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Abstract

A 3D reconstruction technique from stereo images is presented that needs minimal intervention

from the user.

The reconstruction problem consists of three steps, each of which is equivalent to the estimation

of a specific geometry group. The first step is the estimation of the epipolar geometry that exists

between the stereo image pair, a process involving feature matching in both images. The second

step estimates the affine geometry, a process of finding a special plane in projective space by

means of vanishing points. Camera calibration forms part of the third step in obtaining the

metric geometry, from which it is possible to obtain a 3D model of the scene.

The advantage of this system is that the stereo images do not need to be calibrated in order

to obtain a reconstruction. Results for both the camera calibration and reconstruction are

presented to verify that it is possible to obtain a 3D model directly from features in the images.
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Chapter 1

Introduction

1.1 General Overview

The objective of this thesis is to present an automatic 3D reconstruction technique that uses

only stereo images of a scene.

The topic of obtaining 3D models from images is a fairly new research field in computer vision.

In photogrammetry, on the other hand, this field is well established and has been around since

nearly the same time as the discovery of photography itself [20]. Whereas photogrammetrists

are usually interested in building detailed and accurate 3D models from images, in the field of

computer vision work is being done on automating the reconstruction problem and implement-

ing an intelligent human-like system that is capable of extracting relevant information from

image data.

This thesis presents a basic framework for doing exactly that. Only stereo image pairs are

considered, as much relevant information is available on this topic.

The two images can be acquired by either two cameras at the same time or by one camera at

a different time instant. It would be possible to extend the principle in this thesis to include a

whole image sequence.

1



2 CHAPTER 1. INTRODUCTION

1.2 The 3D reconstruction problem

Structure from uncalibrated images only leads to a projective reconstruction. Faugeras [7]

defines a matrix called the fundamental matrix, which describes the projective structure of

stereo images. Many algorithms for determining the fundamental matrix have since been

developed: a review of most of them can be found in a paper by Zhang [52]. Robust methods

for determining the fundamental matrix are especially important when dealing with real image

data. This image data is usually in the form of corners (high curvature points), as they can be

easily represented and manipulated in projective geometry. There are various corner detection

algorithms. The ones employed in this thesis are by Kitchen and Rosenfeld [23] and Harris and

Stephens [16]. Alternatively, Taylor and Kriegman [46] develope a reconstruction algorithm

using line segments instead of corners.

Image matching forms a fundamental part of epipolar analysis. Corners are estimated in both

images independently, and the matching algorithm needs to pair up the corner points correctly.

Initial matches are obtained by correlation and relaxation techniques. A new approach by Pilu

[36] sets up a correlation-weighted proximity matrix and uses singular value decomposition to

match up the points. A matching algorithm by Zhang et. al. [54] uses a very robust technique

calledLMedS(Least-Median-of-Squares Method), which is able to discard outliers in the list

of initial matches and calculates the optimal fundamental matrix at the same time.

In order to upgrade the projective reconstruction to a metric or Euclidean one, 3D vision is

divided or stratified into four geometry groups, of which projective geometry forms the basis.

The four geometry strata are projective, affine, metric and Euclidean geometry. Stratification

of 3D vision makes it easier to perform a reconstruction. Faugeras [9] gives an extensive

background on how to achieve a reconstruction by upgrading projective to affine geometry and

affine to metric and Euclidean geometry.

Affine geometry is established by finding theplane at infinityin projective space for both

images. The usual method of finding the plane is by determining vanishing points in both

images and then projecting them into space to obtainpoints at infinity. Vanishing points are the

intersections of two or more imaged parallel lines. This process is unfortunately very difficult

to automate, as the user generally has to select the parallel lines in the images. Some automatic

algorithms try to find dominant line orientations in histograms [28]. Pollefeys [37] introduced

themodulus constraint, from which it is possible to obtain an accurate estimation of the plane

at infinity by determining infinite homographies between views. At least three views need to

be present in order for the algorithm to work properly.
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Camera calibration allows for an upgrade to metric geometry. Various techniques exist to

recover the internal parameters of the camera involved in the imaging process. These parameters

incorporate the focal length, the principal point and pixel skew. The classical calibration

technique involves placing a calibration grid in the scene. The 3D coordinates of markers on

the grid are known and the relationship between these and the corresponding image coordinates

of the same markers allow for the camera to be calibrated. The calibration grid can be replaced

by a virtual object lying in the plane at infinity, called theabsolute conic. Various methods

exist to calculate the absolute conic, andKruppa’s equations[19, 30, 49] form the basis of the

most famous one. These equations provide constraints on the absolute conic and can be solved

by knowing the fundamental matrix between at least three views. Vanishing points can also be

used to calibrate a camera, as a paper by Caprile and Torre [5] shows. This idea is also used in

a method by Liebowitz et. al. [27, 28, 29], which makes use of only a single view to obtain the

camera calibration parameters. A new calibration technique which places a planar pattern of

known dimensions in the scene, but for which 3D coordinates of markers are not known, has

been developed by Zhang [51, 53]. The homography between the plane in the scene and the

image plane is calculated, from which a calibration is possible.

Euclidean geometry is simply metric geometry, but incorporates the correct scale of the scene.

The scale can be fixed by knowing the dimensions of a certain object in the scene.

Up to this point it is possible to obtain the 3D geometry of the scene, but as only a restricted

number of features are extracted, it is not possible to obtain a very complete textured 3D model.

Dense stereo matching techniques can be employed once the the camera projection matrices

for both images are known. Most dense stereo algorithms operate on rectified stereo image

pairs in order to reduce the search space to one dimension. Pollefeys, Koch and van Gool

[39] reparameterise the images with polar coordinates, but need to employ oriented projective

geometry [26] to orient the epipolar lines. Another rectification algorithm by Roy, Meunier and

Cox [42] rectifies on a cylinder instead of a plane. This method is very difficult to implement

as all operations are performed in 3D space. A very simple method implemented in this thesis

is by Fusiello, Trucco and Verri [13, 14], which rectifies the two images by rotating the camera

projection matrices around their optical centres until the focal planes become coplanar.

Two dense stereo matching algorithms have been considered. Koch [24, 25] obtains a 3D

model by extracting depth from rectified stereoscopic images by means of fitting a surface to

a disparity map and performing surface segmentation. A method by Fusiello, Roberto and

Trucco [12] makes use of multiple correlation windows to obtain a good approximation to the

disparity, from which it is possible by means of triangulation to obtain a 3D textured model.
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1.3 Outline of the thesis

Chapter 2 summarises aspects of projective geometry and also deals with stratification of

3D vision. This chapter is extremely important as it gives a theoretical framework to the

reconstruction problem.

The camera model is introduced in chapter 3, with the emphasis on epipolar geometry. Epipolar

geometry defines the relationship between a stereo image pair. This relationship is in the form

of a matrix, called the fundamental matrix. The fundamental matrix allows for a projective

reconstruction, from which it is then possible to obtain a full Euclidean 3D reconstruction.

Three techniques for the estimation of the fundamental matrix are outlined in chapter 4. One

of the techniques, the Least-Median-of-Squares (LMedS) method, plays a role in the point

matching algorithm, as this method is able to detect false matches and at the same time calculates

a robust estimate of the fundamental matrix. A linear least-squares technique is used as an initial

estimate to the LmedS method.

In chapter 5, a robust matching algorithm is outlined that incorporates two different matching

techniques. The matching process makes use of correlation and relaxation techniques to find

a set of initial matches. With the help of the LMedS method, which makes use of the epipolar

geometry that exists between the two images, the set of initial matches are refined and false

matches are discarded. Some of the limitations of the matching algorithm are described at the

end of the chapter.

Chapter 6 describes four different camera calibration methods with their advantages and disad-

vantages. Some original calibration methods are described that make use of calibration patterns

inside the view of the camera. Selfcalibration is a technique that substitutes the calibration pat-

tern with a virtual object. This object provides constraints to calculate the camera calibration

matrix. It is also possible to obtain the internal parameters of the camera from only a single

view. In order to achieve that, certain measurements in the scene need to be known. The

last calibration method makes use of a planar calibration grid, which is imaged from different

views. The correspondence between the image planes and the planar pattern is used to establish

the calibration matrix.

The complete reconstruction process is presented in chapter 7. Projective, affine and metric

reconstruction processes are described. The estimation of the plane at infinity is described in

detail, and certain criteria are outlined that have to be met in order to obtain an accurate estimate

of the plane. This chapter also describes dense stereo matching in order to obtain a 3D textured
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model of the scene. The reconstruction results are also presented in this chapter. Part of a box

is reconstructed, verifying that the reconstruction algorithm functions properly.

Conclusions are drawn in chapter 8.

The appendix summarises various algorithms which are used throughout the thesis:

• Two corner detection algorithms are described together with an algorithm which refines

the corners to subpixel accuracy.

• A straight line finder is outlined which is used to find parallel lines in the images.

• A maximum likelihood estimateis presented which finds the best estimate of a vanishing

point.

• TheLevenberg-Marquardtalgorithm is explained as it is used in all the nonlinear min-

imisation routines.

• Two methods of triangulation are presented which are used in the reconstruction problem.

For a stereo image pair, the individual steps of the reconstruction algorithm are as follows:

1. Corners are detected in each image independently.

2. A set of initial corner matches is calculated.

3. The fundamental matrix is calculated using the set of initial matches.

4. False matches are discarded and the fundamental matrix is refined.

5. Projective camera matrices are established from the fundamental matrix.

6. Vanishing points on three different planes and in three different directions are calculated

from parallel lines in the images.

7. The plane at infinity is calculated from the vanishing points in both images.

8. The projective camera matrices are upgraded to affine camera matrices using the plane

at infinity.

9. The camera calibration matrix (established separately to the reconstruction process) is

used to upgrade the affine camera matrices to metric camera matrices.
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10. Triangulation methods are used to obtain a full 3D reconstruction with the help of the

metric camera matrices.

11. If needed, dense stereo matching techniques are employed to obtain a 3D texture map of

the model to be reconstructed.

Stereo image pairs were obtained by aWatecr Camera, Model: WAT-202B(PAL) and grabbed

by a Asusr AGP-V3800 Ultra framegrabber. If the scene or model did not contain enough

features needed for the reconstruction, markers were put up at strategic places around the scene.

These markers were usually made up from pieces of paper with straight, parallel lines printed

on them for vanishing point estimation, or stars for the corner and matching algorithms.



Chapter 2

Stratification of 3D Vision

2.1 Introduction

Euclidean geometry describes a 3D world very well. As an example, the sides of objects have

known or calculable lengths, intersecting lines determine angles between them, and lines that

are parallel on a plane will never meet. But when it comes to describing the imaging process

of a camera, the Euclidean geometry is not sufficient, as it is not possible to determine lengths

and angles anymore, and parallel lines may intersect.

3D vision can be divided into four geometry groups or strata, of which Euclidean geometry is

one. The simplest group is projective geometry, which forms the basis of all other groups. The

other groups include affine geometry, metric geometry and then Euclidean geometry. These

geometries are subgroups of each other, metric being a subgroup of affine geometry, and both

these being subgroups of projective geometry.

Each geometry has a group of transformations associated with it, which leaves certain properties

of each geometry invariant. These invariants, when recovered for a certain geometry, allow for

an upgrade to the next higher-level geometry. Each of these geometries will be explained in

terms of their invariants and transformations in the next few sections of this chapter.

Projective geometry allows for perspective projections, and as such models the imaging process

very well. Having a model of this perspective projection, it is possible to upgrade the projective

geometry later to Euclidean, via the affine and metric geometries.

Algebraic and projective geometry forms the basis of most computer vision tasks, especially

in the fields of3D reconstruction from imagesandcamera selfcalibration. Section 2.2 gives

7
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an overview of projective geometry and introduces some of the notation used throughout the

text. Concepts such as points, lines, planes, conics and quadrics are described in two and three

dimensions. The sections that follow describe the same structures, but in terms of affine, metric

and Euclidean geometry.

A standard text covering all aspects of projective and algebraic geometry is by Semple and

Kneebone [44]. Faugeras applies principles of projective geometry to 3D vision and recon-

struction in his book [8]. Other good introductions to projective geometry are by Mohr and

Triggs [33] and by Birchfield [3]. Stratification is described by Faugeras [9] and by Pollefeys

[37].

The following sections are based entirely on the introductions to projective geometry and

stratification by Faugeras [8, 9] and Pollefeys [37].

2.2 Projective Geometry

2.2.1 Homogeneous Coordinates and other Definitions

A point in projective space (n-dimensions),Pn, is represented by a(n + 1)-vector of coordi-

natesx = [x1, . . . , xn+1]
T . At least one of thexi coordinates must be nonzero. Two points

represented by(n + 1)-vectorsx and y are considered equal if a nonzero scalarλ exists such

thatx = λy. Equality between points is indicated byx ∼ y. Because scaling is not important

in projective geometry, the vectors described above are calledhomogeneous coordinatesof a

point.

Homogeneous points withxn+1 = 0 are calledpoints at infinityand are related to the affine

geometry described in section 2.3.

A collineation or linear transformation ofPn is defined as a mapping between projective

spaces which preserves collinearity of any set of points. This mapping is represented by a

(m+ 1) × (n + 1) matrix H , for a mapping fromPn
7→ Pm. Again for a nonzero scalarλ, H

andλH represent the same collineation. IfH is a(n + 1) × (n + 1) matrix, thenH defines a

collineation fromPn into itself.

A projective basisforPn is defined as any set of(n+2) points ofPn, such that no(n+1) of them

are linearly dependent. The setei = [0, . . . , 1, . . . , 0]
T , for i = 1, . . . , n+1, where 1 is in the

i th position, anden+2 = [1, 1, . . . , 1]
T form thestandard projective basis. A projective point

of Pn represented by any of its coordinate vectorsx can be described as a linear combination
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of anyn + 1 points of the standard basis:

x =

n+1∑
i =1

xi ei . (2.1)

Any projective basis can be transformed by a collineation into a standard projective basis: "let

x1, . . . , xn+2 be n + 2 coordinate vectors of points inPn, no n + 1 of which are linearly

dependent, i.e., a projective basis. Ife1, . . . , en+1, en+2 is the standard projective basis, then

there exists a nonsingular matrixA such thatAei = λi x i , i = 1, . . . , n+2, where theλi are

nonzero scalars; any two matrices with this property differ at most by a scalar factor" [8, 9].

A collineation can also map a projective basis onto a second projective basis: "if x1, . . . , xn+2

and y1, . . . , yn+2 are two sets ofn + 2 coordinate vectors such that in either set non + 1

vectors are linearly dependent, i.e., form two projective basis, then there exists a nonsingular

(n + 1) × (n + 1) matrix P such thatPxi = ρi yi , i = 1, . . . , n + 2, where theρi are scalars,

and the matrixP is uniquely determined apart from a scalar factor" [8, 9].

The proof for both above statements can be found in [8].

2.2.2 The Projective Plane

The projective spaceP2 is known as the projective plane. A point inP2 is defined as a 3-vector

x = [x1, x2, x3]
T , with (u, v) = (x1/x3, x2/x3) the Euclidean position on the plane. A line is

also defined as a 3-vectorl = [l1, l2, l3]T and having the equation of

3∑
i =1

l i xi = 0. (2.2)

Then a pointx is located on the line if

l T x = 0. (2.3)

This equation can be called theline equation, which means that a pointx is represented by a

set of lines through it, or this equation is called thepoint equation, which means that a linel is

represented by a set of points. These two statements show that there is no difference between

points and lines inP2. This is called theprinciple of duality. Any theorem or statement that

is true for the projective plane can be reworded by substituting points for lines and lines for

points, and the resulting statement will also be true.
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The equation of the line through two pointsx and y is

l = x × y, (2.4)

which is also sometimes calculated as follows:

l = [x]× y, (2.5)

with

[x]× =


0 x3 −x2

−x3 0 x1

x2 −x1 0

 (2.6)

being the antisymmetric matrix of coordinate vectorx associated with the cross product. The

intersection point of two lines is also defined by the cross product:x = l 1 × l 2.

All the lines passing through a specific point form thepencil of lines. If two lines l 1 andl 2 are

elements of this pencil, then all the other lines can be obtained as follows:

l = λ1l 1 + λ2l 2, (2.7)

whereλ1 andλ2 are scalars.

Cross-Ratio

If four pointsx1, x2, x3 andx4 are collinear, then they can be expressed by

x i = y + λi z

for two points y and z, and no pointx i coincides withz. Then thecross-ratiois defined as

follows:

{x1, x2; x3, x4} =
λ1 − λ3

λ1 − λ4
:
λ2 − λ3

λ2 − λ4
. (2.8)

The cross-ratio is invariant to all collineations of projective space. A similar cross-ratio can

be derived for four lines: for "four lines l 1, l 2, l 3 and l 4 of P2 intersecting at a point, their

cross-ratio{l 1, l 2; l 3, l 4} is defined as the cross-ratio{x1, x2; x3, x4} of their four points of

intersection with any linel not going through their point of intersection" [8, 9]. See figure 2.1

for a graphical explanation.
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Figure 2.1: Cross-ratio of four lines:{l 1, l 2; l 3, l 4}={x1, x2; x3, x4}. Figure
obtained from [8].

Collineations

A collineation ofP2 is defined by 3× 3 invertible matrices, defined up to a scale factor.

Collineations transform points, lines and pencil of lines1 to points, lines and pencil of lines,

and preserve the cross-ratios. InP2 collineations are called homographies and are represented

by a matrixH . A point x is transformed as follows:

x′
∼ Hx . (2.9)

The transformation of a linel is found by transforming the pointsx on the line and then finding

the line defined by these points:

l ′T x′
= l T H −1Hx = l T x = 0.

The transformation of the line is then as follows, withH −T
= (H −1)T

= (H T )−1:

l ′
∼ H −T l . (2.10)

Conics

In Euclidean geometry, second-order curves such as ellipses, parabolas and hyperbolas are

easily defined. In projective geometry, these curves are collectively known asconics. A conic
1Thepencil of linesis the set of lines inP2 passing through a fixed point.
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C is defined as the locus of points of the projective plane that satisfies the following equation:

S(x) = xT Cx = 0

or

S(x) =

3∑
i, j =1

ci j xi x j = 0,

(2.11)

whereci j = c j i which form C, a 3× 3 symmetric matrix defined up to a scale factor. This

means that the conic depends on 5 parameters. A conic can be visualised by thinking in terms

of Euclidean geometry: a circle is defined as a locus of points with constant distance from the

centre, and a conic is defined as a locus of points with constant cross-ratio to four fixed points,

no three of which are linearly dependent [3].

The principle of duality exists also for conics: thedual conicC∗ or conic envelopeis defined

as the locus of all lines satisfying the following equation:

l T C∗l = 0, (2.12)

whereC∗ is a 3× 3 symmetric matrix defined up to a scale factor and depends also on 5

parameters.

Faugeras [8, 9] shows that the tangentl at a pointx on a conic is defined by

l = CT x = Cx. (2.13)

Then the relationship between the conic and the dual conic is as follows: whenx varies along

the conic, the equationxT Cx = 0 is satisfied and thus the tangent linel to the conic atx

satisfiesl T C−T l = 0. Comparing this to equation (2.12), it shows that the tangents to a conic

defined byC belong to a dual conic defined byC∗
∼ C−T .

Transformations of the conic and dual conic with homographyH are as follows (using equations

(2.9) and (2.10)):

x′T C′x′
∼ xT H T H −T C H−1Hx = 0

l ′T C∗
′

l ′
∼ l T H −1HC∗ H T H −T l = 0
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and therefore

C′
∼ H −T C H−1 (2.14)

C∗
′

∼ HC∗ H T . (2.15)

Poles and Polars

Polesandpolarsare defined as follows: "a pointx and conicC define a linel = Cx. The line

l is called thepolarof x with respect toC, and the pointx is thepoleof l with respect toC. The

polar line l = Cx of the pointx with respect to a conicC intersects the conic in two points at

which tangent lines toC intersect atx. If a pointv1 lies on the polar of another pointv2, then

the two points are said to be conjugate with respect to the conic and satisfyvT
1 Cv2 = 0" [29].

Figure 2.2 shows how this is achieved.

Figure 2.2: Pointsv1 andv2, with polarsl 1 and l 2. The pointsv1 andv2 are
conjugate with respect to the conicC. Figure obtained from [29].

2.2.3 The Projective Space

The spaceP3 is known as the projective space. A point ofP3 is defined by a 4-vectorx =

[x1, x2, x3, x4]
T . The dual entity of the point inP3 is a planeπ , which is also represented by

a 4-vectorπ = [π1, π2, π3, π4]
T with equation of

4∑
i =1

πi xi = 0. (2.16)
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A point x is located on a plane if the following equation is true:

πT x = 0. (2.17)

The structure which is analogous to the pencil of lines ofP2 is thepencil of planes, the set of

all planes that intersect in a certain line.

Cross-Ratio

The cross-ratio inP3 is defined as four planesπ1, π2, π3 andπ4 of P3 that intersect at a line

l . That means that the cross-ratio{π1, π2; π3, π4} is defined as the cross-ratio{l 1, l 2; l 3, l 4}

of their four lines of intersection with any planeπ not going throughl . Another formulation is

as follows: "the cross-ratio is the cross-ratio of the four points of intersection of any line, not

lying in any of the four planes, with the four planes" [8, 9], (see figure 2.3).

Figure 2.3: Cross-ratio of four planes:{π1, π2; π3, π4}={l 1, l 2; l 3, l 4}. Figure
obtained from [8].

Collineations

Collineations inP3 are defined by 4× 4 invertible matricesT , defined up to a scale factor.

Again it can be seen that collineations transform points, lines, planes and pencil of planes2 to

points, lines, planes and pencil of planes, and preserve the cross-ratios.
2Thepencil of planesis the set of all planes intersecting in a given line.
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As was the case inP2, transformationsT of pointsx and planesπ in P3 are as follows:

x′
∼ T x (2.18)

and

π ′
∼ T−Tπ . (2.19)

Quadrics

The equivalent to a conic inP3 is aquadric. A quadric is the locus of all pointsx satisfying:

S(x) = xT Qx = 0

or

S(x) =

4∑
i, j =1

qi j xi x j = 0,

(2.20)

where Q is a 4× 4 symmetric matrix defined up to a scale factor. A quadric depends on 9

independent parameters.

Thedual quadricis the locus of all planesπ satisfying:

πT Q∗π = 0, (2.21)

where Q∗ is a 4× 4 symmetric matrix defined up to a scale factor and also depends on 9

independent parameters.

TransformationsT of the quadric and dual quadric are as follows (similar to transformations

of the conic as in the previous section):

x′T Q′x′
∼ xT T T T−T QT−1T x = 0

π ′T Q∗
′

π ′
∼ πT T−1T Q∗T T T−Tπ = 0

and therefore

Q′
∼ T−T QT−1 (2.22)

Q∗
′

∼ T Q∗T T . (2.23)
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The quadric can be described as a surface ofP3.

2.2.4 Discussion

Now that a framework for projective geometry has been created, it is possible to define 3D

Euclidean space as embedded in a projective spaceP3. In a similar way, the image plane of

the camera is embedded in a projective spaceP2. Then a collineation exists which maps the

3D space to the image plane,P3
7→ P2, via a 3× 4 matrix. This will be dealt with in detail in

the next chapter.

As was outlined, the cross-ratio stays invariant to projective transformations or collineations.

The relations ofincidence, collinearityandtangencyare also projectively invariant.

2.3 Affine Geometry

This stratum lies between the projective and metric geometries and contains more structure

than the projective stratum, but less than the metric and Euclidean ones.

2.3.1 The Affine Plane

The line in the projective plane withx3 = 0 is called theline at infinityor l ∞. It is represented

by the vectorl ∞ = [0, 0, 1]
T .

The affine plane can be considered to be embedded in the projective plane under a correspon-

dence ofA2
→ P2: X = [X1, X2]

T
→ [X1, X2, 1]

T . There "is a one-to-one correspondence

between the affine plane and the projective plane minus the line at infinity with equationx3 = 0"

[8, 9]. For a projective pointx = [x1, x2, x3]
T that is not on the line at infinity, the affine pa-

rameters can be calculated asX1 =
x1
x3

andX2 =
x2
x3

.

To calculate any line’s point at infinity, this line needs to be simply intersected withl ∞. If such

a line is defined as in equation (2.2), this intersection point is at[−l2, l1, 0]
T or l × l ∞. Using

equation (2.2), the vector[−l2, l1]T gives the direction of the affine linel1x1 + l2x2 + l3 = 0.

The relationship of the line at infinity and the affine plane is then as follows: any pointx =

[x1, x2, 0]
T on l ∞ gives the direction in the underlying affine plane, with the direction being

parallel to the vector[x1, x2]
T .

Faugeras [9] gives a simple example which shows how the affine plane is embedded in the
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projective plane: considering two parallel (not identical) lines in affine space, they must have

the same direction parallel to the vector[−l2, l1]T . Then considering them as projective lines

of the projective plane, they must intersect at the point[−l2, l1, 0]
T of l ∞. That shows that two

distinct parallel lines intersect at a point ofl ∞.

Transformations

A point x is transformed in the affine plane as follows:

X ′
= BX + b, (2.24)

with B being a 2× 2 matrix of rank 2, andb a 2× 1 vector. These transformations form a

group called the affine group, which is a subgroup of the projective group and which leaves the

line at infinity invariant [8, 9].

In projective spaceP2 it is then possible to define a collineation that keepsl∞ invariant. This

collineation is defined by a 3× 3 matrix A of rank 3:

H =

[
B b

0T
2 1

]
.

2.3.2 The Affine Space

As in the previous section, the plane at infinityπ∞ has equationx4 = 0 and the affine space can

be considered to be embedded in the projective space under a correspondence ofA3
→ P3:

X = [X1, X2, X3]
T

→ [X1, X2, X3, 1]
T . "This is the one-to-one correspondence between

the affine space and the projective space minus the plane at infinity with equation ofx4 = 0"

[8, 9]. Then for each projective pointx = [x1, x2, x3, x4]
T that is not in that plane, the affine

parameters can be calculated asX1 =
x1
x4

, X2 =
x2
x4

andX3 =
x3
x4

.

As inP2, the following expression gives rise to the line at infinity: ifπ∞ is the plane at infinity

ofP3 andπ is a plane ofP3 not equal toπ∞, thenπ ×π∞ is the line at infinity onπ . Therefore,

each plane of equation (2.16) intersects the plane at infinity along a line that is its line at infinity.

As in P2, it can be seen that any pointx = [x1, x2, x3, 0]
T on π∞ represents the direction

parallel to the vector[x1, x2, x3]
T . This means that two distinct affine parallel planes can be

considered as two projective planes intersecting at a line in the plane at infinityπ∞.



18 CHAPTER 2. STRATIFICATION OF 3D VISION

Transformations

Affine transformations of space can be written exactly as in equation (2.24), but withB being a

3×3 matrix of rank 3, andba 3×1 vector. Writing the affine transformation using homogeneous

coordinates, this can be rewritten as in equation (2.18) with

TA ∼

[
B b

0T
3 1

]
. (2.25)

To upgrade a specific projective representation to an affine representation, a transformation

needs to be applied which brings the plane at infinity to its canonical position (i.e.π∞ =

[0, 0, 0, 1]
T ) [37]. Such a transformation should satisfy the following (as in equation (2.19)):

0

0

0

1

 ∼ T−Tπ∞ or T T


0

0

0

1

 ∼ π∞ (2.26)

The above equation determines the fourth row ofT and all other elements are not constrained

[37]:

TPA ∼

[
I 3×4

πT
∞

]
, (2.27)

where the last element ofπ∞ is scaled to 1. The identity matrixI can be generalised by

I 3×4 = [A3×3 03]. Then every transformation in this form, with det(A) 6= 0, will mapπ∞

to [0, 0, 0, 1]
T .

2.3.3 Discussion

The invariants of the affine stratum are clearly the points, lines and planes at infinity. These

form an important aspect of camera calibration and 3D reconstruction, as will be seen in later

chapters.

As is shown in the previous section, obtaining the plane at infinity in a specific projective

representation allows for an upgrade to an affine representation. The plane at infinity can be

calculated by finding three vanishing points in the images. This will be explained in more detail

in chapter 7.
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2.4 Metric Geometry

This stratum corresponds to the group ofsimilarities. The transformations in this group are

Euclidean transformations such as rotation and translation. The metric stratum allows for a

complete reconstruction up to an unknown scale.

2.4.1 The Metric Plane

Affine transformations can be adapted to not only preserve the line at infinity, but to also

preserve two points on that line called theabsolute pointsor circular points. The circular

points are two complex conjugate points lying on the line at infinity [44]. They are represented

by I = [1, i, 0]
T and J = [1, −i, 0]

T with i =
√

−1.

Making use of equation (2.24) and imposing the constraint thatI and J be invariant, the

following is obtained:

1

i
=

b111 + b12i + b10

b211 + b22i + b20

1

−i
=

b111 − b12i + b10

b211 − b22i + b20

which results in

(b11 − b22)i − (b12 + b21) = 0

−(b11 − b22)i − (b12 + b21) = 0.

Thenb11 − b22 = b12 + b21 = 0 and the following transformation is obtained:

X ′
= c

[
cosα sinα

− sinα cosα

]
X + b, (2.28)

wherec > 0 and 0≤ α < 2π . This transformation can be interpreted as follows: the affine

point X is first rotated by an angleα around the origin, then scaled byc and then translated by

b.

Circular points have the special property in that they can be used to determine the angle between
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two lines. This angle is calculated by theLaguerre formula:

α =
1

2i
log({l 1, l 2; i m, j m}). (2.29)

Stated in words: "the angleα between two linesl 1 and l 2 can be defined by considering their

point of intersectionm and the two linesi m and j m joining m to the absolute pointsI and J"

[8, 9].

The Laguerre formula can also be stated differently: it is equal to the cross-ratio of the four

points I , J , m1 andm2 of intersection of the four lines with the line at infinity (see figure 2.4).

Figure 2.4: Illustration of the Laguerre formula inP2. Figure obtained
from [8, 9].

The two linesl 1 and l 2 are perpendicualar if the cross-ratio{l 1, l 2; i m, j m} is equal to−1,

becauseei π
= cosπ + i sinπ = −1 [8, 9].

2.4.2 The Metric Space

In metric space, affine transformations are adapted to leave the absolute conic invariant. The

absolute conic� is obtained as the intersection of the quadric of equation
∑4

i =1 x2
i = 0 with

π∞:
4∑

i =1

x2
i = x4 = 0, (2.30)

which can be interpreted as a circle of radiusi =
√

−1, an imaginary circle in the plane at

infinity [8, 9, 37]. All the points on� have complex coordinates, which means that ifx is a

point on�, then the complex conjugate pointx̄ is also on�.
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Laguerre formula forP3 is as follows: "the angleα between two planesπ1 and π2 can be

defined by considering their line of intersectionl and the two planesi l and j l going throughl

and tangent to the absolute conic�" [8, 9]:

α =
1

2i
log({π1, π2; i l , j l }). (2.31)

(See figure 2.5.)

Figure 2.5: Illustration of the Laguerre formula inP3. Figure obtained from [8].

Affine transformations which keep� invariant are written as follows:

X ′
= cC X + b, (2.32)

wherec > 0 andC is orthogonal:CCT
= I 3×3. Writing the affine transformation using

homogeneous coordinates, this can be rewritten as in equation (2.18) with

TM ∼

[
cC b

0T
3 1

]
. (2.33)

The absolute conic� is represented by two equations as in equation (2.30). The dual absolute

conic�∗ can be represented as a single quadric [37]:

�∗
∼


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 , (2.34)
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which is its canonical form. The image of the absolute conicω∞ and the image of the dual

absolute conicω∗

∞
are the 2D representations of the conics. Their canonical forms are:

ω∞ ∼ [ I 3×3] and ω∗

∞
∼ [ I 3×3].

To upgrade the recovered affine representation of the previous section to a metric one, the

absolute conic needs to be identified. This is done by an affine transformation which brings

the absolute conic to its canonical position, or stated differently, from its canonical position to

its actual position in the affine representation [37].

Combining equations (2.23) and (2.25), the following is obtained:

�∗
∼

[
B b

0T
3 1

][
I 3×3 03

0T
3 0

][
BT 03

bT 1

]
=

[
BBT 03

0T
3 0

]
. (2.35)

The image of the absolute conic and the image of the dual absolute conic have then the following

form:

ω∞ = B−T B−1 and ω∗

∞
= BBT . (2.36)

It is then possible to upgrade from affine to metric using the following transformation matrix:

TAM =

[
B−1 03

0T
3 0

]
, (2.37)

whereB can be obtained viaCholesky decomposition[15]. As will be seen in later chapters,

the matrixB is set equal to the camera calibration matrix.

2.4.3 Discussion

The absolute conic is the invariant variable of the metric stratum. Two other invariants in this

group not mentioned before arerelative distancesandangles.

As the upgrade from an affine to a metric representation requires the camera calibration matrix,

this section is closely related to the topic of camera calibration, which will be described in

chapter 6.
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2.5 Euclidean Geometry

Euclidean geometry is the same as metric geometry, the only difference being that the relative

lengths are upgraded to absolute lengths. This means that the Euclidean transformation matrix

is the same as in equation (2.33), but without the scaling factor:

TE ∼

[
C b

0T
3 1

]
. (2.38)

2.6 Notations

Throughout the thesis, bold symbols represent vectors and matrices. In the following chap-

ters, the following notation is used to represent the homogeneous coordinates of a vector:

m = [x, y]
T

→ m̃ = [m, 1]
T .
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Chapter 3

Camera Model and Epipolar

Geometry

3.1 Introduction

This chapter introduces the camera model and defines theepipolaror two viewgeometry.

A perspective camera model is described in section 3.2, which corresponds to thepinhole

camera. It is assumed throughout this thesis that effects such as radial distortion are negligible

and are thus ignored.

Section 3.3 defines the epipolar geometry that exists between two cameras. A special matrix

will be defined that incorporates the epipolar geometry and forms the building block of the

reconstruction problem.

3.2 Camera Model

A camera is usually described using thepinhole model. As mentioned in section 2.2, there

exists a collineation which maps the projective space to the camera’s retinal plane:P3
→ P2.

Then the coordinates of a 3D pointM = [X, Y, Z]
T in a Euclidean world coordinate system

and the retinal image coordinatesm = [u, v]
T are related by the following equation:

sm̃ = PM̃ , (3.1)
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wheres is a scale factor,̃m = [u, v, 1]
T andM̃ = [X, Y, Z, 1]

T are the homogeneous coordi-

nates of vectorm andM , andP is a 3× 4 matrix representing the collineation:P3
→ P2. P

is called the perspective projection matrix.

Figure 3.1 illustrates this process. The figure shows the case where the projection centre is

placed at the origin of the world coordinate frame and the retinal plane is atZ = f = 1. Then

u =
f X
Z , v =

f Y
Z and

P = [ I 3×3 03]. (3.2)

The optical axis passes through the centre of projection (camera)C and is orthogonal to the

retinal plane. The pointc is called the principal point, which is the intersection of the optical

axis with the retinal plane. The focal lengthf of the camera is also shown, which is the distance

between the centre of projection and the retinal plane.

Figure 3.1: Perspective Projection.

If only the perspective projection matrixP is available, it is possible to recover the coordinates

of the optical centre or camera.

The world coordinate system is usually defined as follows: the positiveY-direction is pointing

upwards, the positiveX-direction is pointing to the right and the positiveZ-direction is pointing

into the page.
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3.2.1 Camera Calibration Matrix

The camera calibration matrix, denoted byK , contains the intrinsic parameters of the camera

used in the imaging process. This matrix is used to convert between the retinal plane and the

actual image plane:

K =


f

pu
(tanα)

f
pv

u0

0 f
pv

v0

0 0 1

 . (3.3)

Here, the focal lengthf acts as a scale factor. In a normal camera, the focal length mentioned

above does not usually correspond to 1. It is also possible that the focal length changes during

an entire imaging process, so that for each image the camera calibration matrix needs to be

reestablished.

The valuespu and pv represent the width and height of the pixels in the image,c = [u0, v0]
T

is the principal point andα is the skew angle. This is illustrated in figure 3.2.

Figure 3.2: Illustration of pixel skew.

It is possible to simplify the above matrix:

K =


fu s u0

0 fv v0

0 0 1

 , (3.4)

where fu and fv are the focal lengths measured in width and height of the pixels,s represents
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the pixel skew and the ratiofu: fv characterises the aspect ratio of the camera.

It is possible to use the camera calibration matrix to transform points from the retinal plane to

points on the image plane:

m̃ = K m̃R. (3.5)

The estimation of the camera calibration matrix is described in chapter 6.

3.2.2 Camera Motion

Motion in a 3D scene is represented by arotation matrix R and atranslationvector t. The

motion of the camera from coordinateC1 to C2 is then described as follows:

C̃2 =

[
R t

0T
3 1

]
C̃1, (3.6)

whereR is the 3× 3 rotation matrix andt the translation in theX-, Y- andZ- directions. The

motion of scene points is equivalent to the inverse motion of the camera (Pollefeys [37] defines

this as the other way around) :

M̃ 2 =

[
RT

−RT t

0T
3 1

]
M̃ 1. (3.7)

Equation (3.1) with equations (3.2), (3.5) and (3.6) then redefine the perspective projection

matrix:

sm̃ = K
[

R t
]

M̃ , (3.8)

whereP = K
[

R t
]
.

3.3 Epipolar Geometry

The epipolar geometry exists between a two camera system. With reference to figure 3.3, the

two cameras are represented byC1 andC2.

Pointsm1 in the first image andm2 in the second image are the imaged points of the 3D point

M . Pointse1 ande2 are the so-calledepipoles, and they are the intersections of the line joining

the two camerasC1 andC2 with both image planes or the projection of the cameras in the
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Figure 3.3: Epipolar Geometry.

opposite image. The plane formed with the three points< C1MC2 > is called theepipolar

plane. The linesl m1 and l m2 are called theepipolar linesand are formed when the epipoles

and image points are joined.

The pointm2 is constrained to lie on the epipolar linel m1 of point m1. This is called the

epipolar constraint. To visualise it differently: the epipolar linel m1 is the intersection of the

epipolar plane mentioned above with the second image planeI 2. This means that image point

m1 can correspond to any 3D point (even points at infinity) on the line< C1M > and that the

projection of<C1M > in the second imageI 2 is the linel m1. All epipolar lines of the points

in the first image pass through the epipolee2 and form thus a pencil of planes containing the

baseline<C1C2>.

The above definitions are symmetric, in a way such that the point ofm1 must lie on the epipolar

line l m2 of point m2.

Expressing the epipolar constraint algebraically, the following equation needs to be satisfied in

order form1 andm2 to be matched:

m̃T
2 Fm̃1 = 0, (3.9)

whereF is a 3× 3 matrix called thefundamental matrix. The following equation also holds:

l m1 = Fm̃1, (3.10)

since the pointm2 corresponding to pointm1 belongs to the linel m1 [31]. The role of the
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images can be reversed and then:

m̃T
1 F T m̃2 = 0,

which shows that the fundamental matrix is changed to its transpose.

Making use of equation (3.8), if the first camera coincides with the world coordinate system

then

s1m̃1 = K 1

[
I 3×3 03

]
M̃

s2m̃2 = K 2

[
R t

]
M̃ ,

whereK 1 andK 2 are the camera calibration matrices for each camera, andR andt describe a

transformation (rotation and translation) which brings points expressed in the first coordinate

system to the second one. The fundamental matrix can then be expressed as follows:

F = K−T
2 [t]x RK−1

1 , (3.11)

where[t]x is the antisymmetric matrix as described in equation (2.6).

Since det([t]x) = 0, det(F) = 0 and F is of rank 2 [52]. The fundamental matrix is also

only defined up to a scalar factor, and therefore it has seven degrees of freedom (7 independent

parameters among the 9 elements ofF ).

A note on the fundamental matrix: if the intrinsic parameters of the camera are known, such

as in equation (3.11), then the fundamental matrix is called theessential matrix[31].

Another property of the fundamental matrix is derived from equations (3.9) and (3.10):

Fẽ1 = F T ẽ2 = 0. (3.12)

Clearly, the epipolar line of epipolee1 is Fẽ1.



Chapter 4

Fundamental Matrix Estimation

4.1 Introduction

The whole 3D reconstruction process relies heavily on a robust estimation of the fundamental

matrix, which is able to detect outliers in the correspondences. This chapter will explain how

the fundamental matrix is calculated using a robust method incorporating both a linear and

nonlinear method. This chapter is based on descriptions by Zhang [50, 52] and by Luong and

Faugeras [31].

As the fundamental matrix has only seven degrees of freedom, it is possible to estimateF

directly using only 7 point matches. In general more than 7 point matches are available and a

method for solving the fundamental matrix using 8 point matches is given in section 4.2. The

points in both images are usually subject to noise and therefore a minimisation technique is

implemented and described in section 4.3. A robust method is described in section 4.4 which

allows for outliers in the list of matches. This is very useful as the technique will ignore these

false matches in the estimation of the fundamental matrix. A short comparison with another

robust method, called RANSAC, is given in section 4.5.

4.2 Linear Least-Squares Technique

Having matched a corner pointm1i = [u1i , v1i ]
T in the first image with a corner pointm2i =

[u2i , v2i ]
T in the second image, the epipolar equation can be written as follows:

m̃T
2i Fm̃1i = 0. (4.1)

31
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This equation can be rewritten as a linear and homogeneous equation in the 9 unknown coeffi-

cients of matrixF :

uT
i f = 0, (4.2)

where

ui = [u1i u2i , v1i u2i , u2i , u1i v2i , v1i v2i , v2i , u1i , v1i , 1]
T

f = [F11, F12, F13, F21, F22, F23, F31, F32, F33]
T

andFi j is the element ofF at row i and columnj . If n corner point matches are present and

by stacking equation (4.2), the following linear system is obtained:

Un f = 0,

where

Un = [u1, . . . , un]
T .

If 8 or more corner point correspondences are present and ignoring the rank-2 constraint, a

least-squares method can be used to solve

min
F

∑
i

(m̃T
2i Fm̃1i )

2, (4.3)

which can be rewritten as:

min
f

‖Un f ‖
2.

Various methods exists to solve forf . They are called the 8-point algorithms, as 8 or more

points are needed to solve forf . One of the methods sets one of the coefficients ofF to 1 and

then solves equation (4.3) using a linear least-squares technique [52].

A second method imposes a constraint on the norm off (i.e. ‖ f ‖ = 1), and the above linear

system can be solved using Eigen analysis [31, 52, 54]. The solution will then be the unit

eigenvector of matrixUT
n Un associated with the smallest eigenvalue, and can be found via

Singular Value Decomposition[15].

The problem with this computation is that it is very sensitive to noise, even when a large number

of matches are present. A reason for this is that therank-2constraint of the fundamental matrix

(i.e. det(F) = 0) is not satisfied [52, 54].

Hartley [18] challenges the view that the 8-point algorithms are very noisy in calculations and
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shows that by normalising the coordinates of the matched points, better results are obtained.

One of the normalisation techniques he is using is non-isotropic scaling, where the centroid of

the points is translated to the origin. After the translation the points form a cloud about the

origin, which is scaled such that it appears to be symmetric circular with a radius of one (the

two principal moments of the set of points are equal to one). The steps of the translation and

scaling are as follows: for all points̃mi , (i, . . . , N), matrix
∑

i m̃i m̃
T
i is formed. As this matrix

is symmetric and positive definite,Cholesky decomposition[15] will result in:

N∑
i =1

m̃i m̃
T
i = N AAT ,

where matrixA is upper triangular. The above equation can be rewritten:

N∑
i =1

A−1m̃i m̃
T
i A−T

= N I ,

whereI is the identity matrix. Setting̃m′
i = A−1m̃i , the equation for the transformed points

becomes:
N∑

i =1

m̃′
i m̃′T

i = N I .

This shows that the transformed points have their centroid at the origin and the two principal

moments are both equal to one. The above transformation is applied to points in both images,

yielding two transformation matricesA1 and A2.

After estimating the fundamental matrixF ′ corresponding to the normalised point coordinates

using the 8-point algorithm described above, the fundamental matrixF corresponding to the

original unnormalised point coordinates is calculated as follows:

F = AT
2 F ′ A1.

4.3 Minimising the Distances to Epipolar Lines

To satisfy therank-2 constraint of the fundamental matrix,F can be written in terms of 7

parameters [52, 50]. ThereforeF can be parameterised as follows:
a b −ax1 − by1

c d −cx1 − dy1

−ax2 − cy2 −bx2 − dy2 (ax1 + by1)x2 + (cx1 + dy1)y2

 . (4.4)
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The parameters(x1, y1) and(x2, y2) are the coordinates of the two epipolese1 ande2. The

four parameters(a, b, c, d) define the relationship between the orientations of the two pencils

of epipolar lines [50]. The matrix is normalised by dividing the four parameters(a, b, c, d) by

the largest in absolute value.

The fundamental matrix in the previous section is used as an initial guess and to estimate the

two epipoles. The following technique is used by Zhang [50] to calculate the two epipoles. If

M = U DV T

is theSingular Value Decompositionof a matrixM [15], then

D =


d1 0 0

0 d2 0

0 0 d3


is the diagonal matrix satisfyingd1 ≥ d2 ≥ d3 ≥ 0, wheredi is thei th singular value, andU

andV are orthogonal matrices. Then

F = U D̂V T , (4.5)

where

D̂ =


ds1 0 0

0 d2 0

0 0 0


satisfies therank-2constraint of the fundamental matrix. The epipoles are then calculated from

Fẽ1 = 0 and F T ẽ2 = 0, (4.6)

whereẽ1 = [e11, e12, e13]
T and ẽ1 = [e21, e22, e23]

T are equal to the last column ofV andU

respectively. Then

xi = ei 1/ei 3 and yi = ei 2/ei 3 for i = 1, 2.

The four parameters(a, b, c, d) are found directly from the fundamental matrixF . Thus the

seven initial parameters are(x1, y1, x2, y2) and three among(a, b, c, d) and the final estimates

are calculated by minimising the sum of distances between corner points and their epipolar
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lines. The following nonlinear equation is minimised:

min
F

∑
i

d2(m̃2i , Fm̃1i ), (4.7)

where

d(m̃2, Fm̃1) =
|m̃T

2 Fm̃1|√
(Fm̃1)

2
1 + (Fm̃1)

2
2

is the Euclidean distance of pointm2 to its epipolar lineFm̃1, and(Fm̃1)i is thei th variable

of vectorFm̃1.

To make the calculation symmetric, equation (4.7) is extended to

min
F

∑
i

(
d2(m̃2i , Fm̃1i ) + d2(m̃1i , F T m̃2i )

)
,

which can be rewritten by using the fact thatm̃T
2 Fm̃1 = m̃T

1 F T m̃2:

min
F

∑
i

(
1

(Fm̃1i )
2
1 + (Fm̃1i )

2
2

+
1

(F T m̃2i )
2
1 + (F T m̃2i )

2
2

)
(m̃T

2i Fm̃1i )
2. (4.8)

4.4 Least-Median-of-Squares method

The above mentioned methods would introduce inaccuracies into the calculation of the funda-

mental matrix if outliers are present. The method outlined in this section is used in the corner

matching process described in chapter 5 and it has the important ability to detect outliers or

false matches and still give an accurate estimation of the fundamental matrix. This is originally

based on the method outlined in chapter 5 of Rousseeuw and Leroy’s book on regression [41]

and adapted by Zhang et. al. for the fundamental matrix estimation [54, 52].

For n corner point correspondences(m1i , m2i ) as estimated in chapter 5, aMonte Carlotype

technique is used to drawmsubsamples ofp = 8 different corner point correspondences. Then

for each subsamplej the fundamental matrixFj is calculated. The median of squared residuals

(M j ) is determined for eachFj with respect to the whole set of corner point correspondences:

M j = medi =1,...,n
[
d2(m̃2i , Fj m̃1i ) + d2(m̃1i , F T

j m̃2i )
]
.

The estimate ofFj , for which M j is minimal among allm Mj ’s, is kept for the next stage of

the algorithm.
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The number of subsamplesm is determined by the following equation:

P = 1 − [1 − (1 − ε)p
]
m, (4.9)

which calculates the probability that at least one of them subsamples is ‘good’ (a ‘good’

subsample consists ofp good correspondences) and assuming that the whole set of correspon-

dences contains up toε outliers. Zhang et. al. [54] sets the variables as follows: forP = 0.99

and assumingε = 40%,mwill be equal to 272. To compensate for Gaussian noise, Rousseeuw

and Leroy [41] calculate therobust standard deviationestimate

σ̃ = 1.4826[1 + 5/(n − p)]
√

M j ,

whereM j is the minimal median.

Based on therobust standard deviatioñσ , it is possible to assign a weight for each corner

correspondence:

wi =

{
1 if r 2

i ≤ (2.5σ̃ )2

0 otherwise,

where

r 2
i = d2(m̃2i , Fm̃1i ) + d2(m̃1i , F T m̃2i ).

The outliers are therefore all the correspondences with weightwi = 0 and are not taken into

account. The fundamental matrix is then finally calculated by solving the weighted least-squares

problem:

min
∑

i

wi r
2
i . (4.10)

All the nonlinear minimisations have been done using theLevenberg-Marquardtalgorithm

[35, 40], described in appendix C.

Bucket Technique

As mentioned before, aMonte Carlotype technique is implemented. A problem with this is

that the eight points generated for each subsample could lie very close to each other which

makes the estimation of the epipolar geometry very inaccurate. In order to achieve a more

reliable result, the followingregularly random selection method, developed by Zhang et. al.

[54], is implemented.

This method is based on bucketing techniques. The minimum and maximum coordinates of
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the corner points in the first image define a region which is divided intob × b buckets, as seen

in figure 4.1.

Figure 4.1: Illustration of bucketing technique.

Each bucket contains a number of corner points and indirectly a set of matches. Buckets

having no matches are ignored. Then to generate a subsample, 8 mutually different buckets

are randomly selected, and then one match is randomly selected in each bucket.

Due to a different number of matches in each bucket, a match in a bucket having only a few

matches has a high probability of being selected. But it would be better if a bucket having

many matches has the higher probability to be selected than a bucket having only few matches.

This will guarantee that all matches have almost the same probability to be selected and this

is achieved by the following: if a total ofl buckets are available, then[0, 1] is divided intol

intervals such that the width of thei th interval is equal toni /
∑

i ni , whereni is the number

of matches attached to thei th bucket [54]. In the selection process, a number produced by a

[0, 1] random generator and falling inside thei th interval, implies that thei th bucket has been

selected. Figure 4.2 illustrates this process.



38 CHAPTER 4. FUNDAMENTAL MATRIX ESTIMATION

Figure 4.2: Interval and bucket mapping. Figure obtained from [54].

4.5 RANSAC

RANSAC or random sample consensuswas first used for fundamental matrix estimation by

Torr [47]. It is very similar to the LmedS method described above, a difference being that

a threshold needs to be set by the user to determine if a feature pair is consistent with the

fundamental matrix or not. This threshold is automatically calculated in the LMedS method.

Instead of estimating the median of squared residuals, RANSAC calculates the size of the point

matches that are consistent with eachFj .

Zhang [52] mentions in his paper that if the fundamental matrix needs to be established for

many images, then the LMedS method should be run on one pair of the images to find a suitable

threshold, while RANSAC should be then run on all the remaining images, as RANSAC is able

to terminate once a optimal solution is found and as such runs cheaper.



Chapter 5

Corner Matching

5.1 Introduction

Point matching plays an important part in the estimation of the fundamental matrix. Two

different methods of point matching are introduced and combined to form a robust stereo

matching technique. The first method [54] makes use of correlation techniques followed by

relaxation methods. From these final correspondences, although not all perfect matches, the

optimal fundamental matrix is calculated using theLeast-Median-of-Squaresmethod, which

discards outliers or bad matches. The second method [36] sets up a proximity matrix weighted

by the correlation between matches. Performing a singular value decomposition calculation

on that matrix will ‘amplify’ good pairings and ‘attenuate’ bad ones.

Sections 5.2 and 5.3 of this chapter summarise thecorrelationandstrength of match measure

equations presented in the paper by Zhang et. al. [54], and calculate some correspondence

between the corners in the two images. Section 5.4 describes the SVD algorithm by Pilu [36]

and shows how to combine both methods to get a list of initial matches. In section 5.5 the

stereo matching algorithm by Zhang et. al. [54] is outlined, which resolves false matches and

outliers.

Results are given at the end of this chapter. The matching process works well on images

containing different patterns and textures, and features are matched up perfectly under camera

translation, rotation and zooming. However, if the image contains a repetitive pattern, features

are not matched up at all.

It is impossible to obtain corner points from images that contain scenes with a uniform back-

39
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ground. Therefore some markers need to be included in the scene in order to obtain sufficient

corner points.

The corner extraction algorithm is described in appendix A.1.

5.2 Establishing Matches by Correlation

Corner points are represented by the vectormi = [ui , vi ]
T in the images. A correlation window

of size(2n + 1) × (2m + 1) is centred at each corner detected in the first of two images. A

rectangular search area of size(2du + 1) × (2dv + 1) is placed around this point in the second

image and for all the corners falling inside this area a correlation score is defined:

Score(m1, m2) =

n∑
i =−n

m∑
j =−m

[
I1(u1 + i, v1 + j ) − I1(u1, v1)

]
×

[
I2(u2 + i, v2 + j ) − I2(u2, v2)

]
(2n + 1)(2m + 1)

√
σ 2(I1) × σ 2(I2)

,

(5.1)

whereIk(u, v) =
∑n

i =−n

∑m
j =−m Ik(u + i, v + j )/[(2n + 1)(2m + 1)] is the average at point

(u, v) of Ik(k = 1, 2), andσ(Ik) is the standard deviation of the imageIk in the neighbourhood

(2n + 1) × (2m + 1) of (u, v), which is given by

σ(Ik) =

√∑n
i =−n

∑m
j =−m I 2

k (u, v)

(2n + 1)(2m + 1)
− Ik(u, v). (5.2)

The score ranges from -1 for uncorrelated windows to 1 for identical matches.

Matches above a certain threshold are then selected and form candidate matches. Thus each

corner in the first image is associated with a set of candidate matches from the second image

and vice versa. It is possible that there are no candidate matches for certain corners.

In this implementation,n = m = 7 for the correlation window and the threshold was chosen

to be in the range of 0.7 − 0.8. The search window size,du anddv, was set to an eighth of the

image width and height respectively.

5.3 Support of each Match

This section will define a measure of support for each match, which is called the strength of

the match in [54].
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Each candidate match is written as(m1i , m2 j ), wherem1i is a corner in the first image and

m2 j a corner in the second image. ThenN (m1i ) andN (m2 j ) are the neighbours ofm1i and

m2 j within a disc of radiusR. If (m1i , m2 j ) is a good match, there should be many matches

(n1k, n2l ), wheren1k ∈ N (m1i ) andn2l ∈ N (m2 j ), such that the position ofn1k relative to

m1i is similar to that ofn2l relative tom2 j . If the match is not so good, then there should be

only a few matches in the neighbourhood or none at all.

Thestrength of the matchor S is then defined as:

S(m1i , m2 j ) = ci j

∑
n1k∈N (m1i )

[
max

n2l ∈N (m2 j )

cklδ(m1i , m2 j ; n1k, n2l )

1 + dist(m1i , m2 j ; n1k, n2l )

]
, (5.3)

whereci j andckl are the correlation scores of the candidate matches(m1i , m2 j ) and(n1k, n2l )

from the previous section. The average distance between the two pairings is defined as:

dist(m1i , m2 j ; n1k, n2l ) = [d(m1i , n1k) + d(m2 j , n2l )]/2

whered(m, n) = ‖m − n‖ is the Euclidean distance betweenm andn, and

δ(m1i , m2 j ; n1k, n2l ) =

{
e−r/εr if (n1k, n2l ) is a candidate match andr < εr

0 otherwise,

with r the relative distance difference given by

r =
|d(m1i , n1k) − d(m2 j , n2l )|

dist(m1i , m2 j ; n1k, n2l )

andεr a threshold on the relative distance difference.

The following points clarify the above equations:

• The strength of a match counts the number of candidate matches inside the neighbour-

hoods, but only those whose positions relative to the considered match are similar are

counted.

• The similarity of relative positions is based on the relative distancer . Whenr is very

big, the terme−r/εr →0 and the candidate match(n1k, n2l ) is ignored. Whenr →0, then

e−r/εr →1 and the candidate contributes largely to the match(m1i , m2 j ).

• If a corner point in the first image has several candidate matches in the second image,

the one with the smallest distance difference is chosen as the final one using the ‘max’

operator.
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• The contribution of a candidate match to the neighbourhood is weighted by its distance

to the match. The ‘1’ is added to prevent very close corner points from adding too much

weight to the equation. This means that a close candidate match gives more support to

the considered match than a distant one.

A problem pointed out by Zhang et. al. [54] is that the measure of match strength is not

symmetrical. This means simply that the strength of a match is probably not the same if

reversing the images, orS(m1i , m2 j ) 6= S(m2 j , m1i ). This happens when several corner points

n1k ∈ N (m1i ) are candidate matches of a single corner pointn2l ∈ N (m2 j ), as shown in figure

5.1.

Figure 5.1: Non-symmetry problem for match strength. Figure obtained
from [54].

To achieve symmetry, the following was suggested: before summing all the matches, if several

corner pointsn1k ∈ N (m1i ) score the maximal value with the same corner pointn2l ∈ N (m2 j ),

then only the corner point with the largest value is counted. This means that the same pairing

will be counted if the images are reversed.

Another constraint which is added is that the angle of the rotation in the image plane must be

below a certain value2. The idea here is that the angle between vector−−−−→m1i n1k and vector
−−−−→m2 j n2l must be less than2. For a candidate match where this constraint is not achieved, the

value ofδ(m1i , m2 j ; n1k, n2l ) is set to zero.

Zhang et. al. [54] set the following values as follows:R is equal to an eighth of the image

width, εr = 0.3 and2 = 90◦.
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5.4 Initial Matches by Singular Value Decomposition

This section explains how initial matches are found viaSingular Value Decomposition, a method

described by Pilu [36] which is originally based on a paper by Scott and Longuet-Higgens [43].

At the end of this section it is shown how this technique can be combined with the strength

measure of section 5.3.

This algorithm complies with Ullman’sminimal mapping theory[48], which states three criteria

for good global mapping:

1. the principle of similarity

2. the principle of proximity

3. the principle of exclusion.

Theprinciple of similarityis an indication of how closely related the corner matches are. The

principle of proximitystates simply that if various corner matches are similar or equal, take

the match which has the shortest distance between the two corner points. For theprincipal of

exclusion, only a one-to-one mapping is allowed between corners.

The algorithm by Scott and Longuet-Higgins [43] will be extended to satisfy all these con-

straints.

The basic algorithm satisfies only the principle of proximity and exclusion. Having corner

pointsm1i (i = 1 . . . m) in the first image andm2 j ( j = 1 . . . n) in the second image, aproximity

matrix is set up as follows:

Gi j = e−r 2
i j /2σ2

i = 1 . . . m, j = 1 . . . n (5.4)

wherer i j = ‖m1i − m2 j ‖ is the Euclidean distance between the corner points if they are

regarded of lying on the same plane.Gi j decreases from 1 to 0 with distance. The parameterσ

controls the interaction between features: a small value ofσ enforces local interactions while

a large value allows for more global interactions.

The next stage of the algorithm is to performSingular Value Decomposition(SVD) [15] of G:

G = U DV T ,

whereU andV are orthogonal matrices andD is the diagonal matrix containing the singular
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values along the diagonal elementsDi i in descending order.

The diagonal matrixD is then converted to a new matrixE which is obtained by replacing

every diagonal element ofD by a 1. Performing the following operation will then result in a

new proximity matrixP:

P = U EV T .

The matrix P has the same shape asG, but it has the property of pairing up good matches.

Quoting Scott and Longuet-Higgens [43]:

"If Pi j is the greatest element in rowi but not the greatest in columnj , then we

may regardm1i as competing unsuccessfully for partnership withm2 j ; similar

remarks apply ifPi j is the greatest element in its column but not in its row. But if

Pi j is both the greatest element in its row and the greatest element in its column

then we regard those features as being in 1:1 correspondence with one another".

Theprinciple of proximityarises from the nature of theproximity matrixand theprinciple of

exclusionarises due to the orthogonality of matrixP. The squares of the elements in each row

of P can be added up to 1 and this implies that featurem1i cannot be strongly associated with

more than one featurem2 j [43].

To include theprinciple of similarity in the above algorithm, Pilu [36] adds in a measure of

similarity, which is identical to the correlation score calculated in section 5.2. This is done in

the following way:

Gi j =
[
(ci j + 1)/2

]
e−r 2

i j /2σ2
(5.5)

whereci j is the correlation score defined in section 5.2. MatrixG is now called acorrelation-

weighted proximity matrixand still ranges from 0 to 1. The better the correlation between two

features, the higher the value ofGi j .

A great advantage of this algorithm is that it performs well when only a few features are

available. Other algorithms, like the one described in Zhang et. al. [54], need many uniformly

distributed features to be able to work properly. A disadvantage is the computational complexity

and cost of the SVD for very large matrices. The implementation here makes use of only a

maximum of 500 corners per image, which limits the proximity matrix to about 500× 500

values.

At the end of his paper, Pilu [36] also suggests incorporating the strength of the match, as

calculated in section 5.3, in the above algorithm. This could be achieved in various ways,
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either in place of the correlation score or in conjunction with equation (5.5).

Here we use the latter idea, and the following is an outline of how equation (5.5) is combined

with the strength measure to select ‘good’ initial matches. Basically three criteria have to be

met. If

1. Pi j is the greatest element in both row and column,

2. ci j is greater than some correlation threshold (≈ 0.7),

3. and the considered match(i, j ) has the greatest strength,

then this match will be included in the list of initial matches.

In effect, the above procedure replaces the relaxation process of Zhang et. al. [54], which

consists of minimising an energy function summing up the strengths of all candidate matches.

5.5 Resolving False Matches

The method described in this section makes use of the epipolar geometry which exists between

the two images in helping to resolve false matches. The fundamental matrix is calculated

on the initial matched points estimated in section 5.4. The method used to calculate the

fundamental matrix is theLeast-Median-of-Squares(LMedS) method described in section 4.4,

which discards false matches or outliers.

The initial matching algorithm described in sections 5.2 to 5.4 is then rerun on all corner points

in both images, but the search window of section 5.2 is replaced by the epipolar constraint in

the following way: the epipolar line for each corner point in the first image is calculated. If

p̃i = [ ui vi 1 ]

is a corner point in the first image in homogeneous coordinates, then its epipolar line is defined

by

l i = F p̃i ,

whereF is the fundamental matrix. Then the matched corner in the second image should, if it

is a perfect match, lie on the epipolar line in the second image. A threshold determines whether

possible points should be accepted or discarded. This threshold is in the form of a narrow band
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of width 2ε pixels centred on the epipolar line [54]. If a corner point falls within this band, it

is accepted.

The value ofε is chosen to be 3.8d for a probability of 95%, whered is the root of mean

squares of distances between the corner points and their epipolar lines defined by the recovered

fundamental matrix [54]:

d =

√∑
i

wi r 2
i /
∑

i

wi .

For a better understanding of the variables in the above equation, refer to section 4.4.

The fundamental matrix can now be refined after the second matching process, and matches

which are still not close enough to the epipolar line are discarded.

5.6 Results

The matching algorithm can be summarised as follows: corner points established in each image

independently are matched up using a correlation technique to find initial matches. Making

use of the robust Least-Median-of-Squares method described in section 4.4, which takes the

epipolar geometry between the two images into account, it is possible to determine false matches

in the initial group of matched corners. The algorithm is then rerun, but this time the epipolar

geometry is used to select the final matched corners.

Good results have been achieved by the above algorithm. It only fails if the images contain a

repetitive pattern, as seen in figure 5.2, where all matches are incorrect.

Figure 5.2: Repetitive Pattern (INRIA-Robotvis project).
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Due to the fact that all corners of the checkered pattern have nearly the same correlation, it

is nearly impossible to match up the corners perfectly. The corner points in each image are

represented by a specific pattern and colour. In this way matched points are easily identified.

Better results can be achieved with a repetitive pattern if it is placed in a scene containing

different structures and patterns.

For a scene with a uniform background, some markers need to be put up in order to find

corresponding corners. This is seen in figure 5.3(a). Here all corners have been perfectly

matched. Figure 5.3(b) shows the camera translation (arrows point to the right) between the

two images. The matching algorithm also has a 100% success rate for the same scene under

camera rotation (arrows point in clockwise direction) and zooming (arrows point inwards), as

seen in figure 5.4 and 5.5.
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(a)

(b)

Figure 5.3: Uniform background scene with markers (Camera Translation).
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(a)

(b)

Figure 5.4: Uniform background scene with markers (Camera Rotation).
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(a)

(b)

Figure 5.5: Uniform background scene with markers (Camera Zooming).



Chapter 6

Camera Calibration

6.1 Introduction

This chapter covers various camera calibration techniques.

Calibration is a fundamental property of 3D reconstruction. Usually the internal parameters

of each camera are very accurately known beforehand and the whole environment is highly

controlled, or a calibration object in the scene is used to calibrate the camera. But in many

situations the source of the images is not known, which means that the camera’s internal

parameters are also not known, or it is desirable to change a camera midway through an image

application. This means that the internal parameters of the camera can only be extracted from

the images themselves.

Section 6.2 gives a background to calibration, explaining original calibration methods. Section

6.3 describes camera selfcalibration and the theory behindKruppa’s equations. In section 6.4

selfcalibration is explained in terms of scene and auto-calibration constraints from only a single

image.

A planar object is used in section 6.5 to estimate the camera calibration matrix. The planar

pattern consists of a grid pattern, which is imaged from different points of view. From each

view, corner points are extracted in order to calculate the correspondence between the image

plane and the planar object. The correspondence is in the form of a homography matrix. Then

for each view, a homography is established and allows for camera calibration.

51
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6.2 Classical Calibration Methods

6.2.1 Introduction

The classical calibration method makes use of a calibration pattern of known size inside the

view of the camera. Sometimes this will be a flat plate with a regular pattern marked on it [32]

(see figure 6.1(a)) or a scene containing some control points with known coordinates [29]. A

disadvantage of these methods is that it is impossible to calibrate a camera while it is involved

in some imaging task. If any change in the camera’s settings occur, a correction is not possible

without interrupting the task. The change of the camera’s settings may be a change in the focal

length, or small mechanical or thermal changes affecting the camera as a whole.

(a) Calibration Pattern. (b) Coordinate System of Pattern.

Figure 6.1: Common Calibration Pattern.

As seen in figure 6.1, two flat planes are assembled with an angle of 90◦ between them. These

two planes define a coordinate system as seen in figure 6.1(b). The coordinates of the corners

of the white squares on the planes are known in terms of this coordinate system. It is then

relatively easy to extract those corners in the image, and the correspondence between the 3D

points and the 2D image points gives a projective map fromP3
→ P2, which is the perspective

projection matrixP mentioned in equation (3.1). Having calculated this projection matrix, it

can be decomposed into the form of equation (3.8) by means ofQR decomposition[1].
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6.2.2 Estimating the Perspective Projection Matrix

By minimising the image error, the perspective projection matrix is estimated forn 3D points

M i corresponding to image pointsmi . This image error is the distance between the actual

image point and the projection of the world point onto the image plane usingP [1].

Making use of equation (3.1), with̃m = [u, v, 1]
T andM̃ = [X, Y, Z, 1]

T , three equations can

be obtained, but dividing by the third one gives two equations in the 12 unknown parameters

of P:

u =
P11X + P12Y + P13Z + P14

P31X + P32Y + P33Z + P34

v =
P21X + P22Y + P23Z + P24

P31X + P32Y + P33Z + P34
.

(6.1)

The function which needs to be minimised is defined as the squared geometric distance between

the actual image points and the projected image points:

Eg =
1

n

n∑
i =1

[(
ui −

P11X + P12Y + P13Z + P14

P31X + P32Y + P33Z + P34

)2

+

(
vi −

P21X + P22Y + P23Z + P24

P31X + P32Y + P33Z + P34

)2
]

.

(6.2)

The above error function is non-linear and can be minimised using the Levenberg-Marquardt

minimisation algorithm described in appendix C. Between iterations, the matrixP is usually

scaled (‖P‖ = 1) or one parameter ofP can be fixed (P34 = 1).

To find an initial estimate, the equations of (6.1) are rearranged, so that instead of minimising

the geometric distanceEg, an algebraic distanceEa is minimised [1]:

Ea =
1

n

n∑
i =1

[
(ui (P31X + P32Y + P33Z + P34) − (P11X + P12Y + P13Z + P14))

2
+

(vi (P31X + P32Y + P33Z + P34) − (P21X + P22Y + P23Z + P24))
2] . (6.3)

This error function is linear in the unknown parameters ofP and can be rearranged into the

following form:

min
p

‖Zp‖
2, (6.4)

subject to‖ p‖
2

= 1. The vectorp is a column vector of the elements of the perspective
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projection matrixP, and the matrixZ is defined as:

Z =



M̃
T
1 0T

−u1M̃
T
1

0T M̃
T
1 −v1M̃

T
1

M̃
T
2 0T

−u2M̃
T
2

...
...

...

0T M̃
T
n −vnM̃

T
n


.

The solution of equation (6.4) is then the eigenvector ofZ corresponding to the smallest

eigenvalue, and can be found viaSingular Value Decomposition[15].

6.2.3 Extracting the Camera Calibration Matrix

Once the perspective projection matrixP has been estimated, it can be decomposed into the

form of equation (3.8). The following 3× 3 submatrix ofP can be expressed as follows:
P11 P12 P13

P21 P22 P23

P31 P32 P33

 = K R,

where matrixK is the camera calibration matrix which is upper triangular andR is orthogonal.

Armstrong [1] usesQR decomposition[15] to find K andR.

6.2.4 Other Methods

Photogrammetrist make use of other methods to calibrate their cameras. A calibration grid with

markers is also used as before, as seen in figure 6.2. The 3D coordinates of the markers are

known, and methods such asDirect Linear TransformationandBundle Adjustmentare used

to accurately estimate the internal parameters of the camera. Usually more than one image

of the same calibration object with different orientations is used. Commercial software such

as theAustralisprogram from the University of Melbourne performs these calculations and

produces highly accurate results. This program is used to find the real calibration matrix of the

camera for a particular setting and the results are compared to the calibration method outlined

in section 6.5.
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Figure 6.2: Six images of a calibration object from the department of geomatics
at UCT.

6.3 Selfcalibration using Kruppa’s Equations

6.3.1 Introduction

In the case of selfcalibration, the known object in the scene is replaced by an abstract object, the

absolute conicmentioned in chapter 2. The absolute conic is a particular conic in the plane of

infinity, which is invariant to transformations of 3D space (see figure 6.3). This means that the

image of the absolute conicω∞ is independent of the position and orientation of the camera.

In figure 6.3, if the camera moves from positionC1 to positionC2 and provided the internal

parameters of the camera stay constant, the image of the absolute conic will be the same in

both image planes.

The image of the absolute conic is related to the camera calibration matrix in the following

way:

ω∞ = K−T K−1. (6.5)

The calibration matrix can then be extracted fromω∞ by Cholesky decomposition[15]. Thus
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knowingω∞ is equivalent of knowingK . Note thatω∞ is a symmetric matrix. The following

section will go into more detail on how to solve forω∞.

Figure 6.3: The Image of the Absolute Conic.

6.3.2 Kruppa’s Equations

Kruppa’s equations link the epipolar transformation or the fundamental matrix to the image

of the absolute conicω∞. Three epipolar transformations arising from three different camera

motions are enough to determineω∞ [10]. A description of Kruppa’s equations is given in the

next section based on a paper by Lourakis and Deriche [30], and some new developments in

the estimation of the parameters in Kruppa’s equations are outlined.

Description of Kruppa’s Equations

Each pointp belonging to the image of the absolute conicω∞ in the second image satisfies

p̃T
ω∞ p̃ = 0. Figure 6.3 also shows two planes,π1 andπ2, which are tangent to the absolute

conic� and pass through the two camera centres. This plane intersects the image planes at

two pairs of epipolar lines, which are tangent to the image of the absolute conicω∞. Tangent

lines to conics are better expressed in terms of dual conics [33, 30]. The dual conic defines

the locus of lines to the original conic and is given by the inverse of the original conic matrix.
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Thus the dual of the image of the absolute conicω∗

∞
is defined as:

ω∗

∞
= K K T , (6.6)

and thereforel Tω∗

∞
l = 0, where linel is tangent toω∞. Then it can be shown that a pointq

on any of the tangents toω∞ in the second image will satisfy

(e2 × q̃)Tω∗

∞
(e2 × q̃) = 0

The termF T q̃ is the epipolar line corresponding toq in the first image and is also tangent to

ω∞. Because of the invariance ofω∞ under any transformations, the following equation is

obtained:

(F T q̃)Tω∗

∞
(F T q̃) = 0.

Combining the above two equations will yield:

Fω∗

∞
F T

= β([e2]x)
Tω∗

∞
[e2]x = β[e2]xω

∗

∞
([e2]x)

T , (6.7)

whereβ is an arbitrary, nonzero scale factor and[e2]x is the antisymmetric matrix of vectore2

as described in equation (2.6).

To explain equation (6.7) in words: "the Kruppa equations express the constraint that epipolar

lines in the second image that correspond to epipolar lines of the first image that are tangent

to ω∞, are also tangent toω∞ and vice versa" [30].

As Fω∗

∞
F T is a symmetric matrix, equation (6.7) corresponds to the following equations

obtained by eliminatingβ:

Fω∗

∞
F T

11

([e2]xω∗
∞

([e2]x)T )11
=

Fω∗

∞
F T

12

([e2]xω∗
∞

([e2]x)T )12
=

Fω∗

∞
F T

13

([e2]xω∗
∞

([e2]x)T )13
=

=
Fω∗

∞
F T

22

([e2]xω∗
∞

([e2]x)T )22
=

Fω∗

∞
F T

23

([e2]xω∗
∞

([e2]x)T )23
=

Fω∗

∞
F T

33

([e2]xω∗
∞

([e2]x)T )33

(6.8)

There are only two independent equations among the six equations of (6.8) [30]. These equa-

tions are second order polynomials in the elements ofω∗

∞
.
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The Simplified Kruppa’s Equations

In recent years a simplified approach to solving Kruppa’s equations has been developed, which

makes use of theSingular Value Decompositionof the fundamental matrixF and is described

in detail by Lourakis and Deriche [30] and based on the paper by Hartley [19]. With this method

the equations of (6.8) are reduced to three and are independent of the epipolee2. But the actual

solving process is still very complex, as individual steps in the calculation involve expanding

matrices through differentiation and having to estimate the variance of the vector containing

the parameters of theSingular Value Decompositionof the fundamental matrix. Lourakis and

Deriche [30] mention that they are still working on a technique which would simplify this

whole process, especially the calculation of the variance mentioned above.

6.4 Selfcalibration in Single Views

6.4.1 Introduction

This section describes a way of combining image, scene and auto-calibration constraints for

calibration of single views. The method is not limited to single views, but for the purpose of

explaining the theory, a single view is sufficient. The advantage of this method over Kruppa’s

equations is that the equations obtained here are linear and therefore the solution is very easily

calculated. The disadvantage is that some sort of calibration pattern is needed and calibration

needs to be done independently of the 3D reconstruction.

The method is especially suited for building architectural models [29], as buildings contain

mostly planes and lines in orthogonal directions which are important to this calibration method.

Any room contains three planes orthogonal to each other, i.e. two walls and the floor, and thus

this method is perfect for calibrating cameras in a room.

Two methods of calibration of a single view are outlined, both based on descriptions by

Liebowitz et. al. [27, 28, 29].

6.4.2 Some Background

As mentioned in section 2.4.1, there are two points which lie on the line at infinity. These

points are called circular points, which are a complex conjugate point pair (x = [1, ±i, 0]
T in

a metric coordinate frame) and are also invariant to similarity transformations (rotations and
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translations) of space. They arise from the following: a plane in space intersects the plane at

infinity π∞ in the line at infinityl ∞ which intersects the absolute conic in two points, which

are the circular points. A vanishing line of a space plane intersects the image of the absolute

conicω∞ in two points, which are the imaged circular points.

Knowing that a world plane is mapped to the image plane by a projective transformation or

homography (H ) [28], the imaged circular points are defined as

I = H −1
[1, i, 0]

T
= [α − iβ, 1, −l2 − αl1 + i l 1β]

T (6.9)

and J = conj( I ). Additionally,

H = SAP,

with

S =

[
sR t

0T
3 1

]
,

whereR is the rotation matrix,t the translation vector ands a scale factor. The matrix

P =


1 0 0

0 1 0

l1 l2 l3

 , (6.10)

wherel ∞ = [l1, l2, l3]T is the vanishing line of the plane. Usuallyl ∞ is normalised, such that

l3 = 1. Finally,

A =


1
β

−
α
β

0

0 1 0

0 0 1

 , (6.11)

whereβ andα define the image of the circular points [27, 28]. MatrixS represents a similarity

transformation,A an affine transformation andP a projective transformation. The homography

matrix H is stratified into the 3 geometries. This is similar to the description of the stratification

of 3D space in chapter 2, but in this section only the 2D space is stratified.

6.4.3 Calibration Method 1

The first method presented here requires three planes in the image to be orthogonal to each

other. In a room, this could be two walls and the ground plane, as seen in figure 6.4. To be able

to extract many features from these planes, a calibration pattern is placed on each plane, such

that they are also orthogonal to each other.
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Figure 6.4: Image illustrating three orthogonal planes.

It is then necessary to extract all parallel lines in three orthogonal directions from the image.

This is done with the help of the line algorithm of Burns et. al., as described in Appendix A.2.

The lines extracted using this algorithm are seen in figure 6.5(a).

(a) Parallel Lines in three orthogonal di-
rections.

(b) Triangle with vanishing points as ver-
tices and showing the principal point in
yellow (orthocentre of image).

Figure 6.5: Three Orthogonal Vanishing Points.

For all the parallel lines in each orthogonal direction, the vanishing point is calculated, i.e. the

intersection of all parallel lines in the same direction is found. Appendix B outlines a accurate

method of calculating vanishing points from a set of parallel lines.

The following assumption is then made: if the camera has a unit aspect ratio and zero skew,
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the principal point of the camera will be at the orthocentre of the triangle formed by the three

vanishing points [27, 29, 5]. This can be seen in figure 6.5(b).

The principal point is calculated by combining a set of constraints: writing the image of the

absolute conic as follows:

ω∞ =


ω1 ω2 ω4

ω2 ω3 ω5

ω4 ω5 ω6

 (6.12)

and the three vanishing points asu = [u1, u2, u3]
T , v = [v1, v2, v3]

T andw = [w1, w2, w3]
T ,

then the following three constraints arise:

uTω∞v = 0

uTω∞w = 0

vTω∞w = 0.

(6.13)

This means that a pair of vanishing points arising from orthogonal directions are conjugate

with respect toω∞ [27]. (See also section 2.2.2 on poles and polars.)

Expanding the first equation to

u1v1ω1+(u1v2+u2v1)ω2+u2v2ω3+(u1v3+u3v1)ω4+(u2v3+u3v2)ω5+u3v3ω6 = 0 (6.14)

and then writing the elements ofω∞ as a vector

ωv = (ω1, ω2, ω3, ω4, ω5, ω6)
T

and the coefficients of the elements ofωv as

κT
uv = (u1v1, u1v2 + u2v1, u2v2, u1v3 + u3v1, u2v3 + u3v2, u3v3)

T ,

the linear constraint is written as:

κT
uvωv = 0. (6.15)

Thus for each pair of orthogonal vanishing points, an additional constraint is obtained. Assum-

ing a unit aspect ratio and zero skew for the camera,ω2 = 0 andω1−ω3 = 0 are two additional

constraints. These two constraints can be found by expandingω∞ in terms of the parameters

of the calibration matrixK . This means for three vanishing points and the two assumptions

from above, five constraints are obtained. This will determineω∞ and thenK .
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A coefficient matrixA is set up from equation (6.15) and the two constraints obtained from the

above mentioned assumptions:

AT
=



u1v1 u1w1 v1w1 0 1

u1v2 + u2v1 u1w2 + u2w1 v1w2 + v2w1 1 0

u2v2 u2w2 v2w2 0 −1

u1v3 + u3v1 u1w3 + u3w1 v1w3 + v3w1 0 0

u2v3 + u3v2 u2w3 + u3w2 v2w3 + v3w2 0 0

u3v3 u3w3 v3w3 0 0


Thenωv is calculated as a null vector from

Aωv = 0. (6.16)

Having the coefficients ofωv, it is easy to calculateK from ω∞ via Cholesky decomposition

[15].

As seen in figure 6.5(b), the calculation of the principal point of the camera is not very accurate,

as it is not very close to the centre of the image. There could be two reasons for this: the parallel

lines may not have been very accurately estimated, or the calibration patterns in the scene may

not have been aligned in a perfectly orthogonal way. As explained and shown in Appendix A.2,

the line algorithm by Burns et. al. should be accurate enough. That leaves the latter reason.

The next section will outline a method which still makes use of three planes, but which do not

have to be orthogonal to each other.

The two constraints arising from the two assumptions of unit aspect ratio and zero skew could

have been replaced with two constraints arising from a rectified plane, which is explained in the

next section. However, for reasons already pointed out above, this will not make the method

any more accurate.

6.4.4 Calibration Method 2

Figure 6.6 shows the same calibration pattern used in the previous section, but this time they

are not aligned orthogonally to each other.

In order to obtain five or more constraints from this image, each plane has to be affine rectified.

This is done in the following way: for each plane in the image, two vanishing points are

calculated and these form the vanishing linel ∞. Normalisingl ∞ and using matrixP of equation



6.4. SELFCALIBRATION IN SINGLE VIEWS 63

Figure 6.6: Image illustrating three planes in the scene.

(6.10), it is possible to affine rectify each plane in the image, as seen in figure 6.7 for one plane.

This makes it possible to calculate, for example, length ratios on parallel line segments in the

image. Interpolation methods can be employed to fill in the gaps in the rectification process.

Figure 6.7: Back wall (plane) affine rectified.

The task now is to calculate from the affine rectified image theα andβ values, which define

the two circular points. Three methods are outlined which provide constraints to calculateα

andβ [28]. These constraints are obtained as a circle:

Known Angle: If angleθ in the scene between two lines imaged asl a andl b (lines are homo-
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geneous vectors) is known, thenα andβ lie on the circle with centre and radius:

(cα, cβ) =

(
(a + b)

2
,
(a − b)

2
cotθ

)
r =

∣∣∣∣(a − b)

2 sinθ

∣∣∣∣
wherea = −la2/ la1 andb = −lb2/ lb1 are the line directions. Ifθ = π/2, then the circle

lies on theα axis.

Equal (unknown) Angles: Knowing that an angle in the scene between two imaged lines with

directionsa1 andb1 is the same as that between two lines imaged with directionsa2 and

b2, thenα andβ lie on the circle with centre and radius:

(cα, cβ) =

(
(a1b2 − b1a2)

a1 − b1 − a2 + b2
, 0

)
r 2

=

(
a1b2 − b1a2

a1 − b1 − a2 + b2

)2

+
(a1 − b1)(a1b1 − a2b2)

a1 − b1 − a2 + b2
− a1b1.

Known Length Ratio: Knowing the length ratios of two non-parallel line segments in the

scene, then figure 6.8 shows the imaged line segments with known endpoints. Writing

Figure 6.8: Line Ratio Constraint [28].

1xn for xn1 − xn2 and1yn for yn1 − yn2, thenα andβ lie on the circle with centre and

radius:

(cα, cβ) =

(
1x11y1 − s21x21y2

1y 2
1 − s21y 2

2

, 0

)
r =

∣∣∣∣s(1x21y1 − 1x11y2)

1y 2
1 − s21y 2

2

∣∣∣∣ .
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Two independent constraints are required to solve forα andβ, as seen in figure 6.9. If all

constraint circles have centres on the same axis, then only intersections in the upper half plane

need to be considered.

Figure 6.9: Constraint Circles.

In figure 6.6, the ratio of lines and also the angle of each corner of the A4 paper on each plane

are known. These can be taken into account in the above equations.

Then it is possible to calculate the circular points as in equation (6.9). BecauseI andJ contain

the same information, one takes the real and imaginary parts of either of them to obtain two

constraints onω∞: For I ,

I Tω∞ I = 0,

and the real and imaginary parts are:

(β2
− α2)ω1 − 2αω2 − ω3 + 2(l1(α

2
− β2) + αl2)ω4 + 2(αl1 + l2)ω5 + (l 2

1β
2
− (αl1 + l2)

2)ω6 = 0

2αβω1 + 2βω2 − 2(βl2 + 2αβl1)ω4 − 2βl1ω5 + 2(αβl 2
1 + βl1l2)ω6 = 0

It can be seen then that each rectified plane provides two constraints onω∞. These constraints

can be combined as in section 6.4.3.

6.4.5 Conclusion

The two calibration methods described are well suited to images where the origin is not known.

But for normal applications these methods are quite complex. Rectifying each plane in the

image poses some problems, as it can happen that a vanishing line lies between the origin and
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the plane to be rectified, and this will warp points closest to the vanishing line to infinity. To

compensate for this, the image needs to be translated before rectification.

The rectification process also sometimes creates very large images, which are difficult to work

with.

The whole calibration process is also difficult to automate, as the user generally has to select the

correct parallel lines or select some features on each plane to obtain the necessary constraints.

6.5 Calibration using a Planar Pattern

6.5.1 Introduction

This section describes an implementation of the camera calibration toolbox similar to that

developed by Bouguet1. He bases his calibration technique on papers by Zhang [51, 53] and

the internal camera model on a paper by Heikkilä and Silvén [22]. In the implementation

presented, however, the internal camera model is entirely based on Zhang’s technique [51, 53],

which is identical to the camera calibration matrix of equation (3.4).

6.5.2 Homography between the Planar Object and its Image

Figure 6.10 shows a square planar calibration pattern consisting of 7× 7 blocks of known

length of 25mm.

To establish the homography between the planar object and its image, it can be assumed that

the planar object lies atZ = 0 in the world coordinate system. Making use of equations (3.1)

and (3.8), and representing thei th column vector of the rotation matrixR by r i , the following

1The Camera Calibration Toolbox forMatlabr by Jean-Yves Bouguet can be downloaded from his homepage
at Caltech: http : //www.vision.caltech.edu/bouguet j/calib_doc/ index.html (accessed November 2000).
The C implementation of this toolbox is included in the freeOpen Source Computer Vision Library(©2000 Intel
Corporation) at http://www.intel.com/research/mrl/research/cvlib/ (accessed November 2000).
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Figure 6.10: Planar Calibration Patterns.

equation is obtained:

s


u

v

1

 = K
[

r 1 r 2 r 3 t
]


X

Y

0

1



= K
[

r 1 r 2 t
]

X

Y

1

 .

In this case, becauseZ = 0, the homogenous coordinates of pointM are written asM̃ =

[X, Y, 1]
T . Then a planar object pointM is related to its image pointm by a 3×3 homography

matrix H :

sm̃ = H M̃ , (6.17)

with H = K
[

r 1 r 2 t
]
.

The homography for each image in figure 6.10 is estimated by selecting the 4 corners of the

imaged planar object and refining these 4 corners to subpixel accuracy using the method outlined

in appendix A.1.3. The world coordinate pointsM 1...4 are defined as in figure 6.11.

Zhang [51, 53] uses a maximum likelihood criterion to estimate the homography. As the
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Figure 6.11: World Coordinate Points of Planar Pattern.

image pointsmi are corrupted by noise, a maximum likelihood criterion ofH is obtained by

minimising the following:

min
H

∑
i

‖mi − m̂i ‖
2,

where

m̂i =
1

hT
3 M i

[
hT

1 M i

hT
2 M i

]

with hi the i th row of H . This nonlinear minimisation can be solved using the Levenberg-

Marquardt algorithm described in appendix C.

With x = [hT
1 , hT

2 , hT
3 ]

T , equation (6.17) can be rewritten as follows:[
M̃

T
0T

−uM̃
T

0T M̃
T

−vM̃
T

]
x = 0. (6.18)

For n points,n above equations are obtained and can be written as a matrixLx = 0, whereL

is a 2n × 9 matrix. The solution is then defined as the eigenvector ofL T L associated with the

smallest eigenvalue. It should be noted that better results can be achieved by normalising the

image points as described in section 4.2.

Once the homography for the 4 corners of each planar pattern has been estimated, it is possible

to extract all the remaining corners on the grid, as the number of blocks for each side and the
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length of each block is known. It is then possible to refine the homography considering all the

corners of the grid.

6.5.3 Calculating the Camera Calibration Matrix

For each image, a homography can be estimated as described in the previous section. Writing

H = [ h1 h2 h3 ], equation (6.17) is rewritten as:

[
h1 h2 h3

]
= λK

[
r 1 r 2 t

]
,

whereλ is a scalar. Because vectorsr 1 and r 2 are orthonormal (a fundamental property of

rotation matrices), the following two equations are obtained and give two constraints on the

internal parameters of the camera:

hT
1 K−T K−1h2 = 0 (6.19)

hT
1 K−T K−1h1 = hT

2 K−T K−1h2. (6.20)

It can be seen that the termK−T K−1 represents the image of the absolute conicω∞, as described

in section 6.3.

Expanding equation (6.5) of the absolute conicω∞, a symmetric matrix is obtained:

ω∞ = K−T K−1
≡


ω1 ω2 ω4

ω2 ω3 ω5

ω4 ω5 ω6



=


1
f 2
u

−
s

f 2
u fv

v0s−u0 fv
f 2
u fv

−
s

f 2
u fv

s2

f 2
u f 2

v
+

1
f 2
v

−
s(v0s−u0 fv)

f 2
u f 2

v
−

v0
f 2
v

v0s−u0 fv
f 2
u fv

−
s(v0s−u0 fv)

f 2
u f 2

v
−

v0
f 2
v

(v0s−u0 fv)2

f 2
u f 2

v
+

v2
0

f 2
v

+ 1

 .

(6.21)

Defining ωv = (ω1, ω2, ω3, ω4, ω5, ω6)
T and denoting thei th column vector ofH by hi =

[hi 1, hi 2, hi 3]
T , the following equation is derived:

hT
i ω∞h j = vT

i j ωv, (6.22)

where

vi j = [hi 1h j 1, hi 1h j 2 + hi 2h j 1, hi 2h j 2, hi 3h j 1 + hi 1h j 3, hi 3h j 2 + hi 2h j 3, hi 3h j 3]
T .
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It is then possible to rewrite the two constraint equations (6.19) and (6.20) as 2 homogeneous

equations inωv: [
vT

12

(v11 − v22)
T

]
ωv = 0. (6.23)

Forn images orn homographies, the above vector equation is stackedn times and the following

is obtained:

Vωv = 0, (6.24)

whereV is a 2n × 6 matrix. The general solution is then defined as the eigenvector ofV T V

associated with the smallest eigenvalue. If only 2 images are present, it is possible to assume that

the skews is equal to zero, which is added as an additional constraint ([0, 1, 0, 0, 0, 0]ωv = 0)

to equation (6.24). If only 1 image is present, then it can be assumed that the principal point

(u0, v0) is equal to the image centre ands = 0.

Matrix ω∞ is defined up to a scalar (ω∞ = λK−T K−1), and it is then possible to extract the

internal parameters of the camera, once vectorωv is known:

v0 = (ω2ω4 − ω1ω5)/(ω1ω3 − ω2
2)

λ = ω6 − [ω2
4 + v0(ω2ω4 − ω1ω5)]/ω1

fu =
√

λ/ω1

fv =

√
λω1/(ω1ω3 − ω2

2)

s = −ω2 f 2
u fv/λ

u0 = sv0/λ − ω4 f 2
u /λ.

The external parameters for each image can also be calculated from equation (6.17), once the

camera calibration matrixK is estimated:

r 1 = λK−1h1

r 2 = λK−1h2

r 3 = r 1 × r 2

t = λK−1h3,

where the scalarλ = 1/‖K−1h1‖ = 1/‖K−1h2‖.
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Optimisation

The above obtained solutions are used as an initial guess to a nonlinear optimisation routine,

which is defined as follows:

n∑
i =1

m∑
j =1

‖mi j − m̂(K , Ri , t i , M j )‖
2. (6.25)

Here pointm̂(K , Ri , t i , M j ) is the projection of pointM j in imagei . The above minimisation

problem can be solved by theLevenberg-Marquardtalgorithm [35, 40], described in appendix

C.

6.5.4 Results

The images of the planar object shown in figure 6.10 were taken by aWatecr Camera, Model:

WAT-202B(PAL) and grabbed by aAsusr AGP-V3800 Ultra framegrabber. The image size

is 704× 576 pixels and the pixel size ispu = 0.00734mmand pv = 0.006467mm. Table 6.1

compares the results obtained by the method outlined above to the real internal parameters of

the camera (estimated as in section 6.2.4) and to the results obtained from Bouguet’s calibration

toolbox.

Real Parameters Bouguet’s Calibration Toolbox Zhang’s Method
u0 362.4945504 316.96784 361.376773
v0 288.907144 230.10757 268.982949
fu 954.6457766 1014.81586 1030.742112
fv 1083.516314 1110.65364 1125.157407
s 0 0 0

Table 6.1: Comparison of the real and estimated internal parameters of the
camera.

As can be seen, the method outlined in this section does not produce very accurate results, nor

does the original method by Bouguet. A reason for this could be that radial distortion was

not taken into account. Zhang [51, 53] also implements an algorithm which deals with radial

distortion in the images, which should have resulted in better estimates.

The calibration patterns used in section 6.2 usually consist of two planes at different depths.

The lack of different depths in the above method could also result in inaccurate values.
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Chapter 7

Stratified 3D Reconstruction

7.1 Introduction

This chapter outlines the steps involved in obtaining a 3D model of an object in a stereo image

pair. As mentioned in chapter 2, it is possible to divide 3D vision into geometry groups. This

so-called stratification is used in this chapter to calculate the geometric relationships between

structures in the image pair.

As explained later in this chapter, the reconstruction algorithm relies heavily on the parallel

lines estimated from objects in the images. In fact, it is necessary to obtain parallel lines on 3

different planes pointing in 3 different directions. As such, the model to be reconstructed has

to consist of at least 3 planes with different orientations in space, with each plane providing

attributes such as parallel markers or structures. This of course puts a great constraint on the

models which can be reconstructed. Essentially, simple geometric models such as a cube or

the corner of a room provide the necessary constraints. In order to reconstruct any arbitrary

object, it needs to be placed inside a scene providing the above mentioned constraints.

Section 7.2 explains the 3 steps of the reconstruction algorithm. Once a full 3D reconstruction

has been obtained, section 7.3 shows howdense stereo matchingis used to obtain a 3D textured

model.

73
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7.2 3D Reconstruction

This section follows the structure of chapter 2 very closely. Three steps are needed to obtain a

full metric reconstruction, the first step being a projective reconstruction followed by an affine

and metric one.

7.2.1 Projective Reconstruction

For this step, the fundamental matrixF needs to be estimated from corner point matches, as

already outlined in section 4. The fundamental matrix then provides the means to compute the

two projective camera matrices for both the images.

Let the first camera coincide with the origin of the world coordinate system. The projective

camera matrix for the first camera is then defined as follows:

P1 =

[
I 3×3 03

]
. (7.1)

The second projective camera matrix is chosen such that the epipolar geometry corresponds to

the retrieved fundamental matrix [37, 52]. Usually it is defined as follows:

P2 =

[
M σ e2

]
, (7.2)

wheree2 is the epipole in the second image andM is a factor of the fundamental matrix:

F = [e2]x M , where[e2]x is the antisymmetric matrix of epipolee2 as described in equation

(2.6). This epipole can be extracted from the fundamental matrix as explained in section 4.3.

Variableσ represents the global scale of the reconstruction, and as that scale is not known, it

is arbitrarily chosen and set to 1. MatrixM is defined as follows:

M = −
1

‖e2‖
2
[e2]x F .

The matrixM is not necessarily unique, because ifM is a solution, thenM + e2v
T is also a

solution for any vectorv [52].

Some reconstructions may appear distorted, and Pollefeys [37] points out that this happens

when the plane at infinity crosses the scene. He suggests estimating vectorv in such a way

that the plane at infinity does not cross the scene. Pollefeys makes use of oriented projective

geometry [26] to remedy this. The examples in this thesis did not have the problem described

and therefore vectorv = [1, 1, 1]
T .
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7.2.2 Affine Reconstruction

This step involves finding the plane at infinity. As mentioned in section 2.3.2, to upgrade

a specific projective representation to an affine representation, a transformation needs to be

applied which brings the plane at infinity to its canonical position. This can be achieved with

the matrixT P A defined in equation (2.27). The two affine projection matrices can then be

defined as follows [37]:

PAi = Pi T
−1
P A for i = 1, 2. (7.3)

The plane at infinity can be calculated if three or more points on that plane are known. These

points are points at infinity and are projections of vanishing points in space. Vanishing points are

the intersections of two or more imaged parallel lines (see appendix B). In order to determine

the three vanishing points, Faugeras et. al. [11] state that three non-coplanar directions of

parallel lines need to be established.

This can easily be verified: as figure 7.1 shows, it can happen that imaged parallel lines from

two different planes but pointing in the same direction intersect in the same vanishing point.

In the figure, the green and blue imaged parallel lines, although on different planes, intersect

in the same vanishing point.

Another problem observed is the one illustrated in figure 7.2. Although all imaged parallel lines

lie on three different planes and point in three different directions, all three vanishing point lie

on one line, as the normalised vanishing points show. A plane can only be estimated with two

or more lines, thus with only one line the plane at infinity cannot be accurately defined.

A correct estimation of the three vanishing points is shown in figure 7.3, where the normalised

vanishing points clearly illustrate that they lie on two lines which define the plane at infinity

very accurately.

Lines in the image are found with the algorithm by Burns et. al. [4] outlined in appendix

A.2. Parallel lines in three different planes and directions are selected by the user as figure 7.4

shows.

Projecting the three vanishing points into space with the two projection camera matrices of

equations (7.1) and (7.2), the points at infinity are estimated. Triangulation (see appendix D)

is employed to find the best estimate of each point in space. From the three points at infinity,

the plane at infinity is calculated as follows:

V T
i π∞ = 0 for i = 1 . . . 3, (7.4)
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Figure 7.1: Synthetic corner illustrating the vanishing points.

whereV i are the points at infinity. Thenπ∞ is the non-zero solution of the above linear

homogenous system [11].

7.2.3 Metric Reconstruction

After the camera is calibrated and the camera calibration matrix is estimated, it is possible to

upgrade the affine representation to a metric representation. The transformation matrix from

equation 2.37 achieves this, with matrixB being replaced by the camera calibration matrixK .

The two metric projection matrices can then be defined as follows [37]:

PMi = PAi T
−1
AM for i = 1, 2. (7.5)

Each individual point is then reconstructed with the help of triangulation methods (see appendix D).
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Figure 7.2: Vanishing points defining one line.

7.2.4 Reconstruction Results

For the stereo image pair already shown in figure 7.4, and being only interested in the box in

the images, the convex hull for all point matches on the three sides of the box is calculated.

(See figure 7.5.)

Reconstructing the points will give a 3D model of the three convex hulls, as seen in figure 7.6.

From the 3D model, it is possible to verify that the convex hulls lie at 90◦ to each other. Table

7.1 shows the results and clearly indicates that the reconstruction has been successful, as the

walls of the box are orthogonal.

Angle between Red & Green Plane:89.98◦

Angle between Red & Blue Plane: 90.02◦

Angle between Green & Blue Plane:90.03◦

Table 7.1: Angles between the three reconstructed convex hulls.
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Figure 7.3: Correct estimation of vanishing points.

7.3 3D Textured Model

The 3D model of figure 7.6 does not provide a good visualisation of the actual object in the

stereo image pair. Figure 7.6 is only suited to verify that the reconstruction was successful.

This section will show how to map the texture from the stereo image pair onto the 3D model

and in that way provide a better way to visualise the reconstructed object.

The matching algorithm for uncalibrated stereo images outlined in chapter 5 results in only a

few point matches. In order to perform dense stereo matching, the stereo images need to be

rectified in a way such that the search space is reduced to one dimension. Section 7.3.1 outlines

a rectification method that transforms each image plane such that the epipolar lines are aligned

horizontally. Once the images are rectified, it is possible to obtain a match in the second image

for nearly every pixel in the first image, as section 7.3.2 explains.
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(a)

(b)

(c)

Figure 7.4: Parallel lines estimated in three directions for a stereo image pair.
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Figure 7.5: Three convex hulls representing the three planes of the box.

Figure 7.6: Reconstructed convex hulls illustrating the relationship between the
three planes of the box.

7.3.1 Rectification of Stereo Images

There are many stereo rectification algorithms which make use of the epipolar constraint to

align the images. Pollefeys, Koch and van Gool [39] present a rectification method that can

deal with all possible camera geometries with the help of oriented projective geometry [26].

The image is reparameterised with polar coordinates around the epipoles. A somewhat simpler

rectification algorithm is presented by Fusiello, Trucco and Verri [13, 14], which only needs
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the two camera projection matrices to rectify both images. Both algorithms are able to rectify a

stereo rig of unconstrained geometry. The latter algorithm was chosen as it did not not employ

oriented projective geometry and produced two new rectified camera projection matrices from

which a 3D reconstruction is directly possible.

(a) Epipolar Geometry. (b) Rectified Cameras.

Figure 7.7: Rectification Process. Figure obtained from [13, 14].

Figure 7.7 shows the rectification process. In figure 7.7(a) the stereo rig is calibrated and the

two camera projection matrices are known (from equation (7.5)). After rectification, two new

rectified camera projection matrices are obtained by rotating the old ones around their optical

centres until the focal planes become coplanar [13, 14]. The epipoles are now situated at infinity

and therefore the epipolar lines are parallel. This introduces a problem when the epipoles before

rectification are situated inside or very close to the images, as pixels surrounding the epipoles

get mapped to infinity. This results in very large images, which are difficult to operate on.

In order to have horizontal epipolar lines, the baseline<C1C2> must be parallel to the newX-

axis of both cameras. Conjugate points in both images must have the same vertical coordinate.

This can only be achieved if the camera calibration matrixK is the same for both images. That

means the focal length is the same and the two image planes are coplanar. (See figure 7.7(b).)

From equation (3.8) and (7.5), it is possible to rewriteP:

P = [ Q|q]. (7.6)

Knowing that the focal plane is parallel to the image plane and contains the optical centreC,
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the coordinatesc of C are as follows:

c = − Q−1q. (7.7)

P can then be rewritten:

P = [ Q| − Qc]. (7.8)

The new rectified camera projection matrices are then defined as in equation (7.8):

PRi = K [R| − Rci ] for i = 1, 2. (7.9)

The optical centres are calculated for both cameras from equation (7.7) and the rotation matrix

R is the same for both cameras. The row vectors ofR, r 1...3, represent theX, Y andZ axes of

the camera reference frame in world coordinates.

Fusiello et. al. [13, 14] define then three steps for rectification:

1. The newX-axis parallel to the baseline isr 1 = (c1 − c2)/‖c1 − c2‖.

2. The newY-axis orthogonal toX and to any arbitrary vectork is r 2 = k⊥r 1.

3. The newZ-axis orthogonal toXY is r 3 = r 1⊥r 2.

(x⊥y describes that vectorx is orthogonal to vectory.)

The vectork above is set equal to theZ unit vector of the old left matrix, and as such constrains

the newY-axis to be orthogonal to both the newX and old leftZ-axis. Fusiello et. al. [13, 14]

point out that the algorithm only fails when the optical axis is parallel to the baseline (when

there is forward motion).

Writing the old camera projection matrices and the new rectified camera projection matrices

as in equation (7.6), the rectifying transformation matrices are as follows:

T i = QRi QMi for i = 1, 2. (7.10)

This transformation maps the image plane ofPM1,M2 onto the image plane ofPR1,R2.

When rectifying an image pair, an arbitrary translation needs to be applied to both images to

bring them into a suitable region of the image plane. Figure 7.8 shows the result of rectifying

the stereo image pair of the previous section. The epipolar lines for the points in the first image
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are displayed in the second image. Note that due to calibration inaccuracies some of the points

in the second image do not lie on their corresponding epipolar lines.

Fusiello et. al. [13, 14] show in their paper that reconstructing directly from the rectified

images does not introduce any major errors and compares favourably with the reconstruction

from the original images.

Figure 7.8: Rectified stereo image pair with horizontal epipolar lines.

7.3.2 Dense Stereo Matching

Many different problems arise when attempting dense stereo matching. The most notable

problem is occlusions in the images, which simply means that points in one image have no

corresponding point in the other one. Ambiguity is a problem when a point in one image can

correspond to more than one point in the other image. The intensity can vary from one image

to the other and makes the same point in both images look different. Fusiello, Roberto and

Trucco [12] have developed a robust area-based algorithm, which addresses all these problems.

They assume that the intensity stays the same for each point in both images and then calculate

similarity scores. As the images are rectified, the search space is reduced to the corresponding

horizontal line in the right image of each pixel in the left image. Then a small window placed
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on each pixel in the left image is compared to a window placed in the right image along the

corresponding horizontal line. The similarity measure employed is the normalisedsum of

squared differencesor SSD error:

C(x, y, d) =

n∑
i =−n

m∑
j =−m

[I l (x + i, y + j ) − Ir (x + i + d, y + j )]2

√
n∑

i =−n

m∑
j =−m

I l (x + i, y + j )2
n∑

i =−n

m∑
j =−m

Ir (x + i + d, y + j )2

. (7.11)

To obtain the disparity for a pixel in the left image, the SSD error is minimsed:

dc(x, y) = arg min
d

C(x, y, d). (7.12)

In order to obtain subpixel precision, a curve is fitted to the errors in the neighbourhood of the

minimum:

Dx,y = dc +
1

2

C(x, y, dc − 1) − C(x, y, dc + 1)

C(x, y, dc − 1) − 2C(x, y, dc) + C(x, y, dc + 1)
. (7.13)

Multiple correlation windows are used to find the smallest SSD error. For each pixel in the

left image, the correlation is performed with nine different windows, as figure 7.9 shows. The

disparity with the smallest SSD error value is retained. As Fusiello et. al. [12] point out, a

window yielding a smaller SSD error is more likely to cover a constant depth region.

Figure 7.9: Nine different correlation windows. The pixel for which disparity
is computed is highlighted. Figure obtained from [12].

Occlusions are detected by reversing the images and then rerunning the algorithm. This process

is calledleft-right consistency. For each point in the left image the disparitydl (x) is computed.

Then the images are reversed and the algorithm is rerun. Ifdl (x) = −dr (x + dl (x)), then
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the point will keep the left disparity. Otherwise the point is marked as occluded. Fusiello et.

al. [12] assume that occluded areas occur between two planes at different depths and as such

assign the disparity of the deeper plane to the occluded pixel.

From the two rectified images in figure 7.8, the common region of both images is selected

(figure 7.10(a)). Then from the few point matches used in the reconstruction algorithm, the

minimum and maximum disparity values are calculated to limit the horizontal search space.

Figure 7.10(b) shows the resultant disparity map.

(a) Epipolar Geometry.

(b) Rectified Cameras.

Figure 7.10: Disparity map calculated on stereo image pair.

If the maximum disparity value is relatively large, then the disparity map is small. As figure

7.10(b) shows, both sides of the disparity map are cropped. Due to the rectification process it

is sometimes possible that the disparity is larger than the size of the common region, in which

case no texture map can be obtained.
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7.3.3 Results

The 3D textured model is obtained from each pixel of the disparity map. The index of the

disparity map serves as an index into the left image and the disparity as the horizontal offset

of the index in the right image. With the help of the rectified camera projection matrices of

equation (7.9) and the triangulation method outlined in appendix D, each point is reconstructed

and assigned with the average pixel value from both images. The final reconstructed model is

seen in figure 7.11. Better results could be achieved by interpolation techniques.

Figure 7.11: Reconstructed 3D texture model.

7.4 Other Reconstruction Results

A texture map is not always necessary for visualisation. Figure 7.12(b) and (c) shows the

reconstruction of the squares of two calibration panels1 at 90◦ to each other of figure 7.12(a).

The angle between the two planes in the images was calculated to be 89.26◦ after reconstruction.
1Stereo images, point matches for both images, and the calibration matrix were obtained from theINRIA-Robotvis

project.
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(a) Stereo Image Pair.

(b) Reconstruction View 1. (c) Reconstruction View 2.

Figure 7.12: Simple Reconstruction of a calibration pattern.

7.5 Conclusion

There are various reasons why the reconstruction and rectification algorithms may fail. As

pointed out in section 7.2.1, it is possible to obtain a distorted reconstruction when the plane at

infinity crosses the scene. This can only be solved with the help of oriented projective geometry,

which is not considered in this thesis.

Obtaining a texture map also proves to be very difficult. First of all the rectification process

can result in very large images due to epipoles lying too close to the image plane. Also, when

the disparity values become larger than the rectified images, no texture map can be obtained.



88 CHAPTER 7. STRATIFIED 3D RECONSTRUCTION

All those reasons made it difficult to obtain more reconstructions. The following chapter will

look at ways of solving the above problems.



Chapter 8

Conclusions

The work presented in this thesis deals with the extraction of 3D geometry from stereo images.

The problem is decomposed into a number of tasks, each task being associated with a specific

geometric group. Existing techniques have been implemented and combined to form a relatively

easy algorithm, which is straightforward to use. Minimal user intervention is achieved by

automating most of the tasks.

The matching algorithm incorporates the best aspects from two papers. The number of correct

initial matches has been improved and the algorithm is also capable of working only on a

few features. A disadvantage is the memory intensive evaluation of the correlation-weighted

proximity matrix if a few hundred features are detected in the images. A minimum of only

eight correspondences are needed for the fundamental matrix estimation, thus only the most

prominent corners should be extracted from the images. But with computing power increasing

rapidly and the cost of memory decreasing, the matching algorithm can easily operate on a

500× 500 proximity matrix.

The only part of the reconstruction algorithm which is not automated is the selection of the

imaged parallel lines in both images. It is possible to automatically select parallel lines by

detecting dominant line directions in histograms. But it is not possible to distinguish between

lines pointing in the same direction and lying on the same plane and lines pointing in the same

direction but lying on different planes. The only way to solve this is by making sure that parallel

lines in the scenes on different planes point in different directions.

The rectification algorithm implemented in this thesis works very well when the epipoles lie

far away from the images. It is impossible to make use of this algorithm if the epipoles lie

inside the images, as very large images are obtained. The rectification algorithm by Pollefeys,

89
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Koch and van Gool [39] should rather be implemented as the rectified images will always be

of a certain manageable size.

The problem with the dense stereo matching algorithm implemented in this thesis is that much of

the information on both sides of the rectified images is lost due to large calculated initial disparity

values. The only way to obtain a full textured model of the whole scene is by expanding the

stereo pair to a image sequence of the same scene. This would not only expand the possibilities

of the dense stereo matching algorithm, but it would also enable other algorithms such as the

modulus constraint[37] to be included in the reconstruction problem. It would be possible to

estimate the plane at infinity without having to define parallel lines in the scene.

Camera calibration could also be included directly in the reconstruction problem by estimating

Kruppa’s equations, instead of calibrating the camera separately. This would allow for a

system that is totally independent of any user intervention. Another interesting aspect would

be that cameras could be changed during a reconstruction task and recalibrate themselves again

automatically. But as pointed out in section 6.3.2, much work still needs to be done in that area

as the whole process of solving forKruppa’s equationsis very complex and computationally

expensive.

An advantage of breaking up the reconstruction problem into different tasks is that it makes

it possible to exchange algorithms for each part at a later stage. This is especially important

when developing this system further, without having to redefine a new approach.

A limitation of this thesis is that only rigid scenes can be considered in the reconstruction.

Moving objects in a scene would cause the reconstruction algorithm to fail. Possibly most of

the research in computer vision will be geared towards this area. An important application

must surely be the tracking of people inside a scene and obtaining a 3D model at the same time.



Appendix A

Feature Extraction

A.1 Corner Detection

A definition of a corner is "features formed at boundaries between only two image brightness

regions, where the boundary curvature is sufficiently high" [45]. One way of finding corners

in an image is by first segmenting the image in some way to find the shape of an object and

then using an edge detector to find the edge chains. Searching the edges for turnings in the

boundary will result in a corner. An example of this would be using theHough transformto

find straight lines in an image and then finding the end points of these lines. The problem

with these techniques is that they rely on prior segmentation of the shapes in the images and

inaccuracies will appear due to the segmentation. It is therefore important to find a corner

detector that operates on the image directly.

The two corner detection algorithms described here are theKitchen and Rosenfeld[23] and

Harris-Plessey[16] corner detectors. The latter one can also be used to refine the corners up

to subpixel accuracy.

A.1.1 Kitchen and Rosenfeld Corner Detector

TheKitchen and Rosenfeldcorner finder [23] is used to extract initial corners from the image

only up to pixel accuracy. This algorithm applies an edge detector to the gray level image and

finds changes in direction along the edges. These changes should correspond to turns in the

boundary of an object. This can be achieved by finding the gradient direction in the image,
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which is given by

tan(θ(x, y)) =
I y(x, y)

Ix(x, y)
, (A.1)

whereIx andI y are the first partial derivatives of the imageI at point(x, y). The derivatives can

be calculated using horizontal and verticalSobeloperators to measure thex andy components

of the gradient in the image. TheSobeloperator is then applied to the gradient direction image

to find the changes in direction of the edge. This is the curvature measure, which is multiplied

by the gradient magnitude from the first image to obtain the corner magnitude measure.

Calculating the partial derivatives ofθ (here the arguments of functions are omitted for clarity):

θx =
IxyIx − Ixx I y

I 2
x + I 2

y

θy =
I yyIx − IxyI y

I 2
x + I 2

y

,

the corner magnitude is defined as follows:

κ =
Ixθy − I yθx

I 2
x + I 2

y

=
Ixx I 2

y + I yyI 2
x − 2IxyIx I y

I 2
x + I 2

y

.

This expression finds the rate of change of gradient direction along the edge in the image,

multiplied by the gradient magnitude. It can be regarded as the curvature of a contour line.

Thresholding this image will result in points with high curvature being selected. The corners

lie along the strongest edges of the image.

A.1.2 Harris-Plessey Corner Detector

The Harris or Plesseycorner finder [16] also finds corners by considering points of high

curvature. It is based on theMoraveccorner detector [34].

The Moravec corner detector starts by looking for a large variation in intensity in some local

window in the image in every direction. This can be expressed mathematically by an autocor-

relation function, which, when thresholded, yields the desired corner points. The result was

found to be very noisy due to the rectangular nature of the window, and that the operator is very

sensitive to strong edges. Harris and Stephens [16] modified the Moravec operator by using a

circular Gaussian window.
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Their autocorrelation function is as follows:

E(x, y) = Ax2
+ 2Bxy+ Cy2, (A.2)

where

A = I 2
x ⊗ w

B = Ixy ⊗ w

C = I 2
y ⊗ w,

w = e−(winx2
+winy2)/2σ2

is the smooth Gaussian window and⊗ is the convolution operator.

Variables winx and winy define the window size. The autocorrelation function can be rewritten

for small shifts:

E(x, y) = [x, y]G[x, y]
T , (A.3)

where

G =

[
A B

B C

]
(A.4)

is a 2× 2 matrix. The following operator is then used to extract corners from the image:

R(x, y) = det(G) − k (trace(G))2. (A.5)

The value fork is usually taken to be 0.04 to take into account high contrast pixel step edges

[54]. ThresholdingR will then give the desired corners.

A.1.3 Subpixel Corner Detection

To refine the corners estimated by theKitchen and RosenfeldorHarris-Plesseycorner detectors

to subpixel accuracy, an algorithm is implemented which was developed by Jean-Yves Bouguet

and included in theOpen Source Computer Vision Library(©2000 Intel Corporation)1 [6]. With

reference to figure A.1, it can be observed that every vector from the centreq to a point p in

the neighbourhood ofq is orthogonal to the image gradient atp and subject to image and

measurement noise. Pointq is the subpixel accurate corner location or sometimes also called

theradial saddle point.
1The Open Source Computer Vision Library(©2000 Intel Corporation) can be downloaded from the official

website: http://www.intel.com/research/mrl/research/cvlib/ (accessed November 2000).
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Figure A.1: Illustration of subpixel corner estimation (©2000 Intel Corporation).

The following equation can be defined:

εi = ∇ I T
pi
(q − pi ), (A.6)

where∇ I pi is the image gradient at pointpi in the neighbourhood ofq. To find the best estimate

for q, εi needs to be minimised. Equation A.6 defines a system of equations whereεi is set to

zero: (∑
i

∇ I pi ∇ I T
pi

)
q −

(∑
i

∇ I pi ∇ I T
pi

pi

)
= 0, (A.7)

where the gradients are summed up in the neighbourhood ofq. UsingG (defined as in equation

(A.4)) for the first gradient term andb = Gpi for the second one, equation (A.7) can be

rewritten:

q = G−1b. (A.8)

Variableq defines a new neighbourhood (window) centre, and the above process is iterated

until q does not move more than a certain threshold. This threshold is set to a resolution of

0.05 in the implementation of theOpen Source Computer Vision Library.



A.2. EXTRACTING STRAIGHT LINES 95

A.2 Extracting Straight Lines

This section explains the straight line algorithm of Burns et. al. [4]. An implementation of this

algorithm can be found in theDARPA Image Understanding Environmentsoftware package

(©Amerinex Applied Imaging)2 [2].

The use of theHough transformwas considered for finding straight lines, but it was found that

it was not accurate enough. The lines were not perfectly parallel to an edge.

The algorithm described here makes use of the underlying intensity surrounding each edge and

uses this information to extract a straight line parallel to the edge. The algorithm is divided

into two parts:

1. Grouping pixels into line-support regions.

2. Interpreting the line-support region as a straight line.

A.2.1 Line-support Regions

The image is convolved by a mask (Sobel mask) in the x andy direction to find the gradient

magnitude and orientation. The gradient orientation is calculated as in equation (A.1) of section

A.1 and is then grouped into regions. This is done using fixed and overlapping partitioning: the

360◦ range of gradient directions are quantised into a small set of regular intervals (8 intervals

of 45◦ each) and each gradient vector is labelled according to the partition into which it falls

(see figure A.2).

This means that pixels on a straight line will fall within a certain partition, whereas adjacent

pixels that are not part of the same straight line will usually have different orientations and thus

fall into a different partition.

A problem with this fixed partioning is "the arbitrary placement of the boundaries of the

partitions and the resulting insensitivity to the possible distributions of edge directions of any

particular straight line" [4]. As an example, a straight line can produce fragmented support

regions if the gradient directions lie across a partition boundary. To remedy this, two overlapping

sets of partitions are used. This means that for the first partition the first bucket is centered at

0◦ and for the second partition the first bucket is centered at 22.5◦. If one partition fragments

one line, the other will place that line entirely within a partition.
2For more information and to download the software package go to: http://www.aai.com/AAI/IUE/ (accessed

November 2000).
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Figure A.2: Gradient Space Partioning. Figure obtained from [4].

These two partition representations have to be merged in such a way that a single line is

associated with only one line-support region. This is done as follows:

• Line lengths are determined for every region.

• Each pixel is a member of two regions, so every pixel will vote for and is associated with

that region of the two that provides the longest interpretation (or has the biggest area).

• Each region receives a count of the number of pixels that voted for it.

• The support of each region is given as the percentage of the total number of pixels voting

for it.

The regions are then selected if the support is greater than 50%.

A.2.2 Interpreting the Line-Support Region as a Straight Line

Each line-support region represents a candidate area for a straight line as the local gradient

estimates share a common orientation. The intensity surface associated with each region is

then modelled by a planar surface. The parameters of the plane are found by a weighted least-

squares fit to the surface. The equation of the plane is as follows:z(x, y) = Ax + By + C.

The line must then lie perpendicular to the gradient of the fitted plane. To find this line, the

fitted plane is intersected with a horizontal plane at a height of the average weighted intensity

(see figure A.3).
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Figure A.3: Two planes intersecting in a straight line. Figure obtained from [4].

The intersection is a straight line, which is parallel to the edge in the image. Once all these

lines have been found, only lines of a certain length or orientation are retained.

A comparison with the Hough transform is shown in figure A.4. The Hough transform is clearly

not as accurate as the algorithm outlined here. The reason for this is that the Hough transform

only searches for an edge and fits a line to it, while with the Burns line algorithm, the whole

area surrounding an edge is taken into account when fitting a line.
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(a) Hough Transform. (b) Burns Line Algorithm.

Figure A.4: Comparison between the Hough Transform and Burns Line
Algorithm.



Appendix B

Vanishing Point Estimation

A vanishing point is the intersection of two or more imaged parallel lines. For two linesl 1 and

l 2, the intersection is simply the cross productx = l 1 × l 2. For additional lines it becomes

more difficult to solve for the vanishing point.

Because of measurement error of the lines in the image, these lines will not generally intersect

in a unique point. Liebowitz et. al. [28, 29] implement amaximum likelihood estimateor MLE

to find the best estimate of the vanishing point. This is done "by computing a set of lines that

do intersect in a single point, and which minimise the sum of squared orthogonal distances

from the endpoints of the measured line segments" [28].

If the endpoints of the measured linel arexa andxb (as in figure B.1), then the MLE minimises

the following quality:

C =

∑
i

d2(l̂ i , xai ) + d2(l̂ i , xbi )

subject to the constraintvT l̂ i = 0, whered(x, l ) is the perpendicular image distance between

point x and linel .

Figure B.1: Maximum Likelihood Estimate of Vanishing Point [28].
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An initial solution forv is obtained from the null vector of the matrix[l 1, l 2, . . . , l n] via singular

value decomposition [28].

An implementation of this algorithm can be found in theDARPA Image Understanding Envi-

ronmentsoftware package (©Amerinex Applied Imaging)1.

1For more information and to download the software package go to: http://www.aai.com/AAI/IUE/ (accessed
November 2000).
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The Levenberg-Marquardt Algorithm

All minimisations in this thesis have been done using theLevenberg-Marquardtalgorithm

[35, 40]. A short description of the Levenberg-Marquardt algorithm is presented by Hartley

[17] and Pollefeys [38], and is outlined here. The algorithm is based on theNewton iteration

method, which is described first.

C.1 Newton Iteration

For a vector relationy = f (x), wherex and y are vectors in different dimensions, witĥy

a measured value fory, a desired vector̂x needs to be calculated which satisfies the above

relation. Stated differently, a vectorx̂ needs to be calculated which satisfiesŷ = f (x̂) + ε̂,

for which‖ε̂‖ is minimal. Newton’s iteration method starts with an initial valuex0 and refines

this value under the assumption that the functionf is locally linear [17, 38].

For ŷ = f (x0)+ ε0, the functionf is approximated atx0 by f (x0 + δ) = f (x0)+ Jδ, where

J =
∂ y
∂x is the linear mapping represented by the Jacobian matrix. Then settingx1 = x0 + δ,

the following relation is obtained:

ŷ − f (x1) = ŷ − f (x0) − Jδ = ε0 − Jδ,

where‖ε0 − Jδ‖ needs to be minimised. This minimisation can be solved forδ using linear

least-squares:

JT Jδ = JTε0.

The above equation is called thenormal equation[17, 38].
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To summarise the above procedure, the solution can be found by starting with an initial estimate

x0 and approximating the equation

x i +1 = x i + δi ,

whereδi is the solution to the normal equationsJT Jδi = JTε i . Matrix J is the Jacobian at

x i andε i = ŷ − f (x i ). As pointed out by Hartley [17] and Pollefeys [38], it is possible that

this algorithm will converge to a local minimum value or not converge at all, as it depends a

lot on the initial estimatex0.

C.2 Levenberg-Marquardt Iteration

This method varies slightly from the Newton method. The normal equationsNδ = JT Jδ =

JTε0 are augmented toN ′δ = JTε0, whereN ′
i i = (1+λ)N i i and N ′

i j = N i j for i 6= j .

The value ofλ is initialised to a very small value, usuallyλ = 10−3. If the value obtained for

δ by the augmented normal equations reduces the error, then the increment is accepted andλ

is divided by 10 before the next iteration. If the error increases,λ is multiplied by 10 and the

augmented normal equations are solved until an increment is obtained which reduces the error.

The implementation of the Levenberg-Marquardt algorithm used in this thesis is from the

MINPACK1 library andDARPA Image Understanding Environmentsoftware package (©Amer-

inex Applied Imaging)2.

1For more information and to download the MINPACK software package go to: http://www.netlib.org (accessed
November 2000).

2For more information and to download the Image Understanding Environment software package go to:
http://www.aai.com/AAI/IUE/ (accessed November 2000).



Appendix D

Triangulation

The process of triangulation is needed to find the intersection of two known rays in space. Due

to measurement noise in images and some inaccuracies in the calibration matrices, these two

rays will not generally meet in a unique point. This section outlines a linear and a nonlinear

method to accurately estimate the best possible point of intersection.

D.1 Linear Triangulation

Let the 3D coordinate in space bẽM = [X, Y, Z, W]
T and its corresponding image coordinates

bem̃1,2 = [u1,2, v1,2, 1]
T . Then making use of the pinhole model equation (3.1) and the camera

projection matrices relating to the two images, the following two equations can be defined:

s1[u1, v1, 1]
T

= P1[X, Y, Z, W]
T , (D.1)

s2[u2, v2, 1]
T

= P2[X, Y, Z, W]
T , (D.2)

wheres1 ands2 are two arbitrary scalars. Writing thei th row of P1 and P2 as pT
1i and pT

2i

respectively, the two scalarss1 ands2 can be eliminated by knowing the following:s1 = pT
13M̃

ands2 = pT
23M̃ . The above two equations can then be rewritten in the form:

AM̃ = 0, (D.3)
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whereA is a 4× 4 matrix:

A =


pT

11 − u1 pT
13

pT
12 − v1 pT

13

pT
21 − u2 pT

23

pT
22 − v2 pT

23

 .

The solution is then the eigenvector of the matrixAT A associated with the smallest eigenvalue.

It is also possible to assume that no point is at infinity, and thenW = 1. The set of homogeneous

equations (D.3) is then reduced to a set of four non-homogeneous equations in three unknowns

[52].

D.2 Nonlinear Triangulation

The above linear method can be used as an initial estimate for a nonlinear optimisation problem.

Zhang [52] minimises the error measured in the image plane between the observation and the

projection of the reconstructed point:

(
u1 −

pT
11M̃

pT
13M̃

)2

+

(
v1 −

pT
12M̃

pT
13M̃

)2

+

(
u2 −

pT
21M̃

pT
23M̃

)2

+

(
v2 −

pT
22M̃

pT
23M̃

)2

. (D.4)

The nonlinear minimisation is done using theLevenberg-Marquardtalgorithm [35, 40], de-

scribed in appendix C.

Hartley and Sturm [21] define a different minimisation problem. Their method seeks a pair of

points that minimises the sum of squared distances subject to the epipolar constraint. But as

Zhang [52] points out in his paper, both the linear and nonlinear triangulation methods outlined

above will give optimum results.
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