is met. The

values are updated by

λ
(α)
n+1 = λ(α)

n +
(
H(α)
syn −H

(α)
obs

)
, (2.20)
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where Hsyn and Hobs are the histograms of the current sample and the ob-

servation images respectively for each filter α in the model. The differences

between the elements of those histograms are used to push the elements of λ

towards values which make p(I) best represent the true distribution underlying

the texture. If a certain bin in the sample’s histogram has a higher value than

that of the observation, the corresponding element of λ is increased. Referring

to Equation 2.19 it can be seen that positive λ values decrease the probability

of the corresponding histogram bin. Samples which minimise that bin are pre-

ferred by the model, and the histograms of the samples tend to become similar

to those of the observation.

Once the λ values have converged another filter is added to the model from

the filter bank. Subsequent filters are selected based on the difference between

the histograms obtained from filtering the observation and from filtering the

latest sample of p(I). The filter with the largest sum of absolute differences is

chosen so that at each step the filter which contains the most new information

about the texture is added to the model. Then the algorithm starts again with

a new synthesis to obtain λ values for the current set of filters. The algorithm

continues adding filters until the model contains a specified number of filters

or the remaining filters in the bank are deemed not to capture any valuable

information about the observation.



3. IMPLEMENTATION

Monte Carlo algorithms in general require significant computation. They are

iterative procedures that can typically require thousands of iterations to con-

verge [26]. In the case of FRAME, each iteration itself is time consuming leading

to an algorithm that can take too long to run for practical purposes. One of the

goals of this work is to improve the efficiency of the algorithm. The computer

program that implements the alogirthms used for this research is described.

This chapter explains the parameters which are available for experimentation

and a GPU implementation for part of the algorithm. The GPU is used in order

to decrease the time that the algorithm takes to produce a viable model, with

a view to making FRAME more useful for practical applications.

3.1 Algorithm implementation

The FRAME algorithm is implemented, for the experiments in this dissertation,

in a C# program. The algorithm is computationally very expensive, requiring

many iterations to converge. The implementation attempts to reduce computa-

tion by storing as many results as possible. There is a trade off between memory

usage and the number of calculations required. However the amount of memory

required does not approach the limits on a modern computer with the program

typically requiring about 60 Mb of RAM for the inputs described here. C#

is chosen for the development in order to take advantage of the Visual Studio

environment and for its data structures which simplify the handling of the vast

numbers of variables in the program.
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3.1.1 Constants

A single experiment comprises running the FRAME algorithm on an image

until a specified number of filters have been included in the model. There

are a number of parameters which can be specified to alter the behaviour of

the algorithm. One of the goals of this work is discover which values for those

parameters optimise the performance of the algorithm. These parameters define

upper limits on the number of iterations to run (if the convergence conditions

are not met), the number of colours to include in the palette and the number

of bins in each histogram.

Colour palette

The colour palette is formed of the specified number of levels evenly distributed

between 0 and 1 inclusive. The first step in the program is to resample the

input image to only contain colours from the palette. In some cases a lot of the

structure in the original texture is lost when resampling so it is important to

compare the resampled image to the original when assessing the results.

The number of colours, more specifically grey levels, to use in the algorithm is a

compromise between accuracy and execution time. The more colours available,

the greater the detail which can be seen in images at the same resolution. Each

time the colour of a pixel is changed, the probability of each available colour is

calculated, so the number of calculations done by the Gibbs sampler is propor-

tional to the number of colours. More colours also lead to slower convergence

as the problem space becomes much larger. For the sake of the majority of the

experiments — which are designed to optimise the other parameters — four

colours are used. This is the minimum number of colours which can be used

that still allows for visually interesting textures.

Histograms

The behaviour of the FRAME algorithm depends largely on histograms and

how they are implemented. The histograms used in the algorithm are counts

of the relative frequencies of ranges of values within filter responses. The λ
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vectors, which define the model, have the same structure as the histograms as

they are calculated from the differences between histograms. In order to allow

meaningful subtraction of histograms, all the histograms within the algorithm

are constrained to have the same bins and then the bin values are treated as

vectors.

The number of bins to use is a parameter of the algorithm. The images them-

selves have a finite set of intensity values, but the filters and consequently the

responses are continuous. If there are too many bins the histograms will be too

sparse to allow λ to converge. When the number of bins increases, the width of

each bin necessarily decreases, so that if there are too many bins, the informa-

tion is lost as all of the bins will have low counts. Conversely is there are too few

bins the histograms will not capture enough information. The histograms used

have 64 bins on the range [−8; 8]. The number of bins used is a compromise

corroborated by experimental results. The maximum magnitude of a value that

the responses to the available filters might contain is 8.

Histograms are a type of probability distribution function. If there is a small

offset in one region of the data being histogrammed, it may lead to a large change

in the histogram if the values are near to the border of the bins. Consequently

the difference between two histograms of similar responses may be much larger

than we desire for the difference between the information they represent. To

account for this, the histograms and λ vectors used in this implementation are

smoothed by a Gaussian function. Each bin in the histogram is multiplied by

a Gaussian kernel and the results are summed to produce a smooth curve [31].

The windowed functions are calculated by:

H(x) =
1

Nh

N∑
i=1

K

(
x−Xi

h

)
, (3.1)

where h is the width of the bins and there are N bins. The kernel function K

is the Gaussian,

K(x, σ2) =
1

σ
√

2π
e−

1
2 ( xσ )

2

, (3.2)

with the variance, σ, as a parameter of the algorithm. The effect of varying σ

is explored in Section 4.4. An example of a smoothed histogram is shown in

Figure 3.1.
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Fig. 3.1: Example of a histogram and its smoothed function.

Filter bank

The information contained in the texture model depends on the filters that

are available in the filter bank. Filters are added to the model based on the

amount of information in their responses. The responses containing the most

information correspond to the filters that detect features in the texture. If all

the filters in the bank are inadequate to detect the features of a texture, the

model will not be very accurate.

In this implementation only linear filters are used. The filter bank is based

on the filter bank of the original authors [2]. Four types of filter are used:

Gabor filters, Laplacian of Gaussian filters, Sobel edge detectors and Difference

of Gaussian filters. The Gabor filters come in pairs with kernels given by a
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Gaussian,

g(x, y, θ, t) = exp

(
1

2t2
(
(x cos θ + y sin θ)2 + (−x sin θ + y cos θ)2

))
, (3.3)

modulated by a cos and sin component respectively:

Gcos(x, y, θ, t) = g(x, y, θ, t) cos

(
2π

t
(x cos θ + y sin θ)

)
, (3.4)

Gsin(x, y, θ, t) = g(x, y, θ, t) sin

(
2π

t
(x cos θ + y sin θ)

)
, (3.5)

for a range of rotations θ and scales t. The range of t values is {1, 1.5, 2, 3, 4}
and of rotations is {0, π4 ,

π
2 ,

3π
4 , π,

5π
4 ,

3π
2 ,

7π
4 }. An example of each is shown in

Figure 3.2.
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Fig. 3.2: Examples of Gabor filters.

The second type of filter comprising the bank is the Laplacian of Gaussians:

LG(x, y, t) =

(
x2 + y2 − t2

)
t2

e
−
x2 + y2

t2 , (3.6)

for scales t. These are circular filters of various sizes. In the filter bank, t has

the values {0.7, 1, 1.5, 2, 3}. Figure 3.3 shows an example t = 2. The kernel is

scaled by t2 to limit the range of values in the response. This is important when

working with standardised histograms that are treated like vectors.

Sobel edge detection filters are also included in the filter bank, however these

are rarely chosen for the model, presumably because the Gcos filters are better

for detecting those edges.



3. Implementation 25

 

 

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

−1

−0.8

−0.6

−0.4

−0.2

0
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A special case of linear convolution filter is the impulse filter. It has a 1×1

kernel with value of 1. The convolution of an image with the impulse filter is

the image itself. This is useful in this application because the histogram of the

response is then the distribution of the different colours in the texture. A white

noise image has a flat histogram as its response to the impulse filter. Images

which are dominated by one or two colours will have peaks in their intensity

histograms.

Another class of filters included in the bank are difference of Gaussians (DoG).

These are not used by the original authors, but have application in texture

modelling [32]. The filters are constructed by subtracting two Gaussian kernels

with different variances. The effect is analogous to a bandpass filter, so they are

useful for detecting specific spatial frequencies in the textures. The filters are

parameterised by s, the smaller variance, and K, the ratio to the larger one:

DoG(x, y, s,K) =
1

2πs2
e
−
x2 + y2

2s2 − 1

2πK2s2
e
−
x2 + y2

2K2s2 (3.7)

These filters are similar to Mexican hat filters and in the case of K = 1.6 are

approximately equal to LG filters. An example of a DoG filter is shown in

Figure 3.4.

The filters in the bank have K = {1.2, 1.5, 1.8, 2, 2.5, 3, 4, 5} and

s = {0.4, 0.6, 0.8, 1, 1.2, 1.4}, provided that the total width of the filter is less

than or equal to 16 pixels. That constraint is enforced because larger filters

cover too much of the images and take very long to compute.
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Convergence

FRAME is run for a maximum of 5 000 iterations for each set of filters, with

4 sweeps per iteration. That is 5 000 steps of updating λ and 20 000 sweeps

of the Gibbs sampler. That number of iterations takes a very long time to run

– on the order of 4 hours. In most cases, the algorithm will terminate before

then if the model is considered to have converged. There are three heuristic

convergence conditions which are tested for after each iteration: the error is

sufficiently small; the error is increasing rapidly (considered to be diverging)

and; there is no change in the synthesis.

The error is measured for each filter independently by

e =
∑
n

(Hsyn(n)−Hobs(n))
2
, (3.8)

for each element n of the histogram. The execution stops and another filter is

added to the model when one of two conditions is met. The filter is selected by

using Equation 2.18 to determine which one captures the most new information.

The two conditions are: if the error value for each filter in the current iteration

is less than 5 % of the initial error; or if it is twice that of the error in the

previous iteration. Those limits are chosen heuristically based on observations

that the synthesis does not improve much beyond those points.

The second condition is useful for cases when the synthesis breaks down and

becomes unstable. In some examples the differences in probability is so small

that the colours are simply selected at random and the algorithm diverges.
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There are some cases when the model becomes so specific that the Gibbs sampler

does not change any of the values in the synthesis. In these cases the execution

is also stopped.

3.2 Parallelisation

When the FRAME algorithm is executed, the Gibbs sampler is required to pro-

duce a sample of the proposal distribution each time the λ values are adjusted.

It takes hundreds of iterations for those values to converge. The number of

pixels to be updated at each step is chosen to be four times the total number

of pixels in the image, following the original work of Zhu et al. [2]. For each of

these pixels, the Gibbs sampler requires a probability of the pixel being each

colour. That probability depends on the histogram produced by each of the

filters in the current model. For a simple case of a 32×32 pixel image with eight

colours and three filters that equates to producing ten thousand histograms per

iteration. This is extremely inefficient so a number of measures are taken to

optimise the process.

All the filters in the filter bank are linear and smaller than the entire image.

Consequently changing the colour of a single pixel affects a small region of the

filter response and this change can be calculated by a single addition [1]. The

change to the filter response when adjusting the intensity of a pixel is simply the

response plus the impulse response of the filter scaled by the change in intensity.

If the intensity pixel p is changed from C0 to C1 the filter response F becomes:

Fn+1 = Fn + (C1 − C0)Kp (3.9)

where Kp is the filter kernel centred on p. This calculation is far simpler than

computing the filter response each time and only requires the convolution be

computed once per filter.

Extracting a histogram from the filter response is also an expensive operation,

requiring the intensity of each pixel to be assigned to one of the bins. This

can be obviated in a similar way. The histograms of all the responses for the

current sample are stored. As the pixels are flipped to create new samples a

count is kept of the changes to each bin in the histogram. For each element of



3. Implementation 28

the response that changes its value, 1 is added to the bin containing the new

value and subtracted from the bin that previously contained it.

This is the operation that is run on the GPU. The pixels to be considered are

passed to the GPU code and it returns the changes in histogram bin counts

for each colour for each filter. The data required by the GPU are the current

sample; the filters in the model; the current sample’s responses to each filter;

the histograms of those responses; and the set of colours (or intensities) that

may be used. One thread is created for each set of pixel, colour and filter. Each

thread is required to perform the addition of the filter kernel and to count the

changes to the histogram. It is a very simple computational task, requiring very

few instructions to execute — making it ideal for processing on the GPU. There

is an inefficiency caused by the fact that all the threads must wait for the thread

handling the largest filter to complete. However, none of the filters is very large

so this is not a serious bottleneck.

3.2.1 Hardware considerations

The GPU hardware used is a NVIDIA GeForce GTX 470 [33]. Programming for

a GPU is sensitive to the specific details of the hardware. Some specifications

of the card are given in Table 3.2.1.

Tab. 3.1: GTX 470 specifications.

CUDA cores per SM 32
Maximum threads per SM 1536
Maximum threads per block 1024
32-bit registers per SM 32 K
Global memory 1280 MB
Shared memory 48 KB
Constant memory 64 KB

These are significant because in order to get the best performance the program

must run within the constraints of the hardware while using as much of the

power available in each streaming multiprocessor (SM) as possible.
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3.2.2 GPU program

The GPU code is written in CUDA C [33]. In this platform threads are grouped

into blocks with each block containing an array of threads. The fastest type of

memory to use is the registers but the space available is limited. Threads from

the same block have access to the same block of “shared memory”. Shared

memory is similar to cache memory on a CPU; it is much faster than the global

memory and it has much higher bandwidth to the SM. In addition there is

a region of memory called “constant memory” which is available globally, to

all threads. Access to data stored in constant memory is cached to increase

efficiency. If all the threads in a block need to access something in the constant

memory, one slow fetch is required, and subsequent reads are done much more

quickly from the cache.

To initialise the GPU code the filters, current sample and its responses are copied

from CPU memory to the GPU. The filters are placed in constant memory as

they are the data to be accessed the most often and do not change throughout

the execution. If the maximum size of a filter is 32×32 and the values are single

precision floating point numbers, the amount of constant memory available lim-

its the maximum number of filters to 16. This is an acceptable restriction as the

textures considered in this work can be well modelled using fewer filters (or the

filters required are not available in the bank). The current sample and responses

cannot fit in constant memory, although they are constant in the scope of the

GPU. There is still a performance gain by storing them globally as it reduces

the amount of data that needs to be transferred.

A thread block is created for each pixel under consideration. The thread block

contains a two dimensional array of threads — one for each combination of filter

and colour. The parameters to the thread are the pixel’s coordinates, the set

of colours and the borders of the histogram bins. Each thread in the block

computes the histogram changes. These can be stored in registers as only one

integer is required per histogram bin. Once a thread completes, it waits for all

the threads in its block and then the histogram changes are combined into one

array to be returned to the CPU.

The probabilities of the colours are calculated on the CPU from the histograms.

The CPU updates the sample accordingly and changes the responses for the
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next iteration. The GPU returns the array of bin changes to the CPU. These

are then interpreted by the main program, giving probabilities for each colour.

A new colour for the pixel is selected at random, with likelihood in proportion to

its probability. After all the colour changes have been made, the filter responses

are updated by Equation 3.9 and another iteration is sent to the GPU. These

computations are not trivial; they contribute significantly to the overall running

time of the algorithm.



4. EXPERIMENTS

The algorithm is investigated through a number of experiments. The exper-

iments are done by running the algorithm repeatedly while changing a single

element, to determine the effect of that variation and to find the optimal param-

eters. The first section in this chapter describes the values which are observed

in the experiments and their significance. Baseline tests are done to produce

a comparison point for those values. Three novel variations to the algorithm

are implemented and tested: simulated annealing on the rate of change of λ;

including the impulse filter in all models; and applying a Gaussian smoothing

function to the histograms. Timing data is collected specifically in regard to

the GPU implemented portion of the algorithm to determine its effectiveness in

decreasing the computation time. Finally an experiment is performed to test

FRAME models for classification purposes. A specific classification experiment

with froth images is presented.

4.1 Experimental set up and methodology

A number of experiments are performed to test the FRAME algorithm and

explore possible improvements to it. The performance of the algorithm is as-

sessed in two ways: quantitatively, based on an error value; and qualitatively,

by comparing the synthesised texture to the observation. The error measure is

the sum of squared differences between points in the observation histogram and

the synthesised histogram. It is recorded each time λ is updated. This is an

appropriate error measure as it will be zero for a perfect synthesis; however it

can also go to zero for a poor synthesis under an inadequate model. The error

also gives an indication of how much the λ values are being altered by at each

iteration. Snapshots of the synthesis are recorded every 50 iterations.
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A baseline experiment is done on a number of textures as a point of comparison

for the experiments. The settings and parameters for those experiments are as

described in Section 3.1. The observation images used are shown in Figure 4.1

with the name they are given for convenience.

(a) Patches (b) Froth class 3 (c) Grid [34] (d) Fur [34]

Fig. 4.1: Texture images – 32×32 pixels.

The algorithm is run until the model contains 4 filters. As expected, the syn-

thesis improves for each added filter. For example consider the Grid texture.

The best synthesised image — the one having the lowest error — for a model

with 1 through 4 filters is shown in Figure 4.2. The filters in that model are

Gcos(90◦, 3), Gcos(0◦, 1), Gcos(0◦, 3), Gsin(90◦, 4). It is intuitive that those

filters would be chosen as the observation is made up of vertical and horizontal

structures.

(a) 1 filter (b) 2 filters (c) 3 filters (d) 4 filters

Fig. 4.2: Synthesised images for the Grid texture.

The appearances of the synthesised images in these tests are not very impres-

sive. There are clearly vertical and horizontal lines on a dark background but

these are poorly defined as compared with the observation. One purpose of the

experiments in this chapter is to investigate whether this performance can be

improved.

To demonstrate how the synthesised textures are able to be tiled, the output

from the Patches example is copied four times. This image is shown in Fig-

ure 4.3.
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Fig. 4.3: Tiled synthesis of the Patches texture.

A number of interesting observations can be made from this experiment. The

assumption that the observation is on a toroid gives a different perception to

the structures in the texture. Although the image in Figure 4.3 does not look

very similar to that in Figure 4.1(a), the boxed region in the synthesis shows

how that sample may have been taken from the same texture.

This synthesis is produced from a model containing 3 filters: Gcos(0◦, 1), LG(3)

and Gcos(0◦, 4). The results from this run are better than those from the run

with 4 filters because the fourth filter is Gcos(90◦, 4) which is perpendicular to

Gcos(0◦, 4). Consequently the syntheses in that experiment tend to contain di-

agonal bands, however such images do not satisfy the other two filters well. The

synthesis tends to switch between two states and the convergence is unstable.

A plot of the error values is shown in Figure 4.4.

This figure shows how the errors for the first two filters spike upwards relative to

the other two, indicating that the convergence of those parameters are at odds

with each other. Nevertheless the algorithm is eventually able to converge.

Figures 4.5 and 4.6 show the observation histograms and the λ functions for

the Gcos(0◦, 1) and Gcos(0◦, 4) respectively. These graphs show that the λ

values for the larger Gcos(0◦, 4) filter are much more finely tuned than those

for Gcos(0◦, 1). This difference can be quantified by calculating the average

displacement from 0 of each λ function:

d̄ =
1

N

∑
i

|λ(i)|, (4.1)
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Fig. 4.4: Graph of errors against iterations from the Patches experiment with 4 filters.
Snapshots are shown below the graph at 500, 1450, 2100, 2400, 2928 and
3200 iterations. The snapshot at 2928 (second from the right) is the one
with minimum sum of errors.

where N is the number of iterations. In this case the values are 2.18 and 0.33

respectively. These values are a good indication of how much refinement is done

on the corresponding λ parameter, with a larger value indicating that the values

changed more quickly. The smaller value relating to Figure 4.6 is indicative of

the small changes that produced a more varied curve.

The values in Figure 4.5 are all greater than 0, this is because the Gcos filter

is all positive, so the response in turn is also positive. In both figures it can be

seen that large positive values correspond with negative λ values. Referring to

Equation 2.19, a negative product between λ and H increases the probability.

The results in this section are intended to give an overview of the data that is

collected during the experiments and its interpretation. The following sections

describe the experiments which are done and explain their results.
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Fig. 4.5: Graphs of the observation histogram and final λ function for the Gcos(0◦, 1)
filter.
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Fig. 4.6: Graphs of the observation histogram and final λ function for the Gcos(0◦, 4)
filter.

4.2 Simulated annealing

Simulated annealing is an optimisation technique inspired by statistical mechan-

ics [35]. Annealing is a process for tempering metals whereby the metal is heated

to high temperature and then cooled in order to improve some property, such as

the strength, at room temperature [36]. This is related to statistical mechanics

because the energy of the atoms increases during the heating, allowing them to

be rearranged in a more stable configuration as the metal cools. This concept

is applied to multivariate optimisation by initially adjusting the parameters in

large increments (at high temperature) and then by decreasing that rate (as

the optimisation cools). This is an attractive method to implement in FRAME

because the lattice structure of atoms in a solid is an MRF.
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This experiment is done “heating” the λ parameter — causing it to change more

quickly in the first few iterations. Equation 2.20 is modified to be

λ
(α)
n+1 = λ(α)

n + Tn

(
H(α)
syn −H

(α)
obs

)
(4.2)

with temperature T . There are 3 parameters in this experiment: the initial tem-

perature, the annealing rate and the minimum temperature. The temperature

decays in each iteration after the λ values are updated according to:

Tn+1 = Tn(1−∆t) (4.3)

where ∆t is the annealing rate. The minimum temperature is constrained be-

cause if it is allowed to be much less than 1, the λ values will be changing too

slowly to converge.

Introducing the parameter T causes the algorithm to converge much more

quickly, as the rate of change of λ becomes much higher. While this is de-

sirable, the value of T0 cannot be too high because the model will get stuck in a

local minimum. The highest acceptable value depends on the observation tex-

ture. The Patches and Grid textures are more easily modelled by the available

filter bank than the Froth or Fur textures. Consequently a higher value may be

used for those observations.

4.2.1 Results

The simulated annealing experiment has three parameters: the initial tempera-

ture T0, the annealing rate ∆t and the minimum temperature Tmin. The effects

of each of these is tested by running the FRAME algorithm on each texture for

different values. The annealing schedule in Equation 4.3 causes the temperature

to decay exponentially.

The rate of decay is controlled by ∆t. To illustrate the effect of this parameter

on the convergence of the model, consider two of the results from the patches

texture with annealing settings {T0,∆t, Tmin} of {16, 0.05, 1} and {16, 0.001, 1}
respectively.

Comparing Figures 4.7 and 4.8 to Figure 4.4, where T = 1, the benefit of

increasing T0, can be seen. With T = 1 it takes over 500 iterations to reach an
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Fig. 4.7: Graph of the mean error for 4 filters and the T value with annealing settings
{16, 0.05, 1}.

error less than 0.1, compared to 100 and 20 iterations in this experiment. In the

case of ∆t = 0.001, the convergence is unstable with the algorithm exiting on a

high error condition. Although it takes longer to converge, the performance with

∆t = 0.05 is preferable. In order to obtain an accurate model, the algorithm

must be able to make small changes to λ so it is necessary to allow T to decrease

to 1 fairly quickly.

The synthesis images with the lowest errors are shown in Figure 4.9. Both

images show an acceptable likeness in subjective appearance to the patches

texture which may expected since both runs achieved a similar minimum error.

However the synthesis for ∆t is superior as it better matches the colour profile of

the observation – it has significantly more grey pixels. This is indicative of the

longer sampling time that is able to produce a more refined synthesis because it

is drawn from a more precise distribution – one which more accurately represents

the observation.
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Fig. 4.8: Graph of the mean error for 4 filters and the T value with annealing settings
{16, 0.001, 1}.

The results for each texture show a similar pattern. The grid pattern, which

is the most easily modelled by the filter bank, is stable even with T0 = 64. In

general the best set of values across all textures is {32, 0.05, 1} as it gives the

fastest convergence while still providing an accurate model. The introduction

of the T variable into the algorithm provides a significant improvement in the

number of iterations required to converge, thereby increasing the practicality of

the algorithm.
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(a) ∆t = 0.05 (b) ∆t = 0.001

Fig. 4.9: Synthesised images of the patches texture from the annealing rate experi-
ment. Synthesis images have been tiled in the same way as Figure 4.3.
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4.3 Impulse filter

The authors of a related work that uses a texton based model, suggest that it

is always beneficial to include the impulse filter in the texture model [37]. A

texton is the minimal unit of a texture, analogous to a pixel. The model in

that work has a similar feel to FRAME and the textons are detected by filters.

The impulse filter is not automatically included in any of the preliminary tests

described in Section 4.1.

Clearly the intensity profile of an image is an important part of its appearance.

An experiment is done to assess the impact of forcing the impulse filter to be

included in the model. The model is initialised to contain the impulse filter. A

sample is not drawn from that model, as it would not have any structure and

would simply be a random image with the same distribution of colours as the

input. Other than that one change, FRAME is run as before.

For some of the textures in the baseline tests, an impulse filter is not required

as the colour histogram for the synthesis is similar to that of the observation.

The colour histograms from the baseline tests are shown in Figure 4.10.

The test with the worst matching colour profile is the froth image. This is

also the only model which does not include the Gcos(0◦, 1) filter. This implies

that that filter captures the colour information in the image. The filter kernel

is simply a 5×5 matrix with a central peak, a standard low-pass filter. The

response has similar structure to the input but the edges are smoothed. The

range of values in the response is also greater than that of the input, thus making

it easier for those statistics to be captured by the smoothed histogram.

The results shown in Figure 4.10 suggest that the implementation has a bias

towards selecting 0. This is probably caused by all colours being assigned very

low probabilities (since the value is calculated in terms of the whole image) and

then the program assigns 0 as a default. This behaviour is not ideal and suggests

that some refinement is required.

All the experiments which included the impulse filter in the model showed no

noticeable improvement in the synthesis. The intensity information is included

implicitly by other filters. Furthermore, the effect of the impulse filter is di-

minished because it carries less information than the other filters. This is an
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Fig. 4.10: Colour histograms for the observation and synthesis images from the base-
line tests.

indication of how the maximum entropy principle applies throughout the algo-

rithm, it works best when the filters are chosen accordingly.

4.4 Histogram variance

The model which is produced by this algorithm depends heavily on the way in

which histograms are treated. The histogram is a discretisation of a probability

density function. As discussed in Section 3.1.1 the histograms in this implemen-

tation are smoothed with a Gaussian kernel such that they resemble continuous

functions. The variance of that Gaussian controls how broad the kernel is, and

how smooth the histogram becomes. In this experiment, FRAME is run with

the variance set to 0.0001 (essentially no smoothing takes place), 0.25, 0.5, 0.75,

1 and 1.25.

In tests with the variance set to 0.0001 the algorithm takes much longer to

converge, in the order of 100 times. For the more complex textures, it does not
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converge at all with the detected features being too specific to replicate from

the Gibbs sampling. This affirms the modification to the algorithm.

Changing the variance changes the histograms throughout the algorithm, so

different filters are selected in the different runs. We will focus on the results

from the Grid texture since the same filters are included in the model for variance

equal to 0.5, 0.75, 1, 1.25. In each case the model produced is approximately

the same, containing the same set of 4 filters. For example, Figure 4.11 shows

the λ functions relating to the Gcos(90◦, 3) filter for each case.
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Fig. 4.11: λ functions for different variance values in the histogram Gaussian.

Figure 4.11 shows that the functions are almost the same in each case, indicating

that the same model is developed. The main difference can be observed in

the height of the central peak, however the shape of these functions is more

significant than their magnitude and the maximum value is not a function of

the variance. Only the case of σ = 0.5 shows some variation in shape. It is

interesting to note that the same slope appears in each case. One might have
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expected that with a larger variance, the gradient would be lower. This graph

suggests (at least for this texture) that each value of the variance is acceptable

and leads to a model which is a good representation. This is corroborated by

the synthesised images which all appear similar to each other and to the input.

The variance has an impact on the rate of convergence. This can be seen by

the displacement measure in Equation 4.1. The average displacement values, as

per Equation 4.1, for each filter in each experiment with the Grid are shown in

Table 4.1. A higher value of average displacement indicates that the algorithm

is more efficient; it takes fewer iterations to reach the same point.

Tab. 4.1: d̄ values in the Grid experiment, for different filters and variance values.

σ = 0.5 σ = 0.75 σ = 1 σ = 1.25
Gcos(0◦, 1) 11.2470 10.0835 10.7823 9.5935
Gcos(0◦, 3) 4.1333 3.2425 3.1606 2.6477
Gcos(90◦, 3) 6.5531 5.2127 4.9631 4.1586
Gsin(90◦, 4) 2.8372 1.4865 1.5576 1.3471

The results in Table 4.1 indicate that the lower the variance the faster the

algorithm converges. However if the value is too low, the model tends not to

capture the appearance of the texture successfully. This is because with sharper

distributions, the algorithm is more likely to converge on a local minimum. So

the textures which are synthesised minimise the error for the selected filters,

but do not display the larger structures of the observed texture.

These tests suggest that a σ value of 0.75 is optimal. However any value within

that region is suitable. The improvement is a result of smoothing the histograms

and the effects of small changes to σ are minimal. All the results with a smooth

histogram are superior to those with a discrete histogram.

4.5 GPU

An experiment is done to assess the efficacy of the parallel implementation and

to tune the parameters of the implementation. The experiment is run on the

32×32 pixel Patches texture. FRAME is run for 50 iterations per filter until

the model contains 5 filters and repeated with a palette containing 2, 4 and 8

colours. This is far too few iterations to achieve a good model but is sufficient
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for the timing analysis that is done. The experiment is run 3 times to determine

the ideal number of threads to run concurrently.

The Gibbs sampler is set to update 16, 64 and 128 pixels per iteration which

are the number of threads being run simultaneously on the GPU. A modern

PC can run 8 threads, so 16 is considered as the minimum reasonable number

of threads to use. Also, given the slower clock speed of the GPU and the

overhead, this test approximates running the algorithm on the CPU. At the

other extreme, updating 128 pixels on a 32×32 image means that 12.5% of the

pixels are updated simultaneously. Even at this value, the overlapping filter

regions prevent the convergence of the Gibbs sampler so using more threads is

not feasible. The timing results are shown in Figure 4.12.

As expected the time taken increases as the model becomes more complex, when

more filters or colours are added. However, there are some notable anomalies to

this. In each experiment the 2 colour run takes the longest time with one filter.

One would expect the 2 colour case to execute in the shortest time because with

fewer colours there are fewer calculations. This inconsistency arises from the

fact that all the filters are not the same size. When the observation is quantised

to contain only two colours, the features become very large, so the first filter to

be selected is larger than that selected for the 4 and 8 colour cases. The greater

number of operations required to use this large filter outweighs the time saved

by having fewer colours to consider.

The results clearly show that the more pixels which are updated simultaneously,

the faster the algorithm runs. The upper bound on that number is set by the

hardware and the size of the image itself. If a program attempts to launch more

threads than the hardware can handle, some of the threads will be queued,

decreasing the performance. The negative impact of this can be avoided by

ensuring that the number of threads is a multiple of the capacity of the GPU.

In this application it is incorrect to update too many components at once. Since

the filters are larger than a single pixel, changing one pixel’s colour has an effect

on a region of the filter response. If two or more pixels with overlapping filter

regions are flipped simultaneously, the probabilities assigned to their colours

will be slightly inaccurate. The set of pixels to be updated at each iteration of

the Gibbs sampler is chosen at random. It is possible that some of those will

affect overlapping regions. However, since only a small proportion of the pixels
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Fig. 4.12: Timing data for different numbers of simultaneous pixels.
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is treated simultaneously — about 5 % — this is unlikely and the chain is still

able to converge.

The issue of overlapping filter regions limits the maximum number of threads

that may be used for a certain image size. When the size of the image increases,

in width and height, the number of pixels and therefore calculations required

to produce a sample increases quadratically. The number of pixels that can be

safely updated simultaneously increases proportionally to the number of pixels.

As a result the time taken to run the GPU code increases linearly with the

image size within the limits of the hardware. This is a huge advantage as it

allows the algorithm to scale up to more complex problems without incurring

the penalty in execution time that it theoretically should. The time spent on

the GPU is constant provided all thread can still run simultaneously.

The same applies when the complexity is increased by adding more colours to

the palette. When going from 4 colours to 8 (the observation is almost the same

in this case) the number of calculations required to produce a sample doubles.

The graphs show that time increase between these experiments is minimal. This

is because the execution time on the GPU does not change; more threads are

added that can run simultaneously. The small increase is due to the linear

operations done on the CPU in selecting the new colour to assign to each pixel.

Consequently, the complexity of the problem can be increased with minimal

effect on the execution time. This feature of the implementation is extremely

useful for studying the algorithm. It allows the code and parameters to be

fine-tuned on simple test cases with the knowledge that the same program can

be applied to more complex problems. These results demonstrate a significant

improvement in performance by using a GPU. They suggest that the execution

time could be even further decreased by implementing more of the algorithm on

the GPU.

4.6 Classification

The statistical models generated by FRAME may be used for texture classifi-

cation. Once the λ parameter has been calculated for a texture, the model can

be used to assign a probability that another image is of the same texture. The
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image is filtered by each filter in the model and the histograms are calculated.

These are then used in Equation 2.19 to give a probability that the model fits

that image. (The term probability is used loosely here as the partition function

is unknown. All values are considered relative to each other.) More accurately,

it is the probability that this image is produced by the same process as the

observation that led to the model. Given a set of models each for a different

class of texture image, an unknown image can be classified as belonging to the

class whose model returns the highest probability.

A dataset of images to be used in a classification experiment is constructed

from the images shown in Figure 4.13. The dataset is created by taking random

32×32 pixel sections from the much larger images. In this way, we can ensure

that the assumption that each image is produced by the same process is true.

100 images of each class are used as a training set, and another 100 are used as

a test set. The images do not wrap a toroid as the algorithm assumes, however

the textures are specifically chosen with that constraint in mind. The features

are small and very repetitive.

For each texture in the experiment, a FRAME model is calculated based on one

example image. The probability of each image in the training dataset is then

evaluated under its model. A mean and standard deviation of the probability

for each texture is calculated. The probability values are aggregated in this

way to remove the effect of the partition function, which is not available and is

different for each texture. When evaluating the testing dataset, each image is

passed to the model of each texture. The class is assigned based on the statistics

from the training phase. The probability is expected to be closest to the mean

probability of the correct class. The results of this experiment are tabulated in

a confusion matrix in Table 4.2.

Tab. 4.2: Confusion matrix for the FRAME classifier on simple textures.
Assigned class

Fence Fur Lines Wicker

Actual class

Fence 85 7 1 5
Fur 0 88 0 10

Lines 0 1 78 19
Wicker 0 0 0 98
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(a) Fence (b) Fur

(c) Lines (d) Wicker

Fig. 4.13: Texture images used for the classification experiment, with a 32×32 pixel
region indicated.

The overall success rate of this classifier is 89.03 %. The worst misclassification

is between the Lines and Wicker textures. This is not surprising as both images

contain prominent horizontal features. This experiment proves that FRAME

models can be appropriate for texture classification. Once the model has been

evaluated, the classification itself is extremely efficient.

4.6.1 Froth classification

An experiment is done on images of froth from platinum processing. One of the

stages of extracting platinum from ore involves crushing the ore into a powder

and mixing it in a tank of liquid. This mixture is then caused to froth in
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order that the platinum may be skimmed off the top. The nature of the froth

varies depending on the chemicals in the mixture and how it is agitated. In

order to optimise the process, the conditions in the tank have to be accurately

controlled. At the moment, this is done by a human expert. It is desirable to

have an automated system that can control the process. A crucial part of such a

system would be the ability to classify the froth. This experiment tests whether

the FRAME models of visual textures are effective for classifying the froth.

The dataset used contains 5 different classes of froth images. An example of

each class is shown in Figure 4.14.

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4 (e) Class 5

Fig. 4.14: Example images of the froth textures.

These images show that in this case, a scale invariant classifier is not desirable.

The most noticeable difference between each image is the size of the bubbles.

Also in this application, the camera angle is fixed so the scale, illumination and

rotation (less significantly) of the images does not change.

For the sake of comparison a different algorithm is tested on the same dataset.

A classifier similar to the one described by Varma and Zisserman [38] is imple-

mented. This algorithm is chosen for its similarities to FRAME. The classifier is

able to model a texture class based on a single observation image and the model

depends on a bank of convolution filters. In order to make the comparison more

meaningful, these two elements of each algorithm are held the same — each

algorithm is trained on the same observation and uses the same filter bank.

The classifier falls into the broad category of bag of features classifiers described

in Section 2.1.1. The features used are textons [39]. The first step is to build

a dictionary of textons. This is done by filtering a number of images with the

filter bank. In this implementation, 5 examples of each class are used. The filter

responses are then combined to form a number of vectors in filter space — each

pixel induces an N -vector, for N filters in the filter bank. The most significant
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vectors are chosen by K-means clustering, to form the texton dictionary. The

parameter K is set to 20, following [38], so the dictionary contains 20 textons.

A model is learnt by filtering the observation with each filter in the bank. The

filter space vectors of the resulting responses are each assigned to the nearest

texton. Thus a histogram of texton frequencies is calculated for the training

image. These histograms are the models for each class. Testing images are

classified by comparing their texton histogram to the models and the image is

classified to the most similar model. Texton histograms are compared by the

sum of squared differences, which is an appropriate measure assuming that there

is no correlation between adjacent bins.

The classifier is run on two versions of the data, containing the same images at

different resolutions. The high resolution data set is the original, however those

images are too large to be processed efficiently by the FRAME implementation.

The low resolution images have been reduced by a factor of 4 in each dimension.

The results for the texton classifier on the high resolution dataset are presented

in Table 4.3.

Tab. 4.3: Confusion matrix for the texton classifier.
Assigned class

1 2 3 4 5

Actual class

1 151 0 0 0 0
2 1 51 0 0 47
3 27 0 72 0 0
4 0 0 0 151 0
5 0 0 0 0 107

This is an overall accuracy of 87.64 %. This texton based algorithm is an

effective classifier for this data.

For the sake of comparison, the texton classifier and the FRAME classifier, de-

scribed in the previous section, are evaluated on the low resolution data set.

The texton classifier performs significantly worse in this experiment, achieving

an accuracy of 66.92 %. Reducing the resolution of the images removes informa-

tion which leads to this lower accuracy. Compared to that result, the FRAME

classifier on the same dataset achieves an accuracy of 78.17 %. That is a sig-

nificantly better result which implies that the FRAME models are effective at

capturing the maximum available information about a texture image.



5. CONCLUSIONS AND RECOMMENDATIONS

This thesis is an investigation of the FRAME algorithm for modelling visual

textures. The algorithm is presented in the context of other approaches that

may be used to solve similar problems. Specifically, the tasks of synthesising and

of classifying textures are addressed. A number of modifications to the original

algorithm are implemented. This chapter summarises the findings related to

those modifications and suggests a number of further refinements.

5.1 Recommendations

This work attempts to find ways to improve the FRAME algorithm. The im-

provements involve either reducing the amount of time taken to run the algo-

rithm or improving the accuracy of the models that are produced.

The implementation of the FRAME algorithm described uses massively parallel

code running on a GPU to improve performance. This code is responsible for

calculating the effect of changing pixels within an image on the various filter

responses. There remains a significant amount of calculation done by the CPU.

It would be valuable to implement more of the algorithm in the GPU to further

decrease the running time. In particular, the comparisons between histograms

could be parallelised. These calculations are performed on large vectors (of

about 400 elements) and could well be sped up by using a GPU.

The element of the algorithm which most limits the accuracy of its models is

the filter bank. Features of the texture which cannot be easily captured by the

filters in the bank cannot be modelled. The filters used in this implementation

are the same as those in the original work. It would be meaningful to investigate

the effect of using different types of filter banks.
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The parallelisation of the algorithm relies on the assumption that all the filters

are linear. Within this constraint there is room for many more filters that

have not been explored in this work. The filter bank itself could be dynamic,

with randomly generated filters being added. Such a process might generate

new filter banks that are tuned to a specific class of textures and yield more

accurate models in their respective scopes.

Many competing algorithms use SIFT features and local binary patterns for

texture modelling. Since these have been proven to be useful for texture analysis,

it would be interesting to incorporate them into the FRAME algorithm. The

extraction of these features is not a linear operation so it would not be possible

to take advantage of the parallel Gibbs sampler. The use of these filters could

provide more accurate models in an application where execution time is less

crucial.

5.2 Conclusion

Visual textures provide humans with much of their information about the world

around them. Textures pose a specific problem for computer vision systems be-

cause they are difficult to describe mathematically — any pattern image may

be considered a texture. Many approaches have been used in attempts to accu-

rately model visual textures.

The FRAME algorithm creates a statistical model of textures. The model is

made up of a number of filters, chosen to maximise entropy. For each filter,

a λ function is calculated that leads to a calculation of the likelihood of a

filter response belonging to the texture in question. These probabilities are

combined to form the model of the visual texture. FRAME models can be

easily interpreted, since the filters which they contain correspond to features

within the pattern.

The algorithm is applied to two types of problems relating to visual textures:

synthesis of the texture and classification of an image as belonging to one of a

number a known texture classes. Texture synthesis is the process of learning a

texture model and using that to create new images of the texture. The derivation

of the FRAME model produces synthetic texture images. Those models can be
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used to recognise images of the same texture. The efficacy of FRAME models for

texture classification is demonstrated with an experiment on a froth dataset. It

is shown to be particularly useful with low resolution images. This is because the

algorithm requires a large number of computations and it is very time consuming

to calculate the model of a large image.

In order to reduce the computation time, a portion of the algorithm is imple-

mented for a GPU. This alteration to the original algorithm is successful at

reducing computation time. Specifically, it allows the complexity of the models

to be improved while incurring only a small increase in computation time. The

algorithm is parallelised by a modification to the Gibbs sampler. This requires

that all the filters used be linear, which is the case in the original implementa-

tion.

A number of other modifications to the algorithm are implemented in an at-

tempt to improve either the accuracy of the models or the convergence of the

algorithm. A process similar to simulated annealing is added to alter the rate

of change of the λ functions. This proves to be a useful method for decreasing

the number of iterations required for convergence. Another experiment is done

which forces the impulse filter to be used in each model. These tests show lit-

tle or no improvement, implying that the intensity information can be suitably

captured by other filters in the bank.

The most significant modification to the algorithm is the smoothing of the his-

tograms. Most of the important variables in the algorithm are in the form of

histograms. In the original implementation, these are discrete. The inaccuracies

that arise from this discretisation impede the convergence. In the current imple-

mentation the histograms are smoothed by Gaussian kernels. The smoothing

makes the histograms far less sensitive to small variations. Experiments are

done to optimise the shape of these kernels and show that this is an effective

improvement to the algorithm.

The models produced by FRAME can be used for texture classification. The

effectiveness of such a classifier is tested on a dataset of froth images. In these

tests, the classifier based on FRAME models is compared to an algorithm that

uses texton dictionaries and an SVM classifier. Both approaches are shown to

be able to discriminate between drastically different texture images. The froth

images present a more challenging classification problem. In a test with low res-
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olution images, for which the most accurate FRAME models were produced, the

FRAME based classifier performed considerably better than the texton based

classifier.

The FRAME algorithm is an interesting approach to modelling of visual tex-

tures. The models that it produces can be easily interpreted in terms of the

pattern features that are represented. This dissertation demonstrates the appli-

cation of the FRAME algorithm to both synthesis and classification tasks. The

modifications to the algorithm presented here serve to make it more practically

useful.
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[7] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of tex-

ture measures with classification based on featured distributions. Pattern

recognition, 29(1):51–59, 1996.

[8] Joo-Hwee Lim, J.P. Chevallet, and Sheng Gao. Scene identification using

discriminative patterns. In Pattern Recognition, 2006. ICPR 2006. 18th

International Conference on, volume 2, pages 642 –645, 0-0 2006.

[9] L. W. Renninger and J Malik. When is scene identification just texture

recognition? Vision Research, 44(19):2301 – 2311, 2004.



Bibliography 56

[10] E. Nowak, F. Jurie, and B. Triggs. Sampling strategies for bag-of-features

image classification. Computer VisionECCV 2006, pages 490–503, 2006.

[11] Xiuwen Liu and DeLiang Wang. Texture classification using spectral his-

tograms. Image Processing, IEEE Transactions on, 12(6):661 – 670, june

2003.

[12] D.G. Lowe. Object recognition from local scale-invariant features. In Com-

puter Vision, 1999. The Proceedings of the Seventh IEEE International

Conference on, volume 2, pages 1150 –1157 vol.2, 1999.

[13] K. Mikolajczyk and C. Schmid. A performance evaluation of local descrip-

tors. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

27(10):1615 –1630, oct. 2005.
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