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Abstract

A 3D reconstruction technique from stereo images is presented that needs minimal intervention
from the user.

The reconstruction problem consists of three steps, each of which is equivalent to the estimation
of a specific geometry group. The first step is the estimation of the epipolar geometry that exists
between the stereo image pair, a process involving feature matching in both images. The second
step estimates the affine geometry, a process of finding a special plane in projective space by
means of vanishing points. Camera calibration forms part of the third step in obtaining the
metric geometry, from which it is possible to obtain a 3D model of the scene.

The advantage of this system is that the stereo images do not need to be calibrated in order
to obtain a reconstruction. Results for both the camera calibration and reconstruction are
presented to verify that it is possible to obtain a 3D model directly from features in the images.
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Chapter 1

Introduction

1.1 General Overview

The objective of this thesis is to present an automatic 3D reconstruction technique that uses
only stereo images of a scene.

The topic of obtaining 3D models from images is a fairly new research field in computer vision.
In photogrammetry, on the other hand, this field is well established and has been around since
nearly the same time as the discovery of photography itself [20]. Whereas photogrammetrists
are usually interested in building detailed and accurate 3D models from images, in the field of
computer vision work is being done on automating the reconstruction problem and implement-
ing an intelligent human-like system that is capable of extracting relevant information from
image data.

This thesis presents a basic framework for doing exactly that. Only stereo image pairs are
considered, as much relevant information is available on this topic.

The two images can be acquired by either two cameras at the same time or by one camera at
a different time instant. It would be possible to extend the principle in this thesis to include a
whole image sequence.
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1.2 The 3D reconstruction problem

Structure from uncalibrated images only leads to a projective reconstruction. Faugeras [7]
defines a matrix called the fundamental matrix, which describes the projective structure of
stereo images. Many algorithms for determining the fundamental matrix have since been
developed: a review of most of them can be found in a paper by Zhang [52]. Robust methods
for determining the fundamental matrix are especially important when dealing with real image
data. This image data is usually in the form of corners (high curvature points), as they can be
easily represented and manipulated in projective geometry. There are various corner detection
algorithms. The ones employed in this thesis are by Kitchen and Rosenfeld [23] and Harris and
Stephens [16]. Alternatively, Taylor and Kriegman [46] develope a reconstruction algorithm
using line segments instead of corners.

Image matching forms a fundamental part of epipolar analysis. Corners are estimated in both
images independently, and the matching algorithm needs to pair up the corner points correctly.
Initial matches are obtained by correlation and relaxation techniques. A new approach by Pilu
[36] sets up a correlation-weighted proximity matrix and uses singular value decomposition to
match up the points. A matching algorithm by Zhang et. al. [54] uses a very robust technique
calledLMedS(Least-Median-of-Squares Method), which is able to discard outliers in the list
of initial matches and calculates the optimal fundamental matrix at the same time.

In order to upgrade the projective reconstruction to a metric or Euclidean one, 3D vision is
divided or stratified into four geometry groups, of which projective geometry forms the basis.
The four geometry strata are projective, affine, metric and Euclidean geometry. Stratification
of 3D vision makes it easier to perform a reconstruction. Faugeras [9] gives an extensive
background on how to achieve a reconstruction by upgrading projective to affine geometry and
affine to metric and Euclidean geometry.

Affine geometry is established by finding thane at infinityin projective space for both
images. The usual method of finding the plane is by determining vanishing points in both
images and then projecting them into space to olgiaints at infinity Vanishing points are the
intersections of two or more imaged parallel lines. This process is unfortunately very difficult

to automate, as the user generally has to select the parallel lines in the images. Some automatic
algorithms try to find dominant line orientations in histograms [28]. Pollefeys [37] introduced
themodulus constraintfrom which it is possible to obtain an accurate estimation of the plane

at infinity by determining infinite homographies between views. At least three views need to
be present in order for the algorithm to work properly.
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Camera calibration allows for an upgrade to metric geometry. Various techniques exist to
recover the internal parameters of the camerainvolved in the imaging process. These parameters
incorporate the focal length, the principal point and pixel skew. The classical calibration
technique involves placing a calibration grid in the scene. The 3D coordinates of markers on
the grid are known and the relationship between these and the corresponding image coordinates
of the same markers allow for the camera to be calibrated. The calibration grid can be replaced
by a virtual object lying in the plane at infinity, called thbsolute conic Various methods

exist to calculate the absolute conic, &mippa’s equation$l9, 30, 49] form the basis of the

most famous one. These equations provide constraints on the absolute conic and can be solved
by knowing the fundamental matrix between at least three views. Vanishing points can also be
used to calibrate a camera, as a paper by Caprile and Torre [5] shows. This idea is also used in
a method by Liebowitz et. al. [27, 28, 29], which makes use of only a single view to obtain the
camera calibration parameters. A new calibration technique which places a planar pattern of
known dimensions in the scene, but for which 3D coordinates of markers are not known, has
been developed by Zhang [51, 53]. The homography between the plane in the scene and the
image plane is calculated, from which a calibration is possible.

Euclidean geometry is simply metric geometry, but incorporates the correct scale of the scene.
The scale can be fixed by knowing the dimensions of a certain object in the scene.

Up to this point it is possible to obtain the 3D geometry of the scene, but as only a restricted
number of features are extracted, itis not possible to obtain a very complete textured 3D model.
Dense stereo matching techniques can be employed once the the camera projection matrices
for both images are known. Most dense stereo algorithms operate on rectified stereo image
pairs in order to reduce the search space to one dimension. Pollefeys, Koch and van Gool
[39] reparameterise the images with polar coordinates, but need to employ oriented projective
geometry [26] to orient the epipolar lines. Another rectification algorithm by Roy, Meunier and
Cox [42] rectifies on a cylinder instead of a plane. This method is very difficult to implement
as all operations are performed in 3D space. A very simple method implemented in this thesis
is by Fusiello, Trucco and Verri [13, 14], which rectifies the two images by rotating the camera
projection matrices around their optical centres until the focal planes become coplanar.

Two dense stereo matching algorithms have been considered. Koch [24, 25] obtains a 3D
model by extracting depth from rectified stereoscopic images by means of fitting a surface to
a disparity map and performing surface segmentation. A method by Fusiello, Roberto and
Trucco [12] makes use of multiple correlation windows to obtain a good approximation to the
disparity, from which it is possible by means of triangulation to obtain a 3D textured model.
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1.3 Outline of the thesis

Chapter 2 summarises aspects of projective geometry and also deals with stratification of
3D vision. This chapter is extremely important as it gives a theoretical framework to the
reconstruction problem.

The camera modelis introduced in chapter 3, with the emphasis on epipolar geometry. Epipolar
geometry defines the relationship between a stereo image pair. This relationship is in the form
of a matrix, called the fundamental matrix. The fundamental matrix allows for a projective
reconstruction, from which it is then possible to obtain a full Euclidean 3D reconstruction.

Three techniques for the estimation of the fundamental matrix are outlined in chapter 4. One
of the techniques, the Least-Median-of-Squares (LMedS) method, plays a role in the point
matching algorithm, as this method is able to detect false matches and at the same time calculates
arobust estimate of the fundamental matrix. Alinear least-squares technique is used as an initial
estimate to the LmedS method.

In chapter 5, a robust matching algorithm is outlined that incorporates two different matching
techniques. The matching process makes use of correlation and relaxation techniques to find
a set of initial matches. With the help of the LMedS method, which makes use of the epipolar
geometry that exists between the two images, the set of initial matches are refined and false
matches are discarded. Some of the limitations of the matching algorithm are described at the
end of the chapter.

Chapter 6 describes four different camera calibration methods with their advantages and disad-
vantages. Some original calibration methods are described that make use of calibration patterns
inside the view of the camera. Selfcalibration is a technique that substitutes the calibration pat-
tern with a virtual object. This object provides constraints to calculate the camera calibration
matrix. It is also possible to obtain the internal parameters of the camera from only a single
view. In order to achieve that, certain measurements in the scene need to be known. The
last calibration method makes use of a planar calibration grid, which is imaged from different
views. The correspondence between the image planes and the planar patternis used to establish
the calibration matrix.

The complete reconstruction process is presented in chapter 7. Projective, affine and metric
reconstruction processes are described. The estimation of the plane at infinity is described in
detail, and certain criteria are outlined that have to be metin order to obtain an accurate estimate
of the plane. This chapter also describes dense stereo matching in order to obtain a 3D textured
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model of the scene. The reconstruction results are also presented in this chapter. Part of a box
is reconstructed, verifying that the reconstruction algorithm functions properly.

Conclusions are drawn in chapter 8.
The appendix summarises various algorithms which are used throughout the thesis:

» Two corner detection algorithms are described together with an algorithm which refines
the corners to subpixel accuracy.

A straight line finder is outlined which is used to find parallel lines in the images.

« A maximum likelihood estimate presented which finds the best estimate of a vanishing
point.

TheLevenberg-Marquardalgorithm is explained as it is used in all the nonlinear min-
imisation routines.

Two methods of triangulation are presented which are used in the reconstruction problem.

For a stereo image pair, the individual steps of the reconstruction algorithm are as follows:

1. Corners are detected in each image independently.

2. A set of initial corner matches is calculated.

3. The fundamental matrix is calculated using the set of initial matches.

4. False matches are discarded and the fundamental matrix is refined.

5. Projective camera matrices are established from the fundamental matrix.

6. Vanishing points on three different planes and in three different directions are calculated
from parallel lines in the images.

7. The plane at infinity is calculated from the vanishing points in both images.

8. The projective camera matrices are upgraded to affine camera matrices using the plane
at infinity.

9. The camera calibration matrix (established separately to the reconstruction process) is
used to upgrade the affine camera matrices to metric camera matrices.
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10. Triangulation methods are used to obtain a full 3D reconstruction with the help of the

metric camera matrices.

11. If needed, dense stereo matching techniques are employed to obtain a 3D texture map of

the model to be reconstructed.

Stereo image pairs were obtained Biyate® Camera, Model: WAT-202B(PAL) and grabbed

by a Asus® AGP-V3800 Ultra framegrabber. If the scene or model did not contain enough
features needed for the reconstruction, markers were put up at strategic places around the scene.
These markers were usually made up from pieces of paper with straight, parallel lines printed
on them for vanishing point estimation, or stars for the corner and matching algorithms.



Chapter 2

Stratification of 3D Vision

2.1 Introduction

Euclidean geometry describes a 3D world very well. As an example, the sides of objects have
known or calculable lengths, intersecting lines determine angles between them, and lines that
are parallel on a plane will never meet. But when it comes to describing the imaging process

of a camera, the Euclidean geometry is not sufficient, as it is not possible to determine lengths
and angles anymore, and parallel lines may intersect.

3D vision can be divided into four geometry groups or strata, of which Euclidean geometry is
one. The simplest group is projective geometry, which forms the basis of all other groups. The
other groups include affine geometry, metric geometry and then Euclidean geometry. These
geometries are subgroups of each other, metric being a subgroup of affine geometry, and both
these being subgroups of projective geometry.

Each geometry has a group of transformations associated with it, which leaves certain properties
of each geometry invariant. These invariants, when recovered for a certain geometry, allow for
an upgrade to the next higher-level geometry. Each of these geometries will be explained in
terms of their invariants and transformations in the next few sections of this chapter.

Projective geometry allows for perspective projections, and as such models the imaging process
very well. Having a model of this perspective projection, it is possible to upgrade the projective
geometry later to Euclidean, via the affine and metric geometries.

Algebraic and projective geometry forms the basis of most computer vision tasks, especially
in the fields of3D reconstruction from imagesndcamera selfcalibration Section 2.2 gives
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an overview of projective geometry and introduces some of the notation used throughout the
text. Concepts such as points, lines, planes, conics and quadrics are described in two and three
dimensions. The sections that follow describe the same structures, but in terms of affine, metric
and Euclidean geometry.

A standard text covering all aspects of projective and algebraic geometry is by Semple and
Kneebone [44]. Faugeras applies principles of projective geometry to 3D vision and recon-
struction in his book [8]. Other good introductions to projective geometry are by Mohr and
Triggs [33] and by Birchfield [3]. Stratification is described by Faugeras [9] and by Pollefeys
[37].

The following sections are based entirely on the introductions to projective geometry and
stratification by Faugeras [8, 9] and Pollefeys [37].

2.2 Projective Geometry

2.2.1 Homogeneous Coordinates and other Definitions

A point in projective spacenfdimensions)P", is represented by @ + 1)-vector of coordi-
natesx = [Xy, ..., Xn+1]'. At least one of the; coordinates must be nonzero. Two points
represented byn + 1)-vectorsx andy are considered equal if a nonzero scal@xists such
thatx = Ay. Equality between points is indicated ky~ y. Because scaling is not important
in projective geometry, the vectors described above are catiatbgeneous coordinate$ a
point.

Homogeneous points witk,,; = 0 are calledooints at infinityand are related to the affine
geometry described in section 2.3.

A collineation or linear transformation of" is defined as a mapping between projective
spaces which preserves collinearity of any set of points. This mapping is represented by a
(m+ 1) x (n+ 1) matrix H, for a mapping fronPP" — P™. Again for a nonzero scalar, H

andX H represent the same collineation.Hfis a(n + 1) x (n + 1) matrix, thenH defines a
collineation fromP" into itself.

A projective basior P" is defined as any set @fi+2) points of P", such that ngn+1) of them
are linearly dependent. Theset=1[0,...,1,...,0]",fori =1,...,n+1, where lisinthe
ith position, anden,» = [1, 1, ..., 1]7 form thestandard projective basisA projective point

of P" represented by any of its coordinate vectorsan be described as a linear combination
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of anyn + 1 points of the standard basis:

n+1

X:ina. (2.1)
i—1

Any projective basis can be transformed by a collineation into a standard projective betsis: "
X1, ..., Xny2 ben + 2 coordinate vectors of points i®", non + 1 of which are linearly
dependent, i.e., a projective basis.elf ..., e,;1, €n2 is the standard projective basis, then
there exists a honsingular matrik such thatAe = Aix;,i = 1, ..., n+2, where the\; are
nonzero scalars; any two matrices with this property differ at most by a scalar fa@&p®].

A collineation can also map a projective basis onto a second projective biésig,." . , Xni2
andy,..., Y, are two sets oh + 2 coordinate vectors such that in either set me- 1
vectors are linearly dependent, i.e., form two projective basis, then there exists a nonsingular
(n4+1) x (n+ 1) matrix P suchthatPx; = pjy;,1 =1, ..., n+ 2, where thep; are scalars,

and the matrixP is uniquely determined apart from a scalar fact¢s, 9].

The proof for both above statements can be found in [8].
2.2.2 The Projective Plane
The projective spacB? is known as the projective plane. A pointfitf is defined as a 3-vector

X = [X1, X, X3]T, With (u, v) = (X1/Xa, X2/X3) the Euclidean position on the plane. A line is
also defined as a 3-vectbe= [I4, |5, I3]" and having the equation of

IiXi =0. (2.2)

i

Then a poini is located on the line if
ITx = 0. (2.3)

This equation can be called tlire equation which means that a point is represented by a

set of lines through it, or this equation is called fwent equationwhich means that a linkeis
represented by a set of points. These two statements show that there is no difference between
points and lines irP2. This is called theorinciple of duality Any theorem or statement that

is true for the projective plane can be reworded by substituting points for lines and lines for
points, and the resulting statement will also be true.
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The equation of the line through two pointaandy is
=X xY, (2.4)
which is also sometimes calculated as follows:

| = [X]x Y, (25)

with
0 X3 —Xo
[X]x = —X3 0 X1 (26)
X2 —X1 0

being the antisymmetric matrix of coordinate vectoaissociated with the cross product. The
intersection point of two lines is also defined by the cross produet:|; x I».

All the lines passing through a specific point form pgencil of lines If two linesl; andl, are
elements of this pencil, then all the other lines can be obtained as follows:

| = Aqlq 4+ Aolo, (27)

wherei; andi, are scalars.

Cross-Ratio

If four pointsxy, X2, X3 andx4 are collinear, then they can be expressed by

Xi=Y+AizZ

for two pointsy and z, and no pointx; coincides withz. Then thecross-ratiois defined as

follows:
Al —A3 A2 — A3

AM—ta ro—Aa

{X1, X2; X3, X4} = (2.8)

The cross-ratio is invariant to all collineations of projective space. A similar cross-ratio can
be derived for four lines: forfour linesly, I, 13 and 1, of P? intersecting at a point, their
cross-ratiofl 1, I; |3, 14} is defined as the cross-ratix1, X2; X3, X4} Of their four points of
intersection with any liné not going through their point of intersectid{s, 9]. See figure 2.1

for a graphical explanation.
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Figure 2.1: Cross-ratio of four linest1, |2; I3, 14}={X1, X2; X3, X4}. Figure
obtained from [8].

Collineations

A collineation of P? is defined by 3x 3 invertible matrices, defined up to a scale factor.
Collineations transform points, lines and pencil of lihes points, lines and pencil of lines,
and preserve the cross-ratios.A collineations are called homographies and are represented
by a matrixH. A point x is transformed as follows:

X'~ Hx. (2.9)

The transformation of a linkis found by transforming the pointson the line and then finding
the line defined by these points:

' = ITH THx =1Tx = 0.
The transformation of the line is then as follows, with " = (H™ )T = (H")~ %

"~ HTI. (2.10)

Conics

In Euclidean geometry, second-order curves such as ellipses, parabolas and hyperbolas are
easily defined. In projective geometry, these curves are collectively knosaonicss A conic

IThepencil of linesis the set of lines inp? passing through a fixed point.
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C is defined as the locus of points of the projective plane that satisfies the following equation:

S(x) =x"Cx=0

or (2.11)
3
S(X) = Z GjXiX; =0,
i =1

wherec;; = cji which formC, a 3x 3 symmetric matrix defined up to a scale factor. This
means that the conic depends on 5 parameters. A conic can be visualised by thinking in terms
of Euclidean geometry: a circle is defined as a locus of points with constant distance from the
centre, and a conic is defined as a locus of points with constant cross-ratio to four fixed points,
no three of which are linearly dependent [3].

The principle of duality exists also for conics: tHaal conicC* or conic envelopés defined
as the locus of all lines satisfying the following equation:

ITC*l =0, (2.12)

whereC* is a 3x 3 symmetric matrix defined up to a scale factor and depends also on 5
parameters.

Faugeras [8, 9] shows that the tangkat a pointx on a conic is defined by
| =C'x =Cx. (2.13)

Then the relationship between the conic and the dual conic is as follows: xwesnes along

the conic, the equatior” Cx = 0 is satisfied and thus the tangent liné the conic atx
satisfied 'C~ Tl = 0. Comparing this to equation (2.12), it shows that the tangents to a conic
defined byC belong to a dual conic defined I/ ~ C~T.

Transformations of the conic and dual conic with homogrdgtare as follows (using equations
(2.9) and (2.10)):

XTC'X ~x"THTH TCH'Hx =0
I'TC¥l' ~ITH'HC*HTH "I =0
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and therefore

C'~H TCH! (2.14)
C* ~HC*HT. (2.15)

Poles and Polars

Polesandpolarsare defined as follows:a'pointx and conicC define alind = Cx. The line
| is called thepolarof x with respect taC, and the poink is thepoleof| with respect tcC. The
polar linel = Cx of the pointx with respect to a coni€ intersects the conic in two points at
which tangent lines t€ intersect atx. If a pointv lies on the polar of another point, then
the two points are said to be conjugate with respect to the conic and sa}i€fy, = 0" [29].

Figure 2.2 shows how this is achieved.

Figure 2.2: Pointsv1 andwv,, with polarsl1 andl,. The pointsv; andv, are
conjugate with respect to the conlic Figure obtained from [29].

2.2.3 The Projective Space
The spaceP?® is known as the projective space. A point7f is defined by a 4-vectox =
[X1, X2, X3, X4]7. The dual entity of the point ifP3 is a planer, which is also represented by

a 4-vectorr = [y, 72, s, m4]" With equation of

mixi = 0. (2.16)

i
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A point x is located on a plane if the following equation is true:

n'x =0. (2.17)

The structure which is analogous to the pencil of line®éfs thepencil of planesthe set of
all planes that intersect in a certain line.

Cross-Ratio

The cross-ratio irP; is defined as four planes;, m,, w3 andmr,4 of P3 that intersect at a line

I. That means that the cross-rafio,, n,; w3, w4} is defined as the cross-ratjb, 15; 13, | 4}

of their four lines of intersection with any plamenot going through. Another formulation is

as follows: ‘the cross-ratio is the cross-ratio of the four points of intersection of any line, not
lying in any of the four planes, with the four plarfi¢8, 9], (see figure 2.3).

Figure 2.3: Cross-ratio of four planegt1, mo; w3, m4}={l1,12; |3, l4}. Figure
obtained from [8].

Collineations

Collineations inP? are defined by 4« 4 invertible matricesT, defined up to a scale factor.
Again it can be seen that collineations transform points, lines, planes and pencil ofitanes
points, lines, planes and pencil of planes, and preserve the cross-ratios.

2Thepencil of planess the set of all planes intersecting in a given line.
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As was the case iP?, transformationd of pointsx and planesr in P2 are as follows:
X'~ Tx (2.18)
and

' ~T 'm. (2.19)

Quadrics

The equivalent to a conic iR® is aquadric A quadric is the locus of all points satisfying:

S(x) =x"Qx=0

or (2.20)

4
S(x) = > gjxx; =0,

ij=1

where Q is a 4 x 4 symmetric matrix defined up to a scale factor. A quadric depends on 9
independent parameters.

Thedual quadricis the locus of all planes satisfying:
n' Q*r =0, (2.21)

where Q* is a 4 x 4 symmetric matrix defined up to a scale factor and also depends on 9
independent parameters.

Transformations of the quadric and dual quadric are as follows (similar to transformations
of the conic as in the previous section):

XTQX ~x"TTTTQT 1 Tx=0
2T Q' ~aTTATQ T T T =0

and therefore

Q~TTQT™H (2.22)
Q' ~TQTT. (2.23)
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The quadric can be described as a surfacezof

2.2.4 Discussion

Now that a framework for projective geometry has been created, it is possible to define 3D
Euclidean space as embedded in a projective spicdn a similar way, the image plane of

the camera is embedded in a projective spgage Then a collineation exists which maps the

3D space to the image plare® — P?, via a 3x 4 matrix. This will be dealt with in detail in

the next chapter.

As was outlined, the cross-ratio stays invariant to projective transformations or collineations.
The relations ofncidence, collinearityandtangencyare also projectively invariant.

2.3 Affine Geometry

This stratum lies between the projective and metric geometries and contains more structure
than the projective stratum, but less than the metric and Euclidean ones.

2.3.1 The Affine Plane

The line in the projective plane witky = 0 is called thdine at infinityor | .. It is represented
by the vectol ., = [0, 0, 1].

The affine plane can be considered to be embedded in the projective plane under a correspon-
dence of4? — P2 X = [Xy, Xa]T — [Xq, X2, 1]7. There s a one-to-one correspondence
between the affine plane and the projective plane minus the line at infinity with equatiof”

[8, 9]. For a projective poink = [y, Xo, X3]T that is not on the line at infinity, the affine pa-
rameters can be calculated s = % andX, = X

X3"

To calculate any line’s point at infinity, this line needs to be simply intersected witlif such
aline is defined as in equation (2.2), this intersection pointlis-it 11, 0]" orl x | . Using
equation (2.2), the vectdr-I,, 1,]7 gives the direction of the affine lifgx; + l,x5 + I3 = 0.

The relationship of the line at infinity and the affine plane is then as follows: any point
[X1, X2, 0]" onl gives the direction in the underlying affine plane, with the direction being
parallel to the vectofx, X»]".

Faugeras [9] gives a simple example which shows how the affine plane is embedded in the
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projective plane: considering two parallel (not identical) lines in affine space, they must have
the same direction parallel to the vecfei,, I1]". Then considering them as projective lines

of the projective plane, they must intersect at the pits, [1, 0]" of | ... That shows that two
distinct parallel lines intersect at a pointlgs.

Transformations

A point x is transformed in the affine plane as follows:
X'=BX + b, (2.24)

with B being a 2x 2 matrix of rank 2, and a 2 x 1 vector. These transformations form a
group called the affine group, which is a subgroup of the projective group and which leaves the
line at infinity invariant [8, 9].

In projective spacé? it is then possible to define a collineation that kelgpsnvariant. This
collineation is defined by a 8 3 matrix A of rank 3:

H_|:B b]
0 1

2.3.2 The Affine Space

As in the previous section, the plane at infinity, has equatiom, = 0 and the affine space can
be considered to be embedded in the projective space under a corresponddfce oP>:

X = [Xq, X2, X3]T — [Xg, X2, X3, 1]7. "This is the one-to-one correspondence between
the affine space and the projective space minus the plane at infinity with equatipna=09"

[8, 9]. Then for each projective poimt = [X1, X2, X3, X4]T that is not in that plane, the affine

parameters can be calculatedXas= %, Xy = §—j andX; = %.

As in P?, the following expression gives rise to the line at infinityrif, is the plane at infinity

of P2 andn is a plane ofP3 not equal tor ., thenm x 7, is the line at infinity onr. Therefore,
each plane of equation (2.16) intersects the plane at infinity along a line that is its line at infinity.

As in P?, it can be seen that any poirt= [X1, X, X3, 0] on n,, represents the direction
parallel to the vectofxy, X», X3]". This means that two distinct affine parallel planes can be
considered as two projective planes intersecting at a line in the plane at infipity
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Transformations

Affine transformations of space can be written exactly as in equation (2.24), buBwiging a
3x 3 matrix of rank 3, antha 3x 1 vector. Writing the affine transformation using homogeneous
coordinates, this can be rewritten as in equation (2.18) with

B b
Ta~| : (2.25)
ol 1

To upgrade a specific projective representation to an affine representation, a transformation
needs to be applied which brings the plane at infinity to its canonical positionzie.=
[0, 0,0, 1]7) [37]. Such a transformation should satisfy the following (as in equation (2.19)):

~T Ty or TT ~ T oo (2.26)

R o o o
o o o

The above equation determines the fourth roi afnd all other elements are not constrained
[37]:

T

oo

I'3x
Toa~ { . } , (2.27)
where the last element af ., is scaled to 1. The identity matrik can be generalised by
I 3.4 = [Asxz 03]. Then every transformation in this form, with déd # O, will map x

to[0,0,0,1]".

2.3.3 Discussion

The invariants of the affine stratum are clearly the points, lines and planes at infinity. These
form an important aspect of camera calibration and 3D reconstruction, as will be seen in later
chapters.

As is shown in the previous section, obtaining the plane at infinity in a specific projective
representation allows for an upgrade to an affine representation. The plane at infinity can be
calculated by finding three vanishing points in the images. This will be explained in more detail
in chapter 7.
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2.4 Metric Geometry

This stratum corresponds to the groupsohilarities The transformations in this group are
Euclidean transformations such as rotation and translation. The metric stratum allows for a
complete reconstruction up to an unknown scale.

2.4.1 The Metric Plane

Affine transformations can be adapted to not only preserve the line at infinity, but to also
preserve two points on that line called thbsolute pointor circular points The circular
points are two complex conjugate points lying on the line at infinity [44]. They are represented
byl =[1,i,0]" andJ = [1, —i, 0]" withi = /—1.

Making use of equation (2.24) and imposing the constraint thahd J be invariant, the
following is obtained:

1 byl +byoi + b0

i boil 4 byl + b0

1 P11l — b2l + b0

i~ byl — boyi + b0

which results in

(b11 — b22)i — (b12+21) =0
—(b11 — bp)i — (b2 + b)) = 0.

Thenb;; — by, = by, + by; = 0 and the following transformation is obtained:

cosa  Sina
X' = c[ _ } X + b, (2.28)
—Sina  cosu

wherec > 0 and 0< o < 27. This transformation can be interpreted as follows: the affine
point X is first rotated by an angke around the origin, then scaled byand then translated by
b.

Circular points have the special property in that they can be used to determine the angle between
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two lines. This angle is calculated by thaguerre formula
1 S
a=o log({l1, 125 im, Jm))- (2.29)

Stated in words: the anglex between two linek; andl, can be defined by considering their
point of intersectioom and the two lines, and j ,, joining m to the absolute points and J"
[8, 9].

The Laguerre formula can also be stated differently: it is equal to the cross-ratio of the four
pointsl, J, m; andm, of intersection of the four lines with the line at infinity (see figure 2.4).

Figure 2.4: lllustration of the Laguerre formula ifP?. Figure obtained
from [8, 9].

The two linesl; andl, are perpendicualar if the cross-rafiQ, I2; im, j,} IS equal to—1,
becaus@”™ = cosrm +i sinr = —1[8, 9].

2.4.2 The Metric Space

In metric space, affine transformations are adapted to leave the absolute conic invariant. The
absolute coni® is obtained as the intersection of the quadric of equaEc?gl x2 = 0 with
oo
4
x> =x4 =0, (2.30)
i=1
which can be interpreted as a circle of radius +/—1, an imaginary circle in the plane at
infinity [8, 9, 37]. All the points or have complex coordinates, which means that i§ a
point onL, then the complex conjugate poixis also on<2.
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Laguerre formula foP3 is as follows: the anglex between two planes; and z, can be
defined by considering their line of intersectioand the two planeg and j, going throughl
and tangent to the absolute corft [8, 9]:

1 .
= log({mr1, mo; 1y, |1})- (2.31)

(See figure 2.5.)

Figure 2.5: lllustration of the Laguerre formula iR3. Figure obtained from [8].

Affine transformations which keef invariant are written as follows:
X' =cCX+b, (2.32)

wherec > 0 andC is orthogonal: CCT = 13,3. Writing the affine transformation using
homogeneous coordinates, this can be rewritten as in equation (2.18) with

C b
Ty ~ [ o } (2.33)
ol 1

The absolute conif is represented by two equations as in equation (2.30). The dual absolute
conicR2* can be represented as a single quadric [37]:

Q* ~ , (2.34)

o »r O O

O O O
O O r O
O o o o
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which is its canonical form. The image of the absolute canicand the image of the dual
absolute coni®}, are the 2D representations of the conics. Their canonical forms are:

W ~ [13x3] and i, ~ [l3x3l].

To upgrade the recovered affine representation of the previous section to a metric one, the
absolute conic needs to be identified. This is done by an affine transformation which brings
the absolute conic to its canonical position, or stated differently, from its canonical position to
its actual position in the affine representation [37].

Combining equations (2.23) and (2.25), the following is obtained:
B b la3 O BT 0 BBT 0
@ ~| e A e R (2.35)
0; 1 0; O b 1 0; O
The image of the absolute conic and the image of the dual absolute conic have then the following

form:
W =B TB™! and e = BB. (2.36)

It is then possible to upgrade from affine to metric using the following transformation matrix:

B 0
Tam = [ L } (2.37)
0 o0

whereB can be obtained vi€holesky decompositida5]. As will be seen in later chapters,
the matrixB is set equal to the camera calibration matrix.

2.4.3 Discussion

The absolute conic is the invariant variable of the metric stratum. Two other invariants in this
group not mentioned before argative distancesndangles

As the upgrade from an affine to a metric representation requires the camera calibration matrix,
this section is closely related to the topic of camera calibration, which will be described in
chapter 6.
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2.5 Euclidean Geometry

Euclidean geometry is the same as metric geometry, the only difference being that the relative
lengths are upgraded to absolute lengths. This means that the Euclidean transformation matrix
is the same as in equation (2.33), but without the scaling factor:

C b
Te ~ [ ! } (2.38)
ol 1

2.6 Notations

Throughout the thesis, bold symbols represent vectors and matrices. In the following chap-
ters, the following notation is used to represent the homogeneous coordinates of a vector:
m=[x,y]" - m=[m1]".
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Chapter 3

Camera Model and Epipolar
Geometry

3.1 Introduction

This chapter introduces the camera model and definesgipelar or two viewgeometry.

A perspective camera model is described in section 3.2, which corresponds pimiode
camera. Itis assumed throughout this thesis that effects such as radial distortion are negligible
and are thus ignored.

Section 3.3 defines the epipolar geometry that exists between two cameras. A special matrix
will be defined that incorporates the epipolar geometry and forms the building block of the
reconstruction problem.

3.2 Camera Model

A camera is usually described using thi@hole model As mentioned in section 2.2, there
exists a collineation which maps the projective space to the camera’s retinal planre: P2
Then the coordinates of a 3D poikt = [X, Y, Z]" in a Euclidean world coordinate system
and the retinal image coordinates= [u, v]" are related by the following equation:

sm=PM, (3.1)
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wheres is a scale factomn = [u, v, 1]T andM = [X, Y, Z, 1]T are the homogeneous coordi-
nates of vectom andM, andP is a 3x 4 matrix representing the collineatio®® — P?. P
is called the perspective projection matrix.

Figure 3.1 illustrates this process. The figure shows the case where the projection centre is

placed at the origin of the world coordinate frame and the retinal planezdisatf = 1. Then

fX fY

u=7,v=7and

P=1[lss O] (3.2)

The optical axis passes through the centre of projection (carfieaaid is orthogonal to the
retinal plane. The point is called the principal point, which is the intersection of the optical
axis with the retinal plane. The focal lengthof the camera is also shown, which is the distance
between the centre of projection and the retinal plane.

M

Optical Axis

Retinal
Plane
R

Figure 3.1: Perspective Projection.

If only the perspective projection matrR is available, it is possible to recover the coordinates
of the optical centre or camera.

The world coordinate system is usually defined as follows: the potiglgection is pointing
upwards, the positiv&-direction is pointing to the right and the positiZedirection is pointing
into the page.
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3.2.1 Camera Calibration Matrix

The camera calibration matrix, denoted Ky contains the intrinsic parameters of the camera

used in the imaging process. This matrix is used to convert between the retinal plane and the
actual image plane:

f f
E (tana)E Uop

K=| 0 pi v |- (3.3)
0 0 1

Here, the focal lengthi acts as a scale factor. In a normal camera, the focal length mentioned
above does not usually correspond to 1. It is also possible that the focal length changes during

an entire imaging process, so that for each image the camera calibration matrix needs to be
reestablished.

The valuesp, and p, represent the width and height of the pixels in the image, [ug, vo]
is the principal point and is the skew angle. This is illustrated in figure 3.2.

o

P, Pixel

pii

Figure 3.2: lllustration of pixel skew.

It is possible to simplify the above matrix:

fu s Ww
K=| 0 f, v |, (3.4)
0 0 1

where f, and f, are the focal lengths measured in width and height of the pigetpresents
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the pixel skew and the ratify: f, characterises the aspect ratio of the camera.

It is possible to use the camera calibration matrix to transform points from the retinal plane to
points on the image plane:
m= Kmg. (3.5)

The estimation of the camera calibration matrix is described in chapter 6.

3.2.2 Camera Motion

Motion in a 3D scene is represented byogation matrix R and atranslationvectort. The
motion of the camera from coordina®y to C, is then described as follows:

~ R t ~
ol 1

whereR is the 3x 3 rotation matrix and the translation in theX-, Y- andZ- directions. The
motion of scene points is equivalent to the inverse motion of the camera (Pollefeys [37] defines
this as the other way around) :

RT —R"t | -~
i|M1. (3.7)

M, =
’ {og 1

Equation (3.1) with equations (3.2), (3.5) and (3.6) then redefine the perspective projection
matrix:
SrﬁzK[R t]l\?l, (3.8)

whereP = K[ R t ]

3.3 Epipolar Geometry

The epipolar geometry exists between a two camera system. With reference to figure 3.3, the
two cameras are represented®@yandC,.

Pointsm, in the first image and; in the second image are the imaged points of the 3D point
M. Pointse; ande, are the so-calledpipolesand they are the intersections of the line joining
the two camera€; and C, with both image planes or the projection of the cameras in the
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Figure 3.3: Epipolar Geometry.

opposite image. The plane formed with the three points;MC, > is called theepipolar
plane The linesly, andly, are called theepipolar linesand are formed when the epipoles
and image points are joined.

The pointm, is constrained to lie on the epipolar lihg, of point m;. This is called the
epipolar constraint To visualise it differently: the epipolar linkg,, is the intersection of the
epipolar plane mentioned above with the second image plan€his means that image point
m; can correspond to any 3D point (even points at infinity) on the 4iri@ M > and that the
projection of< C1M > in the second image; is the linel ,,. All epipolar lines of the points
in the first image pass through the epipejeand form thus a pencil of planes containing the
baseline<C.Cs>.

The above definitions are symmetric, in a way such that the pomt ofiust lie on the epipolar
line Iy, of point my.

Expressing the epipolar constraint algebraically, the following equation needs to be satisfied in
order form; andm, to be matched:

m; Friy =0, (3.9)
whereF is a 3x 3 matrix called thdundamental matrixThe following equation also holds:
Im, = F My, (3.10)

since the pointm; corresponding to pointn; belongs to the lingy,, [31]. The role of the
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images can be reversed and then:
m; FTm, =0,

which shows that the fundamental matrix is changed to its transpose.

Making use of equation (3.8), if the first camera coincides with the world coordinate system
then

Slml:K1[|3x3 03 }'\7'
sSMy = Ko [ R t ] |\7|,
whereK 1 andK , are the camera calibration matrices for each cameraRaanadt describe a

transformation (rotation and translation) which brings points expressed in the first coordinate
system to the second one. The fundamental matrix can then be expressed as follows:

F = K, [t]xRK{, (3.11)

where[t]y is the antisymmetric matrix as described in equation (2.6).

Since def[t]y) = 0, de{F) = 0 andF is of rank 2 [52]. The fundamental matrix is also
only defined up to a scalar factor, and therefore it has seven degrees of freedom (7 independent
parameters among the 9 element$-9f

A note on the fundamental matrix: if the intrinsic parameters of the camera are known, such
as in equation (3.11), then the fundamental matrix is calle@$isential matrif31].

Another property of the fundamental matrix is derived from equations (3.9) and (3.10):
F& =F'&=0. (3.12)

Clearly, the epipolar line of epipole is F&;.
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Fundamental Matrix Estimation

4.1 Introduction

The whole 3D reconstruction process relies heavily on a robust estimation of the fundamental
matrix, which is able to detect outliers in the correspondences. This chapter will explain how

the fundamental matrix is calculated using a robust method incorporating both a linear and
nonlinear method. This chapter is based on descriptions by Zhang [50, 52] and by Luong and
Faugeras [31].

As the fundamental matrix has only seven degrees of freedom, it is possible to edEimate
directly using only 7 point matches. In general more than 7 point matches are available and a
method for solving the fundamental matrix using 8 point matches is given in section 4.2. The
points in both images are usually subject to noise and therefore a minimisation technique is
implemented and described in section 4.3. A robust method is described in section 4.4 which
allows for outliers in the list of matches. This is very useful as the technique will ignore these
false matches in the estimation of the fundamental matrix. A short comparison with another
robust method, called RANSAC, is given in section 4.5.

4.2 Linear Least-Squares Technique

Having matched a corner point;; = [uy;, v3;]T in the first image with a corner poimty =
[uai, v2i]1" in the second image, the epipolar equation can be written as follows:

My, Fiy = 0. (4.1

31
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This equation can be rewritten as a linear and homogeneous equation in the 9 unknown coeffi-
cients of matrixF:

where

T
Ui = [UgiUzi, v1i Ui, Ui, Ugi v, v1i V2, V2, Ui, vy, 1]

f = [F1a, F12, Fia, F21, Fa2, Fag, Fag, Faa, Fasl”

andF; is the element of at rowi and columnj. If n corner point matches are present and
by stacking equation (4.2), the following linear system is obtained:

where
T
Un=1[us,...,un] .
If 8 or more corner point correspondences are present and ignoring the rank-2 constraint, a
least-squares method can be used to solve

min Z(m; F iy )2, (4.3)

which can be rewritten as:
mfin IUn 12

Various methods exists to solve fér. They are called the-Boint algorithms as 8 or more
points are needed to solve fér One of the methods sets one of the coefficients ¢d 1 and
then solves equation (4.3) using a linear least-squares technique [52].

A second method imposes a constraint on the norrh @fe. || f || = 1), and the above linear
system can be solved using Eigen analysis [31, 52, 54]. The solution will then be the unit
eigenvector of matrixJ! U,, associated with the smallest eigenvalue, and can be found via
Singular Value Decompositida5].

The problem with this computation is that it is very sensitive to noise, even when a large number
of matches are present. A reason for this is thatdin&-2constraint of the fundamental matrix
(i.e. detF) = 0) is not satisfied [52, 54].

Hartley [18] challenges the view that the 8-point algorithms are very noisy in calculations and
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shows that by normalising the coordinates of the matched points, better results are obtained.
One of the normalisation techniques he is using is non-isotropic scaling, where the centroid of
the points is translated to the origin. After the translation the points form a cloud about the
origin, which is scaled such that it appears to be symmetric circular with a radius of one (the
two principal moments of the set of points are equal to one). The steps of the translation and
scaling are as follows: for all point®;, (i, ..., N), matrix)_; mjm T is formed. As this matrix

is symmetric and positive definit€holesky decompositidt5] WI|| result in:

N
> oMl = NAAT,
i=1
where matrixA is upper triangular. The above equation can be rewritten:
N
> ATmm AT = NI,
i=1

wherel is the identity matrix. Setting; = A~1f;, the equation for the transformed points
becomes:

N
>
:l

This shows that the transformed points have their centroid at the origin and the two principal
moments are both equal to one. The above transformation is applied to points in both images,
yielding two transformation matrice&; and A,.

After estimating the fundamental matiiX corresponding to the normalised point coordinates
using the 8-point algorithm described above, the fundamental miataarresponding to the
original unnormalised point coordinates is calculated as follows:

F=AJFA,.

4.3 Minimising the Distances to Epipolar Lines

To satisfy therank-2 constraint of the fundamental matrik, can be written in terms of 7
parameters [52, 50]. TherefoFecan be parameterised as follows:

a b —ax; — byy
d —cxg —dy; . (4.4)
—axp —Cy, —bxo—dy, (axg+by)xa+ (Cx +dy)ye
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The parametersxy, y1) and(Xo, y2) are the coordinates of the two epiposande,. The

four parametersa, b, ¢, d) define the relationship between the orientations of the two pencils
of epipolar lines [50]. The matrix is normalised by dividing the four paraméters, c, d) by

the largest in absolute value.

The fundamental matrix in the previous section is used as an initial guess and to estimate the
two epipoles. The following technique is used by Zhang [50] to calculate the two epipoles. If

M=UDVT

is theSingular Value Decompositicof a matrixM [15], then

dg 0 O
D=| 0 d O
0 0 ds

is the diagonal matrix satisfyingy > d, > dsz > 0, whered; is thei" singular value, and
andV are orthogonal matrices. Then

F=UDVT, (4.5)

where
dss 0 O

D=| 0 d O
0 0 O

satisfies theank-2constraint of the fundamental matrix. The epipoles are then calculated from
F& =0 and F'& =0, (4.6)

where@, = [e11, €10, €13]" and@&, = [&1, &), &3]" are equal to the last column ¥ andU
respectively. Then

Xi =61/63 and y, =ep/e3 for i=12

The four parameter&, b, c, d) are found directly from the fundamental mati#x Thus the
seven initial parameters a¢ey, Y1, X2, ¥»2) and three amongn, b, ¢, d) and the final estimates
are calculated by minimising the sum of distances between corner points and their epipolar
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lines. The following nonlinear equation is minimised:
i 20/ F
mFand (Mo, Fiiy), (4.7)
where
|y F iy

JFm2 + (Fi3

d(my, Fmy) =

is the Euclidean distance of point, to its epipolar lineF My, and(Fmy); is theit" variable
of vector Fmj.

To make the calculation symmetric, equation (4.7) is extended to
min Z (d*(Mzi. Fity) + d*(fiy, FTMa))

which can be rewritten by using the fact tha F iy = m] F T iy

i 1 1 T o 12
Frig)2 (48
mF'”Z((leoiJr(Frﬁli)f (FTmZi)iJr(FTmZi)g)(mz' i) 48)

4.4 Least-Median-of-Squares method

The above mentioned methods would introduce inaccuracies into the calculation of the funda-
mental matrix if outliers are present. The method outlined in this section is used in the corner

matching process described in chapter 5 and it has the important ability to detect outliers or
false matches and still give an accurate estimation of the fundamental matrix. This is originally

based on the method outlined in chapter 5 of Rousseeuw and Leroy’s book on regression [41]
and adapted by Zhang et. al. for the fundamental matrix estimation [54, 52].

For n corner point correspondenc@ss;, my;) as estimated in chapter 5Monte Carlotype
technique is used to drawsubsamples gb = 8 different corner point correspondences. Then
for each subsamplgethe fundamental matrik; is calculated. The median of squared residuals
(M;) is determined for each; with respect to the whole set of corner point correspondences:

Mj = med_y _n [d*(My, FjMy) + d*(My, FjT Ma)] .

The estimate of, for which M; is minimal among alm M;’s, is kept for the next stage of
the algorithm.



36 CHAPTER 4. FUNDAMENTAL MATRIX ESTIMATION

The number of subsamplesis determined by the following equation:
P=1—[1-(1-¢P™, (4.9)

which calculates the probability that at least one of thesubsamples is ‘good’ (a ‘good’
subsample consists pfgood correspondences) and assuming that the whole set of correspon-
dences contains up tooutliers. Zhang et. al. [54] sets the variables as follows:Haee 0.99

and assuming = 40%,mwill be equal to 272. To compensate for Gaussian noise, Rousseeuw
and Leroy [41] calculate thebust standard deviatioastimate

& = 148241+ 5/(n — p)ly/M;,

whereM;j is the minimal median.

Based on theobust standard deviatiod, it is possible to assign a weight for each corner
correspondence:
1 ifr? < (2.56)?
0 otherwise,
where
r? = d*(My, Fiy) + d*(y, FT ).

The outliers are therefore all the correspondences with waigkt 0 and are not taken into
account. The fundamental matrix is thenfinally calculated by solving the weighted least-squares
problem:

min > " wir?. (4.10)

All the nonlinear minimisations have been done usinglibeenberg-Marquardalgorithm
[35, 40], described in appendix C.

Bucket Technique

As mentioned before, Blonte Carlotype technigue is implemented. A problem with this is
that the eight points generated for each subsample could lie very close to each other which
makes the estimation of the epipolar geometry very inaccurate. In order to achieve a more
reliable result, the followingegularly random selection methpdeveloped by Zhang et. al.

[54], is implemented.

This method is based on bucketing techniques. The minimum and maximum coordinates of
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the corner points in the first image define a region which is dividedantd buckets, as seen
in figure 4.1.

Figure 4.1: lllustration of bucketing technique.

Each bucket contains a number of corner points and indirectly a set of matches. Buckets
having no matches are ignored. Then to generate a subsample, 8 mutually different buckets
are randomly selected, and then one match is randomly selected in each bucket.

Due to a different number of matches in each bucket, a match in a bucket having only a few
matches has a high probability of being selected. But it would be better if a bucket having
many matches has the higher probability to be selected than a bucket having only few matches.
This will guarantee that all matches have almost the same probability to be selected and this
is achieved by the following: if a total dfbuckets are available, th¢@, 1] is divided intol
intervals such that the width of thé" interval is equal tani /Y, ni, wheren; is the number

of matches attached to th® bucket [54]. In the selection process, a number produced by a
[0, 1] random generator and falling inside ti&interval, implies that thé!" bucket has been
selected. Figure 4.2 illustrates this process.
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number of matches

'y

> b

i N\ N
7 N\~~~ NN
7 N\ 7 Ny eee .

D,-: 1 "\2 \ 3 . ‘...‘-“M bucket
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E i \ iy \\_ NN \ -‘r'andom
0
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Figure 4.2: Interval and bucket mapping. Figure obtained from [54].

4.5 RANSAC

RANSAC orrandom sample consensuss first used for fundamental matrix estimation by
Torr [47]. It is very similar to the LmedS method described above, a difference being that
a threshold needs to be set by the user to determine if a feature pair is consistent with the
fundamental matrix or not. This threshold is automatically calculated in the LMedS method.
Instead of estimating the median of squared residuals, RANSAC calculates the size of the point

matches that are consistent with edgh

Zhang [52] mentions in his paper that if the fundamental matrix needs to be established for
many images, then the LMedS method should be run on one pair of the images to find a suitable
threshold, while RANSAC should be then run on all the remaining images, as RANSAC is able
to terminate once a optimal solution is found and as such runs cheaper.



Chapter 5

Corner Matching

5.1 Introduction

Point matching plays an important part in the estimation of the fundamental matrix. Two
different methods of point matching are introduced and combined to form a robust stereo
matching technique. The first method [54] makes use of correlation techniques followed by
relaxation methods. From these final correspondences, although not all perfect matches, the
optimal fundamental matrix is calculated using tteast-Median-of-Squarasethod, which
discards outliers or bad matches. The second method [36] sets up a proximity matrix weighted
by the correlation between matches. Performing a singular value decomposition calculation
on that matrix will ‘amplify’ good pairings and ‘attenuate’ bad ones.

Sections 5.2 and 5.3 of this chapter summarisecthreelationandstrength of match measure
equations presented in the paper by Zhang et. al. [54], and calculate some correspondence
between the corners in the two images. Section 5.4 describes the SVD algorithm by Pilu [36]
and shows how to combine both methods to get a list of initial matches. In section 5.5 the
stereo matching algorithm by Zhang et. al. [54] is outlined, which resolves false matches and
outliers.

Results are given at the end of this chapter. The matching process works well on images
containing different patterns and textures, and features are matched up perfectly under camera
translation, rotation and zooming. However, if the image contains a repetitive pattern, features
are not matched up at all.

It is impossible to obtain corner points from images that contain scenes with a uniform back-
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ground. Therefore some markers need to be included in the scene in order to obtain sufficient
corner points.

The corner extraction algorithm is described in appendix A.1.

5.2 Establishing Matches by Correlation

Corner points are represented by the vestoe= [u;, v;]T inthe images. A correlation window

of size(2n + 1) x (2m + 1) is centred at each corner detected in the first of two images. A
rectangular search area of si2el, + 1) x (2d, + 1) is placed around this point in the second
image and for all the corners falling inside this area a correlation score is defined:

n m

> ['1(U1+ i,vi+j) — I1(ug, Ul)] X ['2(U2+ i, v2+ ) — l2(ug, vz)]
i=—n j:—m
2n+ 1)2m + 1)y/o2(11) x o2(l2) ’
(5.1)
wherel(u,v) = Y, Z’j“:_m l(u4i,v+j)/[(2n 4+ 1)(2m + 1)] is the average at point
(u, v) of Ix(k = 1, 2), ando (ly) is the standard deviation of the imalggén the neighbourhood
(2n+1) x (2m+ 1) of (u, v), which is given by

Scorémy, my) =

n m |2
G(|k) _ \/ZI:—I’] ZJ:—m k(u’ v)

@+ hemtn (5-2)

The score ranges from -1 for uncorrelated windows to 1 for identical matches.

Matches above a certain threshold are then selected and form candidate matches. Thus each
corner in the first image is associated with a set of candidate matches from the second image
and vice versa. It is possible that there are no candidate matches for certain corners.

In this implementationn = m = 7 for the correlation window and the threshold was chosen
to be in the range of.@ — 0.8. The search window sizd, andd,, was set to an eighth of the
image width and height respectively.

5.3 Support of each Match

This section will define a measure of support for each match, which is called the strength of
the match in [54].
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Each candidate match is written @8y, myj), wheremy; is a corner in the first image and
my; a corner in the second image. Th&f(m,;) and A (my;) are the neighbours afy;; and

my; within a disc of radiusR. If (my;, my;j) is a good match, there should be many matches
(N1, Na), whereny € N (myi) andny € N (my;), such that the position afy relative to

my; is similar to that ofny relative tom,;. If the match is not so good, then there should be
only a few matches in the neighbourhood or none at all.

Thestrength of the matcbr Sis then defined as:

§(Myi, Mai: Ny, N
S(myi, myj) =cj Y [ max 040, Maj; Nk, N2) ] (5.3)
N gy L2 &N mzp 1+ dist(myi, Maj; Na, Na1)

wherec;; andcy are the correlation scores of the candidate mat¢imgs my;) and(ny, Na)
from the previous section. The average distance between the two pairings is defined as:

dist(my;, Mz;j; Nk, N2) = [d(My, Ny) + d(mMzj, N2)]/2
whered(m, n) = ||m — n|| is the Euclidean distance betwesrandn, and

e "/f if (ny, Ny ) is a candidate match amd< &,
d(Mmyi, Myj; N1k, N) = _
0 otherwise

with r the relative distance difference given by

_ [d(my;, ny) — d(mzj, N2)|
dist(my;, maj; Nk, N2)

andeg, a threshold on the relative distance difference.

The following points clarify the above equations:

« The strength of a match counts the number of candidate matches inside the neighbour-
hoods, but only those whose positions relative to the considered match are similar are
counted.

« The similarity of relative positions is based on the relative distancé/henr is very
big, the terme~"/# — 0 and the candidate matchy, ny ) is ignored. Whem — 0, then
e '/* — 1 and the candidate contributes largely to the match, my;).

« If a corner point in the first image has several candidate matches in the second image,
the one with the smallest distance difference is chosen as the final one using the ‘max’
operator.
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» The contribution of a candidate match to the neighbourhood is weighted by its distance
to the match. The ‘1’ is added to prevent very close corner points from adding too much
weight to the equation. This means that a close candidate match gives more support to
the considered match than a distant one.

A problem pointed out by Zhang et. al. [54] is that the measure of match strength is not
symmetrical. This means simply that the strength of a match is probably not the same if
reversing the images, &my;, myj) # S(myj, my). This happens when several corner points
ni € N (my) are candidate matches of a single corner pojne N (my;), as shown in figure

5.1.

Image 1 Image 2

Figure 5.1: Non-symmetry problem for match strength. Figure obtained
from [54].

To achieve symmetry, the following was suggested: before summing all the matches, if several
corner pointsiy, € A/ (my;) score the maximal value with the same corner pojne N (my)),

then only the corner point with the largest value is counted. This means that the same pairing
will be counted if the images are reversed.

Another constraint which is added is that the angle of the rotation in the image plane must be
below a certain valu®. The idea here is that the angle between vedignx and vector
mg; Nz must be less tha®. For a candidate match where this constraint is not achieved, the
value ofs(my;, myj; Ny, N2) is set to zero.

Zhang et. al. [54] set the following values as followR:is equal to an eighth of the image
width, &, = 0.3 and® = 90°.
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5.4 |Initial Matches by Singular Value Decomposition

This section explains how initial matches are foundSiizgular Value Decompositipa method
described by Pilu [36] which is originally based on a paper by Scott and Longuet-Higgens [43].
At the end of this section it is shown how this technique can be combined with the strength
measure of section 5.3.

This algorithm complies with Ullmanisiinimal mapping theor|48], which states three criteria
for good global mapping:
1. the principle of similarity
2. the principle of proximity
3. the principle of exclusion.
Theprinciple of similarityis an indication of how closely related the corner matches are. The
principle of proximitystates simply that if various corner matches are similar or equal, take

the match which has the shortest distance between the two corner points. ponthigal of
exclusiononly a one-to-one mapping is allowed between corners.

The algorithm by Scott and Longuet-Higgins [43] will be extended to satisfy all these con-
straints.

The basic algorithm satisfies only the principle of proximity and exclusion. Having corner
pointsmy; (i = 1...m)inthefirstimage anth,;(j = 1...n) inthe second image @oximity
matrix is set up as follows:

Gij :efrizj/zaz | = l.m,] =1...n (54)

wherer;; = |[[my — My is the Euclidean distance between the corner points if they are
regarded of lying on the same plar®;; decreases from 1 to 0 with distance. The parameter
controls the interaction between features: a small value efiforces local interactions while

a large value allows for more global interactions.

The next stage of the algorithm is to perfo8imgular Value Decompositiqi$VD) [15] of G:
G=UDVT,

whereU andV are orthogonal matrices aridl is the diagonal matrix containing the singular
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values along the diagonal elemeidg in descending order.

The diagonal matrixXD is then converted to a new matrk which is obtained by replacing
every diagonal element d by a 1. Performing the following operation will then result in a
new proximity matrixP:

P=UEVT.

The matrix P has the same shape &s but it has the property of pairing up good matches.
Quoting Scott and Longuet-Higgens [43]:

"If Pj; is the greatest element in rombut not the greatest in column then we

may regardmy; as competing unsuccessfully for partnership witky; similar
remarks apply ifP;; is the greatest element in its column but not in its row. But if
Pi; is both the greatest element in its row and the greatest element in its column
then we regard those features as being in 1:1 correspondence with one dhother

The principle of proximityarises from the nature of thgroximity matrixand theprinciple of
exclusiomarises due to the orthogonality of matifx The squares of the elements in each row
of P can be added up to 1 and this implies that featafecannot be strongly associated with
more than one featumay; [43].

To include theprinciple of similarityin the above algorithm, Pilu [36] adds in a measure of
similarity, which is identical to the correlation score calculated in section 5.2. This is done in
the following way:

Gij = [(6) + /2] ei/> (5.5)

whereg;; is the correlation score defined in section 5.2. Ma@iis now called aorrelation-
weighted proximity matriand still ranges from 0 to 1. The better the correlation between two
features, the higher the value Gf;.

A great advantage of this algorithm is that it performs well when only a few features are
available. Other algorithms, like the one described in Zhang et. al. [54], need many uniformly
distributed features to be able to work properly. A disadvantage is the computational complexity
and cost of the SVD for very large matrices. The implementation here makes use of only a
maximum of 500 corners per image, which limits the proximity matrix to about-6@D0
values.

At the end of his paper, Pilu [36] also suggests incorporating the strength of the match, as
calculated in section 5.3, in the above algorithm. This could be achieved in various ways,



5.5. RESOLVING FALSE MATCHES 45

either in place of the correlation score or in conjunction with equation (5.5).

Here we use the latter idea, and the following is an outline of how equation (5.5) is combined
with the strength measure to select ‘good’ initial matches. Basically three criteria have to be
met. If

1. Pj; is the greatest element in both row and column,

2. G is greater than some correlation threshatdQ.7),

3. and the considered mat¢h j) has the greatest strength,

then this match will be included in the list of initial matches.

In effect, the above procedure replaces the relaxation process of Zhang et. al. [54], which
consists of minimising an energy function summing up the strengths of all candidate matches.

5.5 Resolving False Matches

The method described in this section makes use of the epipolar geometry which exists between
the two images in helping to resolve false matches. The fundamental matrix is calculated
on the initial matched points estimated in section 5.4. The method used to calculate the
fundamental matrix is theeast-Median-of-SquarésMedS) method described in section 4.4,
which discards false matches or outliers.

The initial matching algorithm described in sections 5.2 to 5.4 is then rerun on all corner points
in both images, but the search window of section 5.2 is replaced by the epipolar constraint in
the following way: the epipolar line for each corner point in the firstimage is calculated. If

f)i = Ui v 1]
is a corner pointin the firstimage in homogeneous coordinates, then its epipolar line is defined

by

whereF is the fundamental matrix. Then the matched corner in the second image should, if it
is a perfect match, lie on the epipolar line in the second image. A threshold determines whether
possible points should be accepted or discarded. This threshold is in the form of a narrow band
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of width 2¢ pixels centred on the epipolar line [54]. If a corner point falls within this band, it
is accepted.

The value ofe is chosen to be .8d for a probability of 95%, wherel is the root of mean
squares of distances between the corner points and their epipolar lines defined by the recovered

az\/ZwirF/Zwi.

For a better understanding of the variables in the above equation, refer to section 4.4.

fundamental matrix [54]:

The fundamental matrix can now be refined after the second matching process, and matches
which are still not close enough to the epipolar line are discarded.

5.6 Results

The matching algorithm can be summarised as follows: corner points established in each image
independently are matched up using a correlation technique to find initial matches. Making
use of the robust Least-Median-of-Squares method described in section 4.4, which takes the
epipolar geometry between the two images into account, itis possible to determine false matches
in the initial group of matched corners. The algorithm is then rerun, but this time the epipolar
geometry is used to select the final matched corners.

Good results have been achieved by the above algorithm. It only fails if the images contain a
repetitive pattern, as seen in figure 5.2, where all matches are incorrect.

—~
|
3
e —

Figure 5.2: Repetitive PatterniRIA-Robotvis projegt
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Due to the fact that all corners of the checkered pattern have nearly the same correlation, it
is nearly impossible to match up the corners perfectly. The corner points in each image are
represented by a specific pattern and colour. In this way matched points are easily identified.
Better results can be achieved with a repetitive pattern if it is placed in a scene containing
different structures and patterns.

For a scene with a uniform background, some markers need to be put up in order to find
corresponding corners. This is seen in figure 5.3(a). Here all corners have been perfectly
matched. Figure 5.3(b) shows the camera translation (arrows point to the right) between the
two images. The matching algorithm also has a 100% success rate for the same scene under
camera rotation (arrows point in clockwise direction) and zooming (arrows point inwards), as

seen in figure 5.4 and 5.5.
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(b)

Figure 5.3: Uniform background scene with markers (Camera Translation).
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with markers (Camera Rotation).

Figure 5.4: Uniform background scene
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(b)

Figure 5.5: Uniform background scene with markers (Camera Zooming).



Chapter 6

Camera Calibration

6.1 Introduction

This chapter covers various camera calibration techniques.

Calibration is a fundamental property of 3D reconstruction. Usually the internal parameters
of each camera are very accurately known beforehand and the whole environment is highly
controlled, or a calibration object in the scene is used to calibrate the camera. But in many
situations the source of the images is not known, which means that the camera’s internal
parameters are also not known, or it is desirable to change a camera midway through an image
application. This means that the internal parameters of the camera can only be extracted from
the images themselves.

Section 6.2 gives a background to calibration, explaining original calibration methods. Section
6.3 describes camera selfcalibration and the theory béfingpa’s equationsin section 6.4
selfcalibration is explained in terms of scene and auto-calibration constraints from only a single
image.

A planar object is used in section 6.5 to estimate the camera calibration matrix. The planar
pattern consists of a grid pattern, which is imaged from different points of view. From each
view, corner points are extracted in order to calculate the correspondence between the image
plane and the planar object. The correspondence is in the form of a homography matrix. Then
for each view, a homography is established and allows for camera calibration.
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6.2 Classical Calibration Methods

6.2.1 Introduction

The classical calibration method makes use of a calibration pattern of known size inside the
view of the camera. Sometimes this will be a flat plate with a regular pattern marked on it [32]
(see figure 6.1(a)) or a scene containing some control points with known coordinates [29]. A
disadvantage of these methods is that it is impossible to calibrate a camera while it is involved
in some imaging task. If any change in the camera’s settings occur, a correction is not possible
without interrupting the task. The change of the camera’s settings may be a change in the focal
length, or small mechanical or thermal changes affecting the camera as a whole.
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(a) Calibration Pattern. (b) Coordinate System of Pattern.

Figure 6.1: Common Calibration Pattern.

As seen in figure 6.1, two flat planes are assembled with an angleé bEB@een them. These

two planes define a coordinate system as seen in figure 6.1(b). The coordinates of the corners
of the white squares on the planes are known in terms of this coordinate system. It is then
relatively easy to extract those corners in the image, and the correspondence between the 3D
points and the 2D image points gives a projective map fRdm> P2, which is the perspective
projection matrixP mentioned in equation (3.1). Having calculated this projection matrix, it
can be decomposed into the form of equation (3.8) by mea@éofiecompositiofi].
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6.2.2 Estimating the Perspective Projection Matrix

By minimising the image error, the perspective projection matrix is estimated30br points
M; corresponding to image points;. This image error is the distance between the actual
image point and the projection of the world point onto the image plane Uifig.

Making use of equation (3.1), with = [u, v, 1] andM = [X, Y, Z, 1|7, three equations can
be obtained, but dividing by the third one gives two equations in the 12 unknown parameters
of P:

_ PuX+ PioY + PisZ + Py

u=
P31X + Ps2Y + PssZ + Pag
_ PuX + PY + PpsZ + Py

v= )
P31 X 4 Ps2Y + P33Z 4 Pag

(6.1)

The function which needs to be minimised is defined as the squared geometric distance between
the actual image points and the projected image points:

13 PiiX + PioY 4 PisZ + Pia\°
Eg= 3| (u - 11 12 13 EAN
P31 X + PsY + P3sZ + Pag

(6.2)

(v, _ PauX+ P + PiZ + P24)2
" PuX+ PyY + PisZ + Py |

The above error function is non-linear and can be minimised using the Levenberg-Marquardt
minimisation algorithm described in appendix C. Between iterations, the matisxusually
scaled [|P|| = 1) or one parameter d? can be fixed P34 = 1).

To find an initial estimate, the equations of (6.1) are rearranged, so that instead of minimising
the geometric distandgy, an algebraic distandg, is minimised [1]:

n

1
E, = ﬁ Z [(Ui (P31 X + P32Y + P33Z + Psg) — (P X + ProY + Pi3Z + Pl4))2 + (6 3)
i=1 .

(v (P3rX + PaoY + P3sZ + Pag) — (P X + PooY + PosZ + Pag))?].

This error function is linear in the unknown parameterdPoéind can be rearranged into the
following form:
min||Zp|?, (6.4)
P

subject to|| p||> = 1. The vectorp is a column vector of the elements of the perspective
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projection matrixP, and the matriXZ is defined as:

i |\7|I OT _UlMl

T ~T ~T
0 Ml _UlM]_
~T ~T

The solution of equation (6.4) is then the eigenvectoiZo€orresponding to the smallest
eigenvalue, and can be found Bagular Value Decompositidi5].

6.2.3 Extracting the Camera Calibration Matrix

Once the perspective projection matfxhas been estimated, it can be decomposed into the
form of equation (3.8). The following & 3 submatrix ofP can be expressed as follows:

Pi1 P Pi3
Po1 Py P | = KR,
P31 P Ps3

where matrixK is the camera calibration matrix which is upper triangular Rrid orthogonal.
Armstrong [1] use€)R decompositiofiL5] to find K andR.

6.2.4 Other Methods

Photogrammetrist make use of other methods to calibrate their cameras. A calibration grid with
markers is also used as before, as seen in figure 6.2. The 3D coordinates of the markers are
known, and methods such Bérect Linear Transformatiorand Bundle Adjustmendre used

to accurately estimate the internal parameters of the camera. Usually more than one image
of the same calibration object with different orientations is used. Commercial software such
as theAustralis program from the University of Melbourne performs these calculations and
produces highly accurate results. This program is used to find the real calibration matrix of the
camera for a particular setting and the results are compared to the calibration method outlined
in section 6.5.
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Figure 6.2: Six images of a calibration object from the department of geomatics
at UCT.

6.3 Selfcalibration using Kruppa’'s Equations

6.3.1 Introduction

In the case of selfcalibration, the known object in the scene is replaced by an abstract object, the
absolute conienentioned in chapter 2. The absolute conic is a particular conic in the plane of
infinity, which is invariant to transformations of 3D space (see figure 6.3). This means that the
image of the absolute conie,, is independent of the position and orientation of the camera.

In figure 6.3, if the camera moves from positiGa to positionC, and provided the internal
parameters of the camera stay constant, the image of the absolute conic will be the same in
both image planes.

The image of the absolute conic is related to the camera calibration matrix in the following
way:
woo = KTK™L, (6.5)

The calibration matrix can then be extracted frem by Cholesky decompositidt5]. Thus
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knowingws, is equivalent of knowing<. Note thatw., is a symmetric matrix. The following
section will go into more detail on how to solve fek,.

Figure 6.3: The Image of the Absolute Conic.

6.3.2 Kruppa’s Equations

Kruppa’s equations link the epipolar transformation or the fundamental matrix to the image
of the absolute conie,,. Three epipolar transformations arising from three different camera
motions are enough to determiwg, [10]. A description of Kruppa’s equations is given in the

next section based on a paper by Lourakis and Deriche [30], and some new developments in
the estimation of the parameters in Kruppa’'s equations are outlined.

Description of Kruppa’s Equations

Each pointp belonging to the image of the absolute conig in the second image satisfies

P’ ws P = 0. Figure 6.3 also shows two planes, andx », which are tangent to the absolute
conic £ and pass through the two camera centres. This plane intersects the image planes at
two pairs of epipolar lines, which are tangent to the image of the absolute @gnidangent

lines to conics are better expressed in terms of dual conics [33, 30]. The dual conic defines
the locus of lines to the original conic and is given by the inverse of the original conic matrix.
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Thus the dual of the image of the absolute cawiigis defined as:
o, = KKT, (6.6)

and thereforéij;oI = 0, where lind is tangent taw,,. Then it can be shown that a poinpt
on any of the tangents ., in the second image will satisfy

(& x§) 0 (&2x§ =0

The termF ' § is the epipolar line corresponding ¢pin the first image and is also tangent to
w.,. Because of the invariance @f,, under any transformations, the following equation is
obtained:

(FTa) i (F'd) =0.

Combining the above two equations will yield:

Fol,FT = B(lex]) 0% [&2)x = Bleslxo?, (107 (6.7)

whereg is an arbitrary, nonzero scale factor degly is the antisymmetric matrix of vectep
as described in equation (2.6).

To explain equation (6.7) in wordstHe Kruppa equations express the constraint that epipolar
lines in the second image that correspond to epipolar lines of the first image that are tangent
to w, are also tangent ta,, and vice versg[30].

As Fw’ FT is a symmetric matrix, equation (6.7) corresponds to the following equations
obtained by eliminating:
F“’ioFL F“’;oFlz Fw;FI:g

(ot (&0Dun (ot (eloNe  (Chkok (el e

(6.8)
szoF;2 F"’Zo':gs F‘*’io':g3

T (ehoi(@oDe  (ehkot (kD (el@k (€10 s

There are only two independent equations among the six equations of (6.8) [30]. These equa-
tions are second order polynomials in the elements’of
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The Simplified Kruppa’s Equations

In recent years a simplified approach to solving Kruppa'’s equations has been developed, which
makes use of th8ingular Value Decompositiarf the fundamental matrik and is described

in detail by Lourakis and Deriche [30] and based on the paper by Hartley [19]. With this method
the equations of (6.8) are reduced to three and are independent of the epifgl the actual
solving process is still very complex, as individual steps in the calculation involve expanding
matrices through differentiation and having to estimate the variance of the vector containing
the parameters of theingular Value Decompositiaof the fundamental matrix. Lourakis and
Deriche [30] mention that they are still working on a technique which would simplify this
whole process, especially the calculation of the variance mentioned above.

6.4 Selfcalibration in Single Views

6.4.1 Introduction

This section describes a way of combining image, scene and auto-calibration constraints for
calibration of single views. The method is not limited to single views, but for the purpose of
explaining the theory, a single view is sufficient. The advantage of this method over Kruppa’s
equations is that the equations obtained here are linear and therefore the solution is very easily
calculated. The disadvantage is that some sort of calibration pattern is needed and calibration
needs to be done independently of the 3D reconstruction.

The method is especially suited for building architectural models [29], as buildings contain
mostly planes and lines in orthogonal directions which are important to this calibration method.
Any room contains three planes orthogonal to each other, i.e. two walls and the floor, and thus
this method is perfect for calibrating cameras in a room.

Two methods of calibration of a single view are outlined, both based on descriptions by
Liebowitz et. al. [27, 28, 29].

6.4.2 Some Background

As mentioned in section 2.4.1, there are two points which lie on the line at infinity. These
points are called circular points, which are a complex conjugate pointypair[(, &i, 0]" in
a metric coordinate frame) and are also invariant to similarity transformations (rotations and
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translations) of space. They arise from the following: a plane in space intersects the plane at
infinity m ., in the line at infinityl ., which intersects the absolute conic in two points, which

are the circular points. A vanishing line of a space plane intersects the image of the absolute
Conicw«, in two points, which are the imaged circular points.

Knowing that a world plane is mapped to the image plane by a projective transformation or
homography H) [28], the imaged circular points are defined as

Il =HYLi,0" =[w—iB, 1, —lp —aly +il 181" (6.9)

andJ = conj(l). Additionally,
H = SAP,

S_th
ol 1 |

whereR is the rotation matrixt the translation vector argla scale factor. The matrix

with

1 0 O
P=|0 1 0|, (6.10)
FRN PR E

wherel o, = [l1, I, 13]T is the vanishing line of the plane. Usually is normalised, such that
I3 = 1. Finally,

@

B
1 (6.11)
0

>

I
O O =k
- o O

wherep anda define the image of the circular points [27, 28]. MatBxepresents a similarity
transformationA an affine transformation arfél a projective transformation. The homography
matrix H is stratified into the 3 geometries. This s similar to the description of the stratification
of 3D space in chapter 2, but in this section only the 2D space is stratified.

6.4.3 Calibration Method 1

The first method presented here requires three planes in the image to be orthogonal to each
other. In aroom, this could be two walls and the ground plane, as seen in figure 6.4. To be able
to extract many features from these planes, a calibration pattern is placed on each plane, such
that they are also orthogonal to each other.
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Figure 6.4: Image illustrating three orthogonal planes.

It is then necessary to extract all parallel lines in three orthogonal directions from the image.
This is done with the help of the line algorithm of Burns et. al., as described in Appendix A.2.
The lines extracted using this algorithm are seen in figure 6.5(a).

(a) Parallel Lines in three orthogonal di- (b) Triangle with vanishing points as ver-
rections. tices and showing the principal point in
yellow (orthocentre of image).

Figure 6.5: Three Orthogonal Vanishing Points.

For all the parallel lines in each orthogonal direction, the vanishing point is calculated, i.e. the
intersection of all parallel lines in the same direction is found. Appendix B outlines a accurate
method of calculating vanishing points from a set of parallel lines.

The following assumption is then made: if the camera has a unit aspect ratio and zero skew,
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the principal point of the camera will be at the orthocentre of the triangle formed by the three
vanishing points [27, 29, 5]. This can be seen in figure 6.5(b).

The principal point is calculated by combining a set of constraints: writing the image of the

absolute conic as follows:
w1 W2 W4

Woo = | w2 w3 ws (6.12)

w4 W5 Weg

and the three vanishing points @s= [u1, Uy, Us]T, v = [v1, v2, v3]" andw = [wq, wo, wa]",
then the following three constraints arise:

U v =0
U'weow =0 (6.13)

v weow = 0.

This means that a pair of vanishing points arising from orthogonal directions are conjugate
with respect taw,, [27]. (See also section 2.2.2 on poles and polars.)

Expanding the first equation to
U1v101 4 (U1v2+Uzv1) 2+ Uov2w3+ (U1 03+ Uzv1) wa+ (U2v3+Ugvp)ws+Ugvzws = 0 (6.14)
and then writing the elements &f, as a vector
@, = (01, w2, W3, W4, W5, We) "
and the coefficients of the elementsuf as
K}, = (U1v1, Urvp + Upuy, Upvz, Ugvg + Ugvg, Upvz + Ugvp, Ugvs) T,

the linear constraint is written as:
K,y = 0. (6.15)

Thus for each pair of orthogonal vanishing points, an additional constraint is obtained. Assum-
ing a unit aspect ratio and zero skew for the camesas= 0 andw; — w3z = 0 are two additional
constraints. These two constraints can be found by exparginm terms of the parameters

of the calibration matriXK. This means for three vanishing points and the two assumptions
from above, five constraints are obtained. This will determaigeand thenk.
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A coefficient matrixA is set up from equation (6.15) and the two constraints obtained from the

above mentioned assumptions:

i Uqvq Ujwq vViW1 0 1 i
Uivp + Upvp  Ugwo + Upwi viwp +vowr 1
AT — Uzv2 Uzow> v2W2 0 -1
| Uws+Uguy Upws+Usw; viws+ovgw; O O
Uouz + U3zva  Usws + Usws vowsz + vawy O
Usvs Usws VW3 0 |

Thenw, is calculated as a null vector from

Aw, = 0. (6.16)

Having the coefficients ab,, it is easy to calculat& from ., via Cholesky decomposition
[15].

As seen infigure 6.5(b), the calculation of the principal point of the camera is not very accurate,
asitis notvery close to the centre of the image. There could be two reasons for this: the parallel
lines may not have been very accurately estimated, or the calibration patterns in the scene may
not have been aligned in a perfectly orthogonal way. As explained and shown in Appendix A.2,
the line algorithm by Burns et. al. should be accurate enough. That leaves the latter reason.
The next section will outline a method which still makes use of three planes, but which do not
have to be orthogonal to each other.

The two constraints arising from the two assumptions of unit aspect ratio and zero skew could
have been replaced with two constraints arising from a rectified plane, which is explained in the
next section. However, for reasons already pointed out above, this will not make the method

any more accurate.

6.4.4 Calibration Method 2

Figure 6.6 shows the same calibration pattern used in the previous section, but this time they
are not aligned orthogonally to each other.

In order to obtain five or more constraints from this image, each plane has to be affine rectified.
This is done in the following way: for each plane in the image, two vanishing points are
calculated and these form the vanishing line Normalisind , and using matri>P of equation
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-

Figure 6.6: Image illustrating three planes in the scene.

(6.10), itis possible to affine rectify each plane in the image, as seenin figure 6.7 for one plane.
This makes it possible to calculate, for example, length ratios on parallel line segments in the
image. Interpolation methods can be employed to fill in the gaps in the rectification process.

g &

=

Figure 6.7: Back wall (plane) affine rectified.

The task now is to calculate from the affine rectified imagecttaad 8 values, which define
the two circular points. Three methods are outlined which provide constraints to cateulate
andg [28]. These constraints are obtained as a circle:

Known Angle: If angleé in the scene between two lines imaged aandly, (lines are homo-
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geneous vectors) is known, therandg lie on the circle with centre and radius:

_((@+b) (@a—-b)
<ca,c,3>—( L cot&)
(a—bh)
2sind

wherea = —l,/l5 andb = —Iy,,/ 1y are the line directions. i = /2, then the circle
lies on thex axis.

Equal (unknown) Angles: Knowing that an angle in the scene between two imaged lines with
directionsa; andb; is the same as that between two lines imaged with directigasd
b,, thena andp lie on the circle with centre and radius:

(a1by — biay) )
COla C = ,O
(o Gp) (al_bl_a2+b2

2 ajb, — byay

r=—=
(al —by—ay+ bz)
(ag — by)(aihy — axby)
+
ag—by—a+b

— albl.

Known Length Ratio: Knowing the length ratie of two non-parallel line segments in the
scene, then figure 6.8 shows the imaged line segments with known endpoints. Writing

(3“1 N 1)

(%2 1)
(G2 M5),

(x: s 1)

Figure 6.8: Line Ratio Constraint [28].

AXq for xn1 — Xn2 and Ay, for v — Yz, thena andg lie on the circle with centre and
radius:

AX1AY; — SPAXoA
(Coz’ Cﬂ) = < ! y; > 22 y2 0)
Ay,” — s°AYy,
S(AX2Ay1 — AX1AYo)
A3’12 - SzAYzz
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Two independent constraints are required to solvexfand 8, as seen in figure 6.9. If all
constraint circles have centres on the same axis, then only intersections in the upper half plane
need to be considered.

beta
<

alpha

Figure 6.9: Constraint Circles.

In figure 6.6, the ratio of lines and also the angle of each corner of the A4 paper on each plane
are known. These can be taken into account in the above equations.

Thenitis possible to calculate the circular points as in equation (6.9). Betaunsk] contain
the same information, one takes the real and imaginary parts of either of them to obtain two
constraints omw.,. Forl,

and the real and imaginary parts are:

(B2 — d®) w1 — 20wp — w3 + 2(11(a® — B2) + alpws + 2(aly + I)ws + (1287 — (aly +12)?)we = 0
2afwr + 2Bwz — 2(Bl2 + 2aBl1)ws — 2Bl1ws + 2(eflZ + Blil)ws = 0

It can be seen then that each rectified plane provides two constraiats.ohhese constraints
can be combined as in section 6.4.3.

6.4.5 Conclusion

The two calibration methods described are well suited to images where the origin is not known.
But for normal applications these methods are quite complex. Rectifying each plane in the
image poses some problems, as it can happen that a vanishing line lies between the origin and
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the plane to be rectified, and this will warp points closest to the vanishing line to infinity. To
compensate for this, the image needs to be translated before rectification.

The rectification process also sometimes creates very large images, which are difficult to work
with.

The whole calibration process is also difficult to automate, as the user generally has to select the
correct parallel lines or select some features on each plane to obtain the necessary constraints.

6.5 Calibration using a Planar Pattern

6.5.1 Introduction

This section describes an implementation of the camera calibration toolbox similar to that
developed by Bougugt He bases his calibration technique on papers by Zhang [51, 53] and
the internal camera model on a paper by Heikkila and Silvén [22]. In the implementation
presented, however, the internal camera model is entirely based on Zhang'’s technique [51, 53],
which is identical to the camera calibration matrix of equation (3.4).

6.5.2 Homography between the Planar Object and its Image

Figure 6.10 shows a square planar calibration pattern consistingxof Blocks of known
length of 2%5nm

To establish the homography between the planar object and its image, it can be assumed that
the planar object lies & = 0 in the world coordinate system. Making use of equations (3.1)
and (3.8), and representing tH& column vector of the rotation matriR by r;, the following

1The Camera Calibration Toolbox fddatlab® by Jean-Yves Bouguet can be downloaded from his homepage
at Caltech: http : //www.vision.caltechedu/bouguetjcalib_doc/indexhtml (accessed November 2000).
The C implementation of this toolbox is included in the f@pen Source Computer Vision Libraf®2000 Intel
Corporation) at http://www.intel.com/research/mrl/research/cvlib/ (accessed November 2000).
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Calibration Image 1 Calibration Image 2 Calibration Image 3

Calibration Image 4 Calibration Image 5 Calibration Image 6

Calibration Image 7 Calibration Image 8 Calibration Image 9

Figure 6.10: Planar Calibration Patterns.

equation is obtained:

P o < X

In this case, becausg = 0, the homogenous coordinates of potare written asM =
[X,Y, 1]7. Then a planar object poiM is related to its image poimh by a 3x 3 homography
matrix H:

smM=HM, (6.17)

The homography for each image in figure 6.10 is estimated by selecting the 4 corners of the
imaged planar object and refining these 4 corners to subpixel accuracy using the method outlined
in appendix A.1.3. The world coordinate poirls; 4 are defined as in figure 6.11.

Zhang [51, 53] uses a maximum likelihood criterion to estimate the homography. As the
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(0,0) (1,0)

(0,1) (1,1)

Figure 6.11: World Coordinate Points of Planar Pattern.

image pointamn; are corrupted by noise, a maximum likelihood criteriontbiis obtained by
minimising the following:

i o m 12
”3“23"”% i 112,

. 1 hi M;
m; = T T

with h; theit" row of H. This nonlinear minimisation can be solved using the Levenberg-

where

Marquardt algorithm described in appendix C.

With x = [h], hJ, h]T, equation (6.17) can be rewritten as follows:

MTooT —uni X =0 (6.18)
o' vE —v|\7|T - .

Forn points,n above equations are obtained and can be written as a nhadrix 0, whereL

is a n x 9 matrix. The solution is then defined as the eigenvectdr'df associated with the
smallest eigenvalue. It should be noted that better results can be achieved by normalising the
image points as described in section 4.2.

Once the homography for the 4 corners of each planar pattern has been estimated, it is possible
to extract all the remaining corners on the grid, as the number of blocks for each side and the
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length of each block is known. It is then possible to refine the homography considering all the
corners of the grid.

6.5.3 Calculating the Camera Calibration Matrix

For each image, a homography can be estimated as described in the previous section. Writing
H=[h; h, hs ],equation (6.17) is rewritten as:

[hl h, hs }:AK[rl r t],

where is a scalar. Because vectarsandr, are orthonormal (a fundamental property of
rotation matrices), the following two equations are obtained and give two constraints on the
internal parameters of the camera:

hi K" TK™th, =0 (6.19)
hi K"TK™th; = h] K TK*h,. (6.20)

It can be seen thatthe teddT T K ~! represents the image of the absolute cenjg as described
in section 6.3.

Expanding equation (6.5) of the absolute canig, a symmetric matrix is obtained:

w1 W2 W4

T -1
w4 W5 Weg
R - . (6.21)
f2 21, 21,
_ s s? + 1 _ S(vos=upfy) _ wo
= f21, 272 T 12 f272 f2
2
vS—Ugfy _ S(wos—Upfy)  wo  (voS—Ugfy)? Yo
T2, 712 72 oqerz T Tl

Definingw, = (w1, wy, w3, wa, ws, wg)' and denoting thé™™ column vector ofH by h; =
[hi1, hi2, hi3]T, the following equation is derived:
hlohj = v 0, (6.22)

1]

where

vij = [hi1hj1, hithj2 + hizhj1, hizhj2, hizhjz + hithjs, hishj2 + hizhjs, hishjs]".
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It is then possible to rewrite the two constraint equations (6.19) and (6.20) as 2 homogeneous
equations imw,:

{ iz } @, =0. (6.23)

(v11 — v22) "

Fornimages on homographies, the above vector equation is stankides and the following
is obtained:
Vw, =0, (6.24)

whereV is a 2h x 6 matrix. The general solution is then defined as the eigenvecidr bf
associated with the smallest eigenvalue. Ifonly 2images are present, itis possible to assume that
the skews is equal to zero, which is added as an additional constrini(0, O, 0, Olw, = 0)

to equation (6.24). If only 1 image is present, then it can be assumed that the principal point
(ug, vo) is equal to the image centre agd= 0.

Matrix oo is defined up to a scalawf, = AK~T K1), and it is then possible to extract the
internal parameters of the camera, once vestois known:

Vo = (w204 — w1ws) / (V103 — W3)

A = wg — [0 + vo(waws — w105)] /w1
fu=y1jwr

f, = \/ L1/ (w3 — ©3)

S = —wzfuzfv/)»

Ug = SUo/)x — a)4fu2/)u.

The external parameters for each image can also be calculated from equation (6.17), once the
camera calibration matriK is estimated:

r = )»K_lhl
ro = )»K_lhz
3=11XTI>2

t= )LKilh:;,

where the scalax = 1/||K ~thy|| = 1/||[K thy|.
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Optimisation

The above obtained solutions are used as an initial guess to a nonlinear optimisation routine,
which is defined as follows:

n m

> limi — MK, Ryt M2 (6.25)
i=1 j=1

Here pointh(K, R;, ti, M) is the projection of poinM ; inimagei. The above minimisation

problem can be solved by thevenberg-Marquardalgorithm [35, 40], described in appendix

C.

6.5.4 Results

The images of the planar object shown in figure 6.10 were takeVge® Camera, Model:
WAT-202B(PAL) and grabbed by Asus® AGP-V3800 Ultra framegrabber. The image size

is 704 x 576 pixels and the pixel size g = 0.00734nmandp, = 0.00646mm Table 6.1
compares the results obtained by the method outlined above to the real internal parameters of
the camera (estimated as in section 6.2.4) and to the results obtained from Bouguet's calibration

toolbox.
Real Parameters Bouguet's Calibration Toolbox Zhang’'s Method
Up | 362.4945504 316.96784 361376773
Vo 288.907144 230.10757 268982949
fu | 954.6457766 1014.81586 1030742112
f, | 1083.516314 1110.65364 1125157407
S 0 0 0

Table 6.1: Comparison of the real and estimated internal parameters of the
camera.

As can be seen, the method outlined in this section does not produce very accurate results, nor
does the original method by Bouguet. A reason for this could be that radial distortion was
not taken into account. Zhang [51, 53] also implements an algorithm which deals with radial
distortion in the images, which should have resulted in better estimates.

The calibration patterns used in section 6.2 usually consist of two planes at different depths.
The lack of different depths in the above method could also result in inaccurate values.
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Chapter 7

Stratified 3D Reconstruction

7.1 Introduction

This chapter outlines the steps involved in obtaining a 3D model of an object in a stereo image
pair. As mentioned in chapter 2, it is possible to divide 3D vision into geometry groups. This
so-called stratification is used in this chapter to calculate the geometric relationships between
structures in the image pair.

As explained later in this chapter, the reconstruction algorithm relies heavily on the parallel
lines estimated from objects in the images. In fact, it is necessary to obtain parallel lines on 3
different planes pointing in 3 different directions. As such, the model to be reconstructed has
to consist of at least 3 planes with different orientations in space, with each plane providing
attributes such as parallel markers or structures. This of course puts a great constraint on the
models which can be reconstructed. Essentially, simple geometric models such as a cube or
the corner of a room provide the necessary constraints. In order to reconstruct any arbitrary
object, it needs to be placed inside a scene providing the above mentioned constraints.

Section 7.2 explains the 3 steps of the reconstruction algorithm. Once a full 3D reconstruction
has been obtained, section 7.3 shows Hewse stereo matchingused to obtain a 3D textured
model.

73
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7.2 3D Reconstruction

This section follows the structure of chapter 2 very closely. Three steps are needed to obtain a
full metric reconstruction, the first step being a projective reconstruction followed by an affine
and metric one.

7.2.1 Projective Reconstruction

For this step, the fundamental matfixneeds to be estimated from corner point matches, as
already outlined in section 4. The fundamental matrix then provides the means to compute the
two projective camera matrices for both the images.

Let the first camera coincide with the origin of the world coordinate system. The projective
camera matrix for the first camera is then defined as follows:

Pl:[ laea O } (7.1)

The second projective camera matrix is chosen such that the epipolar geometry corresponds to
the retrieved fundamental matrix [37, 52]. Usually it is defined as follows:

Pz=[ M oe ] (7.2)

wheree; is the epipole in the second image aktlis a factor of the fundamental matrix:

F = [e]xM, where[e)]y is the antisymmetric matrix of epipoke as described in equation
(2.6). This epipole can be extracted from the fundamental matrix as explained in section 4.3.
Variableo represents the global scale of the reconstruction, and as that scale is not known, it
is arbitrarily chosen and set to 1. Matii is defined as follows:

1
leaf2” ="

The matrixM is not necessarily unique, becausé/ifis a solution, therM + ev" is also a
solution for any vectov [52].

Some reconstructions may appear distorted, and Pollefeys [37] points out that this happens
when the plane at infinity crosses the scene. He suggests estimatingwéttsuch a way

that the plane at infinity does not cross the scene. Pollefeys makes use of oriented projective
geometry [26] to remedy this. The examples in this thesis did not have the problem described
and therefore vectar = [1, 1, 1]".
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7.2.2 Affine Reconstruction

This step involves finding the plane at infinity. As mentioned in section 2.3.2, to upgrade
a specific projective representation to an affine representation, a transformation needs to be
applied which brings the plane at infinity to its canonical position. This can be achieved with
the matrixT p o defined in equation (2.27). The two affine projection matrices can then be
defined as follows [37]:

Pai = PITpy for i=12 (7.3)

The plane at infinity can be calculated if three or more points on that plane are known. These
points are points at infinity and are projections of vanishing points in space. Vanishing points are
the intersections of two or more imaged parallel lines (see appendix B). In order to determine
the three vanishing points, Faugeras et. al. [11] state that three non-coplanar directions of
parallel lines need to be established.

This can easily be verified: as figure 7.1 shows, it can happen that imaged parallel lines from
two different planes but pointing in the same direction intersect in the same vanishing point.

In the figure, the green and blue imaged parallel lines, although on different planes, intersect
in the same vanishing point.

Another problem observed is the oneillustrated in figure 7.2. Although allimaged parallel lines

lie on three different planes and point in three different directions, all three vanishing point lie

on one line, as the normalised vanishing points show. A plane can only be estimated with two
or more lines, thus with only one line the plane at infinity cannot be accurately defined.

A correct estimation of the three vanishing points is shown in figure 7.3, where the normalised
vanishing points clearly illustrate that they lie on two lines which define the plane at infinity
very accurately.

Lines in the image are found with the algorithm by Burns et. al. [4] outlined in appendix
A.2. Parallel lines in three different planes and directions are selected by the user as figure 7.4
shows.

Projecting the three vanishing points into space with the two projection camera matrices of
equations (7.1) and (7.2), the points at infinity are estimated. Triangulation (see appendix D)
is employed to find the best estimate of each point in space. From the three points at infinity,
the plane at infinity is calculated as follows:

Vim,=0 for i=1...3, (7.4)
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Figure 7.1: Synthetic corner illustrating the vanishing points.

whereV; are the points at infinity. Then, is the non-zero solution of the above linear
homogenous system [11].

7.2.3 Metric Reconstruction

After the camera is calibrated and the camera calibration matrix is estimated, it is possible to
upgrade the affine representation to a metric representation. The transformation matrix from
equation 2.37 achieves this, with matixbeing replaced by the camera calibration makfix

The two metric projection matrices can then be defined as follows [37]:

Pui = PaiTay for i=12 (7.5)

Eachindividual pointis then reconstructed with the help of triangulation methods (see appendix D).
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Figure 7.2: Vanishing points defining one line.

7.2.4 Reconstruction Results

For the stereo image pair already shown in figure 7.4, and being only interested in the box in
the images, the convex hull for all point matches on the three sides of the box is calculated.
(See figure 7.5.)

Reconstructing the points will give a 3D model of the three convex hulls, as seen in figure 7.6.
From the 3D model, it is possible to verify that the convex hulls lie 4tte@ach other. Table

7.1 shows the results and clearly indicates that the reconstruction has been successful, as the
walls of the box are orthogonal.

Angle between Red & Green Plane:89.98
Angle between Red & Blue Plane} 90.02
Angle between Green & Blue Plane90.03

Table 7.1: Angles between the three reconstructed convex hulls.
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Figure 7.3: Correct estimation of vanishing points.

7.3 3D Textured Model

The 3D model of figure 7.6 does not provide a good visualisation of the actual object in the
stereo image pair. Figure 7.6 is only suited to verify that the reconstruction was successful.
This section will show how to map the texture from the stereo image pair onto the 3D model
and in that way provide a better way to visualise the reconstructed object.

The matching algorithm for uncalibrated stereo images outlined in chapter 5 results in only a
few point matches. In order to perform dense stereo matching, the stereo images need to be
rectified in a way such that the search space is reduced to one dimension. Section 7.3.1 outlines
a rectification method that transforms each image plane such that the epipolar lines are aligned
horizontally. Once the images are rectified, it is possible to obtain a match in the second image
for nearly every pixel in the first image, as section 7.3.2 explains.
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Figure 7.4: Parallel lines estimated in three directions for a stereo image pair.



80 CHAPTER 7. STRATIFIED 3D RECONSTRUCTION

Figure 7.5: Three convex hulls representing the three planes of the box.

Figure 7.6: Reconstructed convex hulls illustrating the relationship between the
three planes of the box.

7.3.1 Rectification of Stereo Images

There are many stereo rectification algorithms which make use of the epipolar constraint to
align the images. Pollefeys, Koch and van Gool [39] present a rectification method that can
deal with all possible camera geometries with the help of oriented projective geometry [26].
The image is reparameterised with polar coordinates around the epipoles. A somewhat simpler
rectification algorithm is presented by Fusiello, Trucco and Verri [13, 14], which only needs
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the two camera projection matrices to rectify both images. Both algorithms are able to rectify a
stereo rig of unconstrained geometry. The latter algorithm was chosen as it did not not employ
oriented projective geometry and produced two new rectified camera projection matrices from
which a 3D reconstruction is directly possible.

(a) Epipolar Geometry. (b) Rectified Cameras.

Figure 7.7: Rectification Process. Figure obtained from [13, 14].

Figure 7.7 shows the rectification process. In figure 7.7(a) the stereo rig is calibrated and the
two camera projection matrices are known (from equation (7.5)). After rectification, two new
rectified camera projection matrices are obtained by rotating the old ones around their optical
centres until the focal planes become coplanar [13, 14]. The epipoles are now situated at infinity
and therefore the epipolar lines are parallel. Thisintroduces a problem when the epipoles before
rectification are situated inside or very close to the images, as pixels surrounding the epipoles
get mapped to infinity. This results in very large images, which are difficult to operate on.

In order to have horizontal epipolar lines, the basek@, C, > must be parallel to the nei-

axis of both cameras. Conjugate points in both images must have the same vertical coordinate.
This can only be achieved if the camera calibration maris the same for both images. That
means the focal length is the same and the two image planes are coplanar. (See figure 7.7(b).)

From equation (3.8) and (7.5), it is possible to rewfte

P =[QIql. (7.6)

Knowing that the focal plane is parallel to the image plane and contains the optical Centre
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the coordinates of C are as follows:

c=-Qq. (7.7)

P can then be rewritten:
P=[Q|- Qd. (7.8)

The new rectified camera projection matrices are then defined as in equation (7.8):
Pri = K[R|— Rg] for i=1,2 (7.9)

The optical centres are calculated for both cameras from equation (7.7) and the rotation matrix
R is the same for both cameras. The row vectorRpof; 3, represent th, Y andZ axes of
the camera reference frame in world coordinates.

Fusiello et. al. [13, 14] define then three steps for rectification:

1. The newX-axis parallel to the baselineiig = (¢; — ¢)/||c1 — G|l
2. The newY-axis orthogonal toX and to any arbitrary vectdeis ro = kLrj.

3. The newZ-axis orthogonal toXY isrz =ry_Lr,.

(x_Ly describes that vectoris orthogonal to vectoy.)

The vectoik above is set equal to th&unit vector of the old left matrix, and as such constrains
the newY -axis to be orthogonal to both the netvand old leftZ-axis. Fusiello et. al. [13, 14]
point out that the algorithm only fails when the optical axis is parallel to the baseline (when
there is forward motion).

Writing the old camera projection matrices and the new rectified camera projection matrices
as in equation (7.6), the rectifying transformation matrices are as follows:

Ti = QRi QMi for i = 1, 2. (710)

This transformation maps the image planeqj1 m2 onto the image plane d®g; ro.

When rectifying an image pair, an arbitrary translation needs to be applied to both images to
bring them into a suitable region of the image plane. Figure 7.8 shows the result of rectifying
the stereo image pair of the previous section. The epipolar lines for the points in the firstimage
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are displayed in the second image. Note that due to calibration inaccuracies some of the points
in the second image do not lie on their corresponding epipolar lines.

Fusiello et. al. [13, 14] show in their paper that reconstructing directly from the rectified
images does not introduce any major errors and compares favourably with the reconstruction

from the original images.

Figure 7.8: Rectified stereo image pair with horizontal epipolar lines.

7.3.2 Dense Stereo Matching

Many different problems arise when attempting dense stereo matching. The most notable
problem is occlusions in the images, which simply means that points in one image have no
corresponding point in the other one. Ambiguity is a problem when a point in one image can
correspond to more than one point in the other image. The intensity can vary from one image
to the other and makes the same point in both images look different. Fusiello, Roberto and
Trucco [12] have developed a robust area-based algorithm, which addresses all these problems.

They assume that the intensity stays the same for each point in both images and then calculate
similarity scores. As the images are rectified, the search space is reduced to the corresponding
horizontal line in the right image of each pixel in the left image. Then a small window placed
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on each pixel in the left image is compared to a window placed in the right image along the
corresponding horizontal line. The similarity measure employed is the normalisadof
squared differencesr SSD error:

n m
> Y Ihx4i,y+ i) —Lx+i+dy+j)?

i=—n j=—m

Cx,y,d) = (7.11)
n m n m
X X hx+iy+? 3 X hx4+i4+dy+))?
i=—nj=—m i=—nj=-m
To obtain the disparity for a pixel in the left image, the SSD error is minimsed:
de(X, y) = arg rrJinC(x, y, d). (7.12)

In order to obtain subpixel precision, a curve is fitted to the errors in the neighbourhood of the
minimum:

n 1 Cx,y,de—1) —C(X,y,dc. + 1)
¢ 2C(X,Y,dc—1) —2C(X,Y,de) + C(X, Y, 0c + 1)

Dx’y - d (7.13)

Multiple correlation windows are used to find the smallest SSD error. For each pixel in the
left image, the correlation is performed with nine different windows, as figure 7.9 shows. The
disparity with the smallest SSD error value is retained. As Fusiello et. al. [12] point out, a
window yielding a smaller SSD error is more likely to cover a constant depth region.

Figure 7.9: Nine different correlation windows. The pixel for which disparity
is computed is highlighted. Figure obtained from [12].

Occlusions are detected by reversing the images and then rerunning the algorithm. This process
is calledleft-right consistencyFor each point in the left image the dispauyx) is computed.
Then the images are reversed and the algorithm is rerud.(Xf = —d; (x + di (X)), then
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the point will keep the left disparity. Otherwise the point is marked as occluded. Fusiello et.
al. [12] assume that occluded areas occur between two planes at different depths and as such
assign the disparity of the deeper plane to the occluded pixel.

From the two rectified images in figure 7.8, the common region of both images is selected
(figure 7.10(a)). Then from the few point matches used in the reconstruction algorithm, the
minimum and maximum disparity values are calculated to limit the horizontal search space.
Figure 7.10(b) shows the resultant disparity map.

(a) Epipolar Geometry.

(b) Rectified Cameras.

Figure 7.10: Disparity map calculated on stereo image pair.

If the maximum disparity value is relatively large, then the disparity map is small. As figure
7.10(b) shows, both sides of the disparity map are cropped. Due to the rectification process it
is sometimes possible that the disparity is larger than the size of the common region, in which
case no texture map can be obtained.
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7.3.3 Results

The 3D textured model is obtained from each pixel of the disparity map. The index of the
disparity map serves as an index into the left image and the disparity as the horizontal offset
of the index in the right image. With the help of the rectified camera projection matrices of
equation (7.9) and the triangulation method outlined in appendix D, each point is reconstructed
and assigned with the average pixel value from both images. The final reconstructed model is
seen in figure 7.11. Better results could be achieved by interpolation techniques.

Figure 7.11: Reconstructed 3D texture model.

7.4 Other Reconstruction Results

A texture map is not always necessary for visualisation. Figure 7.12(b) and (c) shows the
reconstruction of the squares of two calibration panat90 to each other of figure 7.12(a).
The angle between the two planes in the images was calculated t@6e &®er reconstruction.

1stereoimages, point matches for bothimages, and the calibration matrix were obtained fiéRi&&obotvis
project
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(b) Reconstruction View 1. (c) Reconstruction View 2.

Figure 7.12: Simple Reconstruction of a calibration pattern.

7.5 Conclusion

There are various reasons why the reconstruction and rectification algorithms may fail. As
pointed out in section 7.2.1, it is possible to obtain a distorted reconstruction when the plane at
infinity crosses the scene. This can only be solved with the help of oriented projective geometry,
which is not considered in this thesis.

Obtaining a texture map also proves to be very difficult. First of all the rectification process
can result in very large images due to epipoles lying too close to the image plane. Also, when
the disparity values become larger than the rectified images, no texture map can be obtained.
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All those reasons made it difficult to obtain more reconstructions. The following chapter will
look at ways of solving the above problems.



Chapter 8

Conclusions

The work presented in this thesis deals with the extraction of 3D geometry from stereo images.
The problem is decomposed into a number of tasks, each task being associated with a specific
geometric group. Existing technigues have been implemented and combined to form arelatively
easy algorithm, which is straightforward to use. Minimal user intervention is achieved by
automating most of the tasks.

The matching algorithm incorporates the best aspects from two papers. The number of correct
initial matches has been improved and the algorithm is also capable of working only on a
few features. A disadvantage is the memory intensive evaluation of the correlation-weighted
proximity matrix if a few hundred features are detected in the images. A minimum of only
eight correspondences are needed for the fundamental matrix estimation, thus only the most
prominent corners should be extracted from the images. But with computing power increasing
rapidly and the cost of memory decreasing, the matching algorithm can easily operate on a
500 x 500 proximity matrix.

The only part of the reconstruction algorithm which is not automated is the selection of the
imaged parallel lines in both images. It is possible to automatically select parallel lines by
detecting dominant line directions in histograms. But it is not possible to distinguish between
lines pointing in the same direction and lying on the same plane and lines pointing in the same
direction but lying on different planes. The only way to solve this is by making sure that parallel
lines in the scenes on different planes point in different directions.

The rectification algorithm implemented in this thesis works very well when the epipoles lie
far away from the images. It is impossible to make use of this algorithm if the epipoles lie
inside the images, as very large images are obtained. The rectification algorithm by Pollefeys,

89
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Koch and van Gool [39] should rather be implemented as the rectified images will always be
of a certain manageable size.

The problem with the dense stereo matching algorithm implemented in this thesis is that much of
the information on both sides of the rectified images is lost due to large calculated initial disparity
values. The only way to obtain a full textured model of the whole scene is by expanding the
stereo pair to aimage sequence of the same scene. This would not only expand the possibilities
of the dense stereo matching algorithm, but it would also enable other algorithms such as the
modulus constrainf37] to be included in the reconstruction problem. It would be possible to
estimate the plane at infinity without having to define parallel lines in the scene.

Camera calibration could also be included directly in the reconstruction problem by estimating
Kruppa’s equationsinstead of calibrating the camera separately. This would allow for a
system that is totally independent of any user intervention. Another interesting aspect would
be that cameras could be changed during a reconstruction task and recalibrate themselves again
automatically. But as pointed out in section 6.3.2, much work still needs to be done in that area
as the whole process of solving fdruppa’s equationss very complex and computationally
expensive.

An advantage of breaking up the reconstruction problem into different tasks is that it makes
it possible to exchange algorithms for each part at a later stage. This is especially important
when developing this system further, without having to redefine a new approach.

A limitation of this thesis is that only rigid scenes can be considered in the reconstruction.
Moving objects in a scene would cause the reconstruction algorithm to fail. Possibly most of
the research in computer vision will be geared towards this area. An important application
must surely be the tracking of people inside a scene and obtaining a 3D model at the same time.



Appendix A

Feature Extraction

A.1 Corner Detection

A definition of a corner isfeatures formed at boundaries between only two image brightness
regions, where the boundary curvature is sufficiently higts]. One way of finding corners

in an image is by first segmenting the image in some way to find the shape of an object and
then using an edge detector to find the edge chains. Searching the edges for turnings in the
boundary will result in a corner. An example of this would be usingHbegh transfornto

find straight lines in an image and then finding the end points of these lines. The problem
with these techniques is that they rely on prior segmentation of the shapes in the images and
inaccuracies will appear due to the segmentation. It is therefore important to find a corner
detector that operates on the image directly.

The two corner detection algorithms described here ar&itobhen and Rosenfelf23] and
Harris-Plesse)f16] corner detectors. The latter one can also be used to refine the corners up
to subpixel accuracy.

A.1.1 Kitchen and Rosenfeld Corner Detector

TheKitchen and Rosenfeldorner finder [23] is used to extract initial corners from the image
only up to pixel accuracy. This algorithm applies an edge detector to the gray level image and
finds changes in direction along the edges. These changes should correspond to turns in the
boundary of an object. This can be achieved by finding the gradient direction in the image,
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which is given by %, V)
y(X, 'y
Ix(X, y)’

wherel, andly are the first partial derivatives of the imalgat point(x, y). The derivatives can

tan@(x, y)) =

(A.1)

be calculated using horizontal and verti€albeloperators to measure tkeandy components

of the gradient in the image. Ti8obeloperator is then applied to the gradient direction image

to find the changes in direction of the edge. This is the curvature measure, which is multiplied
by the gradient magnitude from the first image to obtain the corner magnitude measure.

Calculating the partial derivatives éf(here the arguments of functions are omitted for clarity):

gyl = Ixly

12412
gyl — Igyly

YTz+12

’

the corner magnitude is defined as follows:

2 2
LBy — Ly had 24 Dyl 2= 2Ly 1y
- 2 2 2 2
12+ 12 12+ 12

This expression finds the rate of change of gradient direction along the edge in the image,
multiplied by the gradient magnitude. It can be regarded as the curvature of a contour line.
Thresholding this image will result in points with high curvature being selected. The corners

lie along the strongest edges of the image.

A.1.2 Harris-Plessey Corner Detector

The Harris or Plesseycorner finder [16] also finds corners by considering points of high
curvature. It is based on thdoraveccorner detector [34].

The Moravec corner detector starts by looking for a large variation in intensity in some local
window in the image in every direction. This can be expressed mathematically by an autocor-
relation function, which, when thresholded, yields the desired corner points. The result was
found to be very noisy due to the rectangular nature of the window, and that the operator is very
sensitive to strong edges. Harris and Stephens [16] modified the Moravec operator by using a
circular Gaussian window.
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Their autocorrelation function is as follows:

E(X,y) = AX? + 2Bxy+ Cy?, (A.2)
where
A=12Qw
C= If QR w,

w = e-Winc+wing)/20? js the smooth Gaussian window agdis the convolution operator.
Variables winx and winy define the window size. The autocorrelation function can be rewritten
for small shifts:

E(x,y) =[x, YIG[x, yI', (A.3)

A B
G:|:B c} (A.4)

is a 2x 2 matrix. The following operator is then used to extract corners from the image:

where

R(x, y) = det(G) — k (trac&G))>. (A.5)

The value fork is usually taken to be.04 to take into account high contrast pixel step edges
[54]. ThresholdingR will then give the desired corners.

A.1.3 Subpixel Corner Detection

To refine the corners estimated by Kiechen and Rosenfelar Harris-Plesseyorner detectors

to subpixel accuracy, an algorithm is implemented which was developed by Jean-Yves Bouguet
andincluded in th©pen Source Computer Vision Librgf®2000 Intel Corporatiort)[6]. With
reference to figure A.1, it can be observed that every vector from the agidra pointp in

the neighbourhood of is orthogonal to the image gradient ptand subject to image and
measurement noise. Poigis the subpixel accurate corner location or sometimes also called
theradial saddle point

1The Open Source Computer Vision Libra¢®2000 Intel Corporation) can be downloaded from the official
website: http://www.intel.com/research/mrl/research/cvlib/ (accessed November 2000).
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Figure A.1: lllustration of subpixel corner estimation (©2000 Intel Corporation).

The following equation can be defined:

& =Vig(Q—p), (A.6)

whereV |, is the image gradient at poipf in the neighbourhood af. To find the best estimate
for g, &i needs to be minimised. Equation A.6 defines a system of equations wheset to

(ZV|in|;)q—<ZV|in|;pi)=o, (A7)

where the gradients are summed up in the neighbourhogdW@$ing G (defined as in equation

Z€ero:

(A.4)) for the first gradient term and = Gp for the second one, equation (A.7) can be
rewritten:
q= G b (A.8)

Variable g defines a new neighbourhood (window) centre, and the above process is iterated
until g does not move more than a certain threshold. This threshold is set to a resolution of
0.05 in the implementation of th@pen Source Computer Vision Library
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A.2 Extracting Straight Lines

This section explains the straight line algorithm of Burns et. al. [4]. Animplementation of this
algorithm can be found in thBARPA Image Understanding Environmeaftware package
(©Amerinex Applied Imaging)[2].

The use of thédough transfornwas considered for finding straight lines, but it was found that
it was not accurate enough. The lines were not perfectly parallel to an edge.

The algorithm described here makes use of the underlying intensity surrounding each edge and
uses this information to extract a straight line parallel to the edge. The algorithm is divided
into two parts:

1. Grouping pixels into line-support regions.

2. Interpreting the line-support region as a straight line.

A.2.1 Line-support Regions

The image is convolved by a masBdbel maskin the x andy direction to find the gradient
magnitude and orientation. The gradient orientation is calculated as in equation (A.1) of section
A.l andis then grouped into regions. This is done using fixed and overlapping partitioning: the
360 range of gradient directions are quantised into a small set of regular intervals (8 intervals
of 45° each) and each gradient vector is labelled according to the partition into which it falls
(see figure A.2).

This means that pixels on a straight line will fall within a certain partition, whereas adjacent
pixels that are not part of the same straight line will usually have different orientations and thus
fall into a different partition.

A problem with this fixed partioning isthe arbitrary placement of the boundaries of the
partitions and the resulting insensitivity to the possible distributions of edge directions of any
particular straight lin€' [4]. As an example, a straight line can produce fragmented support
regionsif the gradientdirections lie across a partition boundary. To remedy this, two overlapping
sets of partitions are used. This means that for the first partition the first bucket is centered at
0° and for the second patrtition the first bucket is centered &° 2% one partition fragments

one line, the other will place that line entirely within a partition.

2For more information and to download the software package go to: http://www.aai.com/AAI/IUE/ (accessed
November 2000).
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Figure A.2: Gradient Space Partioning. Figure obtained from [4].

These two partition representations have to be merged in such a way that a single line is
associated with only one line-support region. This is done as follows:

Line lengths are determined for every region.

Each pixel is a member of two regions, so every pixel will vote for and is associated with
that region of the two that provides the longest interpretation (or has the biggest area).

» Each region receives a count of the number of pixels that voted for it.
» The support of each region is given as the percentage of the total number of pixels voting

for it.

The regions are then selected if the support is greater than 50%.

A.2.2 Interpreting the Line-Support Region as a Straight Line

Each line-support region represents a candidate area for a straight line as the local gradient
estimates share a common orientation. The intensity surface associated with each region is
then modelled by a planar surface. The parameters of the plane are found by a weighted least-
squares fit to the surface. The equation of the plane is as folloixsy) = Ax+ By + C.

The line must then lie perpendicular to the gradient of the fitted plane. To find this line, the
fitted plane is intersected with a horizontal plane at a height of the average weighted intensity
(see figure A.3).
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Figure A.3: Two planes intersecting in a straight line. Figure obtained from [4].

The intersection is a straight line, which is parallel to the edge in the image. Once all these
lines have been found, only lines of a certain length or orientation are retained.

A comparison with the Hough transform is shown in figure A.4. The Hough transform is clearly
not as accurate as the algorithm outlined here. The reason for this is that the Hough transform
only searches for an edge and fits a line to it, while with the Burns line algorithm, the whole
area surrounding an edge is taken into account when fitting a line.
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(a) Hough Transform.

(b) Burns Line Algorithm.

Figure A.4: Comparison between the Hough Transform and Burns Line

Algorithm.



Appendix B

Vanishing Point Estimation

A vanishing point is the intersection of two or more imaged parallel lines. For twollireasd
I5, the intersection is simply the cross product |, x |,. For additional lines it becomes
more difficult to solve for the vanishing point.

Because of measurement error of the lines in the image, these lines will not generally intersect
in a unique point. Liebowitz et. al. [28, 29] implementaximum likelihood estimate MLE

to find the best estimate of the vanishing point. This is ddnecbmputing a set of lines that

do intersect in a single point, and which minimise the sum of squared orthogonal distances
from the endpoints of the measured line segnidag].

If the endpoints of the measured liharex, andxy, (as in figure B.1), then the MLE minimises
the following quality:

C= Zdz(r| , Xai) + dZ(IAi , Xbi)

subject to the constraint’ I, =0, whered(x, |) is the perpendicular image distance between
pointx and linel.

X

€]

v d? L[\=measured line
[ = estimated line Na{b

Y

Figure B.1: Maximum Likelihood Estimate of Vanishing Point [28].

99



100 APPENDIX B. VANISHING POINT ESTIMATION

Aninitial solution forv is obtained from the null vector of the matfix, |, . . ., | ;] viasingular

value decompoaosition [28].

An implementation of this algorithm can be found in BARPA Image Understanding Envi-

ronmentsoftware package (©Amerinex Applied Imagihg)

1For more information and to download the software package go to: http://www.aai.com/AAI/IUE/ (accessed
November 2000).
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The Levenberg-Marquardt Algorithm

All minimisations in this thesis have been done using ltegenberg-Marquardalgorithm

[35, 40]. A short description of the Levenberg-Marquardt algorithm is presented by Hartley
[17] and Pollefeys [38], and is outlined here. The algorithm is based oNeigon iteration
method, which is described first.

C.1 Newton Iteration

For a vector relatiory = f(x), wherex andy are vectors in different dimensions, with

a measured value foy, a desired vectoR needs to be calculated which satisfies the above
relation. Stated differently, a vect@rneeds to be calculated which satisfies= f (X) + €,

for which ||€]| is minimal. Newton’s iteration method starts with an initial vakgeand refines
this value under the assumption that the functfois locally linear [17, 38].

For § = f(Xo) + €0, the functionf is approximated atg by f (xg+68) = f (xg) + J&, where
J = j—}(’ is the linear mapping represented by the Jacobian matrix. Then settiagxg + 4,
the following relation is obtained:

y—f(x)=9y— f(Xo) — J§ = €0 — J§,

wherelleg — Jé§| needs to be minimised. This minimisation can be solved fosing linear
least-squares:
JTJ6 = JTeo.

The above equation is called thermal equatiorj17, 38].
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To summarise the above procedure, the solution can be found by starting with an initial estimate
Xo and approximating the equation

Xi+1 = Xi + i,

wheres; is the solution to the normal equatiodS J§; = JT¢;. Matrix J is the Jacobian at

xj ande; = ¥ — f(x;). As pointed out by Hartley [17] and Pollefeys [38], it is possible that
this algorithm will converge to a local minimum value or not converge at all, as it depends a
lot on the initial estimateg.

C.2 Levenberg-Marquardt Iteration

This method varies slightly from the Newton method. The normal equabidhs: J7J§ =
JTegareaugmented th’s = JTeo, whereN’;; = (1+1)Nj and N’;; = Nj; for i # |.

The value of: is initialised to a very small value, usually= 10-3. If the value obtained for

é by the augmented normal equations reduces the error, then the increment is accepted and
is divided by 10 before the next iteration. If the error increasés,multiplied by 10 and the
augmented normal equations are solved until an increment is obtained which reduces the error.

The implementation of the Levenberg-Marquardt algorithm used in this thesis is from the
MINPACK! library andDARPA Image Understanding Environmenftware package (©Amer-
inex Applied Imaging.

1For more information and to download the MINPACK software package go to: http://www.netlib.org (accessed
November 2000).

2For more information and to download the Image Understanding Environment software package go to:
http://www.aai.com/AAI/IUE/ (accessed November 2000).



Appendix D

Triangulation

The process of triangulation is needed to find the intersection of two known rays in space. Due
to measurement noise in images and some inaccuracies in the calibration matrices, these two
rays will not generally meet in a unique point. This section outlines a linear and a nonlinear
method to accurately estimate the best possible point of intersection.

D.1 Linear Triangulation

Letthe 3D coordinate in space be = [X, Y, Z, W] and its corresponding image coordinates
bem; » = [U12, v12, 1]". Then making use of the pinhole model equation (3.1) and the camera
projection matrices relating to the two images, the following two equations can be defined:

sifug, vy, 117 = Py[X, Y, Z, W]T, (D.1)
sluz, v2, 11T = P2[X, Y, Z, W], (D.2)

wheres, ands, are two arbitrary scalars. Writing th&' row of P, and P, as pl. and p)
respectively, the two scalassands, can be eliminated by knowing the following; = pIsl\ﬁ
ands, = pj;M. The above two equations can then be rewritten in the form:

AM =0, (D.3)
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whereA is a 4x 4 matrix:

P11 — U1PI3
P1, — v1Pi3
P31 — U2 PJ3

T T
P22 — v2Py3

The solution is then the eigenvector of the matiXA associated with the smallest eigenvalue.

Itis also possible to assume that no point is at infinity, andWea 1. The set of homogeneous
equations (D.3) is then reduced to a set of four non-homogeneous equations in three unknowns
[52].

D.2 Nonlinear Triangulation

The above linear method can be used as an initial estimate for a nonlinear optimisation problem.
Zhang [52] minimises the error measured in the image plane between the observation and the
projection of the reconstructed point:

T\’ TN\ A IR
(Ul - p.ll.l = ) + (vl - p.JI'.Z = > + (Uz — %) + (vz — pf_z = ) . (D.4)
pisM p1sM PasM P2sM

The nonlinear minimisation is done using thevenberg-Marquardalgorithm [35, 40], de-

scribed in appendix C.

Hartley and Sturm [21] define a different minimisation problem. Their method seeks a pair of
points that minimises the sum of squared distances subject to the epipolar constraint. But as
Zhang [52] points out in his paper, both the linear and nonlinear triangulation methods outlined
above will give optimum results.



Bibliography

[1] M.N. Armstrong. Self-Calibration from Image Sequence3hD thesis, Department of
Engineering Science, University of Oxford, 1996.

[2] J.R.Beveridge, C. Graves, and C. Lesher. Some Lessons Learned from Coding the Burns
Line Extraction Algorithm in the DARPA Image Understanding Environment. Technical
Report CS-96-125, Computer Science Department, Colorado State University, October
1996.

[3] S. Birchfield. An Introduction to Projective Geometry (for Computer Vision). Stanford
University, March 1998.

[4] J.B. Burns, A.R. Hanson, and E.M. Riseman. Extracting Straight Lilt&ESE Transac-
tions on Pattern Analysis and Machine Intelligen8é4):425-455, July 1986.

[5] B. Caprile and V. Torre. Using Vanishing Points for Camera Calibratloternational
Journal of Computer Visigrd:127-140, 1990.

[6] Intel Corporation. Open Source Computer Vision Library Manual. See official website:
http://www.intel.com/research/mrl/research/cvlib/, 2000.

[7] O.Faugeras. What can be seenin three dimensions with an uncalibrated stekeorrig?
puter Vision-ECCV'92, Springer Verlag, Lecture Notes in Computer Sci&@3:563—
578, 1992.

[8] O. FaugerasThree-Dimensional Computer Vision: A Geometric ViewpdifiT Press,
1993.

[9] O. Faugeras. Stratification of 3-D vision: projective, affine, and metric representations.
Journal of the Optical Society of Americh2(3):465-484, March 1995.

105



106 BIBLIOGRAPHY

[10] O. Faugeras, Q.-T. Luong, and S. Maybank. Camera Self-Calibration: Theory and Ex-
periments. InComputer-Vision-ECCV’92, Lecture Notes in Computer Scievaeme
588, pages 321-334. Springer-Verlag, 1992.

[11] O. Faugeras, L. Robert, S. Laveau, G. Csurka, C. Zeller, C. Gauclin, and I. Zoghlami.
3-D Reconstruction of Urban Scenes from Image Sequefmaputer Vision and Image
Understanding 69(3):292-309, March 1998. Also Research Report N0.2572, INRIA
Sophia-Antipolis.

[12] A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple windowing. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogpéaes
858-863, June 1997.

[13] A. Fusiello, E. Trucco, and A. Verri. Rectification with unconstrained stereo geometry.
In A.F. Clark, editorProceedings of the British Machine Vision Conferermages 400—
409. BMVA Press, September 1997. Also Research Memorandum RM/98/12, 1998,
Department of Computing and Electrical Engineering, Heriot-Watt University, Edinburgh,
UK.

[14] A.Fusiello, E. Trucco, and A. Verri. A compact algorithm for rectification of stereo pairs.
Machine Vision and Applicationd2(1):16—-22, 2000.

[15] G.H. Golup and C.F. van LoarMatrix Computations John Hopkins University Press,
2" edition, 1996.

[16] C. Harris and M. Stephens. A Combined Corner and Edge Detdetoceedings Alvey
Vision Conferencegpages 189-192, 1988.

[17] R. Hartley. Euclidean Reconstruction from Uncalibrated Views. In J.L. Mundy, A. Zis-
serman, and D. Forsyth, editoiypplications of Invariance in Computer Visiovolume
825 ofLecture Notes in Computer Scienpages 237-256. Springer-Verlag, 1994.

[18] R. Hartley. In defense of the 8-point algorithiiEEE Transactions on Pattern Analysis
and Machine Intelligengel9(6):580-593, June 1997.

[19] R.Hartley. Kruppa’'s Equations Derived from the Fundamental Mdti&E Transactions
on Pattern Analysis and Machine Intelligend®(2):133-135, February 1997.

[20] R. Hartley and J.L. Mundy. The relationship between photogrammetry and computer
vision. In E.B. Barrett and D.M. McKeown, editoISPIE Proceedingsrolume 1944 of
Integrating Photogrammetric Techniques with Scene Analysis and Machine,\daes
92-105. SPIE Press, September 1993.



BIBLIOGRAPHY 107

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

R. Hartley and P. Sturm. TriangulatiorComputer Vision and Image Understanding
68(2):146-157, 1997.

J. Heikkild and O. Silvén. A Four-step Camera Calibration Procedure with Implicit Image
Correction. InlEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’97), San Juan, Puerto Ripages 1106-1112, 1997.

L. Kitchen and A. Rosenfeld. Gray-level corner detecti®attern Recognition Letters
1(2):95-102, December 1982.

R. Koch. Automatic Reconstruction of Buildings from Stereoscopic Image Sequences.
Proceedings of Eurographics '932(3):339-350, September 1993.

R. Koch. 3-D Surface Reconstruction from Stereoscopic Image Sequend&asclrbth
International Conference on Computer Vision, Cambridge, MA., fa8es 109-114,
June 1995.

S. Laveau and O. Faugeras. Oriented Projective Geometry for Computer Vision. In
B. Buxtonand R. Cipolla, editor§&omputer-Vision-ECCV’96, Lecture Notes in Computer
Sciencevolume 1064, pages 147-156. Springer-Verlag, 1996.

D. Liebowitz, A. Criminisi, and A. Zisserman. Creating Architectural Models from
Images. InProc. EuroGraphicsvolume 18, pages 39-50, September 1999.

D. Liebowitz and A. Zisserman. Metric Rectification for Perspective Images of Planes.
In Proceedings of the Conference on Computer Vision and Pattern Recogmitigas
482-488, 1998.

D. Liebowitz and A. Zisserman. Combining Scene and Auto-calibration Constraints. In
Proc. 7th International Conference on Computer Vision, Kerkyra, Grgeges 293-300,
September 1999.

M.ILA. Lourakis and R. Deriche. Camera Self-Calibration Using the Singular Value
Decomposition of the Fundamental Matrix: From Point Correspondences to 3D Mea-
surements. Technical Report 3748, INRIA Sophia Antipolis, Project Robotvis, 1999.

Q.-T. Luong and O. Faugeras. The Fundamental matrix: theory, algorithms, and stability
analysis.The International Journal of Computer Visioh(17):43-76, 1996.

S.J. Maybank and O. Faugeras. A Theory of Self-Calibration of a Moving Camera.
International Journal of Computer VisioB(2):123-151, August 1992.



108 BIBLIOGRAPHY

[33] R. Mohr and B. Triggs. Projective Geometry for Image Analysis. International
Symposium of Photogrammetry and Remote Sengiagna, July 1996.

[34] H. Moravec. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot
Rover. Technical Report CMU-RI-TR-3, Robotics Institute, Carnegie-Mellon University,
September 1980.

[35] J.J. Moré. The Levenberg-Marquardt Algorithm: Implementation and Theory. In
G.A. Watson, editorNumerical Analysisvolume 630 ofLecture Notes in Mathemat-
ics. Springer-Verlag, 1977.

[36] M. Pilu. Uncalibrated Stereo Correspondence by Singular Value Decompoasition. Tech-
nical Report HPL-97-96, Digital Media Department, HP Laboratories Bristol, August
1997.

[37] M. Pollefeys. Self-Calibration and Metric 3D Reconstruction from Uncalibrated Image
SequencesPhD thesis, ESAT-PSI, K.U. Leuven, 1999.

[38] M. Pollefeys. Tutorial on 3D Modelling from Images. Tutorial organised in conjunction
with ECCV 2000, Dublin, Ireland, June 2000.

[39] M. Pollefeys, R. Koch, and L. van Gool. A simple and efficient rectification method for
general motion. IrProc. 7th International Conference on Computer Vision, Kerkyra,
Greece pages 496501, September 1999.

[40] W. Press, B. Flannery, S. Teukolsky, and W. VetterliNgimerical Recipes in QOxford
University Press, 1979.

[41] P.J. Rousseeuw and A.M. LeroRobust Regression and Outlier Detectiaglohn Wiley
& Sons, New York, 1987.

[42] S.Roy,J. Meunier, and I. Cox. Cylindrical Rectification to Minimize Epipolar Distortion.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
pages 393-399, 1997.

[43] G.ScottandH. Longuet-Higgins. An algorithm for associating the features of two images.
Proc. Royal Society LondoB244:21-26, 1991.

[44] J.G. Semple and G.T Kneebondlgebraic Projective GeometryOxford University
Press, 1979.



BIBLIOGRAPHY 109

[45] S.M. Smith. Reviews of Optic Flow, Motion Segmentation, Edge finding and Corner Find-
ing. Technical Report TR97SMS1, Oxford Centre for Functional Magnetic Resonance
Imaging of the Brain (FMRIB), Department of Clinical Neurology, Oxford University,
Oxford, UK, 1997.

[46] C.J. Taylor and D.J. Kriegman. Structure and Motion from Line Segments in Multiple
Images.|EEE Transactions on Pattern Analysis and Machine Intelligea@é11):1021—
1032, November 1995.

[47] P. Torr. Motion Segmentation and Outlier DetectioRhD thesis, Department of Engi-
neering Science, University of Oxford, 1995.

[48] S. Ullman.The Interpretation of Visual MotiorMIT Press, Cambridge, MA, 1979.

[49] C. Zeller and O. Faugeras. Camera Self-Calibration from Video Sequences: the Kruppa
Equations Revisited. Technical Report 2793, INRIA Sophia Antipolis, Project Robotvis,
1996.

[50] Z. Zhang. A New Multistage Approach to Motion and Structure Estimation: From
Essential Parameters to Euclidean Motion via Fundamental Matrix. Technical Report
2910, INRIA Sophia-Antipolis, France, June 1996.

[51] Z. Zhang. A Flexible New Technique for Camera Calibration. Technical Report MSR-
TR-98-71, Microsoft Research, December 1998.

[52] Z. Zhang. Determining the Epipolar Geometry and its Uncertainty: A Revigéhe
International Journal of Computer Visip27(2):161-195, March 1998. Also Research
Report N0.2927, INRIA Sophia-Antipolis.

[53] Z.Zhang. Flexible Camera Calibration by Viewing a Plane from Unknown Orientations.
In Proc. 7th International Conference on Computer Vision, Kerkyra, Grgemges 666—
673, September 1999.

[54] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A Robust Technique for Matching
Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry.
Artificial Intelligence Journal78:87—-119, 1995. Also Research Report N0.2273, INRIA
Sophia-Antipolis.



